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A B S T R A C T

This paper investigates the performance of the minimum Conditional Value-at-Risk (CVaR) 
hedging technique in the dry bulk shipping freight market, where extreme volatility and asym
metric return distributions often limit the effectiveness of traditional minimum variance ap
proaches. The CVaR-based framework is used to minimize the downside tail risk in both static and 
dynamic hedging settings using a dataset of Forward Freight Agreements (FFAs) for Capesize, 
Panamax and Supramax vessels over the period of January 2007 to December 2022. Our results 
suggest that the effectiveness of alternative hedging strategies is sensitive to the distributional 
shape of the underlying returns, underscoring the suitability of CVaR-based strategies under 
heavy-tailed and skewed returns. Furthermore, we introduce a probabilistic optimization 
framework that minimizes the Buffered Probability of Exceedance (bPOE), subject to a pre- 
specified CVaR constraint. This dual-risk formulation yields an efficient frontier, i.e., a set of 
optimal solutions between risk and return, that quantifies the trade-off between the likelihood 
and magnitude of extreme losses, ultimately enhancing hedging performance and offering in
sights into tail risk management.

1. Introduction

The shipping industry provides transportation services for manufactured goods as well as commodities and raw materials including 
petroleum products, iron ore, coal, minerals, agricultural products, fertilizers and other minor bulk cargoes (Stopford, 2009). In 2024 
alone, more than 5.74 billion tonnes of dry cargo were transported by dry bulk vessels worldwide, accounting for approximately 45.4 
% of total world seaborne trade.1 The dry bulk shipping market operates under near-perfect competition, where freight rates are 
determined by the interaction between supply and demand schedules at any given time. On the demand side, fluctuations in world 
economic activity, international trade, and demand for raw materials, among other factors, influence freight rates, while on the supply 
side, fleet size, productivity and port congestion play a significant role (Stopford, 2009). These dynamics, combined with the fact that 
shipping services cannot be stored, have led to extreme fluctuations in freight rates across shipping sectors, particularly dry bulk 
carriers. These factors have caused frequent boom and bust cycles and significant volatility in the freight market compared to com
modities or financial markets.

* Corresponding author.
E-mail addresses: xlsun@shmtu.edu.cn (X. Sun), a.alizadeh@citystgeorges.ac.uk (A.H. Alizadeh), Panos.pouliasis@citystgeorges.ac.uk

(P.K. Pouliasis). 
1 The trades in dry bulk commodities are reported by Clarkson’s Shipping Intelligence Network (SIN).
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Fluctuations in the dry bulk market repeatedly manifested in extreme historical episodes when freight rates reached unprecedented 
levels notably prior to the 2008 financial crisis and amid the COVID-19 pandemic. For example, the Baltic Panamax Index (BPI) 
doubled (from $30,000/day to $60,000/day) between June and December 2007, only to collapse by over 95 % (from $70,000/day to 
$3500/day) between May 2008 and December 2008. Such extreme movements in freight rates have drawn considerable attention from 
researchers and many studies, including Kavussanos (1996), Alizadeh and Nomikos (2009), Tsouknidis (2016), and Yang et al. (2022), 
document and compare freight rate risk across different shipping sectors and segments using a variety of statistical techniques.

The pronounced volatility in dry bulk freight rates has prompted the development and adoption of various methods and in
struments by market participants (traders, ship owners, charterers, operators and investors) to manage freight rate risk effectively. For 
instance, spot freight rate exposure can be mitigated using period time-charters (TC) or contracts of affreightment (CoA) in the physical 
market or hedged with Forward Freight Agreements (FFAs) and freight options in the derivative markets. Amongst these risk man
agement instruments, FFAs have gained widespread use in recent years due to their liquidity, flexibility and relatively lower trans
action costs (Alizadeh and Nomikos, 2009). FFAs are cash-settled contracts between two parties (a buyer and a seller) to settle the 
freight rate for hiring a vessel or transporting certain quantities of cargo along major shipping routes, at a predetermined future date, 
known as the contract’s maturity.2 While the primary function of FFA contracts is to manage freight rate risk, they are also employed 
by non-shipping entities for speculative purposes or as diversification instruments within broader investment portfolios.3 The effec
tiveness of FFA contracts for hedging and risk management, however, depends crucially on the models used to determine hedge ratios.

A large body of literature has therefore evaluated hedging strategies involving freight futures and FFAs in the dry bulk and tanker 
markets. Among these strategies, the most widely used approach is to estimate the minimum variance hedge ratio (MVHR) which seeks 
to reduce the overall volatility of a hedged portfolio. However, due to the inelastic nature of shipping supply and sudden demand 
shocks, conventional models like MVHR and even dynamic approaches such as Bivariate-GARCH (Generalized Autoregressive Con
ditional Heteroscedasticity) often show limited effectiveness. For instance, Kavussanos and Visvikis (2010) and Alizadeh et al. (2015)
find that even advanced econometric models fail to achieve consistently high hedging performance in such volatile environments.

Beyond structural limitations, spot and FFA returns in dry bulk markets are notably skewed and leptokurtic, posing challenges for 
models that rely on normality. Nomikos et al. (2013) report that logarithmic freight rate returns in these markets display fat tails, 
driven by extreme fluctuations in supply and demand factors. Such features undermine variance-based hedging, particularly when 
investors deviate from quadratic utility assumptions or when return distributions are non-normal (Cao et al., 2010). Further, MVHR 
estimation techniques treat gains and losses symmetrically, which can result in suboptimal risk management strategies, especially in 
markets with pronounced asymmetries in return distributions. In such cases, variance-based methods may fail to provide adequate 
protection, particularly for directional exposures, whether long or short. Recent empirical evidence has also shown that the MVHR 
performs poorly when structural dislocations—such as non-convergence between spot and futures—arise, further questioning its 
robustness across different market regimes (Goswami et al., 2023).

To overcome these shortcomings, an alternative risk measure and hedging approach known as Conditional Value-at-Risk4 (CVaR) is 
proposed by Rockafellar and Uryasev (2000, 2002). CVaR is a quantile-based downside risk metric that explicitly accounts for the 
non-elliptical nature of return distributions, a feature particularly relevant in hedging applications. Unlike Value-at-Risk (VaR), which 
captures only the threshold of extreme losses, CVaR considers the magnitude of expected loss beyond the VaR level, thus providing a 
more comprehensive assessment of tail risk (Cao et al., 2010).

In this paper, we employ the flexible non-parametric CVaR framework to determine the optimal hedge ratio for managing freight 
rate risk using FFAs, across multiple dry bulk carrier sizes. This approach does not rely on distributional assumptions, making it 
particularly well-suited for heavy-tailed freight return data. We also extend the static CVaR into a time-varying framework using a 
rolling window methodology. The performance of CVaR-based hedging strategies is benchmarked against several traditional ap
proaches, including the MVHR (estimated via Ordinary Least Squares), naïve strategies, and time-varying models such as Markov 
Regime Switching and Bivariate Constant Conditional Correlation GARCH. We evaluate CVaR hedge ratios for both long and short 
positions across various confidence levels, capturing the impact of risk preferences on the expected downside risk. In addition, we 
analyze the statistical properties of the hedged portfolio return distributions. We find that differences across strategies are most 
pronounced in the presence of heavy tails, while they diminish when distributions are approximately normal (Sarykalin et al., 2008).

This study extends the existing literature in five distinct ways that advance both theoretical understanding and practical imple
mentation of freight rate hedging. First, we introduce a CVaR hedging strategy based on expected downside risk that directly mini
mizes tail losses in managing dry bulk freight rate risk. This provides a downside-focused, risk-aware alternative to traditional 
variance-minimizing approaches. Second, distributional asymmetries are explicitly incorporated, allowing for different hedge ratios 
for long and short positions — unlike MVHR and time-varying models that assume symmetry. Third, we compare the in-sample and 
out-of-sample performance of CVaR-based strategies against benchmarks such as OLS-based, GARCH and Markov Regime Switching 

2 The underlying indices for dry bulk FFA contracts are based on spot market assessments of individual dry bulk routes and baskets of routes 
published daily by the Baltic Exchange for Capesize (BCI), Panamax (BPI), Supramax (BSI) and Handysize (BHSI) vessels. Similarly, for tanker FFAs, 
the indices are derived from spot freight assessments for both dirty and clean tankers routes, also published by the Baltic exchange. In the container 
sector, FFA contracts are based on spot assessments for twelve main container routes, as published by Freightos and the Baltic Exchange.

3 Discussion and analyses of shipping freight derivatives and markets can be found in Alizadeh and Nomikos (2009).
4 Conditional Value-at-Risk (CVaR), also known as expected tail loss (ETL) or expected shortfall (ES) is an alternative to Value-at-Risk representing 

a measure for downside risk based on the expected size of extreme losses of an asset or a portfolio. It is calculated as probability weighted average of 
the losses on the tail of the distribution of an asset price or portfolio, given certain probability and time horizon.
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models. Our evaluation considers not only the variance of the hedged portfolio returns, but also the average return, VaR deviation, 
mean absolute deviation, standard deviation, and CVaR deviation. Fourth, we implement a time-varying minimum CVaR hedging 
approach across different confidence levels to reflect varying investor risk preferences.

Furthermore, building on the CVaR-based hedging literature (e.g., Cao et al., 2010; Melnikov and Smirnov, 2012), we utilize a 
probabilistic optimization framework that incorporates the Buffered Probability of Exceedance (bPOE)5 for hedging shipping freight 
rates. While existing CVaR-based approaches aim to minimize the expected size of extreme losses, they do not directly control the 
probability of breaching a given loss threshold. The bPOE optimization complements CVaR by explicitly addressing this probabilistic 
dimension of risk. To our knowledge, this is the first study in the shipping freight derivatives and commodity hedging literature to 
optimize CVaR and bPOE. This yields an efficient frontier that quantifies the trade-off between the probability and magnitude of tail 
losses, providing a novel probabilistic lens for interpreting tail risk and hedging performance. The growing adoption of probabilistic 
approaches in freight markets—both in risk management and operational contexts—highlights the need for flexible models that can 
address distributional uncertainty (Sel and Minner, 2025). The resulting framework offers a practical and robust tool for managing 
shipping freight rate risk in markets characterized by extreme movements, asymmetric return distributions, and regime shifts.

The remainder of this paper is structured as follows. Section 2 reviews the relevant literature. Section 3 outlines the applied 
methodology. Section 4 presents the data and preliminary analysis. Section 5 discusses the main empirical results, and Section 6
concludes.

2. Literature review

The objective of hedging a cash or spot position using derivative instruments is to mitigate the risk of adverse price movements by 
taking an offsetting position in futures or forward contracts. The theoretical foundation for such hedging strategies was developed by 
Johnson (1960) and Stein (1961) with Ederington (1979) formalizing the concept of minimum variance hedge ratio (MVHR). MVHR 
minimizes the total variance of the hedged portfolio by determining the optimal proportion of futures contracts relative to the spot 
position. Mathematically, it is defined as the ratio of the covariance between spot and futures returns to the variance of the futures 
returns—equivalent to the slope coefficient in an Ordinary Least Squares (OLS) regression of spot returns on futures returns. This 
framework serves as a benchmark for evaluating hedge effectiveness across asset classes.

Although widely applied, MVHR strategies face several well-documented limitations in shipping markets. These include poor 
performance when compared to other dynamic specifications such as GARCH and Regime Switching models and are ineffective under 
extreme volatility, asymmetries, and fat-tailed return distributions (see Kavussanos and Nomikos, 2000; Alizadeh et al., 2015; Mel
nikov & Smirnov, 2012; Cao et al., 2010).”

Several studies focus on estimating dynamic hedge ratios, allowing for time variation in the covariance and variances of spot and 
futures prices using Generalized Autoregressive Heteroscedasticity (GARCH) type models, e.g., Kroner and Sultan (1993), Kavussanos 
and Nomikos (2000), Alizadeh et al. (2015). These models rely on the conditional variance and covariance of spot and futures price 
returns to derive dynamic hedge ratios. While such models have shown satisfactory performance in financial and commodity markets, 
their success in maritime freight markets has been comparatively limited; see, among others, Kavussanos and Nomikos (2000) and 
Kavussanos and Visvikis (2004). For example, Kavussanos and Visvikis (2010) find that minimum variance hedging in dry bulk 
markets yields only a 40 % reduction in variance, compared to reductions exceeding 90 % in commodity and financial markets.

To improve hedging effectiveness, some researchers have extended the GARCH-family models to Markov Regime Switching 
GARCH (MRS-GARCH) frameworks, which allow for both time-varying covariance matrix and structural shifts in the hedge ratio 
estimation. For instance, Alizadeh et al. (2015) apply this methodology to the tanker market to investigate the performance of FFA 
hedging. Results show marginal improvement in hedging effectiveness. Overall, the performance of FFAs in hedging physical freight 
rates using MVHR and time-varying hedge ratios has been weak in both dry bulk and tanker market segments. One explanation for the 
underperformance of dynamic hedging strategies may lie in the structure and dynamics of the FFA market itself. Despite their broad 
adoption, FFAs exhibit uneven liquidity across vessel classes, contract maturities, and trading routes.6 During periods of market stress 
or low activity, bid-ask spreads widen, order book depth diminishes, and price discovery becomes less efficient. These conditions 
compromise the estimation and execution of optimal hedge ratios (Alizadeh and Nomikos, 2009). Another reason could be the dy
namics and behavior of spot and forward freight rates in terms of extreme volatility, asymmetric distributions, and the presence of 
jumps, which weaken the stability of spot-forward correlations, further reducing the effectiveness of conventional hedging strategies.

While constant and time-varying minimum variance hedging strategies can effectively reduce the variance of hedged portfolio, 
they suffer from limitations that are particularly relevant in markets with extreme behavior. A major limitation is the symmetric 
treatment of losses and gains of the hedged portfolio, equally penalizing both (Melnikov and Smirnov, 2012). In addition, when 
portfolio returns exhibit excessive tail risk, as reflected by higher order moments such as skewness and kurtosis, minimum variance 
hedging strategies may not be appropriate or efficient (Cao et al., 2010). In such cases, the optimal hedging strategy should minimize 

5 The Buffered Probability of Exceedance (bPOE) is a measure of risk of an asset or a portfolio representing the likelihood of breaching a specified 
loss threshold. It is used in conjunction with VaR or CVaR to assess the probability of returns breaching the VaR or CVaR (Rockefeller and Ursayev, 
2019). See section 3.2 for further detail.

6 For instance, Alizadeh and Nomikos (2009) note that FFA trading activity is concentrated in Capesize and Panamax contracts, particularly on 
basket of trip-charters routes, while smaller vessel classes attract much less liquidity. They also highlight that trading volumes are highest at short 
maturities, with liquidity thinning considerably for longer-dated contracts.
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downside or tail risk, rather than total variance. Several techniques and methods have been developed over the years to assess and 
manage tail risk, including Value-at-Risk (VaR) and Conditional-VaR (CVaR), which have become standard tools in modern risk 
management and portfolio optimization.

Rockafellar and Uryasev (2000) introduced CVaR as a more robust alternative to VaR, based on favorable mathematical properties 
such as stability and ease of estimation or optimization. CVaR measures the expected loss conditional on losses exceeding the VaR 
threshold and offers continuity with respect to the confidence level. While VaR optimization becomes problematic under non-normal 
return distributions, CVaR retains computational tractability and reliability, which make it superior to VaR. CVaR is a coherent risk 
measure which forms a convex objective function that facilitates numerical optimization (Sarykalin et al., 2008; Rockafellar and 
Uryasev, 2013); satisfying subadditivity, monotonicity, translation invariance, and positive homogeneity. This robustness is partic
ularly important in commodity market applications, where data irregularities and tail events can undermine traditional risk measures 
(Byers et al., 2021). In financial markets, CVaR has been widely applied in portfolio optimization (Krokhmal et al., 2002) and robust 
hedging under model uncertainty (Melnikov and Smirnov, 2012). However, despite its theoretical advantages, CVaR has rarely been 
applied to hedging strategies in commodities and shipping freight markets. Moreover, the integration of probabilistic risk metrics like 
bPOE has not yet been fully explored. This represents a notable gap in the literature, especially given the asymmetries and heavy tails 
commonly observed in shipping freight return distributions.

The literature exploring VaR and CVaR-based hedging strategies provides strong evidence of their potential advantages over 
conventional MVHRs. Harris and Shen (2006) investigate minimum VaR and CVaR hedging strategies using a non-parametric his
torical simulation method. They conclude that VaR and CVaR hedging approaches outperform traditional minimum variance ap
proaches. Cao et al. (2010) propose a semi-parametric approach for estimating minimum VaR and CVaR hedge ratios, demonstrating 
significant reductions in tail risk. Similarly, Albrecht et al. (2012) derive analytical hedge ratios under elliptical and mixed elliptical 
distributions, supporting the superior performance of VaR and CVaR based hedging strategies in out-of-sample tests. Melnikov and 
Smirnov (2012) develop an optimal hedging strategy semi-explicitly based on CVaR for both financial and insurance applications. 
These studies suggest that CVaR-based hedging should theoretically outperform MVHR due to the super quantile function used in 
optimization, which more accurately incorporates asymmetries and tail behavior in return distributions.

Moreover, when optimizing the tail risk of a portfolio, the Buffered Probability of Exceedance (bPOE) offers an intuitive approach 
to modeling tail risk. Mathematically it is defined as one minus the confidence level at which the CVaR equals some identified value; 
bPOE allows for direct probabilistic interpretation of tail risk (Rockafellar and Royset, 2010). While CVaR quantifies the expected loss 
beyond a threshold, bPOE captures the probability of exceeding a given loss level. Together, they enable a dual view, measuring both 
severity and frequency of tail events. Davis and Uryasev (2016) apply this framework to model tropical storm damage losses, while 
Shang et al. (2016) extend it to bond immunization, finding that although CVaR and bPOE constraints are equivalent, their optimi
zation results can differ significantly.

Norton et al. (2017) show that minimizing bPOE is equivalent to solving a soft-margin Support Vector Machine (SVM) classification 
problem under robust optimization. Mafusalov et al. (2018) investigate the convergence rates and asymptotic properties of empirical 
bPOE estimates, finding that while bias remains low, asymptotic variance can be large under heavy-tailed distributions. This highlights 
the importance of precision in modeling extreme risk, especially when distributions exhibit fat tails.

While prior studies have examined hedging shipping freight rate risk using FFAs and different time-varying hedging methods, there 
remains a clear gap in addressing extreme tail losses, non-normal return distributions, and distributional asymmetries in the context of 
hedge ratio estimation. This paper seeks to address these shortcomings by applying a CVaR-based framework and incorporating 
Buffered Probability of Exceedance (bPOE) to enhance hedging effectiveness in dry bulk shipping markets. This analysis underscores 
the need for a tail-focused, distribution-sensitive hedging framework in shipping.

3. Methodology

Shipowners and charterers have been using Forward Freight Agreements (FFAs) to hedge their physical exposure in freight markets 
since early 2000s. Hedging is typically achieved by taking a position in the FFA market opposite to the physical exposure, thereby 
creating a hedged freight portfolio with reduced volatility compared to an unhedged position.

Let Rs,t and Rf ,t be the log returns of spot and futures (FFAs) at time t, respectively, and ht represents the hedge ratio at time t. The 
hedged portfolio return at time, t+1, is defined as follows: 

• Short hedge (protecting a long physical position): Rh,t+1 = Rs,t+1 − htRf ,t+1
• Long hedge (protecting a short physical position): Rh,t+1 = − Rs,t+1 + htRf ,t+1

In both cases, a negative value of Rh,t+1 represents a loss, while a positive value indicates a gain. When risk is measured using 
variance, this symmetric treatment fails to distinguish between gains and losses. Accordingly, the variance of the hedged portfolio 
return at time t+1 is specified as: 

var
(
Rh,t+1

⃒
⃒Ωt
)
= var

(
Rs,t+1

⃒
⃒Ωt
)
+ h2

t var
(
Rf ,t+1

⃒
⃒Ωt
)
− 2htcov

(
Rs,t+1,Rf ,t+1

⃒
⃒Ωt
)

(1) 

Intuitively, this expression captures the overall risk of the hedged position, treating gains and losses symmetrically. According to 
Ederington (1979), the minimum variance hedging ratio (MVHR) minimizes the variance of this hedged portfolio return at time t, and 
is given by: 
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h*
t =

cov
(
Rs,t+1,Rf ,t+1

)

var
(
Rf ,t+1

) (2) 

This ratio balances spot and futures positions to minimize portfolio volatility, serving as the standard benchmark for hedging. The 
MVHR framework can be extended to a time-varying setting by allowing the variance and covariance of spot and FFAs returns, var

(
Rf ,t
)

and cov
(
Rs,t, Rf ,t

)
, to evolve over time. This is achieved using dynamic models such as rolling window OLS, Bivariate GARCH, or 

Regime-Switching GARCH. Both rolling OLS and Bivariate GARCH models allow the estimation of conditional second moments of 
returns series, adapting the hedge ratio over time. Several studies have employed different multivariate GARCH specifications to 
estimate the dynamic MVHR in financial, commodity and freight markets (e.g., Kroner and Sultan, 1993; Kavussanos and Nomikos, 
2000; Alizadeh et al., 2015; Sun et al., 2018). The MRS-GARCH model adds further flexibility by capturing structural shifts and regime 
changes in the relationship between spot and futures markets. This is particularly relevant for freight markets, which are characterized 
by cyclical patterns and sudden shifts in volatility due to their exposure to macroeconomic cycles, geopolitical shocks, and supply-side 
frictions. Nevertheless, when basis risk is high and correlations are unstable, even dynamic variance-based hedging models fail to 
effectively capture exposure and yield suboptimal results (Cao and Conlon, 2023; Goswami et al., 2023), which justifies the use of more 
robust, tail-sensitive methods such as CVaR.

In this study, we compare the performance of the CVaR-based hedging strategy with alternative models proposed in the literature, 
including rolling window OLS, Bivariate GARCH, and Markov Regime Switching GARCH (MRS-GARCH).

3.1. Conditional Value-at-Risk

While traditional variance-based hedging strategies minimize the variance of the portfolio of spot and futures, they treat gains and 
losses symmetrically. By contrast, the Conditional Value-at-Risk (CVaR) based hedging strategy, introduced by Rockafellar and 
Uryasev (2000), focuses explicitly on minimizing the expected tail loss of the portfolio of spot and futures—making it well-suited for 
hedging shipping freight rates or commodities where downside risk is the primary concern. The CVaR hedging approach seeks to 
minimize the CVaR of the portfolio consisting of spot and forward positions. CVaR is a coherent and robust risk measure than 
traditional VaR because minimizing CVaR explicitly focuses on the expected tail loss beyond the VaR threshold.

For a long hedge, the portfolio return at time t+1, is given by Rh,t+1 = − Rs,t+1 + htRf ,t+1. A loss occurs when Rh,t < 0 and is expressed 
by L(h, t) = − Rh,t, where 

(
− Rh,t

)
can be a random variable with cumulative distribution function F(− Rh,t)(z) = P{ − Rh,t ≤ z}.

The portfolio VaR at confidence level α ∈ (0, 1) is the threshold loss level such that: 

VaRα
(
− Rh,t

)
=min

{
z|F(− Rh,t)(z)≥α

}
(3) 

where VaRα
(
− Rh,t

)
represents the loss threshold given α percent probability and F(− Rh,t)(z) is the cumulative distribution of the hedged 

portfolio. In other words, VaR is the given loss over a certain horizon with confidence level α. For discrete distributions, VaRα
(
− Rh,t

)

has the feature of non-convex discontinuity with all confidence levels (Rockafellar and Uryasev, 2000).
An alternative risk measure is CVaR, which captures the expected loss beyond the VaR threshold. CVaR goes further by averaging 

the losses that exceed the VaR threshold, providing a more complete measure of extreme downside risk. For general distributions, the 
CVaRα

(
− Rh,t

)
with confidence level of α ∈ [0,1] is: 

CVaRα
(
− Rh,t

)
=E
{(

− Rh,t
)⃒
⃒
(
− Rh,t) ≥VaRα

(
− Rh,t

)}
(4) 

Following Rockafellar and Royset (2018), a general deviation measure D
(
− Rh,t

)
for a long hedge can be written as: 

D
(
− Rh,t+1

)
=D

(
RS,t+1 − htRF,t+1

)
(5) 

which can be expanded as 

D
(
− Rh,t+1

⃒
⃒Ωt
)
=D

(
RS,t+1

⃒
⃒Ωt
)
+ h2

t D
(
RF,t+1

⃒
⃒Ωt
)
− 2htD

(
RS,t+1,RF,t+1

⃒
⃒Ωt
)

(6) 

This function generalizes different ways of measuring how far portfolio outcomes deviate from expectations, depending on the 
chosen risk measure (variance, CVaR, etc.). Minimizing equation (6), yields the optimal hedge ratio (OHR) at time t, defined by 

h*
t =D

(
RS,t+1,RF,t+1

⃒
⃒Ωt
) /

D
(
RF,t+1

⃒
⃒Ωt
)

(7) 

In essence, this identifies the hedge ratio that minimizes the chosen deviation measure, aligning the hedge with downside risk pref
erences. When the deviation measure is specified as CVaR, the OHR at time t, that minimizes expected tail loss in equation (6) of 
minimum CVaR deviation, is determined by 

h*
t =Cov

(
RS,t+1,RF,t+1

⃒
⃒Ωt
) /

CVaR Devα
(
RF,t+1

⃒
⃒Ωt
)

(8) 

where 
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CVaR Devα(X) =CVaRα

(
1
n
∑n

1
|X − X|

)

(9) 

In equation (9), n represents the sample size, X represents the loss, and the term 
(

1
n
∑n

1 |X − X|
)

denotes the average absolute de

viation of the loss from the mean value over the entire sample period. Accordingly, the OHR differs for long and short positions, 
directly reflecting asymmetries in return distributions. This is expressed as follows for the long and short hedging cases, respectively7: 

h*
t = E

[(
RF,t+1 − RS,t+1

)⃒
⃒
(
RF,t+1

)
≥VaRα

(
RF,t+1

)] /
CVaR Devα

(
RF,t+1

)
(10) 

h*
t = E

[(
RF,t+1 − RS,t+1

)⃒
⃒
(
− RF,t+1

)
≥VaRα

(
− RF,t+1

)] /
CVaR Devα

(
− RF,t+1

)
(11) 

To evaluate risk reduction and hedging effectiveness (HE), we adopt two complementary approaches. First, we apply the traditional 
variance reduction metric which shows how much of the portfolio’s risk is eliminated by hedging; values closer to 1 (or 100 %) indicate 
stronger risk reduction. HE is measured as the percentage reduction in the variance of the hedged portfolio relative to the unhedged 
position: 

HE= [Var(Rs) − Var(Rh)] /Var(Rs) (12) 

Second, we report the average value of hedged portfolio returns (AVR) for both long and short positions. A negative AVR indicates 
an average loss over the sample period, while a positive AVR reflects an average gain: 

AVRShort =
1
n
∑n

1

[
RS,t − h*

t
(
RF,t
)]

(13) 

AVRlong =
1
n
∑n

1

[
− RS,t + h*

t
(
RF,t
)]

(14) 

Furthermore, to capture the downside tail behavior of hedged portfolio returns, we employ two asymmetric risk measures: Value- 
at-Risk Deviation (VaR_Dev) and Conditional VaR Deviation (CVaR_Dev). These metrics reflect how much losses in the left tail (or the 
right tail) deviate from average outcomes, allowing for a more nuanced comparison of extreme downside risk across hedging stra
tegies. In intuitive terms, VaR_Dev and CVaR_Dev measured as the difference between the mean and the estimated VaR and CVaR of the 
hedged portfolio, respectively (see Sarykalin et al., 2008 for more detail). Both are evaluated at a specified confidence level α and are 
defined as: 

VaR Devα
(
Rh,t
)
=VaRα

(
1
n
∑n

1

⃒
⃒Rh,t − Rh,t

⃒
⃒

)

(15) 

CVaR Devα
(
Rh,t
)
=CVaRα

(
1
n
∑n

1

⃒
⃒Rh,t − Rh,t

⃒
⃒

)

(16) 

In addition, we utilize two symmetric measures to assess the HE of different strategies: Mean Absolute Deviation (MAD) and Standard 
Deviation (SD). MAD captures the average absolute distance of returns from their mean treating all deviations equally, while SD 
reflects overall variability but gives proportionally more influence to larger deviations. Lower values of these measures indicate 
stronger risk reduction performance: 

MAD=
1
n
∑n

1

⃒
⃒Rh,t − Rh,t

⃒
⃒ (17) 

SD=
1
n
∑n

1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Rh,t − Rh

)2
√

(18) 

3.2. Buffered Probability of Exceedance (bPOE)

The Probability of Exceedance (POE) and the Buffered Probability of Exceedance (bPOE) are probabilistic risk measures associated 
with VaR and CVaR of the loss distribution of hedged portfolio returns (Mafusalov and Uryasev, 2018). The bPOE offers a comple
mentary perspective by controlling the probability of breaching a given loss threshold. For example, a POE of 10 % at a given threshold 
implies that in one out of ten scenarios, losses would exceed that level. This probabilistic view provides additional flexibility in 

7 To estimate the hedge ratios based on VaR and CVaR we use Portfolio Safeguard package which efficiently handles risk measures such as VaR 
and CVaR. (American Optimal Decisions AORDA, 2009; Portfolio Safeguard (PSG), http://www.aorda.com).
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managing tail risk (Rockafellar and Uryasev, 2000; Goswami et al., 2023). The POE represents the probability that the portfolio loss 
exceeds a specified threshold z, and is defined as 

pz
(
− Rh,t

)
= p
(
− Rh,t > z

)
= 1 − F(− Rh,t)

(z) (19) 

The POE is equal to 1 minus the cumulative distribution function of the portfolio loss, F(− Rh,t)
(z), which is the negative return on 

hedged portfolio. As established earlier in equation (6), F(− Rh,t)(z) is the inverse function of VaR. Hence, the bPOE, pz
(
− Rh,t

)
, can be 

defined as: 

pz
(
− Rh,t

)
=min

λ≥0
E
[
λ
(
− Rh,t − z

)
+ 1
]+ (20) 

where 
[
λ
(
− Rh,t − z

)
+ 1
]+

= max
{
0, λ
(
− Rh,t − z

)
+ 1

}
. Intuitively, bPOE estimates the smallest probability with which losses can 

exceed a threshold z, while also accounting for the size of those exceedances. In practice, this makes bPOE smoother and more reliable 
for optimization than the plain exceedance probability, which can jump abruptly at specific loss levels. Mafusalov and Uryasev (2018)
show that bPOE is equal to 1 − α on the interval E

(
− Rh,t

)
< z < sup

(
− Rh,t

)
, where α is an inverse function of CVaRα

(
− Rh,t

)
, and is 

the unique solution of equation (19): 

CVaRα
(
− Rh,t

)
= z (21) 

Therefore, in practical terms, bPOE represents the complement of the probability level at which the CVaR equals a specified 
threshold z. In other words, while CVaR focuses on the expected loss once the threshold is crossed, bPOE focuses on the likelihood of 
crossing it in the first place. Optimization of the bPOE depends upon the decision vector ht, which represents the hedge ratio.

Consider a general portfolio return function for short hedge Rh,t+1 = Rs,t+1 − htRF,t+1, with random coefficients Rs,t+1 and RF,t+1. 
Then equation (22) implies 

pz
(
− Rh,t

)
=min

λ≥0
E
[

λmax
0≤t≤N

(
− Rh,t − z

)
+ 1
]+

=min
λ≥0

E
[

λmax
0≤t≤N

(
− RS,t+1 + htRF,t+1 − z

)
+ 1
]+

(23) 

Minimizing the bPOE with regards to RS,t+1 and RF,t+1, yields 

min
RS,t+1RF,t+1

pz
(
− Rh,t

)
= min

RS,t+1RF,t+1 ,λ≥0
E
[

λmax
0≤t≤N

(
− RS,t+1 + htRF,t+1 − z

)
+ 1
]+

= = min
RS,t+1RF,t+1 ,λ≥0

E
[

max
0≤t≤N

(
λ
(
− RS,t+1 − z

)
+ λhtRF,t+1

)
+ 1
]+

(24) 

This objective function in equation (24) is piecewise linear and convex in ht., RS,t+1 and RF,t+1. Accordingly, for a long hedge, a 
general portfolio return function is Rh,t+1 = − Rs,t+1 + htRF,t+1, and when minimized, the bPOE can be written as 

min
RS,t+1RF,t+1

pz
(
− Rh,t

)
= min

RS,t+1RF,t+1 ,λ≥0
E
[

λmax
0≤t≤N

(
RS,t+1 − htRF,t+1 − z

)
+ 1
]+

= = min
RS,t+1RF,t+1 ,λ≥0

E
[

max
0≤t≤N

(
λ
(
RS,t+1 − z

)
− λhtRF,t+1

)
+ 1
]+

(25) 

Equations (24) and (25) can be formulated as Linear Programing problems. Equations (22)–(25) express how bPOE minimization is 
implemented for both short and long hedges. Put simply, these formulations determine the hedge ratio that minimizes the probability 
of extreme losses exceeding a chosen threshold, while accounting for the asymmetry between long and short exposures. This makes the 
optimization directly applicable to real-world hedging decisions, where the risk profile differs depending on position direction.

Recent work also shows that bPOE minimization can be formulated as a tractable convex program, reinforcing its appeal in risk- 
averse portfolio settings (Rockafellar and Uryasev, 2020). As stated previously in equations (24) & (25), while bPOE optimization is 
inherently one-dimensional, real-world hedging decisions often require assessing a range of loss thresholds and risk levels, rather than 
a single value. To address this, we extend the framework to minimize bPOE across multiple CVaR levels, generating a set of optimal 
solutions under varying confidence thresholds. In doing so, minimizing both equations (4) and (26) jointly produces overlapping 
segments of the efficient frontier. This frontier represents a set of Pareto-optimal outcomes in a bi-objective optimization (Mafusalov 
et al., 2018), where the dual goals are: minimizing CVaR at different confidence levels and minimizing the probability of an adverse 
event, i.e., the probability that portfolio losses exceed a specific threshold. This framework allows us to visualize and interpret the 
trade-off between the magnitude and likelihood of extreme losses in a coherent risk management context.

4. Data and preliminary statistics

The data set consists of weekly time series on spot and corresponding Forward Freight Agreements (FFAs) for three main sizes of dry 
bulk carriers, namely Capesize, Panamax, and Supramax vessels, sourced from the Baltic Exchange. The Baltic Exchange reports daily 
average spot (trip-charter) freight rates based on defined routes for each vessel size in the dry bulk sector based on the assessments 

X. Sun et al.                                                                                                                                                                                                             Journal of Commodity Markets 40 (2025) 100515 

7 



from a panel of shipbrokers. For each vessel size, these freight rates are aggregated to a basket of routes known as average trip-charter 
(TC) rates including average 5 TC rates for Capesize, average 4 TC rates for Panamax, average 10 TC for Supramax, and average 7 TC 
for Handysize.,89 The Baltic Exchange also compiles FFA assessments for corresponding average TC rates across vessel size and various 
tenors, including months, quarters, and calendar years ahead.

For the purpose of this paper, we use spot freight rates representing the average trip-charter rates, along with the corresponding 
FFAs with a one-quarter maturity for each vessel class. The sample comprises 916 weekly observations covering the period from 
January 5, 2007 to December 23, 2022. All prices are quoted in USD per day, and reflect Wednesday closing prices, or the next 
available trading day if Wednesday is a holiday.

Fig. 1 plots the historical series of spot and 1-quarter ahead FFA rates for average 5 TC Capesize, average 4 TC Panamax, and 
average 10 TC Supramax vessels.10 All the series exhibit significant fluctuations, with a notable peak just prior to the 2008 global 
financial crisis. For instance, the 1-quarter ahead FFA for the Panamax average of four trip-charter rates surged to 80,600 USD/day in 
June 2008, before collapsing to $4400 USD/day by the end of that year - equivalent to a 95 % reduction in value. After the financial 
crisis, freight volatility remained elevated, driven by the uneven global recovery, fluctuations in commodity trade, and persistent over- 
supply in the dry bulk fleet. While spot and FFA rates tend to move together, their correlation is relatively low and spot rates are more 
volatile. This is expected, as quarterly FFA contracts reflect the market’s expectation of average freight rates over the coming quarter, 
resulting in lower short-term variability compared with spot rates.

Descriptive statistics of the weekly return series for spot and corresponding quarterly FFA rates for different sizes of dry bulk 
carriers are presented in Table 1. A comparison of standard deviations reveals that spot returns are consistently more volatile than FFA 
returns across all vessel sizes. Moreover, the volatility of both spot and FFA returns increases with vessel size, with larger vessels such 
as Capesize exhibiting higher return variability than smaller ones like Supramax. This is a well-documented pattern in the literature (e. 
g., Kavussanos, 1996).

Turning to the estimated skewness coefficients for spot and FFA return series, we observe that 5 out of 6 return distributions are 
negatively skewed, suggesting that dry bulk freight rates are more prone to large negative returns than positive ones. Moreover, all 
kurtosis coefficients exceed three, highlighting the fact that both spot and FFA return distributions are leptokurtic, with sharp peaks 
and heavy tails relative to the normal distribution. These departures from normality are statistically supported by the Jarque and Bera 
(1980) test results at conventional significance levels. Such non-normal distributional features – particularly asymmetry and fat tails - 
have important implications for the hedge ratio estimation, potentially leading to inefficient hedging strategies. Moreover, recent work 
in commodity markets has demonstrated the importance of using tail-sensitive risk metrics, such as CVaR, especially in the presence of 
non-normal features like asymmetry and excess kurtosis (Byers et al., 2021).

Further, the results of Ljung and Box (1978) tests applied to both return levels and squared returns are reported in Table 2. The LB-Q 
(14) test statistics indicate a high degree of autocorrelation in the spot and FFA return series across all vessel sizes. Similarly, the 
LB-Q2(14) test results reveal significant autocorrelation in the squared returns, suggesting the presence of Autoregressive Conditional 
Heteroscedasticity (ARCH) effects. These findings are further corroborated by Engle’s (1982) ARCH(4) test, which confirms statisti
cally significant ARCH effects in both spot and FFA return series for all vessel sizes. The presence of such effects justifies the use of 
time-varying models like GARCH in hedge ratio estimation.

Table 2 also reports the results of unit root tests conducted on the log-levels and log-returns of spot and FFA rates for different sizes 
of dry bulk carriers. The tests include the augmented Dickey and Fuller (ADF, 1979), Phillips and Perron (PP, 1988) and Kwiatkowski 
et al. (KPSS, 1992) tests. For all the log-level series, the KPSS test fails to reject the null hypothesis of stationarity, while the ADF and PP 
tests reject the null of a unit root only at the 10 % significance level. In contrast, all three tests strongly support stationarity in the log- 
return series.

Taken together, Tables 1 and 2 highlight key features of dry bulk freight returns. Spot rates are more volatile than FFAs, with 
variability increasing by vessel size, particularly for Capesize. Negative skewness and excess kurtosis confirm the heavy-tailed and 
asymmetric nature of freight returns, while the unit root tests verify that log-returns are stationary and suitable for econometric 
modeling. These characteristics reinforce the need for tail-sensitive hedging frameworks such as CVaR and bPOE.

Asymmetry and leptokurtosis in the return distribution of hedged portfolios can significantly distort the estimation of both variance 
and CVaR, rendering traditional minimum variance approaches potentially ineffective (e.g., Sukcharoen and Leatham, 2017). Fig. 2
illustrates the empirical (sample) distributions of spot and corresponding FFA series, overlaid with the normal distribution for com
parison. All distributions display signs of negative skewness and excess kurtosis. A comparison of the tails reveals that dry bulk freight 
rates are more susceptible to extreme negative movements than to upward spikes. These distributional characteristics underscore the 
need for hedging models that can capture tail asymmetry and the non-uniform decay of distribution tails. Properly recognizing and 
modeling these features is crucial for accurate risk measurement, effective hedging strategies and robust empirical analysis in freight 
rates.

Furthermore, the sample period seems to include significant events such as the 2008 global financial crisis and COVID-19, which 

8 The definition of the Baltic shipping routes and composition of the basket of freight rates in each sector can be found on the Baltic Exchange 
website (https://www.balticexchange.com/en/index.html).

9 Baltic Exchange also aggregates these freight rates in the form of indices known as the Baltic Capesize Index (BCI), the Baltic Panamax Index 
(BPI), and the Baltic Supramax Index (BSI).
10 We do not include Handysize market in our analysis because the there was no trading activities in the FFA market for Handysize vessels in out 

sample period.
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resulted in structural changes and regime shifts in volatility and correlation dynamics. Such structural changes can adversely affect the 
performance of models that rely on stable parameter estimates (see Goswami et al., 2023), whereas more adaptive approaches such as 
dynamic CVaR optimization appear more robust (e.g., Melnikov and Smirnov, 2012). Although some alternative hedging strategies 
such as the MRS-GARCH model explicitly account for regime shifts, the CVaR-based approach can be more appropriate because it 
minimizes the tail-risk while it is flexible and dynamically adjusts to changes in the market as the estimation window is updated in the 
sample used for CVaR optimization.

Fig. 1. Historical Spot and quarterly FFAs prices for different size dry bulk carriers 
Notes: The figure plots weekly spot and 1-quarter ahead Forward Freight Agreement (FFA) rates for Capesize, Panamax, and Supramax vessels. Data 
are sourced from the Baltic Exchange and span the period from January 5, 2007 to December 23, 2022. All rates are quoted in USD per day and 
correspond to Wednesday closing prices (or the next trading day in case of a holiday).
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5. Empirical results

5.1. Static hedging results

To investigate the performance of minimum CVaR hedging relative to alternative strategies, including minimum variance and 
naïve (one-to-one) hedging, we first report the results of static hedging strategies over both in-sample and out-of-sample periods across 
the three dry bulk sub-markets. These results are presented in Tables 3 and 4, respectively. The comparison is based on several per
formance metrics: variance reduction (VR), hedging effectiveness (HE), average value of portfolio returns (AVPR), mean absolute 
deviation (MAD), 90 % VaR Deviation (VaR_Dev), and 90 % CVaR Deviation (CVaR_Dev). For the minimum CVaR deviation strategy, 
the results are reported separately for both long and short hedging positions, to account for asymmetries in the distribution of hedged 
portfolio returns.

In general, the minimum CVaR deviation strategy outperforms both the minimum variance and naïve hedging strategies across 
multiple hedging effectiveness measures. Based on the traditional variance reduction metric, CVaR-based hedging performs compa
rably to alternative approaches in the in-sample period (Table 3). However, over the out-of-sample period (Table 4), the CVaR strategy 
consistently outperforms all other methods across the three dry bulk sub-markets. For example, in the out-of-sample period, with 
extreme market stress such as the post–2011 shipping downturn and COVID-19 disruptions, the minimum CVaR approach achieves up 
to 18.26 % variance reduction in Capesize compared to 16.29 % for OLS, while also lowering 90 % CVaR deviation from 0.3585 (OLS) 
to 0.3525.

The improvement in performance is particularly evident when the distribution of the underlying hedged portfolios significantly 
deviates from normality due to fat tails and asymmetry. In such cases, the minimum CVaR approach captures tail risk more effectively 
than symmetric hedging strategies based on variance minimization. Conversely, when return distributions are approximately normal, 
the performance of the CVaR and minimum variance strategies tends to converge. The naïve hedging strategy demonstrates the 
weakest performance, especially in terms of variance reduction, largely due to its failure to account for differences in spot and FFA 
volatility and the low correlation between them (Kavussanos and Visvikis, 2010). Comparable issues have been documented in the 
context of jet fuel hedging (Cao and Conlon, 2023), where imperfect correlations between the hedged asset and its proxy lead to 
significant basis risk and diminished hedging performance (see also Goswami et al., 2023).

Table 1 
Descriptive statistics of dry bulk spot and FFA weekly returns.

Capesize Panamax Supramax

BCI 4 TC 4 TC_C+1Q BPI 4 TC 4 TC_P+1Q BSI 5 TC 5 TC_S+1Q

Observations 800 800 800 800 800 800
Mean − 0.0008 − 0.0009 − 0.0004 − 0.0005 − 0.0003 − 0.0005
Median − 0.0023 0.0010 − 0.0001 0.0004 0.0013 0.0022
Std. Dev. 0.08 0.06 0.05 0.04 0.03 0.03
Skewness 0.13 − 0.84 − 0.22 − 0.57 − 0.18 − 1.15
Kurtosis 1.58 8.97 2.69 5.08 6.3 5.78
Jarque-Bera 86.295 2793 250.1 908.4 1335.3 1298.6
LB-Q(14) 264.8 [0.000] 25.378 [0.031] 148.89 [0.000] 29.933 [0.008] 476.04 [0.000] 24.992 [0.035]
LB-Q2(14) 121.22 [0.000] 13.573 [0.482] 156.62 [0.000] 177.93 [0.000] 466.72 [0.000] 110.85 [0.000]
ARCH-LM (4) 79.625 [0.000] 4.2588 [0.372] 81.8 [0.000] 82.777 [0.000] 264.17 [0.000] 55.47 [0.000]

Sample period spans from January 5, 2007 to December 23, 2022 covering Capesize, Panamax, and Supramax. The Jarque-Bera is the test employed 
to assess the null hypothesis of normality in return distributions. LB-Q(14) and LB-Q2(14) are the Ljung and Box (1978) tests for autocorrelation in 
returns and squared returns, respectively. The ARCH-LM (4) test is the Engle (1982) test, used to detect the presence of Autoregressive Conditional 
Heteroscedasticity.

Table 2 
Unit root tests for dry bulk spot and FFAs.

Log Levels

BCI 4 TC 4 TC_C+1Q BPI 4 TC 4 TC_P+1Q BSI 5 TC 5 TC_S+1Q

ADF − 3.852*** − 3.185*** − 2.751*** − 2.381*** − 3.067*** − 2.476***
PP − 4.064*** − 3.015*** − 2.733*** − 2.169*** − 2.505*** − 2.192***
KPSS 2.866 3.744 2.955 3.346 2.943 3.161

​ Log returns

ADF − 9.665*** − 8.845*** − 9.265*** − 8.664*** − 8.341*** − 8.291***
PP − 16.64*** − 29.84*** − 17.31*** − 30.8*** − 12.15*** − 28.81***
KPSS 0.04041 0.03537 0.04972 0.05312 0.05684 0.07514

Unit root tests for log levels and log returns are conducted using the Augmented Dickey and Fuller (ADF, 1979) unit root test, the Phillips and Perron 
(PP, 1988) unit root test, and the Kwiatkowski et al. (KPSS, 1992) stationarity test. *** indicates rejection of the null hypothesis of unit root at the 1 % 
significance level. The 1 % and 5 % significance levels for ADF and PP tests are − 3.438, and − 2.864, respectively. See also notes in Table 1.
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In addition to variance-based metrics, we also assess performance using average portfolio return (AVR) and downside risk mea
sures. For instance, a larger and positive average value of hedged portfolio returns (AVR) indicates better performance over the sample 
period for each vessel type. The results show that the minimum CVaR deviation approach generates a relatively higher AVR compared 
to both the minimum variance and naïve hedging strategies in more than half of the in-sample and out-of-sample cases. This suggests 
that the CVaR-based method is more effective in mitigating negative skewness and fat tails in return distributions. Additional downside 

Fig. 2. Empirical distributions of spot and FFA returns vs. Normal Distribution 
Notes: The figure compares the empirical distribution of weekly log returns for spot and 1-quarter ahead FFA rates across Capesize, Panamax, and 
Supramax vessels with the standard normal distribution. The plotted distributions are based on data from the Baltic Exchange for the period January 
5, 2007 to December 23, 2022. Heavy tails and asymmetry are evident, particularly in spot return series, highlighting the need for tail-sensitive 
hedging strategies.
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risk measures, including 90 % CVaR deviation and 90 % VaR deviation, further confirm the superior performance of the minimum 
CVaR deviation strategy in both in-sample and out-of-sample periods and across all vessel sectors. By contrast, the naïve hedging 
strategy consistently yields the highest values of CVaR deviation, indicating the poorest performance in terms of downside risk 
mitigation. In nearly all cases, the CVaR method delivers lower downside risk than both the naïve hedge and the minimum variance 
hedge (via OLS).

As noted by Wang et al. (2015), the out-of-sample performance of hedging models typically falls short of their in-sample perfor
mance due to estimation errors in model parameters. In general, out-of-sample performance is lower than in-sample results, due to 
forecasting errors in the estimation of hedge ratios (Alizadeh et al., 2015). Our empirical findings are consistent with this view; 
out-of-sample results are not superior to in-sample results across any of the hedging strategies or dry bulk sub-markets considered. 

Table 3 
In-sample performance of static hedging strategies.

Capesize Variance Variance Reduction HE AVR MAD 90 % VaR_Dev 90 % CVaR_Dev

Unhedged 0.0302 ​ ​ ​ ​ ​ ​
Naïve 0.0213 0.0089 29.47 % 0.0014 0.1014 0.1492 0.2739
OLS 0.0207 0.0095 31.46 % 0.0006 0.0973 0.1349 0.2662
CVaR(short) 0.0205 0.0097 32.12 % 0.0004 0.0970 0.1317 0.2657
CVaR(long) 0.0206 0.0096 31.79 % 0.0005 0.0967 0.1342 0.2466

Panamax Variance Variance Reduction HE AVR MAD 90 % VaR_Dev 90 % CVaR_Dev

Unhedged 0.0136 ​ ​ ​ ​ ​ ​
Naïve 0.0135 0.0001 0.74 % 0.0003 0.0845 0.1249 0.2019
OLS 0.0108 0.0028 20.59 % − 0.0011 0.0729 0.1130 0.1732
CVaR(short) 0.0107 0.0029 21.32 % 0.0014 0.0729 0.1103 0.1737
CVaR(long) 0.0108 0.0028 20.59 % 0.0012 0.0729 0.1148 0.1932

Supramax Variance Variance Reduction HE AVR MAD 90 % VaR_Dev 90 % CVaR_Dev

Unhedged 0.0063 ​ ​ ​ ​ ​ ​
Naïve 0.0084 − 0.0021 − 33.33 % − 0.0004 0.0643 0.0998 0.1538
OLS 0.0054 0.0009 14.29 % − 0.0010 0.0495 0.0768 0.1213
CVaR(short) 0.0053 0.0010 15.87 % ¡0.0001 0.0487 0.0742 0.1219
CVaR(long) 0.0053 0.0010 15.87 % ¡0.0001 0.0488 0.0739 0.1410

The in-sample period for Capesize, Panamax, and Supramax spans from January 5, 2007 to December 28, 2011. The weekly sample is constructed 
using Wednesday price observations. HE represents the hedge effectiveness; AVR is the average hedged portfolio return, MAD is mean absolute 
deviation; 90 % VaR_Dev is the value of VaR Deviation at the 90 % confidence level, and 90 % CVaR_Dev is the value of CVaR Deviation at the 90 % 
confidence level. Bold values indicate the best-performing hedging strategy for each vessel type under the respective metric. For the CVaR-based 
strategy, the long and short results are evaluated independently and highlighted in bold if they outperform all other strategies in their respective 
direction. If a symmetric strategy (e.g., OLS) provides the best overall performance, but the CVaR-hedge outperforms it in one direction only (long or 
short), both values are bolded to reflect the CVaR strategy’s outperformance in one direction.

Table 4 
Out-of-sample performance of static hedging strategies.

Capesize Variance Variance Reduction HE AVR MAD 90 % VaR_Dev 90 % CVaR_Dev

Unhedged 0.0448 ​ ​ ​ ​ ​ ​
Naïve 0.0393 0.0055 12.25 % − 0.0047 0.1439 0.2285 0.3670
OLS 0.0375 0.0073 16.29 % − 0.0050 0.1426 0.2475 0.3585
CVaR(short) 0.0366 0.0082 18.26 % ¡0.0040 0.1430 0.2403 0.3525
CVaR(long) 0.0371 0.0077 17.19 % ¡0.0041 0.1427 0.2341 0.3530

Panamax Variance Variance Reduction HE AVR MAD 90 % VaR_Dev 90 % CVaR_Dev

Unhedged 0.0119 ​ ​ ​ ​ ​ ​
Naïve 0.0129 − 0.0010 − 8.40 % − 0.0007 0.0892 0.1277 0.2017
OLS 0.0113 0.0006 6.67 % ¡0.0006 0.0820 0.1250 0.1851
CVaR(short) 0.0111 0.0008 7.50 % ¡0.0006 0.0816 0.1249 0.1850
CVaR(long) 0.0111 0.0009 6.72 % ¡0.0006 0.0819 0.1216 0.1806

Supramax Variance Variance Reduction HE AVR MAD 90 % VaR_Dev 90 % CVaR_Dev

Unhedged 0.0041 ​ ​ ​ ​ ​ ​
Naïve 0.0050 − 0.0009 − 21.95 % − 0.0002 0.0539 0.0781 0.1369
OLS 0.0039 0.0002 4.88 % − 0.0008 0.0430 0.0557 0.1050
CVaR(short) 0.0035 0.0006 14.63 % 0.0007 0.0426 0.0546 0.1047
CVaR(long) 0.0035 0.0006 14.63 % 0.0007 0.0426 0.0569 0.1110

The out-of-sample period for Capesize, Panamax, and Supramax spans from January 4, 2011 to December 28, 2022. The weekly sample is constructed 
using Wednesday price observations. See also notes in Table 3.
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Overall, based on the traditional measure of hedging effectiveness, minimum CVaR deviation approach either outperforms or performs 
comparably to benchmarks, in line with Shrestha et al. (2018). When evaluated with downside-focused metrics, such as AVR, 90 % VaR 
deviation, and 90 % CVaR_deviation, the minimum CVaR deviation strategy demonstrates superior performance relative to both the 
minimum variance and naïve hedging approaches. This finding echoes Melnikov and Smirnov (2012), who demonstrate that 
CVaR-based hedging strategies offer more reliable protection against extreme downside risk.

5.2. Dynamic hedging results

Next, we compare the performance of the minimum CVaR deviation strategy against alternative hedging approaches based on 
dynamic models, which re-estimate the hedge ratios each week using a rolling window for both in-sample and out-of-sample periods. 
The alternative dynamic hedging strategies include the rolling window OLS, the Markov Regime Switching GARCH (MRS-GARCH) 
model (Alizadeh et al., 2015), and the Bivariate GARCH model (Souhir et al., 2019). We begin with the rolling window OLS where 
hedge ratios are re-estimated by applying an OLS regression over a fixed-size window. At each step, the sample window is updated by 
adding a new observation at the end and dropping the earliest one, ensuring the window length remains constant. The MRS-GARCH 
model is a dynamic framework that allows for regime shifts, according to the evolving state of the market, by estimating the 
time-varying regime probabilities assuming two latent regimes (see Alizadeh et al., 2015). Lastly, the Bivariate GARCH model uses the 
forecast of covariance between spot and FFA returns and variance of FFA returns to obtain the dynamic hedge ratio each period.

The in-sample and out-of-sample results for the five dynamic hedging models across different dry bulk sub-markets are presented in 
Tables 5 and 6, respectively. In the in-sample period results reveal that the minimum CVaR hedging method consistently outperforms 
the alternative strategies for all vessel sizes. For instance, in the case of Capesize vessels the HE of the minimum CVaR approach for 
long and short hedges are 55.30 % and 55.63 %, respectively, compared to 21.52 %, 30.08 % and 38.08 %, for rolling OLS, BGARCH 
and MRS-GARCH, respectively. For the Panamax sector, the HE of CVaR-based values for long and short hedges are 36.03 % (long 
hedge) and 34.55 % (short hedge), again outperforming both BGARCH and MRS-GARCH. Interestingly, the rolling OLS model achieves 
a HE of 47.79 %, which exceeds alternative methods; suggesting that in some market segments, simpler models may still offer 
competitive results. The results for the Supramax sector are similar to those of the Capesize, with the minimum CVaR method 
delivering higher HE than all other alternatives. While average hedged portfolio returns (AVR) and mean absolute deviation (MAD) do 
not show substantial differences across strategies and vessel sizes, the 90 % VaR_deviation (VaR_Dev 90 %) and 90 % CVaR_deviation 
(CVaR_Dev 90 %) are consistently lower for the minimum CVaR hedging strategy, indicating better downside risk control compared to 

Table 5 
In-sample performance of different dynamic hedging strategies.

Capesize Variance Variance Reduction HE AVR MAD 90 % VaR_Dev 90 % CVaR_Dev

Unhedged 0.0302 ​ ​ ​ ​ ​ ​
Rolling OLS 0.0237 0.0065 21.52 % 0.0005 0.1024 0.1406 0.2869
BGARCH 0.0210 0.0092 30.46 % 0.0006 0.0978 0.1406 0.2633
MRS 0.0187 0.0115 38.08 % − 0.0006 0.0926 0.1263 0.2512
CVaR(short) 0.0135 0.0167 55.30 % 0.0005 0.0877 0.1220 0.2293
CVaR(long) 0.0134 0.0168 55.63 % 0.0006 0.1330 0.1206 0.2227

Panamax Variance Variance Reduction HE AVR MAD 90 %VaR_Dev 90 % CVaR_Dev

Unhedged 0.0136 ​ ​ ​ ​ ​ ​
Rolling OLS 0.0072 0.0065 47.79 % − 0.0206 0.0681 0.1014 0.1492
BGARCH 0.0110 0.0026 19.12 % − 0.0008 0.0731 0.1038 0.1738
MRS 0.0100 0.0036 26.47 % − 0.0010 0.0710 0.1071 0.1663
CVaR(short) 0.0087 0.0049 36.03 % ¡0.0007 0.0691 0.1021 0.1611
CVaR(long) 0.0089 0.0047 34.55 % 0.0027 0.0668 0.1013 0.1608

Supramax Variance Variance Reduction HE AVR MAD 90 % VaR_Dev 90 % CVaR_Dev

Unhedged 0.0063 ​ ​ ​ ​ ​ ​
Rolling OLS 0.0061 0.0002 3.17 % − 0.0029 0.0439 0.0622 0.0966
BGARCH 0.0054 0.0009 14.29 % − 0.0012 0.0486 0.0729 0.1213
MRS 0.0072 − 0.0009 − 14.29 % − 0.0004 0.0597 0.0892 0.1472
CVaR(short) 0.0039 0.0024 38.10 % 0.0043 0.0565 0.0792 0.1006
CVaR(long) 0.0036 0.0027 42.86 % ¡0.0003 0.0546 0.0767 0.0979

The in-sample period for Capesize, Panamax, and Supramax spans from January 5, 2007 to December 28, 2011. The weekly sample is constructed 
using Wednesday price observations. MRS refers to the Markov Regime Switching model. BGARCH denotes the Bivariate Constant Conditional 
Correlation GARCH model. HE represents the hedge effectiveness; AVR is the average value of hedged portfolio, MAD is mean absolute deviation; 90 
% VaR_Dev is the value of VaR Deviation at the 90 % confidence level, and 90 % CVaR_Dev is the value of CVaR Deviation at the 90 % confidence 
level. Bold values indicate the best-performing hedging strategy for each vessel type under the respective metric. For the CVaR-based strategy, the 
long and short results are evaluated independently and highlighted in bold if they outperform all other strategies in their respective direction. If a 
symmetric strategy (e.g., OLS) provides the best overall performance, but the CVaR-hedge outperforms it in one direction only (long or short), both 
values are bolded to reflect the CVaR strategy’s outperformance in one direction.
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the alternatives across all vessel sizes.
Turning to out-of-sample results in Table 6, the minimum CVaR hedging method again outperforms the alternative strategies across 

all vessel sizes, based on the HE measures. For the Capesize market the estimated HE of the CVaR method is 42.53 % for short and 
44.98 % for long hedges compared to 21.16 %, 22.05 % and 41.87 % for Rolling OLS, BGARCH, and MRS-GARCH, respectively. In the 
Panamax sector, the CVaR-based HE values are 29.16 % for short and 27.50 % for long hedges while the HE values for rolling OLS, 
BGARCH, and MRS-GARCH are 40.83 %, 17.5 %, and 25.00 %, respectively. In this case, rolling OLS achieves the highest HE. As for the 
Supramax sector, the out-of-sample results are more mixed. The HE for the CVaR method is 5.56 % for both long and short hedges, 
while rolling OLS, BGARCH and MRS-GARCH produce HE values of 5.56 %, 2.78 %, and 11.11 %, respectively. While the average 
hedged portfolio returns (AVR) are somewhat mixed across strategies MAD, 90 % VaR_deviation and 90 % CVaR_deviation tend to be 
generally better for the minimum CVaR hedging method, confirming its relative advantage in controlling downside risk in the out-of- 
sample period. Specifically, the results in Table 6 show that CVaR-based strategies deliver the largest relative gains in vessel segments 
with higher volatility, heavier tails, and greater basis risk. In the dynamic setting, the Capesize CVaR hedge reduces 90 % CVaR 
deviation to 0.2913 versus 0.3058 for the best-performing benchmark (MRS-GARCH). This stronger performance of Capesize aligns 
with its market profile as the most volatile segment in our sample (Table 1) and the one with the highest basis risk, where unstable 
spot–FFA correlations weaken the effectiveness of variance-based hedging strategies.

It is also worth noting that CVaR’s incremental value is stronger for tail-risk measures than for variance alone. In the static out-of- 
sample Capesize results (Table 4), the 90 % CVaR deviation falls from 0.3585 under OLS to 0.3525 with CVaR, the clearest tail-risk 
gain. In Supramax dynamics (Table 6), the deviation declines from 0.0988 under MRS-GARCH to 0.0963 with CVaR, showing ben
efits beyond the most volatile market. Moreover, CVaR achieves far higher hedging effectiveness: for Capesize in-sample (Table 5), HE 
reaches 55 % versus 21.5 % for rolling OLS, underscoring the robustness of downside-focused strategies.

Furthermore, Figs. 3–5 display the estimated time-varying hedge ratios generated by the five hedging strategies across the 
Capesize, Panamax and Supramax markets. The rolling window OLS hedge ratios exhibit a relatively stable pattern across all vessel 
types; however, this method shows the weakest performance in terms of the average value of portfolio returns (AVR). In contrast, the 
MRS-GARCH model produces highly volatile hedge ratios, which may be impractical due to the need for frequent position adjustments 
and the associated transaction costs from buying or selling FFAs. The Bivariate GARCH model provides more stable hedge ratios than 
the MRS-GARCH, yet still entails considerable adjustment frequency, limiting its practical appeal under high transaction costs (e.g., see 
Souhir et al., 2019). In comparison, the minimum CVaR deviation strategy yields smoother and more stable hedge ratios which points 
to the distinct advantage of CVaR-based models. Notably, the minimum CVaR long and short strategies led to differentiated hedge 
ratios, demonstrating the model’s ability to capture asymmetries in the return distribution. In addition, the lower volatility in the 
hedge ratios derived from the minimum CVaR approach implies reduced adjustment frequency and therefore lower transaction costs, 

Table 6 
Out-of-sample performance of different dynamic hedging strategies.

Capesize Variance Variance Reduction HE AVR MAD 90 % VaR_Dev 90 % CVaR_Dev

Unhedged 0.0448 ​ ​ ​ ​ ​ ​
Rolling OLS 0.0354 0.0094 20.98 % − 0.0049 0.1419 0.2541 0.3517
BGARCH 0.0349 0.0099 22.10 % − 0.0052 0.1406 0.2459 0.3480
MRS 0.0262 0.0186 41.52 % − 0.0137 0.1163 0.1922 0.3058
CVaR(short) 0.0258 0.0190 42.41 % ¡0.0030 0.1129 0.2238 0.3044
CVaR(long) 0.0248 0.0200 44.64 % 0.0099 0.1196 0.1879 0.2913

Panamax Variance Variance Reduction HE AVR MAD 90 % VaR_Dev 90 % CVaR_Dev

Unhedged 0.0119 ​ ​ ​ ​ ​ ​
Rolling OLS 0.0070 0.0049 40.83 % − 0.0029 0.0838 0.1121 0.1567
BGARCH 0.0103 0.0016 13.45 % 0.0002 0.0811 0.1250 0.1792
MRS 0.0090 0.0029 24.37 % − 0.0009 0.0784 0.1224 0.1650
CVaR(short) 0.0084 0.0035 29.42 % − 0.0012 0.0778 0.1122 0.1646
CVaR(long) 0.0085 0.0034 28.57 % − 0.0010 0.0776 0.1119 0.1638

Supramax Variance Variance Reduction HE AVR MAD 90 % VaR_Dev 90 % CVaR_Dev

Unhedged 0.0041 ​ ​ ​ ​ ​ ​
Rolling OLS 0.0097 − 0.0056 − 5.56 % − 0.0004 0.0790 0.1147 0.1654
BGARCH 0.0040 0.0001 2.44 % ¡0.0003 0.0685 0.0773 0.1103
MRS 0.0037 0.0004 11.11 % − 0.0009 0.0410 0.0611 0.0988
CVaR(short) 0.0036 0.0005 12.20 % − 0.0021 0.0469 0.0589 0.1062
CVaR(long) 0.0036 0.0005 12.20 % 0.0001 0.0464 0.0574 0.0963

The out-of-sample period for Capesize, Panamax, and Supramax spans from January 4, 2011 to December 28, 2022. The weekly sample is constructed 
using Wednesday price observations. See also notes in Table 5.
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Fig. 3. Estimates of out-of-sample dynamic hedging ratios for Capesize 
Notes: This figure displays the weekly dynamic out-of-sample hedge ratios for Capesize vessels estimated using five different methods: Naïve, Rolling 
OLS, Bivariate GARCH, MRS-GARCH, and Minimum CVaR Deviation - for both long and short hedge positions.

Fig. 4. Estimates of out-of-sample dynamic hedging ratios for Panamax 
Notes: This figure displays the weekly dynamic out-of-sample hedge ratios for Panamax vessels estimated using five different methods: Naïve, 
Rolling OLS, Bivariate GARCH, MRS-GARCH, and Minimum CVaR Deviation - for both long and short hedge positions.

Fig. 5. Estimates of out-of-sample dynamic hedging ratios for Supramax 
Notes: This figure displays the weekly dynamic out-of-sample hedge ratios for Supramax vessels estimated using five different methods: Naïve, 
Rolling OLS, Bivariate GARCH, MRS-GARCH, and Minimum CVaR Deviation - for both long and short hedge positions.
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which is particularly important in the context of dynamic hedging strategies.
In addition, as suggested by Melnikov & Smirnov (2012), these hedge ratios react primarily to persistent changes in downside risk 

rather than to transient fluctuations, thereby minimizing unnecessary rebalancing.11 From a practical standpoint, this stability is 
highly valuable for shipowners, charterers, and trading firms, since fewer hedge adjustments translate into lower transaction costs, 
reduced operational complexity, and less exposure to liquidity constraints in the FFA market. In volatile freight environments, where 
bid–ask spreads can widen quickly, smoother hedge ratios also improve execution certainty and help align hedging strategies with 
internal risk limits and capital allocation policies. Thus, beyond statistical performance, the CVaR-based approach offers tangible cost 
savings and more reliable implementation for market participants.

A common feature of downside risk optimization using CVaR approach in markets characterized by low spot-futures correlations, 
high basis risk, and non-normal, heavy-tailed distributions, is that hedge ratios can exceed 100 % level – as seen in Fig. 6. Prior studies 
have also shown that when the hedging instrument is imperfectly correlated with the underlying exposure, optimal hedge ratios 
derived from CVaR or related risk measures can exceed nominal exposure (e.g., Cao et al., 2010; Melnikov and Smirnov, 2012; 
Goswami et al., 2023). In addition, in markets where prices follow mean reverting processes, the volatility of forward or futures prices 
tend to be lower than volatility of spot prices. Thus, to hedge a unit change in spot price more than one unit of forward or futures should 
be used (Alizadeh et al., 2015; Sun et al., 2018; Shrestha et al., 2018).

Finally, to assess the robustness of the minimum CVaR strategy with respect to the window size used in hedge ratio estimation we 
follow Pavlikov and Uryasev (2014) using different CVaR estimation windows. Specifically, we evaluate the out-of-sample perfor
mance of the CVaR-based hedging strategy using a range of rolling window sizes (125, 150, 175, and 200 weeks). Fig. 6 illustrates the 
impact of rolling window length on CVaR hedge ratio estimates for Capesize vessels. The hedge ratios generated using a shorter 
window of 125 weeks respond more rapidly to recent market conditions and exhibit higher volatility. In contrast, the longer rolling 
window of 200 weeks produces smoother hedge ratios with slower responsiveness to market changes. The intermediate 150-week 
rolling window used in the study seems to provide a balance between these extremes. These results underscore the importance of 
window selection in risk-sensitive hedging frameworks, where the trade-off between adaptability and stability affects both risk 
coverage and implementation costs.

A more formal assessment of the impact of window length on the out-of-sample hedging performance of the CVaR strategy in 
Table 7. Results reveal that changes in window size have minimal impact on the relative performance of the minimum CVaR strategy 
relative to the alternatives. These findings highlight the robustness and stability of the CVaR-based approach and further support its 
value as a coherent and efficient risk optimization technique for hedge ratio estimation in dry bulk freight markets.

5.3. Distributions of portfolio returns

As further assessment, we conduct additional statistical analysis on the distribution of out-of-sample hedged portfolio returns 
derived from the minimum CVaR deviation strategy. The distributions for out-of-sample short and long hedged portfolio returns across 
the three size vessel classes are presented in Fig. 7, along with the standard deviation (Std_Dev), 90 % CVaR_deviation, 90 % VaR_
deviation, and Maximum Loss Deviation (MLD). MLD is defined as the difference between the maximum loss and the mean of the 
hedged portfolio return distribution. The visual annotations show that CVaR deviation extends further into the left tail than VaR 
deviation, capturing not only the cutoff point for extreme losses but also their average magnitude. The inclusion of MLD highlights the 
most adverse observed outcome relative to the mean. Taken together, these cues demonstrate the added value of CVaR in quantifying 
downside risk beyond variance-based measures.

Compared to the spot and FFA distributions (Fig. 2), the hedged returns appear more symmetric and closer to normal, underscoring 
the effectiveness of CVaR-based strategy in mitigating skewness and excess kurtosis. This mitigative effect is particularly important 
given the documented skewness and kurtosis in dry bulk freight returns (Nomikos et al., 2013) and confirms the robustness of CVaR 
under leptokurtic conditions, as discussed in Sarykalin et al. (2008). Notably, hedged return distributions are different for long and 
short hedges in terms of asymmetry and kurtosis. This feature is effectively captured by the minimum CVaR hedging method, as 
opposed to symmetric hedging approaches. The estimated mean returns for short and long hedged portfolios for Capesize, Panamax 
and Supramax vessels are − 0.0035, 0.0016, − 0.0011, − 0.0011, − 0.0021 and 0.0003, respectively. Additionally, measures such as 
standard deviation, VaR_Deviation and CVaR_Deviation of are positively related to the vessel size – confirming existing literature that 
larger vessels typically exhibit greater freight rate volatility (e.g. Kavussanos, 1996).

Moreover, distributions of hedged returns appear to be less leptokurtic compared to the corresponding spot and FFA returns, 
suggesting that the minimum CVaR strategy effectively suppresses extreme return fluctuations. This is particularly valuable in the dry 
bulk freight sector, where fat-tailed distributions are prevalent due to the large and sudden price swings. In such environments, the 
minimum CVaR deviation approach demonstrates a clear advantage over traditional methods like rolling OLS and BGARCH which are 
not able to capture the asymmetries in the loss distribution. Conversely, when distributions of freight rate returns are close to normal, 
CVaR and variance-based strategies tend to yield similar results, as also observed by Rockafellar and Uryasev (2000).

11 An extension for future research could be to move beyond pure risk minimization and integrate transaction costs such as bid-ask spreads, 
broker’s commission, clearing fees, and margining requirements—whether through explicit cost-aware constraints, or through utility-based opti
mization—in order to better reflect the trade-offs faced by practitioners.
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5.4. Efficient frontiers of Buffered Probability of Exceedance (bPOE)

The minimum CVaR deviation hedging strategy aims to minimize the expected loss exceeding a specified confidence level. While 
CVaR effectively captures the magnitude of losses in the tail of the distribution, it does not explicitly quantify the probability of 
exceeding a particular loss threshold. To address this limitation, we incorporate the Buffered Probability of Exceedance (bPOE) - a 
probabilistic risk measure that provides a two-dimensional perspective on tail risk. The bPOE framework captures both the likelihood 
and the severity of extreme losses, thereby offering a more comprehensive view of downside risk compared to CVaR alone. The 
theoretical soundness and practical relevance of bPOE have been reinforced by recent developments in its optimization under un
certainty (Rockafellar and Uryasev, 2020).

Assuming an initial portfolio value of $1 million, to normalize results across vessel classes and make loss figures economically 
meaningful to be interpreted on a consistent dollar basis, and minimize the bPOE (i.e. the probability of expected losses on the tail of 
portfolio returns), subject to CVaR constraints across a range of confidence levels. By doing so, we generate an efficient frontier 
representing a set of Pareto-optimal combinations under uncertainty (see Shang et al., 2016). These frontiers reflect the trade-off 
characteristics that CVaR-based frameworks were originally designed to address (Rockafellar and Uryasev, 2000). The optimal 
probabilities of expected losses for the hedged portfolios bounded by corresponding loss thresholds are shown in Fig. 8. The shape of 
the efficient frontiers - estimated for six hedged portfolios (short and long hedges across Capesize, Panamax, and Supramax vessels) - 
reveals substantial variation in both exceedance probabilities and loss magnitudes. These differences highlight the need to account for 
vessel-specific risk profiles and hedge asymmetries when designing tail risk mitigation strategies. This empirical application also 
supports Mafusalov and Uryasev (2018), who demonstrate that bPOE enables nuanced portfolio-level differentiation between loss 
probability and severity across different asset classes.

To examine the trade-off between expected loss magnitude and its probability of occurrence, we construct a closed-form solution 
for each portfolio tracing the boundary of the efficient frontier, from the lowest to the highest expected loss levels. Each point on this 
frontier reflects the minimum achievable CVaR (i.e., potential loss magnitude) for a given level of bPOE (i.e., risk probability). This 
approach is particularly important in dry bulk risk management, where spot and FFA rates are highly volatile, and basis risk is pro
nounced. The efficient frontier illustrates how investors or hedgers can effectively manage the trade-off between risk magnitude and 

Fig. 6. Estimated CVaR hedge ratios using different size rolling windows for Capesize vessels 
Notes: The figure illustrates the impact of varying the rolling window size (125, 150, 175 and 200 weeks) on the estimated Minimum CVaR De
viation hedge ratios for Capesize vessels. Hedge ratios are computed out-of-sample using weekly spot and 1-quarter ahead FFA returns over the 
period January 4, 2011 to December 23, 2022. While shorter windows capture local market dynamics more responsively, they introduce higher 
variability. The 150-week window balances responsiveness with stability.
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probability, offering a coherent framework for strategic decision-making under uncertainty.12 Importantly, the shapes and slopes of 
the efficient frontiers differ between short and long hedging strategies and across vessel classes, reflecting heterogeneous tail risk 
profiles. The results show that Capesize vessels—for both long and short hedges—are associated with higher probabilities of large 
losses, whereas Panamax and Supramax vessels exhibit lower loss probabilities for both hedge directions. For instance, at the 90 % 
minimum bPOE, the CVaR for short hedging in Capesize market is $34,000, compared to $16,000 and $14,000 for short hedges in the 
cases of Panamax and Supramax vessels, respectively. These differences highlight the greater tail risk exposure faced by larger vessel 
classes and demonstrate the practical value of bPOE-based optimization in addressing such asymmetries.

A closer comparison of efficient frontiers for short and long hedges within each vessel category reveals notable asymmetries. At the 
90 % minimum bPOE level, the CVaR values for short and long positions are relatively close. However, as the minimum bPOE declines 
– capturing more extreme tail events - the differences between efficient frontiers for short and long hedging increase considerably. For 
example, at the 50 % minimum bPOE level, the CVaR for Capesize short and long hedges are $135,000 and $100,000, respectively. 
Such discrepancies in estimated efficient frontiers stem from differences in the shapes of the distributions of hedged portfolio returns. 
Specifically, the distributions for short and long hedged portfolios are markedly distinct and different, highly non-normal with excess 
kurtosis and skewness, and change over time. This analysis further reinforces the importance of the minimum CVaR deviation strategy, 

Table 7 
Out-of-sample performance of CVaR hedging strategies.

Capesize Variance Variance Reduction HE AVR MAD 90 % VaR_Dev 90 % CVaR_Dev

Unhedged 
Short 125

0.0448 
0.0260

0.0188 41.96 % − 0.0036 0.1146 0.2191 0.3078

Short 150 0.0258 0.0190 42.41 % ¡0.0030 0.1129 0.2238 0.3044
Short 175 0.0252 0.0196 43.75 % − 0.0035 0.1137 0.2231 0.3036
Short 200 0.0254 0.0194 43.30 % − 0.0035 0.1207 0.2306 0.3179

Long 125 0.0246 0.0202 45.10 % 0.0015 0.1241 0.1898 0.2931
Long 150 0.0248 0.0200 44.64 % 0.0099 0.1196 0.1879 0.2913
Long 175 0.0251 0.0197 43.97 % 0.0016 0.1220 0.1818 0.2991
Long 200 0.0253 0.0195 43.53 % 0.0016 0.1207 0.1843 0.3065

Panamax Variance Variance Reduction HE AVR MAD 90 % VaR_Dev 90 % CVaR_Dev

Unhedged 
Short 125

0.0119 
0.0085

0.0034 28.57 % ¡0.0006 0.0813 0.1260 0.1727

Short 150 0.0084 0.0035 29.42 % − 0.0012 0.0778 0.1122 0.1646
Short 175 0.0086 0.0033 27.73 % − 0.0012 0.0820 0.1178 0.1782
Short 200 0.0089 0.0030 25.21 % − 0.0010 0.0804 0.1162 0.1730

Long 125 0.0091 0.0028 23.52 % − 0.0012 0.0839 0.1235 0.1709
Long 150 0.0085 0.0034 28.57 % − 0.0010 0.0776 0.1119 0.1638
Long 175 0.0088 0.0031 26.05 % ¡0.0009 0.0777 0.1286 0.1648
Long 200 0.0096 0.0023 19.32 % ¡0.0009 0.0803 0.1323 0.1722

Supramax Variance Variance Reduction HE AVR MAD 90 % VaR_Dev 90 % CVaR_Dev

Unhedged 
Short 125

0.0041 
0.0036

0.0005 12.20 % − 0.0025 0.0465 0.0566 0.1102

Short 150 0.0036 0.0005 12.20 % − 0.0021 0.0469 0.0589 0.1062
Short 175 0.0037 0.0004 9.76 % ¡0.0020 0.0457 0.0559 0.1050
Short 200 0.0038 0.0003 7.32 % − 0.0022 0.0471 0.0569 0.1103

Long 125 0.0035 0.0006 14.63 % 0.0002 0.0478 0.0565 0.1152
Long 150 0.0036 0.0005 12.20 % 0.0001 0.0464 0.0574 0.0963
Long 175 0.0035 0.0006 14.63 % 0.0002 0.0457 0.0539 0.0950
Long 200 0.0034 0.0007 17.07 % 0.0003 0.0465 0.0559 0.0975

The out-of-sample period for Capesize, Panamax, and Supramax spans from January 4, 2011 to December 28, 2022. The weekly sample is constructed 
using Wednesday price observations. HE represents the hedge effectiveness; AVR is the average value of hedged portfolio, MAD is mean absolute 
deviation; 90 % VaR_Dev is the value of VaR Deviation at the 90 % confidence level, and 90 % CVaR_Dev is the value of CVaR Deviation at the 90 % 
confidence level. Bold values indicate the best-performing hedging strategy for each vessel type under the respective metric. For the CVaR-based 
strategy, the long and short results are evaluated independently and highlighted in bold if they outperform all other strategies in their respective 
direction. If a symmetric strategy (e.g., OLS) provides the best overall performance, but the CVaR-hedge outperforms it in one direction only (long or 
short), both values are bolded to reflect the CVaR strategy’s outperformance in one direction.

12 Recent work on shipping freight market emphasizes the value of probabilistic models for improving forward-looking decision-making under 
uncertainty. For instance, Sel and Minner (2025) demonstrate that a probabilistic based forecast model and procurement strategy which in
corporates FFA and spot freight rate uncertainty outperforms models based on point forecasts, reinforcing the growing emphasis on probabilistic 
risk-based optimization in maritime logistics.

X. Sun et al.                                                                                                                                                                                                             Journal of Commodity Markets 40 (2025) 100515 

18 



which is explicitly designed to capture distributional asymmetries, making it a robust and targeted tool for hedging freight rate risk.
In practice, these results have direct implications for hedging decisions. CVaR–bPOE frontiers allow shipowners, charterers, and 

investors to select hedge ratios that best align with their risk appetite, balancing the probability and severity of extreme losses in line 
with corporate objectives. They therefore act as a practical decision-support tool, helping market participants translate complex tail- 
risk trade-offs into transparent hedging choices that support operational and financial planning in volatile freight markets.

5.5. Summary and key takeaways

Overall, the key takeaway is that CVaR-based hedging strategy reduces downside risk of shipping freight rates across vessel types, 
with particularly strong performance in the Capesize segment, which exhibits the highest inherent volatility and tail risk (Kavussanos 
and Visvikis, 2006; Alizadeh and Nomikos, 2009). The results also indicate that CVaR hedging approach is more appropriate for the 
determination of hedge ratios in dry bulk shipping where return distributions are highly non-normal with excess kurtosis and sig
nificant asymmetry. The CVaR hedging approach also yields a more stable dynamic hedge ratio compared to MRS and BGARCH models 
which reduces portfolio rebalancing costs. Moreover, estimation of bPOE further enhances risk control by directly assessing the tail 
probabilities and revealing the trade-off between loss likelihood and severity.

By vessel class, the main findings can be summarized as follows. 

Fig. 7. Distribution of portfolio returns and graphical representation of different risk measures. 
Notes: This figure presents empirical distributions of weekly portfolio returns of hedged positions, along with visual annotations for key risk 
measures. Mean is the average value of hedged portfolio returns; St Dev is the value of standard deviation; VaR Dev is the value of VaR Deviation at 
90 % confidence level; CVaR Dev is the value of CVaR Deviation at 90 % confidence level; Max Loss Dev. is the maximum loss deviation.
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• In the Capesize market, static and dynamic CVaR hedging strategies achieve the greatest variance reduction, superior downside 
control, and more symmetric return distributions. The pronounced long/short asymmetry in the sector highlights the need for 
tailored risk management, as bPOE optimization reveals higher short-side tail probabilities.

• In the Panamax sector, the CVaR strategy achieves the highest variance reduction and slightly lower CVaR deviations for the short 
hedge position in out-of-sample tests. Although Rolling OLS hedging approach attains the lowest CVaR deviations in dynamic 

Fig. 8. Efficient frontier: bound on CVaR values vs minimal bPOE. 
Notes: The figure illustrates the efficient frontiers for six hedged portfolios (long and short positions in Capesize, Panamax, and Supramax vessels), 
plotted as pairs of CVaR and bPOE values. Each point represents the trade-off between tail loss magnitude (CVaR) and tail exceedance probability 
(bPOE). The frontiers demonstrate portfolio-specific asymmetries and validate the suitability of bPOE as a complementary risk measure for freight 
rate hedging.
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settings, CVaR hedging strategies outperform GARCH-based models and provide more flexible downside risk control. Moreover, 
compared to the Capesize sector, Panamax freight rates exhibit moderate tail risk and some asymmetry, with short hedgers facing 
higher risk.

• In the Supramax sector, CVaR based hedging strategies seem to outperform benchmarks by lowering downside risk out-of-sample. 
While Supramax has the lowest tail risk and relatively symmetric long/short frontiers, CVaR and bPOE approaches still improve 
risk management, particularly where traditional methods fall short.

The superior performance of the CVaR-based hedging framework can be explained by its explicit focus on downside risk and its 
alignment with practitioners’ asymmetric loss aversion - rather than simply minimizing overall variance. CVaR hedging strategy al
lows for long and short hedge ratios to be different, explicitly controls extreme loss probabilities, and handles the heavy-tailed, skewed, 
and regime-sensitive return distributions typical of shipping markets (Kavussanos and Visvikis, 2010; Tsouknidis, 2016; Goswami 
et al., 2023). It is also dynamically responsive to changes in higher moments and robust to structural breaks and time-varying basis risk 
(Cao et al., 2010; Alizadeh et al., 2015). Unlike variance-based approaches reflecting quadratic utility, CVaR better matches practi
tioners’ loss-averse preferences, further enhancing its practical effectiveness (Rockafellar and Uryasev, 2000; Melnikov and Smirnov, 
2012; Shrestha et al., 2018). These combined features allow CVaR-based strategies to deliver superior risk protection in volatile, 
non-normal shipping markets.

6. Conclusions

A key challenge for participants in the dry bulk shipping market lies in managing extreme volatility and the imperfect co-movement 
between spot freight rates and their corresponding FFAs. In addition, the return distributions of both spot and FFA returns show 
marked deviations from normality, including asymmetry, excess kurtosis, and high levels of basis risk (Sun et al., 2019), all of which 
adversely affect the performance of traditional hedging strategies. To address these limitations, we propose a new hedging strategy 
based on minimum CVaR deviation, offering a tail-sensitive approach suitable for general, non-normal loss distributions.

We evaluate the performance of the minimum CVaR deviation strategy against several benchmarks, including the naïve, OLS, 
Bivariate GARCH and MRS-GARCH hedging models, all grounded in the minimum variance principles. Empirical results, based on 
traditional variance reduction, average value of hedged portfolio returns, and various deviation measures, demonstrate that the CVaR- 
based strategy consistently delivers superior hedging performance in the dry bulk market. The naïve approach exhibits the lowest 
hedging effectiveness and is particularly unsuitable due to substantial basis risk. Under heavy-tailed return distributions, the minimum 
CVaR deviation approach clearly outperforms the minimum variance strategy. In contrast, when return distributions are approxi
mately normal, the minimum CVaR and minimum variance hedging strategies exhibit similar levels of effectiveness in terms of 
variance reduction. Notably, the hedge ratios derived from the CVaR approach are relatively more stable over time, requiring fewer 
rebalancing adjustments, thereby lowering transaction costs in dynamic settings. Results across multiple hedging effectiveness 
measures in-sample and out-of-sample further reinforce the consistency and reliability of these findings.

More importantly, the efficient frontier generated by minimizing bPOE subject to CVaR constraints facilitates a meaningful trade- 
off between the probability and the magnitude of expected losses. This bivariate risk perspective bridges theoretical optimization and 
real-world risk management. The findings of this study are particularly relevant to stakeholders in the shipping industry, including 
shipowners, charterers, portfolio managers and derivative traders offering a robust framework for managing freight rate exposure. The 
proposed methodology provides valuable guidance for managing freight rate risk and a structured framework for tailoring hedging 
strategies to different levels of risk tolerance and loss probabilities. Future research could extend this framework by explicitly 
incorporating transaction costs, liquidity constraints, and margining requirements to better reflect the realities of freight trading. In 
practice, wider adoption of CVaR–bPOE approaches will depend on overcoming challenges related to data quality, computational 
demands, and industry acceptance beyond variance-based benchmarks.
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