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Abstract—Understanding a scene from multiple, potentially
partial views and decomposing it into objects is foundational for
human perception and intelligence. Current multi-view object-
centric scene representation learning models that use partial
views analyze all views at once. This differs from the way humans
process visual information and is not compatible with reinforce-
ment learning, where an agent learns about its environment
through actions, such as moving to change the viewpoint. In this
paper, we propose ORSA-T (Object-centric scene Representation
learning with Slot Attention and Transformer), which combines
Implicit Slot Attention with an aggregation of previous views by
a Transformer and improves the scene representation iteratively
based on a sequence of images annotated with viewpoints. The
Transformer uses all previous representations and the current
update to aggregate scene information, which makes ORSA-T
remember objects better and learn more effectively when applied
to partial views. In our experiments, ORSA-T predicts and
segments images from a new viewpoint better than MulMON, the
current SOTA, and ORSA without aggregation connections and
Transformer. As ORSA-T learns iteratively to improve its scene
representation, it is suitable for use in reinforcement learning.

I. INTRODUCTION

Human perception of environments by decomposition into
objects and their relationships, and the improvement of this
perception over time and with movement has been studied
for decades [1]-[3]. Machine learning of object-centric repre-
sentations to replicate this process has received much attention
recently [4]. The hope is that these models contribute to the de-
velopment of more human-like Al algorithms, which are more
interpretable and generalizable [5], [6], and better facilitate
downstream tasks like visual reasoning [7] and reinforcement
learning [8], [9].

In recent years, numerous models have emerged that trans-
form an image from a single viewpoint into objects in an
unsupervised manner, such as MONet [10], IODINE [11],
SPACE [12], Slot Attention [13], Invariant Slot Attention
[14], and Implicit Slot Attention [15]. However, this task
does not require the model to understand the spatial structure
of the scene. Scene rendering, which generates novel views
after learning a scene representation from partial views, has
also undergone significant development, leading to GQN [16],
SRN [17] or NeRF-VAE [18]. However, the representations
resulting from these algorithms are not object-centric. Some
methods such as ObSuRF [19] learn object-centric scene
representations by processing a single image and generate new
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Fig. 1. ORSA-T overview: during observation, our model improves the
representation z¢_1 with each observed view, consisting of the image x: and
viewpoint v¢. It uses the improved representation z¢ and v to reconstruct
and segment x¢. There are two novel elements in ORSA-T. First, we use
Implicit Slot Attention (ISA) to update the previous scene representation.
Second, we aggregate all previous scene representations and the update with
a Transformer. This enables our model to better remember previously seen
objects. The model is trained by back-propagating the the image difference
loss during observation and prediction. Removing the transformer modules and
their connections, represented by dotted lines, yields the diagram of ORSA
without Transformer.

views from different viewpoints, but they are ineffective on
datasets with partial views. Only a few models address learn-
ing object-centric representations from multiple viewpoints
and they use different set-ups. SIMONe [20] and OCLOC
[21] use views without viewpoint annotations. In contrast,
ROOTS [22], OSRT [23] and MulMON [24] require both
views and viewpoints. SIMONe, OCLOC, ROOTS and OSRT
process all the views from which they learn simultaneously,
which allows aggregating information from partial views of
the scene easily. However, this approach is not like human
perception which is serial in nature and these models cannot
be used in reinforcement learning, where agents improve their
understanding of the environment after every move. Object-
centric learning models for videos, such as SAVi [25] or
STEVE [26], also utilize multiple views without any notion
of viewpoint. While they are capable of tracking objects,
they are not able to generate views from unseen viewpoints.
MulMON, on the other hand, processes views successively and
improves the representation after each view. The downside of



the MulMON method is that it is prone to forgetting objects
previously seen when using partial views.

We propose here ORSA-T (Object-centric Scene Repre-
sentation Learning with Slot Attention and Transformer), an
unsupervised incremental representation learning model that
improves its scene representation with each new view. See
Fig. 1 for ORSA-T overview. It factorizes a scene into object
representations, enabling it to reconstruct, predict and segment
views. Our model has a similar structure to MulMON, but
it uses Implicit Slot Attention to update the previous rep-
resentation using the current input. We extend Implicit Slot
Attention with an aggregation step. In this step, all previous
scene representations are combined with the update and refined
into a new representation using a Transformer [27]. This
architecture enables the model to better remember previously
seen objects, making it effective for partial-view datasets. It
is able to predict views for novel viewpoints unlike object-
centric learning models for videos or multi-view models that
do not use viewpoints. Because ORSA-T improves repre-
sentations sequentially for each view, it can be a pretrained
module in a reinforcement learning setting, unlike models
that process all views at once. The main contributions of
this study are: (1) proposing ORSA-T, an unsupervised model
that uses transformers to retain information about previously
observed objects; (2) evaluating ORSA-T on three datasets
and analyzing the impact of transformers; and (3) comparing
ORSA-T to ORSA and MulMON.

II. RELATED WORK

a) Single-view object representation learning: algo-
rithms have been developed in recent years that learn object-
centric representations and produce good segmentations. AIR
[28], MONet and GENESIS [29] use a sequential attention
mechanism. SPAIR [30] and SPACE [12] rely on the spatial
location of objects. IODINE [11], Slot Attention [13], and
Invariant Slot Attention [14] start with random or learned
representations, and refine them iteratively with different meth-
ods.

b) Multi-view scene rendering: these techniques learn a
single scene representation from a set of images with view-
points and generate realistic images from novel viewpoints.
Examples of multi-view scene rendering models include GQN
[16], SRN [17], Deepvoxels [31], NeRF [32] and NeRF-VAE
[18].

c) Objects tracking in videos: this is a multi-view prob-
lem, where the scene is dynamic with objects in motion. The
objective is to detect, track objects, and reconstruct images.
Additionally, some approaches have the capability to predict
subsequent video frames. These methods are largely based
on single-view object representation learning, such as SQAIR
[33] on AIR, VIMON [34] on MONet, and SAVi, SAVi++
[35], SlotFormer [36] and STEVE on Slot Attention.

d) Single-view scene object representation learning:
models, such as ObSuRF [19], uORF [37] and COLF [38],
learn scene representation from a single view, from which they
can create novel views and segment them. All of these models
combine Slot Attention to find the representation and NeRF
to decode them, only uORF models object and background
representations separately.

e) Multi-view scene object representation learning: has
two different setups: one where viewpoints are known and
another where viewpoints are not known. Algorithms like
SIMONe [20] and OCLOC [21] factorize images without
viewpoint information into scene object representation and
viewpoint representation. While these approaches provide
high-quality reconstruction and segmentation, they cannot
generate new views, as the viewpoint information is internal to
the model. If the viewpoints are known, models like ROOTS,
ORST, and MulMON can also generate views from novel
viewpoints. ROOTS and OSRT process all views they learn on
simultaneously. ROOTS creates a 3D grid and utilises GQN.
OSRT encodes the view into features using a Convolutional
Neural Network (CNN) [39]. These flattened features are then
processed by a Transformer encoder and Slot Attention to
obtain scene object representations. MulMON, on the other
hand, processes these views sequentially using IODINE and
refines the representation in each step.
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Fig. 2. ORSA-T processing of a single view during observation. First,
Implicit Slot Attention produces an update z; from the current image x+ with
viewpoint v; and the previous scene representation z;—1i. An initial token
I and all previous scene representations z1, ..., 2¢—1 and the update z; are
input to a Transformer that outputs what we call the refined representation
Zt.

III. METHOD

Our goal is to transform a set of views, i.e., images with
their viewpoints, 7 = {(x;,v¢)}L_, into an object-centric
scene representation {z¥}% . where K is the chosen number
of objects, which captures implicitly the 3D structure of the
scene. Our method refines the scene representation by iterating
through the views. It starts with an initial representation
{0 or zg € RE*Dsiots where K is the number of
vectors and Dyt is the representation dimension. Similar
to SAVI [25], SAVI++ [35], Invariant Slot Attention [14] and
BO-QSA [40], 2, is not initialised randomly, but is a trainable
parameter. Similar to MulMON, for each view, the represen-
tation from the previous view or the initial representation is
updated using Implicit Slot Attention and then corrected using
a Transformer which combines the updated representation for
the current view with the representation of all previous views.
The objective of this approach is to prevent our model from
forgetting previously seen objects. We choose Implicit Slot



Attention [15] which applies implicit differentiation over the
original Slot Attention because it gives better, more stable
results and a smooth convergence without the need for gradient
clipping. Fig. 2 illustrates the processing of a single view,
Algorithm 1 shows the full algorithm.

A. Representation update

Our model follows the Slot Attention architecture. The
image x; is encoded into a matrix of feature vectors f; €
RN*Dse with N vectors and Dy, feature dimensionality:

ft = Encoder(zy) (D

The process uses a CNN encoder, adds positional encodings,
and flattens the image features. The viewpoint v, is encoded
into Uy using a Multi-Layer Perceptron (MLP):

ﬁt = MLP(’Ut) (2)

To take into account the 3D nature of the scene, fj is

concatenated with v; and transformed by an MLP into f; of
the same dimensioninality as f;:

fi = M LP(concat(fi,v;)) 3)

From the representation of the previous or initial representation

z¢—1 and f;, Implicit Slot Attention returns an update z; €
REXDsiots -

Zy = ImplicitSlot Attention(z¢—1, ft) )

B. Representation refinement

The input to the refinement for view ¢ is the concatenation
of the initial token, the representations of the previous views, if
any, and the update [I,z1,..., 21, 2] € REFDXDstors The
refinement uses a standard Transformer encoder module. In
order to use the Transformer on the first view z;, we employ
an initial token I € RF*Dsiots | gimilar to Vision Transformer
[41]. The input is linearly projected to get [Z1,..., Zi41] €
ROFDEXDer where Dy, is the internal dimension of the
Transformer:

[Z1,..., Zi41) = Linear([I, z1, ..., 2t-1, Zt]) 5)
Similarly to Slotformer, we employ positional encoding at the
view level, R; is the sum of Z; and P;, where P; € REXDer
is the sinusoidal positional encoding of v;:
[Ri, ..., Rip1] = [Z1, ..., Zega] + [P, ...y Piya] (6)
[Ry, ..., Ryy1]€ REFDEXDer i the input to the Transformer
and [S1, ..., Sy 1] € REFDEXDer jtg output:
[S1,..es Seq1] = Transformer([Ry, ..., Ri41]) (N
The refined z, is a linear transformation of Sy i:
zt = Linear(Si4+1) 8)

C. Representation decoding

To reconstruct an image x; from a viewpoint v;, we find
the object representation for the view z?*““ by applying an
MLP to the concatenation of the scene object representation
z and the encoded viewpoint v;:

view

2" = M LP(concat(z,v)) )

Algorithm 1 ORSA-T algorithm for observation and predic-
tion
Trainable Modules : Encoder, Decoder,
ImplicitSlot Attention, Trans former, Layer N orm,
MLP x 5, Linear X 2
Trainable parameters : zg, [
Input: 7 = {(x4,v:)}1—4

/MMmages and viewpoints

Output: £ //Loss
O = {(20,00)} %1 Q= {(24,v9)} 4 //Random split
Lo,=0,L,=0 //Loss initialization

//* Tteration through observed images

for o=1to O do
/I* Tmage, viewpoint encoding and projection
fo = Encoder(z,)
Up = MLP(v,)
fo = M LP(concat(fo,,7,))
fo = LayerNorm(f,)
/I* Representation update ~
Zo = ImplicitSlot Attention(zo—1, fo)
/I* Representation refinement

/lprojection

[Z1, .y Zor1]) = Linear([I, 21, ..., Zo—1, Zo))

[Ri,.... Rey1] = [Z1, ., Zosa] + [P, ..., Poya]
/Ipositional encoding

[S1, .y Sox1] = Transformer([Ry, ..., Ro+1])

2o = Linear(Sy+1)

/I* ITmage reconstruction and loss

zview = M LP(concat(z,, Uy)) /lprojection

%, = Decoder(z2"")
Lot = 2 OMSE(5,, 7,)
end for
/I* Tteration through queried images
for ¢ =1 to (Q do
/I* ITmage reconstruction and loss
Uq = MLP(vy)
25" = MLP(concat(z0,7,))
Zq = Decoder(z;"")
Lo+ = éMSE(afq,xq)
end for
L=Lo+L,

/Loss update

//projection
/Loss update

//Total loss

As in Slot Attention, we implement a spatial broadcast decoder
to get the image reconstruction #; from zP**. This decoder
broadcasts an individual object representation onto a 2D grid
with position embeddings, which is decoded by a CNN into
an individual mask and RGB values. The combination of
the objects’ RGB values multiplied by its mask gives the
reconstruction:

view)

#y = Decoder(z; (10)

D. Training

For the training, the set 7 = {(x,v;)}L; is split into a
subset of observed views O = {(z,,v,)}$_; and a subset
of queried views Q = {(zq,vq)} O is drawn randomly,
Q=T\Oand T=0UQ.

The model will learn the scene representation by iterating
through the observed views and generate the queried views
which is the test of the quality of the scene representations.

q=1"



The training loss £ is the sum of a loss on the observed views
L, and a loss on the queried views L,.

L=L,+L, 1D

The observed view loss is a weighted average MSE of re-
construction x, with respect to the true z,. In contrast to
MulMON, the average is weighted to favor earlier views, as
we have noticed that it gives better results during training:

&, = Decoder(z°"), 2% = MLP(concat(z,,7,)) (12)

o

(13)

(@)
1 2(0+1-0) .
= — ———— " MSFE
L, O; o SE(i,, 7o)

The queried view loss is a weighted average MSE between x,
and its reconstruction x, using the last representation of the
learning process zo.

T = Decoder(z;’iew), z;’iew = M LP(concat(zo,vy))(14)

Q
1
Ly= = MSE(i,,z,)

q=1

15)

IV. EXPERIMENTS

The goal of our experiments is to evaluate ORSA-T and
study the impact of the aggregation and refinement with
Transformer in ORSA-T. To assess the influence of the Trans-
former, we run an ablation study on ORSA. To obtain ORSA,
we remove from ORSA-T all the representation refinement
processes described in Section III-B. ORSA has a structure
similar to MulMON, where IODINE is replaced by Implicit
Slot Attention. We also run MulMON to compare its results
to those of ORSA-T and ORSA.

A. Dataset creation

We created two datasets, Partial-View and Full-View, to
conduct the experiments using MuJoCo [42], which was
already used to create datasets for GQN or MONet. The scene
consists of a room containing 3 to 4 simple objects (cube,
sphere, cylinder) of different colors, similar to CLEVR [43]
and CLEVR-MultiView [24]. For both datasets, each scene
is rendered from 10 random viewpoints with a resolution of
64x64 pixels, and each image is annotated by its viewpoint.
The resolution is the same as CLEVR-MultiView which make
results comparable; a higher resolution would have required
substantial additional computing resources. Partial-View con-
sists of partial views of the room, which are images covering
only part of the scene, where some objects are not in the
field of view. Each image contains at least one object. Partial-
View has 5000 scenes for training and 500 for testing. Full-
View consists of views where all the objects visible. Full-View
has 25000 scenes for training and 500 for testing. It contains
more scenes than Partial-View due to our models exhibiting
extremely poor results in early experimentation with a dataset
of similar size to Partial-View. See Fig. 3a,b for examples of
both datasets.

B. Experimental setup

a) Baseline: We compare our results with MulMON,
which is the only previous object-centric scene representation
learning approach utilizing images annotated by viewpoints
and improving the representation through iterations across
different views.

b) Datasets: In addition to Partial-View, Full-View, as
described above, we use CLEVR-MultiView. Full-View is
supposedly easier to learn than Partial-View because all objects
are present in all images. CLEVR-MultiView is used to
evaluate our model on a dataset designed for testing MulMON.
It is similar to Full-View in terms of resolution and scene
composition. It contains 1500 training scenes and 200 testing
scenes. See Fig. 3c for an example of CLEVR-MultiView
scene. Fig. 3 illustrates the differences between the datasets we
designed and CLEVR-MultiView. Our datasets exhibit wider
variations in luminosity, resulting in a less uniform background
ranging from black to white and less uniform colors of objects.
Additionally, our datasets include more pronounced shadows
on objects, which may affect scene segmentation as shadows
are not part of the ground truth masks.

c) Training: We train all the models with the number
of object representations K = 7 (maximum of 6 objects plus
background). For all experiments, except MulMON with the
CLEVR-MultiView dataset, the dimension of the representa-
tion Dy 18 set to 64 (consistent with Slot Attention and
IODINE), and the dimension of the encoded viewpoint v is set
to 32. For the experiment with MulIMON using the CLEVR-
MultiView dataset, we use dimensions 16 and 3, respectively,
as described in [24]. During training, the number of observed
views O is randomly selected between 3 and 7; for testing,
the number of observed views is set to 5. We use a higher
random number of observed views than MulMON (between
1 and 6) to allow the model to learn from partial views. We
train ORSA-T and ORSA for 300,000 gradient steps using the
Adam optimizer [44] with a learning rate of 3 x 10~%, gradient
norm clipping set to 5.0, and a batch size of 32. We train
MulMON for 200,000 gradient steps using the Adam optimizer
[44] with a learning rate of 3 x 10~* and a batch size of 8.
Optimizer, learning rate and its schedule remain unchanged
from [24]). We have set up the experiments to compare the
models with similar time budgets and memory usage. Each
experiment is run with five different random seeds (42, 43,
44, 45, 46).

d) Metrics: We evaluate the models by assessing the
quality of the reconstruction and prediction, as well as the
quality of the object representation. Reconstruction quality is
evaluated using the pixel Mean Squared Error (MSE) on the
observed views, while prediction quality is assessed using the
queried views. The quality of the object representation or scene
factorization is evaluated using mean intersection-over-union
(mIOU) on observed views and on queried views. We utilize
the MulMON implementation, which employs a Hungarian-
style matching algorithm [45] for each image to match ground-
truth object masks with the model’s object masks used for
image reconstruction. The intersection-over-union (IOU) is
then computed using the matched masks and averaged. We
report the mean and the standard deviation of every metric.
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(b) Full-View
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Fig. 3. Example of 3 views from each of the dataset employed. (a) Partial-View, (b) Full-View and (c) CLEVR-MultiView

SUMMARY OF MSE x10% (LOWER IS BETTER, MEAN % STDDEV ACROSS
SEEDS) FOR OBSERVED AND QUERIED VIEWS FOR PARTIAL-VIEW

TABLE I

TABLE III

SUMMARY OF MSE x10% (LOWER IS BETTER, MEAN % STDDEV ACROSS
SEEDS) FOR OBSERVED AND QUERIED VIEWS FOR FULL-VIEW DATASET.

DATASET.
MODEL 0BS MSE QUE MSE
MODEL 0BS MSE QUE MSE
ORSA-T 7.5+0.9 10314
ORSA-T 7.4+1.1 29.0+£ 1.3 ORSA 10.7+3.4 255+7.8
ORSA 9.4+0.8 88.8 1.8 MULMON  128.1+29.1 216.4+12.1
MULMON 954458 173.44+41.0
TABLE IV
SUMMARY OF MIOU (HIGHER IS BETTER, MEAN + STDDEV ACROSS
TABLE II SEEDS) FOR OBSERVED AND QUERIED VIEWS FOR FULL-VIEW DATASET.
SUMMARY OF MIOU (HIGHER IS BETTER, MEAN + STDDEV ACROSS
SEEDS) FOR OBSERVED AND QUERIED VIEWS FOR PARTIAL-VIEW MODEL OBS MIOU QUE MIOU
DATASET.
ORSA-T 0.71 £0.12 0.71 £0.13
MODEL oBs MIOU QUE MIOU ORSA 0.63+0.12 0.58+£0.15
MULMON 0.444+0.17 0.344+0.10
ORSA-T 0.87 £0.01 0.824+0.01
ORSA 0.79 £0.03 0.57 +£0.02
MULMON 04540.12 0.374+0.10 D. Results on Full-View dataset

C. Results on Partial-View dataset

In this subsection, we analyze the results from ORSA-T,
ORSA and MulMON on Partial-View. Table I presents the
reconstruction and prediction error and Table II the segmen-
tation performance. See Fig. 4 for examples of the outputs of
all models.

a) ORSA-T: provides the best results, with the low-
est MSE and highest mIOU. It also exhibits the lowest
standard deviation (except for the MSE for observed views
with ORSA), indicating consistent results across different
seeds. The high mIOU, superior to MuIMON with CLEVR-
Multiview in [24], indicates that ORSA-T effectively factorizes
the scene into objects (Fig. 4a).

b) ORSA: exhibits slightly inferior metrics compared
to ORSA-T for the observed views, indicating a reduced
capability to reconstruct and segment these views. The ab-
sence of a Transformer prevents it from learning scene object
representation, as shown for the queried views by a threefold
increase in MSE and a drop in mIOU from 0.82 to 0.57. The
causes of the poor metrics include missing objects, poorly
defined object shapes, and object masks covering both objects
and background (Fig. 4b).

¢) MulMON: fails to learn an effective representation;
the MSE for observed views is 13 times larger, and the MSE
for queried views is 6 times worse. MulMON reconstructions
show blurred objects (Fig. 4c). The metrics also exhibit a large
standard deviation, indicating variable performance and the
model’s inability to handle this type of data reliably.

In this subsection, we analyze the impact of a supposedly
easier dataset where all the objects are always seen. Table
IIT summarizes the reconstruction and prediction performance,
and Table IV the segmentation performance.

a) ORSA-T: delivers the best results. The mean recon-
struction MSE is similar to that of the Partial-View dataset,
and the mean prediction MSE is three times lower, with both
showing low standard deviations. Both mIOUs are equal to
0.71, more than 0.1 lower than the previous dataset, with a
high standard deviation (0.12/ 0.13), indicating a significant
difference in performance Table V, showing the metrics for
all seeds, reveals that the mIOU range is between 0.86
(good segmentation) and 0.53 (poor segmentation). The best
seed (Fig. 5a) offers accurate reconstruction, prediction and
segmentation. The worst seed (Fig. 6a) offers similar recon-
struction and prediction but the segmentation is notably poorer
caused by the background.

b) ORSA: exhibits worse performance than ORSA-T:
reconstruction MSE is slightly higher, prediction MSE is
2.5 times higher, and it shows significantly higher standard
deviation. Both mIOU values are around 0.1 lower compared
to ORSA-T, and like ORSA-T, they are characterized by the
same high standard deviation. Table VI illustrates the wide
range of mIOU for different seeds, ranging from 0.81 to 0.48.
Similar to ORSA-T, the comparison between Fig. 5b and Fig.
6b shows the differences in segmentation between seeds.

¢) MulMON: shows similar results than with the Partial-
View. It is unable to reconstruct, predict or segment. MSE
losses are 20 times higher than ORSA-T. See Fig. 5c or Fig.
6¢ for an illustration of the poor performance.
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Fig. 4. Example of the performance of the best model of (a) ORSA-T, (b) ORSA and (c) MulMON for Partial-View dataset. ORSA-T has high-quality
reconstruction, prediction, and segmentation. ORSA shows similar performance to ORSA-T on observed views but exhibits missing objects and poor
segmentation on queried views. MulMON presents blurred reconstructions of objects
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Fig. 5. Example of the performance of the best model of (a) ORSA-T, (b) ORSA and (c) MulIMON for Full-View dataset. ORSA-T and ORSA demonstrate
similar abilities in terms of reconstruction, prediction, and segmentation. However, ORSA-T exhibits slightly better quantitative performance when comparing
Table V and Table VI. MulMON struggles with object reconstruction, prediction and segmentation.
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Fig. 6. Example of the performance of the worst model of (a) ORSA-T, (b) ORSA and (c) MulMON for Full-View dataset. ORSA-T and ORSA reconstruct
and predict views, but have poor segmentation of objects and background. MulMON struggles with object reconstruction, prediction and segmentation

TABLE V TABLE VI
MSE x10% AND MIOU FOR OBSERVED AND QUERIED VIEWS USING MSE x10% AND MIOU FOR OBSERVED AND QUERIED VIEWS USING
ORSA-T FOR ALL SEEDS FOR FULL-VIEW DATASET. ORSA FOR ALL SEEDS FOR FULL-VIEW DATASET.

SEED 0BS MSE QUE MSE o0Bs MIOU QUE MIOU SEED 0BS MSE QUE MSE o0Bs MIOU QUE MIOU
42 8.8 12.7 0.54 0.52 42 15.3 34.8 0.51 0.48
43 7.2 9.5 0.83 0.84 43 8.1 20.9 0.73 0.69
44 7.3 8.8 0.68 0.70 44 12.2 29.0 0.49 0.40
45 6.1 9.6 0.87 0.87 45 5.7 12.7 0.81 0.81
46 7.9 11.1 0.64 0.63 46 11.9 30.1 0.61 0.52

E. Results on CLEVR-Multiview dataset on 2 seeds, we also report the results excluding these seeds

and label them as "MulMON converging’ in the tables. See

In this subsection, we test our models on one of the Fig. 7 for an illustration of the performance of all models.
MulMON datasets. Table VII summarizes the reconstruction a) ORSA-T: exhibits very low standard deviation metrics,
and prediction performance, while Table VIII presents the with the best prediction MSE and slightly worse reconstruction
segmentation performance. As MulMON does not converge MSE than ORSA. Although the MSEs are similar to those of
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Fig. 7. Example of the performance of the best models for (a) ORSA-T, (b) ORSA, and (c) MulMON on the CLEVR-Multiview dataset. All models are
capable of reconstructing and predicting views. ORSA and MulMON can also segment views. However, despite achieving good performance in reconstruction
and segmentation compared to other models (Table VII), ORSA-T fails in segmentation

TABLE VII
SUMMARY OF MSE x10% (LOWER IS BETTER, MEAN % STDDEV ACROSS
SEEDS) FOR OBSERVED AND QUERIED VIEWS FOR CLEVR-MULTIVIEW

DATASET.
MODEL 0BS MSE QUE MSE
ORSA-T 7.4+0.2 7.6 0.2
ORSA 7.2+0.3 10.8 £ 0.4
MULMON 164+79 16.5+9.3
MULMON CONVERGING 10.0£0.6 9.0+0.6
TABLE VIII

SUMMARY OF MIOU (MEAN =4 STDDEV ACROSS SEEDS) FOR OBSERVED
AND QUERIED VIEWS FOR CLEVR-MULTIVIEW DATASET.

MODEL 0oBS MIOU QUE MIOU
ORSA-T 0.23 £0.01 0.22 +0.01
ORSA 0.73 £0.04 0.71 £ 0.04
MULMON 0.58 £0.16 0.60 £0.17
MULMON CONVERGING 0.73 £0.004 0.77 +0.003

other datasets, ORSA-T has difficulty segmenting these images
(Fig. 7a), with mIOU just above 0.20.

b) ORSA: has slightly higher standard deviation metrics
than ORSA-T. It has the best prediction MSE and a recon-
struction MSE slightly worse than ORSA-T. But contrary to
ORSA-T, it factorizes the scene more effectively (Fig. 7b),
mlIOU ranges between 0.71 and 0.73.

¢) MulMON: has a very high standard deviation because
with 2 of the 5 seeds the model did not converge. With
all seeds, the MSEs are twice as high as our models, while
the mIOUs are more than 0.1 lower than ORSA. Excluding
non-converging models, the MulMON MSEs are around 20%
higher than the best results, still indicating good reconstruction
(Fig. 7c), and MulMON achieves the best mIOU of 0.73
and 0.77, respectively, compared to 0.73 and 0.71 for ORSA.
MulMON achieves these metrics with an object representation
dimension of 16 instead of 64 for our models. Note that we
trained MulMON with a number of observed views randomly
chosen between 3 and 7 instead of 1 to 6, as described in [24].

F. Summary and discussion

When comparing the metrics of ORSA-T and ORSA,
the addition of aggregation and refinement with Transformer
improves image reconstruction and prediction in nearly all

experiments, and enhances the image segmentation. However,
ORSA-T is unable to segment images for CLEVR-MultiView.
One possible explanation is the small size of the dataset (1500
scenes compared to 25000 for Full-View). This is suggested
by ORSA-T and ORSA having MSEs on the training dataset
that are less than half of those on the testing datasets, so that
some form of overfitting may impact the segmentation.

ORSA-T and ORSA exhibit extreme volatility in results
for different seeds with Full-View. Full-View contains less
diverse images than Partial, as the camera is moving around
the objects. This lack of diversity may hinder the learning
of the concept of object. As each view contains all objects,
a direction to explore is to reduce the range of observed
views for the training to facilitate the backpropagation of
losses (We use 3-7, Mulmon 1-6). The small difference in
performance between the best-performing ORSA-T (Table V)
and ORSA (Table VI) shows that the use of Transformer has
less impact than with Partial-View.MulMON seems to struggle
with our datasets, possibly due to the differences explained
in Section IV-B, such as less uniform colors resulting from
variations in luminosity.Its inability to perform well on Full-
View, which is based on the CLEVR-MultiView dataset, only
emphasizes these differences. Due to the unordered nature of
Slot Attention representations, ORSA-T and ORSA cannot
effectively track objects during learning for Partial-View and
Full-View. A single representation is not consistently associ-
ated with a specific object. For example, the first representation
could represent a different object for each observed view.
Surprisingly, ORSA tracks objects nearly perfectly in CLEVR-
MultiView , which further highlights the disparities between
CLEVR-MultiView and our datasets.

V. CONCLUSION AND FUTURE WORK

We address the problem of learning object-centric scene
representations from multiple views by improving the repre-
sentation for each new viewpoint using images with partial
views of a scene. We introduce ORSA-T, an algorithm for
unsupervised scene object representation learning combining
Slot-Attention and Transformer. We have created two new
datasets to validate our model. Our algorithm was tested on
multiple datasets and compared with ORSA (an ablation of
ORSA-T without aggregation and refinement by Transformer)
and MulMON. ORSA-T’s ability to solve scene factorization



using a partial-view dataset has been demonstrated. We have
also discovered limitations of our model in segmentation when
used with the Full-View dataset, primarily a large standard
deviation of the results for different seeds, mostly due to poor
segmentation of the background.

Future work should focus on reducing the performance
variation across different seeds and on addressing the segmen-
tation problem of the background encountered with CLEVR-
MultiView. Ultimately, we aim to integrate a pre-trained
ORSA-T model with a reinforcement learning algorithm to
attempt to solve simple tasks using only learned representa-
tions, for which we have originally designed the Partial-View
dataset.
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