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A B S T R A C T

Fuel flexibility ensures reliable operation and improves the implementation of a dual-fuel strategy alongside the 
Diesel-only model in marine powertrains. This versatile approach, however, imposes limitations related to the 
complexity of the injection system, underpinning the necessity of comprehending the relationship between 
design and performance to facilitate the injector optimization process. The present study introduces a data-driven 
predictor utilizing a deep neural network to predict spray tip penetration and cone angle in marine injectors. This 
neural network is trained using experimental data from serial and prototype industrial designs, incorporating 
operating conditions and a wide range of geometrical parameters as primary input features. Issues, as for 
example overfitting of the training dataset, were mitigated via regularization, enhancing generalization. The 
deep neural network accurately predicts spray characteristics across short, medium, and long penetration ranges, 
achieving 95% accuracy for unseen data. Furthermore, a feature importance analysis indicates that the injection 
pressure, number of spray holes, outlet spray hole diameter, and sac hole volume are the primary parameters 
influencing spray behavior. This neural network provides a computationally efficient alternative to conventional 
approaches, such as time-consuming Computational Fluid Dynamics simulations or test measurements. The 
model is tailored to support the marine injector design workflow, allowing the fast exploration of design space in 
the early design phase at operation conditions relevant for fuel flexibility, and contributing to accelerate the 
injector development process.

1. Introduction

The diesel engine has been established as the predominant power 
source in the marine sector, mostly due to its reduced risk of fire hazard 
and its capacity to operate with a variety of fuels [1]. Fuel flexibility 
offers operational versatility and economic advantages, enabling the 
engine to operate with Heavy Fuel Oil (HFO), Marine Fuel Oil, Inter
mediate Fuel Oil, Marine Diesel Oil, and Marine Gas Oil [2].

Nonetheless, the petroleum-derived fuels currently employed in the 
marine sector substantially contribute to global emissions [3]. They 
raise concern about air quality and human health, particularly because 
the release of deleterious particulate matter, alongside the production of 
nitrogen oxides and sulfur oxides [4]. In order to address these issues, it 
is essential to reevaluate the fuel selection for marine engines and the 
fuel injection system as a whole, since it directly influences both per
formance and emissions [5,6]. Biodiesel serves as an alternative fuel to 
reduce emissions owing to its renewable nature and cleaner combustion 

properties. Nevertheless, the maritime sector must overcome significant 
obstacles associated with the extensive use of biodiesel, mostly con
cerning cost, feedstock sustainability, increased Nitric oxides (NOx) 
emissions and lower engine efficiency [7,8]. Dual-Fuel Internal Com
bustion Engines (DFICE) offer a viable solution for the marine sector, 
facilitating advancement towards a more sustainable and environmen
tally friendly future while maintaining operational efficiency.

The DFICE configuration relies on a primary fuel with high octane 
number to supply the majority of energy and designate the combustion 
conditions. The pilot fuel, commonly a minimal amount of Diesel, serves 
as an ignition source [9]. The DFICE concept enables seamless transi
tions between traditional fuels such as HFO and more eco- friendly al
ternatives like liquefied natural gas, hydrogen, or biofuels during engine 
operation [10]. This versatility allows the selection of the most cost- 
effective fuel option based on its availability, price fluctuations, and 
regulatory considerations [11].

However, the fuel flexibility embedded in the DFICE concept entails 
disadvantages related to the complexity of the injection system. Diesel 
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direct-injection concepts can be materialized by either utilizing two fuel 
injectors, with one of them placed in a decentralized location inside the 
combustion chamber, or by employing a single injector with an intricate 
internal flow path including a series of nozzles and potentially more 
than one needles. The increase in complexity for the fuel injector 
hardware, cost and reduced performance for a not symmetric combus
tion process, hinders the wide adoption of the latter strategy. Utilizing a 
single injector equipped with a single nozzle and needle for both Diesel- 
only and pilot DFICE operation presents the best trade-off between 
system simplicity and performance. While a single injector simplifies 
system design, reduces weight and volume, and potentially lowers costs. 
It also introduces challenges associated with the accurate metering of 
both large and small fuel quantities, the increased risk of nozzle clogging 
and the inevitable compromise in spray atomization, particularly at low 
flow rates.

Understanding the relationship between nozzle geometry, flow dy
namics, fuel delivery and spray characteristics provides additional 
critical insight on injector optimization and is a necessary step towards 
optimizing the spray trade-off characteristics for fuel flexible operation. 
Spray tip penetration is a critical element in the fuel injection process, as 
it directly influences air–fuel mixing, combustion efficiency, and, 
consequently, engine performance and emissions [12,13]. Over the past 
few decades, researchers have been dedicated to developing mathe
matical models to predict spray tip penetration and spray cone angle. 
Such efforts have been intensified in recent years owing to the increasing 
sophistication of computational tools and the introduction machine 
learning techniques.

The traditional methods for predicting Spray Tip Penetration (STP) 
and Spray Cone Angle (SCA) often rely on empirical correlations, semi- 
empirical models, and high- fidelity Computational Fluid Dynamics 
(CFD) simulations. Empirical correlations are frequently derived from 
experimental data and adjusted to fit certain operating ranges. They are 
user-friendly and computationally inexpensive. However, their accuracy 
is limited when applied to conditions that diverge from those employed 
for their derivation. Semi-empirical models, such as those derived by 
Wakuri et al. [14] and Hiroyasu et al. [15], combine simplified physics 
with empirical correlations. The incorporation of considerations such as 
momentum theory and jet disintegration theory enable these models to 
reflect more aspects of the underlying physics, going beyond empirical 
correlations. Nonetheless, they remain dependent on some empirical 
attributes and may lack precision in highly varying injection conditions 
[16].

CFD can be leveraged to model interactions between the liquid fuel 
jet, surrounding gas, and turbulence, providing comprehensive insights 
into spray breakup, atomization, and droplet dynamics [17]. This 
detailed approach supports the prediction of spray characteristics across 
diverse operating conditions and injector designs, surpassing the 

constraints of empirical correlations. However, numerical simulations 
can be computationally demanding and time- consuming, particularly 
for high-fidelity approaches [18]. Their precision is significantly influ
enced by the selected turbulence and break-up sub-models and neces
sitate validation against experimental data to ensure their reliability 
[19].

Data-driven modeling techniques, in particular Machine Learning 
(ML), have demonstrated significant potential in accurately predicting 
the STP and SCA, while effectively capturing intricate interactions 
among input parameters such as injection pressure, nozzle shape, and 
fuel characteristics. It serves as an attractive alternative for performing 
the injection equipment design and optimization, in contrast to costly 
and time-intensive experimental measurements and CFD simulations 
[20].

Along these lines, Nowruzi et al. [21] have investigated different 
architectures of Artificial Neural Network (ANN) to estimate the average 
STP and SCA of a single nozzle injector. The input parameters for 
training the supervised feed-forward network using the back- 
propagation method included nozzle diameter, injection pressure, in
jection profile, back pressure, and ambient temperature. Hwang et al. 
[22] employed a regression model to predict the liquid penetration 
length, liquid width, and three-dimensional distribution of spray liquid 
fraction of a multi-hole gasoline injector. Their model included nine 
input features (fuel properties such as density and viscosity, along with 
ambient variables), showing remarkable concordance with experi
mental data.

Lie et al. [23] derived a mathematical equation for STP via a back- 
propagation neural network for biodiesel and diesel mixtures. They 
modeled a single-hole injector, where the input parameters were the fuel 
characteristics and injection pressure. This model was sub-sequently 
enhanced by Richards and Emekwuru [24] due to the limited experi
mental training data. They mitigated overfitting problems from the prior 
model with a systematic approach to uncertainty.

Khan et al. [25] evaluated the efficiency of four machine learning 
methods (random forest, extreme gradient boosting, multilayer per
ceptron, and elastic net) in predicting STP and SCA. Although their study 
focused on single and dual hole injectors, they utilized only two geo
metric characteristics as inputs: normalized nozzle outlet diameter and 
conicity. Hence, simplifying those injectors to single hole configurations 
in their models. Zhang et al. [26] examined the sensitivity of parameters 
in a genetic algorithm backpropagation neural network for predicting 
spray penetration, comparing its performance with semi-empirical 
methods. Their model utilized experimental data from a single hole 
injector, with the ANN model incorporating operational variables and 
fuel properties as input parameters.

Tian et al. [27] conducted an experimental research of octanol-diesel 
mixture, resulting in five fuel compositions. Those fuels were tested in 
different operation conditions for a single hole injector. Then, this data 
was used to train an ANN and used it to compare the influence of octanol 
ratio on the spray characteristics. Zhang et al. [28] employed an ANN to 
predict the spray characteristics and vaporization index. The model was 
trained with data of five alcohol fuel and gasoline blends across a range 
of operation conditions for one multi-hole injector design, focusing on 
the physicochemical fuel properties as the main input features. Later, 
Zhang et al. [29] compared the response surface methodology with an 
ANN to predict the spray performance for the same fuels, where both 
models presented a high accuracy. Leng et al. [30] compared the 
experimental data of STP for a methanol injection at different operation 
conditions with Wakuri et al. [14] and Hiroyasu and Arrai [15] semi- 
empirical formulation. Due to the low precision of those formulations 
for methanol, a variation of convolutional neural network was proposed, 
reaching a better correlation with the experimental measurements.

Albeit the previous investigations, the semi-empirical models as well 
as the ML restrict themselves to few designs during their formulation, 
most of them to one or two injector designs. In addition, those models 
present a limited number of nozzle geometrical parameters as inputs. 

Nomenclature

ANN Artificial Neural Network
CFD Computational Fluid Dynamics
CVC Constant Volume Chamber
DNN Deep Neural Network
DBI Diffuse-Backlight Illumination
DFICE Dual-Fuel Internal Combustion Engines
HFO Heavy Fuel Oil
ML Machine Learning
MAPE Mean Absolute Percentage Error
NOx Nitric Oxides
ReLU Rectified Linear Unit
SCA Spray Cone Angle
STP Spray Tip Penetration
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They focus more on the impact of different operation conditions or fuels 
type. Varying designs is inherently a more complex task than adapting to 
different operational conditions for a single, fixed geometry because of 
the dimensionality increment [31,32]. Each design leads to more com
plex feature interactions and non-linear relationships, presenting a more 
challenging task. Therefore, their use is very restricted during the pre- 
development phase of injector designs, making it difficult to take 
advantage of the fast prediction to explore design range and identify the 
promising designs effectively during the optimization process.

Even though ML offers superior flexibility for spray macroscopic 
predictions compared to semi-empirical models, the elevate number of 
input parameters imposes an additional complexity. The collinearity 
among geometric parameters may destabilize the model, and this can 
normally be compensated by increasing the data set size [26]. On the 
other hand, high-quality data acquisition can be expensive and time- 
consuming, introducing limitations to the data expansion [25,33]. 
Setting up experiments or running simulations often requires significant 
resources. Another option is the usage of historical data or integrating it 
from different sources, but this task can be demanding due to differences 
in data formats and structural inconsistencies [34]. Hence, balancing the 
ML model complexity and generalization ability becomes a critical 
challenge.

Moreover, models in the literature are more commonly developed for 
light-duty applications due to their dominance in the market. Heavy- 
duty and marine injectors often operate over a much wider range of 
conditions than light-duty injectors, including variable fuel amounts, 
high injection pressures, and more severe environments [35]. Conse
quently, the accuracy of the those models are reduced for this specific 
type of injectors, making their extrapolation or tuning a time-consuming 
process without guaranteeing accurate results.

Therefore, the aim of this study is to develop a tool tailored for 
marine diesel injectors, which permits reliable predictions of spray 
macroscopic characteristics (STP and SCA) as well as a relative com
parison of different designs under operating conditions relevant for fuel 
flexibility: Diesel-only and DFICE mode. The injector type explored in 
this study is typically used for small to medium sized four-stroke marine 
engines, with an average displacement volume of 5L per cylinder. To 
this goal, a deep neural network has been conceited and trained with 
experimental data from a variety of marine injector designs and oper
ation conditions. The high-quality data, selection and feature engi
neering are the primary factors influencing the model performance, and 
in complement to the neural architecture, allowed the inclusion of 14 
input features. Finally, focusing on the model applicability during the 
pre-development design phase, 10 of the input features are related to 
geometrical constrains to the conceptualization phase. This unique 
characteristic allows the usage of the model to on-the-fly explore the 
design range for marine injectors, which offers an advantage over the 
current semi-empirical models or neural networks in the literature.

2. Brief overview on spray tip penetration models

Wakuri et al. [14] and Dent [36] were among the first to establish 
semi-empirical models utilizing experimental data to establish a foun
dational knowledge of STP. Wakuri et al. [14] derived a STP correlation 
utilizing moment theory. Their formulation defined penetration as a 
function of the spray angle and the square root of the product of the 
spray hole diameter and time. Dent [36] maintained square root 
dependence and incorporated the effects of both evaporating and non- 
evaporating conditions in his formulation by considering the ambient 
temperature.

Hiroyasu and Arrai [15] presented a more advanced methodology by 
categorizing the formulation of STP into two separate regions: pre- 
break-up and post-break-up. Their formulation was based on experi
mental data and Levich’s jet disintegration theory, and continues to 
serve as a foundation for numerous enhanced models. Naber and 
Siebers.

[37] significant modified the Wakury et al. [14] formulation 
together with Hiroyasu and Arrai [15]. They established a correlation 
for non-vaporizing STP based on a theoretical model derived from 
penetration time and length scales. Their correlation considers factors 
like ambient gas density and injection pressure. A significant contribu
tion of their study is the inclusion of a term related to the injector 
opening time, which influences the initial penetration and enhances 
predictions in the the near-nozzle region.

Similary to Hiroyasu and Arrai, Desantes [38] categorized the diesel 
STP into two distinct regions, presenting a formulation based on basic 
fluid dynamic principles and dimensional analysis. Their model ac
counts for the impact of variables such as ambient gas density, injection 
pressure, and nozzle equivalent diameter on STP, while also considering 
the spray cone angle and its effect on penetration length.

For large marine-type injectors, Najar at al. [39] propose a model 
correlating the STP as a function of the cumulative injected mass, 
providing an alternative viewpoint to conventional time-dominated 
studies. Zhang et al. [40] also provided a formulation specifically 
tailored for large-sized injectors. They developed updated correlations 
for the model proposed by Hiroyasu and Arrai [15]. These correlations 
take into account variables such as ambient gas density and tempera
ture, which are essential for marine engine applications.

In summary, typical parameters among these formulations often 
incorporate injection pressure (or a related metric such as momentum 
flux), nozzle orifice diameter, and ambient gas density. However, they 
remain limited in applying more geometrical factors to their formula
tion. These shared parameters reflect the fundamental physical factors 
influencing spray development, such as the initial momentum of the fuel 
jet, the resistance imposed by the surrounding gas, and the duration of 
injection.

3. Brief overview on spray angle models

Similar to the STP, early models for spray angle often relied on 
simplifying assumptions, treating the spray as a solid cone with a con
stant angle. As experimental data became more accessible, researchers 
began to integrate empirical correlations. Wakuri et al. [14] incorpo
rated elements of both empirical correlations and moment theory in 
their formulation, where the ambient gas density has a significant 
impact on the spray cone angle.

Varde et al. [41] have enhanced the comprehension of spray 
behavior, specifically on the impact of nozzle geometry using the spray 
hole length and diameter ratio L/D. These investigations frequently 
study the correlation among spray angle, injection pressure, orifice di
mensions, and the characteristics of both the liquid and the surrounding 
gas. The formulation of Hiroyasu and Arai [15] is a part of a more 
comprehensive model that also incorporates STP. However, they pro
posed a simplified model that assumes a constant spray cone angle prior 
to the primary breakup of the spray. Naber and Siebers [37] provide 
insights into the relationship between the spray cone angle and other 
spray characteristics. Although they do not offer a specific formula for 
the cone angle, their research establishes a framework for compre
hending its correlation with STP and dispersion, especially in connection 
to gas density and vaporization effects. According to Arrègle et al. [42], 
the spray cone angle is affected primarily by injection pressure, ambient 
gas density, spray hole geometry (length and diameter), and needle lift. 
Unlike earlier investigations, they found that the spray hole diameter 
had a significant effect. Due to constant wall thickness in their studies, 
spray hole length-to-diameter ratio is a significant geometric parameter.

Overall, parameters which are commonly evaluated in these for
mulations typically include injection pressure, spray hole geometry 
(diameter and length or related ratios), and the density ratio between 
the fuel and the surrounding gas. Moreover, backpressure is a critical 
factor in these formulations, as it influences the penetration and 
dispersion of the spray. Nevertheless, the specific dependencies and 
exponents in these correlations may vary, reflecting differences in 
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experimental setups, measurement techniques, and the conditions 
investigated.

4. Experimental data acquisition

This study used the past decade of experimental testing, encom
passing serial and prototype designs from Woodward L’Orange, to train 
the neural network. The resulting data acquired using optical methods is 
described in subsections 4.1 to 4.3, which offer a concise summary of the 
optical setup, image processing, and operational conditions for liquid- 
to-gas measurements.

4.1. Experimental configuration

The spray-propagation optical measurements were performed in a 
sealed cubic Constant Volume Chamber (CVC) with a total capacity of 
34 L. This CVC comprises three optical windows made of fused silica 
panes, each measuring 200 mm by 200 mm. The temperature and 
pressure were controlled via a valve-regulated nitrogen supply and 
cooling- water circulation, respectively. The chamber, designed to 
withstand pressures up to 60 bar, enabled optical diagnostics of spray 
behavior under controlled conditions, encompassing representative 
values of in-cylinder pressure during diesel injection. The chamber 
temperature was maintained constant at 293.15 K.

Fig. 1 depicts the schematic of the optical configuration employed for 
the visualization and quantification of the spray using Mie-scattering 
(Fig. 1a) and Diffuse-Backlight Illumination (DBI) (Fig. 1b). The cam
era, is positioned perpendicular to the light path and opposite to the 
injector for the Mie-scattering approach. In DBI, a collimated light beam 
illuminated the spray, and the resultant back-projection were recorded 
by the high-speed camera. The camera employed is a Photron FASTCAM 
SA5, capable of operating at frequencies up to 775,000 fps, while the 
injection process is controlled by a custom-engineered ECU system. The 
synchronization between the injection system and the camera guaran
teed precise temporal resolution of the spray development, utilizing the 
injector trigger signal as a reference for capturing the image sequences.

This adaptable optical configuration facilitated thorough viewing 
and quantification of spray dynamics, yielding essential data for the 
validation of computational models and the optimization of injector 

Fig. 1. Schematic layout for the optical measurements at Woodward L’Orange: (a) Mie-scattering Light, (b) DBI. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 2. Indicative images: (a) Mie-scattering, (b) DBI.

M.G.J. Vaz et al.                                                                                                                                                                                                                                Fuel 405 (2026) 136736 

4 



designs for marine diesel engine applications. The combination of DBI 
and Mie-scattering enables the visualization of both macroscopic spray 
attributes and microscopic droplet characteristics.

4.2. Image processing method

An in-house software was developed to monitor the spray boundary 
across numerous frames, offering temporal data regarding the spray 
evolution. Following image processing, quantifiable data were extracted 
from the temporal variation of the spray. In general, the image pro
cessing is composed of three main stages: acquisition of the background 
image for comparison of the gray value of the pixels of each image, 
definition of the spray contour based on a threshold intensity-sensitive 
method [43] and calculation of the macroscopic variable. The two last 
stages are repeated for each time-step until the end of injection.

Fig. 2a illustrates an indicative processed image obtained by Mie- 
scattering. The intensity of the dispersed light correlates with the con
centration of droplets. The threshold was selected on the pixel intensity 
difference based on the background value and empirically determined to 
differentiate between spray and gas areas. Based on this pixel compar
ison, the spray border is delineated according to the intensity of 
dispersed light. This technique enables the viewing and quantification of 
liquid phase penetration, particularly in dense sprays where DBI may be 
constrained by the spray’s opacity.

In a similar manner, DBI is normally utilized to determine the area of 
the spray with adequate droplet concentration to be classified as part of 
the spray plume. Fig. 2b illustrates an indicative processed image ob
tained by DBI. The spray image appears as a darker area contrasted 
against a lighter background. Image processing is utilized to augment 
contrast and delineate the spray boundary. Again, the threshold was 
selected based on the background value and empirically depicted to 
differentiate between the spray and gas areas. However, DBI cannot 
discriminate between the liquid core of the spray and the evaporating 
surrounding area.

These optical techniques are employed to determine STP, SCA, spray 
area, spray circumference, spray-to-spray deviation, and shot-to-shot 
deviation. The STP was defined as the furthest pixel from the spray 
hole exit. In this work, SCA was measured at the intersection of the spray 
axis and the center of mass based on the 2D representation image of the 
spray area. This strategy reduces the dependence on arbitrary thresh
olding or images segmentation choice [44]. Finally, the macroscopic 
spray variables of the multi-holes injectors are the average of each spray 
holes in the case of Mie-scattering measurement.

4.3. Operation conditions

The CVC facilitates the evaluation of diverse marine injectors, 
enabling a comparison of their spray characteristics and potential 
impact on combustion performance. For all cases, diesel fuel was 
substituted with a SRS Calibration Fluid CV during the optical mea
surements. This fluid presents a very close viscosity tolerance and meets 
the ISO standard 4113-CV-AW. Calibration fluids are typically formu
lated to be less opaque than diesel, facilitating clearer viewing of the 
spray structure by optical techniques. Furthermore, they have well- 
defined and consistent physical properties, as shown in Table 1. In 
addition, Calibration Fluids exhibit lower flammability and toxicity 
compared to diesel, and are more economical than specialized research- 
grade diesel fuels [45]. This substitution is essential to ensure consis
tence, reliability and results standardization of the testing.

In those measurements, the electronically triggered injectors 
exhibited an electrical pulse duration, excluding latency time, ranging 
from 220 μs to 1200 μs. A range of injection pressures, from 800 to 2200 
bar, was investigated to distinguish the spray behavior throughout 
different operating regimes. The ambient pressure within the chamber 
was also altered. The temperature remained constant at 293.15 K due to 
the properties of this CVC, also referred to as a cold chamber, while the 
density was regulated by adjusting the pressure between 25 and 60 bar 
to simulate realistic engine conditions. Prior to each experiment, the 
chamber was purged and filled with nitrogen to a specified pressure and 
temperature, guaranteeing a uniform and inert atmosphere. Finally, 
each measurement was repeated between 5 and 10 times for each 
working condition to ensure reliability. Table 2 summarizes the injec
tion conditions utilized in all experimental measurements.

5. Exploratory data analysis

In this study, the integration of historical data from numerous 
sources proved to be a time-consume task. The partnership with 
Woodward L’Orange allowed the access to a comprehensive and 
detailed geometric description in parallel to the design process. The 
experimental data from multiple projects were cross-referenced with the 
database of the design department. During data standardization, the 
main issues encountered were insufficient data descriptions, improper 
formatting, duplicate entries, and outdated documentation. Conse
quently, the relevance of the datasets was considered in the data 
analysis.

Currently, data preparation problems are crucial in ML applications. 
Data collection and cleaning constitute near 80–90 % of the total effort 
[34]. Once the data were curated, ensuring suitable format, size, and 
quality, 85 experimental measurements were selected, with each mea
surement varying between 11 and 90 data points based on the injection 
duration. Those measurements covered a total of 27 distinct injector 
designs, which include serial and prototypes designs. The input features 
were selected based on feature reduction, profiling (assumptions 
derived from in-house expertise), and the importance of the variables for 
this study.

The final dataset had 14 input elements, including three operational 
conditions, ten design parameters, and the time after energization. The 
operational parameters are electrical pulse duration, injector rail pres
sure, and ambient pressure as

already shown in Table 2 and delineates the injection conditions 
utilized during the experimental measures. The design parameters 
include sac hole volume, k-factor, number of spray holes, angle between 
spray holes, Q100, throttle effect, inlet spray hole diameter, output 
spray hole diameter, sac hole area, and minimum distance between 
spray holes. For reasons of confidentiality, the specific range of design 
parameters must be undisclosed because of cooperation with an indus
trial partner.

In addition, three of those features are the result of transforming data 
into relevant information and the minimum requirements in the early 

Table 1 
Fluid properties of the SRS Calibration Fluid CV in comparison to Diesel (avalue 
at 15 ◦C; bvalue at 40 ◦C) [46,47].

Fuel Properties SRS Diesel

Density [kg/m3] 824a 820 − 850a

Viscosity [mm2/s] 2.52b 1.9 − 4.1b

Table 2 
Operating conditions explored in the spray optical measurements.

Parameter Min. Max.

Electrical pulse duration [μs] 220 1200
Injection Pressure [bar] 800 2200
Ambient Pressure [bar] 25 60
Temperature [K] Constant at 293.15 ​
Repetitions [-] 5 10
Injector type [-] 27 multi-holes injectors from serial and prototype 

industrial designs
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phase of the design process. The k-factor, (also referred to as conicity), 
denotes the hole taper degree and can be expressed as: 

Kfactor =

(
Din − Dout

L

)

x100 (1) 

where L denotes the length of the spray hole, Din and Dout represent the 
inlet and outlet diameters of the spray hole, respectively. The Q100 is 
the expected mass flow rate of the injector measured at a pressure dif
ferential of 100 bar. This number serves as a reference point throughout 
the injector design conceptual phase and offers a standardized assess
ment of diesel injector performance.

The throttle effect is the third one and is also a projected perfor
mance established at the conceptual phase. This dimensionless quantity 
is derived from the theoretical velocity according to Bernoulli’s Equa
tion and the anticipated mass flow rate: 

Throttleeffect =

Q100
nholes

Ao
.

̅̅̅̅̅̅̅̅̅
ρ

2ΔP

√

(2) 

where nHoles is the number of spray holes, Ao represents the area of the 
spray hole, ρ signifies the fluid density, and ΔP indicates the pressure 
differential, which in this preliminary phase is 100 bar.

The redundancy among selected input features can be assessed by 
statistical correlation. Feature correlation is essential for the efficacy 
and interpretability of machine learning models. A reduced correlation 
among input characteristics could simplify the system equations in 
training algorithms, potentially facilitating resolution, enhancing 
convergence rates, and improving generalization [48]. Fig. 3 illustrates 
the Kendall tau’s rank correlation among the operation conditions and 
geometrical input features. Kendall rank correlation is a non-parametric 
test that assesses whether a monotonic relationship exists between two 
variables or not [49]. Kendall tau is a suitable option for correlation 

Fig. 3. Kendall Tau’s rank correlation coefficient for the selected features. operating conditions and geometrical parameters.
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analysis in small datasets, in contrast to other formulations such as 
Spearman’s correlation coefficient (rho) [50]. This method does not 
presuppose a linear relationship or normal distribution, providing nar
rower confidence intervals, better control over Type I errors, and 
robustness to outliers [49,51]. Kendall tau’s rank correlation can be 
mathematically defined as: 

τ =
nc − nd

n(n − 1)/2
(3) 

where nc reflects the number of concordant pairs, nd represents the 
number of discordant pairs, and n signifies the sample size. This 
formulation results in a value such that − 1 ≤ τ ≤ 1. A coefficient of ±1 
signified a strong monotonic relationship. Conversely, an opposite 
directional growth signifies a perfect negative correlation, while 0 in
dicates the absence of a monotonic relationship between the variables. It 
has to be underlined that the specific metric detects patterns between 
the input data, without necessarily implying that such correlations are 
always representative of physical processes. They could also be indica
tive of intrinsic biases present in the experiment conducted to formulate 
the training data set.

As illustrated in Fig. 3, the majority of the characteristics exhibit 
weak to moderate correlations, with scores below ± 0.65. Among the 
operational conditions, only the ambient pressure exhibits strong cor
relations with certain design parameters, particularly with sac hole 
volume (0.90) and k-factor (− 0.81). Nevertheless, this elevated corre
lation coefficient could be misled due to the diminished variability of 
those features.

Regarding the design parameters, the k-factor also exhibits a high 
correlation with sac hole volume (− 0.80). The sac hole volume also 
shows a high correlation with the angle between the spray holes (0.68) 
and Q100 (0.74). The correlation between the inlet spray hole diameter 
and the outlet spray hole diameter reaches a value of 0.74, which aligns 
with the expectations, as they are interconnected through the K-factor 
specification.

Features that are highly correlated might diminish model interpret
ability, elevate the danger of overfitting, and induce multicollinearity, 
complicating the assessment of each feature’s individual impact on the 
target variable [52,53]. Nonetheless, maintaining them can be advan
tageous, particularly in scenarios where feature interactions are com
plex, since eliminating correlated features may result in the loss of 
critical information [54]. Furthermore, their utilization is justified in 
contexts where they convey critical information and offer substantial 
insights into the model’s interpretation and prediction [55]. Conse
quently, although certain features exhibited heightened correlation, the 
choice was made to preserve them owing to their importance in the 

design process.

6. Deep neural network architecture

Inspired by the brain synapses, ANN and Deep Neural Network 
(DNN) are subsets of ML, which consist of interconnected groups of 
artificial neurons. Both methods are capable of identifying patterns, 
categorizing data, and forecasting outcomes based on existing data [56]. 
DNNs are distinguished by their deep architecture, which allows them to 
handle more complex data and tasks [57]. In this work a multilayer 
perception or fully connected, feedforward neural network was 
employed. The topological configuration of the DNN consists of an 
arrangement of neurons in a network of hierarchical layers (input, 
hidden and output layers) with a 14-x-2 architecture, where x represents 
the variable number of neurons in the hidden layer, while 14 and 2 
correspond to the neurons of the input and output layers. The 14 input 
parameters that constitute the input layer were described in the pre
ceding section. The objective of this DNN is to be a preliminary tool for 
the injector design process, correlating the geometrical parameters and 
operational conditions to STP and SCA. Consequently, the output layer 
comprises the intended predictions, i.e., STP and SCA.

In the development of the DNN architecture, the number of neurons 
and hidden layer were adjusted, with 15 hidden layers providing the 
optimal balance of accuracy as presented in Appendix A. A low number 
can lead to underfitting, wherein the network does not adequately 
discern the underlying patterns within the data [58]. Increasing the 
number of hidden layers can enhance the network’s capacity to model 
complex functions, however only to a certain extent. An excessive 
quantity of layers may lead to overfitting, where the network assimilates 
the noise present in the training data instead of the actual signal. 
Computational cost may increases excessively without considerable 
enhancement in accuracy [59].

Fig. 4 shows the schematic structure of the DNN, where based on 
their connection, the outputs from the previous layer serve as composite 
features for each neuron in the subsequent layer.

The LeakyReLU activation function, a variation of the Rectified 
Linear Unit (ReLU), was utilized in every neuron within a layer to 
introduce non-linearity, enabling the network to learn complex patterns. 
This function is available in the Keras library and aids in mitigating 
problems associated with inactive neurons. Neurons may occasionally 
become inactive during training; permitting a minimal non-zero 
gradient for negative inputs alleviates the issue of “dying ReLUs” [60].

Furthermore, two regularization techniques were employed to 
mitigate overfitting issues arising from the limited data available. The 
dropout rate was the first regularization technique employed, wherein 

Fig. 4. Representation of the neural network consisting of one input layer, ten hidden layers and one output layer, with dropout nodes symbolized by red marks. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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nodes randomly cease to transmit their forward signal during training 
with a 30 % probability, refer indicatively to the nodes annotated in the 
schematic DNN representation of Fig. 4. Consequently, following each 
update during training, the layers are arranged in a marginally altered 
configuration, allowing network layers to co-adapt in order to rectify 
errors from the preceding layer [61]. This hyperparameter mitigates 
excessive co-adaptation of units by randomly deactivating them, hence 
reducing overfitting and enhancing generalization on novel data [62].

The second regularization technique employed was early stopping. 
This cross-validation strategy terminates training when the model’s 
performance no longer enhances over multiple consecutive epochs. 
Traditionally, this involves using a validation set to monitor perfor
mance. Nonetheless, the exclusion of a validation set, as implemented in 
this study, decreases computing time, which is beneficial in scenarios 
with limited data or noisy labels [63].

In the DNN training, the 85 experimental cases were randomly split 

into two datasets: 80 % for training and 20 % for testing. The data di
vision was executed with careful precision to guarantee that all pene
tration ranges (short, medium, and long) were represented in both data 
sets. The test set was entirely unexposed during the training phase, 
enabling an objective evaluation of network performance. Additionally, 
prior to training the DNN model, the input data were standardized to the 
range [0,1], providing a uniform scale and appropriately representing 
the significance of each variable. This range aligns with the parameters 
of the employed activation function. The standardization was done by 
min–max normalization as given as: 

xʹ =
x − min(x)

max(x) − min(x)
(4) 

where x is the original value, x′ is the normalized value. This is especially 
significant in training deep learning models, because steady gradient 
computations are essential for effective learning, mitigating problems 
such as vanishing and exploding gradients [64].

The model loss was calculated via Mean Absolute Percentage Error 
(MAPE). This metric measures the average magnitude of errors between 
predicted and actual values, expressed as a percentage. The MAPE can 
be defined as follows: 

MAPE =
1
n
∑n

i=1

|yi − Yi|

|yi|
.100% (5) 

where n denotes the number of data points in the training dataset, yi 
represents the predicted output value of the DNN model, and Yi the 
target value. A value near 0 denotes negligible error. The percentage 
error will significantly increase in the presence of outliers, as it is 
particularly sensitive to anomalous results.

7. Results

7.1. DNN evaluation

A comprehensive view of the training progress and performance of 
the neural network is illustrated in Fig. 5 and Fig. 6. The loss function 
quantifies the difference between the predicted output of the neural 
network and the actual, physics-derived, target values using MAPE. The 
downward trend seen with increasing number of epochs, as depicted in 
Fig. 5, indicates effective error minimization between predictions and 
actual values for the training data, obtaining a MAPE of 1.67. The 
respective value for the test data is 2.63. Approximately 300 epochs into 
training, the model attains a plateau in its predictions, indicating that 
additional training does not substantially enhance its performance. The 
model executes 200 additional epochs owing to the patience definition, 
a hyperparameter employed in the early stopping technique.

Early stopping terminates the training process when the loss no 
longer improves, while the patience value specifies the number of extra 
epochs to continue training following the last improvement in model 
loss [65]. Increased patience settings afford the model additional time to 
potentially enhance performance. In contrast, diminished patience 
values may cause premature stopping, leading to suboptimal model 
performance.

Furthermore, the model accuracy is illustrated in Fig. 6. The accu
racy can be defined as the ratio of true predictions to total one made by 
the model. At the beginning of training, accuracy usually increases 
rapidly as the model begins to learn the basic patterns within the data. 
Analogous to the loss curve, the accuracy curve likewise attains a 
plateau, indicating the maximal learning capability for the given data 
and architecture. The training data and test data exhibit comparable 
accuracies of 0.942 and 0.948, respectively.

The combination of increase in accuracy and reduction of loss over 
time indicates the effectiveness of the DNN training process. The anal
ogous pattern of loss and accuracy for both training and unseen data 

Fig. 5. Training and test-data loss curve of the DNN as a function of the number 
of Epochs.

Fig. 6. Training and test-data accuracy curve of DNN as a function of the 
number of Epochs.
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confirms the model’s efficacy, demonstrating its ability to mitigate 
possible concerns, such as overfitting, a common problem for limited 
data sets. For instance, overfitting is typically marked by a persistent rise 
in training accuracy coupled with a plateau or rise in test loss [66]. 
Furthermore, both metric results corroborate the appropriate selection 
of hyperparameters, including the number of hidden neurons and 
learning rate, therefore confirming the correctness and reliability of 
model predictions.

In addition a linear regression between predicted and target values is 
depicted in Fig. 7, quantifying how much of the variance in target var
iables is captured by the predictions. The regression plots demonstrate a 
good correlation between the output values and targets, with a coeffi
cient of determination R2 of 0.9845 for the training data and 0.9745 for 
the test data. The training predictions, shown by markers, essentially 
coincide with a diagonal line, exhibiting minor discrepancies during the 
initial phase of spray development (Fig. 7a). The test predictions repli
cate the same behavior, with the inclusion of some over predictions that 
account for the long STP and initial phase of the spray, as illustrated in 
Fig. 7b. The early stages of spray measurement are characterized by 
significant flow disturbances and statistical uncertainty, resulting from 

the embedded complexities of spray formation, turbulence, and 
measuring difficulties. These factors influence the variability observed 
in spray characteristics and the quality of the model prediction.

Overall, these disparities can be considered minor across the entire 
dataset concerning the model’s accuracy and reliability. Despite minor 
differences, the DNN consistently estimated the actual values, exhibiting 
a balance between fitting and predictive capabilities while avoiding 
overfitting.

7.2. Spray tip penetration and cone angle prediction

Fig. 8, Fig. 9, and Fig. 10 illustrate the comparison between the 
observed STP and SCA and their corresponding predicted values 
generated by the DNN. The graphs exhibit STP and SCA as a function of 
time after energization, showcasing the versatility of the DNN to forecast 
the temporal evolution of the spray in three ranges: short, medium, and 
long penetration length. These range classification was imposed by the 
authors due to the easy assimilation with the results. Besides, they also 
represent respectively to a pilot injection for DFICE mode, part-load for 
Diesel-only mode and high-load for Diesel-only model. It is important to 
accentuate that pilot injection for DFICE mode is not only limited to a 
short penetration length. It is a combination of injection pressure, 
ambient pressure and is mostly driven by the short injection duration, 
often resulting in a short penetration length.

Experimental values are represented by markers and respectively 
error bars, whereas the neural network forecasts are shown by a solid 
line. The error bars were calculated via the standard deviation of the 
experimental values. The DNN precisely captures the STP during short 
penetration, as illustrated in Fig. 8a. Nevertheless, the model slightly 
overestimates the initial phase of the SCA (Fig. 8b) and the fluctuation of 
the spray angle over time. This initial overestimation is a result of 
averaging 5 to 10 measurements at early injection stages, where low 
energization duration for the pilot injection in DFICE led to high vari
ation in the injector opening time. After this initial phase, the model 
persistently exhibiting an acceptable precision, however it still insensi
tive to the oscillation of the SCA over time for operations conditions in 
the range of DFICE mode. The discrepancies pertain to the accuracy 
range, while the DNN effectively estimates the overall trend.

A representative case of medium length or part-load for Diesel-only 
mode is depicted in Fig. 9a. The spray length is accurately predicted, 
aligning with the experimental measurements. Furthermore, a consid
erable enhancement of the SCA estimation is evident in Fig. 9b. With an 
early stabilization of the cone angle, the DNN predicts more accurately 
this region. However, it still overlooks the dynamics of the cone angle, 
presenting only the overall trend. The last comparison illustrates a 
scenario of long spray length or high-load for Diesel-only mode, as 
shown in Fig. 10. A consistent correlation between the experimental 
data and predictions for STP is demonstrated in Fig. 10a. A marginal 
underestimation of SCA is noted across the majority of the time as shown 
in Fig. 10b. Nonetheless, the general tendency is well addressed by the 
predictions, respecting the measurement standard deviation.

Overall, the DNN successfully captures the temporal evolution of the 
spray, precisely reflecting the penetration dynamics during the observed 
time for the unseen data. An over-prediction of the SCA is noted during 
the initial phases of spray generation, especially in short spray lengths. 
This mismatch indicates that the DNN might be overestimating the 
initial momentum or underestimating the effects on factors like air 
resistance and droplet interactions during the early expansion phase, in 
complement to the increased statistical uncertainty to the early stages of 
spray measurement. Moreover, the DNN seems to only cover the average 
behavior of the SCA. Notwithstanding these deviations, the DNN re
mains an valuable tool for comprehending and predicting SCA, pre
senting an attractive strategy to support the optimization of spray 
systems independent of the operation mode.

Fig. 7. Linear regression of the DNN. (a) Training values (b) Test values.
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Fig. 8. Comparison of the measured and predicted STP and SCA in function of time after energization for short penetration length, a representative test case of Diesel 
pilot injection for DFICE mode. The injector A was tested under an injection pressure of 800 bar, ambient pressure of 50 bar and electrical pulse duration of 360 μs.

Fig. 9. Comparison of the measured and predicted STP and SCA in function of time after energization for medium penetration length, a representative test case of 
part-load for Diesel-only mode. The injector B was tested under an injection pressure of 1000 bar, ambient pressure of 60 bar and electrical pulse duration of 500 μs.

Fig. 10. Comparison of the measured and predicted STP and SCA in function of time after energization for long penetration length, a representative test case of high- 
load for Diesel-only model. The injector C was tested under an injection pressure of 2000 bar, ambient pressure of 47 bar and electrical pulse duration of 947 μs.
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Fig. 11. Feature importance analysis of the DNN input: green bars represent the operation conditions, while blue bars geometrical parameters. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Eight selected cases at operation conditions representative of pilot injection in DFICE mode: (a) Spray characteristics per selected case; (b) normalized 
geometrical feature with higher importance; (c) normalized geometrical feature with 0.06 importance.

Fig. 13. Eight selected cases at operation conditions representative of part-load for Diesel-only mode. (a) Spray characteristics per selected case; (b) normalized 
geometrical feature with higher importance; (c) normalized geometrical feature with 0.06 importance.
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7.3. Analysis of the input features influence on the DNN and spray 
macroscopic characteristics

Fig. 11 presents the feature importance analysis performed on the 
trained neural network, providing insights into the relative influence of 
the input features on the predicted values based on the experimental 
data set of this work. The graph depicts the normalized importance of 
each feature, ranked from most to least significant. The injection pres
sure is a predominant factor among the operational conditions, with an 
importance of 0.22. As expected, the injection pressure affects the spray 
momentum and topology, including spray angle [67]. Elevated 

pressures can result in more transient sprays characterized by greater 
variability in spray morphology [68]. The injection duration has an 
intermediate importance of 0.04, since longer injection durations often 
result in enhanced STP lengths and a broader dispersion pattern.

What is most striking is that the ambient pressure exhibits the least 
significance compared to other input features, an opposite trend that is 
normally found in the literature. However, this relative low importance 
reflects the design space of the selected experiments and more specif
ically to the range of this input variable in this study. The experimental 
measurements were carried out over the last 10 years with similar CVC 
back pressures. As a consequence, the ambient pressure has low vari
ability in the input set and therefore misleads the DNN to think it has a 
low relative importance. This analysis only displays the relative 
importance of each feature, therefore partially reflecting the complete 
physics behind the spray development.

Since the inclusion of geometrical parameters was one of the 
distinctiveness of this network, those features present a more balanced 
relative importance and high variability in the input set. Among the 
geometrical parameters, the number of spray holes, spray hole outlet 
diameter and sac hole volume are the predominant geometrical feature 
affecting the learning behavior of the DNN, with respective importance 
of 0.13, 0.11, and 0.10. The spray hole outlet diameter is the primary 
geometrical parameters in most semi-empirical and ML model for spray 
characteristics due to their direct influence on momentum and initial 
droplet size [20].

Interestingly, Q100 demonstrates a relative relevance of 0.08, while 
the throttle effect, inlet spray hole diameter, sac hole area, and minimal 
distance between spray holes show equivalent importance of 0.06, 
indicating a complex interplay among these features. The K-factor and 
the angle between spray holes exhibit somewhat diminished signifi
cance, suggesting a relative reduce impact within the examined data set 
range.

This hierarchical interpretation of feature importance underlines 
which inputs features most influence the DNN. This analysis assists on 
the interpretability and reliability of the ML model, often referred to as 
“black-box” because of their complex structure [69]. Besides, their 
interpretation is also a reflection of the training data set and their 
intricate interaction on the prediction. It can show the relative signifi
cance of a input parameter, an information valuable for the injector 
design optimization process. However, the feature importance analysis 
cannot always be translated into mechanisms that governing the spray 
behavior. Due to this limitation in terms of physical knowledge, Physics- 
informed machine learning have been a growing subarea of ML, where 
physical laws are incorporated as model constrains or loss terms [70]. 
Despite their advantages, the evaluation of high-order derivatives leads 
to performance loss and robustness issues rendering them, up to the 

Fig. 14. Eight selected cases at operation conditions representative of high-load for Diesel-only mode: (a) Spray characteristics per selected case; (b) normalized 
geometrical feature with higher importance; (c) normalized geometrical feature with 0.06 importance.

Table 3 
Accuracy of the training data in terms of number of hidden layer and neurons per 
layer.

Number of 
hidden 
layer

14 
neurons 
per layer

28 
neurons 
per layer

42 
neurons 
per layer

56 
neurons 
per layer

70 
neurons 
per layer

5 0.936 0.944 0.950 0.942 0.950
10 0.939 0.943 0.947 0.940 0.948
14 0.933 0.939 0.937 0.933 0.942
15 0.931 0.938 0.941 0.930 0.940
16 0.931 0.937 0.937 0.944 0.945
17 0.933 0.941 0.946 0.936 0.944
18 0.921 0.937 0.937 0.939 0.943
19 0.931 0.938 0.939 0.933 0.939
20 0.921 0.937 0.934 0.935 0.935
25 0.931 0.932 0.928 0.931 0.927
30 0.648 0.932 0.926 0.922 0.610

Table 4 
Accuracy of the test data in terms of number of hidden layer and neurons per 
layer.

Number of 
hidden 
layer

14 
neurons 
per layer

28 
neurons 
per layer

42 
neurons 
per layer

56 
neurons 
per layer

70 
neurons 
per layer

5 0.909 0.914 0.943 0.948 0.945
10 0.880 0.916 0.941 0.914 0.939
14 0.907 0.918 0.950 0.934 0.950
15 0.920 0.939 0.930 0.943 0.952
16 0.880 0.930 0.934 0.939 0.945
17 0.932 0.930 0.909 0.927 0.945
18 0.911 0.932 0.932 0.930 0.945
19 0.934 0.948 0.932 0.930 0.934
20 0.905 0.916 0.943 0.941 0.930
25 0.918 0.934 0.932 0.932 0.923
30 0.459 0.930 0.930 0.927 0.498
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present time, unfit for most real-world problems at engineering scales 
[71].

In complement to understanding better the correlations between the 
variability of the geometrical design parameters and spray characteris
tics for fuel flexibility, eight training set cases from each range (short, 
medium and long penetration length) were selected, covering the main 
attributes of pilot injection in DFICE mode, part-load and high-load for 
Diesel-only mode. This qualitative comparison gives a perception of the 
geometrical parameters interactions, and a perspective to narrow the 
design range.

Fig. 12, Fig. 13 and Fig. 14 illustrate the nominal STP and SCA of 
each category alongside the normalized geometrical parameters of the 
more relevant geometrical input feature. The geometrical parameters 
are normalized to facilitate direct comparison and preserve Woodward 
L’Orange proprietary information

Fig. 12 shows the representative cases of a short spray length. The 
STP below 20 mm was artificially imposed to select those cases, where 
the SCA fluctuates between 15 and 25 degrees, as displayed in Fig. 12a. 
The normalized geometrical parameters that have higher to medium 
importance (greater than 0.07) are presented in Fig. 12b, while those of 
medium importance (0.06) are depicted in Fig. 12c. The number of spray 
holes, outlet spray hole diameter, sac hole volume, Q100, inlet spray 
hole diameter and sac hole area showed minimal variation. The throttle 
effect presented considerable variation, while the minimal distance 
between spray holes revealed more variability for penetrations over 12 
mm. Consequently, when designing injectors for short penetration, most 
geometrical parameters may be specified within a more narrow range, 
disregarding the operational conditions.

The medium spray length examples are depicted in Fig. 13, where the 
STP ranging from 45 to 65 mm was the selected cut, with a corre
sponding SCA around 20 degrees. The number of spray holes, inlet spray 
hole diameter and minimal distance between spray holes are the sole 
characteristics with limited variability. When designing injector tar
geting this spray characteristics range, those variable present limited 
design space, showing pronounced design tendency. The other 
geometrical parameters, owing to considerable variability and unclear 
trends, may provide for broader conceptual flexibility when addressing 
this performance range.

Finally, the long penetration length is illustrated in Fig. 14. For 
penetration ranges above 70 and 80 mm, all geometrical parameters 
remain at generally steady levels, indicating a strong design tendency. 
As penetration exceeds 80 mm, the number of spray holes, inlet spray 
hole diameter, Q100, minimal distance between spray holes and sac area 
oscillate within a limited range after an abrupt shift in tendency, 
underlining the need for careful consideration in their design space. 
Nevertheless, the sac hole volume, throttle effect, and inlet spray hole 
diameter may provide more conceptual versatility.

8. Conclusions

In this work, a DNN was implemented to predict the macroscopic 
characteristics of marine diesel injectors, focusing on the fuel flexibility 
during engine operation in both DFICE and Diesel-only modes. The 
model was designed to support the early injector design phase, incor
porating a larger number of geometrical characteristics, with 10 design 
features integrated into the DNN formulation. In addition, the experi
mental measurements of 27 injector designs under various operational 
conditions were utilized to train the DNN, which resulted in a total of 85 
experimental test cases. The combination of the 3 operating condition as 
input features (injection pressure, ambient pressure and injection 
duration) cover the range of conditions relevant to fuel flexibility: pilot 
injection in DFICE mode, part-load and high-load for Diesel-only mode.

The large numbers of inputs features based on different injector 
designs bring distinctiveness to this neural network. In the same time, 
this distinguish characteristic in combination with limited experimental 
data set size have considerably increased the model complexity. The 

proposed DNN architecture and fine-tuning of the hyperparameters 
associated to the regularization techniques have ensured a responsive 
performance, mitigation of overfit issues and effective generalization. 
The neural network exhibits strong predictive capabilities for STP and 
SCA independent of the operation mode, with an accuracy of 95 % for 
the unseen data.

The feature importance analysis performed on the trained neural 
network offers an additional perspective of the main influences on the 
DNN for the predictions. This relative comparison do not directly 
translate into mechanisms that governing the spray behavior. However, 
it underlines the learning behavior of the neural network and the 
characteristics of the training data set. In this perspective, the injection 
pressure (operation condition) holds the highest importance among all 
features. For the geometrical parameters, the number of spray holes and 
spray hole outlet diameter exhibit the most influence on the DNN. 
Additionally, certain geometrical parameters can potentially be cate
gorized within a restricted or extensive range concerning design space 
and injector target performance. Finally, the proposed DNN can support 
the marine injector design process due to the fast exploration of the 
design range in respect of geometrical constrains and identification of 
promising designs in the early phase more effectively in terms of STP 
and SCA. This gain in time would contribute to accelerate the optimi
zation process, allowing to focus on fine-tune and validate the design in 
the next stages of the development phase.
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Appendix A. . DNN architecture ¡ number of hidden layers

The number of hidden layers was determined via sensibility study. 
Since the time for training the network was similar independent of their 
complexity due to the limited size of the data set. The accuracy was the 
chosen criteria for the optimal number of layers. Table 3 and Table 4
summarizes the accuracy of the training and test data related to the 
combination of number of hidden layer and neurons per layer, where all 
other hyperparameters were kept constant. 15 hidden layers presented a 
good best trade-off between training and test accurate.
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