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A strong connection between cluster algebras and representation theory was 
established by the cluster category. Cluster characters, like the original Caldero-
Chapoton map, are maps from certain triangulated categories to cluster algebras 
and they have generated much interest. Holm and Jørgensen constructed a 
modified Caldero-Chapoton map from a sufficiently nice triangulated category to 
a commutative ring, which is a generalised frieze under some conditions. In their 
construction, a quotient Ksp

0 (T )/M of a Grothendieck group of a cluster tilting 
subcategory T is used. In this article, we show that this quotient is the Grothendieck 
group of a certain extriangulated category, thereby exposing the significance of it and 
the relevance of extriangulated structures. We use this to define another modified 
Caldero-Chapoton map that recovers the one of Holm–Jørgensen.
We prove our results in a higher homological context. Suppose S is a (d + 2)-
angulated category with subcategories X ⊆ T ⊆ S, where X is functorially finite 
and T is 2d-cluster tilting, satisfying some mild conditions. We show there is 
an isomorphism between the Grothendieck group K0(S, EX , sX ) of the category 
S, equipped with the d-exangulated structure induced by X , and the quotient 
Ksp

0 (T )/N , where N is the higher analogue of M above. When X = T the 
isomorphism is induced by the higher index with respect to T introduced recently 
by Jørgensen. Thus, in the general case, we can understand the map taking an 
object in S to its K0-class in K0(S, EX , sX ) as a higher index with respect to the 
rigid subcategory X .

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in [24] and have since seen links to several 
different fields, such as integrable systems, Poisson geometry and particle physics. The cluster category 
associated to a hereditary algebra, defined in [13], is a categorification of the corresponding cluster algebra. 
This relationship is exhibited by the so-called Caldero-Chapoton map, which is a cluster character that 
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associates elements of the cluster algebra to certain types of objects of the cluster category; see, for example, 
[14], [15], [16], [18], [19], [20], [25], [30], [31], [36], [44], [46], [52].

Let us recall a version of the Caldero-Chapoton map equivalent to the original of [14, Sec. 3]. For 
unexplained notation, see Subsection 1.1 below. Let k be an algebraically closed field and let C be a k-linear, 
Hom-finite, Krull-Schmidt, triangulated category that is 2-Calabi-Yau. Denote by Σ the suspension functor 
of C. The Caldero-Chapoton map depends on the choice of a cluster tilting object T ∈ C, which we assume to 
be basic. Set T = addT . Define the functor G : C → mod T by GT (C) = C(T, ΣC). Since T is cluster tilting, 
for each object C ∈ C there is a triangle T 0 → T 1 → C → ΣT 0, and we put indT (C) = [T 1] − [T 0], which 
is an element of Ksp

0 (T ) known as the index (with respect to T ) of C. There is a group homomorphism 
ϕ : K0(mod T ) → Ksp

0 (T ), measuring how far the index is from being additive over triangles in C (see [35, 
Thm. 4.4], or Section 5). Put A = Z[xT ′ , x −1

T ′ ]T ′∈indT . Define maps ε : Ksp
0 (T ) → A, α : obj(C) → A

and β : K0(mod T ) → A as follows: ε([T ′]) = xT ′ for T ′ ∈ ind T ; α = ε ◦ indT ; and β = ε ◦ ϕ. Assume 
also that ε is “exponential” in the sense that ε(0) = 1 and ε(e + f) = ε(e)ε(f). Then the formula of the 
Caldero-Chapoton map given in [36, 1.8] is

ρ(C) = α(C)
∑
e

χ (GreGT (C))β(e), (1.1)

where Gre(GT (C)) is the Grassmannian of submodules of C(T, ΣC) in mod T with K0-class e in K0(mod T ), 
and χ is the Euler characteristic defined by étale cohomology with proper support.

From its initial context, the Caldero-Chapoton map has been studied and generalised. For example, in 
[31] an extension of the map was given dealing with the rigid subcategory case and where A is a general 
commutative ring. Let X = addR be a rigid subcategory (i.e. C(X , ΣX ) = 0) contained in the cluster tilting 
subcategory T . In this generalisation, Holm and Jørgensen make the following substitutions; see Section 5
for more details.

(i) ε is replaced with a map ε : Ksp
0 (T )/N → A, where

N =
〈

[X] − [Y ]

∣∣∣∣∣ T Y T ∗ ΣT and T ∗ X T ΣT ∗

are exchange triangles with T ∈ ind T \ indX

〉
.

(ii) α is replaced by εQ indT , where Q : Ksp
0 (T ) → Ksp

0 (T )/N is the canonical surjection.
(iii) β is replaced by εν, where ν : K0(modX ) → Ksp

0 (T )/N is the unique homomorphism making

K0(mod T ) Ksp
0 (T )

K0(modX ) Ksp
0 (T )/N

ϕ

κ Q

ν

commute, in which κ is induced by the inclusion X ⊆ T .
(iv) GT and Gre(GT (C)) are replaced by similarly defined analogues GR and Gre(GR(C)), respectively.

With these adjustments, (1.1) is then called the modified Caldero-Chapoton map in [31]. Note that if X = T
is cluster tilting then N = 0 and the domains of ε and ε agree. Furthermore, [31, Thm. A] showed that the 
modified Caldero-Chapoton map ρ is a generalised frieze (see [30, Def. 3.4]) under suitable assumptions, 
thereby demonstrating this theory has particular implications in combinatorics. This map also recovers the 
combinatorial generalised friezes of [10]; see also [17].

Although Ksp
0 (T )/N is observably a correct group to consider as the domain for ε, there has also 

been other considerable interest in this quotient. For instance, Palu proved that Ksp
0 (T )/N recovers the 
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Grothendieck group of the triangulated category C when X = 0 (see [45, Thm. 10]). In this case, N is gener-
ated by relations coming from all pairs of exchange triangles for indecomposable objects in T . These results 
were generalised to the higher angulated case by Fedele in [22]. However, there is not yet an explanation of 
the significance of Ksp

0 (T )/N , even though it shows up in different contexts, indicating its importance and 
some deeper connection.

Motivated by this, and inspired by an approach taken in [43], in the present article we remedy this 
by giving an interpretation of Ksp

0 (T )/N as the Grothendieck group of a certain extriangulated category 
dependent on X ; see Theorem A. In particular, this shows that this group is indeed the correct group to use 
in the construction of the modified Caldero-Chapoton map and why. Conversely, the interest in Ksp

0 (T )/N
and its appearance as the Grothendieck group of an extriangulated category illustrates the relevance of 
extriangulated and, more generally, higher exangulated structures. Although we prove our results in the 
more general setting of higher homological algebra, we will remain in the classical setting for the purposes 
of this introduction, which is also the setting of Section 5.

Since C is triangulated, we have that (C, E, s) is an extriangulated category, where E = C(−, Σ−) is a 
biadditive functor and s is the (canonical) realisation of E (see [41, Prop. 3.22] or Example 2.7). There is a 
subfunctor of E given as follows. Define EX on objects by

EX (C,A) = { δ ∈ C(C,ΣA) | δ ◦ γ = 0 for all γ : X → C with X ∈ X } .

Then, by equipping C with EX instead, we obtain another extriangulated structure (EX , sX ) on C, where 
sX is the restriction of s to EX . The group K0(C, EX , sX ) is then defined to be the quotient of Ksp

0 (C) by 

the subgroup generated by elements [A] − [B] +[C], where A B C ΣAδ is a triangle in C with 
δ ∈ EX (C, A). See Section 2 for more details. As a special case of Theorem 4.18, we have:

Theorem A. There is an isomorphism Ksp
0 (T )/N ∼= K0(C, EX , sX ).

In case X = T , the isomorphism K0(C, ET , sT ) → Ksp
0 (T ) is induced by the index indT : obj(C) →

Ksp
0 (T ); see [43, Prop. 4.11]. The authors are very grateful to P.-G. Plamondon, who pointed out this 

result from [43] to the first author. This led to the development of Theorem 3.10, which is a higher dimen-
sional version. This cluster tilting special case suggests that we can think of the surjection QX : Ksp

0 (C) →
K0(C, EX , sX ) as an index with respect to X . Furthermore, there is also an additivity formula with error-term 
for the homomorphism QX (see [37]). Moreover, using QX and a map that also behaves like an error-term 
map under suitable conditions (see Remark 5.6), we give a new version of the Caldero-Chapoton map, which 
we call the X -Caldero-Chapoton map; see Definition 5.3. This recovers the modified Caldero-Chapoton map 
from [31].

This paper is organised as follows. In Section 2, we cover the definitions and results we will need 
on n-exangulated categories, including their Grothendieck groups and n-exangulated structures induced 
by subcategories. In Section 3 we show, for an Oppermann-Thomas cluster tilting subcategory T of a 
(d + 2)-angulated category S, there is an isomorphism between the split Grothendieck group of T and the 
Grothendieck group of S with d-exangulated structure induced by T . In Section 4 we prove the higher 
version of Theorem A. Lastly, in Section 5 we apply our results to the classical setting and define the 
X -Caldero-Chapoton map.

1.1. Conventions and notation

(i) Ab denotes the category of all abelian groups.
(ii) By an additive subcategory, we will mean a full subcategory that is closed under isomorphisms, direct 

sums and direct summands. Note that if B is an additive subcategory of A and A is idempotent 
complete, then B is also idempotent complete since it is closed under direct summands.
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(iii) Let A be an additive category. For a subcategory B of A that is closed under finite direct sums, [B]
denotes the two-sided ideal of A consisting of morphisms factoring through B.

Fix a skeleton Askel of A. We denote by indA the class of objects of Askel consisting only of 
indecomposable objects. Furthermore, if B ⊆ A is an additive subcategory, we assume that skeletons 
are chosen in a compatible way, i.e. Bskel ⊆ Askel, so in particular indB ⊆ indA.

(iv) For a field k, we denote by Mod k (respectively, mod k) the category of all (respectively, finite-
dimensional) k-vector spaces.

(v) Suppose C is a skeletally small, k-linear category. We denote by Mod C the category of all k-linear, 
contravariant functors C → Mod k. The category Mod C is k-linear and abelian (see, for example, [48, 
Thm. 10.1.3] or [47, Sec. 3, Thm. 4.2]).

A functor M ∈ Mod C is called finitely presented if there is an exact sequence C(−, A) −→
C(−, B) −→ M −→ 0 for some A, B ∈ C; see [6, p. 155]. (These functors have also been called 
‘coherent’ in e.g. [1] and [33]. However, there is a more general notion of a coherent functor, see [23, 
Def. B.5]. This notion and what we call finitely presented agree when, for example, C is also idempotent 
complete and has weak kernels. See [23, App. B] and the references therein for more details.) We denote 
by mod C the full subcategory of Mod C consisting of all the finitely presented k-linear, contravariant 
functors C → Mod k. The category mod C is also k-linear. If C is also idempotent complete and has weak 
kernels (e.g. C is a contravariantly finite, additive subcategory of an idempotent complete, triangulated 
category, see [33, Def. 2.9]), then mod C is abelian and the inclusion functor mod C → Mod C is exact. 
See [2, Sec. III.2]; see also [1, Sec. 2] and [4].

Finally, fl C denotes the full subcategory of Mod C consisting of objects of finite length (see [38, 
Sec. 5]).

(vi) Let S be a k-linear category and suppose D is a skeletally small, additive subcategory of S. We let 
FD : S → modD denote the covariant restricted Yoneda functor defined on objects by sending X ∈ S
to S(−, X)|D. Denote by D⊥0 := KerFD the full subcategory of S consisting of objects X for which 
S(D, X) = 0.

2. n-exangulated categories

2.1. The definition

Let n � 1 be a positive integer. Exact, abelian and triangulated categories (see [49], [27] and [51], 
respectively) form the core of homological algebra. Indeed, in Sections 3 through 5 of this paper we are in a 
setting where there is some ambient triangulated category; see Setup 3.3. These ideas have been generalised 
to higher dimensions by Geiss–Keller–Oppermann in [26], where (n +2)-angulated categories are introduced, 
and by Jasso in [34], where n-abelian and n-exact categories are defined. In a parallel direction, the theories 
of exact and triangulated categories have been unified with the introduction of extriangulated categories by 
Nakaoka–Palu in [41].

Naturally, the counterpart in higher homological algebra of extriangulated categories has also been 
developed—namely, n-exangulated categories as introduced by Herschend–Liu–Nakaoka in [29]. In this sub-
section, we briefly recall the definition of an n-exangulated category (see Definition 2.6). For more details, 
we refer the reader to [29, Sec. 2]. We also recall how one can view an (n + 2)-angulated category as an 
n-exangulated category (see Example 2.7).

Let C be an additive category equipped with a biadditive functor E : Cop × C → Ab. A prototypical 
example when n = 1 of an n-exangulated category (or an extriangulated category in the sense of [41]) 
is an exact category. In this case, E models the functor Ext1, which motivates the following terminol-
ogy.
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Definition 2.1.

(i) For any A, C ∈ C, any element of E(C, A) is called an extension.
(ii) Suppose δ ∈ E(C, A) is an extension, and let a : A → A′ and c : C ′ → C be arbitrary morphisms in C. 

We define a∗δ := E(C, a)(δ) ∈ E(C, A′) and c∗δ := E(c, A)(δ) ∈ E(C ′, A).
(iii) Suppose δ ∈ E(C, A) and η ∈ E(D, B) are extensions. A morphism of extensions δ → η is a pair (a, c)

of morphisms a : A → B and c : C → D in C, such that a∗δ = c∗η.

Let δ ∈ E(C, A) be an extension. By the Yoneda Lemma, there is a natural transformation δ� : C(A, −) ⇒
E(C, −), given by (δ�)B(a) = a∗δ for each object B ∈ C and each morphism a : A → B. Dually, there is also 
a natural transformation δ� : C(−, C) ⇒ E(−, A).

We denote the category of (co)complexes in C by CC . Note that we use cohomological numbering through-
out. Since we will be interested in equipping categories with certain classes of complexes with n + 2 terms, 
it is helpful to introduce the following: the full subcategory of complexes concentrated in (cohomological) 
degrees 0, 1, . . . , n, n + 1 will be denoted by Cn

C . Since a morphism f • : X• → Y • in Cn
C will be of the form 

(. . . , 0, 0, f0, f1, . . . , fn+1, 0, 0, . . .), we will simply write f • = (f0, . . . , fn+1). Moreover, we will restrict our 
attention to objects of Cn

C that also have a connection with an extension.

Definition 2.2. Let X• ∈ Cn
C and δ ∈ E(Xn+1, X0). The pair 〈X•, δ〉 is an n-exangle if

C(−, X0) C(−, X1) · · · C(−, Xn+1) E(−, X0)
C(−, d0

X) C(−, d1
X) C(−, dn

X) δ�

and

C(Xn+1,−) C(Xn,−) · · · C(X0,−) E(Xn+1,−)
C(dn

X ,−) C(dn−1
X ,−) C(d0

X ,−) δ�

are exact sequences of functors.

Definition 2.3. Fix objects A, C in C. The (not necessarily full) subcategory Cn
(A,C) of Cn

C is defined as follows: 
an object of Cn

(A,C) is a complex X• ∈ Cn
C for which X0 = A and Xn+1 = C; and a morphism f • : X• → Y •

in Cn
(A,C) is a commutative diagram

A X1 · · · Xn C

A Y 1 · · · Y n C

f1 fn

in C.

For A, C ∈ C and X•, Y • ∈ Cn
(A,C), the usual notion of a homotopy between morphisms in CC gives 

an equivalence relation on Cn
(A,C)(X

•, Y •), which we denote by ∼. Thus, we can form a specialised ho-
motopy category, denoted Kn

(A,C), which has the same objects as Cn
(A,C) and, for X•, Y • ∈ Kn

(A,C), we set 
Kn

(A,C)(X
•, Y •) := Cn

(A,C)(X
•, Y •)/∼. Furthermore, we call f • ∈ Cn

(A,C)(X
•, Y •) a homotopy equivalence if its 

image in Kn
(A,C)(X

•, Y •) is an isomorphism. In this case, the complexes X• and Y • are said to be homotopy 
equivalent, and the homotopy equivalence class of X• in Cn

(A,C) is denoted [X•]. This is not necessarily the 
usual homotopy equivalence class of X• in Cn

C ; see [29, Rem. 2.18].
Just as Ext1 groups in an abelian category can be viewed as equivalence classes of short exact sequences, 

in an n-exangulated category homotopy equivalence classes will be associated to extensions.
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Definition 2.4. Let s be a correspondence, which assigns to each δ ∈ E(C, A), for each A, C ∈ C, a homotopy 
equivalence class s(δ) = [X•] for some X• ∈ Cn

(A,C). Then s is called an exact realisation of E if the following 
three conditions are met.

(R0) For each δ ∈ E(C, A), η ∈ E(D, B) such that s(δ) = [X•], s(η) = [Y •], and for each morphism 
(a, c) : δ → η of extensions, there exists a morphism f • = (f0, . . . , fn+1) ∈ Cn

C(X•, Y •) realising (a, c), 
i.e. with f0 = a and fn+1 = c.

(R1) If s(δ) = [X•], then 〈X•, δ〉 is an n-exangle.
(R2) Let A ∈ C. Consider the group identity elements A00 ∈ E(0, A) and 00A ∈ E(A, 0). Then

s(A00) = [ A A 0 · · · 01A ]

and

s(00A) = [ 0 · · · 0 A A
1A ].

If s is an exact realisation of E and

s(δ) = [X•] = [ X0 X1 · · · Xn Xn+1d0
X dn

X ],

then we call d0
X an s-inflation and dnX an s-deflation.

In order to simplify the statement of the main definition in this subsection, we recall the following.

Definition 2.5. [29, Def. 2.27] The mapping cone M • := MC(f)• of a morphism f • ∈ Cn
C(X•, Y •) with f0 = 1A

for X0 = A = Y0 is the complex

X1 X2 ⊕ Y 1 X3 ⊕ Y 2 · · · Xn+1 ⊕ Y n Y n+1d0
M d1

M d2
M dn−1

M dn
M

in Cn
C , where d0

M :=
(

−d1
X

f1

)
,

diM :=
(
−di+1

X 0
f i+1 diY

)
for i ∈ {1, . . . , n − 1}, and dnM := ( fn+1 dnY ).

With this terminology in place, we can define an n-exangulated category.

Definition 2.6. An n-exangulated category is a triplet (C, E, s), where C is an additive category, E : Cop×C →
Ab is a biadditive functor, s is an exact realisation of E, and where the following conditions are satisfied.

(EA1) The classes of s-inflations and of s-deflations are each closed under composition.
(EA2) Suppose there are δ ∈ E(D, A) and c ∈ C(C, D), with s(c∗δ) = [X•] and s(δ) = [Y •] for 

some X•, Y • ∈ Cn
C . Then there exists a morphism f • = (1A, f1, . . . , fn, c) : X• → Y • realising 

(1A, c) : c∗δ → δ, i.e. a commutative diagram

c∗δ A = X0 X1 · · · Xn Xn+1 = C

δ A = Y 0 Y 1 · · · Y n Y n+1 = D,

(1A, c)

d0
X

f1 fn c

such that s((d0
X)∗δ) = [MC(f)•].
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(EA2)op Dual of (EA2).

If (C, E, s) is an n-exangulated category and s(δ) = [X•] for some extension δ ∈ E(C, A) and X• ∈ Cn
(A,C), 

then X• is said to be an s-conflation and 〈X•, δ〉 is called an s-distinguished n-exangle.
We close this subsection by recalling how an (n +2)-angulated category carries an n-exangulated structure.

Example 2.7. Suppose (C, Σn, ) is an (n + 2)-angulated category (in the sense of [26]). Thus, Σn is an 
automorphism of C and is a collection of (n + 2)-angles. Using Σn, we can define a biadditive functor 
E : Cop × C → Ab as follows. For objects X0, Xn+1 ∈ C put E(Xn+1, X0) := C(Xn+1, ΣnX0) and, for 
any f : Y n+1 → Xn+1 and g : X0 → Y 0, the morphism E(f, g) : E(Xn+1, X0) → E(Y n+1, Y 0) is given by 
E(f, g)(δ) := (Σng) ◦ δ ◦ f .

Now let δ ∈ E(Xn+1, X0) be some extension. Since C is an (n +2)-angulated category, there is an (n +2)-
angle of the form X0 → · · · → Xn+1 δ→ ΣnX0. Setting s(δ) = [X0 → · · · → Xn+1], it can then be checked 
that this assignment gives an exact realisation of E. Moreover, it can also be shown that (C, E, s) is an 
n-exangulated category; see [29, Subsec. 4.2] for more details.

2.2. An n-exangulated structure induced by a subcategory

Suppose (C, E, s) is an n-exangulated category and let D be a full subcategory of C. We first recall how to 
obtain an n-exangulated category (C, ED, sD) using the relative theory developed in [29]. Our main goal in 
this subsection is to show that (C, ED, sD) is an n-exangulated subcategory (in the sense of [28]) of (C, E, s).

Definition 2.8. [29, Def. 3.7, Def. 3.10] Denote by Set the category of sets. Suppose F : Cop × C → Set is a 
functor.

(i) If, for all A, A′, C, C ′ ∈ C, a ∈ C(A, A′) and c ∈ C(C ′, C), we have F(C, A) ⊆ E(C, A) and F(c, a) =
E(c, a)|F(C,A), then F is called a subfunctor of E. In this case, we write F ⊆ E.

(ii) For any subfunctor F of E, if F(C, A) is a subgroup of E(C, A) for all A, C ∈ C, then we say F is an 
additive subfunctor of E. Note that, in this case, we deduce F : Cop × C → Ab is a biadditive functor.

(iii) Suppose F is an additive subfunctor of E, and let s|F denote the restriction of s to F . We say that F
is closed on the right if, for every s|F -conflation X•, and every Z ∈ C,

F(Z,X0) F(Z,X1) F(Z,X2)
F(Z, d0

X) F(Z, d1
X)

is exact. Dually, one defines what is meant by F is closed on the left.

It has been shown that being closed on the right is equivalent to being closed on the left for an additive 
subfunctor F of E; see [29, Lem. 3.15]. Therefore, F is simply said to be closed if it is closed on one side.

The definition of ED in the next proposition comes from [29, Def. 3.18], and the proof of the result itself 
follows from [29, Sec. 3].

Proposition 2.9. The assignment ED from Cop × C to Set given by

ED(Xn+1, X0) :=
{
δ ∈ E(Xn+1, X0)

∣∣ (δ�)D = 0 for every D ∈ D
}

is a closed subfunctor of E. The restriction sD := s|ED
of the realisation s to ED is an exact realisation of 

ED. Moreover, the triplet (C, ED, sD) is an n-exangulated category.
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Proof. The first two statements follow from [29, Prop. 3.19] and [29, Claim 3.9], respectively. Then [29, 
Prop. 3.16] implies that (C, ED, sD) is an n-exangulated category. �

The next notion captures what it means for a functor to preserve an n-exangulated structure. It will allow 
us to show that the n-exangulated structure induced by D is compatible with the original n-exangulated 
structure of (C, E, s). For a covariant functor F : C → C′, we denote by F op : Cop → (C′)op the induced 
opposite functor.

Definition 2.10. [8, Def. 2.32] Suppose (C′, E′, s′) is also an n-exangulated category. An n-exangulated functor 
from (C, E, s) to (C′, E′, s′) is a pair (F , Γ), where F : C → C′ is an additive covariant functor and

Γ = {Γ(C,A)}(C,A)∈Cop×C : E =⇒ E′(F op−,F−)

is a natural transformation of functors from Cop × C to Ab, such that s′(Γ(Xn+1,X0)(δ)) = [FX•] whenever 
s(δ) = [X•].

Definition 2.11. [28, Def. 3.7] Suppose (S, E′, s′) is an n-exangulated category, where S is a full subcategory 
of C that is closed under isomorphisms, and let ι : S → C be the inclusion functor. Then (S, E′, s′) is called an 
n-exangulated subcategory of (C, E, s) if there is an n-exangulated functor (ι, Γ), where Γ(C,A) : E′(C, A) →
E(C, A) is an inclusion of abelian groups for all A, C ∈ S.

We are now in a position to give the main result of this subsection.

Theorem 2.12. Let D be a full subcategory of C. The triplet (C, ED, sD) is an n-exangulated subcategory of 
(C, E, s).

Proof. Since ED ⊆ E and sD is a restriction of s, it is clear that the identity functor 1C, with the natural 
transformation Γ: ED ⇒ E(1op

C −, 1C−) = E given by Γ(C,A)(δ) = δ for each A, C ∈ C and each δ ∈
ED(C, A), is an n-exangulated functor. �

Remark 2.13. Suppose (C, Σn, ) is an (n + 2)-angulated category, and write (C, E, s) for its n-exangulated 
structure; see Example 2.7 above. Let D be an additive subcategory of C. It is immediate that, for any 
δ ∈ C(Xn+1, ΣnX0), we have δ ∈ ED(Xn+1, X0) if and only if FD(δ) = 0 (see (vi) in Subsection 1.1), i.e.

ED(Xn+1, X0) =
{
δ ∈ C(Xn+1,ΣdX0)

∣∣ FD(δ) = 0
}
.

Furthermore, since D⊥0 is closed under finite direct sums, we may consider the ideal [D⊥0 ] of C. The 
subfunctor ED of E satisfies [D⊥0 ](Xn+1, ΣnX0) ⊆ ED(Xn+1, X0).

We note that if n = 1 (so that C is a triangulated category), D is extension-closed in C and each object 
of C admits a minimal right D-approximation, then one can show this inclusion is an equality using the 
triangulated Wakamatsu Lemma [12, Lem. 1.1].

2.3. The Grothendieck group of an n-exangulated category

In classical settings, the notion of a Grothendieck group has been used previously to give connections 
between certain subcategories of a category and subgroups of the ambient category’s Grothendieck group; 
see [40], [50]. More recently, some of these results have been extended to the n-exangulated cases; see [9], [28], 
[53]. In contrast, we will look at how the Grothendieck group theory changes as we tweak the n-exangulated 
structure on a fixed category and we will also be considering certain quotients of split Grothendieck groups.

The first construction we need is well-known; see, for example [5, Ch. VII].
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Definition 2.14. Let A be a skeletally small additive category. An isomorphism class of an object A ∈ A
will be denoted as usual by [A]. Denote by F(A) the free abelian group on the isomorphism classes 
of objects in A. The split Grothendieck group Ksp

0 (A) of A is the quotient of F(A) by the subgroup 
〈[A] − [A⊕B] + [B] |A,B ∈ A〉.

Since we will be working modulo relations coming from n-exangles, it is convenient to introduce the 
following notation.

Definition 2.15. Let A be a skeletally small additive category. For a complex

X• : X0 X1 · · · Xn Xn+1

in Cn
A, we define the associated Euler relation to be the alternating sum

χ(X•) :=
n+1∑
i=0

(−1)i[Xi] = [X0] − [X1] + · · · + (−1)n[Xn] + (−1)n+1[Xn+1],

of isomorphism classes, viewed as an element of F(A).

Remark 2.16. For the convenience of the reader, we make the following observation that we use several 
times in the remainder of the article:

(−1)n+1χ(X•) = [Xn+1] − [Xn] + · · · + (−1)n[X1] + (−1)n+1[X0]

=
n+1∑
i=0

(−1)i[Xn+1−i].

We can now state the main definition of this subsection.

Definition 2.17. [28, Def. 4.1] Let n � 1 be a positive integer. Let (C, E, s) be a skeletally small n-exangulated 
category. As before, let F(C) be the free abelian group on the isomorphism classes of objects in C. Let 
G(C, E, s) denote the subgroup of F(C) generated by the subset{

{ χ(X•) | X• is an s-conflation in (C,E, s) } if n is odd
{ χ(X•) | X• is an s-conflation in (C,E, s) } ∪ { [0] } if n is even.

The Grothendieck group of (C, E, s) is the quotient K0(C, E, s) := F(C)/G(C, E, s).

Let (C, E, s) be an n-exangulated category and let D ⊆ C be a full subcategory. We conclude this 
subsection by giving a description of the Grothendieck group of (C, ED, sD) as a quotient of the split 
Grothendieck group Ksp

0 (C).

Definition 2.18. Define the subgroup

ID := 〈χ(X•) |X• is an sD-conflation in (C,ED, sD)〉

of the split Grothendieck group Ksp
0 (C). Then we have K0(C, ED, sD) ∼= Ksp

0 (C)/ID, and we identify these 
groups. Furthermore, let us denote by QD the canonical surjection Ksp

0 (C) → Ksp
0 (C)/ID.

There are the two extremal cases, which we quickly discuss now.
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(a) If D = 0, then ED = E0 = E and so (C, E0, s0) = (C, E, s). In addition, ID = I0 is generated by χ(X•)
for each s-conflation X• in (C, E, s).

(b) If D = C, then ED(Xn+1, X0) = 0 for any X0, Xn+1 ∈ C, and so ID = IC is generated by the Euler 
relations associated to the s-conflations of the form

0 · · · 0 A A 0 · · · 0,1A

where A ∈ C and the identity morphism 1A may be in any position; see [28, Prop. 2.14]. Thus, IC = 〈[0]〉
is the trivial subgroup of Ksp

0 (C), and hence Ksp
0 (C)/IC = Ksp

0 (C).

3. Cluster tilting subcategories and the (d + 2)-angulated index

For a triangulated category C and cluster tilting subcategory T ⊆ C, a triangulated index was introduced 
by Palu in [44], giving a way to associate an element of the split Grothendieck group Ksp

0 (T ) to an object 
of C. A higher analogue was subsequently introduced in [35]; see Definition 3.5. We show that this gives an 
isomorphism between the split Grothendieck group of T and the Grothendieck group of the d-exangulated 
structure on C induced by T .

First, we recall some essential definitions.

Definition 3.1. [32], [33, Sec. 3] Let n � 2 be a positive integer. Let C be an idempotent complete, triangulated 
category. Suppose T is an additive subcategory of C. We say that T is an n-cluster tilting subcategory of C
if:

(i) T is functorially finite; and
(ii) T =

{
X ∈ C

∣∣ ExtiC(T , X) = 0 for all 1 � i � n− 1
}

=
{
X ∈ C

∣∣ ExtiC(X, T ) = 0 for all 1 � i � n− 1
}
.

An interesting characterisation of n-cluster tilting subcategories is given in [7, Thm. 5.3].

Definition 3.2. [22, Def. 6.2], [42, Def. 5.3] Let d � 1 be a positive integer. Let S be a (d + 2)-angulated 
category. Suppose T is an additive subcategory of S. We say that T is an Oppermann-Thomas cluster tilting 
subcategory of S if:

(i) S(T , ΣdT ) = 0; and
(ii) for each S ∈ S there is a (d + 2)-angle T 0 · · · T d S ΣdT 0 in S with T i ∈ T for all 

0 � i � d.

Note that (i) and (ii) in Definition 3.2 imply T is functorially finite.

Setup 3.3. For the remainder of Sections 3 and 4, we fix the following. Let k be a field, and let d, n be positive 
integers with n = 2d. We assume C is a skeletally small, k-linear, Krull-Schmidt, Hom-finite triangulated 
category with suspension functor Σ. We suppose there are subcategories T ⊆ S in C, where T is n-cluster 
tilting in C, and S is d-cluster tilting in C and ΣdS ⊆ S.

Remark 3.4.

(i) As noted in [35, Rem. 5.2], Setup 3.3 implies: S has the structure of a (d + 2)-angulated category 
following the “standard construction” given by Geiss–Keller–Oppermann (see [26, Thm. 1]), with 
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d-suspension functor Σd, which is the restriction to S of the d’th power of Σ; and that T is an 
Oppermann-Thomas cluster tilting subcategory of S by [42, Thm. 5.25].

(ii) We denote by (S, E, s) the d-exangulated structure of S (see Example 2.7).
(iii) The subcategory T induces a d-exangulated structure on S as in Proposition 2.9, which we denote 

by (S, ET , sT ). Furthermore, (S, ET , sT ) is a d-exangulated subcategory of (S, E, s) by Theorem 2.12. 
Setup 3.3 implies T itself is an additive subcategory of S, so, as in Remark 2.13, we have

ET (Xd+1, X0) =
{
δ ∈ S(Xd+1,ΣdX0)

∣∣ FT (δ) = 0
}
.

With this Setup, we can then recall the higher index with respect to T .

Definition 3.5. [35, Def. B] For S ∈ S, let

T 0
S · · · T d

S S ΣdT 0
S

τ0 τd−1
(3.1)

be a (d + 2)-angle in S with T i
S ∈ T and τ i in the radical of S for each i. The (d + 2)-angulated index of S

with respect to T is

indT (S) =
d∑

i=0
(−1)i[T d−i

S ] = [T d
S ] − [T d−1

S ] + · · · + (−1)d−1[T 1
S ] + (−1)d[T 0

S ],

viewed as an element of Ksp
0 (T ).

Remark 3.6. We note the following.

(i) Let T •
S denote the s-conflation corresponding to the (d + 2)-angle (3.1), i.e. T •

S is the complex 

T 0
S · · · T d

S Sτ0 τd−1
in Cd

S . Then notice that, as elements of Ksp
0 (S), we have the equal-

ity indT (S) = [S] − (−1)d+1χ(T •
S), using Definition 2.15 and Remark 2.16.

(ii) For any T ∈ T , we have indT (T ) = [T ] as S admits the (d + 2)-angle

0 · · · 0 T T Σd0.1T

In order to show that the (d + 2)-angulated index induces group homomorphisms between Grothendieck 
groups, we use the following result from [35], which shows this index is additive on (d + 2)-angles in S
up to an error term. Recall that FT : S → mod T is given by FT (S) = S(−, S)|T on objects (see (vi) in 
Subsection 1.1).

Theorem 3.7. [35, Thm. C] There is a homomorphism θ : K0(mod T ) → Ksp
0 (T ), such that if

S0 · · · Sd Sd+1 ΣdS0γ is a (d + 2)-angle in S, then

d+1∑
i=0

(−1)i indT (Sd+1−i) = θ([ImFT (γ)]).

The first homomorphism obtained via the higher index is from the split Grothendieck group of S to that 
of T .

Proposition 3.8. The (d +2)-angulated index indT induces a group homomorphism Ksp
0 (S) → Ksp

0 (T ), which 
we also denote by indT .
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Proof. By [35, Rem. 5.4], indT (S) is well-defined and depends only on the isomorphism class of S in S. 
Therefore, by extending linearly, it induces a group homomorphism F(S) → Ksp

0 (T ). Let A, B ∈ S be 
arbitrary. Then S admits the (d + 2)-angle

0 · · · 0 A A⊕B B Σd0,
( 1A

0
)

( 0 1B ) 0

which yields indT (B) − indT (A ⊕ B) + indT (A) = θ([Im 0]) = 0 by Theorem 3.7. Hence, we obtain a 
well-defined group homomorphism indT : Ksp

0 (S) → Ksp
0 (T ). �

Notation 3.9. Suppose D is a full subcategory of the (d + 2)-angulated category S. Recall that there is, 
thus, a d-exangulated subcategory (S, ED, sD) of (S, E, s) by Theorem 2.12. Let δ ∈ ED(Xd+1, X0) ⊆
S(Xd+1, ΣdX0). If sD(δ) = [X0 → · · · → Xd+1] such that X0 → · · · → Xd+1 completes to a (d + 2)-angle 
X0 → · · · → Xd+1 → ΣdX0 in S, then we emphasise this by depicting the sD-distinguished d-exangle 
〈X•, δ〉 as

X0 X1 · · · Xd Xd+1 ΣdX0,δ

to simultaneously indicate that 〈X•, δ〉 is an sD-distinguished d-exangle and that the whole diagram is a 
(d + 2)-angle in S. Although this notation is used for exangulated categories more generally, we will reserve 
it specifically for the type of situation just described.

The authors thank P.-G. Plamondon for bringing [43, Prop. 4.11] to the attention of the first author. 
Our main result of this section is the following higher version of [43, Prop. 4.11], which was the starting 
point for the present article.

Theorem 3.10. The (d + 2)-angulated index indT induces an isomorphism K0(S, ET , sT ) → Ksp
0 (T ), which 

we also denote by indT . The inverse L : Ksp
0 (T ) → K0(S, ET , sT ) is defined on generators by L([T ]) = [T ]

for each T ∈ T .

Proof. Recall that K0(S, ET , sT ) = Ksp
0 (S)/IT ; see Definition 2.18. We first show IT is contained in the 

kernel of indT : Ksp
0 (S) → Ksp

0 (T ) from Proposition 3.8. Thus, let

S0 · · · Sd Sd+1 ΣdS0γ

be an sT -distinguished d-exangle in (S, ET , sT ). Thus, FT (γ) = 0 by Remark 3.4(iii), and we have

d+1∑
i=0

(−1)i indT (Si) = (−1)d+1
d+1∑
i=0

(−1)i indT (Sd+1−i) (see Remark 2.16)

= (−1)d+1θ([ImFT (γ)]) by Theorem 3.7

= 0.

Hence, indT induces a group homomorphism K0(S, ET , sT ) → Ksp
0 (T ), which we again denote by indT .

It remains to show that this is an isomorphism, and we do this by constructing an inverse of indT . Define 
a group homomorphism L : Ksp

0 (T ) → K0(S, ET , sT ) on generators by L([T ]) = [T ] for each T ∈ T and 
extend linearly. By Remark 3.6(ii), we see that indT ◦L is the identity on Ksp

0 (T ). On the other hand, for 
S ∈ S, there is a (d + 2)-angle of the form (3.1) as T is Oppermann-Thomas cluster tilting. By dropping 
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trivial summands from the morphisms τ i, one can assume each τ i is radical. As T is Oppermann-Thomas 
cluster tilting, we have S(T , ΣdT ) = 0. Thus, in K0(S, ET , sT ), we see

[S] = −
d+1∑
i=1

(−1)i[T d+1−i]

=
d+1∑
i=1

(−1)i−1[T d+1−i]

= L

(
d∑

i=0
(−1)i[T d−i]

)

= L(indT ([S])).

This shows that L ◦ indT is the identity on K0(S, ET , sT ), and hence indT : K0(S, ET , sT ) → Ksp
0 (T ) is 

indeed an isomorphism. �

4. The quotient Ksp
0 (T )/NX as a Grothendieck group

Throughout this section, we still have the base assumptions laid out in Setup 3.3. In the coming sub-
sections, we specialise a further three times as detailed below in order to prove our main result, namely, 
Theorem 4.18. Relevant definitions are recalled in the corresponding subsection.

Setup 4.1 (for Subsection 4.1). In addition to Setup 3.3, suppose: S is 2d-Calabi-Yau (see Definition 4.6); 
X is a functorially finite, additive subcategory of T ; and all objects in ind T \ indX have a mutation (see 
Definition 4.9).

Setup 4.2 (for Subsection 4.2). In addition to Setups 3.3 and 4.1, we assume that, for each T ∈
ind T \ indX , the image ImFT (γT ) (see (vi) in Subsection 1.1) is isomorphic to the simple module 
ST = T (−, T )/ radT (−, T ) in Mod T (see (4.5)), where γT is as in the exchange (d + 2)-angle (4.4).

Setup 4.3 (for Subsection 4.3). In addition to Setups 3.3, 4.1 and 4.2, we assume that for any S ∈ S, the 
functor FT (S) = S(−, S)|T (see (vi) in Subsection 1.1) has finite length in mod T , i.e. FT (S) ∈ fl T .

Remark 4.4. We note these Setups are satisfied in several cases of interest.

(i) For example, Setup 4.1 is satisfied if T = addT for some Oppermann-Thomas cluster tilting object 
T ∈ S, and X ⊆ T is chosen as needed for Setup 4.1. In particular, when d > 1, we note that not any
choice of a functorially finite, additive subcategory X ⊆ T will result in each indecomposable in T \X
having a mutation, so one has to be careful when choosing X ; see [42, Rem. 5.8].

(ii) Setup 4.2 holds if e.g. d = 1 and T is part of a cluster structure in the sense of [11, p. 1039].
(iii) The additional condition in Setup 4.3—namely, that FT (S) has finite length—is satisfied if, for example, 

T is locally bounded, i.e. Hom-finite and for each indecomposable object T ∈ T , there are only finitely 
many objects T ′ ∈ ind T such that T (T, T ′) �= 0 or T (T ′, T ) �= 0. See [36, Rem. 5.4]. (Note that we are 
using ‘locally bounded’ in the sense of [39], and not as in [21].)

In this section we will establish the following (under the appropriate assumptions as described above).
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Theorem 4.5. There is a commutative diagram

Ksp
0 (S) K0(S,E, s)

K0(S,ET , sT ) K0(S,EX , sX )

Ksp
0 (T ) Ksp

0 (T )/NX

indT

QT
QX

Q0

indT

Q̃

∼=

QNX

L GX ∼=

(4.1)

of abelian groups, with the indicated surjections and isomorphisms. In particular, there is an isomorphism 
Ksp

0 (T )/NX ∼= K0(S, EX , sX ).

Some of the categories and homomorphisms in (4.1) have already appeared in earlier sections, and others 
we introduce in this section. That L and indT are mutually inverse follows from Theorem 3.10.

The upper half of (4.1) exists and commutes by the following formal considerations. Recall that in 
Definition 2.18, for each full subcategory D of an n-exangulated category (C, E, s), we defined a subgroup 
ID � Ksp

0 (C) and the canonical epimorphism

QD : Ksp
0 (C) → Ksp

0 (C)/ID = K0(C,ED, sD).

Since 0 ⊆ X ⊆ T ⊆ S, we have that 0 = IS � IT � IX � I0 as subgroups of Ksp
0 (S). Thus, applications 

of the universal property of the quotient yield a commutative diagram

Ksp
0 (S) K0(S,E, s)

K0(S,ET , sT ) K0(S,EX , sX )

Q0

QT
QX

Q̃

(4.2)

of surjective abelian group homomorphisms. See Subsection 2.3 for more details.
Accordingly, the primary objective of this section is to establish the existence of the lower half of (4.1)

and to show GX is an isomorphism. We do this in Corollary 4.15 and Theorem 4.18, respectively.

4.1. Mutation pairs and the subgroup NX

We are in the situation of Setup 4.1. In this subsection we will define the subgroup NX and show the 
existence of the homomorphism GX appearing in (4.1).

Definition 4.6. Recall that k is an algebraically closed field. Let D(−) = Homk(−, k) denote the standard 
k-duality. Then S is 2d-Calabi-Yau if, for all S, S′ ∈ S, there are isomorphisms S(S, S′) ∼= DS(S′, (Σd)2S), 
which are natural in each argument.
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Remark 4.7. Note that under Setup 4.1, we have that T is n-cluster tilting in C and hence rigid (see 
Definition 3.1), so the subcategory X ⊆ T is also rigid. In addition, our situation meets all the conditions 
of [30, Setup 1.1], and hence ModX and modX share the same simple objects and finite length objects. In 
particular, flX is abelian and the inclusions flX → modX and flX → ModX are exact. Similar statements 
hold for T . See [30, 1.8].

Definition 4.8. [35, (0.3)] A pair (S, S∗) of objects in S is said to be an exchange pair if dimk S(S, ΣdS∗) = 1.

The following terminology we introduce is motivated by [42, Subsec. 1.3].

Definition 4.9. Let T be an object of indT , and suppose T ∗ lies in indS with T ∗ � T . We call (T, T ∗)
a mutation pair if it is an exchange pair (see Definition 4.8) and add((ind T \ {T}) ∪ {T ∗}) is again an 
Oppermann-Thomas cluster tilting subcategory of S (see Definition 3.2). That is, replacing T by T ∗ yields 
another Oppermann-Thomas cluster tilting subcategory of S. In this case, we say T ∗ is a mutation of T .

For a mutation pair (T, T ∗), there is a pair of distinguished (d +2)-angles that will play a key role in this 
whole section. A description of these can be given just as in [42].

Proposition 4.10. Suppose T ∈ ind T has a mutation T ∗ ∈ indS. Then, up to (non-unique) isomorphism, 
there are exchange (d + 2)-angles

Y 0 Y 1 · · · Y d Y d+1 ΣdY 0,
γT ∗

(4.3)

X0 X1 · · · Xd Xd+1 ΣdX0γT

(4.4)

in S that satisfy the following.

(i) Y 0 = Xd+1 = T and Y d+1 = X0 = T ∗.
(ii) γT∗

, γT are both non-zero.
(iii) Y 1 → Y 2, Y 2 → Y 3, . . . , Y d → Y d+1 and X0 → X1, X1 → X2, . . . , Xd−1 → Xd are radical mor-

phisms.
(iv) For all 1 � i � d, we have Xi, Y i ∈ add(ind T \ {T}) ⊆ T .
(v) Y 0 → Y 1 is a minimal left add(ind T \ {T})-approximation.
(vi) Xd → Xd+1 is a minimal right add(ind T \ {T})-approximation.

Moreover, T ∗ is unique up to isomorphism.

Proof. As dimk S(T, ΣdT ∗) = 1, we also have dimk S(T ∗, ΣdT ) = 1 since S is 2d-Calabi-Yau. This gives the 
existence of (4.3) and (4.4) satisfying (i) and (ii). One can then follow the proof of (1) ⇒ (2) ⇒ (3) of [42, 
Thm. 5.7] at our level of generality. �

Remark 4.11.

(i) Suppose T ∈ ind T has a mutation T ∗. Then T ∗ is unique up to isomorphism by Proposition 4.10. 
Thus, up to isomorphism, we speak of the mutation T ∗ of T . It also follows from the same result that 
T ∗ /∈ T .

(ii) As noted in Remark 4.4(i), it is not guaranteed that every indecomposable object in T has a mutation; 
see [42, Rem. 5.8].
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The next definition is motivated by [31, Def. 2.4], which deals with the triangulated version.

Definition 4.12. We define the subgroup

NX =
〈

d∑
i=1

(−1)i[Xd+1−i] −
d∑

i=1
(−1)i[Y i]

∣∣∣∣∣ (4.3) and (4.4) are exchange (d + 2)-angles
with T ∈ ind T \ indX

〉

of Ksp
0 (T ), and let

QNX : Ksp
0 (T ) → Ksp

0 (T )/NX

denote the canonical surjection.

In Theorem 3.10 we defined L : Ksp
0 (T ) → K0(S, ET , sT ), which was shown to be the inverse of the 

(d + 2)-angulated index indT : K0(S, ET , sT ) → Ksp
0 (T ). We will show the subgroup NX vanishes under 

the composition Q̃L : Ksp
0 (T ) → K0(S, EX , sX ), in order to obtain a homomorphism GX : Ksp

0 (T )/NX →
K0(S, EX , sX ). For this, we need the following key lemma.

Lemma 4.13. Suppose that (T, T ∗) is a mutation pair with T ∈ ind T \ indX . Let γT∗ : T ∗ → ΣdT and 
γT : T → ΣdT ∗ be the morphisms in the exchange (d + 2)-angles (4.3) and (4.4). Then FT (γT∗) = 0 and 
FX (γT∗) = 0 = FX (γT ).

Proof. As T is Oppermann-Thomas cluster tilting and X ⊆ add(ind T \{T}) ⊆ T , we have that S(T , ΣdT ) =
0 = S(X , ΣdT ). Thus, FT (γT∗) and FX (γT∗) both vanish. On the other hand, since replacing T by T ∗

in T yields another Oppermann-Thomas cluster tilting subcategory of S that also contains X , we have 
S(X , ΣdT ∗) = 0. Hence, FX (γT ) = 0 as well. �

Proposition 4.14. Let T ∈ ind T \ indX and consider the exchange (d +2)-angles (4.3) and (4.4). Then each 
generator

d∑
i=1

(−1)i[Xd+1−i] −
d∑

i=1
(−1)i[Y i]

of NX vanishes under Q̃L : Ksp
0 (T ) → K0(S, EX , sX ).

Proof. By Proposition 4.10, we have that Xi, Y i lie in T for 1 � i � d. As FX (γT∗) = FX (γT ) = 0 by 
Lemma 4.13, we see that

Y 0 Y 1 · · · Y d Y d+1 ΣdY 0,

X0 X1 · · · Xd Xd+1 ΣdX0

γT ∗

γT

are sX -distinguished d-exangles in the d-exangulated category (S, EX , sX ). So χ(Y •) =
∑d+1

i=0 (−1)i[Y i] and 
χ(X•) =

∑d+1
i=0 (−1)i[Xi] are both trivial in K0(S, EX , sX ). Then, since Y 0 = Xd+1 = T and Y d+1 = X0 =

T ∗, we see that

Q̃L

(
d∑

(−1)i[Xd+1−i] −
d∑

(−1)i[Y i]
)

i=1 i=1
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=
d∑

i=1
(−1)i[Xd+1−i] −

d∑
i=1

(−1)i[Y i]

=
d+1∑
i=0

(−1)i[Xd+1−i] − (−1)0[Xd+1] − (−1)d+1[X0] −
d∑

i=1
(−1)i[Y i]

= (−1)d+1χ(X•) − (−1)0[Y 0] − (−1)d+1[Y d+1] −
d∑

i=1
(−1)i[Y i]

= (−1)d+1χ(X•) − χ(Y •)

= [0]. �

As an immediate consequence, we have:

Corollary 4.15. There is a homomorphism GX : Ksp
0 (T )/NX → K0(S, EX , sX ) making the following diagram 

commute.

Ksp
0 (T ) Ksp

0 (T )/NX

K0(S,ET , sT ) K0(S,EX , sX )

QNX

L GX

Q̃

The commuting square in Corollary 4.15 provides the lower half of diagram (4.1) in Theorem 4.5. We prove 
in Subsection 4.3 that GX is actually an isomorphism under the conditions of Setup 4.3; see Theorem 4.18.

4.2. A formula for θ on simples

In this subsection we derive a formula for the homomorphism θ : K0(mod T ) → Ksp
0 (T ) from Theorem 3.7

on the simple objects in mod T . Recall that we are in the situation of Setup 4.2. We remark that the condition 
of this setup is satisfied when d = 1 and T is part of a cluster structure in the sense of [11, p. 1039]. In the 
context of Setup 4.2 in general, there is (see [3, Prop. 2.3(b)]) a bijective correspondence:{

simple modules in Mod T
up to isomorphism

}
←→ ind T

ST = T (−, T )/ radT (−, T ) ←→ T. (4.5)

It follows from Remark 4.7 that, for T ∈ ind T \ indX , we have ST ∈ mod T and so θ([ST ]) makes sense. 
The next result is a generalisation of the triangulated version stated in [36, 1.5(ii)]. It plays an important 
role in the proof of Theorem 4.18, the main result of Section 4.

Proposition 4.16. Suppose T ∈ ind T \ indX . Then we have

θ([ST ]) =
d∑

i=1
(−1)i[Xd+1−i] −

d∑
i=1

(−1)i[Y i],

where Y •, X• are the exchange (d +2)-angles (4.3) and (4.4), respectively, for T . In particular, θ([ST ]) ∈ NX .

Proof. Let T ∈ ind T \ indX , and denote by T ∗ its mutation. Then FT (γT∗) = 0 by Lemma 4.13. Thus, by 
Theorem 3.7, we have
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0 = θ([ImFT (γT∗
)])

=
d+1∑
i=0

(−1)i indT (Y d+1−i)

=
d+1∑
i=1

(−1)i[Y d+1−i] + indT (T ∗).

Rearranging and multiplying by (−1)d+1 yields

(−1)d+1 indT (T ∗) = −
d+1∑
i=1

(−1)d+1−i[Y d+1−i]

= −
d∑

i=0
(−1)i[Y i]

= −
(

d∑
i=1

(−1)i[Y i] + [T ]
)
.

Then we see

θ([ST ]) = θ([ImFT (γT )]) by Setup 4.2

=
d+1∑
i=0

(−1)i indT (Xd+1−i) by Theorem 3.7

= [T ] +
d∑

i=1
(−1)i[Xd+1−i] + (−1)d+1 indT (T ∗) since Xd+1 = T,X0 = T ∗,

and Xj ∈ T for all 1 � j � d

by Proposition 4.10

= [T ] +
d∑

i=1
(−1)i[Xd+1−i] −

(
d∑

i=1
(−1)i[Y i] + [T ]

)
from the observation above

=
d∑

i=1
(−1)i[Xd+1−i] −

d∑
i=1

(−1)i[Y i]. �

4.3. GX is an isomorphism

In this subsection we are in the case of Setup 4.3. We will show that the homomorphism

GX : Ksp
0 (T )/NX → K0(S,EX , sX ),

which satisfies Q̃ ◦ L = GX ◦QNX (see Corollary 4.15), is an isomorphism of abelian groups.

Remark 4.17. Setup 4.3 implies that, for any morphism γ : Sd+1 → ΣdS0 in S, the (target of the) image 
ImFT (γ) also lies in fl T , because it is a subobject of the finite length object FT (ΣdS0).

We can now prove our main result.

Theorem 4.18. GX is an isomorphism.
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Proof. Firstly, since Q̃ and L are surjective (see (4.2) and Theorem 3.10, respectively), the equality 
GXQNX = Q̃L (see Corollary 4.15) implies GX is surjective.

To show GX is injective, let g + NX ∈ Ksp
0 (T )/NX be an element such that GX (g + NX ) = 0 in 

K0(S, EX , sX ). We will show that g + NX is trivial in Ksp
0 (T )/NX , i.e. g ∈ NX . As GX (g + NX ) = 0 and 

GXQNX = Q̃L, we have that

Q̃(L(g)) = GXQNX (g) = GX (g + NX ) = 0.

Since Q̃ : K0(S, ET , sT ) → K0(S, EX , sX ) = Ksp
0 (S)/IX is the canonical surjection induced by the contain-

ment IT ⊆ IX , we see that L(g) ∈ IX + IT in K0(S, ET , sT ).
Recall that IX � Ksp

0 (S) (see Definition 2.18) is generated by elements of the form χ(S•) (see Defini-
tion 2.15), where 〈S•, γ〉 is an sX -distinguished d-exangle

S0 S1 · · · Sd Sd+1 ΣdS0γ

in (S, EX , sX ). Thus, for some integer s � 1, we have

L(g) =
s∑

j=1
(−1)ajχ(S•

j) + IT , (4.6)

where, for each 1 � j � s, there is an sX -distinguished d-exangle

S0
j S1

j · · · Sd
j Sd+1

j ΣdS0
j ,

γj

and aj ∈ {0, 1}. Hence,

g = indT (L(g)) as L−1 = indT by Theorem 3.10

= indT

(
s∑

j=1
(−1)ajχ(S•

j) + IT

)
by (4.6)

=
s∑

j=1
(−1)aj

d+1∑
i=0

(−1)i indT (Si
j) (note indT (IT ) = 0 since

K0(S,ET , sT ) = Ksp
0 (S)/IT )

= (−1)d+1
s∑

j=1
(−1)aj

d+1∑
i=0

(−1)iindT (Sd+1−i
j ) (see Remark 2.16)

= (−1)d+1
s∑

j=1
(−1)ajθ([ImFT (γj)]) by Theorem 3.7.

With this observation, it suffices to show that θ([ImFT (γj)]) ∈ NX for each 1 � j � s. Thus, fix 
j ∈ {1, . . . , s}. As ImFT (γj) is an object in fl T , it admits a composition series

0 = M0 < M1 < · · · < Mr−1 < Mr = ImFT (γj)

in Mod T . Thus, for each 0 � l � r − 1, there exists Tl ∈ ind T such that Ml+1/Ml = STl
is simple.

We claim that Tl /∈ indX for all 0 � l � r − 1. Assume, for contradiction, that Tl ∈ indX for some 
l ∈ {0, . . . , r − 1}. Denote the simple objects in modX by SX for an object X ∈ indX . As shown in [31, 
2.5], the inclusion ι : X → T induces an exact functor ι∗ : fl T → flX , which, on simple objects, is given by
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ι∗ST =
{
ST if T ∈ indX
0 else.

In particular, we have ι∗Ml+1 is a submodule of ι∗ ImFT (γj) = ImFX (γj). But FX (γj) is 0 since γj factors 
through X⊥0 , so STl

= ι∗STl
= ι∗(Ml+1/Ml) = 0, which is a contradiction as STl

is simple. This proves the 
claim.

Using the composition series for ImFT (γj), we have

θ([ImFT (γj)]) = θ([ST0 ]) + · · · + θ([STr−1 ]).

For each l ∈ {0, . . . , r − 1} we have θ([STl
]) ∈ NX by Proposition 4.16, and hence θ([ImFT (γj)]) also lies 

in NX . Since j ∈ {1, . . . , s} was arbitrary, we see that g ∈ NX . Hence, GX is injective and, moreover, an 
isomorphism. �

5. The X -Caldero-Chapoton map

In this section, we describe the connection between our results and the modified Caldero-Chapoton map 
defined by Holm and Jørgensen in [31].

Setup 5.1. In this section, we suppose the following.

(i) k is an algebraically closed field.
(ii) C is a skeletally small, k-linear, Krull-Schmidt, Hom-finite, 2-Calabi-Yau triangulated category.
(iii) X is a functorially finite, additive subcategory of C.
(iv) T is a locally bounded, cluster tilting (i.e. 2-cluster tilting) subcategory of C, which belongs to a cluster 

structure in the sense of [11, p. 1039].
(v) X ⊆ T ⊆ C.

Remark 5.2. Note that Setup 5.1 implies: Setup 3.3 is met with d = 1, n = 2 and S = C; Setups 4.1 and 4.2
hold as T is part of a cluster structure; and Setup 4.3 holds as T is assumed to be locally bounded. Thus, 
all results from Sections 3 and 4 apply. Furthermore, it also follows from T being part of a cluster structure 
that all indecomposables in T have a mutation.

Over [30] and [31], Holm and Jørgensen constructed a modified Caldero-Chapoton map, which generalised 
the original of [14] in two ways: it only depends on a rigid subcategory and can take values in a general 
commutative ring A. This modified Caldero-Chapoton map depends on several other functions, which we 
recall now following [31, Sec. 2].

In our setup, d = 1 so there are exchange triangles

T Y T ∗ ΣT,
γT ∗

(5.1)

T ∗ X T ΣT ∗γT

(5.2)

for each T ∈ ind T ; see Subsection 4.1. Then the subgroup NX � Ksp
0 (T ) from Definition 4.12 can now be 

written more simply as

NX =
〈

[X] − [Y ]

∣∣∣∣∣ (5.1) and (5.2) are exchange triangles
with T ∈ ind T \ indX

〉
, (5.3)

and we still have the quotient homomorphism QNX : Ksp
0 (T ) → Ksp

0 (T )/NX .
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Let ι : X → T be the inclusion functor and ι∗ : fl T → flX the induced exact functor, as in the proof of 
Theorem 4.18. Then ι∗ induces a surjective homomorphism

κ : K0(fl T ) →→ K0(flX )

on the level of Grothendieck groups, given by

κ([ST ]) =
{

[ST ] if T ∈ indX
0 if T ∈ ind T \ indX .

Furthermore, there is a homomorphism

ϕ : K0(fl T ) → Ksp
0 (T )

defined by

ϕ([ST ]) = [Y ] − [X] (5.4)

for each T ∈ ind T , where X, Y are as in (5.1) and (5.2); see [36, 1.5(ii)]. Post-composing with L : Ksp
0 (T ) →

K0(C, ET , sT ) (see e.g. Theorem 4.5) gives a homomorphism

ψ := Lϕ : K0(fl T ) → K0(C,ET , sT ),

such that

ψ([ST ]) = L([Y ]) − L([X]) = L indT (Y ) − L indT (X) = QT ([Y ]) −QT ([X]).

Moreover, note that, for any T ∈ ind T \ indX , we have

Q̃ψ([ST ]) = Q̃Lϕ([ST ]) as ψ = Lϕ

= GXQNXϕ([ST ]) by Theorem 4.5

= GXQNX ([Y ] − [X]) by (5.4)

= 0 using (5.3).

Therefore, Q̃ψ factors uniquely through κ, i.e. there is a unique homomorphism

ψ : K0(flX ) → K0(C,EX , sX )

making the following diagram commute.

K0(fl T ) K0(flX )

Ksp
0 (T )

K0(C,ET , sT ) K0(C,EX , sX )

ϕ

ψ

κ

ψ

L Q̃

(5.5)

Definition 5.3. (cf. [31, 1.2]) Let A be a commutative ring. Suppose

ε : K0(C,EX , sX ) → A
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is a map, such that

ε(0) = 1 and ε(e + f) = ε(e)ε(f). (5.6)

Define α : obj(C) → A and β : K0(flX ) → A as follows:

α := ε ◦QX and β := ε ◦ ψ.

Let C ∈ obj(C). Then the X -Caldero-Chapoton map is given by the formula

ρ(C) = α(C)
∑
e

χ (Gre(FX (ΣC)))β(e),

where Gre(FX (ΣC)) = Gre(C(−,ΣC)|X ) is the Grassmannian of finite length submodules M ⊆ C(−,ΣC)|X
in ModX with [M ] = e ∈ K0(flX ), and χ is the Euler characteristic defined by étale cohomology with proper 
support.

Remark 5.4.

(i) It is not immediately apparent that the formula for ρ above is well-defined for all C ∈ obj(C). However, 
if FX (ΣC) has finite length, then the sum over e is finite and ρ(C) gives an element of A. Recall that 
Setup 4.3 holds since we are in the situation of Setup 5.1 (see Remark 5.2). Thus, FT (ΣC) has finite 
length for all C ∈ obj(C), and so κ(FT (ΣC)) = FX (ΣC) indeed has finite length.

(ii) The definition of ρ is precisely how the original Caldero-Chapoton map is given in [14], but with 
the involved maps and functors adjusted relative to the functorially finite, rigid subcategory X ⊆ T . 
Indeed, replacing QX , ψ and ε, respectively, by indT , ϕ, and a map ε : Ksp

0 (T ) → A (still satisfying 
condition (5.6)), where A is the Laurent polynomial ring Z[xT , x

−1
T ]T∈ind T , recovers the version of 

the Caldero-Chapoton map given in [36, 1.8].

Theorem 5.5. The X -Caldero-Chapoton map defined above recovers the modified Caldero-Chapoton map of 
Holm–Jørgensen [31].

Proof. To show this, let ε : Ksp
0 (T )/NX → A be a map satisfying ε(0) = 1 and ε(e + f) = ε(e)ε(f), as 

assumed in [31, Def. 2.8]. Define ε := εG −1
X . Then ε satisfies the requirements for the definition of the 

X -Caldero-Chapoton map.
The map α is α = ε ◦QX = εG −1

X QX = εQNX indT , which is readily seen to agree with [31, Def. 2.8]. 
For β = ε ◦ ψ = εG −1

X ψ, first note that in [31, Def. 2.8] the map is defined as εϕ, where ϕ : K0(flX ) →
Ksp

0 (T )/NX is the unique homomorphism satisfying ϕκ = QNXϕ. Thus, it suffices to show that G −1
X ψ = ϕ. 

This does indeed hold:

G −1
X ψκ = G −1

X Q̃ψ using (5.5)

= G −1
X Q̃Lϕ since ψ = Lϕ

= QNXϕ using Theorem 4.5,

and hence the claim follows by uniqueness. �

Remark 5.6. We conclude this section with a remark about how our considerations have a connection 
with recent work by the authors on indices with respect to rigid subcategories. The map ψ : K0(flX ) →
K0(C, EX , sX ) obtained above in (5.5) relates to the homomorphism θX : K0(modX ) → K0(C, EX , sX )
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defined recently in [37]. The map θX is shown to measure how far the index with respect to X is from being 
additive on triangles.

The inclusion flX → modX (see Remark 4.7) induces a homomorphism

μ : K0(flX ) → K0(modX ).

Recall that FT (C) ∈ fl T for all C ∈ C (see Remark 5.4(i)). Consider the K0-classes [FA(C)]flA and 
[FA(C)]modA in K0(flA) and K0(modA), respectively, for A ∈ {X , T }. Then we have

ψ([FX (C)]flX ) = ψκ([FT (C)]fl T )

= Q̃ψ([FT (C)]fl T ) using (5.5)

= Q̃L(indT (C) + indT (Σ−1C)) by [31, Lem. 2.10]

= QX ([C]) + QX ([Σ−1C]) using Theorem 4.5, (5.7)

viewing [C] and [Σ−1C] as elements of Ksp
0 (S). Note that the term in (5.7) is equal to θX ([FX (C)]modX ), 

where θX : K0(modX ) → K0(C, EX , sX ) is the homomorphism of [37]. Therefore, we see that ψ([FX (C)]flX ) =
θXμ([FX (C)]flX ). In particular, this suggests ψ can also be seen as some measure of how far the index with 
respect to X defined in [37] is from being additive on triangles.
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