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Quillen’s Resolution Theorem in algebraic K-theory provides 
a powerful computational tool for calculating K-groups 
of exact categories. At the level of K0, this result goes 
back to Grothendieck. In this article, we first establish an 
extriangulated version of Grothendieck’s Resolution Theorem.
Second, we use this Extriangulated Resolution Theorem 
to gain new insight into the index theory of triangulated 
categories. Indeed, we propose an index with respect to an 
extension-closed subcategory N of a triangulated category C
and we prove an additivity formula with error term. Our index 
recovers the index with respect to a contravariantly finite, 
rigid subcategory X defined by Jørgensen and the second 
author, as well as an isomorphism between Ksp

0 (X ) and the 
Grothendieck group of a relative extriangulated structure C X

R

on C when X is n-cluster tilting. In addition, we generalize 
and enhance some results of Fedele. Our perspective allows us 
to remove certain restrictions and simplify some arguments.
Third, as another application of our Extriangulated Resolution 
Theorem, we show that if X is n-cluster tilting in an 
abelian category, then the index introduced by Reid gives 
an isomorphism K0(C X

R ) ∼= Ksp
0 (X ).
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1. Introduction

Algebraic K-theory has its roots in geometry, drawing its name from Grothendieck’s 
proof of what is now known as the Grothendieck-Riemann-Roch theorem [14], [66]. The 
base case of this theory focuses on the Grothendieck group K0(C ) of a, classically, 
(skeletally small) abelian or exact category C , which is defined in a purely algebraic 
fashion. The abelian group K0(C ) is the free group generated on the set of isomorphism 
classes [A], for A ∈ C , modulo the relations [A] − [B] + [C] for each admissible short 
exact sequence A � B � C in C . However, a priori, computing K0(C ) may be quite 
difficult. For example, if R is a ring and modR is the exact category of finitely generated 
(left) R-modules, then determining K0(modR) has led to a rich literature, e.g. [32–34].

A Resolution Theorem, attributed to Grothendieck (see Bass [4, Thm. VIII.8.2], or 
Theorem 4.4), shows that if we can identify a suitable subcategory D of C , then K0(C ) ∼=
K0(D). Here, ‘suitable’ means each object in C admits a finite resolution by objects in 
D (see Definition 4.2), and D is an extension-closed subcategory of C that is also closed 
under taking kernels of admissible deflations. In the case C = modR, if every M ∈ modR
has finite projective dimension, then we may choose D = projR, the subcategory of 
finitely generated projective R-modules. Moreover, since all short exact sequences in 
projR split, the group K0(projR) is in principle simpler to compute.

The first aim of this article is to establish an extriangulated version of the Resolu-
tion Theorem (see Theorem A below). The notion of an extriangulated category was 
introduced by Nakaoka–Palu [54] and is a unification of Quillen’s exact categories and 
Grothendieck–Verdier’s triangulated categories. Extriangulated category theory serves 
as a convenient framework in which to write down proofs that apply to both exact and 
triangulated categories, and more generally to their substructures. Like the theory of 
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exact categories, but in contrast to triangulated category theory, each extension-closed 
subcategory of an extriangulated category inherits an extriangulated structure. We recall 
the necessary preliminaries on extriangulated categories in §2.

Since the theory of extriangulated categories was introduced in 2019, it has allowed 
many notions and constructions to be streamlined, such as cotorsion pairs [49] and 
Auslander-Reiten theory [37]. In this same flow, our Extriangulated Resolution Theo-
rem is indeed a generalization of Grothendieck’s Resolution Theorem. The Grothendieck 
group of an extriangulated category is defined in a similar fashion to that of an exact 
category; see Definition 4.1.

Theorem A (Theorem 4.5). Assume that X is a full additive subcategory of a skeletally 
small extriangulated category (C , E, s), and that X is extension-closed and closed under 
taking cocones of s-deflations g : B → C where B, C ∈ X . If each object C ∈ C admits 
a finite X -resolution, then we have a group isomorphism K0(C ) K0(X ).

∼=

We also mention here that Quillen founded higher algebraic K-theory for exact cat-
egories in [62], wherein he defined K-groups Ki(C ) for C exact and all integers i ≥ 0. 
In addition, Quillen generalized the Resolution Theorem to higher K-groups (see [62, 
Thm. 3]) and this result is a fundamental theorem in K-theory, providing powerful com-
putational machinery. There is also an ever-growing number of results on the K-theory 
of triangulated categories, e.g. [20,52,65,67].

The second aim of this article is to augment the index theory of triangulated cate-
gories by exploiting that Theorem A offers new insight into this theory. The index was 
introduced by Palu [59] in order to better understand the Caldero–Chapoton map, and 
it continues to find beneficial applications in various contexts. For example, in [28] it 
was revealed that the index is closely related to 0-Auslander extriangulated categories 
in connection with various mutations in representation theory, such as cluster tilting 
mutation [13,38] and silting mutation [1,44].

For a suitable skeletally small 2-Calabi–Yau triangulated category C with suspension 
functor [1] and a 2-cluster tilting subcategory X ⊆ C (see Example 4.3), Palu defined the 
index of an object C ∈ C with respect to X as a certain element in the split Grothendieck 
group Ksp

0 (X ) of X . The group Ksp
0 (X ) is the abelian group freely generated on iso-

morphism classes [X]sp of objects X ∈ X , modulo the relations [X ′]sp − [X]sp + [X ′′]sp
for each split exact sequence X ′ → X → X ′′ in X . In this setup, the index of C ∈ C is 
defined as the element indX (C) = [X0]sp − [X1]sp in Ksp

0 (X ), where C admits a triangle 
X1 X0 C X1[1] in C with Xi ∈ X ; see [59, §2.1] or Definition 5.2.

Using extriangulated categories, Padrol–Palu–Pilaud–Plamondon [61] observed that 
this triangle can be viewed as a projective presentation of C. Indeed, in a certain extri-
angulated category (C , EX

R , sX
R ) relative to the triangulated structure on C (see §2.2), 

the subcategory X is precisely the subcategory of all EX
R -projective objects (see [54, 

Def. 3.23]). Moreover, it follows from [61, Prop. 4.11] that the index induces the follow-
ing isomorphism (see also Corollary 5.3).
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indX : K0(C ,EX
R , sX

R ) Ksp
0 (X )

∼= (1.1)

The isomorphism (1.1) prompted Jørgensen and the second author to define an index 
with respect to a more general class of subcategory in [42]. We note here that the 
index has been defined for any contravariantly finite, additive, direct-summand-closed 
subcategory of a skeletally small, idempotent complete triangulated category in [24].

Assume the following for the remainder of §1.

Setup B. Let C be a skeletally small, idempotent complete, triangulated category with 
suspension [1]. In addition, suppose X ⊆ C is a full, additive subcategory that is 
contravariantly finite, rigid and closed under direct summands.

The index of C ∈ C with respect to X , in the sense of [42, Def. 3.5], is the class 
[C]XR in K0(C , EX

R , sX
R ). Using this index, the n-cluster tilting analogue of (1.1) was 

proven in [42, Thm. 4.10]; see Corollary 5.5. In §5, we use Theorem A to generalize [42, 
Thm. 4.10], and hence also [61, Prop. 4.11] (i.e. (1.1)); see Corollary 5.6. We do this by 
proposing a new index.

One can set N := X ⊥0 := { C ∈ C | C (X , C) = 0 }, which is an extension-closed 
subcategory of C , and define an extriangulated category (C , ER

N , sRN ) (see Proposi-
tion 3.11) relative again to the triangulated structure on C . We prove in Lemma 3.15
that, as extriangulated categories, we have (C , ER

N , sRN ) = (C , EX
R , sX

R ). In particular, 
we have

K0(C ,ER
N , sRN ) = K0(C ,EX

R , sX
R ),

and hence we make the following definition.

Definition C (Definition 5.7). The (right) index with respect to N of an object C ∈ C

is its class [C]RN in K0(C , ER
N , sRN ).

We remark that Definition C makes sense for any extension-closed subcategory N
of C , not just X ⊥0 , and hence it is a strict generalization of the index [−]XR of [42]. 
The upshot of defining an index with respect to an extension-closed subcategory is 
that we can utilize the localization theory of extriangulated categories as established 
by Nakaoka, Sakai and the first author [53] (see §3). In [53] a unification of the Serre 
quotient and Verdier quotient constructions is given. The extriangulated localization 
theory for triangulated categories is explored further in [57] and, in particular, there is a 
certain localization, or quotient, C /N of C with respect to N that is abelian; see (3.1)
and Theorem 3.16. We denote the localization functor by Q : C → C /N . Our results in 
§5.2 culminate in the following additivity formula with error term for our index [−]RN .
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Theorem D. There is a well-defined group homomorphism θRN : K0(C /N ) −→ K0(C ,

ER
N , sRN ), so that, for any triangle A 

f−→ B
g−→ C

h−→ A[1] in C , we have [A]RN −
[B]RN + [C]RN = θRN

(
ImQ(h)

)
.

We recover the additivity formula with error term for the index [−]XR (see [42, 
Thm. A]) as a special case of Theorem D; see Remark 5.8. Moreover, the theory of 
[53] allows us to simplify some arguments.

The homomorphism θRN captures the kernel of the canonical surjection πR
N : K0(C ,

ER
N , sRN ) → K0(C ), as the next main result shows. This is part of Proposition 5.15.

Proposition E. The sequence K0(C /N ) K0(C ,ER
N , sRN ) K0(C ) 0

θR
N πR

N is 
right exact.

Various indices have also appeared recently in higher homological algebra, e.g. [23,
25,40,41,63,64]. In §5.3 we add our index to this landscape. We focus again on the n-
cluster tilting situation, extending and strengthening some results of Fedele [23, Thm. C, 
Prop. 3.5], and also a result of Palu [60, Lem. 9] when n = 2. That we can use the right 
exact sequence in Proposition E to improve and/or strengthen these results adds to 
the mounting evidence that index theory for triangulated categories should be viewed 
through the lens of extriangulated categories.

In the last section, we turn our attention to the abelian setting and, using a straight-
forward application of Theorem A, deduce an analogue of (1.1) for an n-cluster tilting 
subcategory in an abelian category; see Theorem 6.5. This isomorphism is induced by 
the index defined by Reid in [64, Sec. 1]; see Remark 6.6.

Notation and conventions. All categories and functors in this article are always assumed 
to be additive, and subcategories will always be full and closed under isomorphisms in the 
ambient category. For a category C , we denote the class of all morphisms in C by Mor C , 
and modC is the category of finitely presented contravariant functors from C to the 
abelian category Ab of abelian groups. In addition, if A ⊆ C is an additive subcategory, 
then we denote by [A ] the (two-sided) ideal of morphisms in C that factor through an 
object in A . The canonical additive quotient functor is denoted (−) : C → C /[A ], so 
that the image in C /[A ] of a morphism f ∈ C (A, B) is denoted f .

2. Extriangulated categories

An extriangulated category is defined to be an additive category C equipped with

(1) a biadditive functor E : C op × C → Ab, where Ab is the category of abelian groups, 
and

(2) a correspondence s that associates an equivalence class s(δ) = [A 
f−→ B

g−→ C] of a 

sequence A 
f−→ B

g−→ C in C to each element δ ∈ E(C, A) for any A, C ∈ C ,
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where the triplet (C , E, s) satisfies the axioms laid out in [54, Def. 2.12]. We only recall 
some terminology and basic properties here, referring the reader to [54] for an in-depth 

treatment. For any A, C ∈ C , two sequences A 
f−→ B

g−→ C and A 
f ′

−→ B′ g′

−→ C in C
are said to be equivalent if there exists an isomorphism b ∈ C (B, B′) such that f ′ = b ◦f
and g = g′ ◦ b.

An extriangulated category (C , E, s) is simply denoted by C if there is no confusion. 
For the remainder of §2, let C = (C , E, s) be an extriangulated category.

Definition 2.1. We recall the following terminology.

(1) An element δ ∈ E(C, A) is called an E-extension for any A, C ∈ C . For a ∈ C (A, A′)
and c ∈ C (C ′, C), we write a∗δ := E(C, a)(δ) and c∗δ := E(c, A)(δ).

(2) If δ ∈ E(C, A), then a sequence A 
f−→ B

g−→ C with s(δ) = [A 
f−→ B

g−→ C] is 
called an s-conflation, and in addition f is called an s-inflation and g an s-deflation. 
The pair 〈A 

f−→ B
g−→ C, δ〉 is often denoted by A 

f−→ B
g−→ C

δ��� and we call it 
an s-triangle.

(3) A morphism of s-triangles from 〈A 
f−→ B

g−→ C, δ〉 to 〈A′ f ′

−→ B′ g′

−→ C ′, δ′〉 is a 
triplet (a, b, c) of morphisms in C with a∗δ = c∗δ′ and so that the following diagram 
commutes.

A B C

A′ B′ C ′

f

a

g

b

δ

c

f ′ g′
δ′

We remark that if A 
f−→ B

g−→ C is an s-conflation, then f is a weak kernel of g and g
is a weak cokernel of f (see [54, Prop. 3.3]). Recall that a weak kernel of g is a morphism 

K
k−→ B with gk = 0, and such that any morphism x ∈ C (X, B) with gx = 0 factors 

(not necessarily uniquely) through k. A weak cokernel is defined dually. Weak (co)kernels 
are not necessarily uniquely determined up to isomorphism, unlike (co)kernels.

Definition 2.2. Let A 
f−→ B

g−→ C be an s-conflation. Then we call C a cone of f and 
put Cone(f) := C. Similarly, we denote the object A by CoCone(g) and call it a cocone of 
g. We note that this notation is justified since a cone of f (resp. cocone of g) is uniquely 
determined up to isomorphism (see [54, Rem. 3.10]). For any subcategories U and V in 
C , we denote by Cone(V, U) the subcategory consisting of objects X appearing in an 
s-conflation V −→ U −→ X with U ∈ U and V ∈ V. The subcategory CoCone(V, U) is 
defined similarly.

Note that if U and V are additive, then so are Cone(V, U) and CoCone(V, U). However, 
the subcategories Cone(V, U) and CoCone(V, U) are not necessarily closed under direct 
summands in general.
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Definition 2.3. A subcategory X of C is said to be closed under taking cones of s-
inflations if whenever A B C

f g is an s-conflation with A, B ∈ X , then we have 
C ∈ X . Being closed under taking cocones of s-deflations is defined dually.

Triangulated (resp. exact) structures on an additive category C naturally give rise to 
extriangulated structures on C .

Example 2.4. [54, Prop. 3.22] Suppose C is a triangulated category with suspension 
functor [1] and put E(C, A) := C (C, A[1]) for A, C ∈ C . Then there is an extriangulated 

category (C , E, s), where A 
f−→ B

g−→ C
h��� is an s-triangle if and only if A 

f−→ B
g−→

C
h−→ A[1] is a distinguished triangle in C . In this case, we say that the extriangulated 

category/structure (C , E, s) corresponds to a triangulated category.

Example 2.5. [54, Exam. 2.13] Suppose (A , E) is an exact category. Consider the collec-
tion E(C, A) :=

{
[A f−→ B

g−→ C]
∣∣∣ A f−→ B

g−→ C lies in E
}

. If this forms a set for all 

A, C ∈ A , then there is an extriangulated category (A , E, s), where A 
f−→ B

g−→ C
δ���

is an s-triangle if and only if A 
f−→ B

g−→ C is a conflation in E . In this case, we say 
that the extriangulated category/structure (A , E, s) corresponds to an exact category. 
In addition, if (A , E) is in fact abelian, then we say (A , E, s) corresponds to an abelian 
category. Note that the set-theoretic assumption above is satisfied e.g. if A is skeletally 
small, or if A has enough projectives or enough injectives.

One of the advantages of revealing an extriangulated structure lies in the fact that it 
is closed under certain key operations: taking extension-closed subcategories; passing to 
a substructure using relative theory; taking certain ideal quotients; and localization. We 
now describe the parts of the first two of these operations relevant for our intentions, 
and localization is treated separately in §3.

2.1. Extension-closed subcategories

A subcategory N of (C , E, s) is called extension-closed if

(i) N is additive and closed under isomorphisms in C , and
(ii) for any s-conflation A −→ B −→ C, if A, C ∈ N then B ∈ N .

If the extriangulated structure on C is understood and no confusion may arise, we say 
that N is an extension-closed subcategory of C . An extension-closed subcategory of an 
extriangulated category inherits an extriangulated structure in a canonical way.
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Proposition 2.6. [54, Rem. 2.18] Suppose N is an extension-closed subcategory of C . 
Define E|N to be the restriction of E to N op × N , and similarly s|N := s|E|N . Then 
(N , E|N , s|N ) is an extriangulated category.

2.2. Relative theory

By a relative extriangulated structure, we mean a “coarser” or “less refined” structure, 
analogously to what is usually meant in topology. Relative theory for triangulated (resp. 
exact) categories has been considered in various contexts, e.g. [6,46] (resp. [3,21]). More 
recently, relative theory for n-exangulated categories (n ≥ 1 an integer) was introduced in 
[31]. A triplet (C , E, s) is extriangulated if and only if it is 1-exangulated [31, Prop. 4.3], 
and thus we can employ this relative theory. The next result follows from [31, Prop. 3.16].

Proposition 2.7. The following conditions are equivalent for an additive subfunctor F ⊆
E.

(1) (C , F , s|F ) forms an extriangulated category, where s|F is the restriction of s to F .
(2) s|F -inflations are closed under composition.
(3) s|F -deflations are closed under composition.

If an additive subfunctor F ⊆ E satisfies the equivalent conditions of Proposition 2.7, 
then it is called closed. Furthermore, we say that the extriangulated structure/category 
(C , F , s|F ) is relative to or a relative theory of (C , E, s).

For the remainder of §2.2, we assume (C , E, s) corresponds to a triangulated category 
with suspension [1]. We now recall how a subcategory X ⊆ C determines relative 
extriangulated structures on C .

Definition 2.8. For objects A, C ∈ C , we define subsets of E(C, A) as follows:

EX
L (C,A) := { h ∈ E(C,A) | h[−1] ◦ x = 0 for all x : X → C[−1] with X ∈ X } , and

EX
R (C,A) := { h ∈ E(C,A) | h ◦ x = 0 for all x : X → C with X ∈ X } .

These give rise to closed subfunctors EX
L and EX

R of E by [31, Prop. 3.19]. Actually, 
they coincide with the closed subfunctors EX [1] and EX in the notation [31, Def. 3.18], 
respectively. In particular, putting EX := EX

L ∩ EX
R , we have three extriangulated 

substructures

C X
L := (C ,EX

L , sX
L ), C X

R := (C ,EX
R , sX

R ) and C X := (C ,EX , sX )

on C , which are relative to (C , E, s). In fact, by [41, Thm. 2.12], these are extriangulated 
subcategories of (C , E, s) in the sense of [30, Def. 3.7].
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3. Localization of extriangulated categories

In the pursuit of unifying Verdier [68] and Serre quotients [26], the localization theory 
of extriangulated categories with respect to suitable classes of morphisms was introduced 
in [53]. Since we will not need the theory of [53] in full generality, we only provide 
Theorem 3.8, which follows from the main results of [53]. Furthermore, in §3.1 and §3.2
we specialize to the case of the localization of a triangulated category by an extension-
closed subcategory as investigated in [57].

The following notion of an exact functor generalizes the classical ones when both 
(C , E, s) and (C ′, E′, s′) correspond to exact or triangulated categories.

Definition 3.1. [17, Def. 2.32] Let (C , E, s) and (C ′, E′, s′) be extriangulated categories. 
An exact functor (F, φ) : (C , E, s) → (C ′, E′, s′) is a pair consisting of an additive func-
tor F : C → C ′ and a natural transformation φ : E ⇒ E′ ◦ (F op × F ), which satisfies 
s′(φC,A(δ)) = [FA 

Ff−→ FB
Fg−→ FC] whenever A 

f−→ B
g−→ C

δ��� is an s-triangle.

One can compose exact functors in the obvious way to obtain another exact functor; 
see [53, Def. 2.11], also [16, Lem. 3.19]. Extension-closure and relative theory provide 
typical examples of exact functors.

Example 3.2. Let (C , E, s) be any extriangulated category.

(1) Let N ⊆ C be extension-closed and consider the extriangulated category 
(N , E|N , s|N ); see Proposition 2.6. The canonical inclusion functor inc : N → C

induces an exact functor (inc, ι) : (N , E|N , s|N ) → (C , E, s), where ι : E|N ⇒ E is 
the canonical inclusion natural transformation.

(2) For a closed subfunctor F ⊆ E and the relative extriangulated category (C , F , s|F ), 
the identity idC and inclusion F ⊆ E constitute an exact functor (C , F , s|F ) →
(C , E, s).

In these situations, both (N , E|N , s|N ) and (C , F , s|F ) are extriangulated subcategories 
of (C , E, s).

To avoid any set-theoretic problems, we will work under the following setup when 
considering the localization in the sense of [29].

Setup 3.3. We let (C , E, s) denote a skeletally small extriangulated category.

Theorem 3.8 recalls sufficient conditions on the pair (C , N ), where N is a subcate-
gory of C , to give rise to an extriangulated “quotient” category of C by N . We now lay 
out the terminology and notation necessary to state this result.
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Definition 3.4. [53, Def. 4.1] An additive subcategory N of (C , E, s) is called thick if it is 
closed under direct summands, and N satisfies the 2-out-of-3 property for s-conflations, 
that is, for any s-conflation A −→ B −→ C, if any two of A, B or C belong to N , then 
so does the third.

Notice that any thick subcategory N of C is automatically extension-closed by def-
inition. In the case that (C , E, s) corresponds to a triangulated category, the notion of 
a thick subcategory as in Definition 3.4 coincides with the usual one for triangulated 
categories.

In addition, a thick subcategory N ⊆ C is said to be Serre if whenever A −→ B −→ C

is an s-conflation with B ∈ N , then we have A, C ∈ N (see [57, Def. 1.17]). This 
generalizes the notion of a Serre subcategory for exact categories introduced in [18, 
4.0.35].

Definition 3.5. [53, Def. 4.3] We associate the following classes of morphisms to a thick 
subcategory N ⊆ C :

(1) L := { f ∈ Mor C | f is an s-inflation with Cone(f) ∈ N };
(2) R := { g ∈ Mor C | g is an s-deflation with CoCone(g) ∈ N }; and
(3) SN is the smallest subclass of Mor C closed under compositions containing both L

and R.

By [53, p. 374], the class SN consists of all finite compositions of morphisms in L
and R and, moreover, it satisfies the following condition.

(M0) SN contains all isomorphisms in C , and is closed under compositions and taking 
finite direct sums.

If N ⊆ C is thick, then prototypical examples of localizing C at the class SN are 
Verdier and Serre quotients of triangulated and abelian categories, respectively; see [53, 
§4.2].

Example 3.6.

(1) (Verdier quotient.) [53, Exam. 4.8] Let (C , E, s) be a triangulated category and N
a thick subcategory of C . The class SN satisfies SN = L = R and the localization 
C [S −1

N ] is just the usual Verdier quotient of C with respect to N .
(2) (Serre quotient.) [53, Exam. 4.9] Let N be a Serre subcategory of an abelian category 

(C , E, s). Then we have SN = L ◦ R and C [S −1
N ] is the usual Serre quotient of C

with respect to N .
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In contrast to the triangulated and abelian cases, it is not clear if the localization 
C [S −1

N ] is equipped with a natural extriangulated structure in general. However, suffi-
cient conditions for this are identified in [53, p. 343], namely conditions (MR1)–(MR4) 
concerning SN . Since we will not need these conditions explicitly, we omit recalling 
them here.

Consider the localization L : C → C [S −1
N ]. The class SN is said to be saturated if, for 

any f ∈ Mor C , we have L(f) is an isomorphism if and only if f ∈ SN . Let (−) : C → C

denote the quotient functor, where C := C /[N ] is the additive ideal quotient. We put 
SN :=

{
f
∣∣ f ∈ SN

}
accordingly. Note that f = 0 if and only if f factors through an 

object in N . The localization of C at SN is denoted by

C /N := C [SN
−1] (3.1)

and the localization functor by Q : C → C /N . We define Q : C → C /N to be the 
composition Q ◦ (−). Note Q factors uniquely through L:

C C [S −1
N ]

C C /N .

L

(−) Q ∃!M

Q

(3.2)

Lemma 3.7. If C is weakly idempotent complete, then C [S −1
N ] ∼= C [SN

−1].

Proof. Consider S := { f ∈ Mor C | f is a section and admits a cokernel in N }. One 
can check that C is isomorphic to the localization C [S−1]; see [56, Exam. 2.6]. Note 
that since C is weakly idempotent complete, we have S ⊆ L ⊆ SN (see e.g. [9, 
Prop. 2.5]). It follows that L = P ◦ (−) and P = NQ for uniquely induced functors 
P : C ∼= C [S−1] → C [S −1

N ] and N : C /N → C [S −1
N ]. One can then check that N is an 

inverse of the functor M from (3.2). �
Thus, if C is weakly idempotent complete (e.g. a triangulated category), we may think 

of the functor Q : C → C /N as the localization of C at SN .

Theorem 3.8. Let (C , E, s) be a skeletally small extriangulated category with a thick sub-
category N . Suppose SN is saturated and SN satisfies conditions (MR1)–(MR4) of 
[53]. Then there is an extriangulated category (C /N , Ẽ, ̃s) together with an (appropri-
ately universal) exact functor (Q, μ) : (C , E, s) → (C /N , Ẽ, ̃s) satisfying KerQ = N . 
In particular, we obtain a sequence

(N ,E|N , s|N ) (C ,E, s) (C /N , Ẽ, s̃)(inc, ι) (Q,μ) (3.3)

of exact functors.
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Proof. The exact functor (Q, μ) : (C , E, s) → (C /N , Ẽ, ̃s) is constructed in [53, 
Thm. 3.5(1)] and its universality is shown in [53, Thm. 3.5(2)] (see also [22, Prop. 4.3]). 
The equality KerQ = N follows from [53, Lem. 4.5]. �
Definition 3.9. In the setup of Theorem 3.8, we call the exact functor (Q, μ) : (C , E, s) →
(C /N , Ẽ, ̃s) the extriangulated localization of C with respect to N . If there is no confu-
sion, we simply denote it by Q : C → C /N .

We refer to [53, §3] for explicit descriptions of Ẽ and s̃. However, we note that, 
by construction, any s̃-inflation (resp. s̃-deflation) comes from an s-inflation (resp. s-
deflation); see [53, Lem. 3.32].

3.1. Localization of triangulated categories

We now specialize to the case when (C , E, s) corresponds to a triangulated category 
and recall the relevant localization theory.

Setup 3.10. We fix a skeletally small, triangulated category C with suspension [1] and an 
extension-closed subcategory N ⊆ C that is closed under direct summands. We denote 
by (C , E, s) the extriangulated category corresponding to the triangulated category C .

Since N is extension-closed in (C , E, s), it is immediate that it is extension-closed 
in any extriangulated substructure (C , F , s|F ) of (C , E, s). In particular, it is extension-
closed in the following relative extriangulated structures defined using N . These differ 
to those defined in Definition 2.8, but we make a comparison of these structures in a 
special case in Lemma 3.15.

Proposition 3.11. [57, Prop. 2.1] For A, C ∈ C , define subsets of E(C, A) = C (C, A[1])
as follows.

EL
N (C,A) := { h : C → A[1] | ∀x : N → C with N ∈ N , we have hx ∈ [ N [1] ] }

ER
N (C,A) := { h : C → A[1] | ∀y : A → N with N ∈ N , we have y ◦ h[−1] ∈ [ N [−1] ] }

These give rise to closed subfunctors EL
N and ER

N of E. In particular, putting EN :=
EL

N ∩ ER
N , we obtain extriangulated structures

C L
N := (C ,EL

N , sLN ), CR
N := (C ,ER

N , sRN ), CN := (C ,EN , sN ),

all relative to the triangulated structure (C , E, s).

We remark that the above structures are generalized in [19, Prop. A.4] but from the 
viewpoint of constructing exact substructures of an exact category. With respect to the 
relative structure CN , the pair (C , N ) yields a saturated class SN of morphisms in C
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with SN satisfying the needed conditions (MR1)–(MR4) to obtain an extriangulated 
localization.

Theorem 3.12. [57, Thm. A, Lem. 2.5, Lem. 2.12] The following statements hold.

(1) The subcategory N ⊆ C is closed under taking cones of sRN -inflations. Dually, N
is closed under taking cocones of sLN -deflations.

(2) The subcategory N is thick in CN . The corresponding class SN ⊆ Mor C (see
Definition 3.5) is saturated and SN satisfies (MR1)–(MR4) with respect to CN =
(C , EN , sN ). Moreover, SN = Rret ◦ L = R ◦ Lsec holds, where Lsec denotes the 
class of sections belonging to L and Rret denotes the class of retractions belonging 
to R.

(3) There exists an extriangulated localization (Q, μ) : CN → (C /N , ẼN , ̃sN ) with 
KerQ = N .

Proof. (1): Suppose A B C
f g h is an sRN -triangle with A, B ∈ N . It follows 

that h ∈ [N ] by Proposition 3.11. Then [57, Lem. 2.5(2)] implies C ∈ N . The second 
assertion is proved dually.

(2) and (3): This is a combination of [57, Cor. 2.8, Prop. 2.11, Prop. 2.17, Lem. 2.12, 
Thm. 2.20]. �
3.2. Abelian localization of triangulated categories

Here, we review localizations of triangulated categories that are abelian. Abelian local-
izations of triangulated categories can arguably be traced back to hearts of t-structures 
in the sense of [5]. Since then, abelian localizations have been found using cluster tilting 
subcategories [12,45,47]. These constructions were unified in [2,50] and placed in an ex-
triangulated context in [49]. A generalization from cluster tilting to rigid subcategories 
was initiated in [10,11], and has been further developed in [7,35,51]. See Example 3.20
for some details.

Setup 3.13. In addition to Setup 3.10, we assume further that Cone(N , N ) = C holds 
in §3.2.

Note that when (C , E, s) corresponds to a triangulated category (as we are currently 
assuming), we have Cone(N , N ) = C if and only if CoCone(N , N ) = C . In this case, 
the bifunctors EL

N and ER
N can be described more simply. The next observation follows 

from the proof of [57, Lem. 4.1].

Lemma 3.14. We have the following identities.

EL
N (C,A) = { h ∈ E(C,A) | h[−1] factors through an object in N }
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ER
N (C,A) = { h ∈ E(C,A) | h factors through an object in N }

Relative structures like the above can be obtained from rigid subcategories. The next 
result clarifies how these structures relate to those in Definition 2.8 in case N is the kernel 
of C (X , −) for a contravariantly finite, rigid subcategory X ⊆ C (see [57, Exam. 2.4]). 
We will use this in §5.2 to produce a generalization of the index defined in [42]. Recall 
that X ⊆ C is rigid if E(X , X ) = C (X , X [1]) = 0.

Lemma 3.15. Let X ⊆ C be a subcategory and consider the extension-closed subcategory 
M := X ⊥0 := { C ∈ C | C (X , C) = 0 } of C . If X is contravariantly finite and rigid, 
then we have ER

M (C, A) = EX
R (C, A) and EL

M (C, A) = EX
L (C, A) for any A, C ∈ C . In 

particular, CR
M = C X

R , C L
M = C X

L and CM = C X .

Proof. We only check the first equation. Note that CoCone(M , M ) = C holds. Indeed, 
any object C ∈ C admits a right X -approximation x : X → C which yields a triangle

X C M X[1]x y (3.4)

with M, X[1] ∈ M .
It is clear that ER

M (C, A) ⊆ EX
R (C, A). Conversely, let h ∈ EX

R (C, A) and consider 
the triangle (3.4) as above. Then the composite hx vanishes, whence h factors through 
y, and so h ∈ [M ]. The claim follows from the second identity of Lemma 3.14. �

The main result we recall in §3.2 is the following, which establishes the abelian local-
ization of a triangulated category with respect to an extension-closed subcategory.

Theorem 3.16. [57, Thm. 4.2, Cor. 4.3] The subcategory N is Serre in CN and the lo-
calization (C /N , ẼN , ̃sN ) corresponds to an abelian category. Furthermore, the functor 
Q : C → C /N is cohomological.

We include a simple example to demonstrate that even under very nice assumptions, 
we cannot hope that N is a Serre subcategory of CR

N .

Example 3.17. Let C denote the cluster category associated to the quiver 1 → 2 (in the 
sense of [13]) and consider the cluster tilting subcategory N := add(2 ⊕ 1

2) ⊆ C . Since 
Cone(N , N ) = C is satisfied, we have ER

N (C, A) = [N ](C, A) by Lemma 3.14. Now 

consider the triangle 1[−1] → 2 → 1
2

h→ 1 in C . Since 12 ∈ N , we see that 1[−1] → 2 → 1
2

is an sRN -conflation. However, 1[−1] does not lie in N . Thus, N is not thick in CR
N and 

so certainly cannot be Serre.

Despite this example, we need to understand how Q acts on sRN -conflations in order 
to connect this viewpoint to the aforementioned index. It turns out that Q sends sRN -
conflations to right exact sequences in C /N .
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Definition 3.18. [55, Def. 2.7] Suppose (D , F , t) is an extriangulated category and A is 
an abelian category. A covariant additive functor F : D → A is right exact if, for every 

t-conflation A B C,
f g the sequence FA FB FC 0Ff Fg is exact in A . Left 

exact functors are defined dually.

In the setup of Definition 3.18, suppose that Ext1A (C, A) is a set for all A, C ∈ A , 
and equip A with its canonical extriangulated structure (A , Ext1A , u). Then the functor 
F is both left and right exact (as just defined), if and only if F forms part of an exact 
functor (D , F , t) → (A , Ext1A , u) in the sense of Definition 3.1. In this language we thus 
have:

Corollary 3.19. [57, Cor. 4.4] The functor Q : C → C /N induces a right (resp. left) 
exact functor Q : CR

N → C /N (resp. Q : C L
N → C /N ).

CR
N

(C ,E, s) CN (C /N , ẼN , s̃N )

C L
N

right exact
Q

Q

exact

Q

left exact

(3.5)

We end this subsection by giving examples of such abelian localizations.

Example 3.20. Using the theory developed in [57], we can obtain more information about 
the localization functor in the situations considered in [5] and [10,11]. The triplet (C , E, s)
still denotes a skeletally small triangulated category (see Setup 3.10).

(1) Let (U , V) be a t-structure on C , namely, a cotorsion pair (see [50, Def. 2.1]) with 
U [1] ⊆ U . There is a cohomological functor H : C → H to the abelian heart of 
(U , V) and we put N := KerH. Then [57, Thm. 5.8] and Corollary 3.19 tell us 
that H induces a right exact functor H : CR

N → C /N and a left exact functor 
H : C L

N → C /N .
We remark that the assertion still holds for the general heart construction of 

Abe–Nakaoka [2,50].
(2) Let X ⊆ C be an additive, contravariantly finite, rigid subcategory that is 

closed under isomorphisms and direct summands, and put N := X ⊥0 . Then 
Cone(N , N ) = C holds by Lemma 3.15, and we have a natural exact equiva-
lence G : C /N

�−→ mod X of abelian categories by universality as below; see [57, 
Sec. 5.3.2].
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N CN C /N

mod X

Q

F (−) := C (?,−)|X �
G

The functor F is the restriction to X of the Yoneda embedding, namely, for C ∈ C

we put F (C) := C (?, C)|X ∈ mod X . In this case, by Corollary 3.19, the exact 
functor Q induces a right exact functor Q : CR

N → C /N and a left exact functor 
Q : C L

N → C /N .

4. An extriangulated resolution theorem

The aim of this section is to prove Theorem A(=Theorem 4.5), which is an extriangu-
lated version of a resolution theorem for exact categories (see Theorem 4.4). We will use 
Theorem 4.5 in §5 to investigate the relationship between Grothendieck groups arising 
from a triangulated category (C , E, s) and an n-cluster tilting subcategory X ⊆ C . In 
this case, we know each object in C has a finite X -resolution (see Example 4.3), but it 
is not necessarily true that X is closed under taking cocones of s-deflations since any 
morphism is an s-deflation. Thus, we must pass to a relative extriangulated structure on 
C ; see Corollary 5.6 for details.

Although Quillen produced a resolution theorem in the framework of higher algebraic 
K-theory in [62, §4], the idea was first established by Grothendieck at the level of K0
(see [4, Ch. VIII, Thm. 4.2], or [69, Ch. II, Thm. 7.6]). Let us begin by recalling the 
definition of the Grothendieck group for an extriangulated category. Recall that, for a 
skeletally small additive category C , the split Grothendieck group Ksp

0 (C ) of C is the 
free abelian group generated on the set of isomorphism classes [A] for A ∈ C , modulo 
the relations [A] − [B] + [C] for each split exact sequence A B C in C .

Definition 4.1. [70, §4] Let (C , E, s) be a skeletally small extriangulated category. The 
Grothendieck group of (C , E, s) is defined to be

K0(C ,E, s) := Ksp
0 (C )/ 〈 [A] − [B] + [C] | A B C is an s-conflation 〉 .

If it will cause no confusion, we will abbreviate K0(C , E, s) as K0(C ).

To recall Grothendieck’s Resolution Theorem, we need the following notion.

Definition 4.2. Let (C , E, s) be an extriangulated category, let X ⊆ C be a subcategory 
and fix an object C ∈ C . A finite X -resolution (in (C , E, s)) of C is defined to be a 
complex

Xn · · · X1 X0 C,
fn−1 f1g2 f0g1 g0 (4.1)
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where Xi ∈ X for each 0 ≤ i ≤ n, and Ci+1
fi−→ Xi

gi−→ Ci is an s-conflation for each 
0 ≤ i ≤ n − 1 with (C0, Cn) := (C, Xn). In this case, we say that the X -resolution (4.1)
is of length n. In particular, any object X ∈ X has an X -resolution of length 0. The 
notion of finite X -coresolution is defined dually.

Typical examples of such resolutions arise from cluster tilting theory.

Example 4.3. Suppose C is an idempotent complete triangulated category with suspen-
sion [1] and let n ≥ 2 be an integer. Recall from [38, §3] that a subcategory X ⊆ C is 
called an n-cluster tilting subcategory of C if X is functorially finite in C and

X = { C ∈ C | C (X , C[i]) = 0 for all 1 ≤ i ≤ n− 1 }
= { C ∈ C | C (C,X [i]) = 0 for all 1 ≤ i ≤ n− 1 } .

Recall that, for subcategories U and V of C , the subcategory U∗V of C consists of objects 
C appearing in a triangle U −→ C −→ V −→ U [1] with U ∈ U and V ∈ V, and that this 
operation is associative [38, p. 123]. If X is n-cluster tilting, then (X , X ∗· · ·∗X [n −2])
is a cotorsion pair [8, Prop. 3.2, Thm. 3.4] and C = X ∗ X [1] ∗ X [2] ∗ · · · ∗ X [n − 1]
[8, Thm. 5.3]. This implies that any C ∈ C admits an X -resolution in the relative 
extriangulated category C X

R (= CR
N by Lemma 3.15 where N = X ⊥0) of length at 

most n − 1 (see [38, Cor. 3.3], or [8, Prop. 3.2, Thm. 3.4]).

Theorem 4.4 (Resolution Theorem). [4, Ch. VIII, Thm. 4.2] Let C be a skeletally small 
exact category. Assume that X ⊆ C is extension-closed and closed under taking kernels 
of admissible deflations in C . If any object C ∈ C admits a finite X -resolution, then we 
have K0(X ) ∼= K0(C ).

A typical example of the resolution theorem is as follows. For an abelian category C
with enough projectives, if each object in C has finite projective dimension, then we have 
K0(P) ∼= K0(C ) for P ⊆ C the subcategory of projectives. Note that K0(P) is same as 
the split Grothendieck group Ksp

0 (P) of P.
The following is an extriangulated version of the classical resolution theorem. The 

dual of Theorem 4.5 also holds.

Theorem 4.5 (Extriangulated Resolution Theorem). Let (C , E, s) be a skeletally small 
extriangulated category. Suppose X is an extension-closed subcategory of (C , E, s), such 
that X is closed under taking cocones of s-deflations. If any object C ∈ C admits a finite 
X -resolution, then we have an isomorphism

K0(C ,E, s)
∼=←→ K0(X ,E|X , s|X )

[C] �−→
n∑

(−1)i[Xi]

i=0
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[X] ←−� [X],

where (4.1) is an X -resolution of C ∈ C .

4.1. The proof of Theorem 4.5

In this subsection, we work under the hypotheses of Theorem 4.5.

Setup 4.6. Suppose (C , E, s) is a skeletally small extriangulated category and X ⊆ C is 
an extension-closed subcategory that is closed under taking cocones of s-deflations, such 
that every object in C has a finite X -resolution.

Put X0 := X and, for any i > 0, we denote by Xi the subcategory of C

consisting objects which admit finite X -resolutions of length at most i. Note that 
Xi = Cone(Xi−1, X ) and it is additive and closed under isomorphisms. Furthermore, 
we have an ascending chain X0 ⊆ X1 ⊆ X2 ⊆ · · · , and the union 

⋃
i≥0 Xi coincides 

with C because each object in C has a finite X -resolution. In other words, we have 
colim−−−−−→i Xi = C , where the left-hand side is a colimit in the category of additive cate-
gories and functors.

Proposition 4.7. For all i ≥ 0, the subcategory Xi is extension-closed in (C , E, s), and 
hence inherits an extriangulated structure.

Proof. We prove this by induction on i ≥ 0. First, note that X0 = X is extension-closed 
by assumption. Thus, suppose Xi is extension-closed in C for some i ≥ 0, so that we 

may show Xi+1 is extension-closed. To this end, let A B C
f g δ be an s-triangle 

in C with A, C ∈ Xi+1 = Cone(Xi, X ). Then we know there are s-triangles

YA XA Aa′ a α (4.2)

and YC XC C ,c′ c β with YA, YC ∈ Xi and XA, XC ∈ X . By [54, Prop. 3.15], 
there is a commutative diagram

YC YC

A B′ XC

A B C ,

c′

f ′ g′

h c

c∗δ

f g

g∗β

δ

β

(4.3)
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where the rows and columns are s-triangles. In particular, we see that h is an s-deflation.
As each object in C is assumed to admit a finite X -resolution, there is an s-triangle 

of the form Y X B′p γ with X ∈ X (and Y ∈ Xr for some r ≥ 0). By (ET4op)

applied to the composition X B′ XC
p g′

of s-deflations, we obtain the following 
commutative diagram

Y Y

Q X XC

A B′ XC ,

e

p′

g′p

p

ε

f ′

(f ′)∗γ γ

g′
c∗δ

(4.4)

where the rows and columns are s-triangles. Since X is closed under taking cocones of 
s-deflations, we see that Q = CoCone(g′p) ∈ X .

By [54, Cor. 3.16], the morphism ( f ′a, p ) : XA⊕X → B′ is an s-deflation. Let us recall 
how the corresponding s-triangle is found. We have the s-triangle Y X B′p γ

from the middle column of (4.4), and the morphism f ′a : XA → B′. We realize the 
E-extension (f ′a)∗γ as follows:

Y D XA

Y X B′

s r

f ′a

(f ′a)∗γ

t p γ

(4.5)

Then [49, dual of Prop. 1.20] yields an s-triangle

D XA ⊕X B′ .
( f ′a, p ) s∗γ

Next we show that D ∈ Xi. Consider the s-triangles YA XA Aa′ a α (see (4.2)) 

and Y Q A
p′ (f ′)∗γ (from the leftmost column of (4.4)). Applying [54, Prop. 3.15], 

we get a commutative diagram
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Y Y

YA D Q

YA XA A

s

r

(p′)∗α

p′

a′ a

a∗(f ′)∗γ = (f ′a)∗γ

α

(f ′)∗γ

where the rows and columns are s-triangles. We use here that s((f ′a)∗γ) = [ Y Ds r

XA] as in (4.5). Since YA ∈ Xi by assumption and Q ∈ X ⊆ Xi, we see that D ∈ Xi

because Xi is extension-closed by the inductive hypothesis.
Now we are in position to show B ∈ Xi+1 as needed. Applying axiom (ET4op) to the 

composition XA ⊕X B′ B
( f ′a, p ) h of s-deflations (recall h was obtained in (4.3)) 

yields a commutative diagram

D D

YB XA ⊕X B

YC B′ B

h ◦ ( f ′a, p )

( f ′a, p )

h

s∗γ

g∗β

where the rows and columns are s-triangles. Note that D, YC ∈ Xi implies YB ∈ Xi

by extension-closure. As XA ⊕ X ∈ X , we see that B = Cone(YB XA ⊕X) ∈
Cone(Xi, X ) = Xi+1 and we are done. �

We denote the inherited extriangulated structure on Xi by (Xi, E|Xi
, s|Xi

) (see §2.1). 
Now we investigate the Grothendieck groups K0(Xi) := K0(Xi, E|Xi

, s|Xi
) of these 

extriangulated subcategories of (C , E, s).

Proposition 4.8. The ascending chain X0 ⊆ X1 ⊆ X2 ⊆ · · · induces a sequence of 
isomorphisms K0(X0) ∼= K0(X1) ∼= K0(X2) ∼= · · · of Grothendieck groups.

Proof. Fix an integer i ≥ 0. We shall show that the natural group homomorphism 
φ : K0(Xi) → K0(Xi+1) given by φ([C]) = [C] is an isomorphism by constructing an 
inverse as follows. Let C ∈ Xi+1 = Cone(Xi, X ) be arbitrary. Then there is an s-
conflation P1

p′

−→ P0
p−→ C with P0 ∈ X ⊆ Xi and P1 ∈ Xi. We claim that the 

assignment ψ : [C] �→ [P0] − [P1] gives rise to a group homomorphism ψ : K0(Xi+1) →
K0(Xi).
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To see this, let Q1
q′−→ Q0

q−→ C be any s-conflation with Q0, Q1 ∈ Xi. By [54, 
Prop. 3.15], there is a commutative diagram

Q1 Q1

P1 P Q0

P1 P0 C

where all rows and columns are s-conflations. Since Xi is extension-closed by Proposi-
tion 4.7, we see that P lies in Xi. Hence, in K0(Xi) we have [P1] +[Q0] = [P ] = [Q1] +[P0], 
whence [Q0] − [Q1] = [P0] − [P1] and ψ : Ob(Xi+1) → K0(Xi) is well-defined. It is 
straightforward to check that ψ induces a group homomorphism as claimed, and that φ
and ψ are mutually inverse. �

We are now in position to prove Theorem 4.5.

Proof of Theorem 4.5. We will show that K0(C ) = K0(C , E, s) satisfies the univer-
sal property of the filtered colimit colim−−−−−→i K0(Xi). First, for each integer i ≥ 0, there 
are the canonical group homomorphisms αi : K0(Xi) → K0(C ) and βi : K0(Xi) →
colim−−−−−→i K0(Xi) given by [C] �→ [C]. It follows that there is a unique group homomor-
phism γ : colim−−−−−→i K0(Xi) → K0(C ) given by [C] �→ [C].

On the other hand, let C ∈ C be arbitrary and suppose (4.1) is an X -resolution of 
C. Define δ : Ob(C ) → colim−−−−−→i K0(Xi) by δ(C) =

∑n
i=0(−1)i[Xi]. To see that this is 

independent of the chosen X -resolution, suppose

Ym Ym−1 Ym−2 · · · Y1 Y0 C

Dm Dm−1 D1 D0

(4.6)
is another X -resolution of C. Set N := max{n, m}. Then all the s-conflations involved 
in (4.1) and (4.6) are s|XN

-conflations. In particular, in K0(XN ) and hence also in 
colim−−−−−→i K0(Xi), we have that 

∑n
i=0(−1)i[Xi] = [C] =

∑m
i=0(−1)i[Yi]. It is clear that δ is 

constant on isoclasses of objects.
Furthermore, any s-conflation A −→ B −→ C in (C , E, s) lies in Xj for some suffi-

ciently large integer j. Thus, by definition, [A] − [B] +[C] = 0 occurs in K0(Xj) and also 
in colim−−−−−→i K0(Xi). Hence, δ induces a group homomorphism δ : K0(C ) → colim−−−−−→i K0(Xi). 
Finally, it is clear that γ and δ are mutually inverse. As the canonical morphism 
K0(Xi) 

∼=−→ K0(Xi+1) is an isomorphism for any i ≥ 0 by Proposition 4.8, the canonical 
morphism K0(X ) → colimi K0(Xi) is also an isomorphism and we are done. �
−−−−−→
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5. Applications to the index in triangulated categories

As an application of our Extriangulated Resolution Theorem (Theorem 4.5), in §5.1
we recover some index isomorphisms that have recently appeared in the literature. This 
allows us to propose an index with respect to an extension-closed subcategory in §5.2, as 
well as establish an additivity formula for this index. Lastly, we prove a generalization 
of Fedele’s [23, Thm. C] in §5.3.

5.1. The PPPP and JS index isomorphisms

Throughout §5.1, we fix the following setup.

Setup 5.1. Suppose (C , E, s) corresponds to a skeletally small, idempotent complete, 
triangulated category C . We also assume X ⊆ C is an additive subcategory that is 
contravariantly finite, rigid and closed under direct summands.

Recall from Example 4.3 that if X is n-cluster tilting (n ≥ 2), then any object C ∈ C

admits a finite X -resolution Xn−1 → · · · → X1 → X0 → C in C X
R of length (at most) 

n − 1.

Definition 5.2. [59, Def. 2.1] Suppose X is a 2-cluster tilting subcategory of C . The Palu 
index with respect to X of C is the element indX (C) := [X0]sp− [X1]sp ∈ Ksp

0 (X ), where 
X1 → X0 → C is an X -resolution in C X

R of C.

It is straightforward to check that the following isomorphism is a direct consequence 
of [61, Prop. 4.11]. We call it the PPPP index isomorphism; it is a special case of 
Corollary 5.5.

Corollary 5.3 (PPPP index isomorphism). Suppose X is 2-cluster tilting in C . Then the 
Palu index indX yields the following isomorphism of abelian groups.

K0(C X
R )

∼=←→ Ksp
0 (X ) (5.1)

[C]XR �−→ indX (C)

[X]XR ←−� [X]sp

The PPPP index isomorphism shows that the class [C]XR in the Grothendieck group 
K0(C X

R ) of an object C ∈ C can be interpreted as the Palu index of C with respect to 
X . This suggests that one can define an index using the relative extriangulated structure 
C X
R , even without the 2-cluster tilting assumption. This is what is done in [42].

Definition 5.4. [42, Def. 3.5] The Jørgensen–Shah index of C ∈ C with respect to X is 
indX (C) := [C]XR ∈ K0(C X

R ).
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An analogue of Corollary 5.3 for an n-cluster tilting subcategory X (n ≥ 2) was given 
in [42]. We call the following isomorphism the JS index isomorphism since it generalizes 
[42, Thm. 4.10] by removing several restrictions on the ambient triangulated category 
C . As we will see, it is a special case of Corollary 5.6.

Corollary 5.5 (JS index isomorphism). Suppose X is n-cluster tilting in C . Then there 
is an isomorphism of abelian groups

K0(C X
R )

∼=←→ Ksp
0 (X ) (5.2)

[C]XR �−→
n−1∑
i=0

(−1)i[Xi]sp

[X]XR ←−� [X]sp,

where C ∈ C admits an X -resolution Xn−1 → · · · → X1 → X0 → C in C X
R of length 

n − 1.

Using Lemma 3.15 to see CR
N = C X

R when N = X ⊥0 , it is then clear that isomor-
phisms (5.1) and (5.2) above are special cases of our next result.

Corollary 5.6. Put N := X ⊥0 . If each object C ∈ CR
N admits a finite X -resolution in 

CR
N , then there is an abelian group isomorphism

K0(CR
N )

∼=←→ Ksp
0 (X ) (5.3)

[C]RN �−→
m∑
i=0

(−1)i[Xi]sp

[X]RN ←−� [X]sp,

where C admits an X -resolution Xm → · · · → X1 → X0 → C in CR
N of length m.

Proof. Since X is closed under direct summands, one can check that X coincides 
with the subcategory of ER

N -projectives in CR
N . In particular, it is extension-closed 

and closed under taking cocones of sRN -deflations in CR
N . Furthermore, the inherited 

extriangulated structure (X , ER
N |X , sRN |X ) is just the split exact structure on X . 

Thus, K0(X , ER
N |X , sRN |X ) = Ksp

0 (X ). Hence, the assertion follows directly from The-
orem 4.5. �
5.2. Indices with respect to an extension-closed subcategory of a triangulated category

We begin by proposing two indices.
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Definition 5.7. Let N be an extension-closed subcategory of a skeletally small, idempo-
tent complete, triangulated category (C , E, s). We call the class [C]RN ∈ K0(CR

N ) (resp. 
[C]LN ∈ K0(C L

N )) the right index (resp. the left index) with respect to N of C ∈ C .

We make some comments on how our work in this subsection relates to [42].

Remark 5.8. Suppose (C , E, s) is a skeletally small, idempotent complete, triangulated 
category with suspension [1]. In addition, let X be an additive, contravariantly finite, 
rigid subcategory X ⊆ C that is closed under isomorphisms and direct summands. 
Putting N := X ⊥0 , we get CR

N = C X
R by Lemma 3.15. In particular, we see that 

[C]RN = [C]XR = indX (C) is the Jørgensen–Shah index of C ∈ C . Thus, we can think 
of [−]RN as a generalization of Jørgensen–Shah’s index. In the same way, the assignment 
[−]LN can also be regarded as an index. This motivates Definition 5.7.

In [42, Prop. 3.12], a homomorphism θX : K0(mod X ) → K0(C X
R ) was produced that 

measures how far the index indX is from being additive on triangles (see [42, Thm. 3.14]). 
We recall that θX is given by θX (C (−, C)|X ) = [C]XR + [C[−1]]XR for C ∈ C . We will 
define an analogue of θX of the form θRN : K0(C /N ) → K0(CR

N ), which is more natural 
in our framework (see Proposition 5.13). However, in the setup of [42, §3], one can pass 
between θX and θRN using the equivalence G : C /N

�−→ mod X (see Example 3.20(2)). 
Indeed, if

G∗ : K0(C /N )
∼=−→ K0(mod X ) (5.4)

is the induced isomorphism, then θX G∗ = θRN .
Just like in [42], we determine additivity formulae for our left and right indices in 

this subsection; see Theorem 5.14. Although the approach we take is similar to [42, 
§3], some arguments are simplified by utilizing the localization theory of extriangulated 
categories. Furthermore, we also show that the image of θRN captures the kernel of the 
natural surjection K0(CR

N ) � K0(C ) (see Proposition 5.15).

Note that our right index is a strict generalization of the Jørgensen–Shah index since 
there are extension-closed subcategories of triangulated categories that do not arise as 
X ⊥0 for any contravariantly finite, rigid subcategory X .

Example 5.9. Consider the quiver 1 → 2, its path algebra Λ over a field k and the bounded 
derived category C of finite-dimensional Λ-modules. The module category N := mod Λ
is extension-closed in C , but a straightforward argument shows it cannot be of the form 
X ⊥0 for any rigid subcategory X ⊆ C .

Setup 5.10. In the remainder of §5.2, we suppose (C , E, s) corresponds to a skeletally 
small, idempotent complete, triangulated category C with suspension [1]. We also assume 
N is an extension-closed subcategory of C , such that Cone(N , N ) = C .
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We remind the reader that under Setup 5.10 all the results from §3 apply. In par-
ticular, SN is a multiplicative system in C := C /[N ] (this is condition (MR2) from 

[53] and follows from Theorem 3.12(2)), the localization C /N = C [SN
−1] ∼= C [S −1

N ]
is an abelian category and the localization functor Q : C → C /N is cohomological (see 
Lemma 3.7 and Theorem 3.16), and Q induces a right exact functor Q : CR

N → C /N

(see Corollary 3.19). In the sequel we focus on the right index and state, but do not 
prove, the corresponding assertions for the left index.

Our goal is to establish Theorem D. In order to define θRN , we need two preliminary 
results. Note that the assumption Cone(N , N ) = C is not needed to prove Lemma 5.11.

Lemma 5.11. (cf. [42, Lem. 3.8]) Let B, C ∈ C be objects with an isomorphism Q(B) ∼=
Q(C) in C /N . Then we have equalities

[B]RN +[B[−1]]RN = [C]RN +[C[−1]]RN and [B]LN +[B[1]]LN = [C]LN +[C[1]]LN

in K0(CR
N ) and K0(C L

N ), respectively.

Proof. We show the first equation. Since SN is a multiplicative system in C (i.e. ad-
mits a calculus of left and right fractions in C ), an isomorphism α : Q(B) 

∼=−→ Q(C) is 
represented by a roof diagram B C ′ Cs t in C with t ∈ SN , i.e. t ∈ SN . Since 
α and Q(t) are isomorphisms, we have that Q(s) = Q(t)α is an isomorphism. As the 
class SN is saturated, we see s ∈ SN too. So it is enough to show [B]RN + [B[−1]]RN =
[C ′]RN + [C ′[−1]]RN . By [57, Lem. 2.6], the morphism s is part of a triangle

A
f−→ B

s−→ C ′ h−→ A[1] (5.5)

with f and h factoring through objects in N . Since A 
f−→ B

s−→ C ′ is an sRN -conflation, 
we get the following equality in K0(CR

N ).

[A]RN − [B]RN + [C ′]RN = 0 (5.6)

In addition, we obtain the sRN -conflation B[−1] C ′[−1] A
−s[−1] −h[−1] by rotating 

the triangle (5.5) twice, and hence

[B[−1]]RN − [C ′[−1]]RN + [A]RN = 0. (5.7)

The desired equality follows from combining (5.6) and (5.7). �
Lemma 5.12. (cf. [42, Lem. 3.11]) Let 0 A B C 0α β be a short exact se-
quence in C /N . Then we have equalities
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(
[A]RN + [A[−1]]RN

)
+
(
[C]RN + [C[−1]]RN

)
= [B]RN + [B[−1]]RN ,(

[A]LN + [A[1]]LN
)

+
(
[C]LN + [C[1]]LN

)
= [B]LN + [B[1]]LN

in K0(CR
N ) and K0(C L

N ), respectively.

Proof. We show the first equation. By [53, Lem. 3.32], there exists an sN -triangle

A′ B′ C ′f ′ g′
h′

(5.8)

and an isomorphism

0 QA′ QB′ QC ′ 0

0 QA QB QC 0

Qf ′

∼=

Qg′

∼= ∼=
α β

of short exact sequences in C /N . Since (5.8) is an sN -triangle, we know that h′[−1]
and h′ both factor through N by Lemma 3.14. Thus, (5.8) and

A′[−1] B′[−1] C ′[−1] −h′[−1]

are both sRN -triangles. So [A′]RN − [B′]RN + [C ′]RN = 0 = −([A′[−1]]RN − [B′[−1]]RN +
[C ′[−1]]RN ), and combining with Lemma 5.11 yields the desired equation. �

We are now in a position to define θRN . We remark that instances of this homomor-
phism have appeared in [59, §2.1], [40, §4] and [23, §2] before.

Proposition 5.13. (cf. [42, Prop. 3.12]) The following are well-defined group homomor-
phisms.

θRN : K0(C /N ) −→ K0(CR
N ) given by [Q(C)] �−→ [C]RN + [C[−1]]RN

θLN : K0(C /N ) −→ K0(C L
N ) given by [Q(C)] �−→ [C]LN + [C[1]]LN

Proof. We only check the well-definedness of θRN . Let isoclass(C /N ) denote the 
set of isoclasses of objects in C /N . By Lemma 5.11, we get a well-defined map 
isoclass(C /N ) → K0(CR

N ) given by [Q(C)] �→ [C]RN + [C[−1]]RN . Due to Lemma 5.12, 
this map is additive on short exact sequences in C /N , inducing a well-defined homo-
morphism θRN : K0(C /N ) → K0(CR

N ) as claimed. �
The additivity formulae with error terms for the left and right indices can now be 

established.
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Theorem 5.14. (cf. [42, Thm. 3.14]) Let A 
f−→ B

g−→ C
h−→ A[1] be any triangle in 

(C , E, s). Then we have equalities

[A]RN −[B]RN +[C]RN = θRN
(
ImQ(h)

)
and [A]LN −[B]LN +[C]LN = θLN

(
ImQ(h[−1])

)
in K0(CR

N ) and K0(C L
N ), respectively.

Proof. Since Cone(N , N ) = C , there is a triangle N1
a−→ N0

b−→ B[1] c−→ N1[1] in C
with Ni ∈ N . Taking a homotopy pullback of −f [1] along b by the octahedral axiom, 
we have the commutative diagram

N1 N1

N0[−1] C X N0

B C A[1] B[1]

N1[1] N1[1]

a

h1 d

h2 (wPB) b

g h −f [1]
c

(5.9)

of triangles in C . From (5.9), and by rotating if necessary, we can extract the three 
sRN -triangles:

N0[−1] C X ,d

N1[−1] X[−1] A ,
c[−1]f

N1[−1] N0[−1] B .
−c[−1]

These imply the equality [A]RN − [B]RN + [C]RN = [X]RN + [X[−1]]RN in K0(CR
N ). As 

h = h2h1, it follows from [57, Lem. 2.6] that Q(h) is the epimorphism Q(h1) followed by 
the monomorphism Q(h2). Thus, we have Q(X) ∼= ImQ(h1) ∼= ImQ(h). Proposition 5.13
ensures θRN (ImQ(h)) = [X]RN + [X[−1]]RN and we are done. �

In our next result, which implies Proposition E, we produce right exact sequences 
connecting the Grothendieck groups of C /N , CR

N (resp. C L
N ) and C using the canonical 

surjections

πR
N : K0(CR

N ) � K0(C ) given by [C]RN �→ [C],

πL
N : K0(C L

N ) � K0(C ) given by [C]LN �→ [C].
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Proposition 5.15. We have the following right exact sequences of Grothendieck groups.

K0(C /N ) K0(CR
N ) K0(C ) 0

θR
N πR

N (5.10)

K0(C /N ) K0(C L
N ) K0(C ) 0

θL
N πL

N (5.11)

Proof. We prove (5.10) is right exact. Since πR
N is surjective, it suffices to show that 

KerπR
N = Im θRN . Theorem 5.14 tells us that

KerπR
N =

〈
[A]RN − [B]RN + [C]RN

∣∣∣A −→ B −→ C
h−→ A[1] is a triangle in C

〉
⊆ Im θRN .

For the other containment, take any element [C]RN +[C[−1]]RN ∈ Im θRN . The existence of 
the triangle C[−1] 0 C C

idC implies πR
N ([C]RN + [C[−1]]RN ) = [C] + [C[−1]] = [0]

in K0(C ). Hence, KerπR
N = Im θRN and we are done. �

The following non-commutative diagram summarizes the main abelian group homo-
morphisms that have appeared so far (cf. (3.5)). By Theorem 3.12(3), the localization 
functor (Q, μ) : CN → (C /N , ẼN , ̃sN ) is exact. Hence, it induces a group homomor-
phism p : K0(CN ) → K0(C /N ). Furthermore, it is surjective by Enomoto–Saito [22, 
Cor. 4.32] (see also [58, Cor. 5.14]).

KerπR
N = Im θRN

K0(CR
N )

K0(C ) K0(CN ) K0(C /N )

K0(C L
N )

KerπL
N = Im θLN

πR
N

� p

	�

	�

θL
N

θR
N

πL
N

(5.12)

5.3. Connection to higher homological algebra

In [23], Fedele exhibited the connection between the Grothendieck group of a triangu-
lated category and that of an n-cluster tilting subcategory via Jørgensen’s triangulated 
index [40, Def. 3.3]. In this subsection, using Proposition 5.15, we generalize two key 
results from [23], namely [23, Prop. 3.5 and Thm. C]. Our setup here is as follows, which 
is a special case of Setup 5.10 due to Lemma 3.15.

Setup 5.16. In this subsection, we suppose (C , E, s) corresponds to a skeletally small, 
idempotent complete, triangulated category C with suspension [1]. We also fix an n-
cluster tilting subcategory X ⊆ C and put N := X ⊥0 .
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Palu has previously shown that an exact sequence of the form (5.10) arises from a 
2-cluster tilting subcategory of an algebraic triangulated category (see [60, Lem. 9]). 
We prove an exact sequence of the same form exists for X in Corollary 5.17 below, 
but with fewer restrictions on C . We also note that Palu used homotopy categories and 
t-structures to prove [60, Lem. 9], whereas we use different methods. We denote the JS 
index isomorphism (see Corollary 5.5) by

indexX : K0(C X
R ) = K0(CR

N )
∼=−→ Ksp

0 (X ). (5.13)

Recall that the isomorphism G∗ first appeared in Remark 5.8.

Corollary 5.17. There exists an exact sequence of Grothendieck groups as follows.

K0(mod X ) Ksp
0 (X ) K0(C ) 0

indexX θR
N G−1

∗ πR
N index−1

X (5.14)

Proof. Applying Proposition 5.15, we obtain the exact sequence (5.10). It follows that 
(5.14) is right exact by twisting (5.10) with the isomorphisms (5.4) and (5.13). �
Remark 5.18. It is established in [23, Lem. 3.4] that the assignment [C] �→ indexX ([C]XR )
=

∑n−1
i=0 (−1)i[Xi]sp ∈ Ksp

0 (X ) for [C] ∈ K0(C ) induces a group homomorphism

fX : K0(C ) → Ksp
0 (X )/ Im(indexX θRN G−1

∗ ).

And, in [23, Prop. 3.5], it is shown that fX is an isomorphism if there exists a certain 
homomorphism in the other direction. By Corollary 5.17, we see that fX is always an 
isomorphism with inverse induced by πR

N index−1
X , and hence always induces an isomor-

phism

Ksp
0 (X )/ Im(indexX θRN G−1

∗ ) ∼= K0(C ).

Our final goal of this article is to generalize [23, Thm. C], which shows that K0(C )
is isomorphic to the Grothendieck group arising from X when it admits an (n + 2)-
angulated structure. However, we need an extra assumption to guarantee the existence 
of this structure.

Setup 5.19. In addition to Setup 5.16, we assume X [n] = X in the rest of §5.3.

It follows from [27, Thm. 1] that X forms part of an (n + 2)-angulated category 
(X , [n], ).

Construction 5.20. We recall how to construct (n +2)-angles in from a given morphism 

X1
g1−→ X0 in X . First we complete g1 to a triangle C

f1−→ X1
g1−→ X0

h1−→ C[1] in C . 
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Since X is an n-cluster tilting subcategory, the object C admits a length n − 1 X -
resolution

Xn+1 Xn · · · X2 C,
fn fn−1gn f2g3 g2 (5.15)

with triangles Ci+1
fi−→ Xi

gi−→ Ci
hi−→ Ci+1[1] for 2 ≤ i ≤ n and (C2, Cn+1) :=

(C, Xn+1). Here, for each 2 ≤ i ≤ n, we have taken right X -approximations Xi
gi−→ Ci

of Ci with Ci+1 ∈ X ∗ · · · ∗ X [n − i]. Since X [n] = X , we have the (n + 2)-angle

Xn+1 Xn · · · X2 X1 X0 Xn+1[n]fn fn−1gn f2g3 f1g2 g1 h (5.16)

in X , where h is the composition X0 C2[1] C3[2] · · · Xn+1[n].h1 h2[1] h3[2] hn[n − 1]

Remark 5.21. As the X -resolution (5.15) is built from right X -approximations gi for 
2 ≤ i ≤ n, we have hi ∈ [N ] for 2 ≤ i ≤ n. In particular, this implies [C]RN =∑n+1

i=2 (−1)i[Xi]RN in K0(CR
N ).

We denote by K0 (X ) the Grothendieck group of (X , [n], ) in the sense of [15, 
Def. 2.1]. The following result is a generalization of [23, Thm. C]. Indeed, we do not 
assume that C is k-linear (k a field), Hom-finite, Krull-Schmidt, with a Serre functor; 
nor do we impose any locally bounded assumption on X .

Theorem 5.22. There is an isomorphism K0(C ) ∼= K0 (X ) induced by (5.13).

Proof. Set ρ := πR
N index−1

X . It follows from Corollary 5.17 that there is a short exact 
sequence

0 Ker ρ Ksp
0 (X ) K0(C ) 0.ρ (5.17)

Hence, it suffices to show

Ker ρ =
〈

n+1∑
i=0

(−1)i[Xi]sp
∣∣∣∣∣Xn+1 → · · · → X0 → Xn+1[n] is an (n + 2)-angle in X

〉
.

As each (n + 2)-angle in X is of the form (5.16) and, in particular, built from triangles 
in C , we immediately see that ρ 

(∑n+1
i=0 (−1)i[Xi]sp

)
= 0.

For the other containment, we first note that we have

Ker ρ = indexX (KerπR
N ) = indexX (Im θRN ) =

〈
indexX ([C]RN + [C[−1]]RN )

∣∣C ∈ C
〉
,

using that indexX is an isomorphism, and Proposition 5.15 for the second equality. Thus, 
given an object C0 := C ∈ C , we will construct an (n + 2)-angle in . By taking a right 
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X -approximation g0 : X0 → C0 and a right X -approximation g′1 : X1 → C1, where 
C1 := CoCone(g0), we obtain the following commutative diagram in C made of triangles.

X1 X1

C1 X0 C0 C1[1]

C2[1] C ′
0 C0 C2[2]

X1[1] X1[1]

g′
1 g1 := f0g

′
1

f0 g0

−f ′
1[1]

s

The second column is an sRN -triangle as X1[1] ∈ X [1] ⊆ X ⊥0 = N and X is n-cluster 
tilting. So we have [C ′

0]RN = [X0]RN − [X1]RN . Following Construction 5.20, we can com-
plete the morphism X1 X0

g1 to an (n + 2)-angle (5.16). Thus, due to Remark 5.21, 
we have

[C ′
0]RN + [C ′

0[−1]]RN =
n+1∑
i=0

(−1)i[Xi]RN .

Note that C2[1] sits in X [1] ∗ · · · ∗ X [n − 2], so C2[1], C2[2] ∈ X [1] ∗ · · · ∗ X [n −
1] = X ⊥0 = N . In particular, the morphism s : C ′

0 → C0 lies in SN , and hence 
[C ′

0]RN + [C ′
0[−1]]RN = [C0]RN + [C0[−1]]RN by Lemma 5.11. Finally, we see that

indexX ([C]RN + [C[−1]]RN ) = indexX ([C ′
0]RN + [C ′

0[−1]]RN )

= indexX (
n+1∑
i=0

(−1)i[Xi]RN )

=
n+1∑
i=0

(−1)i[Xi]sp. �

We end this section by making a remark on a class of examples where Theorem 5.22
applies but [23, Thm. C] may not.

Remark 5.23. As a benefit of our generalization, n-cluster tilting subcategories closed 
under n-shifts in singularity categories fall within the scope of Theorem 5.22. We re-
call that, for a Noetherian k-algebra Λ over a field k, the singularity category Dsg(Λ)
is defined to be the Verdier quotient of the bounded derived category Db(Λ) by the 
subcategory perf(Λ) of perfect complexes. Some examples and constructions of n-cluster 
tilting subcategories in Dsg(Λ) are given in e.g. [36,48]. It is known that Dsg(Λ) is not 
Hom-finite in general; indeed, the Hom-finiteness of Dsg(Λ) implies that Λ is Gorenstein 
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in some cases (see [43, Thm. 2.1]). Thus, Theorem 5.22 is effective even in the case of 
singularity categories by passing to the idempotent completion.

6. Application to the index in abelian categories

In this section we will use Theorem 4.5 to prove an analogue of Corollary 5.5 for 
abelian categories. Since we will not need the details of the definition of an n-cluster 
tilting subcategory of an abelian category, we refer the reader to [39, Def. 3.14] for the 
precise formulation. Instead we just recall the needed consequences of the definition 
below. We fix the following setup for the remainder of the article.

Setup 6.1. Suppose (C , E, s) is a skeletally small abelian category and that X ⊆ C is 
an n-cluster tilting subcategory (n ≥ 1).

By the dual of [39, Prop. 3.17], for each C ∈ C , there is a diagram

0 Xn−1 Xn−2 · · · X0 C 0

Cn−1 Cn−2 C1 C0

fn−2 fn−3gn−2

gn−2

f0g1

g0fn−2 f0

(6.1)
in C , where:

(1) Xi ∈ X for each 0 ≤ i ≤ n − 1;
(2) 0 Ci+1 Xi Ci 0fi gi is a short exact sequence for each 0 ≤ i ≤ n − 2; and
(3) the morphism gi : Xi → Ci is a right X -approximation for each 0 ≤ i ≤ n − 2.

In particular, we see that each object in C has a finite X -resolution (of length at most 
n − 1) in (C , E, s) in the sense of Definition 4.2. Although X is also extension-closed 
and closed under direct summands in C , we cannot apply Theorem 4.5 yet. Indeed, it is 
easy to find examples where X is not closed under cocones of s-deflations. We will need 
to pass to a relative structure on C first.

Definition 6.2. (cf. Definition 2.8) For objects A, C ∈ C , we define:

EX
R (C,A) :=

{
δ=[A f−→ B

g−→ C]∈E(C,A)
∣∣∣ x∗δ=0 for all x : X → C with X∈X

}
.

Note that x∗δ = E(x, A)(δ) is the pullback of the short exact sequence A 
f−→ B

g−→ C

along x : X → C. Just like in the triangulated case, EX
R (which is denoted EX in [31, 

Def. 3.18]) is a closed subfunctor of E by [31, Prop. 3.19]. This yields the extriangu-
lated category C X

R := (C , EX
R , sX

R ) which is relative to (C , E, s). In fact, C X
R is an 
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exact category by [54, Cor. 3.18], because each sX
R -inflation (resp. sX

R -deflation) is a 
monomorphism (resp. an epimorphism).

Lemma 6.3. X is closed under cocones of sX
R -deflations.

Proof. Suppose A X1 X0
δ is an sX

R -triangle with Xi ∈ X . Consider the 
identity morphism idX0 : X0 → X0 and notice that δ = id∗X0

δ = 0 as X0 ∈ X . In 
particular, A is a direct summand of X1 and hence A ∈ X . �

Now that we have passed to a relative structure, we must show the X -resolution of 
C in (C , E, s) arising from (6.1) is still an X -resolution in C X

R .

Lemma 6.4. Each s-triangle Ci+1 Xi Ci
fi gi δi arising in (6.1) is in fact an sX

R -
triangle.

Proof. Let x : X → Ci be a morphism in C with X ∈ X . Since gi is a right X -
approximation of Ci, we have that x factors through gi. This implies x∗δi = 0 by [54, 
Cor. 3.5], so δi ∈ EX

R . �
Putting all this together, we immediately have the following by Theorem 4.5.

Theorem 6.5. There is an isomorphism of abelian groups

K0(C X
R )

∼=←→ Ksp
0 (X )

[C]XR �−→
n−1∑
i=0

(−1)i[Xi]sp

[X]XR ←−� [X]sp,

where C ∈ C admits an X -resolution Xn−1 → · · · → X1 → X0 → C in C X
R of length 

n − 1.

We now explain how the above relates to the index defined by Reid [64].

Remark 6.6. The sum 
∑n−1

i=0 (−1)i[Xi]sp was defined to be the index indexX (C) of C
with respect to X ; see [64, Sec. 1]. Since C is idempotent complete, we can always find 

a minimal X -resolution of C by removing trivial summands (i.e. · · · → 0 → X
idX−→

X → 0 → · · · ). In particular, the value indexX (C) in Ksp
0 (X ) does not change when we 

remove such summands and, since a minimal X -resolution is unique up to isomorphism, 
the index is well-defined; see [64, Rem. 2.1].
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[5] A.A. Bĕılinson, J. Bernstein, P. Deligne, Faisceaux pervers, in: Analysis and Topology on Singular 

Spaces, I, Luminy, 1981, in: Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171.
[6] A. Beligiannis, Relative homological algebra and purity in triangulated categories, J. Algebra 227 (1) 

(2000) 268–361.
[7] A. Beligiannis, Rigid objects, triangulated subfactors and abelian localizations, Math. Z. 274 (3–4) 

(2013) 841–883.
[8] A. Beligiannis, Relative homology, higher cluster-tilting theory and categorified Auslander-Iyama 

correspondence, J. Algebra 444 (2015) 367–503.
[9] T. Brüstle, S. Hassoun, A. Shah, A. Tattar, Stratifying systems and Jordan-Hölder extriangulated 

categories, Preprint, https://arxiv .org /abs /2208 .07808v3, 2022.
[10] A.B. Buan, B.R. Marsh, From triangulated categories to module categories via localization II: 

calculus of fractions, J. Lond. Math. Soc. (2) 86 (1) (2012) 152–170.
[11] A.B. Buan, B.R. Marsh, From triangulated categories to module categories via localisation, Trans. 

Am. Math. Soc. 365 (6) (2013) 2845–2861.
[12] A.B. Buan, B.R. Marsh, I. Reiten, Cluster-tilted algebras, Trans. Am. Math. Soc. 359 (1) (2007) 

323–332.
[13] A.B. Buan, B.R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, 

Adv. Math. 204 (2) (2006) 572–618.
[14] A. Borel, J.-P. Serre, Le théorème de Riemann-Roch, Bull. Soc. Math. Fr. 86 (1958) 97–136.
[15] P.A. Bergh, M. Thaule, The Grothendieck group of an n-angulated category, J. Pure Appl. Algebra 

218 (2) (2014) 354–366.
[16] R. Bennett-Tennenhaus, J. Haugland, M.H. Sandøy, A. Shah, The category of extensions and a 

characterisation of n-exangulated functors, Math. Z. 305 (3) (2023) 44.
[17] R. Bennett-Tennenhaus, A. Shah, Transport of structure in higher homological algebra, J. Algebra 

574 (2021) 514–549.
[18] M.E. Cardenas-Escudero, Localization for exact categories, State University of New York at Bing-

hamton, 1998.
[19] X. Chen, On exact dg categories, PhD thesis, Université Paris Cité, 2023, https://arxiv .org /abs /

2306 .08231v1.

http://refhub.elsevier.com/S0021-8693(24)00322-3/bibAB4DD0D317EDB84CE0983CDF6FE8591Bs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibAB4DD0D317EDB84CE0983CDF6FE8591Bs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibBAEAB235A89185ABB4BB9CB3161E9E1Fs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibBAEAB235A89185ABB4BB9CB3161E9E1Fs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibFC8262BFE5F3705384403528A31408A7s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibFC8262BFE5F3705384403528A31408A7s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib2537458BF0DFD92BA986E2889CA86BF9s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib80E01D9926B54FE729410D78954FAADAs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib80E01D9926B54FE729410D78954FAADAs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibFBA9CF7CED25097CA30E78B102E18780s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibFBA9CF7CED25097CA30E78B102E18780s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib72F40EF564F2DBD588D44EFDE7E358A5s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib72F40EF564F2DBD588D44EFDE7E358A5s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib60225BF31C72AADE92FE9A666501BDB9s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib60225BF31C72AADE92FE9A666501BDB9s1
https://arxiv.org/abs/2208.07808v3
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib28E7B5BE7DE7DECDD5B76AFCCEBC984Fs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib28E7B5BE7DE7DECDD5B76AFCCEBC984Fs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib964625047A418F0FF5466ED88CF22CF7s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib964625047A418F0FF5466ED88CF22CF7s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibF640539409D4F7AC5C6A8E6D3CE44B75s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibF640539409D4F7AC5C6A8E6D3CE44B75s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib0904CABA04245F4961EF7DE354438246s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib0904CABA04245F4961EF7DE354438246s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib74EE62F2C06C8986F3969EBD894FA9CBs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib3645E48B144D49AFD46D1E23C933B8AAs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib3645E48B144D49AFD46D1E23C933B8AAs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibA505BA3F72C3B1706513EA5C171C7AB7s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibA505BA3F72C3B1706513EA5C171C7AB7s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib69E184135086820BD84699707B186537s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib69E184135086820BD84699707B186537s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibFC8FFA80EF6AD5DB43610DE4069A360Fs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibFC8FFA80EF6AD5DB43610DE4069A360Fs1
https://arxiv.org/abs/2306.08231v1
https://arxiv.org/abs/2306.08231v1


484 Y. Ogawa, A. Shah / Journal of Algebra 658 (2024) 450–485
[20] H. Chen, C. Xi, Recollements of derived categories II: algebraic K-theory, Preprint, https://arxiv .
org /abs /1212 .1879v2, 2012.

[21] P. Dräxler, I. Reiten, S.O. Smalø, Ø. Solberg, Exact categories and vector space categories, Trans. 
Am. Math. Soc. 351 (2) (1999) 647–682, with an appendix by B. Keller.

[22] H. Enomoto, S. Saito, Grothendieck monoids of extriangulated categories, Preprint, https://arxiv .
org /abs /2208 .02928v2, 2022.

[23] F. Fedele, Grothendieck groups of triangulated categories via cluster tilting subcategories, Nagoya 
Math. J. 244 (2021) 204–231.

[24] F. Fedele, P. Jørgensen, A. Shah, The index with respect to a contravariantly finite subcategory, 
Preprint, https://arxiv .org /abs /2401 .09291v2, 2024.

[25] F. Fedele, P. Jørgensen, A. Shah, The index in d-exact categories, Preprint, https://arxiv .org /abs /
2406 .08971v1, 2024.

[26] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. Fr. 90 (1962) 323–448.
[27] C. Geiss, B. Keller, S. Oppermann, n-angulated categories, J. Reine Angew. Math. 675 (2013) 

101–120.
[28] M. Gorsky, H. Nakaoka, Y. Palu, Hereditary extriangulated categories: silting objects, mutation, 

negative extensions, Preprint, https://arxiv .org /abs /2303 .07134v2, 2023.
[29] P. Gabriel, M. Zisman, Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik 

und Ihrer Grenzgebiete, vol. 35, Springer-Verlag New York, Inc., New York, 1967.
[30] J. Haugland, The Grothendieck group of an n-exangulated category, Appl. Categ. Struct. 29 (3) 

(2021) 431–446.
[31] M. Herschend, Y. Liu, H. Nakaoka, n-exangulated categories (I): definitions and fundamental prop-

erties, J. Algebra 570 (2021) 531–586.
[32] J. Herzog, E. Marcos, R. Waldi, On the Grothendieck group of a quotient singularity defined by a 

finite abelian group, J. Algebra 149 (1) (1992) 122–138.
[33] H. Holm, K-groups for rings of finite Cohen-Macaulay type, Forum Math. 27 (4) (2015) 2413–2452.
[34] A. Heller, I. Reiner, Grothendieck groups of integral group rings, Ill. J. Math. 9 (1965) 349–360.
[35] S. Hassoun, A. Shah, Integral and quasi-abelian hearts of twin cotorsion pairs on extriangulated 

categories, Commun. Algebra 48 (12) (2020) 5142–5162.
[36] O. Iyama, Tilting Cohen-Macaulay representations, in: Proceedings of the International Congress 

of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited Lectures, World Sci. Publ., Hackensack, 
NJ, 2018, pp. 125–162.

[37] O. Iyama, H. Nakaoka, Y. Palu, Auslander–Reiten theory in extriangulated categories, Trans. Amer. 
Math. Soc. Ser. B 11 (2024) 248–305.

[38] O. Iyama, Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, 
Invent. Math. 172 (1) (2008) 117–168.

[39] G. Jasso, n-abelian and n-exact categories, Math. Z. 283 (3–4) (2016) 703–759.
[40] P. Jørgensen, Tropical friezes and the index in higher homological algebra, Math. Proc. Camb. 

Philos. Soc. 171 (1) (2021) 23–49.
[41] P. Jørgensen, A. Shah, Grothendieck groups of d-exangulated categories and a modified Caldero-

Chapoton map, J. Pure Appl. Algebra 228 (5) (2024) 107587, 25.
[42] P. Jørgensen, A. Shah, The index with respect to a rigid subcategory of a triangulated category, 

Int. Math. Res. Not. 2024 (4) (2024) 3278–3309.
[43] M. Kalck, Classifying dg-categories of matrix factorizations, Preprint, https://arxiv .org /abs /2108 .

03292v1, 2021.
[44] Y. Kimura, Tilting and silting theory of Noetherian algebras, Int. Math. Res. Not. 2024 (2) (2024) 

1685–1732.
[45] B. Keller, I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 

211 (1) (2007) 123–151.
[46] H. Krause, Smashing subcategories and the telescope conjecture—an algebraic approach, Invent. 

Math. 139 (1) (2000) 99–133.
[47] S. Koenig, B. Zhu, From triangulated categories to abelian categories: cluster tilting in a general 

framework, Math. Z. 258 (1) (2008) 143–160.
[48] S. Kvamme, dZ-cluster tilting subcategories of singularity categories, Math. Z. 297 (1–2) (2021) 

803–825.
[49] Y. Liu, H. Nakaoka, Hearts of twin cotorsion pairs on extriangulated categories, J. Algebra 528 

(2019) 96–149.
[50] H. Nakaoka, General heart construction on a triangulated category (I): unifying t-structures and 

cluster tilting subcategories, Appl. Categ. Struct. 19 (6) (2011) 879–899.

https://arxiv.org/abs/1212.1879v2
https://arxiv.org/abs/1212.1879v2
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibA7C38649FE290676EC467651856C2E29s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibA7C38649FE290676EC467651856C2E29s1
https://arxiv.org/abs/2208.02928v2
https://arxiv.org/abs/2208.02928v2
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibD6C0E0CB9C0027E141760F43B8678C3As1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibD6C0E0CB9C0027E141760F43B8678C3As1
https://arxiv.org/abs/2401.09291v2
https://arxiv.org/abs/2406.08971v1
https://arxiv.org/abs/2406.08971v1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib7D09A7FC58A6ADB3C36F62D45AE215F9s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib08FFD36FD1533C61C452158B6F572200s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib08FFD36FD1533C61C452158B6F572200s1
https://arxiv.org/abs/2303.07134v2
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibEDCDAF7F84F5A3318A72B7D86A2D0489s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibEDCDAF7F84F5A3318A72B7D86A2D0489s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibA2F0FF348ECC34C118C767F2B8F4749As1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibA2F0FF348ECC34C118C767F2B8F4749As1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib6907BC018AB277D1C8CADB1EC9E69B17s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib6907BC018AB277D1C8CADB1EC9E69B17s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibE50EF12D52B391B855F5543131A7E765s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibE50EF12D52B391B855F5543131A7E765s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibE61399C05C5B7BFD2BFFA875E9B6CE0Ds1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibE8E9A6FA2EA39BBF3BAE8F5DAD3A23E9s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib10E46135C98CB3D3CAEF224FB41C48C7s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib10E46135C98CB3D3CAEF224FB41C48C7s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib04F4F3BFA5EDBEC2733923943802E507s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib04F4F3BFA5EDBEC2733923943802E507s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib04F4F3BFA5EDBEC2733923943802E507s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib622B88CCE4E23B2227C9FD7B30A59BA9s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib622B88CCE4E23B2227C9FD7B30A59BA9s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib082EE2727EFCEE1D58BF50ED6C6FBDD5s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib082EE2727EFCEE1D58BF50ED6C6FBDD5s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib5330C38EE9EB963088D986F8C6EC3CD3s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib88EF7B85234E48EC24B81AF4DAC55E74s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib88EF7B85234E48EC24B81AF4DAC55E74s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib90085DF39C90D1EF5A72D098C0F70B09s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib90085DF39C90D1EF5A72D098C0F70B09s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib11BB33D75663232BBE584336651EF573s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib11BB33D75663232BBE584336651EF573s1
https://arxiv.org/abs/2108.03292v1
https://arxiv.org/abs/2108.03292v1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib13E6C0601392E99BC95123BB83643E66s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib13E6C0601392E99BC95123BB83643E66s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib68D2153ABBF8ECF62C32DA9AA9EEEF9Es1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib68D2153ABBF8ECF62C32DA9AA9EEEF9Es1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib393DC82A3E49B82BAF137A2D5259C95As1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib393DC82A3E49B82BAF137A2D5259C95As1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib5DBF714896F2945D334C07193A4450BFs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib5DBF714896F2945D334C07193A4450BFs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibF860BF5816F1AC47508C33A43F32DE46s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibF860BF5816F1AC47508C33A43F32DE46s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib495972357F0DB500FCD66CEAE456D625s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib495972357F0DB500FCD66CEAE456D625s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibE1B7C76B2A4F6FCF5CE90B9A0A9E5AF2s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibE1B7C76B2A4F6FCF5CE90B9A0A9E5AF2s1


Y. Ogawa, A. Shah / Journal of Algebra 658 (2024) 450–485 485
[51] H. Nakaoka, General heart construction for twin torsion pairs on triangulated categories, J. Algebra 
374 (2013) 195–215.

[52] A. Neeman, The K-theory of triangulated categories, in: Handbook of K-Theory, vol. 1, 2, Springer, 
Berlin, 2005, pp. 1011–1078.

[53] H. Nakaoka, Y. Ogawa, A. Sakai, Localization of extriangulated categories, J. Algebra 611 (2022) 
341–398.

[54] H. Nakaoka, Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, 
Cah. Topol. Géom. Différ. Catég. 60 (2) (2019) 117–193.

[55] Y. Ogawa, Auslander’s defects over extriangulated categories: an application for the general heart 
construction, J. Math. Soc. Jpn. 73 (4) (2021) 1063–1089.

[56] Y. Ogawa, Abelian categories from triangulated categories via Nakaoka-Palu’s localization, Appl. 
Categ. Struct. 30 (4) (2022) 611–639.

[57] Y. Ogawa, Localization of triangulated categories with respect to extension-closed subcategories, 
Algebr. Represent. Theory (2024), https://doi .org /10 .1007 /s10468 -024 -10272 -y, to appear.

[58] Y. Ogawa, A. Shah, Weak Waldhausen categories and a localization theorem, Preprint, https://
arxiv .org /abs /2406 .18091v1, 2024.

[59] Y. Palu, Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier (Grenoble) 
58 (6) (2008) 2221–2248.

[60] Y. Palu, Grothendieck group and generalized mutation rule for 2-Calabi-Yau triangulated categories, 
J. Pure Appl. Algebra 213 (7) (2009) 1438–1449.

[61] A. Padrol, Y. Palu, V. Pilaud, P.-G. Plamondon, Associahedra for finite-type cluster algebras and 
minimal relations between g-vectors, Proc. Lond. Math. Soc. (3) 127 (3) (2023) 513–588.

[62] D. Quillen, Higher algebraic K-theory. I, in: Algebraic K-Theory, I: Higher K-Theories, Proc. Conf., 
Battelle Memorial Inst. Seattle, Wash., 1972, in: Lecture Notes in Math., vol. 341, Springer, Berlin, 
1973, pp. 85–147.

[63] J. Reid, Indecomposable objects determined by their index in higher homological algebra, Proc. 
Am. Math. Soc. 148 (6) (2020) 2331–2343.

[64] J. Reid, Modules determined by their composition factors in higher homological algebra, Preprint, 
https://arxiv .org /abs /2007 .06350v1, 2020.

[65] M. Schlichting, Negative K-theory of derived categories, Math. Z. 253 (1) (2006) 97–134.
[66] P. Berthelot, A. Grothendieck, L. de Illusie, Théorie des intersections et théorème de Riemann-

Roch, in: Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), in: Lecture Notes in 
Mathematics, vol. 225, Springer-Verlag, Berlin-New York, 1971, avec la collaboration de D. Ferrand, 
J.-P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J.-P. Serre.

[67] R.W. Thomason, T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, in: 
The Grothendieck Festschrift, vol. III, in: Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 
1990, pp. 247–435.

[68] J.-L. Verdier, Des catégories dérivées des catégories abéliennes, Astérisque 239 (1996), xii+253, with 
a preface by Luc Illusie, edited and with a note by Georges Maltsiniotis.

[69] C.A. Weibel, The K-Book, Graduate Studies in Mathematics, vol. 145, American Mathematical 
Society, Providence, RI, 2013, an introduction to algebraic K-theory.

[70] B. Zhu, X. Zhuang, Grothendieck groups in extriangulated categories, J. Algebra 574 (2021) 
206–232.

http://refhub.elsevier.com/S0021-8693(24)00322-3/bib3E7CEC3042B046F3101257BA2D6C9895s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib3E7CEC3042B046F3101257BA2D6C9895s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib20F16362BF9B7FC9B45AF71D1CE5C03Es1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib20F16362BF9B7FC9B45AF71D1CE5C03Es1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib2C77B39A3D9FEDE4D0635FE76DB4C1DEs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib2C77B39A3D9FEDE4D0635FE76DB4C1DEs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibAFFB4CA87579AF3FBDFB61489CF86D5As1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibAFFB4CA87579AF3FBDFB61489CF86D5As1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib19B1E5E084998E7505E7F7C6B27F5644s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib19B1E5E084998E7505E7F7C6B27F5644s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibD79E996B570F023153F0EA4BA6802A80s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibD79E996B570F023153F0EA4BA6802A80s1
https://doi.org/10.1007/s10468-024-10272-y
https://arxiv.org/abs/2406.18091v1
https://arxiv.org/abs/2406.18091v1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibE08D082F79FB35B4B6E7E09C9B2C6330s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibE08D082F79FB35B4B6E7E09C9B2C6330s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib80BD3690433D1FED88F170023CDAAFC0s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib80BD3690433D1FED88F170023CDAAFC0s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib1B2226D8C83C128E31D8C9372B1C0382s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib1B2226D8C83C128E31D8C9372B1C0382s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib8F510D65D643643993A9A12F2E8A235Fs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib8F510D65D643643993A9A12F2E8A235Fs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib8F510D65D643643993A9A12F2E8A235Fs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibEC6AF62B046D2BB1CA63FE5B18810827s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibEC6AF62B046D2BB1CA63FE5B18810827s1
https://arxiv.org/abs/2007.06350v1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibD9D2FE12DE1C2CC2500FC0E9D8B6E6F4s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib8ACF3EE3E9928056D5833AC35FA9AB32s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib8ACF3EE3E9928056D5833AC35FA9AB32s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib8ACF3EE3E9928056D5833AC35FA9AB32s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib8ACF3EE3E9928056D5833AC35FA9AB32s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib590438AF6E38F89D1FD28A6D3F1158ECs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib590438AF6E38F89D1FD28A6D3F1158ECs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib590438AF6E38F89D1FD28A6D3F1158ECs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib21DF07F3710AAEFD21A564C1A2F33B9Cs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib21DF07F3710AAEFD21A564C1A2F33B9Cs1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibFBDEFB42E523A7A690C74351391E6926s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bibFBDEFB42E523A7A690C74351391E6926s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib66F0B6B31C14A71122C29EC9DF85F423s1
http://refhub.elsevier.com/S0021-8693(24)00322-3/bib66F0B6B31C14A71122C29EC9DF85F423s1

	A resolution theorem for extriangulated categories with applications to the index
	1 Introduction
	2 Extriangulated categories
	2.1 Extension-closed subcategories
	2.2 Relative theory

	3 Localization of extriangulated categories
	3.1 Localization of triangulated categories
	3.2 Abelian localization of triangulated categories

	4 An extriangulated resolution theorem
	4.1 The proof of Theorem~4.4

	5 Applications to the index in triangulated categories
	5.1 The PPPP and JS index isomorphisms
	5.2 Indices with respect to an extension-closed subcategory of a triangulated category
	5.3 Connection to higher homological algebra

	6 Application to the index in abelian categories
	Data availability
	Acknowledgments
	References


