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ABSTRACT

This thesis represents a study in measurement theory exten-
ded to non-classical systems characterized by an uncertain-
ty relation which is finer than the known uncertainty rela-
tions of physical and technical sciences. It suggests cor-
responding changes to the classical measurement theory.
Classical measurement is simple, objective and determina-
tive, but its formalism is limited to countable sets and 
systems, to Boolean logic and algebra with underlying Eu-
clidean spaces and it excludes the human experimenter. Its 
language satisfies the requirements of objectivity to the 
extent that it admits hidden parameters accounting for this 
objectivity. These factors limit the representational theo-
ry of measurement in several respects. Difficulties arise 
whenever the axioms of distributivity and of tertium-non- 
datur fail in the systems to be measured, which is the case 
in complex engineering, frequently in systems at the verge 
to catastrophy, in complex problems of astrophysics and 
cryogenics and in most human sciences, mainly in psychology 
and in social science. In fact, the situation that presents 
itself resembles problems encountered in the transition 
from classical mechanics to complex quantum mechanics, but 
at an even higher mathematical level.
Complex empirical systems are shown to obey Tarski*s  calcu-
lus of systems; they comply with Brouwerian lattices with 
unity and underlying oo-dimensional Banach spaces contai-
ning a so-called negligible set H (the dual to Planck*s  
constant h) which enters a non-complementarity condition 
and an uncertainty relation for complex fuzzy systems cor-
responding to the non-commutativity condition and to the 
Heisenberg uncertainty relation of quantum mechanics, res-
pectively. The incompatible conjugates of the measuremen-
tal uncertainty relation are - under these conditions and 
conform to the ’’part and the whole doctrine” - precision 
and relevance or significance. This is where human subjec-
tivity (knowledge and will of the experimenter) replaces 
the classical objectivity. The experimenter can give pre-
ference either only to precision or only to relevance. 
The uncertainty of measurement is clearly of mathematical 
origin (the negligible set), much finer and higher alloca-
ted than any technical or physical uncertainty. Its exis-
tence is proven beyond doubt.
Having determined this uncertainty, we establish a classi-
cal measurement channel penetrating into the complex fuzzy 
regime of the system by constructing a quotient space (or 
algebra) modulo uncertainty. This step restores Boolean 
conditions and the classical objectivity of measurement.

Finally, using some topological theorems due to M.H. Stone, 
it is shown that the homomorphic representation of measure-
ment is equivalent to a monotone homeomorphic representa-
tion and that the space of measurement is a Stone space. In 
this way a combinatorial measurement on classical and non- 
classical systems is possible. The essence of non-classical 
measurement is the determination of a negligible set and 
the corresponding uncertainty relation; without them no 
such measurement of the state of a complex fuzzy system 
is possible. And the impossibility to measure entails the 
impossibility to calculate.
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KEY OF SYMBOLS AND ABBREVIATIONS

oc,6,j~ ... : = logical sentences; 0,1 := the false and the

true sentence, respectively,

<jj(x), ip(x), /(x), ... := propositional functions,

V := disjunction or logical alternative,

A:= conjunction,

- or * := negation; —t Boolean complementation,

I— Brouwerian complementation,
.. ■■■■■>» := implication (if ..., then),

<—5 or = := equivalence (iff = if and only if),
|_[ := null (zero, least) element,

[7 := unit (greatest) element,

Re,

R°, >-

= equivalence relations,

:= order relations,

= relative pseudo-complementation,

= pseudo-difference

= orthocomplementation,

F(«)

CD o

:= the set of all cC - an ordinal,

:= a general ordinal number,

:= the initial ordinal number

= the next initial ordinal number correspond, to 

uncountable sets,

the general cardinal (alef),

V
the smallest

c
the greatest cardinal number of countable sets,

cardinal number of uncountable sets,

the power of cont inuum; K, = C is the continuum 

hypothesis,

A,B,C,...,X,Y,Z,... := sets or spaces,

S = Int(A) := the interior of set A (an open set), 

A = cl(A) := the closure of set A (a closed set), 

A := the power (cardinality)of set A,

Fr(A) = 3a := the boundary of A,

8(A) := the diameter of set A,
AxB := cartesian product of A and B; AxB / BxA,

AUB := union of A and 8,

AHB := intersection of A and B,

A - B := difference: A less B,
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A £B = (A-B) U(B-A) 

0 : = the void set;

7i=1
resp. resp.

:= the symmetrical difference of A and B, 
dim.0 =

OP 
SI : = 
i=1

-1,

resp.

1=

1 =

infinite 

of sets,

sums of numbers, resp. 

resp. of systems,

infinite 

resp. of
products of numbers, 

sets, resp. of systems,
H
H*

H**

= Hilbert space,

= conjugate Hilbert
= twice conjugate Hilbert space, H = H*  = H**,

space,

(x,y) := scalar product of x and y in Hilbert space,

B
B*

B**

= Banach space (occasionally denoted by E) 

= conjugate Banach space

= twice conjugate Banach

(space of functionals), 
space; B B*  / B**,

= norm in Banach space,

PI := incomplete norm,

IN := the set of all natural numbers,
2 := the set of all integers,
3 := the set of all irrational numbers

R := the set of reals,

I = Qo, ij := the unit interval,

the Hilbert cube,
N^°

the set of all irrationals between 0 and 1,

Frechet space; its elements are oo-sequences

£ = {0,1}^

the

composed of arbitrary reals; it is the continuous 
image of the Cantor discontinuum if,

:= the Cantor set (discontinuum),

o

e.

: = the

: = the

V : = the

A : = the

(topological) Stone space,

space of measurement,

particularizing quantifier,

generalizing quantifier,

the end of an important statement.
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CHAPTER 0: INTRODUCTION

The empirical science of measurement is one of the most ba-

sic natural sciences and an indispensible complement of hu-
man reasoning in many (if not all) scientific occupations 

of man. We need measurement in order to find out things and 

relations between things at the start of our investigations 

and we need measurement again to confirm the correctness of 

our reasonings at the end of our contemplations and actions. 

The result of such interplay of mind, technical skill and 

reality is progress in civilization and culture.
Norbert Wiener (1920) went as far as to insist that the app-

lications of mathematics, except perhaps the non-metrical 

branches of mathematics, have been applications of measure-

ment. And the early theory of measurement found a respecta-

ble, purely mathematical treatment in the Principia Mathe- 

matica of A.N. Whitehead and B. Russell.

Current (classical) methodology of fundamental measurement 

rests firmly on the model theory of logic. Indeed, an arbi-

trary empirical system under observation, consisting of a 

set A of elements and relations AxA satisfying certain axi-

oms, has a model (or a realization) in the arithmetic of 

real or natural numbers, consisting of a set N of numerals 

and relations NxN satisfying corresponding conditions. A 
suitably constructed homomorphism tj) (the fundamental measu-

rement procedure) of the empirical relational system is ne-

cessary and sufficient to ensure the truth of the above 

statement, of course, only as long as the empirical origi-

nal and its model share the same logic; for, sentences true 

in non-classical systems may be false or irrelevant in clas-

sical systems. We may, therefore, in tune with Stevens 
( 1946), Ellis ( 1966) and Finkelstein and Leaning (1984) pro-

nounce the following

Definition 0.1

Measurement, in the most general sense, is defined to be an 

assignment of numerals to objects or events of the empiri-

cal world according to any deterministic non-degenerate rule.
----------□------------

Numbers, thus assigned to objects or events of the real 

world, must represent real world relations between the pro-

perties of those objects and events. The theory of measure-
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merit built around these notions embraces a body of know-

ledge about the empirical relational system, a representa-

tion theorem, a uniqueness theorem, a condition for meaning-

fulness, and an estimate of the methodical uncertainty in-

volved .

□. 1 Current state of classical measurement

In order to place the modifications introduced in this 

work in the proper perspective, a compact survey of the 

current state of the art of measurement is necessary. Ue 

shall begin with a unified symbolism, terminology and

□.1.1 The concept of a quantity of measurement

Let ••• be elements of the real world, called objects,

and 0 the set comprising them; each o^ is carrier of proper-

ty manifestations. Let q^,q2»... be manifestations of a pro-

perty Q; the q^ are assigned to the o^, i = 1,2,... by na-

ture. Hence, they will not exist as singletons, but in plu-

rality. Ue call £q^, q^}-C Q2 an unordered pair and
<q1,q2> = ’q2^y 6 Qix Q2 an orde red

pair with q^ preceding QUO
^q1,q2> is actually an element of 22 1 2.

The Kuratowski formula for the ordered pair can easily be 

extended to three elements, four elements and so on.

Let Q be a property, i.e. the set of aj.1 manifestations of 

this property, then it must constitute either a relational

system or an algebra or both. It is a relational system if 

Q = <Q,R), where RCQxQ is a relation on Q; it is an algeb-

ra if Q = {Q,0> is provided with the set 0 of operations 

□ £ called concatenations.

Ue distinguish binary relations: ru q^r, q>-r;

ternary relations: o; o E = QxQxQ;

and quaternary relations:^; <q, r> ^s, t>; 

cQxQxQxQ.

Ue shall now simplify the terminology of q E Q in the sense 

of Ellis (1966).

Definition 0.2

A quantity, denoted by q, is conceived of as the manifes-

tation of a property on a given object; more concretely, 

it is thought to be a kind of property that admits of deg-

rees, in contrast to those properties that have an all-or— 
none character (e.g. dead, pregnant, champion,...).

11



Hence objects possess quantities in the same way that they 

possess qualities, attributes, characteristics a.s.o. • 

They are properties inherent in an object possessing them, 

and existing before any measurement begins. The process of 

measurement is then conceived to be that of assigning num-

bers to represent the magnitudes of these pre-existing 

quantities, the numbers being proportional to these magni-

tudes. Such pre-existence is not assumed in quantum mecha-

nics. Thus, things having a quantity q in common (for ex-

ample mass, length, area, temperature, electric charge etc.) 

must be comparable in respect to the quantity q. The quan-

titative relationships with respect to q are:^^, = or^^.

Then, a quantity is said to exist iff a quantitative set 

of relationships exists.

The following five ’’Ellis conditions” are necessary before 

passing a qualifying judgement on4^, = or>q between any 

two objects:

1. The law of the excluded middle (terium-non-datur);

2. The law of non-contradiction;

3. Converse and symmetry conditions;

4. Transitivity, and

5. Asymmetry conditions.

These five conditions are by no means sufficient. Ellis 

strongly believes that linear order fills the sufficien-

cy gap. Ue shall show that the necessary and sufficient 
conditions required are an underlying Boolean logic (al-

gebra) and the Axiom of Choice (AC) added to the axioma-

tic of set theory, see Kaaz (1977).

According to Tarski (Axiomatic and algebraic aspects of 

two theorems on sums of cardinals, Fund. Hath. 35 (1948) 

79-104) and Hostowski (On the principle of dependent choi-

ces, Fund. Hath. 35 (1948) 127-130), the (AC) is equiva-

lent to

The Trichotomy Law

For two given sets A and B, either there is a set C such 

that A^CCB or else there is a set D such that B-^DcA;
is the relation of set-theoretical equivalence (equa-

lity of cardinals).

------ □--------
If we select from each of these sets a representative ele-

12



ment, as we may by reason of (AC), then the first relation 

yields a<ib and the second b^<a, which is the connectivity 

in linear ordering; the reflexivity, weak unsymmetry and 

transitivity of linear ordering being obviously satisfied. 

This confirms Ellis*  conjecture. If the set of quantities 

is a finite or countable one, then Boolean logic and the 

Axiom of Dependent Choices satisfy necessity and sufficien-

cy for the existence of a quantity. 
The Axiom of Dependent Choices (DC)

If R is a binary relation and B a nonvoid set, and if, for 

every x £ B, there is a y £ B such that xRy, then there is 

an infinite sequence •••»xn»•.• of elements of B such

that xnRxn+1 for n = 1,2,... .
----------o------------

Having specified the conditions for the existence of a 

quantity, we can now say that that which is being measured 

- if it exists - is the quantity, called measurand by Fin-
kelstein (1975a), In a more general sense it may be called 

"observable”, which is frequently the case in physics. For 

example, a random variable is considered to be an observa-

ble if a probabilistic model of the physics is used. The 

centre of the stage of such discussions is occupied by a 

physical system EE and the experimental propositions (x,E) 

associated with , where x stands for the random variable 

and E is a Borel set on the real line.

Me know that Bohr*  s atomic theory broke down because it 

dealt with quantities which entirely elude observation and 

cannot be put to any test. Therefore, since Heisenberg, 

only observable entities should be introduced into a modern 

theory. In the quantum mechanical view, to every observable 

physical quantity there corresponds a selfadjoint operator 

in Hilbert space. At the same time, measurable are only 
those physical quantities which, as operators (in the Hil-

bert space of physical states), are commutative. Such ope-
rators generate a commutative C*-algebra  (a Banach algebra) 

A whose spectrum is a locally compact space comprising 

the quantum numbers X,
V 2’ n

0.1.2 The representational style of measurement

Since, presumably, every measurement must be made on a 

scale, Definition 0.1 tells us that if we have a rule for 

13



making numerical assignments, we also have a scale of mea-

surement and, conversely, if we have a scale of measure-

ment, we must at least have some rule for making numerical 

assignments. Hence, we have a scale iff we have a rule for 

making such assignments. And this rule must be determinis-

tic and non-degen erat e. Ue claim with respect to (j>

The identity of scales
Two procedures and <j/ are procedures for measuring on the 

same scale, whenever they are deemed to be applicable; they 

would always lead to the same numerical assignments being 

made to the same things under the same conditions. Thus, 

| =0.
----------o------------

Scales and classification of scales for the measurement of 

quantities:

The above concept of a scale includes such scales that are 

not designed for measurement, e.g. nominal scales measuring 

identity and difference only, on the one extreme, and mul-

tidimensional scales for the measurement of complex enti-

ties, such as colour and stress, on the other extreme. A 

scale for measurement of quantities must account for the 

Axiom of Choice, respectively for linear order, both of 

which warrant the existence of the measured quantity. The 

simplest such scale S for the measurement of a given quan-

tity is assumed to have the following properties: 

Definition 0.3

S is a scale for the measurement of a given scale q iff:
(i) there is a procedure (|j for measuring on S such that 

for any object x which occurs in the order of q, x 

is measurable by
(ii) there is no object which is measurable on S and does 

not occur in the order of q,
(iii) if the objects measurable on S are arranged in the 

order of the numerical assignments, they are thereby 

arranged in the order of q.
----------o------------

Allowing for the fact that there are scales representing 

quantities more accurately than others, the above defini-

tion is superior to known alternatives.

Now, a system of classification gives us a means of loo-

14



king at a group of phenomena, and it determines, to some 

extent, what general statements can be made about them. 

Two such systems are of particular importance,

a) Campbell's system grouped according to the kinds 

of procedures used in setting them up, and

b) Stevens' system grouped according to mathematical 

propert ies.
Strangely enough, b) is more useful to the practical scien-

tist who, from the knowledge of the kind of scale on which 

a set of measurements is obtained, will be able to deter-

mine what sorts of statistics are relevant to these measur- 

ments. a), on the other hand, probes deeper into the con-

ditions for the possibility of measurement and reveals the 

significance of numerals assigned to things when making 

measurements.
Campbell's system depends on an initial distinction between 

fundamental measurement and derived measurement. Fundamen-
tal measurement (such as that of mass, length,...) does not 

depend on prior measurement, derived measurement (of densi-

ty, velocity) does. Since temperature measurement depends 

only on the measurement of one other quantity, the distinc-

tion between fundamental measurement and derived measure-

ment is not exhaustive; hence we speak of:
c) derived measurement if the constants in the numeri-

cal laws are to be determined by measurement,

d) associative measurement which is exemplified by tem-

perature measurement, and

e) indirect measurement involving the measurement of 

more than one other quantity.
c) and d) are, of course, species of e).

Fundamental measurement is measurement by a procedure 

which conforms to a certain pattern, and it is possible on-

ly because certain kinds of operations are possible, de note 

that scales of mass, length, volume, time-interval, elec-

trical potential, etc. may be set up by logically similar 

procedures, and that these procedures are possible only be-
cause certain kinds of operations (e.g. addition) may be 

performed on systems having these quantities. There are, 

however, procedures of measurement which are neither con-

forming to Campbell's pattern, nor indirect, for example:

15



Moh's scale applied to the measurement of hardness. For this 

reason Ellis proposed the term "direct measurement" for the 
more general class, of which Campbell7s pattern is a species 

Also, since hardness measurement involves no more than order 

measurements like that of hardness are to be called "elemen-

tal measurements".

The mathematical approach of Stevens is different; he asks, 

what transformations leave the scale intact? His criterion 
of invariance (serving the same purpose) is ambiguous. This 

reasoning yields four kinds of scales for immediate use (in 

the order of richness):

"nominal scale" (e.g. the numbering of football players) 

invariant transformation: any permutation 
a=bora^b, $ —>f ( ^),

"ordinal scale" (e.g. hardness measurement) 

invariant transformation: (j>-----^f(f),

"linear interval scale" (e.g. temperature measurement) 

"ratio scale"

invariant transformation: c|)—>-<*(])  + 0

<*>0,
(e.g. length, mass, time measurement)

invariant transformation: (f)—

Ue may add:

,rlogarithmic interval scale" (see Krantz

invariant transformation:

et al.(1971)),

The statistics associated with these scales are discussed

in Ellis (1966), in particular: 

generating functions, averaging functions, arithmetical 

mean, geometric mean, root mean square, harmonic mean.

Construction of a metric scale:

Recall that a nominal scale is a one-one correspondence be- 

ween equivalence classes of objects manifesting the same 

property and real numbers. A scale reproducing order (sequen 

cing) only is called ordinal (or topological) scale; its on-

ly invariant characteristic is the rank of the measures. A 

linear relation reveals far more about the structure of the 

measured attribute than any order relation. In any case, 

meaningful are only those relations which remain invariant 

with respect to all admissible transformations. In order 

to judge the meaningfulness of relations, one must know 

16



what transformations are admissible.

Aside of topological scales admitting arbitrary monotone 

transformations, of real importance are scales unique up 

to linear transformations or even stretchings. These sca-

les (which account for interval and ratio scales) are 

called ’’metric scales”. Ue arrive at metric scales not only 

in cases of additive properties; indeed, for the construc-

tion of a metric scale weaker assumptions than additivity 

suffice.

General Postulate: A set Q is to be mapped onto the set of 

reals in such a uay that the structure of the numerical 

image is isomorphic to the structure of Q.

Axiomatic for metric scales

1. Order axioms: A set Q is called ordered if satisfying

the following five axioms:

01. (qrq2 6 Q) =>(q1^/q2Vq1< q2V qly-q2^ ’

02. /\(q/s/q),
qeQ

03. (q1^q2)=>(q2'^q1) ,

04. (q1/xzq2 a  q2^q3)=>(q1^q3) ,

05. (q1<q2Aq2^ q3)=>(q1-< q3) .

2. Topological axiom:

T1. Set Q is connected.

Assumption 1: The map Q—>-R is to be continuous and
similar, where similarity means: ( q /N/q2)=^>( (j) ( q ) = t|)(q )). 

Theorem 0.1

An ordered and connected set Q may be mapped continuously 

and similarly onto R (or its subset) iff Q contains a sub-

set dense in itself. This mapping is unique up to monotone 

and continuous transformations.

3. Distance axioms:

D1. Ordering axiom: Defined is an ordering relation bet-

ween the pairs of elements q 6. Q sa-

tisfying 01-05,

D2.

D3.

Monotony axiom: for all q^,

The sets {x 6 Q: xq3q q2} 

£x € Q: xq3)»q1q2}- are open

Continuity axiom: and

for

17



all q^,q2,q^; the same holds for 

q3x«

D4. Commutativity axiom: ( q q 2 0 q^q^ )-==^( q q^

4. Axioms of metric connectivity:

MC1 . Existence axiom: To

is

MC2 Monotony axiom: (q^

each pair of elements

associated an element 

q2)=>(q1oq2£'

qrq2 e q  

qoq 2 •

all

for

q1’
q'1)=^-(q1oq2 q'oq2) for

MC3.

MC4.

all

Continuity axiom:The sets £x E Q: xoq9-<q^}- and 

£x E Q: xoq2)»q>]J. are open for 

all q^,q2; the same holds for 

q20X>
Bisymmetry axiom: (qoq2)o(q^oq^)(qoq^)o(q2oq^).

Metric connectivity axiomatic coincides with the ad- 

and substitu-

q2,

Note

ditivity axiomatic if we replace ”o" by "+" 

te for MC4:

Associativity axiom: q ^ + ( q2+q^) ^ ( q 4-q^ ,

Commutativity axiom: q +q 2/v/q 2+q.

5 Axioms of the middle formation (replacing

and

MC' 5. Commutativity axiom: q^oq2r^q2oq^, 

MC'6. Reflexivity axiom: q^oq^^q^.

Al BICID
AIC AICIBID BID

c
-y

CID

Conclusions:

Given a metric connectivity (MC1-4), it

"middle" which satisfies MC1-4 and

is always possible to define

n e a

Given a metric connectivity, it 

a '’distance", and vice versa.

is possible to defi-

ne' 5,6.

Definition 0.4

A continuous mapping reflecting 

ments of Q as well as 

metric mapping.

the order

correctly the order of ele- 

of distances is called a

A_________ B
A | B

( q A • KH1 >-

"o” by " I ”):

5

Postulate M

The mapping Q—>-R is

General Postulate.

to be metric; this follows from the
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Theorem 0,2

If Q satisfies 01—5, T1 arid D1-4 or MC1-4, then there 

exists a metric scale, unique up to linear transformations.

----------o-------------

For a proof see Pfanzagl (1959).

The middle can be obtained from D1-4 as well as from 1*101-4

axioms. Then, there exists a monotone continuous mapping 
xi----->. ( x) of Q to R such that (q^ |q2) = 0.5 (<|> (q ) 4-(|) ( q 2)) ,

unique up to positive linear transformations, i.e. scales

obtained from a given metric scale by positive linear 

transformations are again metric scales. In this way we 

obtain all metric scales, all connected by linear positive

transformations. Then, 1 ^4 '=’2 lq3 is aluays necessary

and sufficient for q q 2 but from q^jq^/xz
lows tjiCq^ | q4) ij)(q2| q3) and hence <| (q 2)-tj> ( q ) = 

q2|q3 Foi- 
tf(q4)-|(q3),

and vice versa. Thus, distance q^2 is represented by the 
difference of measures ([>(q2)-| (q^) .

When the middle is defined on the basis of a metric connec-
tivity, <j>(q1oq2) = r (f) ( q ^)+- s (£ (q 2)+-t, r ^0, s >^0, since ”o” 

is monotone positive. If r+s / 1, zero shift will cancel t;

if ”oH is commutative, r = s; if ”o” is also additive, r = 

s = 1 and we get | (q oq?) = | ( q ^)+(|) ( q2) .
For commutative connections with r+s = 1, we get r = s = ^; 

and if we want uniqueness up to stretchings in this case, 

further criteria are necessary.

It is, of course, not necessary that q|q2 be mapped onto 
the arithmetic mean 0.5(|(q)+|(q9)); we may map onto the 
geometric mean V(<|)(q1)|)( q2))n. Then, the magnitude of the 

interval is not represented by the difference, but by the 

quotient of measures (as for instance in the case of abso-

lute temperature).

Often several connectives are available for the construc-

tion of a scale. The problem is then to determine, under 

what conditions two relations lead to the same scale.

Definition C.5

Two relations are called isometric if, for arbitrary q^q2, 

q3 G Q, (q1oq2)»(q3oq4)(q 1 »q3)o(q2»P4).

This isometric notion is reflexive, symmetric and - with 

01-5, T1 and D1-4 - also transitive.

o
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Theorem 0.3

Isometric connectives lead to scales identical up to linear 

transformations. If at least one of the connectives is non-

singular (i.e. r+s / 1), then there is a uniquely defined 

zero. The scale is then unique up to stretchings.

o

Tuo scales lead to the same scale if an internal connecti-

vity exists between them. This statement is false if both 

connectives are singular.

Temperature measurement (after Pfanzagl (1959)

This is an example in which the elements of Q are interpre-

ted as temperatures and the pairs of elements of Q as tem-

perature differences. The magnitude of a temperature diffe-

rence is determined by the efficiency of the Carnot cycle 

between these temperatures. Of the axioms 01-5, T1, D1-4 

only D4 requires an explanation. The satisfaction of this 

axiom is ensured by the second law of thermodynamics: if

there were four temperatures t^,t2,t^,t^ such that the ef-

ficiencies of the cycle processes between tand t2 on the 

one hand, t^ and t^ on the other hand are equal, but bet-

ween t1 and t^, respectively t2 and t^, are different, then 

by combining the processes t^t^, t?t^, t^t^ one could

form a cycle process which withdraws h-eat from the reser-

voir with temperature tand transforms it into work with-

out changing the state of the other reservoirs.

But it is customary to choose the temperature scale in such 

a way that the magnitude of the temperature difference be 

expressed - not by the difference of measures but by their 

quotient. Thus, the temperature values t are unique up to 

transformations of the form t = ut .

If we postulate a substance whose heat capacity is tempe-

rature-dependent, then a much more elementary possibility 

of defining temperature results: having two bodies of 

equal heat capacity, one is brought to temperaturec*,  the 

other to temperature 0, and then a heat exchange between 

them is initiated. The resulting temperature is denoted by 

ex | 0. This operation fulfills axioms MC1-4, MC' 5,6. The tem-

perature | 0 is, however, dependent on the chosen substance 

owing to the temperature-dependent heat capacity.
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Measurement theory in representational form

The representational theory of measurement, in which nume-

rals assigned to objects or events have to represent the 

perceived relations between the quantities of those objects 

or events, comprises three essential parts: the description 
of a given empirical relational system (say Q = ^Q,R)>, Q 

0 £ R, being nonvoid, represent the set of quantities and 

the set of relations, respectively), a representation theo-

rem, and a uniqueness theorem.

The empirical relational system Q = ^Q,R^ is supposed to 

have a model N = <N,P^> in the space of numerals such that Q 

corresponds to N and R to P, respectively. Then, measurement 

is an objective empirical operation (in fact a homomorphism) 

| - henceforth called the fundamental measuring procedure - 

mapping Q into N, i.e. |: Q —> N, in such a way that the re-

lations between the numerals also hold between the quanti-

ties. This is ascertained by the

Representation Theorem
Let R^, i = 1,2,...,n, be the relations on Q = (q,r,...), 

and P^, i = 1,2, ...,n, be the relations on N = (a,b,...); 

then, for | a homomorphism, we have the equivalence: 

R.Jqjr,..,) = P ± (q), f ( r) , . ..). (0.1)

Uniqueness Theorem

The uniqueness of the measuring procedure (p in (0.1) de-

mands that (|-y = 0, for any other procedure ((/obtained by 

an admissible transformation f of (|, i.e. tj/ - f(|). Hence

R.(q,r,...) — Pi(f(|(q)),f(|(r)),...). (0.2)

f characterizes here the class of admissible transforma- 

t ions.

Definition 0.6

The triple of sets S = ,N, satisfying the representa-

tion and uniqueness theorems is said to be the scale of 

measurement carried out on the empirical relational sys-

tem Q = , R .
------------- Q-----------------

Let us subject some direct measurement structures to the 

formalism of the just defined theory of measurement.
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Nominal binary system

In this case Q carries an equivalence relation, i.e. the 

empirical relational system Q = The representation

theorem for two quantities q,r 6 Q states:

q ~r = (f ( q) = cf) ( r);

uniqueness states = f (|, f being a one-one function. 

Ordinal binary system

Here, the least binary relation will be weak order relation 

for ordering according to the amount of the manifested pro-

perty in each object or event; hence, R contains the reflex-

ive relation The representation theorem states:
q>r = | (q) > |( r);

uniqueness states - f(|), with f isotonic.

Extensive systems (following Finkelstein and Leaning (1984)) 

Extensive systems are distinguished by concatenation which

has been defined earlier as the ternary relation R on QxQxQ o
such that, for q,r,s € Q, R (q,r,s) = qor/vs. Mass, length, 

time and probability (for example) are extensive quantities. 

Representation theorem: q^r = t|)(q) = <|)( r),

qor~s = |( q)+|( r) = (f ( s) .

In this case, weak order may replace the equivalence, and

the representation theorem for closed extensive measurement 
(i.e. such that no concatenation leads beyond its field of 

definition) holds under the subsequent conditions:

/vy is the equivalence relation (resp. y- is weak order), 

associativity: qo(ros) (qor)os,

Monotonicity: q^r

Archimedean axiom:

>qos ros,
(q>-r) =>\/( nr^-q) , where

neN nr = roro ... or

Quaternary interval systems

In difference measurement we compare intervals between ob-

jects. The quaternary relation in R indicates, in the 
case (q,r) (s,t), that the interval (q,r) is equal to or

greater than the interval (s,t).

Representation theorem: (q,r)>^(s,t) = |(q,r)>>(|(s,t)

| ( q , s) = |( q, r)+(|)( r, s) .

Uniqueness condition: = ©ci + 8, og >-0.

The class of admissible transformations f used in these 
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examples together with the notion of applicable arithmetic 

may be extended to the more general concept of meaningful-

ness. This is concerned with the status of statements con-

cerning measurements on each particular scale. However, it 

is independent of the truth of the statement concerned. For 

example, the statement that q is twice as long as r, mea-

sured on an entensive scale, is meaningful, but meaningless 

when measured on an ordinal scale with the arithmetic of 
medians (see Pfanzagl (1959). Obviously, the truth of the 

sentence is not involved in such a meaning of meaningful-

ness.
Criterion of the meaningfulness of P (Pfanzagl (1971)) 

Let Q = <Q,(R^)be an irreducible empirical relational 

system, N = , (P^) a numerical relational system of the

same type and such that (f: Q—exists, and P be a k-ary 

relation on N. Then, P is said to be meaningful iff, for all 
(|)' = f (tj)) €jj(Q,N) and q1,q9,..,,qk G. Q,the equality: 

P(|)(q1) , . . . (qk) ) = P(|' (q1) , . . . (qk) ), (0.3)

equivalently: ^(P) = (|')k1(P), (0.4)

holds.

Under the above conditions, P is meaningful iff

5j (Q,N) = l«Q,(Ri)ieI,^1(P)>,<N,(Pi)i€l,P» (0.5)

is satisfied; in other words: every one-one homomorphism 

of Q into N is a one-one homomorphism of Q, enriched by 
the relation (P), into N, enriched by the relation P.

----------o-------------

Thus, relational meaningfulness exists iff any increase in 

the number of relations is a balanced one at both ends of 

the scale, Ue see here an analogy to the general principle 

of physics, where physical sentences in the 3-dimensional 

space become laws in this space iff they are Lorentz-inva-

riant in the 4-dimensional Minkowski world.

Practical "usance11 of the representational theory

The general theory represents "snapshots" of measurement 
once the concept of quality manifestations (of quantities) 

has been fixed and the empirical operations and relations 

decided and tested. It provides a good model for measure-

ment in physical sciences where empirical properties are 

closely related to well validated laws, and theories and 
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measurement operations are quite sophisticated.

The formal theory of measurement does not include the dyna-

mic processes of conceptualization and scaling, whereby a 

primitive theoretical concept or vague idea is developed 

into one which has a clearer theoretical meaning, and can 

be realized as a set of empirical relations and operations 

to form a measurement scale. Such a state of investigatio-

nal work characterizes measurement in the social sciences: 

in economics, psychology, sociology. To cope with the issu-

es, various scaling techniques have been developed.

The broad intention of scaling is to establish a scale

S = (|)> in such a manner that the data obtained provide

a way of testing the assumptions underlying the scale. Once 

successfully tested, the measurements can then be used gene-

rally. The assumptions of greatest importance are those re-

lating to the empirical relations and operations on Q, es-

pecially that of order.

Rank ordering implies: a set of objects, called '’items", a 

in number, is ranked according to the attribute in question. 

The items are forced into transitive order, say Ay-B>-C.

In cases of paired comparisons, every pair of items is sepa-

rately compared, in which case the overall pattern of rela-

tions need not obey transitivity; for, while A>-B, B>-C , 

nevertheless C>-A. So, if the results exhibit transitivity, 

this is empirical evidence for the assumption. By the use 

of ordered triads, transitivity and consistency are ensured. 
Finally, in Coombs'parallelogram analysis, k items out of n 

are singled out which are closest together with respect to 

the attribute. The study is directed at revealing some un-

derlying dimensionality, possibly a line-continuum.

This is the "unidimensional scaling" technique for the at-

tribute under study. It must show that the order relation 

applies to the whole range of objects in a transitive manner. 

Ue speak of "multidimensional scaling" whenever the attri-

bute has more than one dimension. However, the long term aim 

must remain,to establish a single dimension for each attri-

bute. In multidimensional scaling, prior measurements of the 

distance d between any two pairs of objects i and j are 

assumed to exist. Each object is mapped into a k-dimensio- 

nal metric space in such a way that the separating distance
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is nearly equal to the measured distance. If x^(i) happens 

to be the projection of object i along the dimensional ray 
1 (1 = 1,2,...,k), then . is the Euclidean metric. 

The statistical task (goodness of fit) is to minimize k. 

After the confirmation of the attributes continuum, its or-

dering structure is investigated, while remembering that no 

social science attributes are extensive, save counting. In 

difference measurement, intervals between attributes admit-
ting affine transformations |' = occj) + 0 are compared. The 

set-up is again metric, and distances d^ are also used in 

interval scales; however, the determination of k indepen-

dent of 0 may prove to be difficult. This scaling is clas-

sified as "interval scaling". This, together with the pre-

vious methods of scaling, is based on the direct observation 

of the quantity of measurement. But such scales can also be 

established indirectly, i.e. via other directly measurable 

quantities. The fundamental concepts underlying "indirect 

scaling" correspond to the views of Campbell, with regard 

to direct measurement, and of Ellis, with regard to derived 

and associative measurement. They may be summarized thus;

Consider a quality Q for which an indirect scale o
surement is desired; as usual Qq =- {Q ,R^,Imagine

class of all objects 0 which carry manifestations

of mea

also a

of the

quality Q . Let each element of 0 also exhibit logically 

independent qualities Q,|,...,Q . Finally, let there exist, 

for each of these qualities, a scale of measurement — 

— , N , (j) . Each element o 6 0 which exhibits its qQ € Qq

also exhibits a set of manifestations (q^,...,q ), where q.. 

€ Q.. Hence, q is characterized by an n-tuple od measures
<() ^ ( q n( qn ) . Assume a mapping £ : | 1 ( q 1),..., ( qn ) 

------The composition o(|,.••,) and the correspon-

ding elements of Q and |T Q constitute a function of QO . 1 o o

to N , which we denote by

Assume next that there exists a set of relations P on No o
as part of the relational system = ^Nq ,Po>. It is clear 

that, if transforms Qq homomorphically into Nq , scale 

S = /Q ,N , S S , (b \ will be an indirect scale of mea-o x o o V n1T oz
surement of Q .o
The problem of constructing an indirect scale of measure-

ment reduces to the establishment of mapping from the 
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measures of qualities associated with the measured quantity 

into a numerical relational system so as to obtain a satis-

factory representation on an indirect measurement scale. In 

practice is obtained by definition or from models. For 

both methods see Finkelstein and Leaning (1984).

0.1.2.1 Simultaneous measurement

It seems that the theory of extensive measurement is not 

wholly adequate for the representation of physical and so-

cial attributes by numerals for the following reasons:

1) Axioms usually relating to weak order and concatenation 

are questionable even in structures of the type
, ^7, A, , where A 0, AczQxQ and : A—>“Q.

2) It is doubtful whether comparisons of attributes can be 

treated as weak order and that indifference is transi-

tive.

3) Alternative interpretations for the concatenation lead 

to nonlinearly related scales of length; the velocity 

representation is non-additive.
4) While the natural empirical concatenation existing for 

length and time may be used to construct a fundamental 

measure, three physical attributes cannot be adequately 

concatenated: density, momentum and hardness.

It was stated earlier that counting is possible in social 

sciences, but in the simplest relational structure <Q, 

we cannot count units because there is no way of deciding 

what constitutes two units when identifying which element 

of Q is the sum of two others. Thus, for counting the 

structure requires additional features. One of the possi-

ble solutions is for Q to be a cartesian product Q = Q^xQ^*  

because then two factors determine the ordering • The

structure Q = enables us to perform a two-com

ponent additive ’’conjoint measurement” (for axioms and 

proof see Krantz et al. (1971)).

Representation theorem: For p,q ££ Q, C Q 

and (p1,p2) (qq,q2), we have

P^q s 11 ( p 1 ) +|2 ( p2 ) £3 ]) 1 ( q 1) +(j)2 ( q2 ) .
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Thera is a symmetry between the components, so that any 

two of the three attributes can be chosen for the measures 

c| 1 and ^2*  In this sense conjoint measurement is concerned 

with the setting up of a structure for the simultaneous mea-

surement of all the properties concerned. This is the reason 

for devoting a subsection to the problem of simultaneous 

measurement.
Classical measurement (and observation) is commonly limited 

to simple relational systems obeying Boolean logic (algebra) 

and satisfying all axioms of the Zermelo-Fraenkel set theo-

ry including the axiom of choice; where Q is at most coun-

table, we have Q< Cl, Cl being the cardinal of countable 

sets. Such systems are generally deterministic, measurable 

and simultaneously observable. There is no room for uncer-

tainty other than instrumental and methodical; hence, a de-

termination of the state of a classical system requiring 

- in accordance with the doctrine ’’Part and the Uhole” - 

the simultaneous measurement of (at least) two complemen-

tary quantities, is always possible.
Assume x to be a quantity (it may also be a random varia- 

ble) and E a Sorel subset of the real line R . The pair 

(x,E) is called an ’’experimental proposition” before the 

experiment, and an ’’experimental statement or sentence” 

after the experiment. It may, of course, be true or false. 

The set of experimental sentences will be denoted byS. 
Now, the abstraction class t(x,E)J of sentences (x,E) re-

presents some kind of physical quality. The identification 

of logically equivalent sentences in a formalized theory T 

is rather common in mathematical logic; the result of such 

identification is the so-called Lindenbaum-Tarski algebra 
of T. Let F be the set of all formulas ot,B,..., and r= (f , 

V, A “ ) the algebra of formulas. Then the Lindenbaum

-Tarski algebra of sentences is defined as the quotient al-

gebra of formulas L(T) = //<£», the congruence relation 

being defined thus:

3 iff B) and (6=£>o) are theorems in T.

Uhether L(T) is a Boolean algebra or a non-Boolean algebra 
depends on the admissible operations on the classes of 3~/• 

It is a Boolean algebra in case of simple systems considered 

here; but it is a non-Boolean algebra in case of complex 
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fuzzy systems which will be considered in subsequent sec-

tions and chapters of this thesis.

Upon ordering the classes into a poset (partially ordered 

set) and using the complementation operation, L(T) becomes 

a logic X with implication and negation, respectively. In 

this case £ is taken to be ag-algebra of subsets of some 

space JX- Ue then define a random variable as a real-valued 
function f on JL such that f (E) £ £, for E CR . Given a 

probability measure p : E —we can obtain the dis-

tribution of f under p, defined by
C^(E) = p(f’1(E)). (0.6)

In general 8 is a set, partially ordered by and com-

plemented (in quantum mechanics: orthocomplemented). Gi-

ven a physical quantity x and a Borel function u (i.e. a 

real-valued Borel-measurable function u on the real line 

R ), there is an operational definition of the quantity 

u(x); in fact, if x has the valued, u(x) has the value 

u(^), and u(^) G E iff € u (E). Thus, given an obser-

vable x(Ei—>-x(E)) and a Borel function u, we define the 

observable u(x) by the assignment u(x): E’—>x(u” (E)). No  

doubt u(x) is a (5-valued measure based on the Boolean al- 

gebra B(R ) of sets on the line, so that u(x) is in fact 

an observable. Let x be an observable, u^u^ Borel func-
tions and u = u^ou^ their convolution^ then, u(x) = u^(u^ 

(x)). If x has distribution oc under p, then u(x) has dis- 

tribution B under p; where B(E) = cc (u (E)) for all E. 

Thus, the rules for calculations of functions and distri-

butions of functions of a given observable are the same as 

in the conventional formalism. However, functions of more 

than one variable can, in general, only be formed under 

special circumstances.
Given E,F G B(R ) and elements a,b G & such that a< > b 

whenever there are pairwise disjoint elements a^,b^,c such 

that a = a^ -T c, b = b^ + c, we claim that the necessary 

and sufficient conditions for a-< >b is that there should 
be an observable x and Borel sets E,F satisfying a = x(E) 

and b = x(F).

Definitions 0.7 

Elements a,b £ S are called simultaneously verifiable if

28



a-c—>b. Ue call x and y simultaneously observable quanti-

ties 
y(F)

if, for any pair of Borel sets E,F, both x(E) and 

are simultaneously verifiable. Ue may actually gene-

ralize this definition to the indexed set £x^ : % e A} and 

call £x^: Q. eA] simultaneously observable if x^ and x^/ 

are simultaneously observable for all %, CL' € A-

Theorem 0.4 (Varadarajan (1962))
Let £a^: X €. A} be an indexed set of Boolean subalgebras of

Theo, in order that there be a Boolean subalgebra of 8 

including all the A^, it is necessary and sufficient that
—>■ A / for all 1,%' g A.

Theorem 0.5 (Varadarajan ( 1962))

Suppose {xx: 1 e A} to be an indexed set of observables.
Suppose also that either A is denumerable or that 8 is a 

separable logic. Then, a necessary and sufficient condi-

tion that x^ be simultaneously observable is that there 

should exist an observable x and a set £u^: 51 G A} of Bo 

rel functions of the kind x^ = u^(x) for all X.

D e fin it i on 0.8

Ue say that the x-^ have a joint distribution whenever 
there exists a G-homomorph ism B(R^)—such that 

*S(K~\e)) = x^(E) for all X and all E € B(r 1). ft  repre- 

sents the projection f—>-f(%) of R^ into R .

Theorem 0.6 (Varadarajan (1962))

Let S be any logic (not necessarily Boolean) and £x^: CL € 

A} an indexed set of observables. Then, the following 

statements are equivalent:

(i) The x^ are simultaneously observable.

(ii) The x^have a joint distribution.

(iii) There exists a space JL and a G-algebra A of subsets

of JI, a G-homomorphism A —>• and A-measurable
real-valued functions f^ , X<?A, such that x-^(E) =

^S(f”\E)) for all Ig A and real line Borel sets E.

----------0-------------

These statements (definitions and theorems) are pregnant 

with information. Definitions 0.7 combine observability 

with verifiability; their empirical content is obvious. 

Theorem 0.4 decrees that the simultaneous verifiability 

of the subalgebras of the logic ensures the existence of 
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a s u b al g e br a  c o m pri si n g all  ot h er  s u b al g e br a s; i n c a s e of  

a l o gi c al u n c ert ai nt y  t h er e will  b e n o s u c h c o m pri si n g  

s u b al g e br a. T h e or e m  0. 5  h ol d s  o nl y  f or a d e n u m er a bl e  s et  

of  o b s er v a bl e s  or  f or s e p ar a bl e l o gi c s. T h er e  i s a n a n a -

l o g y b et w e e n  T h e or e m  0. 4  a n d  T h e or e m  0. 5;  t h e r ol e of  t h e 

c o m pri si n g s u b al g e br a c orr e s p o n d s t o t h e r ol e of  t h e o b -

s er v a bl e x, a n d  t h e r ol e of  t h e v erifi a bilit y  o p er ati o n  

c orr e s p o n d s  t o t h e r ol e of  t h e B or el  f u n cti o n s u,.  T hi s
✓I

i s b ut  a pr o p er  o b s er v ati o n  of  t h e f a ct t h at c o m m o n t o 

t h e s u b al g e br a s  a n d t h e o b s er v a bl e s  i s t h e l o gi c £.  

D efi niti o n  0. 8  e st a bli s h e s  t h e f u n d a m e nt al e q u ati o n  r el a-

ti n g t o t h e c o m p o siti o n of  a < 5 - h o m o m or p hi s m a n d a pr o -

j e cti o n. T hi s  e q u ati o n  a p p e ar s  i n T h e or e m  0. 6  (iii) a g ai n  

w h er e  it a s s ert s  t h e e xi st e n c e  of  a s p a c e  J L a n d a  G- al g e b  

r a of  t h e s u b s et s of  JI.

T h e or e m s  0. 5  a n d 0. 6  ar e  f u n d a m e nt al i n r e g ar d t o si m ult a -

n e o u s  o b s er v a bilit y  ( m e a s ur e m e nt). T hi s  st u d y i s c o n c er n -

e d m ai nl y  wit h  s y st e m s w hi c h  vi ol at e  t h e s e t h e or e m s a n d  

- h a vi n g  n o n- B o ol e a n  l o gi c s - g e n er at e  i n c o m p ati bl e B o o -

l e a n s u b al g e br a s. B ef or e  w e  e nt er  t hi s fi el d, l et u s  c o n -

si d er  a n e x a m pl e  of  si m ult a n e o u s  m e a s ur e m e nt.

0. 1. 2. 2  Si m ult a n e o u s  o b s er v ati o n  of  t h e st at e _ of a fi nit e 

li n e ar c o ntr ol  s y st e m: a n _ e x a m ol e

T h e  c o ntr ol s y st e m i s r e pr e s e nt e d b y  B a n a c h  s p a c e s X, T, Y  

a n d  li n e ar o p er at or s  A a n d  B ( c o m p. R ol e wi c z  ( 1 9 7 6)).

Fi g . 0- 1 ; Li n e ar  n- di m e n si o n al  c o ntr ol  s y st e m

X   = X q x  U;  X q  : = t h e s et of  i niti al p o siti o n s,

U  : = t h e s et of  c o ntr ol s,

T  =  C  E 0, <]  : = t h e s p a c e of  tr aj e ct ori e s,

C x  : = t h e s p a c e of  c o nti n u o u s f u n cti o n s o v er

i nt er v al T,

Y : = t h e s p a c e of  o ut p ut s,

A, B  : = li n e ar i n p ut a n d o ut p ut  o p er at or s,  r e s p e cti v el y.
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Definition D.9

Observability of the system in Fig. 0-1 is understood to 

be the determination of particular properties of the input 

from the properties of the output. The object of the obser-

vation is the dynamic state defined by the position and ve-

locity vectors of the system within the time interval T.
----------□-------------

The physical quantities associate numbers to the states 

and, in order to be physically meaningful, small changes of 

state should correspond to small changes of the physical 

quantities; hence, to the latter correspond linear conti-

nuous functionals. More often than not, we are unable to 

determine the functional f and its value directly; in that 
case we can then measure or calculate t|)(y) for every y C T 

and every functional | € Y , where is the usual measure-

mental procedure (called "method of observation" in control 

theory) and Y*  is the conjugate space of Y.
The basic question of interest is: Can we choose a measur- 

ing procedure (| E Y such that

f(x) = |(BAx), for all x € X? (0.7)

If such a possibility exists, then the linear continuous 

functional f is said to be observable by $.
Noving now to conjugate spaces, equation (0.7) will take

the form (0.8)

Theorem 0.7 (Rolewicz (1975))

The linear continuous functional f is observable iff 
0 £ cl(BA{x £ X: f(x) = 1}) ;

in words: Zero is not an element of the

right of (0.9).

(0.9)

closure on the

----------o —---------

If the functional f is observable, then 
w*many © Y

of choosing

arrive thus

there may exist 

(0.8). This freedomsatisfying (0.7) and hence

may be used to minimize any error of f(x). Ue 

at a minimal norm problem io the conjugate sys-

t em
£—T* ...C. X^J (0.10)

Theorem 0.9 

f is an optimally observable functional whenever there is a
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| € Y*  such that ||yq|| = infQ £ Y*:  A*3*if)  = f}. (0.11)

Every observable functional is optimally observable.
--------------Q-----------------

Suppose now that we have more than one functional to ob-

serve, say F= (f,f2,•..,fq)• This situation is depicted

below.

X^~- A-----..................   {

^EX *

Fig, 0-2: Commuting diagram

F = |BA, £ e S' ( Y-----^E),

Theorem 0.9

The system F of functionals is observable iff every linear 

combination a-fd + ... + a f of functionals f.,...,f 

with scalars a.,....a is observable.1 n
Every observable system F is optimally observable; the ex-

pression is similar to (0.11) .
--------------Q-----------------

Since X,T,Y are finite linear Banach spaces, A and B are 

linear operators and F, $ are linear combinations of li-

near continuous functionals; the functionals themselves 

are independent, and the two complementary ones, observing 

^x,x> and determining the state of XxTxY, are measurable; 

a joint distribution exists and the logic is Boolean. 

The scale of measurement (observation) for this example 

looks as follows:

The empirical relational system: X = O xT x Y; , || • j| > ,

is a cone-ordering in the vectorial B-space, 
ll*H  stands for the norm.

The numerical relational system: JY"= ^E;^, |»|^>,

is the numerical ordering,

|*|  is the Euclidean norm.
The measurement procedure: $ = Orb! is the set of 

two linear continuous (homeomorphic) maps.
The scale S = <2,JT, $> .
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The basic representation theorem as well as the uniqueness 

theorem for interval scaling are fulfilled and the requi-

red axioms concerning:

Weak order, independence, Thomsen property, 

restricted solvability, Archimedean proper-

ty, the essentiality of components and the 

condition of indifference - specified by 

Krantz et al. (1971)

are satisfied.
As stated above, the two complementary quantities of posi-

tion and velovity are simultaneously measurable because a 

joint distribution exists and the logic is Boolean. 

Based on the arguments and the results obtained here, ue 

may now safely state;
(1) The concept of ’’quantity” is well defined in set theory.

(2) The representational theory in the frame of classical 

(Boolean) logic and finite (simple) systems for the de-

termination of both single quantities and states is well 

established, - but only in this frame.

0,2 Quantal communication and information aspects of mea-

surement
This section is devoted to aspects common to experimental 

and theoretical physics, to mathematical logic and to com-

munication theory.
It is suggested that the most fundamental abstract scienti-

fic concept is quantal in its communicable aspects. It is 

defined as ’’information-content” and it has two features: 

the apriori or structural and the aposteriori or quantita-

tive: To each there corresponds a quantum of information 

representing the minimal elementary proposition relating 

respectively to the structural and quantitative aspects of 

scientific statements. And scientific statements are regar-

ded as complexes of these elementary propositions. The in- 

formation-content of a result can be completely represented 

by a vector in a multidimensional space, the dimensionality 

of the space and the square of the length of the vector 

indicating respectively the amounts of structural and quan-

titative information provided, while the orientation of 

the vector specifies the result. The information-content 

is shown to be fundamentally limited by the number of con-
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ceptual units of space-time devoted to the experiment, with 

obvious practical implications.Expressions will be derived 

measuring the amount of detail possible in a result under 

different conditions.

Ue let the various uncertainty relations of physics appear 

basically as axioms expressing the quantal nature of com-

municable information, consequent on the use of logical 

forms; whereas the quantity ’’entropy plus information-con- 

tent” appears as a fundamental invariant of a physical sys-

tem.

It is said that ’’nature cannot be cheated”, and examples of 

this principle recur throughout the realm of measurement, 

and not only in microphysics. A defined concept common to 

all scientific statements and responsible for their logi-

cal significance is necessary. In terms of this quantita-

tive concept of information, various semi-intuitive prin-

ciples can be seen to have a precisely definable basis in 

a general axiom.

Acquisition and quantization of scientific information

A scientific statement can be defined as a precise descrip-
tion of certain events viewed as populating a tract (q) of a 

coordinate-space (configuration-space). Its essential pur-

pose is the communication of information derived from an 

experiment - an activity in which events are classified. 

The acquisition of scientific information thus involves 

two distinct tasks:
Firstly, one must devise apparatus and/or prepare some sys-

tem of classification such that an adequate number of inde-

pendent categories can be defined when describing the re-

sult, e.g. if fluctuations varrying in frequency between 1 

and 100 cps are to be observed, the apparatus must be capa-

ble of responding in a time of the order of 1/100 seconds. 

When a chain of apparatus is involved (including the obser-

ver), then the differentiating capacity of the least-dis-

criminating link determines the number of independent ca-

tegories in the result.

Definition 0.10

There is a sense in which this number, i.e. the number of 

independent dimensions or ’’degrees of freedom” can be regar-

ded as a measure of the information supplied by the experi-
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merit. This information, following Gabor, is called ’’logon-

content" of the result.

Secondly, the experiment must be performed by using our ap-

paratus (galvanometer, microscope, eye plus notebook) to 

classify events in a chosen tract of coordinate-space. Ue 

may, for example, record 100 independent values of a quan-

tity as a function of time - the amount of that quantity 

which is associated with each of the 100 identifying points 

provided by our method in the time-tract considered. Per-

formance of the experiment thus results in the association 

of a number with each of the ’’labels” - categories or the 

degrees of freedom - defined by the structure of the experi-

mental method. The usual scientific statement, however, 

takes the form of an inference having a certain probability 

deduced from the experimental result. Thus, we arrive at a 

second use of the term of information, to signify the sour-

ce of confidence in a given number as representative of the 

class identified by its label.

It is possible to give a precise numerical significance to 

this concept also. It is the essential apriori complement 

to the apriori logon-content, for the complete representa-

tion of the information derived from the experiment. 

Ue go now to the analysis of the nature of the scientific 

statement made to convey the results of an experiment, 
which yields a basis (rather definite) for a quantal repre-

sentation of scientific information.

(i) Elementary propositions and quantization of information: 

A scientific statement is a logical form based on limited 

data, dissected into a pattern of ’’atomic propositions”, of 

which each states a fact so simple that it is only true or 

false. This is its only attribute. Ue treat as elementary 

the simplest propositions relating to the concepts of mea-

surement and classification. Ideally, a scientific state-

ment is based entirely on observable evidence, and the ideal 

statement which would describe all the information supplied 

by a particular experiment is presumably reducible to a 

pattern of independent elementary propositions relating to 

observations. Ue are led to define one kind of unit of in-

formation as that which decides us to add one elementary 
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proposition to the pattern of propositions which is logi-

cally adequate to define the result observed.

(ii) The minimum change of scientific information possible 

is the addition of one element to the logical pattern; and 

a unit of information is simply that which causes us to 

make one such addition. Thus, formation of scientific sta-

tements is a quantal process; these quanta are to be iden-

tified in terms of the process of experimentation. Informa-

tion has two common uses: Prior information is presented by 

the knowledge of the experimental procedure; posterior in-
formation arises as the latter is carried out (quantum phy-

sicists speak of ’’preparatory” and ’’determinative” measure-
ment, respectively). The one defines the structure of the ul-

timate statement, the other the amount of evidence which it 

subsumes.

Posterior or metrical information

(i) The most elementary observational proposition asserts 

the existence of a coincidence-relation between the enti-

ties. But generally, we define a magnitude by saying that 
it occupies a certain interval on a scale. Logically, this 

occupance-relation between scale-interval and magnitude is

a consequence of the existence of coincidence-relations bet-

ween the ends of the ’’unknown” and the two definable gradu-

ation-entities on the scale.

For every observation there is a minimum separation between 

neighbouring graduation-entities, Bn, say» below

which either we cannot define or cannot substantiate with 

probability greater than one-half, a proposition of the 

form: ”A falls into B . - B and not into B - B d”. The n-1 n n n+1
smallest interval is called ’’scale-unit” appropriate to the 

observation. This assumes the validity of tertium-non-datur.
(ii) A magnitude can be specified by the number of ’’minimum 

meaningful intervals” which it occupies. The index of infor-

mation provided by this number is described as metrical, and 

the unit of metrical information as "metron”. The metron is 

that which enables one elementary interval to be represented 

as occupied, in the logical pattern to be communicated; i.e. 

each metron specifies one elementary occupance-relation. 

Thus, what we carry away from a measurement is basically an 

integer, referred to as the ’’metron-content of the result”.
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If the metron-content is to be equated to the number of 

atomic propositions, it must be so defined that the metron- 

content of two similar but independent experimental sequen-

ces is twice that of either one, and it should be incapable 

of augmentation by purely logical manipulations. If these 

conditions are satisfied, a result yielding a given metron- 

content provides a fixed number of logical elements out of 

which dependent or equivalent statements can be constructed.

(iii) From the set of all physical quantities, some will

resist a representation on scales having a constant scale-
unit; e.g. ^q5, q6Q, has the same metron-content as q, since 

the latter can be derived from the former by purely logical 

actions; however, the metron-content cannot be proportional 

to both quantities. Conceptual scales, called "proper scales" 

are not necessarily linear in terms of physical magnitude. 

The proper scale of a quantity subject to random fluctua-

tions is a good example of this. Fisher justified in 1935 

his definition of statistical information as a quantity pro-

portional to-the reciprocal of variance, by noting that va-

riance depends inversely on the number of samples involved, 

and is a measure of the uncertainty with which a given sam-

ple can be regarded as representative. If we multiply the 
number of samples by n, the information provided (if inde-

pendent) should be n times as great. Because the same pro-
cess reduces the variance by 1/n, the information provided 

should, therefore, be proportional to its reciprocal. The 

metron-content i of a single measurement of a radom fluctu- 

ating quantity z having a probable error ± is, there-
fore, not z/^z but i = z /(Az) , and the physical scale of

z is divided into significant intervals which are non-uni-
2 

form; the scale of z , however, is uniformly divided. This
2

means that the statement "z or z occupies i intervals" can 

be assigned a probability p just In this case it is un-

profitable to employ a narrower interval.

(iv) In more complex cases we go beyond the trivial charac-

terization: "we observe the pointer and measure voltage"; 

if our sole concern is the determination of a quantity, we 

speak of measurement; if, however, a theory is involved, we 

speak of observation and of a corresponding operator. In ge-

neral, the precision of observation sets the upper limit to 
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that of measurement, An experiment is not yielding full in-

formation unless the metron-content of the observation ex-
ceeds that of measurement (e.g. due to noise). But, more im-

portantly, observation usually embraces the whole system 

in closed form and a comparison with a postulated theory, 

and this involves the measurement of several quantities (at 
least two conjugates) - simultaneously I

(v) A measured value of a quantity z is inevitably represen-

ted as occupying an interval Az. Accordingly, with a posi-

tive metron-content, the smallest ’’observable value” which 

we can rightly attribute to a quantity linearly related to 

metron-content is not zero but ^&z. The first interval 

which it can occupy on our conceptual scale has the width 

Az, which means a displacement of the origin.

Full justice is done to the accuracy (the logical content) 

of any single measurement when it is described in terms of 

its scale-units and metron-content; the latter may be re-

presented as the number of intervals, on an abstract con-

ceptual ’’proper scale”, occupied by the measured quantity. 

However, the number of intervals on this scale will not 

necessarily be proportional to the measured quantity, since 

the scale-unit may also depend on the quantity.

Structural information

(i) ’’Reason has insight only into that which it produces 

after a scheme of its own” - claimed E. Kant.

The design of an experiment is basically the specification 

apriori of a pattern of categories in terms of which alone 

the result can be described. All the events of the experi-

ment must find a place in one or other of these although, of 

course, not all categories will necessarily find an exemplar 

in a given experiment. Now, each independent category enab-

les us to introduce a measure of differentiation, i.e. of 

form or structure, into our account of a result, so we can 

regard knowledge thereof as providing us with prior or 

structural information. Ue can,therefore, define a unit of 

structural information or a logon as that which enables us 

to formulate one independent proposition, describing one 

independent feature of the result. That amount of structural 

information in a result, the logon-content, is thus the num-

ber of independent categories or degrees of freedom, precise-
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ly definable in its description.
(i) Structure being defined in terms of reference-coordi-

nate, the "logon-capacity" of an experimental method can 

in such cases be defined as the number of logons which it 

specifies per unit of coordinate-space if several coordi-

nates are involved. For example, the logon-capacity of a 

microscope in a particular region of focal plane can be 
defined in logons/crn and measures the resolving power in 

that region.

Frequency-bandwidth of instruments is defined such that 
"bandwidth" is defined by a volume (e.g. for microscopes). 

Bandwidth in the above sense is directly related to their 

logon-capacity; the relation arises from the well known 

uncertainty-principle of the form:

(0.12)

Af andAq are the effective ranges of frequencies f and 

time-tracts q, respectively; for Aq being twice the uncer-

tainty on q, we get K = ^.
Thus, the points on the q-axis cannot be defined uniquely 
at closer intervals than K/Af, so that the logon-capacity 

is Af/K = 2ZSf. The corresponding uncertainty relation in 

quantum mechanics is frequently written in the form
AE . At h;

the correct notation, however, is

Ae2 • h2,
— 2since there is no operator At, but At' in Hilbert space

The logon-content 1 of an experiment involving a tract q

is thus: 1 ^q . Af/K 2qAf (0.13)

Representation of information

(i) The information defined initially was operational. 

"Information" acquires meaning in terms of what it does. 
Thus, the total information (structural and metrical) pro-

vided by an experiment requires a concise representation 

enabling us to deduce its effect on all conceivable state-

ments relating to the result, i.e. an information operator 

(matrix) I.

Suppose that an experiment has provided 1 logons. If they 

are independent, they will be orthogonal rays filling an 

1-dimensional "information-space" with corresponding unit-
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vectors e^,e^,...,e^ forming its basis. The 

matrix (operator) in canonical form is

information

(0.14)

i^,...,i^ being the metron-constants of the logons repre-

sented by e^,...,e^, respectively. Any proposed dependent 

statement can be represented relative to the logon-basis

by a unit vector-function (b, defined by 
1

t fr*er> (0.15)
r=1 r r

fr being the direction cosines of tj) and measuring the re-

levance of the corresponding logon to the statement. If ue

nou uish to calculate the total metron-content i. uhich the 
r

proposed statement uould have, ue need only form the pro-

duct
(|/- transpose of <|). (0.16)

The follouing three facts are uorth memorizing:

(a) The trace i = i of I represents the total metron-
r=1 r

content of the original result.
(b) This trace (of information) is invariant under unitary 

transformations, so that (as our axiom demands) the to-

tal metron-content is unaltered by logical manipulation.

(c) A logically equivalent restatement of the result corres-

ponds to a unitary transformation of the basis, under 

uhich I generally looses its simple diagonal form. Thus, 

each component of a dependent statement is no longer a 

function of just one of the original logons.

(ii) This procedure can be given a simple geometrical re-

presentation, analogous to that of quantum mechanics.

Operator I can be defined by an "information vector” of 
length 4?, uith components , ^i^*  • • •» which defines

a point (actually a volume-element in the information space) 

relative to the origin. This information vector is the ’’real 

result". Its components along each axis are the square roots 

of the metron-contents of the corresponding logons. Any de-

pendent statement is nou defined by a direction in the space 

and its metron-content is the square of the projection of 
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in that direction. Unitary transformations correspond to 

rotations of the axes, and the significance of points (i) 

and (ii) is clearly seen.

The dimensional multiplicity 1 was seen to be fixed by choi 

ce of experimental method, including the volume of space-

time occupied. Performance of the experiment results basi-

cally in the collection and allocation to various logons, 

of the metron-flow arising from the impact of data on the 

apparatus and observer.

The quantal character of this process has the important ef-

fect that only a certain number of different results can 

conceivably be given by a particular experiment, because 

the number of ways in which i metrons can be distributed 

among 1 logons is limited. An experiment is indeed'an at-

tempt to choose between a finite number of possibilities. 

Otherwise experimentation would be impossible.

Practical considerations

Metrically and structurally defined scale units

In order to be logically representable, a numerical mag-

nitude must be quantized in either metrical or structural 

propositions; the origin of quantization differs,however, 

in the two cases.
(i) A single metrical statement about a quantity, say y, 

is logically sterile unless it is identified by a coordi-

nate-label, say q. The proposition:

”1 have received i metrons relating to yn 

represents our actual experience, and has no vagueness; 

but vagueness arises directly as we conceive y to be a 

function of q, and try to formulate a proposition about y 

in terms of q. But this is impeded because information ta-

kes time to accumulate, for there is only a finite metron- 

density on the time axis. The result is an uncertainty re-
lation (actually an information axiom) which arises as fol-

lows:
Metrons, the "atoms of information” we have received, are 

scale-free; that is to say, one can construct a number of 

dependent propositions involving the same number of metrons 

and can regard them as logically equivalent statements of 

the result, as long as one fixes appropriate definitions of 
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q+Aq
(0.17)

the scale unit in each case. Then, to translate i metrons 

into a statement of the magnitude of y, one must have a sca-

le unit Ay such that y = i«Ay.

If we now wish to say how y varried as a function of q, we 

must do so by defining a metron-density, say ^metrons per 

unit q, so that if the information i was gained over a tract

AA, then rq+Aq
i = ^i(q)dq

For ^(q) we put its average value in the interval Aq, and 

call it then (3^ = i*(l/Aq)  = i *A^  . This definition of

is basically equivalent to that of y = i*Ay  , since the 

metrons are the same.

In order to connect the two statements, we define the re-

lation between corresponding scale units by means of a con- 

version-factor K such that Ay = K *Ap,  and obtain so the 
m m \

generalized uncertainty relation or information axiom;-

Ay • Aq = Km; 

the limit to 
proportional

- a metric constant, (0.18) 

the accuracy of measurement 

to the extent of q devoted

say with-

words: i

appropriate natural unit of q. 

calculated for any given experiment, 

of an atom of space or time. It is a

as the tract irreducibly associated with each mea-

with it,

and plays the 

scale-unit

uhich shows that 

of y is directly 

to the process.

(ii) The above relation may be converted to Aq 

where K^/y is regarded as a natural unit of q, 

in which just one metron is required; in other

metrons acquired in the intervalAq‘enable us conceptually 

to subdivide it into i intervals of magnitude € . Conversely:

The metron-content of a measurement cannot exceed the 

ratio of the coordinate tract Aq associated 

to the 

may be 

sole role 

of q; but
surement of y isAq,Aq is the smallest interval which en-

ters into any proposition involving y. coincides with Aq 

in the limit where the metron-content of each measurement is 

unity.
This principle is useful in considerations of the statisti-

cal matching of one part of an experiment to another.

In structural propositions the absolute magnitude of y is 

irrelevant. These are essentially definitions of propositio-
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nal functions of which y is to be the argument. Hence the 

scale-unit of q can be defined only in terms of coinci-

dence relations, independent of the magnitude of y. The 

concept of bandwidth has already been used to define the 

scale-unit Aq which was a property of the apparatus used, 

ascertainable beforehand by an independent experiment, and 

hence counting as prior information on subsequent occa-

sions .
Consider the case of a simple harmonic function of q, with 

periodicity f. It will be associated with definite points 

on the q-axis, independent of amplitude, whenever the func- 
tion crosses the axis (at ^-period intervals). The scale 

of q is conceptually provided with a set of points at in-

tervals of K /f, K being the structural constant of order

1. However, what we want is a set of uniquely identifiable 

points, to serve as labels. To single out desired points, 

we must provide a comparison-pattern to act as a ’’pointer”. 

Thus, a frequency f-Af will produce a pattern coinciding 
with the first K /f at intervals of K /Af. If all valuess s
nf Af from zero can be observed, a continuous range of in-
tervals from infinity down to K /Af can be observationally s
defined. The structural scale-unit Aq of q is thus K /Af.s
Therefore, ifAq is an arbitrary interval, the number 1 of 
logons relating to it, can be written as l-< Aq .Af/K , and 

for a single logon we have:

Aq.Af>K .m s (0.19)

It is of interest that the metron-density function, spe-

cified for a single logon for which

equality, is a Gaussian probability function. Analysis of 

a function into logons is effectively description in terms 

of superimposed Gaussian functions.

An illustration of the methods and ideas discussed above 
has been given by Mackay (1950), applied to the problem of 

optical resolving power. Ue have used freely and through-

out the results of his excellent investigations, and sub-

scribe with conviction to his closing general axiom:

The limit to scientific observation is the limit 

of our logical vocabulary. If a phenomenon can be 

defined (in terms of the atomic propositions of 
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the scientific method) it can - in principle - 

be observed.

Ue complement this statement in the following sense:

If a phenomenon can be defined, then it can be 
observed (measured) and calculated; the law of 

contraposition applies as well.

Closing remarks

1. To increase the amount of detail in a result, it is 
more profitable to increase 1 (logons) than i (metron- 

contents) unless already 1 >- i .

2. The precision of a single measurement can be enhanced 

indefinitely by increasing the space-time tract irre- 

ducibly associated with it. Thus, in experiments to 

determine a constant, efforts should be directed to-

wards ’’logon-compression” - reducing the frequency-
response (i.e. the logon-capacity) of the apparatus 

with respect to time and space. In short: best results 
are obtained by acting consistently with one's belief 

that the constant will not alter with time or position, 

so that one logon will suffice.

Remarks 1. and 2. apply fully under the conditions of clas-
sical logic. In that case an experimental sentence (state-
ment) is symbolized by (CX-, E) and conveys the information 

that the measurement of an observable & yields a result in
1 1a Borel set E € B(R ), where B(R ) denotes the Boolean al-

gebra of the sets on the real line. This sentence may, of 

course, be true or false, tertium non datur.

0.3 Fundamental uncertainties arising in the simultaneous 

measurement of the state of complex fuzzy systems

0.3,1 Observed inadequacies of representational measurement

The necessary and sufficient conditions for the existence 

of a measuremental procedure are known to be the properties 

of the empirical relations of the empirical relational sys-

tem considered; they are formally expressed in the form of 

theory-specific axioms. And all from these axioms logically 
deduced sentences (if proved true) are said to be the theo-

rems of the measurement theory in question. If H is the set 

of basic notions and N is the set of theory-specific axioms, 
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and both M and N variable, then M and N represent jointly 

the models for the set of axioms N. The model for the axioms 

of measurement belongs to the realm of the reals; it is also 

a model for the theory of measurement if it satisfies all 

theorems of the theory, see Kaaz (1977) and Tarski (1954). 

For these and other reasons measurement is conceptually a 

mathematical discipline. It is common practice to prove the 

consistency of a theory by construction of models; and since 

most theories based on the arithmetic of real or natural 

numbers are inconsistent, careful proving is imperative.

The field of application of representational measurement 

considered here covers the empirical relational systems 

^Q,Rn^ of engineering, physics and human sciences. The ele-

ments q are manifestations of the attribute Q and R com- n
prises the n relations involved. It is now important to take 

a closer look at the elements and relations of the empiri-

cal relational system.

The necessary and sufficient conditions for the existence 

of a quantity have been specified in Section 0.1.1; they 

involve two restrictive laws: that of the excluded middle 

tertium-non-datur) and that of distributivity• With regard 

to the former we have Tarski's assurance that axiomatized 

systems are the only systems in which the law of the exclu-

ded middle holds, where under systems we understand systems 
of measuremental sentences (q,E) ; q € Q, E € B(R ). The 

restriction in this case is the fact that the law of the 

excluded middle applies to systems having a finitistic cha-
racter; it fails in other systems, see Tarski (1935),Theorem 

17.
Distributivity, on the other hand, fails in case of infinite 

Boolean operations, even though infinite joins and infinite 
meets may exist, see Sikorski (1961).

Now, if q is affected by the law of the excluded middle, 

so is Q and any relations R in Q, the latter being subsets 

of the cartesian product QxQ. Distributivity enters the con-

sideration when - in addition to relations - the empirical 

relational system contains operations.
The problem (if it arises) is that of "infinity”; and it 

arises in reality when the empirical systems considered be-

come complex or even complex fuzzy, characterized by a non-
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Boolean logic (algebra) with underlying oo-dimensional 

(Banach) spaces. The result is a splitting of the Boolean 

algebra associated with simple systems in two incompatible 

Boolean subalgebras and the appearance of a fundamental un-

certainty relation, which terminates the independence of 

the precision and relevance of measurement. This in turn in-

hibits any simultaneous measurement and invalidates Varada- 
rajan's theorems. The condition reached invokes the follow-

ing Principle:

The question related to the simultaneity of precision 
and relevance (or significance) of measurement is a 

virtual question in complex fuzzy systems.

Such a measurement is no longer objective,much less deter-
minative; it introduces a subjective feature (the observer, 

experimenter: actually his powers of knowledge and will) 

into the process of measurement. This precludes also any 

pre-existence of measurands and observables.

Difficulties of this nature reveal - on the one extreme - 

the observation of the state and of the dynamics of galla- 

xies and - on the other extreme - the impossibility of tem-

perature measurement below 0.1K.

Ue know from measurement in complex engineering, especially 

in a state close to a disasterous condition, that precision 
and relevance characterizing the detail and the whole (in 

the sense of the "Part and the Uhole Doctrine”), respecti-

vely, become incompatible conjugates of measurement. This 
is substantiated by Thom's (topological) catastrophy theory, 

indicated by the vanishing of open sets (i.e. of continuity) 

with the consequence of instantaneous disaster.

Precision and relevance are theoretically maximal and inde-

pendent of one another in countable sets down to singletons, 

but not so in complex sets and systems. Problems of this 

kind are troubling psychologists and sociologists;their mea- 

surements involve, above all, the subject itself. Let us, 

therefore, review the relations causing anxiety in psycholo-

gy. It is common knowledge that ’’similarity” is the most 

fundamental psychological relation; it forms jointly with 

the notions of ’’equivalence” and ’’order” the fundamental 

triple of psychological relations. Similarity implies actu-

ally the existence of a small difference; its concept is 
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frequently introduced as a non-scrutinized, empirically un-

defined and explicative construct. Uncertainties arise with 

regard to dissimilarity, its complement.

Nou,empirical relations are being mapped into numerical re-

lations; ue call them also interpretations of the numerical 

relations. The interpretations of the equivalence relation 

are simply called equivalence relations, symbolized by "r^n. 

This relation gives rise to the formation of equivalence 

classes uhich - conceived subjectively - contain indistin-

guishable objects uith respect to the common feature. The 

empirical interpretations of the ueak order relation 

are said to be "dominance relations"; "preference" is a spe-

cial type of dominance relation. The remark on simplicity 

also applies to equivalence and dominance. The three classes 
of relations (equivalence, dominance and similarity)consti- 

tute the basic relations of an empirical psychology in the 

light of modeling by numerical systems. Compared to these, 

interpretations of "additivity" are of much smaller impor-

tance. Actually, interpretations of addition in psychology 

are used as joining operations. This hints strongly at a 

fuzzy behaviour favouring monotony in preference to additi-
vity as uell as a bias from algebra to topology. Debreu's 

(i960) paper on topological methods in utility theory is a 

clear indication in this direction.

As to the features themselves, they appear most frequently 

in multidimensional spreads. Multidimensional scaling has 

been discussed at length by Gleason (1969) and Holman (1978); 

the case of simultaneous measurement, conjoint measurement 
and their problems are dealt uith by Luce and Tukey (1964), 

Famagne (1976) and Crott(l970); and, uhile Krantz et al. 

(1971) and Fishburn (1970) report on barely noticeable dif-

ferences, Tverski (1969) and Coombs (1959) contribute to the 

inconsistency and intransitivity of preferences and Gigeren- 
ger (1981) (see in particular pp 82-104) elaborates on mo-

delling in psychology.

Consider the self-explanatory Figures 0-3, 0-4 and 0-5 

to follou.

47



-----syntact. dim.—--------------- syntactic dimension------ 

--------------------------- semantical dimension ---------------------------------- =»-

Fiq. 0-3: Measurement by model building

¥

I__________________________________________ ’

Fig. 0-4: Interaction of E and I o as the range 'P

I - individual, Eq - range of carriers and components 
of significance,

S - subject, S' - metasubject,

individual x object x feature - basic triad as inter-
active quantity of 
diagnosis,

object x feature - basic diad as interactive quantity 
of diagnosis.
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In the so-called "response approach* ’ of Torgensen, the varia-

bility of the reactions to excitations is allocated to the 

variations in the subjects as well as to the excitations. 

From all possible interactions only the response approach 

turns out to be a basic triad. In a triadic diagnosis, the 

object of measurement emerges as the judging individual in 
his judgement about himself (as object). Gigerenger (1981) 

realizes this by splitting E into E^ and Eg and 'P into 

and ¥g, i.e. producing a so-called divergence-artefact:

Fig. 0-5 Divergence-artefact

- metalevel

- divergence-artefact

- measurement level

Detail showing the splitting of E and T' in Fig. 0-3.

In a diadic diagnosis, the command of Sokrates:"Recognize 

yourself” would obviously be an impossible task. About the 

separation between subject and object performed in a diadic 

language the physicist and philosopher C.F. von Ueizsacker

( 1970) states:

"The objectivizing cognition is selfforgotten. 

In the act of cognition, the object will become 

known to me, but not simultaneously with the cog-

nizing subject, i.e. myself. The eye does not 

see itself, the reflector lies in the dark".

Thus, the cognizing part of oneself in "recognize yourself" 

remains, for all times, out side of cognition.

All of these results seem to touch the border of fundamen-

tal uncertainties; a representative confession to this ef-
fect is the following statement of Gigerenger (1981) p.

397. nyhe existence of incompatible I-scales (Coombs*sca -

les) concurs with the inter-individual 1-dimensionality, 

whenever the postulate of unimodal preference functions 

ceases to be valid".

The uncertainty relation due to Heisenberg states that the 

position and momentum of an atomic particle cannot be mea-

sured arbitrarily accurately. From the standpoint of clas-
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sical physics, this result is totally incomprehensible as 

long as the world is looked upon as a concrete scientific 

object with certain inherent qualities such as position 

and momentum of a particle, no matter whether we measure 

them or not. This implies the existence of hidden parame-

ters in nature, since the mathematically formulated laws 

of nature deal not with elementary particles, but with the 

human knowledge of them.
A good example of the classical point of view is Moh's 

scale of hardness with the dominance relation ”a scratches 
b" and extending from talcum with hardness (1) to diamond 

with hardness (10). A mineral less hard than topaz (8) and 

harder than quartz (7) obtains hardness value (7.5). The 

representation and uniqueness theorems for weak order can 
immediately be applied in Mohzs hardness measurement, but 

it dispenses completely with the human subject and leaves 

a mat arialistic world devoid of humanity behind. There can, 

therefore, be no uncertainty, since uncertainty is a truly 

human quality.
In what follows, we shall see that the existence of incom-
patible (conjugate) scales is postulational to the exis-

tence of fundamental uncertainty relations in a general 

measurement formalism covering complex fuzzy systems and 

making the quantum mechanical formalism appear plausible. 

0,3,2 The physics and the semantics o'f quantum measurement 

Relativity and quantum theories have revolutionized physics 

and they have added importance to observation and measure-

ment o
The necessity to leave the ground of classical notions was 

originally forced by the technical extension of the sphere 

of our experience. The technical notions did no longer fit 

the situation presented to us by nature. If, at one time, 

we see an electron as a particle describe its path and, at 

another time, we observe that it is wavelike reflected by 

a diffraction grating, then the language of classical phy-

sics obviously no longer suffices to explain both observa-

tions as a result of a unique event.

The fixing of the point at which it is possible to divorce 

classical notions, constitutes the kernel of a modern the-

ory. The centre of relativity theory is the realization 
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that the simultaneity of two evevnts at different locations 

is a problematic notion. This corresponds in quantum theory 

to the realization that it is meaningless to speak simulta-

neously of an exact position and an exact momentum of a mi-

croparticle. Indeed, the questions relating to the real si-

multaneity of two events and of that of position and momen-
tum of a particle turn out to be virtual questions (to which 

no answer exists), because the notions which we have to use 

are much too imprecise to do justice to the situation pre-

sented by nature. Of interest is, above all, the question, 

why such situations arise. The theory of relativity pronoun-

ces that there is no possibility of transmitting signals 

faster than the velocity of light, that it is also impossi-

ble to provide an experimental definition of an absolute 

time scale. This negative disclosure becomes, nevertheless, 

useful in view of the discovery that a simple and logical-

ly satisfactory order of experiences can be achieved by the 

assumption that it is in principle impossible to transmit 

signals faster than light and by the then possible postulate 

of the velocity of light. Only by this second step is it 
possible to prove the statement that the question of an ab-

solute time scale is a virtual question. The same goes for 

quantum mechanics, where the limitation of classical notions 

expressed by the uncertainty relations obtain usefulness by 

uncovering that these relations, upheld in principle, pro-

vide the necessary feedom for a harmonic and consistent or-

der of our experience. Only the available system of mathe-

matical axioms of wave- and quantum-mechanics gives us the 

right to consider the question of position and momentum va-

lues to be a virtual one.

These remarks may contribute to a better understanding of 

quantum measurement to be discussed now, and to the later 

treated questions of the fundamental measurement uncertain-

ty.
In the investigation of arbitrary events by means of statis-

tical methods, the measuring apparatus, serving both the 

fixing of statistical ensembles as well as the analysis of 

the distribution within these ensembles, must itself remain 

outside of the boundaries of these ensembles. In other words, 

the apparatus must lack the elements of randomness which are 

appropriate for the statistical ensembles investigated with 
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their help, notwithstanding the fact that every apparatus, 

just as every body, consists of atoms, molecules and simi-

lar microelemets performing motions, i.e. from the stand-

point of quantum mechanics, they belong to some quantum 

ensemble. At first sight, this is the source of a certain 

difficulty which quantum mechanics obviates in an elegant 

manner:
The measuring apparatus must be arranged so that

- in operation - only its classical properties 

are put to use, i.e. such properties for which 
Planck*s  constant plays no role whatsoever.

If we extend this statement to the investigation of com-

plex fuzzy systems, then the measuring apparatus should 

be blind to fuzziness and complex uncertainties. In fact, 

it should measure Boolean exactly.

An apparatus of this kind is called "classical or macro-

scopic apparatus”; its nature is such that it is free from 

all quantal, statistical and uncertainty features. An op-

tical aperture, a stationary screen or any spectroscope 

are examples of such classical apparatus; they are all 

objects of classical physics. Hence follows the conclusion 

that the characteristic feature in the determination of 

quantum mechanical ensembles is the complete set of clas-

sical corpuscular quantities.

Now, the statements of classical mechanics differ fundamen-

tally from those of quantum mechanics! In classical mecha-

nics the complete measurement consists of the measurement 

of coordinates and momenta of the particles. Since these 

are - at least in principle ?■ simultaneously measurable, 

we can say that in classical mechanics all measurements are 

complete. Contrary to this, in quantum mechanics there exist 

many different mutually incompatible measurements since the-

re exists a threshold to smallness in the microworld.

Measurement in quantum mechanics on spaces of fuzzy events 

The outcome of any realistic simultaneous measurement of n 

real stochastic quantities A^,...,An cannot be exhaustively 

described by n numbers (ctp ... ,oen ) except in those cases 

when the respective sets (spectra) S(A^), ..., G(An) of va-

lues in the set R of reals, which these variables can assume, 

are all finite or at most countably infinite discrete subsets 
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of IR.

Exhaustive description of the measurement outcome can be 

achieved by providing, in addition to the n-tuple = (ex , 

.. •, oc ), also a non-negative function (%), G R, with a 

maximum atoc. This funct ion 60(%) provides a measure for the 

relative certitude that .. .x <5( A ) and not cc is

the actual value of the extracted sample point.
Following Prugovecki (1975), ue shall refer to the pair 

oc= (oc,w) as a fuzzy sample point and to CO as the confidence 
A

function ofoc. But let us first revieu the basic semantics 

of classical and non-classical measurement.

Empirically based semantics of measurement, uhich also em-

bodies the features of quantum measurement, deals uith three 

main concepts: ’’the class of systems of the same kind”, ’’ap-

paratus” and ’’the measuring procedure”.

The equivalence relation, uhich establishes uhen tuo systems 

are of the same kind, can be given in terms of the macrosco-

pic classification of different sources of systems (e.g. hea-

ted uires generating electrons, radium as a source ofct-par- 
ticles, etc.) under the silent assumption that macroscopical-

ly identical materials submitted to macroscopically identical 

conditions produce the same kind of microscopic systems. An 

apparatus or instrument, stated earlier to be a macroscopic 

object, uhich - in conjunction uith a source of systems un-

der controlled macroscopic conditions - is referred to as 

’’measuring procedure”, enables us to obtain numerically des-

cribable data about the systems produced by the source. Ue 

classify these measuring procedures uith regard to the treat-

ment of these data in relation to a given theory for the sys-

tems under observation into ” preparatory” and "determinati-

ve” (in exact correspondence to apriori or structural and 
aposteriori or metrical in format ion,discussed in Section 0.2) 

aluays depending on uhether the accumulated information is 

to be embodied into the theory or compared to data extracted 

from the theory, respectively.

All conceivable instruments are grouped into distinct clas-

ses by means of empirically directly verifiable relation-

ships, each distinct equivalence class representing a "mea-

surable quantity” of the system under consideration. The ba-

sic method used in this empirical verification is referred 
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to as ’’calibration of instruments”. As the term suggests, 

any calibration procedure compares outcomes of two or more 

instruments which supposedly measure the same quantity a- 

gainst one another under experimentally controlled condi-

tions. Thus, the concept of a measurable quantity is direct-

ly empirically rooted, in contrast to the usage of the term 

’’observable of the system” which requires theoretical sup-

port, as shown below.

An ’’observable” of the system is defined only in the context 
of a theory for that system by assigning (by means of corres-

ponding rules) symbols from the formal framework of the the-

ory to some of the measurable quantities of the system. The 

mapping relating measurable quantities to observables is in 

general not bijective, because a new observable can always 

be constructed by formal means, such as taking functions of 

old observables to construct additional new observables. 

Furthermore, there might be measurable quantities of a sys-

tem which do not have a counterpart in a given theory of the 

system. On the other hand, in a given theory, distinct mea-

surable quantities corresponding to radically different de-

signs of their apparatus might be assigned to the same ob-

servable.
In the case of fundamental observables, such as spin, posi-

tion, momentum etc., it can be decided on apriori grounds 

what is the range of possible values on the real line R 
which these observables might assume. The closure (in the

4
Euclidean topology of R ) of the set of all values that an 
’’observable A” can assume, is the spectrum C(A) of that ob-

servable. Please note that - more often than not - we deno-

te the observable by a and the operator associated with it 

by A. Taking the closure is obviously a mathematical conve-

nience motivated by the desire to have the physical spec-

trum, defined in the above manner, coincide with the mathe-

matical spectrum, corresponding to the Hilbert space opera-

tor representing that observable in some particular quantum 

mechanical theory.For the sake of later discussions, let us 

divide the spectrum G(A) of an observable A into the ’’accu-

mulative part 6" (A)”, consisting of all accumulating points 

of the setG(A), and its complement, the "isolated point 
spectrum®. (A) = S(fl)/S (fl)". In case no elements of the

1 p 3
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point (or discrete) spect rum ( A) are accumulation points 

of <5(A), then this classification obviously coincides with 

the mathematical classification: The accumulative spectrum 

coincides with the continuous spectrum 6 (A) and the point 
c

spectrum coincides with the isolated point spectrum.

Ue say that an observable ’’has a particular value 1G (□( A) ” 

and we talk of '’measuring” some such value even when X is 
in the accumulative part (5 (A) of the spectrum. This form a
of speach obviously cannot be taken literally when (5 (A) =a
e (a ) since most real numbers are not even computable in c
the idealized Turing-sense, not to mention '’measurable”. 

When an experimentalist states that an observable with 
accumulative spectrum (such as position, momentum etc.) 

’’has” a certain value, say X = 1.12 of the chosen unit of 

measurement, without specifying the confidence margins, 
then he definitely does not mean that A = 1.1200... Usually 

one can deduce from the context the sensitivity of the em-

ployed instrument and, therefore, the margin of confidence 

Algiving rise to the span + possible values

of the measured quantity. Otherwise it has to be surmised 

that one is dealing with the convention, in which AX is 

equal to one unit in the decimal place in the figure of A 
(e.g. A = 1.12 ± 0.01).

The notion ’’fuzzy sample point”, characterized by a confi-

dence function CO, has already been introduced. Let us now 

consider any measurement of an observable A as an informa-

tion gathering process which eliminates a set S of values 

as possible values of the measured quantity at time t of the 

measurement. Hence, a measurement is regarded as a procedure 

which increases our information about the values of A at t 

by restricting the possible values of A to the range D = 

<o (A)-S. If D contains no points in the accumulative spec-

trum of A, i.e. D C\<5 (A) = 0, then we can expect to be able 

to construct instruments of such precision that D can be 

reduced to a singleton. However, in the presence of accumu-

lative spectra, the attainment of this perfect limit of pre-

cision is seldom feasible, and - in general - more numbers 

than one must be employed to give a complete description of 

the information resulting from a single measurement. The 

characteristic function (X) of the set D might seem a sui-
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table theoretical tool describing this information. Of 

course, 0)^(1) = 1 when Xg  D and6J^(X) = 0 when X i. D could 

be taken to represent our confidence that the experiment 

excludes the possibility of A hawing values outside D at 

time t. For macroscopic measurements in which we are not 

concerned with the possibility of attaining information on 

an arbtrarily fine scale and expressing all the nuances of 

this information, this kind of description is quite harm-

less, The situation changes drastically in the microscopic 

look at the problem; indeed, we wonder whether we can ever 

state with absolute certainty that a given measurement indi-

cates that some set SC6(A) of values of a given microobser-

vable A cannot occur. However, neither the measurement of 

position, nor any other measurement leads to an acceptable 

description of the outcome of a measurement, so we have to 

settle for a common-sense solution in which we specify a 

particular microscopic range D ^G(A) of values as the out-

come of the measurement without attaching a 100% confidence 

level to this statement. To avoid arbitrariness of a parti-

cular choice of D, we may describe the outcome of our mea-
surement by means of a f unct ion ('X) assuming values in the 

unit interval with the largest value attached to that point 

ju G <o(A) about which we feel most confident as representing 
the value of A at time t. The smaller cw (X) at X £G(A), the

A*
lower the confidence of "having measured that value”. Hence, 

we end up by describing the information resulting from a sin-

gle measurement of A at time t by a ’’fuzzy set with the cha-

racteristic f unct ion (X) ". Then 60(X) is called the confi-

dence function corresponding to the performed measurement. 

The operational meaning of this subjective procedure of des-

cribing the information extracted by means of a single mea-

surement can be found in the "Reproducibility Principle” — 

see Prugovecki (1975). One starts by assigning to every pos- 

sible outcome ju G R of a measurement performed with a giv-

en apparatus ot a fuzzy set

Let us call this procedure the calibration of the given in-

strument cc. The correctness of such calibration procedure 

can be operationally checked by requiring consistency in 

the calibrations of all instruments that are supposed to 

measure the same quantity. In short: we compare the outcomes
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of preparatory and determinative measurements performed 

on the same system by a pair (cx,G) of instruments and re-

quire concurrence in the frequency sense, i.e. for a fixed 
outcome &/°^(X) ofo>, the frequency (X) of the maxima of 

outcomes or 7(X) of G occurring at X should be approximate-

ly proportional to (X) if G is much more accurate than

oc, and conversely.

While the conventional frequency interpretation of the con-

cept of probability requires sharply defined sample points, 

the existence of such sample points is not presupposed in 
the above procedure. Hence, it is more correct to viewer (X) 

as a subjective measure of reliability of an apparatus which 

can be aposteriori tested for consistency with already avail-

able apparatus by means of the above procedure which itself 

involves fuzzy sample points.

These considerations can be at once generalized to measure-

ments involving several quantities or observables A^,...,An, 

preparing or determining their values on a given system at 

the respective instants t ^2—***^^n*  ^a^ura^y> the ro-
les of preparatory and determinative measurements can be re-

versed in this scheme.

Definition 0.11

We define a fuzzy event as the family

A = {<x:£= (»,%), CJ^d) CL1 (A)}, (0.20)

where Bn denotes the family of Borel ‘sets in Rn and <Rn,Bn,P^ 

n Ais the probability space, with AC Bn and A is determined by 

onAxRn. a

I f £,n is the family of all fuzzy events, P(A) , A £ 3°, is 

the probability measure on fuzzy events, then ^Rn,Sn,P> is 

a fuzzy probability space and E ’ (A) is the spectral mea-

sure on fuzzy events for generalized position Q and genera-

lized momentum P.
----------o-------------

The outcomes of any single measurement of the observables 

A^,...,An of a given system provides information described 

by the respective confidence f unct ion s , . . ., . 60^^ may

be thought of as being characteristic functions of respec-

tive fuzzy set s Ap . . . ,An . Hence, the information can just 
as well be described by the fuzzy set Aj x ... x/^ in Rn 
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with the charcteristic function

c^Cl!...........%n) ...OA/%n)- (0.21)

Ue can now regard such measurements performed on ensembles 

of systems of the same kind subjected to macroscopically 

identical preparatory procedures as the stochastic process. 

For this we require a concept of probability measure which 

applies to sample points just as to fuzzy sets. Thus, given 

a family JX of fuzzy sample points representing all concei-

vable outcomes of all conceivable measurements of A.,...,A i7 7 n
at t^^...^tn, we have to construct a family E of events 

Al Aand a probability measure P '»•••» n(E) on the family S. u q , .. ., tn

This construction must generalize the conventional case 

when the sample points are sharp singletons, i.e. when they 
are elements of some subset in Rn.

A A
Relying on Definition 0.11, two fuzzy events E^ and E^, 

(E^,E2 being Borel sets in Rn) are called compatible if 

= C^J^2\X) for all p EE^AE^. For compatible 

events, intersections E^HE^ and unions E,|UE2 may be de-

fined as fuzzy events having the characteristic functions 
<X1)(A) =wj2)(i) for ju € E^ E2 >

7(0.22) 
and = 0/ (X) for p G E^ E2, J

respect ively.
The family S of fuzzy events will be required to be a 

G-semifield in the sense of being closed under unions and 

intersections for any collection of compatible fuzzy events. 

On 60^(3.) we impose the condition that it be Lebesgue-intgra- 
ble in jj  £ E for each fixed E Rn, characterizing any fuzzy

A
event E. Ue require this stipulation in order to deal with 
the case of probability measures P(E) in Borel sets of Rn, 

given by the formula a nr
P(E) = I dp J O (X) dP(X)^oo. (0.23) 

E R '
.A

Clearly, P(E) isG-additive in the sense that 
...) = PCEp + P(E2) + ...

for disjoint fuzzy events. This is Prugovecki's general de-
finition of probability measure on a G-semifield S of fuzzy 

events as a non-negative function on S which vanishes on 

the void set and which is G-additive as implied above. In 

58



the present formulation, the relationship betueen fuzzy 

events and fuzzy sample points is analogous to that between 

conventional sharp events and sharp sample points. There 

are, however, some reservations with regard to the additi-

vity of probability measures on fuzzy events; this state-

ment will be substantiated later. Let us note here the very 

important statement:

Sample points are outcomes of measurements in terms 

of fuzzy sets satisfying quantum mechanical uncer-

tainty relations.

It is known that position measurement procedures of a micro-

system have the common feature of not yielding sharply loca-

lized results; this applies also to other simple observables. 

Here lies the natural domain of application for the concept 

of fuzzy set, first observed and studied by Prugovecki.

The basic postulate adopted here is that measurements of ob-

servables in quantum mechanics yield sample points which are 

normalized fuzzy sets. A fuzzy set A is said to be normalized 

if supO^(x) = 1.

Defin it ion 0.12
If is the normalized fuzzy set prepared (determined) by a 

measurement of an observable ex, then, for any Borel set A in 
A 

(0.24)

is the probability that a very precise determinative 
(preparatory) measurement immediately following (preceding) 

the measurement of will yield a result inA.

----------o------------

Note that Definition 0.12 presupposes the possibility of 

attaining arbitrarily precise measurements even in the con-

tinuous part of the spectrum of the observables,i.e. for a 

given At ue assume the possibility of measuring fuzzy sets 

not only contained in A, but of much less spread-out than 

A. Hence, it seems natural to assume
Got(zs)=|j |<*>a(x)  - a}a|2dxj1^2, ciA= J

(0.25) 

as a measure of the spread of normalized fuzzy setA. 
Moreover, for a measurement which yields A, we take CSqJA) 

to represent the precision of that measurement and (^(A) 

to reflect its error.
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De fin it ion 0.13

A measurement prepares (determines) the normalized fuzzy 

set A xAj in R of values of (oc,0) iff

P*(A) = |<4aX.1fA°^(x)d>,*(x)’ (0.26)

pQ(A) = ||wA0||01jzUAcl(x)>VJQ(x).
are the probabilities for obtaining a result in A as an 
outcome of a very precise determinative (preparatory) mea-

surement of oc and 0, respectively, if that measurement im-
mediately follows (precedes) the measurement ofA^xA^.

----------□-------------

This definition discloses that we test a specific proposal 

of a fuzzy set which is supposedly the outcome of a simul-

taneous measurement of two observables by checking the 

agreement of that proposal with the outcome of measurements 

involving each one of the two observables separately. Thus,

although the possibility is admitted that no arbitrarily 
precise simultaneous measurements can be made (in the sense 

that no measurement could yield A^xAg for (<x,0) with arbi-

trarily small and (^(Aq )), we still have an opera-

tional procedure for the computation ofox A (x,y) = 

= CJa (x )l Ca^ (y) with an arbitrary degree of accuracy. This 

possibility rests alone on the assumption that arbitrarily 

accurate measurements of single observables are feasible.

If the outcome of a measurement is a .fuzzy set, that set 

will be called a fuzzy event. The probability of occurrence 

of an event can now be extended to events which are fuzzy. 

In order to exclude meaningless information, the following 

two definitions are put forward.

Definition 0.14-
Assuming A and A to be normalized fuzzy sets in Rn, we 

consider Aq as contained in Afor some 9 G iff

9 = sup{??: Ma (x)<Oa(x ), for  a11 x

In that case we put SA^^A-Me say also that AQ is non- 

trivially contained in A iff 9>0.

9 is obviously the largest real number, for which the fuzzy 

set QAq with the membership function BCOa is contained inA. 

Definit ion 0.15

Assuming A^,... ,An to be a family of normalized elementary 
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fuzzy events in Rn and A to be a fuzzy set in Rn such that 

each event A, is 9. -contained in A and (l-9.)-contained in
K K K

its complementAz , then

^(zs) = (1/N)K 9k
k=1 k

is called the frequency of occurrence in A of the elementa-

ry events of the considered family.
----------o-------------

This definition yields an operational frequency interpreta-
tion for the probability P (A) of occurrence in A of fuzzy 

sample points from a certain given population of fuzzy sets 

uhich satisfy the conditions postulated io Definitions 0.14 
and 0.15; namely: P (A) 9(A). From V(A ) = 1 - 9(A) ue de-

duce P(A') = 1 - P(A).
Uhen A is an ordinary set in Rn and A^,... ,An are singletons, 

then 9(A) becomes the ordinary frequency occurrence encounte-

red in probability theory; this coincides uith the interpre-
tation ofC0^(x) as the "degree of membership of x in A” 

since uith At< = obviously 9k = w a(x j<), and {x|<}

( 1-8)-contained in Az . If A,Ak happen to be intervals 

of finite size, the conditions of Definition 0.15 are satis-
fied iff eachAk is either a subset of A or is disjoint from 

A. Thus, ifA-j,...,-^ are not singletons and there existA^ 

uhich are not subsets of A, but for uhich A^A A 0, ue 

face the usual difficulty of not knouing hou to count such 

a A, in computing frequencies. Allouirlg A to be a fuzzy set
K

uith no sharply delineated boundaries, ue can obviate this 

difficulty, since then ue can have aA< uith error size 

<o(Ak) 0 uhich also satisfies the conditions of Definition 

0.15. There is an abundance of examples in uhich, for a gi-

ven C0^(x), funct ions (x) are chosen, for uhich 8k = 

= maxO^Cd^ (x) and ubose spread is small by comparison uith 

the size of the region uhere 01.

Let us nou study the main features of the concept of proba-

bility for fuzzy events introduced above, that are norma- 
2lized fuzzy sets^xAg in R resulting from the simultane-

ous measurement of tuo observables (ex, 6). Also, let us as-

sume that ex and G are incompatible in the sense that no 

elementary events can occur uhich do not satisfy the rela-

tion Sh/2 (0.27)
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(UA,) =
k=1 K

X.P(Akk=1 K

for some positive constant h such as the Planck constant. 

Recall, above all, that probability measures are defined 
in Boolean (S-algebras of sets involving a family Bn of all 

Borel sets in Rn. Such a Boolean G-algebra Jl^ has the pro-

perties: if A € then its complement A*  is in ,0^-,
oo 

and if Z^,/^,... e then A^ e for any
k- 1 

countable family , ... of sets from A^-.

The cardinal question arises: Can we presume now the same 
structure for the family £ of fuzzy sets A on the space Rn, 

on which we intend to define a probability measure P** ’ (A) 

for the aforementioned type of fuzzy events? 
Since Definition 0,15 lends support to the formula P(A) = 

1 - P(A), we can maintain the property: if A e £ , then 

Az ^ £. A function P(A) on £ is a probability measure on 
fuzzy events in Rn iff it assumes values in Eo.O and has 

the following properties:
(a) P(Rn) = 1; (b) P(A') = 1 - P(A) for allAeg, and

OO
(c) ifA1,A2, ... € S are disjoint, then P

), whenever k>A^ also belongs to<£.
k K

It remains to show whether any probability measures in fuz-

zy sets corresponding to measurements of incompatible obser-

vables can be extracted from the formalism of quantum me-

chanics; that such an extraction cannjot occur simultane-

ously is obious.

Criticism on Pruqoveckizs definition of probability on fuz-

zy events

The introduction of fuzzy set notions and corresponding 

techniques to quantum mechanics is exclusively the merit 

of E. Prugovecki; and they fit well in the carefully cho-

sen situations. But we feel not at all at ease with the 

way, additivity, classical measure and Lebesgue integra-

tion have been forced on fuzzy sets and fuzzy events. 

Ue are aware of the fact that the absence of additivity 

in almost all human sciences, where measurement is con-

cerned, is a real blessing and, most likely, the ’’will” of 

nature. It is here, where we should swiftly make better 

use of fuzzy methodology, and remember that it is monoto-

nicity which replaces additivity in fuzzy set theory. This 
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observation is substantiated mainly by the work of Sugeno 

(1974) on fuzzy measure and fuzzy integrals; and probabili-

ty is based on measure.

Fuzzy sets have been introduced by Zadeh (1965) to describe 

those cases when and where there are no precise criteria of 
membership in ordinary sets. A fuzzy set A in Rn is given 

uniquely by means of a membership function COa ( x)> x £ Rn, 

which takes values in the unit interval I and represents 

the "grade of membership". Because A and cd^are uniquely re-

lated, some authors prefer to call the map 60^ a fuzzy set. 

The properties of fuzzy sets are discussed in Appendix 2; 

the notions of"fuzzy sample point" and "fuzzy event" have 

been adequately defined and discussed in this subsection; 

so that we merely need define "fuzzy measure" and "fuzzy 

integral",

Let (X,B,P) be the ordinary probability space, with B a Bo-

rel field of X and P the probability measure
P: B—*-(p,  Tj ; (0.28)

a fuzzy subset of X is conveniently described by its mem-

bership function
X—*-[0,1j,  being a fuzzy set. (0.29)

(0.28) is a set-function, (0.29) is an ordinary function; 

hence, P and act on different levels. When X is a finite 

set, P({x» and may be compared optically; yet,
ZE P(£x}) = 1 while ZEZ Wa(x ) 1.
x€X x€X

1However, in an infinite case, say X = R ,^a difficulty ari-
ses; for, if (a,b]CR1, then P((a,bJ) = J ^(x)dx, ^(x) be-

ing the probability density, not probability itself.
Thus follows 0 = P(£x}) (d(x ), for all x £ R , even when

<d(x ) / 0, while 00^(x) Z 0. It may still seem that a probabi-
lity density (j(x) andW^(x) are comparable, but (j(x) has no 

practical meaning except for the fact that
^(x) = dP((-oo,x )/dx.

There is only one point of contact between probabilities and 

fuzzy sets, and this point is the concept of fuzzy event.

The mathematical confrontations of importance are: 

probability logic vs fuzzy logic, and 

probability measure vs fuzzy measure.

Randomness of strings is nowadays being defined in terms of 

Turing machines, and from the measure-theoretical point of 
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view we consider measures as scales of randomness.

Fuzzy measures are generally considered as subjective sca-
les for fuzziness (Prugovecki does so in quantum mechanics). 

They are set-functions with monotonicity, but do not neces-

sarily possess additivity.

Fuzzy integrals are functionals defined by using fuzzy mea-

sures which correspond to probability expectations.

Let X be an arbitrary set, B a Borel field of X and x C X a 

representative element.

Defin it ion 0.16

A set-function g, defined on B and having the properties:
(i) g(0) = 0, g(X) = 1; 0,X £ B, g: B—*<0,£|,

(ii) If A,C G 3 and AcC, then g(A) < g(C),

(iii) If Fn € B for 1<n-<oo and a sequence is monotone

(in the sense of inclusion), then lim g(F ) = g(limFn),
n oo n—>*oo

is called a fuzzy measure.
The triple (X,B,g) is called a fuzzy measure space and g is 

the measure of the measure space (X,B).

Definition 0.17
Let X —>*[p,l],  ACX, be a B-measurable function. A fuz-

zy integral over A G B of a function CJ^x) with respect to 

a fuzzy measure g is defined by

COA(x)og(.) = suploc A g(AHFot)J, I = [o, l] ,
OL€l

where F^ - £x: 6Jy\( x)
----------o-------------

Our recommendations relating to Prugovecki's publications 

on quantum measurement under fuzzy conditions amount to 

little more than the incorporation of Definitions 0.16 and 

0.17 into his analyses.

0.3.3 Heasuremental uncertainty in complex fuzzy systems

So far we have encountered uncertainties, characterized by 

uncertainty relations in:

(1) Engineering (applied physics) of the type

Aq • Af>K (structural uncertainty),

Ay • Aq = (metrical uncertainty),

both in the ’'environment” of Euclidean spaces and Boole-
an logic underlying finite systems;

(2) Quantum physics of the type
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A x • AP > h

in the"environment "of oo -dimensional separable Hilbert 

spaces and Birkhoff-v.Neumann logics underlying com-

plex microsystems.

Both (1) and (2) are obtained on the assumption of perfect 

measuremental behaviour. Ue now learn that measurement it-

self exhibits its own uncertainty at a higher level than 

the first two sciences, namely:

(3) Measuremental uncertainty of a similar type as the first 

two in the ’’environment" of co-dimensional non-reflexive 

Banach spaces and Brouwerian lattice logic (or Tarski's 

calculus of systems) underlying complex fuzzy macrosys- 

t ems •

Research in this direction has been advocated by Profes-

sor Pieter Eykhoff, Technical University - Eindhoven.

In order to deal intelligibly with the central concept of 

complexity, we require some basic notions on the power of 

sets or their cardinality. The notion of fuzziness should 

be sufficiently clear by now.

Definition 0.18

Two sets, A and B, are said to be of equal count, denoted 

by A~B, if there is a one-one function f with domain A and 

range B; f is then said to establish equal count of A and B. 

Ue may equivalently say that the sets A and B are of equal 

power or that they have the same cardinal number.
----------□-------------

Equal count is subject to the laws of equivalence, commuta-

tivity, associativity and potentiation of the cartesian pro-

duct. Ue obtain then

Theorem 0,10

For sets A and B to be of equal count, it is necessary and 
sufficient that the relational systems ^A; AxA> , ^3; BxB> 

be isomorphic. And since A is the cardinal number of A, we 

have A~B and A = B as equivalent statements.

Definition 0.19
A is called a countable (denumerable) set if it is finite 

or of equal count with the set of natural numbers N; i.e. 

N=a=JT0. _____ 0
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The sets of integers, rational numbers, algebraic numbers 

are countable, those of irrational numbers, real numbers 

and the Cantor set are overcount able; they are of the power 

of continuum C.
The power setjB(A) of set A is the family of all subsets of 

A, i.e. (X € /2(A)) = (XCA). It is an extremely rich set, 

too rich for practical applications; in topology, the fami- 

ly 2 of all closed subsets of A is used; it is a topologi-

cal hyperspace when equipped with Vietoris or exponential 

topology•

Theorem 0.11

No two of the following sets are of equal count:

A, /1(A), /2(/?(A)), ....

For, if A has power fU, jS(A) has power 2^and A)) power

2 • From this reasoning we deduce n-cCt-and WK 2 .
---------0-----------

In Definition 0.19, the continuum hypothesis of Cantor: 
ct=W0 , has been assumed. A more general continuum hypothe-

sis states:
for every

This is equivalent to saying that there is no number bet-
ween -wv and 2^, where M is an arbitrary cardinal number. 

Definition 0.20
According to Kuratowski(1977), simple sets are characterized 

by power up to Q, while complex sets have powers of at least 
2&. Ue call those systems complex whose some or all sets 

are complex. The separation Ctbetween simple sets and 
complex sets (systems) is a sharp one.

----------0-------------

Given the relations: a G {a} = we can say that the

singleton {a} contains the element a and coincides with the 
power set^(£a})» From the measurement point of view, the 

precision and the relevance of every singleton are identi-

cal; it is a property shared by no other set except in the 

complex condition; there it is the negligible set. 
Incompatibility Principle (due to Zadeh (1973))

The essence of this principle is that, as the complexity of 

a system increases, our ability to make precise and yet sig-

nificant statements about its behaviour diminishes until a 
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threshold is reached, beyond which precision and signifi-
cance (or relevance) become almost exclusive characteris-

tics.
----------□-------------

This phenomenon ue uould characterize uith the uords: Pre-

cision and significance become incompatible properties in 
the sense of relation (0.27) belonging to quantum mechanics.

Transitions of systems between simplicity and complexity 

From the aforesaid, any system may be in one of two basic 

phases:
(i) in the simple (countable) phase, where it is 

mostly finite and Boolean-conform, or
(ii) in the complex phase, where it is oo-dimensio-

nal, non-Boolean and contaminated by a funda-

mental uncertainty.

The transition from one phase to the other is discontinuous 

and characterized by a step (jump).

Fundamental Assumptions

(1) It is postulated that a system Y — Y found in the com-
oo

plex phase must have developed to its present state from 
a prototype Xn in the simple (finite) phase.

(2) If (1) is true, then it should be possible somehow to
A/

reduce the system Y = Y^ to an equivalent system X - 
in the simple (finite) phase without loss of information 

by equalization of the transition steps.
----------o-------------

It is clear that in stepping down from complexity to simpli-

city, the uncertainty and its relation must vanish. This 

idea yields the following

Theorem 0.12

Under the Fundamental Assumptions (1) and (2), the step-up 
in power a<2a is exactly annihilated by the step-down in 

power to Y/H, representing quotient class formation of Y 

modulo uncertainty relation,indicated by H.

The step-up is viewed as a generator of complexity coupled 

with uncertainty, and the step-down as a sink of uncertainty 

due to the reduced power.

In this fashion every complex system can be reduced, without 

loss of information, to a finite Boolean system X, measura-

ble in the classical representational way.
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Details of this reasoning are depicted in the figure below; 

fuzziness would enhance the uncertainty effect.

Transition of an empirical relational 

syst em.

0.3.3.1 Statement of the problem and steps_towards its 

solution

For simple systems, i.e. systems obeying the axioms of Boo-

lean algebra, single-quantity as well as multi-quantity 

measurements present no difficulty, because the quantities 

involved are independent, both their precision and signifi-

cance (or relevance) may be practically arbitrarily increa-

sed, and a joint distribution for simultaneous measurement 

(which is certainly necessary when the state of a closed 

empirical system under observation is required to be known 
at all times - as in catastrophy engineering) always exists. 

The representational theory, in the stated logical domain, 

is correct, exhaustive, and works well in its stringent set-

ting, which represents - at the same time - its applicatio- 

nal limitation.
The changes, which the scale S = 4.Q,N, 0 of measurement un-
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dergoes when the empirical relational system Q turns complex 

fuzzy, are of a fundamental kind, and such that no homomor-

phic transformation mapping Q into N exists. In what follows, 

any reference will always be made to Fig. 0-6.

First of all, the space underlying complex systems is oo- 

dimensional; for reasons of structure and versatility in 

functional analysis, we choose this space to be an oo-dimen-

sional non-reflexive Banach space Y. The immediate conse-

quence of this is that the infinite distributive law fails, 
see Sikorski (1961); for, while the infinite joins and meets 

may exist, the distributive formula (4.14) in Chapter 4 does 

not hold.

Furthermore, the law of the excluded middle also fails at 

infinity and leads to the splitting of the original Boolean 

algebra for simple systems into two Boolean subalgebras 

which are no longer parts of the original Boolean algebra, 

but of a Brouwerian lattice with unity.

Let Lq , L^, L£, L be the original Boolean algebra, the two 

Boolean subalgebras and the Brouwer lattice, respectively; 
then L = L^U L2Ll(a gap). The function of a gap will actu-

ally play a so-called negligible set, introduced simultane-

ously with a pseudo-difference in L which replaces the set-

difference in Lq , Because of the expression for L, we get 

a non-complementat ion condition:

/ 0,

in fact: D H,

H being a negligible set

(0.30)

This expresses the fact that L,| and L? are two incompatible 

Boolean subalgebras of Lq . Thus, the principle of incompati-
bility (due to Zadeh) is satisfied in complex systems. Ue 

magnify this incompatibility (or uncertainty) by fuzziness; 

for, if OO is a fuzzy map, then GJ. fs CO . 0. Here and in
L 1 L «

(0.30) L^, L2 and co are treated as sets, which is obviously 

permissible.
Let us note that normed linear spaces and non-reflexive Ba-

nach spaces are the only important spaces containing negli-

gible sets. Moreover, the non-complementat ion condition cor-

responds to the non-commutation condition in quantum mecha-

nics; there will also be formally similar uncertainty rela-

tions in complex fuzzy systems and in quantum mechanics, but 
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the former relating to precision and significance of mea-

surement, the latter to position and momentum of material 

points in physics. The difference between the two cases is 

greatest in regard to the thresholds of uncertainty: it is 
a set (a mathematical notion) in case of measurement and a 

universal (physical) constant in quantum physics.

In the search to turn an empirical complex fuzzy system in-

to a measurable one, with little or no loss of information, 

one is guided by the belief that a complex system in phase 

coming a discontinuous barrier. Hence, there must be an iti- 

nery back to simplicity across a reverse barrier, as indica-

ted in Fig. 0-6.

First, we determine the threshold of uncertainty for the 

complex fuzzy system. This is obtained from topological con-

siderations of the oo-dimensional Banach space Y. Since Y is 

non-reflexive, there is a negligible set H with respect to 

the homeomorphism of Y into itself; and, because Y is consi-

dered to be complex fuzzy, H will be a ’’thick” negligible set 

filling the ’’thick” boundary of the sets in Y and represen-

ting the uncertainty threshold there. Being negligible, H 

has the same measure of ’’virtualness” as h has for energy-

time quantities at and below that of the Planck constant. 

Next, we note that the transition from to Y via the step

steps-up the power of sets, thereby creating uncer-

tainty; so from the reverse step from Y to X we demand an 

equal power step-down and the capability of leaving all un-

certainty behind. The only operation fulfilling both requi-
rements is the formation of a quotient space Y/H, H being a 

subspace of Y, and of a quotient algebra L/l^ to the Brou- 

werian lattice L modulo prime ideal 1^ based on H. L/l^ is, 

in fact, a Boolean algebra with zero and unity; its classes, 

treated as singletons, are obviously disjoint, and the order 

relation is that of inclusion

This Boolean algebra comprises a corresponding empirical re-

lational system which may be mapped into the numerical rela-

tional system by a homomorphism (f . If the empirical relatio- 
system consists of two components: one originally complex 

component, the other originally finite component, then the 

union of both may be accommodated in the classical formula 
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for the meaningfulness.

Let us add that the topological equivalent of a Boolean al-

gebra is a Stone space; therefore, ue may represent a scale 

topologically as consisting of tuo Stone spaces (empirical 

and numerical, respectively) and a monotone homeomorphism 

mapping the former into the latter. Thus, the space of mea-
surement is a Stone space (uith selfreproductive sets). 

The classical representational theory of measurement needs 

no improvement except that of uider applicability to systems 

of greater complexity envisaged in the future. We discover 

here an extension comparable to that from classical mecha-

nics to quantum mechanics; in both cases complexity provides 

the motivation.

0.3.3.2 Substantiation of the uncertainty reasonin£ in mea-

surement

The necessary and sufficient conditions for the existence 

of ordinary as uell as fundamental uncertainties are techni-

cal, physical or mathematical bounds in the theories conside-

red .

The discovery of the finiteness and constancy of the velocity 
of light (c) reduced the question of the simultaneity of tuo 

different events to a virtual question in special relativity, 
theory. The existence of Planck*s  constant (h) reduces the 

question of the simultaneity of a definite position and of a 

definite momentum of an atomic particle to a virtual ques-

tion in quantum mechanics (to uhich there is no answer).

In tune uith these fundamental uncertainty statements I nou 

put foruard a fundamental uncertainty result in generalized 

measurement.

Fundamental Proposition

The bound in complex fuzzy systems is provided by a so-called 

negligible set (H) in an underlying oo-dimensional normed li-

near or non-reflexive Banach space Y.

Given a nonvoid negligible set H in space Y, any question 

concerning the simultaneous definiteness of both the preci-

sion and the relevance of measurement is a vitual question. 

In this case the conjugate notions of precision and rele-

vance are incompatible quantities of measurement.

Plausibility_proof

A negligible set H exists iff h: Y-H----- >Y is a homeomorphism, 
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in which case ue simply write h: Y-H= Y.

Now, every Banach space is complete in the Cauchy sense. But 

completeness is not a topological property, i.e. if Y is 

complete and h a homeomorphism, then h(Y) need not be com-

plete. For h(Y) to be complete, we need topological comple-

teness. The defect in topological completeness amounts exact-

ly to the negligible set H, and this has an influence on the 

fixed point behaviour of mappings in Y, as will be seen in 

Chapter 2.

H is, of course, a constant set for a given space Y; it may 

be enhanced (magnified) by fuzzy action, and it vanishes 

when Y is reduced to a separable Banach space. At this level 

the law of the excluded middle and the law of the distribu- 

tivity regain their validity and we have Boolean conditions 

again.

Since h in quantum mechanics and c in special relativity are 

physical bounds, the convergences: h—and c —>oo are no 

more than mathematical manipulations. H, on the contrary, is 

a mathematical bound in the generalized theory of measure-

ment; and from its vanishing in a Banach space, which con-

tains a separable Hilbert space, we conclude that quantum 

mechanics can have no other than a physical bound and that 

generalized measurement sets its bound at a higher level 

than either physics or engineering. This stresses the impor-

tance of measurement.
If we take Norbert Wiener (1920) literally, then mathematics 

is measurement (with exceptions), but not conversely. A con-

firmation of this standpoint will be found in the Fundamenta 

Mathematica of A.N. Whitehead and B. Russell (Vol.III).

It speaks for the generality of measurement as science that 

it stands in its own right and is no part of any applied dis-

cipline. The uncertainty relation obtained for measurement 

could not have been found in any other way; and no matter how 

we argue, there is no way of discussing it away. Its rank is 

- in my opinion - very high.

It is here the proper place to comment on a speculation of 

C.F. v.Weizsacker (1970), that it might prove useful to dis-

card the law of the excluded middle in quantum mechanics. We 

must deny this hope on the basis of our findings, since the 

law of the excluded middle is valid in the separable Hilbert 
space.
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0,4 Presentation of the analysis by chapters

Chapter 1 is devoted to the shift from Boolean logic to in- 

tuitionistic logic as a consequence of the problem of ’’in-

finity’' and the resulting invalidity of the law of distribu- 

tivity and the law of the excluded middle. The analysis de-

monstrates the splitting of the Boolean algebra of the sim-

ple system into two incompatible Boolean subalgebras, revea-

ling the validity of the principle of incompatibility due to 
Zadeh (1973) and the fuzziness of the boundary of the sets 

involved.

Chapter 2 is wholly devoted to the existence and the meaning 

of negligible sets in normed linear and certain Banach spa-

ces.

Chapter 3 unites the results of Chapters 1 and 2 and offers 

a definition of the non-complementarity condition. This is 

complemented by a derivation of the uncertainty relation 

for complex fuzzy systems. Both the non-complementat ion con-

dition and the uncertainty relation for complex fuzzy sys-
tems are compared to the non-commutativity and Heisenberg's 

uncertainty relation of quantum mechanics, respectively, in 

Chapter 4, and discussed on form and content.

In Chapter 5 additional results of classical measurement 

theory are derived from topological and measure-theoretic 

principles, i.e. complementary to the Introduction and more 

in the topological spirit of the thesis.

Chapter 6 is the most important part of the thesis. It sett-

les the question of the logical foundation of complex fuzzy 

systems and provides a natural imbedding for the measuremen-

tal uncertainty relation. The calculus of systems making all 

this possible, facilitates in a high degree also the con-
struction of measurement procedures (scales).

Chapter 7 is devoted to the properties of the Stone space 

and to the selfreproductivity of its sets, which make the 

Stone space unique for the measurement of mixed systems. 

The novelty of this work, the new ideas and the main results 

obtained in the course of this study are summarized and com-

plemented in the Conclusions, Chapter 8.

Appendices on the calculus of attributes, on fuzzy reasoning 

and on quantum mechanics as well as a list of References are 

provided at the end for the convenience of interested readers.
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CHAPTER 1: TRANSITION FROM 300LEAN ALGEBRA TO 3R0UWERIAN

ALGE3RA

It will be shown in this chapter that the complexification 

of an empirical system is accompanied by a transition from 

the Boolean algebra associated with simple systems to a 

non-Boolean algebra characterizing complex non-classical 

systems. Actually, the Boolean algebra splits upon complexi- 

fication into two Boolean subalgebras with a gap between 

them. This is the subject of a doctrine called "Part and the 

Whole”.
Let us begin with a simple example illustrating the working 

of a Boolean algebra and one of its basic axioms: tertium 

non datur.

Whenever we inquire about the elements of a set in a given 

space X, the question arising is: Does x E X belong to set 

A or not - on the condition of tertium non datur? This

question obviously implies the 

characteristic function 4'n: X

existence of a so-called 

-----defined by

if x € A,
(1.1)

if x € (X-A)

X XThe alternative form £A: 2 —?~T0,1} discloses that fa 
is a one-one and onto function; hence we have 2%

X Xand the notions Y and 2 correspond to one another.
9

The following formulas are easily proved:

Zx 5 5 °’ (1-2)
X_A(x) = 1 - XA(x), (1.3)

H8 * ‘ ^8’ (1.4)

% A - B = %A “ Xa H B » (1.5)

(A = UAt)=>(^A(x) = max ^(x)) , (1.6)

(A = QAt)=>(;(A(x) = min ^£a (x)), (1.7)

(A = lim A ) E (lA(x) = lim 7 a (x)). (1.9)
n=oo n n=oo/VrAn

The concept of the characteristic function may easily 

be extended to a sequence of sets and - better still - to 

a set-valued function. This is of some importance for the 
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control theory in orientor field notation of the form:

= X € F(t,x); F: TxX—*-2 Y. (1.9)

Y
Let F: T—^2 (for a constant x) be a set-valued function 

such that F(t) = F CZ Y for t € T. Then the characteristic 

function fa of F associates uith every y €. Y a function 
XF(y) e defined by Xp(y) =Y ^t’ (1.10)

r r 10 if y € (Y-Ft).

If t assumes natural numbers, i.e. t = 1,2,3 , . . ., n , ..., 

then the characteristic function of the sequence of sets 

F„.FO,....F .... assumes as values sequences of numbers1; 2 ’ n
y (1) y(2)
y > y , • •

y(n)
•, y 9 • • * ) such that

y(n) = '1 if y € F ,7 n ’ (1.11)
0 if y e (-Fn).

In 1965 Zadeh generalized the characteristic function thus:

If X is a nonvoid set, I = the unit interval,
then co: X—^-1 or COG IX is a membership function.

For every x G X, co(x) is said to be the grade of 

membership of x in CO, X is the carrier of CO and 
£x: x kJ(x)>-0}- the support of co.

V
1 , partially ordered by if f U)( x) 5T( x), x € X, is a

Brouuerian lattice uhich - since I is a complete chain - is 

also completely distributive. Yet, since it is not a Boole-
an algebra (it is not complemented), not all prime filters

X
in I are maximal. Moreover, maximal filters are inadequa-

X
te to describe all filters because I is not separative. 

This must be taken into account uhen studying the problem 
of convergence, see Louen (1979).

Fuzzy topology is assumed in Chapter 2; it differs in seve-

ral respects from general topology and is, therefore, neces-

sary in transition from ordinary sets to fuzzy sets occurr-

ing in complex dynamical systems. In this respect, Appendix

2 renders assistence.

Fuzzy engineering involves thresholds of resolution both in 
the small and in the large (or complex). If ue speak of lar-

ge, possibly infinitely large systems such as the number of 

atoms accommodated in a sizeable volume or the dimension of 

extremely complex systems, ue associate uith them infinite 

dimensional spaces (Banach, Frechet or Hilbert spaces).
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The uncertainties occasioned by the thresholds are of a fun-

damental kind and characterizing the associated theory; they 

have nothing to do with the usual accuracies of practical 

measurement. They will be the subject of our concern in this 

study. In this endeavour we shall have to leave the ground 

of classical (Boolean) logic and move closer to the intui- 

tionistic philosophy.This will require giving up some of 

the classical self - evident truths and phrases such as 

’’there exists", as well as any other infinity than "potential 

infinity”.

To illustrate the above restrictions, consider the proposi-
tional function (x) in the arithmetic of natural numbers. 

A mathematician considers the problem of the truth of |(x) 

as solved if there is a proof that the sentence 

is a theorem in arithmetic; he dispenses with the task of 

actually constructing a number n € N such that (j)(n) will 
emerge as a true sentence. In order to prove S, a mathema-

tician would begin with the proof of y = —; (J—| (j) (IT) and then

from the modus ponens formula ———------------
o

This procedure is inacceptable to an intuitionist; he de-

mands the construction of a number n N fulfilling the

be rejected.

Truth in this context is understood in the sense of Tarski 

(1956), that is, truth is conceived of as a special form of 

satisfiability.

Since con structivity is bound to finite sets, only poten-

tial infinity is admitted in intuitionistic logic, never 

actual infinity. However, many sets contain an infinity of 

elements and the axiom of infinity is one of the seven ax-

ioms of the Zermelo-Fraenkel set theory. Hence, the intui- 

tionists reject the concept of a set (the basic undefined 

notion of set theory) as well as the whole set theory. 

Moreover, negation and disjunction (or alternative) are 

understood differently in the intuit ionistic logic, namely:

while cj) |— |is accepted, (— j—(|) is not,

and (|)^ \Z <|)2 is true iff or is true and if a me-

thod is known by which the true summand may be deter-

mined .
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Hence, both the tautology ())Vj—<j) and the law of the excluded 

middle (terium non datur) are banished from the intuitionis- 

tic logic. Nou, the metatheory of intuit ionistic logic is 

known to coincide with the theory of pseudo-Boolean algeb-

ras in the same sense as the metatheory of classical logic 

does with the theory of Boolean algebras. Hence follows 

that the theory of pseudo-Boolean algebras is the theory of 
the lattices of open subsets (and the theory of Brouwerian 

algebras is a theory of lattices of closed subsets), and 

any investigation of intuit ionistic logic consists of a 
study of the lattices of open (resp. closed) sets in topo-

logical spaces. For reasons of convenience, we shall give 

our preference to lattices of closed sets corresponding 

to Brouwerian algebras with the operation of pseudo-

difference.

Let us first settle the algebraic terminology.

Definition 1.1

Let there be given a nonvoid set X, a relation R on X and 

the following conditions:

(i) xRx; x,y,z € X,
(ii) (xRyAyRx) => (x = y),

(iii) (xRyAyRz) xRz,

(iv) xRyVyRx.

(reflexivity)

(antisymmetry) 

(transitivity) 

(connect iv ity)

Connectivity is equivalent to the trichotomy law.

Relation R establishes, respectively:-
(a) a partial order (X a poset = partially ordered set) 

if (i) - (iii) are satisfied;

(b) a linear order if (i) - (iv) are satisfied;

(c) a quasi-order if (i) and (iii) are satisfied;

(d) a full order if (iii) and (iv) are satisfied; how-

ever, we shall also call it ’’complete order”.

Definition 1,1a 

o
On every nonvoid set A with An = AxAx ... xA, a transfor- 

____________j
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isomorphic) if there is a one-one mapping f of A onto A* 

satisfying the equivalence:
(xRy) = (f(x)R*f(y)).



mation f: An—>A, n € N, may be defined which we shall call 

n-argumental operation. For brevity let f = (fp...,f ) = 0 
and f = (f,f2,...) = 0.

Deficit ion 1,2

An abstract algebra (briefly algebra) is the name given to 

any pair of sets {AjO} with A 0 and 0 finite operations.

----------□-------------

Let £L,U ,0} be an abstract algebra with two operations:

V and Cl and, possibly with null (LI) and unit (n) elements. 

The sum xuy will be called join and the product x Cl y will 

be called meet of the elements x,y 6 L.

Deficit ion s 1,3
(i) X = ^L,U , is said to be a lattice if X satisfies

Consider the following seven axioms (laws):

(L1): xuy - yux,» xCiy = yCix, (commutat ivity)

(L2): x U(yUz) = 
x n(yf'z) =

(xUy)U z, 
(xfiy)nz,

(associativity)

(L3): X \J X = X, x r\ x = x, (idempot ence)

(L4): x u(xhy) = x, xn (x uy) = x, (absorption)

(L5): x U( y Ci z) = 
x n(y Uz) =

(x Uy)n(x Uz), 
(xfly)U(xnz),

(distribut ivity)

(L6): x U U = x, x ri n = x, (null - unity)

(L7): xu —x = n, (t ert ium-non-datur)

x n -x = U. (contradiction)

axioms (L1) - (L4). It then admits a partial order 

such that, for all pairs {x,y}cL, the sum xuy coin-

cides with the least upper bound (lub) and the product 

xAy coincides with the greatest lower bound (gib). 

A lattice is called complete if all subsets of L have 

an lub and a gib.

The following duality principle holds true for lattices: 
If a sentence T^ (i.e. a formula without free va-

riables) is the consequence of (L1) - (L4), then 

the sentence T^, obtained by interchanging U and 

Cl in T^, is a consequence of (L1) - (L4) as well.
(ii) X is called a distributive lattice if (L1) - (L5) 

apply.
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(iii) Xis called a Boolean algebra if it satisfies (L1)

- (L7).
The family 2*"  of all subsets of L together with the 

set-theoretic operations: U,H, is a Boolean 

algebra.
Definit ions 1.4 (Rasiowa and Sikorski (1970))

There are two notions of the complement of an element of a 

lattice X corresponding to the set-theoretic complement of 

a set A:
(a) either the greatest subset -A of L disjoint 

with A,

(b) or the smallest subset of L whose union with 

A equals L.

These subsets are, in general, not equivalent.

(i) If L contains the smallest element Li, we call c G L 

a fl-complement in L provided that c is the greatest 

element satisfying a fl c = LI.

If L contains the greatest element n, then c e L is 

the smallest element satisfying aUc =T1.
(ii) If X is a distributive lattice and aUc = l~l , anc = LI 

hold, c is said to be the complement of a G L. The 

only other complement of importance is the f\-com- 

plement, which -if it exists - is named pseudo-

complement .

(iii) Element c G L is called pseudo-complement of a re-

lative to b (or modulo b), briefly: relative pseudo-

complement, if c is the greatest element such that 

afic^b; it will be denoted by a zz-^b.

Conform with this definition:
(x<a=ab) = (afx^b) for all x € L. (1.12)

Because of ahb^b, we have b^azzzb provided 

that a =3b exists; and if |J and [1 are in L, then
(a^b) = (a=>b = n),n=ib = b, (1.13)

and —|a = a---- ill.

(iv) A nonvoid ordered set L, in which every pair of
elements satisfies the formulas (1.12) and (1.14) 

below, has been named an implicative system, in which 

uhich aH(a=jb)^b. (1.14)

(v) a —i h is called a complement of a relative to 

b (or modulo b) if it is the smallest element
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c ^-a A b such that aUc =F1 holds.

If an element a of the distributive lattice «£ has the 

complement —|a, then there exists, for every b C L, 

the complement aznb of a relative to b and a"z=]b = 

—tavjb, where —ta V b is the pseudo-complement of a 

relative to b. —raUb is also the complement of a re-

lative to b.

The notions dual to the relative pseudo-complement 

and to the relative complement are those of pseudo-

difference and difference, respectively.

(vi) Element c 6 L is called pseudo-difference of b and a 

if it is the smallest element such that aUc^b;

it is denoted by b—a.

Conform with this definition:

(x^-b—a) = (aUx^b) for all x £ L. (1.15)

Note the duality of (1.12) and (1.15).

Because of adb>b, we have b^b-^-a provided that 
b-^-a exists. Obviously (a—a) = ( Ll G L) ; and if 

U G L exists, then

(a^b) = (b-i-a = Ll), b-J-LI = b.

Hence, the pseudo-difference b-^-a is the smallest 

element c^aUb, for which aUc = aUb.
(vii) Assuming U € L, b - a is called the difference of 

b and a if it is the greatest element c^aUb, for 

which aflc = LI holds. If element a of a distribu-
tive lattice X has the complement —ja, then there 

exists the difference b-a, and we have b-c = bA -a.

Note
Equivalence (1.15) has sense in several disciplines:

(a) If (1.15) is a relation in the arithmetic of natural 

numbers or real numbers, then, for numbers a,b,x G N 

(or R), for — replaced by — and V replaced by +, 

(1.15) represents an arithmetical identity.
(b) If (1.15) is a relation in Boolean algebra, then, with 

a,b,x as elements of that algebra, with — replaced

by the operation - and V remaining unaltered, we 

obtain a true statement in Boolean algebra.

Now, Boolean algebra corresponds to the classical logic 

with sentences a,b,x, with negation — and disjunction 

aVx, the latter being true if at least one of a,x is 
t rue.
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(c) If (1.15) is a relation in Brouuerian algebra with ele-

ments a,b,x, then the expression - as it stands - is a 

true Brouuerian equivalence.

But the Brouuer algebra corresponds to intuitionistic 

logic uith sentences a,b,x and junctors similar to the 

classical ones except for the meaning of the disjunction 

(alternative), where intuitionism requires that it be 

knoun uhich sentence of a V x is true. This is indicated 

in Brouuer algebra by the dot over the sign of diffe-
rence (the pseudo-difference).

D e fin it ion 1.5

Every relatively pseudo-complemented lattice has the unit 

element, but it does not, in general, have the zero ele-

ment. Every such lattice uith the zero element is called 
a pseudo-Boolean algebra X = ^L, U , ,= ,—

An element a of a pseudo-Boolean algebra is said to be 
dense if —ia = Ll holds; it is dense iff —j—| a = I”!. It is 

called regular if a = —;—ja.
----------o------------

The pseudo-Boolean algebra plays some role in fuzzy set 
literature; it is then called L-fuzzy algebra (L-fuzzy lat-

tice uith unity and zero).

The dual to the pseudo-Boolean lattice is the Brouuerian 

lattice.

Definition 1.6

Brouuer lattice is a notion placed betueen the lattice and 

the Boolean ring; it is characterized by the pseudo-diffe-

rence and by the possession of the unit element.

The Brouuer algebra is thus denoted by

x = , u, n,—, |, u, .
Definition 1.7 (C. Rauszer (1977)
An abstract algebra X = is called semi-

Boolean algebra if it is a relatively pseudo-complemented 

lattice strengthened by a pseudo-difference.
The algebra £ = L, U . A , —.—|,f—,LI,n^ is occasionally

called Heyting-Brouuer algebra, uhere
(i) ^L, U , A , —i, L)^> is a Heyting lattice uith

—ia = azzzzj[J, and

( ii ) <l ,v / , ri,-2-,p-,n> is a Brouuer lattice uith
I—a =11 — a (McKinsey & Tarski (1946)).

81



To every pseudo-Boolean algebra £ there exists a complete 

semi-3oolean algebra £' and a monomorphism g: L—>-L*.  Also 

to every Brouuerian algebra <£ there exists a complete semi-

Boolean algebra £' and a monomorphism h: L—>- L'. Thus, 

semi-Boolean algebras play the same role in the Heyting- 

Brouwer logic as the Boolean algebras in classical logic 

and the Brouuerian algebras (lattices) in intuitionistic 

logic.

The follouing sentences are valid in any Brouuer lattice: 
(a ^b) ==> ( a—c^b— c) A (c—b^c—a) ; a,b,c £ L, 

(a^b) = (a-L-b = U),

c —(aAb) = (c—a) V ( c —b),

(aVb)—c = (a—c)V(b—c),
— (—a) a, — a = 0—3,

— — — a = —a.

These formulas are easily converted into set relations if 
one uses the equality A—B = A- B (proposed by Kuratouski 

and Mostouski (1978) p.58). The right hand side represents 

closure of the set-difference beneath the bar.

1 .1 The splitting of a Boolean algebra of simple systems

in t uo incompatible Boolean algebras

It is important to observe that, in distinction from ordin-

ary complementation, ue have for —a the relation
(—a) Aa / U

uhich corresponds in intuitionistic logic to the failure 

of tertium non datur; note also the interchange of the lo-

gical operations V and A, due to the duality of pseudo-

Boolean and Brouuerian lattices.

Ue nou transcribe this expression into one for sets and 

obtain ___  __
Y-AriA 0, ACV. (1.16)

If ue take this as corresponding to the intuitionistically 

invalid tertium non datur, then

Y^A U A = Y, AC Y, (1.17)

corresponds to the intuitionistically valid lau of con-

tradiction .

Let us note that in classical set theory
Fr(A) = MAA (1.18)

stands for the boundary of set A and
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Int(A) = Y (1.19)

for the interior of set A,

Now, Fr(A) is the set of all points of discontinuity of 

the characteristic function of any set A in Y, denoted by 

D(7 ). Hence,
Fr(A) = D(^fl), ACY. (1.20)

This set vanishes obviously for fuzzy sets; thus

= l^(W1(B) - W1(B)) = 0, BCI, (1.21)

see Kuratowski (1977) I, p.103.

Since ue shall also deal uith clopen sets, let us observe 

the following fact:

The characteristic function of a set A is, respec-

tively, continuous or pointuise discontinuous iff 
A is clopen (i.e. D(/[^) = Fr(A) = 0) or, respecti-

vely, has a nowhere dense boundary.

We conclude from (1.16) that Y-A and A are disjoint sets 

if the set between them is a virtual one, a gap. Therefore, 
the original Boolean algebra (for simple systems)

Lo = <Y, u , n,-,U,n> (1.22)
now appears split into two Boolean subalgebras:

L1 = <Y^A, U, n , —,L!,n> and L? = <A, \J , A , — ,U,H> (1.23)
with a gap between them.

L and the gap constitute precisely the Brouwer latticed

referred to earlier:

X = , L = 2Y, (1.24)
where 2 represents the hyperspace of all closed subsets 
of the topological space Y. 0 is an isolated point of the 

y
hyperspace 2 equipped with an exponential or Vietoris to-

pology.

Ue are now in a position to handle mathematically complex

fuzzy systems requiring an underlying cd  -dimensional Banach 

space. The choice of a suitable Banach space ensures the 

existence of a so-called negligible (virtual) set, the gap, 

accounting for the quantal threshold in the transition from 

a simple system to a complex fuzzy one.

This is the subject of the next chapter.

83



CHAPTER 2: THE FIXED POINT THEORETICAL ORIGIN AND DEFINITION

OF A NEGLIGIBLE SET

Ue consider here a space Y of complex fuzzy subsets, say 

ACY, and try to grasp the deeper meaning and practical im-

portance of the formula Y-A H A / 0 (1.16)

in terms of the fixed point theory, which is well known 

to physicists and engineers. This relation contains an un-

certainty with respect to the set A; hence, our aim will be: 

to determine the threshold of uncertainty under very general 

conditions. Ue begin our investigation with the

2.1 Banach contraction principle

This principle stated for ordinary metric spaces assumes two 
metric spaces (X,d) and (Y,^) and the mapping F: (X,d)-----

(Y,^>) satisfying the condition 

<d(F(x ) ,F(z)) -< Md(x,z);

F is called a Lipschitzian mapping;
nuous. The least M fulfilling (2.1) 

x, z € X; fl = const. (2.1) 

it need not be conti- 

is called the Lipschitz
constant which is usually denoted by L(F):

(i) mapping F is called contractive if L(F)-< 1,

(ii) mapping F is said to be non-expansive if L(F) = 1.
Let Y be any set and F: Y—>Y. For a given y € Y, Fn(y) is 
defined inductively by F°(y) and Fn+^ = F(Fn(y)), where 

<Fn (y): n=0,1,2,...}CY is the orbit of y under F. This 

procedure permits solutions by computer iterations.

Banach contraction principle

Let (Y,d) be a complete metric space and F: Y—>-Y contrac-

tive; then F has a unique fixed point u and F(y)—>-u for 

each y G Y.

o

The completeness of Y is an indispensible property in this 

case. The proof of this principle is straight forward; see 
for example Smart (1974). From this results a useful local

version involving an open ball B in Y (which has to be com-

plete and metric) 

does not displace

Assumptions:

and a contractive mapping F: 8—>¥ (which 

the centre yQ of the ball too far):

B = B(yQ,r) = {y: d( y, yQ)< r}, ( Y, d) -compl. 

F: B—>Y contractive (with constant 

OC<1) and d( F( yQ) , yQ)-C (1 -oc)r.

Conclusion: F has a fixed point.
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Commonly, Y will be a 3anach space with a richer structure. 

In that case the 3anach contraction theorem leads to use-

ful application al results. Let Y denote a Banach space, X a 

subset of Y, F: X >-Y and f: X—>Y a mapoing xi—s-x-F(x) 

of X into Y, called the field f associated with F.

f: X—=?-Y is a contraction field if F is contractive.

Invariance of domain for contractive fields

Let Y be a Banach space, UcY open and F: U—*-Y  contractive 
(L(F)-<1). Let f: U—>-Y be the associated field, f(u) = u 

- F(u). Then ,

(a) f: U—>Y is an open mapping, i.e. f(U) is

open in Y, (2.2)

(b) f: U—>-f(U) is a homeomorphism.

Ue conclude next that f = I - F is a homeomorphism of Y 

onto Y, for F: Y—>>Y contractive and I an identity map.

2.2 Negligible sets

A subset H of space Y is said to be negligible whenever

Y-H is homeomorphic to Y; the mapping h: Y-H —>»Y is called 

a deleting homeomorphism and as such written h: Y-H = Y. 
Definition 2.1 (Anderson (1969 ))

Ue say that a closed set K of a Frechet space X has an 
□o-defect (co- codimension) if X-K is oo-dimensional, whe-

re K is the closure of a linear subspace spanned by the 

elements of K. Note that a normed Frechet space is a B-space. 

Theorem 2.1

Let Y be a non-complete normed linear space and H a comple-

te subset of Y. Then, there exists a homeomorphism h: Y-H = 
— Y with h(y) = y whenever d(y,H)^1.

Proof:

Ue have to prove the existence of the homeomorphism h.
A

The completion Y of Y, taken with the natural extension

of the given norm of Y, will be a Banach space. Let £yny 

be a Cauchy sequence in Y converging to some point in Y-Y 
such that |] y q || + £||y n-yn+1ll C oo . Now, no scalar multiple

A 1

of the point in Y-Y can belong to Y; so, replacing all the

yn by a suitable scalar multiple, we assume that •[ Yn} con- 

verges to xQ 6 Y-Y and Hy^l + ||yn~yn+11| =

Consider a broken line L = fyQ , y J \j [y , y£] . CY with

yQ = 0 and construct a piecewise linear map : I—^Luf’x^,
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I = &,o, in the following way: let s be the n^h partial
1 n

sum of the series with sum = and s q = 0; for each n;>0, 
map the interval [2sn,2sn+^J linearly onto the segment 
Cyn,yn+l2 and put = xo*  Then I h(tX )l = ^|t-t' |

with t,t' belonging to the common interval Qsn, 2sn + ^J, 

so - by triangle inequality - we get |(|)(t )-<|(t') 0.5 |t-t'|,

for all t,tz € I. Now extend <|) to t|): (~oo , 1 J—^y by (p (t) = 0 

for t <0.
The mapping G: Y—>¥, sending y into tp(1 - d(y,H)), is ob-

viously contractive since
||$>(1 - d(y,H)) - <|>(1 - d(z,H))||^l ||d(y,H) - d(z,H)|| 

^lly-zll.

Hence, by the invariance of domain for contractive fields 
A A

(2.2), h(y) = y - G(y) is a homeomorphic map of Y onto Y. 

For y € Y-H we have d(y,H)p>0, so G(y) 6 Y and h(y) = y- G(y) 

belongs also to Y. Therefore, h(Y-H)CY. For the converse 

inclusion we put y Y-H, so that y £ (Y-Y)UH. For x 6 Y-Y, 

d(y,H)>0, so G(y) £ Y, while with y € H, y € Y and G(y) = 

x Y. In both cases only one of the points: y or G(y) be-

longs to Y, which forces the conclusion that h(y) = y - G(y) 

£ Y, and h(Y-H) = Y. The proof is accomplished.

Dugundji and Granas (1982) assert that the class of linear 

spaces, for which such deleting homeomorphisms exist, is 

very large, because:
Every oo-dimensional Banach space ( Y, || • ||) admits a 

non-complete norm |•| with |yl^ll y II for a11 y y , (2.3) 

and any □□-dimensional non-reflexive Banach space is 
a particularly interesting case in point. (2.4)

Combining Theorem 2.1 with expression (2.3) yields a theo-

rem obtained by Klee (1956).

Theorem 2O2 (Klee)

To an arbitrary co-dimensional normed linear space Y and HCY 

compact, there exists a homeomorphism h: Y-H = Y.
Proof: (following Klee)

Let Y be a Banach space, else the result follows from Theo-

rem 2.1. By (2.3), there are an incomplete norm |y|^2 ||y||,
A A

space (Y, |«() = Y, a continuous mapping j: Y—»-Y and hence 
A

also a compact set H = jH, which is, therefore, complete in 

Y. On the other hand, Theorem 2.1 implies the existence of 
A A A A

a deleting homeomorphism h: Y-H = Y, defined by
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h(y) = y - $( 1 - d(y,H)), ? g Y, (2.5)
A

where d is the norm-induced metric and | is a piecewise 

linear mapping A A
(-co , T]----- *»Y. (2.5)

being piecewise linear, is continuous with any linear 
A A

topology in Y; therefore, regarding | as a mapping
(-oo,T]—*-Y, (2.7)

we obtain if continuous and (f = jt|). (2,8)

Now h: Y-H—*-Y  is given by
h(y) = y - ij)(l - d(j(y),H)); (2.9)

it is continuous and establishes the commutation of the 

diagram below.

j 
a !'a
Y-H

Y-H

Fig. 2-1

Commuting diagram

Note that jh(y) = hj(y), i.e. hoj = joh. (2.10)

h is a homeomorphism if the inversion g: Y—>-Y-H is 

also continuous; but
g(y) = y + <|) (1 - d(h”1j(y),H)) (2.11)

is seen to define a continuous function g. This is 

confirmed by direct convolution hog:

g(h(y)) = h(y) + $ (1 - $(h“1 jh (y), H))

- applying (2.9) and (2.10), we get -
= {y - (|)(1 - d(j(y),H))} + $) (1 - d (h"1h j ( y) , H))

= y-
The inverse convolution goh yields:

h(g(y)) = h{y + $(1 - d(h“1j(y),H))}

= h(y) + <|)(1 - d(h“1 j (h(y) ,H))

- applying again (2.9) and (2.10), we get 

= y - (|)(1 - d(j(y),H)) + <f)(l - d(j(y),H)) 

= y.

Thus, hog = goh; and since h and g are both continuous, 

h: Y-H—^-Y is a homeomorphism, i.e. h: Y-H == Y.
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Bessaga (1966), who actually coined the name "negligible 

set”, provided two simple criteria, expressing the content 

of Theorems 2.1 and 2.2, using the concepts of ’’narrow” and 

’’strongly sigma narrow'1 sets.

Definit ions 2.2
(i) A set in a linear topological space X is called narrow 

if there is an incomplete continuous norm |«| on X such

that this set is closed in Banach space Y = compl 

completion of X with respect to the norm |*  |.
hi X, the

(ii) A subspace of a Banach space X is called strongly S- 

narrow (s6-narrow) if there is a continuous norm j on Y 

such that the original unit cell u of X is incomplete and, 
for An closed in Y = comply.^X, A = UAn, n = 1,2,..holds. 

Note: The required norm |-| does not exist in separable re-

flexive Banach spaces.

Criterium 1

Every narrow set in an arbitrary topological linear space 

is negligible.

Criterium 2

Every sij-narrow set in a Banach space is negligible.

Conclusion s

Complex fuzzy systems require an oo-dimensional function 

space Y, preferrably an oo-dimensional Banach space which 

comprises a negligible set which, in turn, is capable of 

accounting for the fundamental uncertainty due to the fail-

ure of the law of the excluded middle at the border to in-
finity (see Tarski (1935). At this point the logic of com-

plex fuzzy systems turns from Boolean to Brouwerian (it is 

intuitionistic).

The fuzziness in Y manifests itself in the uncertainty of 

the boundary of the complex fuzzy sets in space Y.

The negligible set in the Banach space Y can be studied in 

terms of the fixed point theory, which reveals that any ho-

meomorphism mapping Y into itself deletes a negligible set 

from its domain. Thus, if we consider a negligible set as 

nested in the boundary of each complex fuzzy set, but actu-

ally deleted, then a ’’gap” will separate that set from its 

’’complement” (i.e. cancel the intersection of both); and 

since non-Boolean logic rules the complex fuzzy system, the 

original Boolean algebra Lq for simple systems will now
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give way to a Brouuerian lattice L uith unity, comprising 

the tuo Boolean subalgebras and L? as uell as the gap 

betueen them.

Fig. 2-2

Graph of the algebras L^, L? 

and the gap.

Ue see nou that the topologically negligible set, the alge-
braic gap (uith respect to the Boolean algebra) and the in-

herent measuremental uncertainty threshold describe the 

same fundamental deficiency of complex fuzzy systems in 

three different disciplines. This enables us to define 

(in Chapter 3) a fundamental noncomplementation condition 

and a corresponding uncertainty relation for measurement. 

For further intelligibility of this study, a brief resume 

of certain facts of Banach space theory may prove helpful. 
Definition 2.3

A normed complete space is called a Banach space B;

a unitary complete space is said to be a Hilbert space H; 

every H is a B, and every normed Frechet space is a B.
---------------0-------------------

If L is a linear continuous functional in Hilbert space H, 

then the set V, of vectors u € H, on uhich L takes the zero 
value, TL = £u € H: L(u) = 0}, is a hyperspace (defect or 

codimension 71= 1).

The quotient space H/H^ u.r.to subspace His the set of 

classes QyJ of vectors from H, uhere to one class belong 
vectores u^,U2 uhose difference lies in H; thus, H/H^ is 

a set of planes parallel to H^.
Generally: H = H*  = H**,  but B B*  £ B** ’

Banach_spaces containing_no negligible set: 

Separable spaces
Polish spaces (i.e. separable and complete spaces) 

Separable reflexive spaces

Banach soaces exhibiting negligible sets:

The spaces discussed in Theorems 2.1, 2.2 and Criteria 1,2.
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CHAPTER 3: DERIVATION OF THE UNCERTAINTY RELATION 

'Jith the results of Chapters 1 and 2 at hand, our considera-

tions now converge to the formulation of the uncertainty re-

lation for generalized measurement. As always, we shall cla-

rify first the terminology and symbolism required; an appro-

priate formalism has been provided by Finkelstein (1975b). 

Let
Y £y^: K(y), i = 1,2,denote the set of objects 

(events, attributes) y^ and K(y) the admissible class, and 

let
S = £s£: s£ £ S, i = 1,2,...,m} stand for the set of sym-

bols s^ bearing a defined relationship to the entities y^ G

Y by means of the mapping:
MCYxS such that dom(lvl) = Y and Ran(l*l)  = S, i.e. (y^,s^) € 

M, y£ £ si s*

Calling C = O, S, lO the assumed symbolism, respectively 

code of symbolization, J = <(.Y, S, l*l,  s ?> will constitute the 

information about y., and y^ - the meaning of s^ under C. 

Since 1*1  may be a one-one, many-one, one-many or many-many 

function, we have to distinguish between:

(i) synonyms, i.e. symbols s^,s^ £ 5 such that 

(yi,si),(yi,sk) € M for any y£ £ 1*1  and

(ii) homonyms, i.e. symbols s^ C S such that 

(yi,si),(yk,si) e M for any Yi,Yk £ V, y^ / yR.

Definit ions 3.1

(1) The correspondence of more symbols than one to the same 

meaning is called redundancy (case (i) above).

(2) The correspondence of more meanings than one to the same 

symbol is said to be an ambiguity (case (ii) above).

(3) The absence of ambiguity is termed precision, while

(4) the absence of redundancy is termed significance or 

relevance.
----------□-------------

Precision and significance or relevance thus defined repre-

sent ideal forms of these attributes. In the ideal form they 

are complementary properties of measurement of the state of 

closed systems for monitoring and control. But in the majo-

rity of practical systems, especially in complex or fuzzy 

systems,the complementarity condition will not be fulfilled.
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Let us aliken Y with an oo-dimension al non-reflexive Banach 

space (underlying the complexified empirical system under 

consideration), and let us assimilate the set S with the set

R of reals. Once the system is complexified to the extent 

that the principle of incompatibility due to Zadeh applies, 

we'll be facing - conform with (1.22) - (1.24) -

a Brouwerian lattice X= ^L, U , fh , —; L = 2^, (3.1)

comprising two Boolean subalgebras:
L1 = <Y-A,U,n,-> and L? = <A,U,A,-> (3.2)

of the Boolean algebra Lq = 4/, > (3.3)

and a gap involving the uncertainty due to the exis-

tence of L^and L? and defined by a negligible set 
H (see Fig. 2-2).

L^, L? and Lq have, 

here.

of course, zero and unity not shown

Definition 3.2 (Non-complementation condition)

Let Y be an oo-dimensional non-reflexive Banach space con-

taining a negligible set H; let A be any of its subsets 

contaminated by complexity and fuzziness in the sense of 

Zadeh's incompatibility principle. Since H fills the gap 

absorbing the uncertainty due to complexity and fuzziness, 

we obtain as non-complementat ion condition:

MHA2H; A,H C Y. (3.4)

All the sets involved are closed sets.
----------o------------

Formula (3.4) represents a fundamental relation of non-

complementation in the measurement of complex fuzzy sys-

tems, expressing the fact that for set A without regard to 

set Y-A as well as for set Y-A without regard to set A there 

exist Boolean conditions,while for both sets simultaneously 

these conditions are Brouwerian i.e. the sets are incompa-

tible for measurement.

Condition (3.4) is reminiscent of the non-commutativity con-

dition in quantum mechanics.

Theorem 3.1

The non-complementat ion condition (3.4) is a fundamental re-

lation existing in spaces underlying complex fuzzy systems 
which are subject to Zadeh's principle of incompatibility 
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which restricts the simultaneous measurement (observation, 
determination)of sets, quotient sets (attributes) relations, 

operations in those spaces. The determination of the state 

of complex fuzzy systems is thus impossible with absolute 

precision.

o

Ue shall now derive the uncertainty relation associated 

with the non-complementat ion condition.

Let S be any compact Hausdorff space with norm || • || defined 

b/ ||y|| = sup{|y(s) | : s € S}, 

where Y = C(S) is the Banach space of continuous functions 

y: S—>-R, i.e. y = (y(s): s € S), defined in S and having 

scalar values.

Theorem 3,2 (Banach, Saks, Kakutani)

For an arbitrary continuous linear functional y in C(5),

there exists exactly one Radon measure ju
being Borelian), defined in the algebra 3 of Borel

1/2
subset s

of the set S such that, for arbitrary y 6 C(S),

y*(y)  = f y(s)ju(ds),
S

and || y*  || = V(ju,S).
n

V(jj ,5) is the upper bound of the sums |jii(S.) | . 

(sp the decomposition of S.

----------o------------ '

(3.5)

(3.6)

and

For a proof see Alexiewicz (1969).

Fig. 3-1

Pictorial display

of relations in-

volved in Theorem 3.2 
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In complex fuzzy dynamical systems S would stand for the 

time continuum T, Y would be a topological space whose clo-

sed, hence Borelian, subsets constitute a topological hyper- 
Y

space 2' with Vietoris (exponential) topology. In that case,

Borel measures ju and ju^ exist, so that the Radon pseudo-
measure Jj = jj 2 = jj  -ju 2 is also defined on 2Y. Please note 

that we treat set functions as sets and speak of closed mea-
sures, denoted byju, - see Alexiewicz (1969) p.37.

Using (3.5), (3.6) and the substitution: V(jj,H) =jj(H),(3.7) 

we obtain the desired uncertainty relation for measurement:

Ay*(y) ----- •ZSy*(y)_  > m(H) ,
Y-A A ~ J for A,HCY. (3.8)

Definition 3.3

Formula (3.8) defines the uncertainty relation for the mea-

surement of complex fuzzy systems conforming to the non-
complementation condition (3.4). It resembles the Heisen-

berg uncertainty relation for quantum mechanical systems. 

Conform with Zadeh*s  principle of incompatibility, we get: 

for the measure of precision: (Ay (y)-r)“ ,
♦ — 1for the measure of relevance: (Ay (y) y ) ~

Sectional results:

An 00-dimensional non-reflexive Banach space is known to 

admit an incomplete norm and to comprise a negligible set. 

It is eminently suitable for the study of complex fuzzy em-
pirical systems obeying non-Boolean (in fact: intuitionis- 

tic) logic in a capacity similar to an 00-dimensional sepa-

rable Hilbert space in the study of non-Boolean (Birkhoff- 

v.Neumann) quantum mechanics.

This similarity manifests itself in two correspondences: 

that of non-complementat ion and non-commutativity condi-

tions and that of uncertainty relations, of measurement 

and of quantum mechanics.

Our analysis of the measurement of complex fuzzy systems, 

in which the impossibility of simultaneous measurement 

comes to light, is seen to conform to Zadeh*s  principle 

of incompatibility.

3,1 Epistemological and ontological conclusions 

Classical physics is based on a system of mathematically 
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sharp-formulated axioms whose physical content is uniquely 

predicted by the choice of words used in these axioms, even 

though these words belong to the colloquial language. Never-

theless, the truth-claim of classical physics seems to be 

unquestionable, and the statements of classical physics and 

- for that matter - also of engineering are precise as well 

as determinative. This truth-claim of classical physics is 

not even questioned by modern physics. The necessity and pos-

sibility of a revision of the classical laws occurs only 

with respect to the applicability of these laws to physical 

experience. Hence, it is not really the validity, but ra-

ther the applicability of classical laws that is being li-

mited by modern physics and engineering.
The causality principle remains, of course, untouched. In-

deed, causality in classical physics means nothing else 

but the existence of a unique functional relationship bet-

ween the states of a system at different times: If the sta-

te of a closed system at a given instant of time is comple-

tely known, then the state of that system at every earlier 

or later time can be computed. This conditional theorem is 

not wrong in complex fuzzy cybernetics, nor in quantum me-

chanics, but it is inapplicable; for, the premise is never 
realized: The state of a system cannot be known completely 

in the classical sense, because any gain of knowledge al-

ways excludes the complementary knowledge. Thus, the con-

ditional theorem belongs to the classical conceiving of the 

world and not to the practical one, in which a state can ne-

ver be known completely. This is tantamount to saying that 

we cannot hope to ever know the ultimate truth, which the 

mathematician Kurt Goedel put in the following theorem:

”No consistent system is powerful enough to prove its 

own consistency. Strangely enough, every inconsistent 

system may be used to prove its consistency".

It appears that all such statements hinge on the fallacies 
of the complementarity principle (quotation of A.N. White-

head) .

Let us now consider the objectivity of statements in the 

light of the above arguments. Every observation postulates 

a causal chain and yields a ’’viewable” result. However, we 

are not allowed to do one thing: to assemble the viewable 
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fragments and causal chains into a model of a nature exis-

ting per se. It depends rather on our freely chosen experi-

mental set-up, which of the complementary sides of nature 

we will be facing; and the knowledge of one side excludes 

that of the other side.

It is a fundamental postulate of complex fuzzy cybernetics 

(and - for that matter - also of quantum mechanics) to deny 

the existence of hidden parameters; actually, not when the 

lack of knowledge is only due to a dispensing with a fuzzy 

Cybernetically possible acquisition of information, but when 

the unknown quantity - for reasons of the exact knowledge 

of the complementary quantity - cannot be known. This is no 

vain statement, but a theorem with certain logical conse-

quences, namely: The knowledge which we have about nature or 

about technical systems enters explicitely the statements 

relating to complex fuzzy cybernetics.

A complete experimental statement, i.e. the result of mea-

surement on complex fuzzy systems, would be:

"On the tested object, under these conditions,

I have observed this state".

The hypothesis of classical physics states that this sen-

tence may always be replaced by the following one:

"On this object exists this state",

which must necessarily be either ‘true or false, no matter 

whether there exists a person knowing the truth or falsity 

of this sentence. This hypothesis originates really from a 

scientific and philosophical belief in an objective exis-

tence of the objects of our cognition. Both quantum mecha-

nics and complex fuzzy cybernetics reject already the as-

sumption of such reasonings. They use a many-valued truth 

concept. Thus, let A be a statement referring to a certain 

situation; then

(a) the full experimental statement would run: "I know 

that A is true";

(b) classical physics simply states: "A is true".

(a) admits two negations: (a*)  "I know that A is not 

true" - objective ne- 

gat ion,

(azz) "I know not whether A is 
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true'' - negation of 

knowledge.
(a), (az) and (a”) are equally ranked sentences.

(b) admits corresponding

negat ions: (b* ) ”A is not true”

objective sentence,

(b") ’’Neither applies A, nor 

applies A not” - 

objective sentence.

The ontological meaning of this is that the notion of the 

object may no longer be used without reference to the sub-

ject of cognition in the modern sciences. By the’’reference 

to the subject” are meant his basic functions of awareness: 
his knowledge (experience) and his will (preference in choi-

ces) .

Subjective measurement and control has by now become common 

place occurrence in automatic control practice and better re-

sults are obtained with complex fuzzy systems using the expe-
rimenter's knowledge and will. The interested readers are 

referred to publications of IFAC (international Federation 

of Automatic Control).
«
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CHAPTER QUANTUM MECHANICAL UNCERTAINTY ANALOGY

The complexity of quantum systems is absorbed in an oo-di- 

mentional separable Hilbert space and the underlying Birk- 

hoff-von Neumann logic in which the distrbutive law is dis-

carded. Hence the logic is also non-3oolean.

A reasonably adequate account of the quantum theory is appen-

ded at the end for reference with regard to symbolism, mea-

nings and results. Uhat we are going to investigate in this 

chapter is the uncertainty analogy to the uncertainty of 

measurement in complex fuzzy systems.

Since the scalar product characterizes any oo-dimensional 

Hilbert space, by a projection in Hilbert space H we mean 

an orthogonal projection, i.e. a selfadjoint idempotent
2 1operator P with the property P = P = P. According to Ma- 

czynski (1981), two projections P and Q commute in H, i.e. 

PQ = QP, iff the following inequality is satisfied for all 

vectors u G H:

||Pu II2 + ||Qu ||2 ||u II2 + lim ||( PQ)nu I2 (4.1)
11 • £•£> 0 ->OOor, more generally, iff

sup lim(||Pu]J2 + ||Qu||2 - ||(PQ)nu||2) = 1. (4.2)
j|u|| = 1 n->oo

They do not commute iff

1-C sup lim (||Pu||2 + llQull2 - ||(PQ)nu||2) ^2. (4.3)
[|ui| = 1 n->oo

To each pair P,Q of non-vanishing‘projections may be allo-
cated a number S(P,Q) € [o,lj, called commutation gap, 

which equals 0 in case of commutation and any other value 
up to 1 in other cases. For 1-dimensional projections S(PQ)

coincides with the square root of the transition 
2

lity 14s | *“ °F the transition between the quantum 
(unit vectors) b and d) in H, i.e.

probabi- 

states

(4.4)I'b’pl’ P(|i Pvp 

Shd PyThus, 8(P^,P^)

The definition

= 0 iff P and P.f commute, or if P. I P... 

of the commutation gap is, of course, ap-

plicable to any selfadjoint operator in Hilbert space. 

For more details consult the paper of Maczynski (1981).

There is an easy to notice analogy between the commuta-

tion gap in H and the complex fuzzy gap in an appropriate 

Banach space, and both generate their uncertainty relations.
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A p • Aq h = 2Kfi

AE -At > h

(a)

(b)
(4.5)

represent the most common form of the Heisenberg uncer-

tainty relations in terms of momentum p, position q, 

energy E and time t, h being the universal Planck con-

stant. The equivalence of (a) and (b) in (4.5) is a con-

sequence of the relativistic standpoint that energy E

and momentum p are quantities of the same kind; indeed, 

is the spacial component of 

the relativistic 4-vector, 

is the time component.

But then q and t must also be quantities of the same kind.

This follows independently from the canonical equations 
of Hamilton if p is kept constant ( a case known in phy-

sics as the cyclic coordinate).

The relation (4.5(b)) is, however, not deducible from quan-

tum mechanical principles since a selfadjoint time operator 

does not exist. If a selfadjoint quadratic time operator
2

describing the quantity At be introduced, then the follo-

wing quadratic uncertainty relation is obtained:

A2E • A2t <v/h2. (4.6)

There are other derivations of the Heisenberg uncertain-

ty relation, but the most notable of them seems to be the 

probabilistic one, for the simple and veritable reason that 

the probabilistic model of quantum mechanics has both intui-

tional and computational appeal.

To this end, let us consider measurement as an act of put-
ting ’quest ions'*  to nature or to a man-made system. For ob-

vious reasons, Heisenberg calls any “quest ion” i 11-posed 

(or meaningless) if it is put to a non-classical system or 
to a non-classical theory. Examples of such ”quest ionsware 

those referring to the simultaneity of events in relati-

vistic physics, to the canonical operators of position and 

momentum in quantum mechanics and to the precision and sig-

nificance of measurement on complex fuzzy systems.

These questions become ’’virtual questions” once the appro-

priate uncertainty relation is interposed between the non- 

classical system and the measuring apparatus (obeying the 

laws of classical mechanics). The virtual answers across 
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the uncertainty relation apoear to be classically correct, 

and hence ’’understandable” to the measuring apparatus. 

Whenever the uncertainty relation vanishes (for the velo-

city of light c = oo , for Planck*  s constant h = 0, or for 

the negligible set H = 0), the non-classical system (theo-

ry) actually becomes a classical one. Precisely this is the 

intension and the content of the so-called correspondence 

principle in physics (originally advocated and demanded by 

Niels Bohr).

Definit ion 4.1

Following Mackey (1963), ue call an observable oc a question 

if, in every state (|), the measure is concentrated at the 
points 0 and 1, i.e. if ^(£0, 1 J) = 1 for all if. U shall 

denote the set of all questions.
----------o-------------

2
Ois, of course, a question if = oc.

In order to concretize the meaning, let E G B(R) be any 

Borel set on the real line and ^(x) = 1 if x € E and zero 

otheruise. Then 5T^(oc) is obviously a question, because it 

is an observable uhich yields the value 1 uhen a measure-

ment of ol  yields a value in E and the value 0 in the com-

plementary case. In this sense it corresponds to asking the 

(yes - no) question: Did the measurement of ex lead to a va-

lue in E? This particular question shall be denoted by . 

Uith ex fixed, represents a family of questions parame-

trized by E; and this family determines oc uniquely.
Nou, let Q be any question, any state and ^({ij) = s; 

then (fQ({0}) = 1-s, and for any set E G B(R), ^^(E) = 0, 

1,s or 1-s according as neither 0 nor 1 is in E, both 0 and 

1 are in E, 1 is in E but 0 is not, 0 is in E but 1 is not. 
Hence, (|)n is completely determined by s = ^({1}).

Defining m^Q) as mij) be a certain real func-

tion on the questions. It is these functions m^ that define 

a natural partial order in Q; thus:

Q-]^32 s for 311

(Q Q 2 ) A(Qq ^Q^) — (Q 'i 3) J

Q for every Q;

(Q^^) A(Q2<31) =>(Q1 = Q2).
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Valid is also the implication:

is a question) (1-Q is a question).

Q and 1-Q, unlike pairs of questions in general, are both 

functions of the same observable, namely Q, and hence can

be asked simultaneously. If Q 1-Q^ or> e3ui-valer|t ly, if 
+ m^CQ^) “ 1 f°r s^a^es t» ue shall say that Q^

and Q2 are disjoint , for which we put meaning phy-

sically that and Q^ cannot have simultaneously yes-ans-

wers.

Since Q has been found to be a poset, it is clear that

Q----->-1-Q is an orthocomplementation in OQ. The orthocomple-

mented poset Q of all questions plays here the role played 

by the phase space in classical mechanics, which is consi-

dered to be the logic of the physical system.

Hence, the difference between quantum mechanics and classi-

cal mechanics is that there are non-simultaneously answera-

ble questions in quantum mechanics, i.e. Q is not a Boolean 

algebra in quantum mechanics. The following postulate states 

positively what Q is.

Fundamental postulate of quantum mechanics

The partially ordered set of all questions, Q, in quantum 

mechanics is isomorphic to the partially ordered set of all 

closed subspaces of a separable infinite-dimensional Hil-

bert space H.

It represents a generally accepted plausibility axiom with 

a rather abstract content. The isomorphism may always be 

chosen such that if Q corresponds to the closed subspace M, 

then 1-Q corresponds to the orthogonal complement fU-, In 

doing this one may conveniently identify each closed sub-

space with the projection on that subspace.
Now, Gleason (1957) has proved that every measure on the

questions arises from the state on the assumption that

there exists a state ij) such that 

question different from 0. It is

= 1 i f Q is

easy to see that

any

the sta-

tes which define measures on the questions of the 

where |) is a unit vector in H, are pure states.

On the other hand, each observable defines and is 

form m,,

defined

by a question-valued measure, and all question-valued mea-
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sures occur. But we have already identified the questions 

with the projections in H. Hence, the observables corres-

pond one-one to the projection-valued measures in H, and 

these correspond one-one to selfadjoint operators.

Let A be any selfadjoint operator in H, a unit vector 

and E a Borel set. Uhat is the probability that, in the 

pure state defined by c|), a measurement of the observable, 

defined by the operator A, will lead to a value in E?

The spectral theorem associates with A the projection-fl
valued measure P . The projection associated with the 

question: Does the value of the observable lie in E? - is 
then P?, and the probability is (P^cJj ,^) .

The general situation is then the following:

- The observables correspond one-one to the selfadjoint 

operators in a separable oo-dimensional Hilbert space.

- The pure states correspond one-one to the 1-dimensio- 

nal subspaces of the Hilbert space H.

- Inorderto find the probability distribution of the 

observable cc defined by the selfadjoint operator A

in the pure state defined by a 1-dimensional subspace, 

any unit vector tb in the 1-dimensional subspace isA
chosen. If we denote by P the projection-valued mea-

sure associated with A by the spectral theorem, then 
the desired probability distribution is E—>-(P^(^),£).

- Every state is a (possibly infinite)‘convex combination 

of pure states.

To see how the operators may play a direct role, let us 

compute the expected value of the observable defined by the 

operator A in a state defined by . This is given by 
p oo

xdju( x) ,
-oo

where jj  is the relevant probability measure, i.e. 

But, by the spectral theorem 
f xd(P^,(|)) = (A^,$)).

V _oo

E

(4.7)

Hence, the expected value in question is the scalar pro-

duct ( Aij), t|)) .

'Jhen A and B are two non-commuting operators, then there 

are limitations in the degree to which the probability 

distributions of the corresponding observables may be 
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simultaneously concentrated close to single points. A 

quantitative measure of the degree of dispersion of 

an observable io a given state can be obtained by ta-

king the square of the difference between the observable 

and its expected value. Uith A as the relevant operator 

and t|) as the unit vector defining the state, the disper-

sion S( A, (p ) is such that

S2(A,f) = [Ta - (A(f>),0)2<f,
= £A2 - 2( A(4>) A + (Aif , if) 2) if, ifQ

= ( a2 (<p ) ) - ( A (<f>) , <f>) 2

= ||(A - ( A(f) , if)) f ||2.

Hence S (A, t|>) = |(A - (A( if), <p)) f j. (A.8)

Ue are now in a position to derive a lower bound for the 
product S ( A, (p) S (B, (p) with A and B selfadjoint, £p being 

in both their domains and such that A(cp) is the domain of 

B and B(<p) in the domain of A.

[T imaginary part of (A (<{>), B( if )j] = ( A( (f), B( f))-(B( f), A(if))

= ( (BA-AB) (f) ,if). (4.9)

Thus, = | (( BA-AB) (if), if) | §( A, fi )£( B, if), (4.10)

'fi being the reduced Planck constant and m *>>  1 a size 

constant. Inequality (4.10) is a precise form of the fa- 

mus Heisenberg uncertainty relation in terms of operators 

and unit vectors.

The whole analysis leading to this result is due to Mackey 

(1963). It reflects - above all and quite well - the mea-

suremental question-reply feature of quantum mechanics in 

Hilbert space.

4.1 Complex fuzzy uncertainty versus quantum mechanical 

uncertainty

Under the different models of the algebra of logic there 

are models motivated by physical or psycholgical arguments. 

One of the most satisfactory mathematical models of the 

external world results when we choose a conservative dyna-

mical system furnished with a finite number of degrees of 

freedom and dealt with in classical mechanics. It applies 
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both to the Newton mechanics of n-body systems and to the 

Maxwell-Boltzmann theory of gases. In such a system ZZ the 

state at time tQ is expressed by 6n real numbers (3n posi-

tion and 3n momentum coordinates). This description is com-

plete in the sense that the state of ZZ is at any later or 

earlier time than tQ determined by these numbers and by 

the laws of attraction and repulsion. Thus, the state (or 

phase) of may be represented by a point in a 6n-dimen- 

sional cartesian space. This space is, therefore, called 
the phase space A of .

Each attribute (see Appendix 1) of 2Z defines hence a set 
in A: the set of all states in which ^3 has the given attri-

bute. According to the Boolean logic, there should be a 
one-one correspondence between the subsets of A and the 

attributes ofZT. But this is physically absurd; for, since 

the accuracy of measurement is limited, one can never de-

termine whether, for instance, the kinetic energy of at 

time t is a rational number or not. Not even Borelian sub- 
sets of Rz correspond to ’’observables” in the simple phy-

sical sense (and - as is known - these exist in extreme mi-

nority on the straight line). However, attributes having an 

accepted physical sense (e.g. temperature and pressure in a 

given interval) correspond to Borel sets of a phase space 

A of
This correspondence is also mathematically inconvenient, 

because it may prove to be incompatible with the principle 

of statistical mechanics demanding that every significant 
attribute have a (countably additive) probability. Probabi-

lity itself is a probability measure on the Borel algebra 

of attributes.

Definit ion 4.2

A G’-lattice is a lattice in which every finite or countable 

subset X = {xjhas a meet = infX and a join = sup X. A Boole-

an G'-lattice is called a Borel lattice, and aG-lattice, be-

ing a Boolean algebra for finite meets and joins, is said to 

be a Borel algebra. Its set-theoretical representation is 

given by

Theorem 4.1 (Loomis-Sikorski)

Every Borel algebra is a G’-epimorphic map of aG-field of 

set s •
----------Q------------

103



This statement expressed by means of general topology runs 

as follows:
Theorem 4,2 (Sikorski)

Let (ft be a Borel algebra and 5^ (1ft) its Stone space. Let, 

moreover, F be the (5-algebra of all Borel subsets of 6^ (1ft) 

and A the G-ideal of all Borel sets of the first category. 

Then 4ft is isomorphic to F/A.

More precisely: if 9 is the isomorphism of (ft onto the sub-

field of clopen subsets of<5,^.(tft), then the concatenation

(ft——?-F—->• F/A (4.11)

is an isomorphism.
----------o------------

From (4.11) we immediately deduce the statement (which we 

will meet again in Chapter 7):

The elements of (ft correspond to clopen subsets 

of ((ft) f while the prime ideals of 1ft corres-

pond to the points of (5^ (tft).

Being based on Boolean algebra, it is important to note 
that the logical model of classical mechanics (and even 

more so quantum mechanics) is subject to distributivity 

limitations; indeed, the improved v.Neumann model is on-
ly (weakly) countably distributive. From this we may con-

clude that the algebra of attributes is a topological lat-

tice, a property enjoyed by all Borelian ‘algebras.

This is reason enough to look somewhat closer at the dis- 

tributivity property.

Every field of sets is a Boolean algebra; also, every Boo-

lean algebra can be represented as a field of sets, that 

is, for every Boolean algebra (ft there exists a space X and 

an isomorphism of (ft into <ft(X), i.e. a one-one mapping h of 

1ft into tft(X) which transforms the Boolean operations onto 

the corresponding set-theoretical operations.

More exactly, H.H. Stone (1936a) has proved that, for eve-

ry Boolean algebra (ft, there exists a totally disconnected 

compact topological space X such that 1ft is isomorphic to 

the field of clopen subsets of X. The space X is determined 

by (ft uniquely up to a homeomorphism and is called the Stone 
space of(ft. However, Stone's representation theorem solves 

the representation problem for Boolean algebras from the
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Clearly, an element A is called the join of an 
{A^ teT elemer,ts of (X provided

(j^) A^CA for every t

(j2) if At CB £ d for

We write then

that

G T; and 

every tGT,

A = U A

point of view of finite Boolean operations only. But in 
every Boolean algebra Vt, one can also define the notions 

of infinite join and infinite meet uhich are Boolean ana-

logues of the set-theoretical union and intersection of 

infinitely many sets.

indexed set

then Ac8.

(4.12)
t G l

Also, an element A is said to be the meet of an indexed set 

of elements of U provided that
(m^) for every t £ T; and

(m^) if BGA^, B G , for every t G T, then 

B CA.

We write then
A = I I A. . (4.13)

tGT t

The join and meet of an infinite set of elements of 

do not always exist; if they exist for every -Ht-indexed 

set of elements of then is called 4H-complete, where 

Kt- stands for an infinite cardinal.
Nou, the Stone isomorphism h of a Boolean algebra Vt onto 

the field of all clopen subsets of the Stone space X of<J^ 

does not transform infinite joins and meets into the cor-

responding set-theoretical unions and intersections. Indeed 
if (4.12) holds, then h(A) is not the set-theoretical union 

of all the sets h(A^), t € T, except when the join (4.12) 

is not essentially infinite. The same remark is true for 

infinite meets. Both remarks follow easily from the compact 

ness of the Stone space.

The Stone space fails if infinite Boolean operations are in 

volved: For every infinite cardinal M4, there exists an 

M-complete Boolean algebra which is not isomorphic to any 

Kt-field of sets. This circumstance is connected with the 

fact that not all identities true for infinite set-theoreti 

cal unions and intersections are true for their Boolean ana 

logues: 00-join and oo-meet. An example of such an identity 
is the infinite distributive law (see Sikorski (1961)):
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Fl kJ A
te? ses ’

uT n
fe3 teT

At,f(t)> (4.14)

where S denotes the set of all mappings from T into S. 

Identity (4.14) holds for set-theoretical operations but, 

in general, it does not hold for infinite 3oolean opera-

tions. It is possible that all ao-joins and od -meets in 

(4.14) exist, and yet the identity does not hold.

Ue conclude that, for classical mechanics, distributivity 

is limited to finite-dimensional spaces, while for quan-

turn mechanics it fails even in the finite 

the algebra 

ra whenever
(i) the

nal

(ii) the

nal

of dynamical systems is never

regime. Thus, 

a Boolean algeb-

is oo-dimensio- 

failure, 

finite-dimensio-

finite-dimensional 

datur and distribu- 

the zero of the al-

space underlying such systems

- owing to the distributivity 

system is quantum mechanical,

or not - owing to distributivity failure

(iii) the system is complex fuzzy, 

or not - owing to tertium non 

tivity failures. In this case 

gebra is an isolated point.

Thus, these restrictions violate axioms L5,L6 and L7 of the 

Boolean algebra; the logic of such systems can, therefore, 

be only a non-Boolean lattice giving rise to gaps in the 

original Boolean algebra for simple systems and to associa-

ted uncertainty relations.

Let us recall for the sake of completeness that one of the 

fundamental features of quantum mechanics in Hilbert space 

is the non-commutativity of any two self-adjoint operators

PQ - QP = (4.15)

The following are the essential analogies and differences 

between quantum mechanics and complex fuzzy cybernetics 

at a glance:

A. Formula (4.15) is comparable to the expression (3.4), 

both the left hand sides and the right hand sides, res-

pectively; moreover, the right hand sides have each a 

virtual content, the incompatible quantities in each 

case being on the left. And yet: (4.15) expresses the 

non-commutativity of operators in quantum mechanics, 

while (3.4) expresses the non-complementat ion of sets
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in complex fuzzy cybernetics.

B. Formulas (4.5) and (3.0) express the respective uncer-

tainty relations;

(i) both are inequality relations;

(ii) they are product relations of"complement ary" 

quantities in the language of functions;
(iii) h is the universal Planck constant, while

H is a mathematically derived negligible set, 

fixed for a given od -dimensional Banach space;
(iv) the inversions of the factors on the left hand 

side in (3.8) stand for the measures of precision 

and relevance of measurement.

C. The spaces underlying quantum mechanical systems and 

complex fuzzy systems are,respectively,oo-dimensional 

separable Hilbert spaces and oo-dimensional non-refle- 

xive Banach spaces. The former rejects distributivity 

and accepts weak modularity instead; the latter rejects 

the laws of the excluded middle and of distributivity. 

The mathematical methods in both cases are functional 

analysis and topology; Gleason measure rules in quantum

mechanics and Sugeno measure in complex fuzzy systems.

D. Neither of these systems accepts classical logic: quantum 

systems require a Birkhoff-v.Neumann logic which has no 

implication operation but up to six implication rela-

tions, complex fuzzy systems comply with Tarski*s  cal-

culus of systems and, algebra-wise9the Brouwerian latti-

ces with unity. The consequences are: the appearance of 

"gaps” and the invalidity of two laws of logic specified 

under C,

It is appropriate to point again to the bounds h and H: 

they are different and have different origins, H being 

the finer and higher allocated one of the two.
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CHAPTER 5: PRINCIPLES OF MEASUREMENT

It is common knowledge that empirical disciplines and stu-

dies depend - in a fundamental manner - on measurement,ac-

tually on measurement and on a complementarily associated 

theory. This is specifically true of non-classical systems 

with an inherent uncertainty relation, such as quantum me-

chanics or complex fuzzy cybernetics, when determining the 

state of such systems at a particular instant of time. 

Simply speaking, measurement is an objective empirical pro-

cess of associating real numbers to entities of the real 

world in accordance with a well defined rule. This rule is 

supposed to be such that the number allocated to an entity 

describe that quantity very closely. In this connection, 

events are conceived of,deterministically, as observable 

temporal changes of the quantities measured and, probabi-

listically, as sets which are probable in the frame of a 

Boolean algebra. This is depicted in the following diagram.

Representation of the measurement process
(after Finkelstein)

Legend:

Q := a nonvoid class of non-mathematical quantities q^, 

i = 1,2,...,k;

R := a set of empirical relations R^, i = 1,2,...,k;

N := a subset of the set R of real numbers;

P := a set of numerical relations P^, i = 1,2,...,k;
Q = <Q,R>;

N = <N,P>;

M: Q-—is a homomorphism of Q into N;
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F: R—»-P is a one-one mapping;

S = <(u,N,H,F> is called the scale of measurement.

It is necessary that 1*1  be a uell defined operational pro-

cess, addressed as "measuremet procedure” for measurements 

on the scale S of measurement. In general linguistic usage 

ni € N is called the map of q. € Q under 1*1;  consequently 

n. = M(q.) is the measure of q. on scale S.

According to this symbolism, there exist - in general - 
other mapping processes from Q to N, for instance 1*1':  Q—>-N 

such that M(q^) - l*l'  (q^) either for all q. £ Q or for

£ Q' with QZC Q. Every such process is a measurement 

procedure on the scale S.

5.1 Topological and measure-theoretic foundations of clas-

sical measurement

As already stated, the basic problem of classical measure-

ment consists in the allocation of a real number to each 

test or measurement datum in such a way that the totality 

of data is mapped in the set of real numbers under conser-

vation of the natural order on the data. The problem pre-

sents itself mathematically thus as an isomorphism-problem 

(equivalently as a similarity-problem). The most fundamen-

tal of questions that may be asked here is:

Under what conditions may a completely ordered 

set X be mapped - order-faithfully and topologi-

cally - in the set N of reals?

The answer to this question is:

The required mapping is possible iff there exists 

a countable subset Y in the completely ordered 
set X such that every closed interval [a,b]con-

tains a point y € Y, i.e. iff >S^{a y -^b}.

In this sense any point is closed and the space

is a topological T^-space.

It should be noted that the analysis involves a set theory 
including the axiom of choice (see Kaaz (1977)); also the 

binary relation‘^"is said to order the chosen set X comple-

tely whenever is transitive and exactly one of the state-

ments: a-Cb, a = b, a7*-b  applies (Ellis' condition!).
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Definitian 5. 1
Relation ^(defined by (x^y) = (y = x uy)) ordering the 
set A and relation ordering the set A*  represent simi-

lar orderings (i.e. A and A*  are isomorphic to one another) 

if a one-one mapping f of the set A onto the set A exists 

such that the equivalence:

(x^y) = (f(x) *£  f(y)

is satisfied; i.e. if the following equivalence holds:
x entails y in A = f(x) entails f(y) in A*.

----------o------------

Remarks
(i) A one-one mapping f is defined by (x^ £

(f(xp / f(x2)) or else by (f(x^ = f (x9) )=>( x1 = x?) .

(ii) The similarity-relation is an equivalence-relation.

(iii) Two similar sets have the same cardinal number.

Theorem 5.1

Every countable set A, linearly ordered by is similar to 

a subset of the set Q of all rational numbers ordered by 

Proof:

The case of A finite is trivial, so we shall provide the 

proof for A infinite only.

Let set A be put in the sequence a^,a^,•.•9a^,..., where 
a^ £ a... Ue define the one-one function f so that its ar-

guments run through A and its values through Q. Ue also 
postulate: f(a^) = 0, f(a2) € Q and f monotone, i.e.

f(a2) zlf(a^) if a2>-a>] - antitone case, and 

f(a2) >-f(a^) if a^-/a2 - isotone case.

The inductive definition of the number f(an^) runs as 

follows:
(i) If follows all elements a^,a2,. ..,a^ in A, then

f(an+P E Q is smaller than all values f (a>|), f (a2), 

...,f(a ) - the antitone case;

(ii) in the isotone case: if an+>| follows all elements

a^, a2, ..., an, then f(an + P follows all values f(a^), 

f(a2),...,f(an);

(iii) if neither (i) nor (ii) apply, then let a^ be the 

latest of all elements a,a9,...,a^ which precede a^ 

and a^ the earliest of these elements following an+-|

In this case we shall assume that
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f(an+J » 5<f(ak) + f(am)).

This function is obviously one-one and it transforms, 
for every n, the set {a,a^,...,a^similarly onto 

the set {f ( ), f ( a2), ..., f (an+1)}. For, when a^ a^

and n + 1>i,j hold, then we conclude from the simila-
rity of the sets £a,a2,...,aq+i} and {f(),f(a2), 

• • • > an+i)} that F(ai)<f(ap holds.

Now, f is monotone and one-one in virtue of the construc-

tion; Q is densely ordered and V? is continuously ordered 

in the sense of Dedekind and densely ordered and provided 

with nonvoid initial intervals having upper limits as well 
(see Kuratowski (I977)p.76).

We may now extend f from the ordered set A = Y to a linear-

ly ordered set X (the set of entities to be measured), na-

mely so that f will turn into a monotone homeomorphism (i.e. 

f and f” continuous). This is of great observational im-

portance for the insight into the structure of X and the 

theory of measure on X, because - as is known - topology is 

the study of the geometrical objects which remain unaltered 

(invariant) when subjected to one-one and bidirectionally 

continuous transformations, i.e. to homeomorphisms. More-

over, topology deals with more general notions than analy-

sis; thus, topology is - for a given transformation - in-

different towards differentiability properties; what counts 

are continuity and the one-one-ness of functions.

In the completely ordered set X several topologies are fea-

sible, but - in the main - the order topology and the inter-

val topology. We call a subset Y of X an interval whenever 

y C Y follows from x<y^z for x,z C Y. Intervals will be 
denoted in the usual way (open, half-open and closed) as 
(a,b), (a,b], (a,b) and Ca.£l» a^b. A point will be looked

upon as a closed interval. An interval which with every x 

contains all y«^x, is said to be a segment; this will be de-
noted by A(x) = {u: u-c^x}. A(x) represents obviously an open 

interval.

Definition 5.2

Let X,Z be completely ordered sets. Then f: X—*-Z  is said 
to be a weakly monotone mapping if ( f (x^)-< f (x2) ) —>-( x^C x2) 

holds, and monotone if ( f ( x^) «<f (x2)) = (x^<x?) holds.
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Definition 5.3
Intervals [a,b] generate the topology 7^ and tne open in-

tervals (a,b), A(x) and {x: a< x} generate the order topo-

logy !T (also called interval topology).

In general 7*C^.  Moreover, the notions open, 

tinuous and semi-continuous (without suffix) 
to T.

closed, con- 

always refer

o

The sets A(x) generate a6-algebra with Sorel sets as ele-

ments, on which finite Borel measures ju are defined. 'Je 

now impart an order structure oo the set of all Borel

measures on X.

Definit ion 5.4

Let X be a completely ordered set, 7JZ the set of normed 

Borel measures (ju(X) = 1) on X and Jj (A(x )) = F(x ,jj ) for 
every jU G ®Z, where F: XxHl-----*-I,  I = [o,l], is assumed to

be weakly monotone (respectively monotone).

Ue also postulate jU-^V iff F(x,v) ^F(x ,jj ) for all x G X.

Ue say that the sequence {junJ converges toJJ G if 

F(*,ju n) converges pointwise to F(.jju).

Under these assumptions is a partially ordered set.

o

For an insight into the structure of X the following con-

ditions must be fulfilled.

Lemma 5.2

Let f: X—>1 be a weakly monotone (resp. monotone) conti-

nuous mapping (more precisely: a monotone homeomorphism) 

and 77Z- a set of Borel measures JU. In virtue of
(jj ) = jf(x)djj(x) ,

ju I—^-Lf.(yj), mapping 'TIL into I, is a weakly monotone (resp. 

monotone) function, and we have

= limEpQu^) for every

o

The proof presents no difficulties if we use the rules of 

integration; we shall spare it here and turn instead to the 

necessary and sufficient conditions for the existence of 

this monotone homeomorphism under various aspects of connec-

tivity of the set X, considering I and R to be connected 
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spaces.
A closed interval Ca,b] of a completely ordered set uith a 

void interior ((a,b) = 0) is apparently called a gap. How-

ever, the completely ordered set is connected uith respect 
to its topology f iff every upper bounded nonvoid subset 

has an upper limit and is gapless. Every continuous and 

real-valued function on this set has the Darboux proper-

ty, i.e. it moves betueen tuo values through all interme-

diate values. This is actually a characteristic property of 

connected spaces.

The solution to the posed problem is - in the case of com-

pletely ordered connected sets - practically solved uith 

the help of the follouing 
Lemma 5.3 (N. Bourbaki)

A completely ordered connected set may be monotonically and 

homeomorphically mapped onto a real interval iff it is se-

parable, i.e. iff it contains a dense countable set.
----------o------------

For example, !R is separable because Q is a dense countable 

subset of R.

A more general study should, houever, include the cases of 
totally (and even extremally) disconnected completely or-

dered sets. To this end, let us choose the set N and form 

the cartesian product N = N^xN^x... . This may be lexico-

graphically ordered as follous:

(n 1 ,...)-<(m,j,...) is true iff the implication 

(n.=m. for i<j and n . ^m .) •-—>• (n . < m . ) holds.
1 1 0 0 3 0

Hofmann (1963) has shoun that J*  and the Tichonov topology, 

or product topology, coincide on N, and he obtained the fol-
louing result.
Lemma 5.A

A completely ordered compact and totally disconnected set 

uith a countable basis for J may be monotonically and ho-

meomorphically mapped in the set R of reals.
----------o------------

This statement holds also for extremally disconnected Ti-

chonov spaces uhich are O-dimensional, because the notions: 

total disconnection, 0-dimensionality and strong 0-dimen- 
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sionality coincide in the domain of completely ordered com-

pact spaces (see Engelking (1969)).

Ue should nou attempt to combine Lemmata 5.3 and 5.4; in 

this ue uill succeed only if ue go over from the complete-
ly ordered set X to the quotient space X'= X/<d , uhere is 

the connectivity relation. In virtue of the class formation 
X' is totally disconnected, and the quotient topology of X' 

coincides uith IF on X'.

Moreover, if X is completely ordered and separable, then 

X is monotonically homeomorphic to a subset of the lexico-
graphically ordered product Xzx I. Hence, X has at most 

countably many connectivity components (see Kuratouski 

( 1977) p. 214), i.e. g ( X) A ({, z} xl) has more than one point 

for at most countably many z G X' since every connectivity 

component ^(x) is monotonically homeomorphic to a real in-
terval, a monotone homeomorphism f : (D (z) >■ I exists for 

every z £ X'and g: X—>XzxI is defined by 
g(x) = (?(x),f /(x)).

In addition, the mappings xi—>(3<x), g and f^ are continuous. 

If X contained uncountably many disjoint nonvoid intervals, 

no countable set could be dense in X. Hence follous further: 

if X is completely ordered and compact and has a countable 
basis for J", then X' is monotonically homeomorphic to a com-

pact subset of I and contains a countable subset Y such that 
X is monotonically homeomorphic to the subset (X' x{0})U(Yxl) 

C Xx I.
The structure of X' is characterized in Lemma 5.4. Because 

of the compactness of X, all connectivity components are 

homeomorphic to I. The totality of points z £ X , for uhich 
(d“\z ) consists of several points and for uhich fz has been 

chosen as monotone homeomorphism, constitutes the set Y, 

uhile fz(z) = for z T.

This confirms the above statements.
The mapping of the set X = (X*x(0})  L/(Yxl), monotonically 

and homeomorphically, into the set of reals is nou effected 

by
Lemma 5.5
Let Y be the countable set £ r^, r?f • • J-1 that Borel
measure on I uhich is defined by jj(r^) = 1/2^ , E(x) =

= Ju(A(x)) = S{1/21+1: r.<x} and X = (X'x£o}) U (Yxl).

Then, there exists a monotone homeomorphism f: X----->>1.
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P roof£
Under ths assumptions of Lemma 5.5, F is ^-continuous, and 

in virtue of F(x+0) = limF(y) and on approaching from above 
ue get F(x+0)— F(x) = l/2^+^ in case x = r^ and = 0 other-

wise.
Ue put nou f(x,y) = |(x + F(x) + y(F(x+0) - F(x))). f turns 

out to be monotone since ue aluays have f (x, y) «< f ( x', y').

The continuity of f follows from the continuity at the 
points (z,0) and (z ,1) with z G X'in the first case and 

z € Y in the second case. Hence follows the continuity of 

f. Ue ask now: when does X have a countable basis for

Lemma 5,6

Let X be a completely ordered set and Y a countable subset 
such that a u G Y [a♦ b] , with a<b, always exists. Then, 

X has a countable basis for its topology.

Proof:
Ue list all interval sets and the allocation of x £ X to 

them; the proof follows fom this scheme.

Since every gap contains an element of Y, their number can

be at most countable. Let L be the set of all points belon-

ging to gaps, and let
3 be the set of all intervals (u,v), u«<v; u,v G Y;
J? be the set of all intervals (u,vl , u-^v; ueY, v«sL;

3^ be the set of all intervals [u,v), u4v; uGL, veY;

3^ be the totality of sets consisting of a single iso-

lated point.

The union of 3^ is contained in L. J,3and their 

union 3 are all countable.

Also assume that x G X has an open neighbourhood U; conse-
quently, there must exist elements a,b £ X with x G (a,b) 

CU. If x is an isolated point, then £x"} C3 is a neighbour-

hood contained in U.

For x non-isolated we get:
(i) If x^L, then, for a <a'< a"<x<b'<b/<b, we

have u G [a' , a"J v G [b”, b^J HY; in this case

(u,v) is a neighbourhood of x in 3 contained in U.
(ii) If x C L is isolated from below, then, for a-<a'-<_ 

-Ca'Cc^x and u £ [a' , a'^J H Y, (u,x] is a neighbour-

hood of x in 3 contained in U.
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The careful considerations so far, extending over Theorem

5.1 and the Lemmata 5.3 - 5.6 and supported by the prin-

ciples of the theory of measure and of topology, culminate 

now in the following important theorem due to Hofmann (1963).

Theorem 5.7 (Hofmann)

The following two statements are equivalent with respect to 

the completely ordered set X:
(1) X contains a countable subset Y such that there exists, 

to every pair of elements (a,b), acb, always an element 

y € Y such that a^y^b.
(2) X may be monotonically and homeomorphically mapped into 

the set of reals.
----------o------------

This theorem and Lemma 5.2 yield jointly

Corollary 5.8

Let X be a completely ordered set containing a countable 

subset Y such that Y cuts every non-trivial closed inter-
val [a,b]. Moreover, let TO be a set of normed Borel mea-

sures on X, which is ordered in accordance with Definition 

5.4, part 2.

Then there exists a monotone sequentially-continuous map-

ping of TO into I.

Proof_of_Corollary 5.8:

Theorem 5.7 ensures the existence of a monotone homeomor-

phism f: X—. Consequently, the mapping ju|—of TO

in I, used in Lemma 5.2, is monotone, and from

lim jj = ju, in accordance with Definition 5.4 
n-^oo

follows E^Qj) = Ef>(pn).
n->ao

With respect to any Borel measure ju € TO, f represents a 

random variable in the ordinary sense; its expectation va-

lue is p
Ep(ju) = JrdFo(r,ju) - a Stieltjes integral, 

while the distribution function r|—>-FQ(r,jj), belonging to 

f, is defined by Fq (t ,jj ) = ju£x: f(x)<r} and F(x ,jj ) = 

= FQ(f(x),jj). :thus, with respect to TO, the theory of mea-

sure on Y coincides with that on R.
Remark

If we define new spacial relations on the completely orde-
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red set X, then corresponding relations should also be in-

troduced on R and the measuremental isomorphism ensured a- 

neu; this constitutes the problem of meaningfulness dis-

cussed in the Introduction. Such a relation is, for example, 

(x,y)i------ *-xy;  in this case a monotone homeomorphism f:X—X2

satisfying f(x) + f(y) and the operation of addition has to 

be found on R. However, we do not intend to pursue this 

problem any further.

If we want to realize the considerations of the Section 5.1 

in actual physical measurements, then - for lack of abso-

lute accuracy of measurement - the probability theory may be 

resorted to. A probability algebra is, after all, nothing 
else but a measure algebra in which we put p(T) = 1. Indeed, 

by means of m(l) / 0 one obtains from a measure algebra a 

probability theory via the relation p(x) = j. Thus, the 

two theories are co-extensive on the algebraic level.

5.2 A mathematical realization model for measurement

The theory presented in Section 5.1 is an exact description 

of the realization model covering the data store, the mea-

suring procedure, the measured values and a secure method 

of measurement with statistical aspects.

The data store

The simplest method of investigation in the measurement of 
properties (attributes), such as weight or elasticity is 

that of comparison; for this a class of objects (e.g. the 

class of all weighable objects) is assumed. If two objects 

from the full class are given, then it is possible to deter-

mine by means of a weihing machine which of the two objects 

is the heavier one. Objects, for which both a^b and b^a 

hold, cannot even in principle be distinguished; we consider 

them, therefore, as equivalent, and the set of thus formed 

equivalence classes is said to be the data store for a defi-

nite property (e.g. gravity). The name ’’data store” seems 

rather appropriate; it does remind of the allocation of 

pharma products to drawers in a pharma store.

Thus, the data store for the weight consists of the totali-

ty of classes of iso-gravitational bodies. It is obviously 

a totally disconnected and completely ordered set. This way 

of identification has proved to be most useful in mathema-
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tics, especially in the deficit ions of real numbers and of 

Schwartz-distributions.

The measurements

The exact ordering of objects - with respect to a property - 

in a class of the data store is practically impossible; this 

is due to the general inexactness of any practical measure-

ment. To the approximate localization of classes corresponds 

mathematically a probability distribution^ on the data 

store. If A is a subset of the data store, then jj (A) indi-

cates the probability that the object in question belongs 

to a class within A. It is for this reason that the probabi-

lity distribution on the data store is called a measurement. 

The measurements are those mathematical objects which des-

cribe the technically accessible information.

The comparison of two measurements should correspond to the 

comparison on the data store in the sense of the theory. 

From two measurements ju and ju is the smaller one if, for 

every class x of the data store, the probability of finding 

a class u under x is greater for jj  than for V. In this case 

we write ju-<-9. Ue have thus also established an order rela-

tion on the set of measurements, but this order is cruder 

than the order on the data store.

The case of absolutely accurate measurement is, of course, 

contained in the probability model; it corresponds to a pro-

bability distribution allocating precisely to one class x 

from the data store the full probability 1 and to the com-

plement the probability 0. The set of all absolutely accu-

rate measurements is identical with the ordered data store. 

This is but another definition of the data store.

The measured values

Measurement associates, in a reasonable way, a real number 

to a datum. The rule of such an association is considered 

as sensible if the smaller datum on the data store X is al-

located the smaller real number.

A rule of association f, mapping X monotonically into the 

set of reals, has been called a measuring procedure (in 

automatic control: the method of measurement). At the same 

time, data lying close to one another should correspond to 

real numbers in close neighbourhood. This requirement is 

equivalent to the continuity of the function f.
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Ue have practically only the measurements at hand, but this 

is not enough to allocate a real number to every datum be-

cause not every data store allows a measurement procedure. 

In any case, measurements are probability distributions 

and not numbers nor data. 3ut when a measurement procedure 

f is mathematically ensured, then we can associate to every 

measurement jj  a real number, namely the expectation value 

with respect to the probability jj 1.
E_.(jj ) is the mean value for the measurement jj  when measure-

ment procedure f has been used; we call it the measured va-

lue of measurement jU obtained by means of the measurement 

procedure f.

Inspite of the fact that the measurements are not always 

completely ordered, the measured values and their order 

usually turn out to be valid means for describing the struc-

ture of the set of measurements. If a measurement jj  is small-

er than a measurement "p, then the measured value of jj  is 

smaller than that of V; and if the sequence of measurements 

approaches a certain measurement, then the sequence of the 

associated measured values approaches the measured value of 

the limit measurement as well.

In case of absolutely accurate measurements, the measured 

value of measurement ju is precisely the number f(x) since 

(5.1) yields the value f(x) for a Dirac functional at point 

x. Thus, in case of absolutely accurate measurements the 

basic measurement procedure coincides with the practical 

formation of the expectation values.

The fundamental problem in the mathematics of measurement 

remains the finding of the necessary and sufficient condi-

tions for the possibility of mapping - under conservation 

of order and topology - of a data store into the set of 

reals. This question has, theoretically, been clarified in 

the sense that such mapping is always possible if the data 

store X contains a sequence d^d?,... of data such that 
there is always a number n to every pair of data a,b (a-^b), 

satisfying the inequality a^d^^b.

5.3 Statistical aspects of measurement

For a practitioner, the probability-theoretical notion of 
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the measured value is not practical enough. An experimenter 

is not able to determine the measured value Ep(jj) of*  a mea-

surement itself; he must rather repeat finitely many times 

the measurement belonging to the probability distribution jj  . 
Above all, he has to form a more exact picture of the un-

known probability distribution from the experimentally ob-
tained numbers f(xp,f(x^),...,f(xn).

The extraction of finitely many numbers in the field of ex-

perimentation is called sampling and

m = ^(f(x1) + f(x2) + ... + f(xn)) (5.2)

is looked upon as a useful estimate for the unknown value

Ef(ju). For a better description of jj , one may also deter-

mine the variance from the sample; it is the number

2
s is necessary for the estimation of the integral

(5.3)

J( f ( x)-Ef( x)) 2dju( x). If m = JC and s^ = +0.002, then the 

estimation result isft+0.002.

The probability ju (£ a ^.f (x) b}) that, in the continued 

measurement ju, a number between a and b will come out, is 

generally set equal to ,

the probability measure defined by the random variable
j^(f(xp + ... + f(xn)) on the set of reals. Then, with

increasing n, this probability measure tends - under very 

general assumptions - to the probability measure of the 

normal distribution whose expectation value is E^Qj ) and 

whose standard deviation coincides with the variance 
varf(jj). It is necessary, however, to test the assumptions.var

5.4 Transition to non-classical measurement

In the classical theory of measurement expounded in Sections 

5.1 - 5.3, we have succeeded to map a completely ordered set 

X under conservation of its structure, i.e. monotonically 

and homeomorphically, into the set of reals. The solution 

of this isomorphic problem became possible by the introduc-

tion of algebraic relations in the set X. In general, mea-

surement is the act of mapping homomorphically a data store 
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X uith its given structure faithfully into the set of reals. 

A system of axioms describes the form of the structure; the 

choice of these axioms is, of course, left to the intuition 

of the experimenter. In this, the expedience and the success 

in the construction of the mathematical theory are conside-

red to be reasonably good guidelines.

Simultaneous measurement is aluays possible in classical 

measurement or, more correctly, in the measurement of clas-
sical systems, i.e. systems obeying classical logic (algeb-

ra). This is so because the joint distribution required for 

the attributes to be measured simultaneously exists in all 

classical cases.

The situation is entirely different in the case of non-clas-

sical systems due to the appearance of incompatible attri-

butes giving rise to indeterminacies and uncertainties;

since some of the Boolean axioms fail at the same time, the-

re can be no joint distribution for the variables involved. 

In reality, the original Boolean algebra for countable sys-

tems uill split incompatibly and uithdrau the possibility 

of determining the state of non-classical systems, even uhen 

partial determination of single attributes might be possible. 

Measurement uill loose its most important features: determi-

nateness and objectivity, for no other reason than the in-

compatibility of precision and significanc.e of measurement 

in the face of complex fuzzy systems. After the hard scru-

tiny to uhich measurement uas subjected in the great days 

of quantum mechanics, this is a trial concerning measurement 

alone and not in association uith quantum theory. Let us 

revieu the scenic setting in this case.

Complex fuzzy systems entail cd  -dimensional spaces and in-

validate several classical laus, notably the principle of 

complementarity, to uhich A.N. Whitehead has draun attention 

some decades ago. If Y is an oo-dimensional non-reflexive 

Banach space of closed subsets, hence topological, and L =
Y

=2 a topological hyperspace uith exponential topology 

and uith an isolated zero-element, then

£ = <L,U, H,—> uith A-i-B = A^B (3.1)

is a Brouuerian lattice uith unity YZ>A,B, and

MfiOH, A,HCZY (3.4) 
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is the non-complementat ion condition for measurement in 

complex fuzzy systems characterized by the uncertainty 

relation of measurement:

• Ay*(y)^  A.HCZY. (3.8)

The basic questions of interest are now:
(1) Does a measurement space facilitating the measurement 

on classical as well as nonclassical systems exist?
(2) Uhat are its properties?

Question (1) will be dealt with in Chapter 6 and question 

(2) in Chapter 7. The diagram below illustrates the situ-

ation.

Fig. 5-2

Representation of the measurement space.

Legend:

QM := quantum mechanical system,

CF := complex fuzzy system,

HU := Heisenberg uncertainty relation, 

nil := measurement uncertainty relation,

:= classical relational systems,

N := numerical relational system
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CHAPTER 6: METAMATHEMATICAL SYSTEM CONSIDERATIONS

Recall that formulas are propositional functions, i.e. ex-

pressions uhich may contain variables x,y,z,... and whose 

value depends on the values assumed by the variables. Hence 
sentences are formulas without free variables (true, false 

or indifferent; see Kaaz (1977)).

Let $(x,y) denote a propositional function of two variables 

x G X and y € Y. £x}, {x,y}, £x,y,z}, ... represent (aside 

of the void set 0) the smallest sets which we call: single- 

ton, doubleton, trebleton, ..., respectively. We shall dis-
tinguish between an ordered pair <x,y> = xj, {x,y}} C XxY 

= 2Z and an unordered pair {x,y]cXUY.

Now, any subset R CXxY is called a relation; we define it 
more exactly by R = {<x ,y>: |(x,y)J, and obtain thus the 

equivalence ^)(x,y) = xRy = <x,y^ £ R.

A function f is a special relation, namely:

Following Tarski ( 1935) in the development of his ’’calcu-

lus of systems”, we shall apply the following symbols:

S := the set of all meaningful sentences;

C(X) : = the set of consequences of the set X of sentences, 

C(0) being the smallest deductive system which is 

a subsystem of every deductive system;

x := the negation of the sentence x;

x----->y := the implication with antecedent x and consequent

y.
With the help of these notions one can define the concept 

of a deductive system, i.e. a set X of sentences containing 

its consequences as elements; in other words: C(X)CZX<ZS. 

On the other hand, by deductive theories we understand the 

’’models” or ’’realizations” of the system of axioms to be 

stated next. Since these axioms are expressed by the four 

notions above, any quadruple of notions satisfying all 

axioms of the system will be called its model.

The following five axioms suffice for the foundation of a 

general metamathematics:

(A1): 0< 5 Kq .

(A2): If x,y € S, then also x, x—>-y G S.
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(A3): The set of all valid logical sentences L = C(0)CIS.

(A4): If x,y,z € S, then (x—*-x) —>x € L, x—-> (x—^y) € L, 

and (x—>-y )—>■(( y—^-z)—>>( x—>-z)) e L.

(A5): The modus ponens rule is valid in L, i.e.

if x,x—^y L, y € S, then y e L.

The content of these axioms is simple enough to require no 

comment s.

Definitions 6.1 

(1) x + y ;= X ----- >-y and x*y  = x—>y for arbitrary x,y e S.
n n

(2) SZx. = 
i = 1 1

i7ixi X1 if n = 1 and x€ S;

n n-1 n n-1
= Sxi + xn and JJ^x^ = JJ1x£*x n if n is an

arbitrary natural number >-1 and • ••, xn 6 S.

(3) For an arbitrary set XCS, the set C(X) consists of 

such and only such sentences y € S that either y € L 

or there are sentences x^,X2» ...,x^ C X for which 
Sixi-*y  e L;

equivalently:
For an arbitrary set XCS, the set C(X) is the pro-

duct of all sets Y satisfying the following two con-
ditions: (i) L + XCZY;

(ii) if x,x—>.y € Y, y e S, fhen y €. Y.
----------o------------

c(x) is noe of the sets Y satisfying the conditions (i) 

and (ii) of Definitions 6o 1 (3); it is the smallest of 

these sets. Indeed, C(X) is the smallest set containing 

L and X, and it is closed with respect to modus ponens.

The calculus of systems

From the above statements we construct two calculi which 

will prove useful in metamathematical investigations: 

the propositional calculus and the calculus of deductive 

systems, the former being a complete, the latter a partial 

interpretation of the formal system of the algebra of lo-
gic (also called Boolean algebra).

Let us first introduce the necessary symbols and postulates.

B := the field of considerations;
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x^y : = object x is related to object y by inclusion;

x=y := object x is related to object y by equality;

x + y := the sum of objects x and y;

x»y : = the product of objects x and y;

0 := the null or void object;

1 := the total or full object;

x := the complement or negation of object x.

Postulate I: (a) if x 6 B, then xcx;

(b) if x,y,z € B, x<y, y-<z, then x«<z.

Postulate II: if x,y € B, then x=y holds iff xcy and y-Cx.

Postulate III: if x,y e B, then:
(a) x+y e B; (b) x<x+y and ycx+y;

(c) if, moreover, z e B, xzz and y-<:z, 

then x+y-cz.

Postulate IV: if x,y € B, then
(a) x»y 6 B; (b) x*y-cx  and x*y<y;

(c) if, moreover, z € B, z<x and z<y, 

then z«<x»y.

Postulate V: if x,y,z €. B, then (a) x-(y+z) = x*y  + x»z

and (b) x + y»z = (x+y).(x+z).

Postulate VI: (a) 0,1 € B; (b) if x £ B, then Q^Zx and 

x^Z 1 .

Postulate VII: if x € B, then (a) x G B, (b) x*x  = 0 and

(c) x+x = 1.

The system of the algebra of logic will now be extended by 

the following additional symbols:
SI y := the sum of all objects of the set X,
y€X

^^y := the product of all objects of the set X.

Postulate VIII: if XCB, then (a) SZ y € B; (b) x y
y€X y€X

for any x € X;
(c) if, moreover, z € B and

x<z for any x € X, then

y-cz

Postulate IX: if XCB, then (a) 77 y € B;
y€X

(b) J^^y^x for any x € X;
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(c) if, moreover, z 6 0 and 

z < x for any x € X, 

then z<TT y.
y€X

Postulate X: if XCB and x € B, then:

Postulates I-VII and all theorems following from them con-

stitute the ordinary system of the algebra of logic, while 

Postulates I-X and all their theorems constitute the ex-

tended system of the algebra of logic.

The calculus of propositions, more appropriately called 

’’algorithm of propositions”, will now be dealt with brief-

ly. The field of considerations of the algorithm of propo-

sitions is the set 5 with the relations of implication xDy 

and the equivalence x = y defined on it.

Definition 6.2

xoy iff x,y G S and x—>y e L;

x = y iff x^y and yz?x.

Theorem 6.1 (Tarski (1935))

Postulates I-VII are satisfied with the symbols used, 

except for the following substitutions:

B,-<, and = to be replaced by S,ZD , and 2, respectively, 

as well as 0 by u € S, u G. L, and 1 by v € L.

o

The symbols 0 and 1 .of the algebra of logic cannot be inter-

preted ’’effectively” under our premises because we are un-

able to define a single constant denoting a concrete sen-

tence.

Ue turn now to the calculus of deductive systems beginning 

with
Definition 6.3

Class (5 constitutes the field of considerations for the 

calculus of deductive systems, L is the void system, S 
the full system and X G (5 iff C(X)CZXCS, or else iff 

LCXCS and if the formulas x, x—>-y € X and y G S al-

ways entail y G X.

o

The calculus of systems is a very essential extension of 

the algorithm of sentences already owing to the above De-
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finition 6.3. Inclusion and equality between systems as 

well as the product of systems retain their usual and in 
the calculus of classes fixed sense. But the (logical) addi-

tion of systems, symbolized by ”+”, is not identical with 

the set-theoretical addition, which yields no new deductive 

system when applied to systems. Similar reservations apply 

to the complementation of systems.

Definition 6.4
The logical sum of systems X + Y = C(X + Y) for X,Y € <3 and 
the logical complement X = x ) F°r every X 6 <5 are

- as seen - different from the set-theoretical operations. 
Theorem 6.2 (Tarski (1935))

Let us undertake the following changes in all postulates of 

the ordinary system of the algebra of logic:

Variables x,y,z to be replaced by the variables X,Y,Z re-

presenting deductive systems;

constants B,C, + , 0 and 1 to be replaced by the symbols 
S, d, + , L and S.

Then all postulates except Postulate VIl(c) are satisfied. 

Its place takes now

Postulate Vll(d): If X,Y e6 and X»Y = L, then YCX.
----------o------------

The essential difference between the calculus of systems 

and the calculus of classes, for example, consists in the 
inadmittance of the tertium non datur law:. X + X = S (ex-

cept for the weak consequence of this law) to the calculus 

of systems. However, tertium non datur is valid either when 
the class (5 is finite or (equivalently) when the set S 

does not contain infinitely many sentences such that no 
two of them are equivalent. But if the class (5 is infinite 

(frequently occurring in general studies of concrete deduc-

tive systems), then there are systems which do not satisfy 

the tertium non datur law.

The failure of tertium non datur entails further consequen-

ces. The law of double negation is true only in one direc-

tion (XCZX); the treble negation, however, has full vali-

dity; thus, if X €(5, then XCX and X = X.

From the two DeHorgan laws only one is true, from the four 

laws of transposition two fail and two remain valid; thus, 
if X,Y e (5, then X+Y = xTy and 777 = X.Y,
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XCY entails YCX and 
X eV entails Y CX.

The formal analogy of the calculus of systems to the intui- 

tionistic propositional calculus is striking. Ue see all 

relevant statements of Chapter 1 confirmed; indeed, they 

were the ones which led us to the concept of the uncertain-

ty relation for complex fuzzy systems. Hence we conclude 

that the calculus of systems considered above and developed 
by Tarski in the years 1933/34 is a natural logical founda-

tion for studies of complex physical systems involving fun-

damental uncertainty relations in infinite topological spa-

ces.

6.1 Interrelation between general metamathematics and Boole-

an fields

General metamathematics is a special case of the Boolean 

algebra; there always exists, therefore, the possibility 

to formulate theorems of general metamathematics as theo-

rems of the Boolean algebra. This has, to a large extent, 

been enhanced by the work of N.H. Stone.

Definition 6,5
A quadruple T = {5,L, -} satisfying the axioms (A1) -

(A5) shall be called a deductive theory.

Definition 6.6
An ordered quadruple K = {.A,^, V, consisting of a non-

void set A, a 2-argumental relation n, a 2-argumental ope-
ration V and a 1-argumental operation ' , is called a gene-

ralized Boolean field if the following conditions are satis-

fied for any a,b,c € A:
(1) a^a,

(2) if a^b, then b^a,

(3) if a^b and b^c, then a^c,

(4) a',a\/b € A,

(5) if a<vb, then a'/x/ b*  and aVc^bVc,

(6) aVb^bVa,

(7) (a Vb) V crva V (b Vc),

(8) (a'Vb')V(a'Vb)'/^a.

These eight conditions constitute the system of axioms of 

the algebra of logic, comparable to the axioms L1 - L7 of 

the Boolean algebra in Chapter 1. If degenerates to the
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ordinary identity, then K is said to be a Boolean field.

In order to express the correspondence between a deductive 

theory T = {S,L,—and the generalized Boolean field 

Ky = Vy, the following interrelations are ne-

cessary: ____________________

(ii) a v-j-b = a—►b,

(iii) a ^>yb = a<->b € L.

Theorem 6.3 (Mostowski (1937))

(6.1)

If T is a deductive theory, then Ky is a generalized coun-

table Boolean field.
----------o------------

This theorem shows that it is possible to associate a gene-

ralized Boolean field to every deductive theory. The connec-

tion between general metamathematics and the theory of Boo-

lean fields is thus established. The converse implication 

can easily be obtained as well, but we have no need for it 

here.

Our primary concern in this subject.requires now several 

more definitions concerning the generalized Boolean fields 
K = and L = £b , = , + , *}.

Definitions 6.7
(1) As a general formula we have a»b = (a'vb*)'.

(2) A set I in K is said to be an ideal iff *1  is a nonvoid

subset of A and satisfies the following conditions:

if a € I and a^b, then b € I,

if a € I, b C A, then a-b e I,

if a,b £ I, then aVb € I.

(3) Set I is called a prime ideal of K iff I is an ideal 

in K, not identical with A, but every ideal J contai-

ning I is identical either with A or with I.

(4) a is said to be a generating element of ideal I iff I 

is an ideal in K, as I, and there exists an element

c of field K such that a<vb»c for every element b I.

(5) I is said to be a principal ideal of K iff I is an 

ideal in K and a generating element of I exists.

0

Definitions 6.8

(1) Given two fields K and L (as before), L is said to be
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homomorphic to K iff there is a relation R with domain 

A and range 0 having the following properties:

(i) if a, b € A, c,d G B, a^b, c = d and aRc, then

(ii) if aR b and aRc, then b = c,

(iii) if aRb and eRd, then (a V b)R(c+d),

(iv) if aRb, then a' Rb*  .

bRd,

(2) Field L is said to be isomorphic 
relation R in (1) also satisfies 

(v) 

This

to field K iff the

the condition:

if bRa and cRa, then b^c.

is actually the converse of
----------o-------------

With the above defined notions the intelligibility of the 

very important theorem that follows will present no diffi-

culties. A rigorous proof will be found in Hostowski (1937).

Theorem 6.4 (Tarski (1935))

Let T = £S,L,—>, -} and To = {SQ , Lg , -< , •} be two deduc-

tive theories, then the following consequences may be drawn:

(a) The set X is a deductive system of the theory T iff 

X is an ideal in the field Ky.
(b) The set X is a complete deductive system of the theory

(c)

(d)

(e)

T iff X is a prime ideal of the field KT.

The set X is an axiomatizable deductive system of the 

theory T iff X is a prime ideal of Ky.

The theories T and To are of the same structural type 

iff the fields KT and KT are isomorphic.
1 '0

The homomorphism of the fields KT and Ky is equiva-
o

lent to the following condition:

there exists a deductive system X of the theory T
such that the theory Tx = £s,X,—is of the 

same structural type as the theory To.

6 o 2 Classical measurement in the light of Tarski's Theorem 

6.4
Let T = {S,L,—>, be the deductive theory associated

with the system of world entities 

to be measured, and
To = {3o» Lo » be the deductive theory relating to

the numerical relational system in 

which the measuremental valuation 

occurs.
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Also, let Kr ={S,~T, VT, ’J and , •}

be the associated fields, respectively.

Since the measurement is classical, S and So will be of 
powers not higher than Ko.

Then, Theorem 6.4(e) implies the existence of a measuremen-

tal homomorphism.

Proof:

It suffices to prove that a deductive system X of T uith 

the required property exists. Hence, let us postulate the 

existence of X, where LCXCS uith the consequence:

if x,x—*~y  e X, then y € X.

Ue must shou that X is an ideal in the field Ky and subse-

quently verify that X is a deductive system of T.

For all elements x,y G S 

and, because of LCXCS,

ue have

also

e l

€ x.
This result together uith (6.1) and the modus ponens rule 

leads to the implication:
(i) if x,y e X, then x\z[.y € X.

It is trivial to state that x—*-y  e L if x < >y e L and
x,y G. S; but applying (6.1) and modus ponens again, ue get

(ii) if x C X and x^^y, then y € X.

Finally, x—>-x—>>y € L for any x,y G S, uhich, in the light 
of (6.1) and Definitions 6O7(1), may be put in the form 

x—*-x«y  - L. This, the modus ponens and the relations 

LCXCS lead to
(iii) if x €. X and y £ S, then x*y  £ X.

(i),(ii) and (iii) fulfill all conditions of Definitions 

6,7(2); hence, the set X is an ideal in the field . 

Starting from this result, ue nou have to prove that it 

entails X being a deductive system. First of all, since S 

is common to T and , ue immediately have
(iv) XCS.
Secondly, if x,y € S, then x —^[y —J-( x—*-y)J  e L follous; 

hence, x«<—>>y G L for x,y G. L. But x«x € L for x E_ S, so 
in accordance uith (6.1) ue get

(v) if x € S and y € L, then x-x/v^y.

Since an ideal is never void, ue put x G X and obtain

- conform uith this assumption - x.x G X uhich, in accord 
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with (v) and Definitions 6.7(2), leads to:

(vi) if y G L, then y G X; or else LCX.

Finally, we assume x,y 6 X and x,x—>-y € S. _____
From (6.1) and Definitions 6.7(1) follows x-y = (x V-j-y) = 

= x-----^-y^-j-x —*-y  which, according to Definitions 6.7(2),

yields x»y € X. From x € X we get x»y G X, and hence 

x.y V-pX.y G X. But x- y V-j-x-y^-j-y, and Definitions 6.7(2) 

yield y e X. This result, together with (iv) and (vi), 

precludes that X is a deductive system in the sense that 

it contains its consequences. The relevant theory is deno-
ted by Tx = {5,X,—“ J .

Ue proceed now to prove the existence of the measuremental 

homomorphism. Let us begin by introducing a relation R va-

lid only when aRb holds iff a is an element of the field

K-r/X, b is an element of the field KT and b € a.T Tx
The thus defined relation R satisfies the conditions of
Definitions 6.7(2). 

morphic fields.

Consequently, Kt /X and K are iso-

Ue postulate next that, for a given X of the theory T, T 

and To are of the same structural type. Uith a look at
Theorem 6.4(d), this means that K-^ ar_id are isomorphic

fields; hence, KT/X and KT is the third isomorphic pair- 

ing. It is reminiscent of tha isomorphism (4.11).

Moreover, Stone ( 1936b) has proved that K-^/X is homomor-

phic to K-p; therefore, Ky and are homomorphic fields.

It is quite easy to prove the converse statement, so we 

consider the proof as completed.

Let us now investigate - again by means of the calculus of 

deductive systems - the much more difficult case of complex 

fuzzy systems exhibiting non-complementat ion and uncertain-

ty behaviour.

6.3 Measurement of systems distinguished by a non-comple- 

mentation condition

The calculus of systems accepts both finite and infinite 
operations of sum and product and is based on seven (res-

pectively ten) postulates; outstanding from our point of 

view is Postulate VII(d) which states:
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(X,Y € (5 and X-Y = L)---- >(YCX). (6.2)

Our first step will be to show that this statement (axiom) 

is equivalent to the non-complementat ion condition:

AY|y=A aad h ], (3.4)

Ag2

derived in the language of Brouwer lattices in Chapter 3. 

This task will be accomplished by a successive substitu-
tion of symbols in such a way that Y (a deductive system 

in (6.2)) will not be confused with Y (a space in (3.4)).

(a) With X-Y = XHY and X = S-X, (6.2) states:

(X,Y € 6 and X AY = L) >(YCS-X). (6.3)

(b) Now, YQS-X, but we take Y = S-X; then, (6.4)
(X,S-X eGand XH(S-X)DL)—► (S-X = S-X) =11.

This confirms that the system on the left is a true 

deductive system (for the meaning of L see Theorem 

6.2).

(c) Finally, put: X = A = A, S = Y, S-X = Y-A,

G = 2 , L = H and obtain:

CA,Y^A e 2Y and Y-AAAOH) is a true statement. (6.5) 

(6.5) is a true statement in Brouwerian lattices; it is 

precisely identical with the non-complementation condi-
tion (3.4). Note that deductive systems X and S-X corres-

pond to closed sets Y-A and A in Brouwerian lattices, as 

they should.

Ue have thus proved the following

Theorem 6.5
The non-complementation condition for complex fuzzy systems 

coincides with the modified Postulate Vll(d) of the calcu-

lus of deductive systems.
----------o-------------

It is easily verified that the law of contradiction (Pos-

tulate Vll(b) and the other six postulates are correspon-

dingly satisfied in a Brouwerian lattice with unity.

Corollary 6.6
The calculus of deductive systems and the Brouwerian lat-

tice are logically equivalent.
----------□-------------
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We conclude that the calculus of systems is the true logi-

cal foundation for complex fuzzy systems, comparable to the 

Birkhoff-v.Neumann logic on uhich quantum mechanics rests. 

Both are, of course, nonclassical logics and both are im-
bedded in oo-dimensional (Banach resp. Hilbert) spaces.

The reduction of complex fuzzy systems by abstraction

- modulo uncertainty

In the set-algebra*the  follouing statements are knoun to 

be true:

(i) The

A,B given set X is defined by the formula:

symmetrical difference "A’1 between two subsets 

of a

A A B = ( A-B) U ( B-A) (6.5)

(ii) An ideal

family of

I is a nonvoid hereditary and additive 

subsets of X, i.e. such that

(A £ I) A(BCA) 
(a e i) A(B e i)

(B E I) and 

(AUB e I).
(6.6)

(6.7)

It contains the zero element in virtue of (6.6) 
but - if 

be shoun 

ideal is 

an ideal

actly one of the conditions:

C £ I, X-C € I 
applies, is called a prime ideal.

proper - not the unity. Hence, as may 

by applying the axiom of choice, every 

contained in a maximal ideal. Moreover, 

I in uhich, for an arbitrary OCX, ex-

(6.8)

(6.9)

(6.10)

(6.11)

(iii) We say that tuo subsets A,BCX are congruent modulo 

I and ue urite A^B(modl), uhenever AAb € I, 

uhich applies iff A = (B-P)UQ, P,Q £ I. 

We may then u ite A Ag(modl) or, for I fixed, 
simply A A nA” is easily shoun to be an equi-

valence relation uith field X 0.

(iv) "A" induces a decomposition D in X such that th9 

sets, called abstraction classes 
are nonvoid and U(D) = X.

The abstraction class 
denoted by x/A, uhile 

to X/A, and is called 

relat ion A.

of the family D,

containing

the family 

the quotient of the set X by

element x € X is 

D itself is equal
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On the basis of (6.9), we may use I in lieu of^, 

and denote the quotient set, just defined, by X/l.

(v) The 

by

canonical (quotient) map k: X—>~X/l, defined

k(a) = {b £ B: A & 3} € X/l, (6.12)

effects a reduction in power down to that of a coun-

table set if the abstraction is followed by the 

application of the axiom of choice.

Now, it is a measuremental necessity to ensure that the 

canonical mapping transfers any order relations and ope- 
XxXrations correctly. Let )>- and f e X be the order rela-

tion and operation (represented by function f) in X,res-

pectively. To prove the compatibility for orderings 
(x ^-y)=>(x/v "> y A ) is rather easy and will be omitted 

here. For functions we have

Definition 6.9 (Kuratowski and Mostowski (l978)p.89)

A function f is called compatible with equivalence rela-

tion if
x^Ty?^ [Tx^xp A (y~y1)=>(f(x,y)'-'>f(x1,y1))J . (6.13)

----------o------------

From the equivalence x-~y = x € yA = x/v = yA follows 

that (6.13) may be expressed in the form:

if x € x^ and y £ y-jA, then f(x,y)A = flx^)/*.  

Thus, the abstraction class f(x,y)/z^/ depends on the class-

es xA and yA , but not on the elements x,y. Hence follows 

that there exists a function | with a set (XA)x(XA) of 

arguments satisfying, for arbitrary x,y € X, the formula

|(xA»yA) = F(x,y)A. (6.14)

Function <|) is considered to be induced from f by 

k £ (X/~)A is, of course, the canonical or quotient map-

ping of X onto XA , defined by k(x) = xA, x € X. Me also
p p

call the function k of two variables, defined by k (x,y) 
= <xA,yA>, a canonical mapping of Xz onto (XA) •

Theorem 6.7
XxXIf a function f € X is compatible with and $ is in-

duced from f by then the annexed diagram commutes.
------ - □------
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X2 X

k2' 

(X/~)2

,fk

X/^
♦

Fig. 6-1
Compatibility commutation

Proof of Theorem_6±7:
2

For any pair <xfy} X ue have

kof(x,y) = k(f(x,y)) = f(x,y)/<^ and

<|)ok2(x,y) = <|>(k2(x,y)) = | (x/v, y/v) = f(x,y)/'v.

2
Hence, kof = c|)ok , uhich confirms the commutation of the 

diagram in Fig. 6-1.

It is now a simple matter to translate these results into 

the languqge of Brouuerian lattices; all ue have to do is 

to replace the set difference ”—” by a pseudo-difference 

in the formula (6.5) and the corresponding expressions 

accordingly. At the same time, the ideal I turns into an 

uncertainty ideal 1^, H being the negligible set characte-

rising the uncertainty.

The relevant expressions are now:

A Ab = (A-i-B)U (B—A), A^-B = AZa, (6.15)
and for the equivalence relation: ^(modl|_j) . (6.16)

For reasons of simplicity, the symbol in (6.16) uill be 

replaced by R^. As before, X = <L, U , fT,—represents

the Brouwer lattice uith unity.
Then, Q = X/R^ = Z/l^ is the quotient lattice, (6.17)

- nou a Boolean algebra;
X = Y/H is the quotient space, equipped (6.18)

uith topology.

For reasons of triviality, ue again omit the proof of 

the compatibility of orderings uith the equivalence re-

lation and proceed uith the compatibility of functions 

(operations). Thus:
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f(A,B) = AUB, g(A,B) = AHB and h(A) = Y-A

are all compatible with R^; indeed, the functions induced 

from U,A,— by the relation RH are V , A, —, which ope-
rate on classes of sets, while H/Rh and Y/R^ stand for the 

zero and unity of the Boolean algebra, respectively.

Theorem 6,8

Q = X/Iu is a Boolean algebra with respect to the opera- H
tions V,A,—f and elements H/lH (zero) and Y/l^ (unity). 

The corresponding space of measurement is Y/H; it is topo-

logical, H being its subspace.

Corollary 6.9

The crucial equality emerging from the equivalence of 
A^H(modIj_|) and of A € 1^ is H/R^ = I^, where R^ is gi-

ven by (6.16).
----------o-------------

Extension of measurement to complex fuzzy systems

Measurement of complex fuzzy systems (usually infinitely 

dimensional) is even in principle impossible; i.e. there 

is no way of finding a measuring procedure which would 

associate a number to every empirical quantity. This is 

due to the fact that complex fuzzy systems carry funda-

mental uncertainties owing to which they are complex and 

fuzzy, where the fuzzy contribution may exceed that of 

complexity.

The only way to deal with such systems is to determine 

the uncertainty conditions involved and to eliminate them 

in the way they came into being from simple systems with-

out uncertainty. Precisely this has been done in this stu-

dy. The reduction in power by quotient space formation 

modulo uncertainty relation achieves this goal in the form 
of a quotient space Y/H and a quotient algebra Q = JL/I^, 

respectively. Then Q contains the empirical relational sys-

tem to be mapped homomorphically into a numerical relatio-

nal system.

The soundness of this procedure may be confirmed topologi-
cally following Hofmann's analysis in Chapter 5; indeed, 

we only have to aliken Y/H with Xz = X/^ on page 114, choose 

the symbol Z for Y on page 115 and use the expression X = 

= (Y/Hx{0})U (Zxl) . The existence of a measuring procedure 
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is then ensured by Theorem 5.7.

6.A Summary of results

The investigation of this chapter have revealed the follo-

wing facts unknown heatherto.

A. In logical perspective

(ex) The calculus of systems is a true logical founda-

tion for complex fuzzy systems and any other systems 

relying on intuitionistic logic.

(0) It is the dual to a Brouwerian lattice with unity.

(y) Both the calculus of systems and the Brouwerian lat-

tice with unity imply the existence of an uncertain-

ty relation in the process of measurement.

B. In measuremental perspective

(a) All measurement is classical measurement; it admits 

the simultaneous measurement of any countable number 

of measurands, so that the state of a real system 

can be objectively determined.

This is no longer possible in systems obeying non-

Boolean logics and exhibiting uncertainty relations.

(b) To establish a measurement channel inspite of these 

difficulties, it is necessary to determine the non-

complementation condition and the uncertainty rela-

tion in a suitable oo-dimensional space. An oo-di- 

mensional non-reflexive Banach space is suitable.

(c) The realization of the measurement channel involves 

the construction of a quotient space and quotient 

algebra modulo uncertainty. The compatibility of re-

lations and operations with the quotient mapping has

been ensured.
It has been discovered that the equality H/R^ = 1^, 

is a basic connection making this analysis possible.

(d) The class-abstraction circumvenes the uncertainty

practically without loss of information. The resul-

ting Boolean algebra is ordered by inclusion and 

contains a relational system which may be

mapped monotonically and homeomorphically into the 

set of reals.
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CHAPTER 7: THE SELFREPRODUCTIVE STONEAN SPACE OF

MEASUREMENT

Self-reproductive continua appear naturally in the study of 

problems concerning E-mappings. It turns out (see Bennett 

(1967)) that there are no higher dimensional compact self- 

reproductive sets than 1-dimensional sets.

This topic belongs actually to the topological theory of 

dimensions.

Assumptions

(1) Every space considered is a metric space,

(2) All simplexes are compact.

(3) A polyhedron is but the union of a finite collection of 

simplexes, not necessarily connected.

(4) The covering definition of dimension will be used.

Definition 7.1

If X = (X,d) is a compact metric space and 8>0, then 

every mapping f of X is said to be an E-mapping provided 

that
(f(x) = f(y))=>(d(x,y) 4 8), x,y e X, (7.1)

holds.
Since X is compact, we may put S(f“ f(x)) 8 , for all

x € X, in lieu of the right hand side of (7.1).

Definition 7o2

A metrizable compact set M is called selfreproductive if 

there exists a number E>-0 such that, for every E-mapping 
f with domain M, the set f(M) contains a subset homeomor-

phic to M, i.e.
f: M = N, N C f(M) . (7.2)

Theorem 7.1

Every n-dimensional compact self-reproductive set M is 

homeomorphic to a subset of an n-dimensional polyhedron. 

Proof:

There exists a finite cover of M of order not higher 

than n such that each member of has a diameter smaller 
than £/2, where E>-0.

Also, there is a mapping f into a geometric realization of 

the nerve of *l6(which  is a polyhedron of dimension less 

than n+1) sending each member U of^ into the star of the 

vertex corresponding to U. Then f is an E-mapping, and for 
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each £>0, there is an g-mapping of 1*1  into an n-dimensio- 

nal polyhedron.

(For the definition of the nerve of a system of sets see 
Kuratouski (1966) p.318).

From Theorem 7.1 ue immediately deduce an important state-
ment relating to the space of measurement G •

Corollary 7.2

A 0-dimensional set is selfreproductive iff it is finite.
------ □--------

It is a natural requirement that a space of measurement 

be selfreproductive, and it is quite adequate if it is 

finite or denumerable.

Let us nou recall the definition of a negligible set:

h: Y-H^Y. (7.3)

Comparing this expression to that of (7.2), ue find that 

negligibility and selfreproductivity are related topolo-

gical properties. Consequently, a selfreproductive 0-di- 
mensional space of measurement 6 can accommodate an uncer-

tainty relation anyuhere uithin its boundaries.

7.1 The Stone space and its properties

Ue say that a compact Hausdorff space is totally disconnec-

ted if the family of all its clopen (closed and open) sub-

sets forms a basis.

Definition 7.3

A compact and totally disconnected topological Hausdorff 

space is - in honour of its discoverer - called a Stone 

space .
------ □--------

It turns out that there exist tuo disjoint clopen sets A 

and B to every pair of different points x and y of a 

Stone space such that x £ A and y C B. Moreover, the fami-

ly of all clopen sets of a Stone space constitutes a field 

of sets since, for arbitrary sets A,B G K,

AU8 € K, AHB € K and -A G K

(see the corresponding expressions at the top of p. 137).

The consequence of these observations is

Lemma 7O3

A compact topological space is a Stone spaceG^. iff, to 
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every pair of different points x,y € (G., there exists a 

clopen subset AC^ such that x G A and y £ A.

o

The proof of this lemma will be found in any textbook on 

Boolean algebra, 9.g. Sikorski (i960).

The basis of a Stone space is the field of all clopen 

subsets; the notion of neighbourhood is defined thus: 

Definition 7.4
For every Boolean field K = £a,^, X/,' jr, (5^ (K) is a to-

pological space consisting of all prime ideals of K in 

which the notion of neighbourhood is defined as follows: 

If I is any prime ideal in K, then the set U of prime 

ideals of K is a neighbourhood of I iff I G U and if an 

element x G A exists such that U is identical with the set 

of all prime ideals in K not containing x € A.

Theorem 7.4

If K is a Boolean field, then the following statements 

hold true:
(i) The space G^.(K) is compact and totally discon-

nected.

(ii) Every neighbourhood of an arbitrary point of 
et(K) is clopen.

Corollary 7.5
From (ii) follows thatG^K) is a O-dimensional space.

----------0------------

The condition dim6j.(K) = 0 can also be obtained from 

Theorem 7.4(i).

It is now easy to see that:

(i) the elements of K correspond to the clopen subsets 

of 6t.(K), while the prime ideals of K correspond to 
the points ofG^K), and

(ii) the study of homomorphisms between Boolean fields 

(algebras) can be reduced to the study of continu-

ous mappings of one Stone space into another Stone

space, and vice versa; hence the conclusion: Boole-

an fields and are isomorphic iff the 
spaces G^. ( ) andG^Kp are homeomorphic, 

t ively.

Ue denote now the class of subsets of the Cantor 

Stone 

respec-

set
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which are homeomorphic to ^(K), by S(K)) and obtain

Lemma 7.6 (Mostowski (1937)

If K is a countable generalized Boolean field and X G S(K), 
then X is closed in the interval I = [o,l].

Corollary 7.7

Every countable field K is isomorphic to the field of all 

clopen subsets of a certain closed O-dimensional linear 

set.

Proof:

K is obviously isomorphic to the field of clopen subsets 
of SJK) for x € S(K). From the homeomorphism of X and the 
sets of<5t(K) follows that the field of all clopen sets 

in Gj .(K) is isomorphic to the field of all clopen sets in 

X. This concludes the proof.

As is known, any closed set in the unit interval has the 

power c or 2B°. If K is countable, then G, (K) is sepa-

rable and homeomorphic to a subset of the Cantor set l ; 
therefore, . ______

orGt(K) = 2^°.

But the set of elements of G^(K) is identical with the 

set of all prime ideals of K. Hence, the latter set is 

also either countable or of the power of the continuum. 
Uith the help of Theorem 6.4(b) follows now another re-

sult of Tarski (1936) p.289.

Theorem 7.8

The power of the set of complete systems of a deductive 
theory is either Kp or 2^°.

7.2 Isomorphism of two countable Boolean fields

Ue make now a step back to the statements following Co-

rollary 7.5, but only to generalize the isomorphism bet-

ween Boolean fields to the case of an uncountable set of 
prime ideals.

Definition 7,5
The pair of number [c*(  K), n ( k JJ , where oc{K) denotes the or-

der and n(K) denotes the power of the last nonvoid deriva- 
tionG^^(K) of the space (5^(K), is called the characteris-

tic of the countable field K, see Kuratowski and Flostowski 
(1978) p.238.

----------o-------------
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Obviously, 0 <n(K) -< Ko .

Let now two fields K and L, each with countably many prime 
ideals, as well as the linear countable sets X1 € S(K) and 

X2 € S(L) be given. Then, the necessary and sufficient con-

dition for the homeomorphism of these sets are the Mazur- 

kiewicz-Sierpinski equalities:

oc(K) = cx (L) andn(K) = n(L). (7.4)

But the homeomorphism of these sets (or equivalently, of 

the spacesGjK) and<5t(L)) is, according to Stone ( 1936a), 

the necessary and sufficient condition for the isomor-

phism of the fields K and L. Hence follows

Theorem 7.9
Two countable (generalized) Boolean fields are isomorphic 

iff their characteristics are identical, provided they 

have each a countable number of prime ideals.

Corollary 7.10

Every countable Boolean field with at most countably many 

prime ideals is isomorphic to the field of those sets 

that are clopen in a closed well ordered linear set.

Proof:

Let K be the postulated field and X a linear closed and
■■

well ordered set such that = n(K).

The set X is, owing to (7.4), homeomorphic to every set 
of the class S(K), hence also to the space.G^(K). From 

the homeomorphism between (5^.(K) and X follows the iso-

morphism claimed by Corollary 7.10.

Corollary 7.11

(i) There exist different types of isomorphism of 
countable fields having at most }f0 prime ideals.

(ii) There exist different structural types of deduc-
tive theories having at most Ko complete systems.

Proof:

(i) follows from Theorem 7.9, because the set of pairs
(cx,n), and O^n -< Ko , has power fr,.

(ii) follows from (i) and Theorems 6.3 and 6.4(d).

Corollary 7.12

Theories T and To have the same structure iff they have 
the same characteristic pairs (K^n), 0^n«<^o.
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According to Tarski (1936) p.289, the characteristic pair 

of any deductive theory has one of the following values: 
(n,0), (n,2^°), (K0,n), (foX), X,2K°).

Let us now consider the isomorphism of countable fields 

having 2”° prime ideals. To any such fields K and L cor-
respond the topological spaces (5*.  (K) and (o, (L). It turns 

out in this case that two fields K and L having 2Ao prime 

ideals, from which a finite number are principal ideals, 

are isomorphic iff they contain the same number of prin-

cipal ideals. The matamathematical interpretation of this 

statement is

Theorem 7.13

All deductive theories with the characteristic pair (n 

are of the same structural type.

o

In analogy to Corollary 7.11, we get now

Theorem 7.14
(i) There exist 2n° different types of isomorphism of 

countable fields having 2n° prime ideals.

(ii) There exist 2n° different structural types of de-

ductive theories.
----------o-------------

Of interest is now the question: Uhat is the relationship 

of K and L if K has 2 0 prime ideals and L is arbitrary? 

Theorem 7.15
------------------------------------------------------------------

Let K be a countable field with 2n° prime ideals and L an 

arbitrary countable field. Then L is homomorphic to K. 

Proof:
Since <S^(L) is homeomorphic to a closed subspace of the 

Cantor set , G^.(L) is, in fact, homeomorphic to the com-

plement (relative tc<o^_(K)) of an open set in G^.(K).

The homomorphism of K and L follows then from the theorem 
of Stone (1936a).

For precisely this case J. v.Neumann and Stone ( 1935) have 

shown that K contains a subfield isomorphic to L. Hence 

Theorem 7.16

If K is a countable field with 2n° prime ideals and L is 
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an arbitrary countable field, then there exists a subfield 

of K isomorphic to L.
----------o-------------

The follouing result is but a complement to Theorem 7.15 
in thune with Theorem 6.4(e).

Theorem 7.17

Let T be a theory having 2 0 complete systems and To an 

arbitrary deductive theory; then there exists a system X 

of the theory T such that the theories T^ and TQ are 

structurally identical.

7.3 The Stonean space of measurement

The best result of Section 7.2 - from the measurement- 

theoretical point of view - is a combination of Theorems 

7.15, 7.16 and 7.17. It represents the best possible in-
terpretation of Theorem 6.4(e).

Ue now present the main result of this chapter.

Theorem 7.18
Let there be a finite number (say n) of non-classical em-

pirical systems, n uncertainty relations associated uith 

the latter and a measuring set-up conforming to the classi-

cal theory of measurement be given. The quotient Boolean 

algebras of the non-classical systems exhibit n prime 
ideals (based on the uncertainty relation)corresponding 

to the points of the associated Stone spaces ^,... ,3^ . 

The Stone space associated uith the numerical relational 

system is denoted by

Then, the necessary and sufficient topological condition 

for proper measurement is that the clopen sets of all spa-
ces , (5^ be self reproductive, i.e. that the

overall space of measurement G be a Stone space. The com-

mon boundary between the setsG^.., i = 1,2, ...,n, and (5^ 

is the set of points corresponding to the uncertainty re-

lations, see Fig. 5-2.

Corollary 7.19
Theorem 7.18 remains valid when a finite number (say k) of 

classical empiri al systems uith k Stone spaces be added 

to the n non-classical systems, provided that their sets 

are self-reproductive.
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Plausibility proof:

Recall that there exists a correspondence between the 
prime ideals of a Boolean field (algebra) K and the 

elements of the associated Stone spaceGjK). More pre-

cisely, if K is isomorphic to K^, then G^.(K) is homeomor-

phic to6^.(Kp. But measuremental uniqueness (see Theorem 

5.7) requires that the mapping of the space Y/H into the 

set of reals be monotone homeomorphic. This is ensured by 
the selfreproductivity property of the subsets of Y/H.

Hence G = •

The proof of Corollary 7.19 is trivial.

7.4 Summary of results

Chapter 7 is - in extenso - devoted to the properties of 

the Stone space because of its importance in the theory 

of measurement, especially in the measurement of non-classi-

cal systems. All definitions and theorems have been ex-

pressed in the language of the calculus of systems, respec-

tively in the calculus of classes, io order to maintain a 

smooth transition from Chapter 6 to Chapter 7.

Selfreproductivity is a natural requirement for the sets of 

the space of measurement. It initiates some basic topologi-

cal as well as algebraic features in empirical sets: Stone 

space properties and prime ideals. We learn that every coun-

table field is isomorphic to the field of all clopen subsets 

of a certain closed linear O-dimensional set, and that any 
closed set in the unit interval has power or 2^°.

From the measurement point of view, the following observa-

tions are of general interest:

(i) If K is an empirical field and L a numerical field, 

both with countably many prime ideals and with iden-

tical characteristic pairs, then they are isomorphic.
(ii) If K is a countable field with 2^° prime ideals and L 

an arbitrary countable field, then L is homomorphic 

to K.
(iii) For a countable field K with 2n° prime ideals and an 

arbitrary countable field there exists a subfield 

of K isomorphic to L.

A corresponding statement holds for the associated 

deductive theories.

Thus, models of measurement should be based on Stone space.
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CHAPTER 8: CONCLUSIONS 

8.1 Synthesizing revieu

Let us nou - in retrospect - attempt a synthesizing revieu 

of uhat has actually been achieved in the present thesis 

against the background of established science. Classical 

physics and all related natural and technical sciences, 

constituting this background, represent scientific edifi-

ces based on causality, determinism, objectivity of obser-
vation and of speach, and on (the mighty) Boolean reaso-

ning. Within the range of their validity, they are exact, 

consistent, complete as uell as decidable; and one is al-

ways able to infer inductively from the ’’part” onto the 

”uhole” and deductively from the ”uhole” onto the "part”. 

The ’’Part and the Whole” doctrine unites all the attributes 

of classical disciplines and serves thus as a criterion of 

distinction betueen classical and non-classical systems and 

disciplines.

This thesis is concerned uith the generalization of the the-

ory of representational measurement to non-classical systems 

characterized by theory-specific uncertainty relations,- 

taking a complex fuzzy system as a representative model.

It seems that classical measurement has too long been a 

tool exclusively serving industrial and laboratory needs, 

grossly neglected elseuhere and lifted to some importance 

by the rise of modern physics: relativity theory and quan-

tum mechanics. Its domain used to be that of simple systems, 

typically countable Boolean systems imbedded in Euclidean 

spaces X, having sharply defined points x € X and sets ACX 
uith boundaries (frontieres) Fr(A) = *A  f| X-A in virtue of 

the characteristic function and obeying, in general, the 

laus of the excluded middle, complementation, contradic-

tion and distributivity. Classical representational measure-

ment consists in a homomorphic projection of empirical rela-

tional systems into numerical relational systems; such a 

projection is established by the construction of a scale of 

measurement, uhere the quantity of measurement, as defined 
by Ellis (1966), is of prime interest. This quantity of mea-

surement is called ’’observable” uhenever the measurement is 

performed against the background of the theory involved. We 

speak then of tuo measurement stages: the preparatory mea-
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surement followed by the determinative measurement in which 

the measured values are compared to the theoretical predic-

tions.

No problem arises in the measurement of simple systems, nei-

ther in single- nor in simultaneous multi-measurand measure-

ments; for, the simultaneous measurands all have a joint 

distribution and the (Boolean) algebra associated with the 

whole system is the sum of the Boolean subalgebras associa-

ted with each measurand. Frequently two conjugate observab-

les are taken to represent the state of a system; in simple 

systems these conjugates are compatible and adequate to re-
present the state of a system (see Varadarajan (1962)).

The principles, the algebraic, topological and measure-theo-

retic aspects of representational measurement are discussed 

at length in the Introduction, Section 0.1 and in Chapters 

5,6 and 7.

Systems violating classical logic and the axioms of Boolean 

algebra are considered to be non-classical systems; to this 

category belong, in particular, complex fuzzy systems. This 

terminology extends to the domain of measurement; for, we 

have seen that measurement on them is either not possible 
at all (if tertium non datur fails) or simultaneous measure-

ment is impossible because the conjugates are incompatible. 

This incompatibility stems from the existence of fundamental 
(theory-specific) uncertainties. Such uncertainties are 

known to exist in engineering (information and communication 

theories), in physics (theory of relativity and quantum me-

chanics) and now in measurement itself, which is the finest 

of all uncertainties; and it has its roots in mathematics. 

Professor P. Eykhoff of Eindhoven University was one of the 

first to notice that, without an uncertainty relation, the 

theory of identification is far from being exhausted by the 

known theorems. Indeed, we see that measuremental uncertain-

ty occupies the highest level of all known uncertainties; 

and this emphasizes its applicational generality.

8.2 Contributions of this thesis to the science of measure-

ment

A. Paths into the consequences of complexity
A1. To Kuratowski (1977) we owe the statement that sets of 

power Q, where a is the cardinal of countable sets, are 
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considered to be simple sets. Hence, uith regard to the con-
tinuum hypothesis, sets of pouer 2& = 2^° = C (C being the 

cardinal of the continuum, and a<c) , are considered to be 

complex.

Systems, uhose some or all sets are complex, are therefore 

called complex systems; one of their properties is the no-

tion of infinity. Its consequences are threefold:

(i) The underlying spaces are usually oo-dimensional Ba-

nach, Hilbert or Frechet spaces, the non-reflexive 

Banach space being superior in that it contains a

(ii)

negligible set expandible by fuzzification.

It invalidates do - distributivity; for, according to 
Sikorski (1961), uhile infinite joins U^-pA^ and 
infinite meets /^t6-pAt may exist, the distributivity 

^ses At,s = ^fesT^teT At,f(t)
condition:

no longer holds.

(iii) It discards tertium non datur: according to Tarski 

(1935), axiomatization of tertium non datur ends at 

infinity.

Through (i),complexity invokes Zadeh's principle of incom-

patibility uhich - reduced to the sentential logic of mea- 
surement - states that &L /\(-ry) 0 ((oc) implying pre-

cision and (-O^" implying relevance). In terms of closed 

sets A = A in a Banach space Y uith a negligible set H ue 
immediately obtain the relation: Af\Y-A 0, and more 

precisely: A AY-A Q H .

This is our all important non-complementat ion condition 
uhich coincides uith Postulate Vll(d) of Tarski's calculus 

of (deductive) systems.

The form of the measuremental uncertainty relation follous 

via the celebrated theorem of Banach, Saks and Kakutani of 

functional analysis.
The non-complementation condition and the uncertainty re-

lation of measurement have their exact analogues in the 

non-commutation of operators and the Heisenberg uncertain-

ty relation of quantum mechanics, respectively.

A2. Based on Kuratouski*s  definition of simple sets and sys-

tems, it has been assumed that complex systems have their
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roots in simple systems and that there exists a stepwise 
transition (CX—*-2^)  from the simple phase to the complex 

phase (see Fig. 0-6). Denoting again the simple phase by 

and the complex phase by ue have concluded that
there must be an equivalent step-down (Y—>Y/H) by class-

formation modulo uncertainty which has come into being by 

the step-up from simple to complex systems. As is known 
from the work of Pao-Ming and Ying-Ming (1980a), the fuzzi-

ness of complex sets enlarges the effect of set-negligibi-

lity and the corresponding uncertainty relations.

The condition for the existence of a reduced complex system 

has been taken to be the exact equivalence of the step-up 
and the step-down between the (simple and complex) phases.

y
If Y is a complex space, H a negligible set, L - 2 the 

associated Brouwerian lattice with appropriate operations 
and 11_| the pseudo-ideal in L, then Y/H and L/l^ are the 

reduced space and the reduced lattice modulo uncertainty, 

respectively. The reduced lattice modulo uncertainty is ac-

tually a Boolean algebra which is ordered by inclusion and, 
hence, contains a relational system ; >> , Q = L/l^, which 

may be homomorphically projected into a numerical relational 

system.

A3. A measurement channel has thus been established between 

a complex system imbedded in a complex fuzzy space and a 

numerical system across an uncertainty-eliminating identifi-

cation stage modulo uncertainty. This is always possible 

provided one is able to determine the corresponding uncer-

tainty relation. This statement is actually a repetition of 

a Heisenberg phrase relating to quantum mechanics. In this 

sense, the theory developed here represents an extension 

of the classical representation theory of measurement co-

vering complex fuzzy systems and shows, how the measuremen-

tal uncertainty may be overcome under complex and fuzzy 

conditions, with practically no loss of information.

B. Innovation claims of this thesis

This work is a comprehensive answer to the shortcomings of 

the classical representation theory of measurement under 

other than simple condition, in particular with regard to 

determination of the state of a complex system (simultane-
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ous measurement under complex fuzzy conditions). It is 

based on the following revelations:

1. A novel representation of the complexification of sys-

tems.
2. Substantiation of the existence and the determination 

of negligible sets, as well as their enlargement by 

fuzzification.
3. Algebraic derivation of the uncertainty relation of 

measurement from the Banach-Saks-Kakutani theorem and 

the logical derivation of the non-complementat ion con-

dition of measurement under complex fuzzy conditions.

4. Establishment of the correspondences in complex fuzzy 

cybernetics and in quantum mechanics between the un-

certainty relations and between the non-complementa- 
tion condition (3.4) and the non-commutativity con-

dition (4.15).

5. Proof that the calculus of systems constitutes a true 

logical foundation for complex fuzzy systems; verifica-
tion that the non-complementation condition (3.4) is 

identical with the Postulate Vll(d) of the calculus of

systems.

Equivalence of the transition steps between simple and

complex phases: I a->2a| = | Y-^Y/H I .
The right hand side may be replaced by |l —*l /ik |.

7. Confirmation that L/l^ is a Boolean aigebra with zero 

and unity, that L/l^ is ordered by inclusion, and that 

it contains a relational system <Q; >> , where Q = L/l^ 

5 Y/H.

8. (f: Q—is a classical homomorphism (monotone homeo-

morphism) .

9. Verification that the space of measurement is a (topo-

logical) Stone space.

10. Engineering uncertainties in communication and infor-

mation theories, being technical - not fundamental, 

occur already in Euclidean spaces, the quantum mecha-

nical uncertainty, being physically fundamental, occurs 

in oo-dimensional Hilbert spaces, while the measuremen-

tal uncertainty, being mathematically fundamental, oc-

curs in oo-dimensional non-reflexive Banach spaces. Thus, 
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the measuremental uncertainty is the finest and highest 

placed uncertainty of them all. It implies that measure-

ment is neither of technical nor of physical, but of 

mathematical origin.

C. Applicational remarks

The uses of complex fuzzy systems are manifold and speedily 

growing in number; we hardly notice that some of them bring 

mankind ever closer to danger and catastrophes. This applies 

to the fields of nuclear engineering, of explosive and poi-

sonous chemistry with vast pollutive disasters and of micro-

biological manipulations. To prevent such catastrophes, fast 

and simultaneously reacting monitors are imperative.

On the other hand, astronomical studies of the cosmos usu-

ally involve complex measurements. The "Australiam Tele-

scope” to be completed this year consists of a linear array 

of elemental telescopes arranged in such a way that preci-
sion and relevance (significance) of the observations become 

a function of the relative spacings between the elemental 
telescopes.

Ue are told that physicists at the University of Bayreuth, 

Germany, have these days obtained temperatures below 0.1K 

which are unmeasurable today; they require yet a special 

theory of measurement, - one that overcomes extreme uncer-
tainties.

But in general, if natural science based on measurement 

and observation is understood to be a discipline with the 

dual purpose:
(i) To disseminate knowledge about nature including man 

which will put man in a position to utilize wisely 

the forces and resources of nature to his advantage, 
and

(ii) to allocate to man his proper position in nature 

through real insight into the relations prevailing 
in it,

then it is believed that the ideas developed and the re-

sults obtained in this work constitute a service to natural 
science in this sense.
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APPENDIX 1 : Boolean Algebra of Attributes

The concept of an attribute (also called property or qua-

lity) of an object is so fundamental that no definition of 

it in more fundamental terms is possible. In this respect 

it is akin to the notion of a set in set theory.

Attributes are usually designated by adjectives such as 

blue, fluid, alive, or by generic nouns such as animal, 

rock, ocean. In their logical consequence, adjectives and 

generic nouns are equivalent; for, to say: water is liquid, 
is tantamount to saying: water is a liquid.

To determine attributes of objects or systems is - in all 

empirical disciplines - the purpose of measurement.

Attributes may be combined by conjunctions and disjunctions, 

and one can also construct the negative of an attribute. 

Moreover, attributes may be ordered by inclusion; thus, the 

attribute of being an ocean includes the attribute of being 

liquid, since every ocean is liquid,

1st Boolean Law

If junctors "and", "or", "not" are (as usual) denoted by 
the symbols V > A, * , if letters stand for attributes and 

if the inclusion "x y” means: every x is y, then attri-

butes form a Boolean algebra.
---------- o-------------

This formulation is nothing else but the reformulation of 

some fundamental assumptions of the classical logic in a 

suitable form for mathematical analysis. In this connec-

tion it should be remembered that "or'' and "not” may be re- 
on

placed by "and”, that exactly 2 different attributes can 

be formed from n given attributes by the application of 

"and”, "or” and "not”, and that the Boolean algebra implies 

all the identities which are true for finite sets of attri-

butes under Boolean combination. Indeed, no false identity 

in any Boolean algebra can be true for attributes, since 

finite identities of the Boolean algebra are maximal in the 

sense that by addition of a single independent identity 

every identity becomes provable, i.e. the classical logic 

of attributes cannot be strenthened without yielding absur-

dities. It is customary to identify each attribute x with 

the class [V] of all objects having this attribute. Obvious-
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ly then, [x v yj = Cx]a |V]» [*  A 7] = [*]v  [VJ

and [jk 'J = [xJ' *

The correspondence xl----->-[xjis then a dual homomorphism.

Conversely, to every class X of objects is associated an 
attribute a^ "of membership in X", because Ja^j = X for 

all X. Consequently, two attributes are objectively equi-

valent if they determine the same class.

These notions have been introduced in Chapters 5 and 6 dea-

ling uith the principles of measurement.

2nd Boolean Lau

The correspondence XI-----^x] is a dual isomorphism betueen

the Boolean algebra of classes and the Boolean algebra of 

attributes, provided that objectively equivalent attributes 

are identified.
----------o-------------

This dual isomorphism provides a transition (in both direc-

tions) from the subjective uorld of the mind (attributes) 

into the objective uorld of matter (see APPENDIX 3: discuss-

ion on observables). Houever, "the class of all objects (in-

cluding the unknoun today)" is - in extremo - a meaningless 

notion and a mathematical paradoxon under the axiom of 

choice of the Zermelo-Fraenkel set theory.

The identification of attributes uith classes, uhich is ac-
cepted in the formal classical logic (2nd Boolean Lau), is 

obviously equivalent to the assumption that the general 

distributive lau holds, i.e. equivalent to the assumption 

that maximal attributes exist uhich are true for a single 

element (i.e. only for proper names). This requirement is 

knoun under the name Atomic Hypothesis. The Atomic Hypothe-

sis should, houever, be banned from typically physical ap- 

lications for reasons discussed in Section 4.1.

For completeness sake, let us quote tuo more Boolean Laus 

uhich are essential for the propositional calculus since 
Boolean algebra applies also to composite sentences (state-

ments, theorems etc.) of the form:

The earth turns around and the moon stands still, 

the earth turns around or the moon stands still, 

the earth does not turn around.
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Only the second of these composite sentences is true. Uith 

respect to these interpretations we have the

3rd Boolean Law

Sentences constitute a Boolean algebra.
------ □--------

Boolean algebra is being applied to sentences in accordance 
with the above example. In classical (2-valued) logic, all 

statements are either true or false, but never both, i.e. 

PAQ is true iff P and Q are true statements; PvQ is true 
iff P or Q (or both) is (are) true; from P, P'one is true, 

the other is false. Thus we have the

4th Boolean Law

True sentences form a (proper) dual prime ideal in the Boo-

lean algebra of all sentences; the complementary prime ideal 

consists of false sentences.

Under these premises, the composite sentence nP —>Qn
(P implies Q) has a special meaning:

tfP • * Q" is true, respectively false, according as "P'VQ"

is true, respectively false.
Thus, "P'vP" is a tautology.

For the equivalence ”zv” we obtain ”P<^Q = (P =>Q )a(Q =>P) ”. 

These results permit certain reductions in the operations 

of the Boolean algebra.

Finally, we should bear in mind that the sentential calcu-

lus is consistent, complete and decidable; the predicate 

calculus is neither consistent, nor complete nor decidable. 

For further information see the classical bibliography: 

Birkhoff (1948), Birkhoff and Bartree (1973) and Sikorski 

(I960).
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APPENDIX 2: Fuzzy Reasoning for Imprecisely Defined Systems

The fuzzy scene is a most appropriate place to quote Bert-

ram Russell on logic: "All traditional logic habitually as-

sumes that precise symbols are being employed 

fore, not applicable to this 

imagined celestial existence 

heaven than other studies".

In this sense Norbert Uiemer 

is 

and 

tic

It is, 

terrestial life but only to an 

Logic takes us nearer to• • •

there-

rence.

as "there exists". But the reality, 

thinking are part, denies us such

altogether wise decision of

where the need for imprecise reasoning 

accord respect, perhaps admiration to

, and we look with dis-

(1920) claimed that mathematics 

almost identical with measurement; for, both mathematics 

measurement have a profound need of truth for all axioma- 

premises as well as for the idealized process of infe- 

Hence - as a link to reality - we use such phrases 

of which man and his

an assurance of truth.

Our knowledge gained by empirical and scientific experience 

will always be incomplete and far from absolute, because ab-

solute truth can only be gained if we give up all knowledge 

of the complement, both in the spiritual world and in the 

real world. Hence, it was an
Alfred Tarski (1956) to base the definition of truth on the 

concept of realizability.

The ideas about fuzziness, vagueness and imprecision formu-

lated by Lofti Zadeh (1965) found much acceptance within the 

society of engineers, 

is greatest. Ue still

what is precise, logical and clear 

dain upon a reasoning that is fuzzy or lacking mathematical 

discipline.
we may well arrive at the realization that man*  s ability to 

handle fuzzy concepts is a major asset rather than a liabi-

lity; and it is this liability, above all, which consti-

tutes a key to the understanding of the profound difference 

between human intelligence -

intelligence - on the other hand 

ness relates to the graduality of progression in member-

ship of a point 

is always gradual (continuous) rather than abrupt 

when it is extremally gradual 

sume that the change occurs in 

prevailing uncertainty.

And yet, as ue learn more about human cognition,

on the one hand, and machine

More specifically, fuzzi-

in a given set. The change of membership

• Only 

do we as-beyond perception,

jumps as a result of the then
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Let us now survey some of the principles and results of

the fuzzy calculus developed so far.
Zadeh (1965) characterizes a fuzzy set (class) A in a non-

void set X by a membership function (a generalized charac-

teristic function) 60^ which associates with every point 
x E X a real number from the unit interval I = [o,lj, 

where the value Cd^(x), xeX,is to represent the grade of 
the membership of x in A. Thus, X—, f].

The support of A is the set of points of X at which k-^(x) 

is positive, while the cross-over point in A is an element 

of X whose grade of membership in A is 0.5.

A fuzzy singleton is a fuzzy set whose support is a single 

point of X. If A is a fuzzy singleton with support £x}, we 

write A = CD/x; for a non-fuzzy set^the corresponding nota-

tion would be A = 1/x.

A fuzzy set A can be looked upon as the union of its consti-

tuent singletons. On this basis A may be represented in the 

form p
A = J Wfl(x)/x, (A2.1)

X

where the integral sign stands for the union of the fuzzy 

singletons CQ^(x)/x. If A happens to have a finite support 

{x^,x2> •••» xj, then (A2.1) may be replaced by the sum-

mation
A = ^1/x1 + ... + Wn/xn (A2.2)

or by A = W./x., (A2.3)

in which Cxi, i = 1,2,...,n, is the grade of membership of 

x^ in A. Note that the sign (+) in (A2.2) represents the 

union rather than the arithmetic sum; we may, therefore, 
write X = {x^, x2, . .., x^ in the form

X = x1 + x2 +...+ xn, (A2.4)

but - to be quite correct - this should be written as

X = 1/x ^ + 1/x 2+ ... +Vxn -

Definition A2-1

A fuzzy relation R from a set X to a set Y is a fuzzy sub-

set of the cartesian product XxY. R is thus characterized 
by a bivariate membership function U)^(x,y) and is expressed



(A2.6)

Fuzzy graphs in the product XxX appear to have a wide field 

of applications, especially in the modelling of relations of 

resemblance (characterized by symmetry and reflexivity re-

lations). Resemblance relations have many remarkable pro-

perties of eminent use in form of perception and pattern re-

cognition.
If R is a relation from X to Y and S is a relation from Y 

to Z, then the composition relation RoS is defined by 

(A2.7)RoS = I V (GJ (x,y) Aca-(y,z)/(x,z), 
JXxY y K °

min.where \/and A denote 

operations

, respectively, the 

for a,b 6 R:
fa

aVb = max(a,b) = <
kb
£a A b = min(a,b) =

if

if

if

max.

a^b

and

and is

As for the

ment -A of

the union by

a<b

a<b

a>~b 

of y. 

note the

(A2.8)

lb
the supremum over the domain 

operations on fuzzy sets, we 

A to be defined by
-A = J (1-^(x))/x ,

AUB = J (ufl(x)VUB(x)/x,
X

by A AB =

if

comple-

(A2.9)

(A2.10)

J (6Jfl(x)ACOg(x))/x,

X 
= j 6JA(x)C0g(x)/x.

X

From (A2.12) follow, as consequences, the formulas:

A«

the

the

intersection

product by AB

= f (Wfl(x))°7x,

X 
and ccA = JcC Cx>A(x)/x.

(A2.11)

(A2.12)

(A2.13)

(A2.14)

>

(A2.13) yields in particular the concepts of concentration 

CON(A) = A , and of dilution 
DIL(A) = A0,5.

A host of examples on how to use these operations appear 

in Zadeh (196B)•
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Fuzzy topology

Let X be an ordinary nonvoid set and I = the unit
Xinterval. A function CO: X----->-1 or COG I will now be called

a fuzzy set in X. For every x G CO, CO(x) is said to be the 

grade of membership of x in CO, X is the carrier of CO and 

£x G CO: C0(x)>0} is the support of CO, suppco.

Whenever U) takes only the values 0,1, the fuzzy set CO is 

called a crisp set in X. The crisp set with value 1 on X 
is denoted by X and that with value 0 on X is denoted by 0.

The following properties of fuzzy sets are obvious:
Let I be the indexed set and A - { £0^: oc G 1} a family of 

fuzzy sets in X. The union (J£Qjc : C 1} = (UA) and the in-

tersection /^{CO^: oc e. i} = (Cbl) are, respectively, defined 

by (Un) (x) = sup{coa(x): a e i}, x e x,

and (0R)(x) = inf{C0*(x):  OC G I}, x G X.

The complemented' of CO is defined by Co'(x) - 1-CO(x), 
DeMorgan's law states: ((JfcO^: ex G I)' = f|{C0^ : C i}*.

Definition A2-2
A family 5*  of fuzzy sets in X is called 

d) 0,x g  r,
(ii) WnJT G 5" whenever W,# G !T, 

(iii) U{0Ja: a« i}€ f, for CJ^E 

Every member of !T is an 

a closed fuzzy set.

Of two fuzzy

we shall

than

a fuzzy topology

iff

say

The

topologies 

that is 
pair (X,D

andr,
open fuzzy set,

OC € I.
its complement is

such that Ty Cl

is coarser

and 5^ for X

finer than 5^ or that Zj' i 

is called a fuzzy topological space.

The base 

zy set A 

fined in

the subbase of T as well as the cover of a fuz- 

the neighbourhood of a fuzzy

Pao-Ming and

and

and point x^ are de-

Ying-Ming (1980a)

o

Definition A2-3

A fuzzy set X is said to be a fuzzy point iff it takes the 

value 0 for all y G X except one, say x G X. If its value 
at x is X (O<X^<1), we denote this fuzzy set by x; its 

support is the point x.

The fuzzy point is said to be contained in a fuzzy set
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CJ, x^ G CO, or to belong to CO iff 3,^cO(x). Evidently, every 

fuzzy set CO is the union of all fuzzy points belonging to cC.

Definition A2-4

(i) A fuzzy point x-^ is said to be quasi-coincident with CO, 

denoted by x^qtu, iff Xt >COz(x ), i.e. % + co(x)>»1.

(ii) co is said to be quasi-coincident with JT, denoted by 

CdqTT iff there exists an x € X such that ^(x)^^ (x), i.e. 

CJ(x) + 5T(x) >1. If this condition exists, we hold CO and JT 

as quasi-coincident (with each other) at x. In this case 

neither CO(x) nor #(x) is zero and, hence, co and JT intersect 

at x.
(iii) A fuzzy set CO in (X,^) is called a Q-neighbourhood of 

x^ iff there is a 5T £ J" such that x^qiTczCO. The family con-

sisting of all the neighbourhoods of x^ is called the sys-

tem of Q-neighbourhoods of x^.

The Q-neighbourhood of a fuzzy point does not generally 

contain the point itself (see Pao-Ming and Ying-Ming 

(1980a)). The fact that a set and its complement should not 

intersect (true for Frechet V-spaces) is no longer general-

ly true in the theory of fuzzy topological spaces: This is 

an essential difference between the Q-neighbourhood struc-

ture and the Frechet V-space theory. This entails the 

Proposition A2-1

COCfi' iff co and are not quasi-coincident; in particular, 

x^ G CO iff x^ is not quasi-coincident with CO*  • This is 

evident from the equivalence

|w(x) = (T>(x) + x'(x) = W(x) + 1 - !T(x)

------------- O-----------------

The Q-neighbourhood structure confirms the non-complemen- 

tation condition in Chapter 1 whenever A is a fuzzy set in 

space Y; compare also Theorem A2-2 which follows.

Definitions A2-5
(i) Let Co be a fuzzy set in (X, JT) • The union of all open 

sets contained in co is called the interior of CO, denoted 
by Ju = Int^CO ; it is the largest open set contained in CO.

o
Obviously (Ju) = Jo.

(ii) The interpretation of all closed sets containing 60 is
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the closure of co, denoted by w = cl^k); it is the smallest 
closed set containing CJ. Obviously, ( 63 ) = •

Theorem A2-2

Ue have e 6 £ iff the fuzzy point e has a neighbourhood 

contained in CO.

Ue have e = G oj iff each Q-neighbourhood of the fuzzy 

point e is quasi-coincident with 6J.
----------o-------------

For the proof see Pao-Ming and Ying-Hing (1980a).

Other topological properties of fuzzy sets (not required 

here) are discussed in great detail in Lowen (1976), Lowen 

(1979) and Pao-Ming and Ying-Ming (1980b).
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APPENDIX 3: Principles of Quantum Mechanics

In the spirit of modern trends, it is said that every irre-

ducible complementary lattice that is modular and of finite 

rank represents a geometry iff every line in the lattice 

passes through at least three points. Quantum mechanical 

systems manifest logics which form a kind of projective ge-

ometries and which are, consequently, non-distributive using 

instead the weaker law of modular identity. Moreover, quan-

tum logic has to be an orthocomplementary lattice because 

ordinary complementary operations in modular non-distribu- 

tive lattices are not one-one operations.

If the quantum logic is taken to be the lattice of subspa-

ces of an oo-dimensional separable Hilbert space, then the 

physical quantities, or observables, are represented by self- 

adjoint linear operators. It is these operators which play 

the role of random variables in quantum mechanics, but dis-

tinct from classical probability theory, where the random 

variables are merely real-valued functions on the space of 

possible outcomes and measurable with respect to a Boolean 

(□-algebra of subsets, which may be conceived of as a Boole-

an G-algebra of propositions. If the quantum logic of sub-

spaces of a Hilbert space is presented as a logical s-struc- 

ture, then certain equivalence classes of the set of random 

variables on the components of the Boolean G-algebra deter-

mine, in a general way, the operators on the Hilbert space. 

Hence, the physical quantities of the quantum theory are 

nothing else but the equivalence classes of the classical 

theory, everyone of which reflects some physical quality. 

Since there is no implication operation in quantum logic 

comparable to the Boolean operation a'yb, use is made of 

an implication relation of the partial ordering type. It is, 

therefore, natural that partial order and orthocomplementa-

tion play the parts of implication and negation in quantum 

mechanics, respectively.
To be specific, let X = (L,v ,a ) be aG-lattice with a 

first element (J, a last element ["I and with J-, the orthocom-

plementation _L: ai—>»a-L; a,aX £ L, which satisfies the fol-

lowing axioms of complementation: 
(i) (aX)l = a; a,b € L, 

( i i) (a b) « 1 ( b -I- a ,

(double negation) 

(contraposition)
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(tertium non datur)( iii) a v a-L- =11.

Definition A3-1 (Ueak modularity
A G-lattice X is called a logic if, in addition to axioms

(i) - (iii), it also satisfies the following implication:
(iv) (a <b; a,b € L)=^(b = a y (a-l*Ab) ) .

Definition A3-2
An observable is any mapping sending a Borel set Ee B(R) 

to L and satisfying the following three conditions: 

d) ju Jr ) = n,
(ii) ju„.(E) J.jUoc(f) provided Efl F = 0,

0° 00
(iii) E.) = V JU^E.) provided:

i=1 i=1
Etn Ej = 0 , i / j and {E.}cB(R),

B(R) being the Boolean algebra of the subsets of R.

Definition A3-3
from L into RU£-od ]- (J {+00}A state is any mapping p 

such that

In general, p^ can attain the ’’values” -oo and +oo ; in this 

case p^aJ^O is said to be a positively signed state and 

p.(a)«<0 a negatively signed state. In our restrictive ter- 
r

minology, a positively signed state is qharacterized by 
P^n) = 1; the reason for this (according to Bessaga ( 1966)) 

is that every as-dimensional Hilbert space is diffeomorphic 

to its unit sphere.

Ue are now in a position to formulate the four axioms valid 

both in classical mechanics and in quantum mechanics, once 

the following symbolism is agreed:

A stands for the set of all observables oc of a
physical system^,

J denotes the set of all states j) of SZ, and
p: Ax^xB(R)—is a real-valued function.

IfOc^A and (f € $ have fixed values, then B(R)—

i.e. Ei—>-p (oc, <|), E), is a probability measure on B(R).

The four announced axioms are then:

(see overleaf)
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(A1)

(A2)

(A3)

(A4)

p(«-,<|i,R) = 1,

..) = p(<=P»<|>»E ,
i = 1

t e $, £j_ e B(R),

= p (pc , tj, E))---- >(cx = Oi' )

I — $ )

A) A(Ev E2,... € B(R) A

= SZ p(oc.
j=1 -

•X , defined below, is a G-measure.

= 0, i / j-

p(cx,c|>,0) = 0,

P p 2 ’ *

where a g A,

A (p(a,|,E)
d>€$
A (p(©c,f,E) = p(<*,f  ,E))

cxeA

A /\ + P(°tj»lll»Ej)^ 1 •

= 5Z p(a-j, ■!>,£•) 0-■±iA v V
tpeijj 0€A FeB(R)

Jj : B(R)

There exists an observable oc £ A such that jj  = ju^, 

i.e. a uniqueG-measure jj  which is associated to 

every observable.

These axioms have the following interpretations:

(A1): p(cc,(|,E) is the probability that the measurement of

an operator (observable oc) for a system in state $ yields 

a result belonging to E, where E is a member of the smallest 

Boolean (5-algebra of Borel sets on R.
(A2): implies that the only way to distinguish between two

observables (respectively, two states) is an experimental 

one: two observables (resp. two states) having the same 

measured values for all Borel sets and all states (resp. 

all observables) are considered to be identical.

(A3) and (A4) are regarded as necessary postulates in the 

light of the cartesian product S = AxB(R), whose elements 

(oc,E), (0,F), ... are called experimental sentences. By the 

introduction of an equivalence relation in &, defined by

|Jec,E)^ (B,F)J = [p(<x, (f, E) = p(6, $, F)J for every 4> ,

we obtain the quotient set X = of equivalence classes
Qod,E)] , [J B, F j] , ... describing the qualities of the sys-

tem considered.
The order of X is given by the equivalence:

(□(«*,£)□  Gb.pO) = (P(«,M) p(B,f,F)) for all e (|),

"^"being the relation of partial order in

The

and

i.e

formula [I<*,E)]X = requires no comment;

since p (oc, if, R-E) = 1 - p(oc,t|),E) the mapping 1: X~>£ ,
[(oc,E)Jl----- >>£(oc ,E)J-1-, represents a well defined ortho-
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complementation in the partially ordered setX. From now 

on we shall consider X to be the logic of the probability 

function. In reality, p induces in S a relation-implication 

(p-implication) defined by

((<x,E) =^>(0,F)) = (p(oc,(f,E)^p(0,(f,F)) , 

which means that, in every state <p € J, the truth of (G,F) 

is more probable than that of (cx,E). The p-implication is 

obviously reflexive and transitive. Ue can use it instead 

of the equivalence relation in 8, since

= ( pfc*,  t|>, F) ==->p( 0, <p, F) )
( p ( 0, p, F) ==£ ->p (oc, , E) ) .

i.e. Ei—>-|(cx,E)| , be an X-measure 
and p^ : X—, ij, i.e. f(°^, El] 1----- >

Let now ju^: B(R)—>X, 

on B(R) for all oC € A 
p(c£,tp,E), the probability measure on X, Then (A2) confirms 

that ju^ jjg and p iff p^ p^ holds. Also,

p (=<, , E) = ju ^Ce);

and while the family exbausts the setX, the family

is full, i.e. (p (a)< P^b) )=>(a^b) for every 

(p € and all a,b £ X. Mackey ( 1963) has proved that these 

two families define A, (J and p completely. This shows that 

p(ot,p,E) depends essentially onX. Moreover, it is the logic 

X which decides whether p (ex, tp, E) describes a system in clas-

sical mechanics or in quantum mechanics. This probability sa-

tisfies indeed the axioms (A1) - (A3).

The elements of the cartesian product 8 = AxB(R) have been 

properly named experimental sentences; a typical sentence 
(<x,E) states: a measurement of the observed quantity ex 

yields a value in Eo Sentences belonging to the same class 

express jointly a physical quality. However, there are no 

uncertainties about the truth or falsity of (cx,E) until an 

experiment has been carried out; the theory provides only 
the probability of the truth of (cx,E) in state tp. But if we 

wish to speak about the logic of experimental sentences,then 

a logical value has to be attached to every sentence. The 
only reasonable solution seems to be to interpret p(oe, p, E) 
e [0,1] as the logical value of (ct,E) in state p.

If p(«,(p,E) + p (0, ip, F) 1 holds for every ip €. then («,E)

and (B,F) are looked upon as contradictory sentences in the
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sense that the sum of two logical values is again a logical 

value in the unit interval. (ex, E) and (0, F) are certainly 

contradictory if E fl F = 0. Hence, we comprehend (A3) in the 

following sense:

To every sequence of pairwise contradictory sen-

tences (oc,E^), i = 1,2,... there exists an expe-

rimental sentence (0,F) whose logical value is the 

sum of the logical values of the sentences (oC,Ep.

As result we obtain (0,F) s Qa , E^ ) V (cx2» V ’ Zl ’ uhich 

illustrates that without (A3) no connecting relation exists 

between different observables of the same system, and it 

would be impossible to speak about relations between diffe-

rent physical quantities of the same system. Thus, (A3) is 

indispensible.
Ue obviously have -(cx,E) = (<*,R-E).  The function (-) has 

the properties of negation (') in the set £ since -(o/,E) is 

false when (<x,E) is true, and —(c^,E) = (c^,E). From this we 

recognize that 8, equipped with this negation (-) and with 

the p-implication defined by (A1) - (A3),forms a kind of 

formal logical system. The result of a logical identifica-

tion of equivalent sentences of a formal theory T is a Lin- 

denbaum-Tarski algebra of To

Hetamathematical digression

It is customary to denote a formalized theory T by the 
triple set: T = (L, C, ft) - S(^), and a deductive system 

by T0 = (L, C, 0) = S(0).

C(^) represents the totality of theorems of SQf), L is the 

language (consisting of alphabet A, the set of terms and 

the set of formulas^), C is the consequence operation com-

prising tautologies and logical elements, and ft is the set 

of theory-specific axioms. A well-formed formula ex. is 
called refutable in S(/f) if -O6€C(^), see Kaaz ( 1977). 

According to Lindenbaum and Tarski,(J,-..■>, - } is an

abstract algebra with binary operations U, H ,and the 
unary operation (-); it is called the algebra of formulas 

of the formalized language L.
Ifex, 0 are two congruent formulas in f and is the con-

gruence relation in then /~ is a quotient algebra

(or factor algebra) of formulas in L. If S (#) is a given
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consistent theory, then by L($) ue denote the Lindenbaum- 

T ar ski algebra of the theory S(^r); it is a factor algebra 

M € x w

uith congruence , uhere

oc~^e iff Ct=e C(>f) and B=>o e C(^) for a., 0 6 f. 

is determined by cc € £ and represents a class

of formulas equivalent to oc.

Theorem A3-1
X(rt) is a Boolean algebra uith unit element e = ,
cc€C(/f). *

------ □--------

From this theorem ue conclude that, for every formula 0 
0 is refutable iff ~ (see Rasioua and Sikorski ( 1970)).

This terminates our digression uhile remembering that every 
logic X = (L, J- ) in E can be visualized as a Lindenbaum- 

Tarski algebra for the formalized system of experimental 

sentences. In this case the sentence ”(ot, E) V (0, F) " has sen-

se, i.e. it has a definite probability of truth only if 
(ot,E) and (0,F) are mutually contradicting sentences (in the 

sense of (A3). In classical mechanics, sentences ”(ct,E)\/ 
(0,F)” and ”,E)A(0,F)” aluays have a physical sense; then 

X is a Boolean algebra. In quantum mechanics, these senten-

ces are not aluays meaningful (e.g. due to Heisenberg uncer-

tainty). In this case X is an othomodular&-orthocomplemen- 

tary partially ordered set.

Note that every observable ot 6 A is determined by the cor-

responding X -measu re jja. So far ue have not demanded expli- 

citely that there be a definite observable to every<5-mea- 

sure on B(R). This requirement is nou imposed onto the sys-

tem by (A4). Its physical significance is the follouing:

Given a set of experimental sentences Q^- ^E, one for 

each Borel set in R so that E i----- is a ©-measure, ue

are able to define an observable as a physical quantity 

corresponding to everyone of the experimental sentences.

(A4) makes it possible for us to study the properties of 

as uell as the relations betueen the observables. Moreover, 

ue can identify the set of observables uith the set of all 
X-measures.

Let nou f: R—*-R  be a Borel function on R and ox € A an ob- 

servable. It is not hard to shou that Li of" is anX-mea- 
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sure. Also, (A4) implies that an observable corresponds to 

this measure; let it be f (oc) . Ue get immediately the equa-

and, because of p ( f (oc), if , E) = p (E), finally

lit y -1

p(f(oc) ,<|),E) = pjuf^(E) = pju^f'^E) = p(c*,  p, f"1(E)) 

This result is most suitable for the construction of the
observable f (o) :

If the measurement of f(oc) yields a result in E, 

then the measurement of ©4 yields a result in f“ (E).

In classical mechanics one has: X/ = B(R^n);

if P* :♦
f :
E a

B(R6n)-----is a state,

R6?----- *-lR  is an observable, and

Borel set on R ,

then the probability that a measurement ofCX

yields a result in E is equal to

p(«,f,E) = Pf JJa(E) = p^ [r-1(E)J = jdju£» 

where ju^: El—^p^f"^(E) is the Lebesgue measure on R. 

In contrast to this, the logic of quantum mechanics is an 

orthocomplementary partially ordered set selected in such 

a way that the theory based on this logic generates results 

lying close to the experimental results. The optimal agree-

ment is warranted by the

Quantum Mechanical Postulate

The logic for a quantum mechanical system is isomorphic to 

the partially ordered set L(H) of all closed subspaces of 

an oo-dimensional separable Hilbert space H.

In this case X is the orthogonal complementation of a sub-
space, i.e. N-L = {x E H: <x,a> = 0 for every a E N}, when-

ever N e L (H ) .
----------o-------------

The practice of quantum mechanics requires the use of the 

Spectral Theorem, contained in any standard textbook on 

quantum mechanics, for instance in Mackey ( 1963), v.Neu-

mann (1955) and Varadarajan (1968).
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