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Abstract
Suppose (C,E, s) is an n-exangulated category. We show that the idempotent completion
and the weak idempotent completion of C are again n-exangulated categories. Furthermore,
we also show that the canonical inclusion functor of C into its (resp. weak) idempotent
completion is n-exangulated and 2-universal among n-exangulated functors from (C,E, s)

to (resp. weakly) idempotent complete n-exangulated categories. Furthermore, we prove that
if (C,E, s) is n-exact, then so too is its (resp. weak) idempotent completion. We note that
our methods of proof differ substantially from the extriangulated and (n + 2)-angulated
cases. However, our constructions recover the known structures in the established cases up
to n-exangulated isomorphism of n-exangulated categories.

Keywords Additive category · Idempotent completion · Karoubi envelope · n-exangulated
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1 Introduction

Idempotent completion began with Karoubi’s work [20] on additive categories. It was shown
that an additive category embeds into an associated one which is idempotent complete, that is,
in which all idempotent morphisms admit a kernel. Particularly nice examples of idempotent
complete categories include Krull-Schmidt categories, which can be characterised as idem-
potent complete additive categories in which each object has a semi-perfect endomorphism
ring (see Chen–Ye–Zhang [12, Thm. A.1], Krause [24, Cor. 4.4]). Other examples include
the vast class of pre-abelian categories (see e.g. [33, Rem. 2.2]); e.g. a module category, or
the category of Banach spaces (over the reals, say).

Suppose C is an additive category. The objects of the idempotent completion ˜C of C are
pairs (X , e), where X is an object of C and e : X → X is an idempotent morphism in C,
i.e. e2 = e. What is particularly nice is that if C has a certain kind of structure, then in
several cases this induces the same structure on ˜C. For example, Karoubi had already shown
that the idempotent completion of an additive category is again additive (see [20, (1.2.2)]).
Furthermore, it has been shown for the following, amongst other, extrinsic structures that if
C has such a structure, then so too does ˜C:
(i) triangulated (see Balmer–Schlichting [7, Thm. 1.5]);
(ii) exact (see Bühler [11, Prop. 6.13]);
(iii) extriangulated (see [27, Thm. 3.1]); and
(iv) (n + 2)-angulated, where n ≥ 1 is an integer (see Lin [25, Thm. 3.1]).

See also Liu–Sun [26] and Zhou [35].
Idempotent complete exact and triangulated categories are verifiably important in algebra

and algebraic geometry.As a classical example, inNeeman [28] an idempotent complete exact
category E is needed to give a clean description of the kernel of the localisation functor from
the homotopy category of E to its derived category. And, more generally, many equivalences
only hold up to direct summands, i.e. up to idempotents (see, for example, Orlov [31, Thm.
2.11], or Kalck–Iyama–Wemyss–Yang [21, Thm. 1.1]). Therefore, it is usually helpful to
view an algebraic structure as sitting inside its idempotent completion.

The idempotent completion ˜C comes equipped with an inclusion functor IC : C → ˜C
given by IC(X) = (X , idX ) on objects. Moreover, in several of the cases above it has been
shown that this functor is 2-universal in an appropriate sense; see e.g. Proposition 2.8 for a
precise formulation. For example, without any assumptions other than additivity, the functor
IC is additive and 2-universal amongst additive functors from C to idempotent complete
additive categories. On the other hand, if e.g. C has an exact structure, then IC is exact and
2-universal amongst exact functors from C to idempotent complete exact categories.

In homological algebra two parallel generalisations have been made from the classical
settings of exact and triangulated categories. One of these has been the introduction of
extriangulated categories as defined by Nakaoka–Palu [30]. An extriangulated category is a
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triplet (C,E, s), where C is an additive category, E : Cop × C → Ab is a biadditive functor to
the category of abelian groups, and s is a so-called additive realisation of E. The realisation

s associates to each δ ∈ E(Z , X) a certain equivalence class s(δ) = [ X Y Zx y ]
of a 3-term complex. As an example, each triangulated category (C, �,�), where � is
a suspension functor and � is a triangulation, is an extriangulated category. Indeed, one
defines the corresponding bifunctor by E�(Z , X) := C(Z , �X). See [30, Prop. 3.22] for
more details. In addition, each suitable exact category is extriangulated; see [30, Exam. 2.13].
Aparticular advantage of this theory is that the collectionof extriangulated categories is closed
under taking extension-closed subcategories. Although an extension-closed subcategory of
an exact category is again exact, the same does not hold in general for triangulated categories.

We note here that, importantly, it was shown in [27, Sec. 3.1] that the extriangulated struc-
ture on ˜C produced from case (iii) above is compatible with the more classical constructions
of (i) and (ii). For instance, given a triangulated category C, one can equip its idempotent
completion ˜C with a triangulation by (i) or with an extriangulation by (iii), but these structures
are the same in the sense of [30, Prop. 3.22]. Analogously, (iii) also recovers (ii) if one starts
with an extriangulated category that is exact.

Let n ≥ 1 be an integer. The other aforementioned generalisation in homological algebra
has been the development of higher homological algebra. This includes the introduction
of n-exact and n-abelian categories by Jasso [19], and (n + 2)-angulated categories by
Geiss–Keller–Oppermann [14]. Respectively, these generalise exact, abelian and triangulated
categories, in that one recovers the classical notions by setting n = 1. For instance, an
(n + 2)-angulated category is a triplet (C, �, �) satisfying some axioms, where � is still an
automorphism of C, but now � consists of a collection of (n + 2)-angles each of which has
n + 3 terms.

The focal point of this paper is on the idempotent completion of an n-exangulated category.
These categories were axiomatised by Herschend–Liu–Nakaoka [16], and simultaneously
generalise extriangulated, (n+2)-angulated, and suitablen-exact categories (see [16, Sec. 4]).
Like an extriangulated category, an n-exangulated category (C,E, s) consists of an additive
category C, a biadditive functor E : Cop × C → Ab, and a so-called exact realisation s of
E, which satisfy some axioms (see Sect. 3.1). The realisation s now associates to each
δ ∈ E(Xn+1, X0) a certain equivalence class (see Sect. 3.1)

s(δ) = [ X0 X1 · · · Xn+1

dX0 dX1 dXn ]

of an (n+2)-termcomplex. In this case, the pair 〈X•, δ〉 is called an s-distinguished n-exangle.
We recall that structure-preserving functors between n-exangulated categories were defined
in [10, Def. 2.32]. They are known as n-exangulated functors and they send distinguished
n-exangles to distinguished n-exangles.

Suppose that (C,E, s) is an n-exangulated category. Let ˜C denote the idempotent comple-
tion of C as an additive category. We define a biadditive functor F : ˜Cop × ˜C → Ab as follows.
For any pair of objects (X , e), (Z , e′) ∈ ˜C, we letF((Z , e′), (X , e)) consist of triplets (e, δ, e′)
where δ ∈ E(Z , X) such that E(Z , e)(δ) = δ = E(e′, X)(δ). On morphisms F is essentially
a restriction of E; see Definition 4.4 for details. Now we define a realisation t of F. For
(e, δ, e′) ∈ F((Z , e′), (X , e)), we have that s(δ) = [X•] for some (n + 2)-term complex
X• with X0 = X and Xn+1 = Z since s is a realisation of E. We choose an idempotent
morphism e• : X• → X• of complexes, such that e0 = e and en+1 = e′; see Corollary 4.13.
Lastly, we set t((e, δ, e′)) to be the equivalence class of the complex
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(X , e) (X1, e1) · · · (Xn, en) (Z , e′)
e1d

X
0 e0 e2d

X
1 e1 end

X
n−1en−1 en+1d

X
n en

in ˜C. We say that an n-exangulated category is idempotent complete if its underlying additive
category is (see Definition 4.31).

Theorem A (Theorem 4.32, Theorem 4.39) The triplet (˜C,F, t) is an idempotent com-
plete n-exangulated category. Furthermore, the inclusion functor IC : C → ˜C extends to
an n-exangulated functor (IC, �) : (C,E, s) → (˜C,F, t), which is 2-universal among n-
exangulated functors from (C,E, s) to idempotent complete n-exangulated categories.

An n-exact category (C,X ) (see [19, Def. 4.2]) induces an n-exangulated category
(C,E, s) if, for each pair of objects A,C ∈ C, the collection E(C, A) = ExtnC(C, A) of
n-extensions of C by A forms a set; see [16, Prop. 4.34]. As in [23, Def. 4.6], we say that an
n-exangulated category (C,E, s) is n-exact if its n-exangulated structure arises in this way.
Combining Theorem A with [23, Cor. 4.12], we deduce the following.

Corollary B (Corollary 4.34) If (C,E, s) is an n-exangulated category that is n-exact, then
the idempotent completion (˜C,F, t) is n-exact.

We explain in Remark 4.40 how Theorem A unifies the constructions in cases (i)–(iv)
above. Furthermore, we comment on some obstacles faced in proving the n-exangulated case
in Remark 4.41.

From Theorem A we deduce the following corollary, giving a way to produce Krull-
Schmidt n-exangulated categories.

Corollary C (Corollary 4.33) If each object in (C,E, s) has a semi-perfect endomorphism
ring, then the idempotent completion (˜C,F, t) is a Krull-Schmidt n-exangulated category.

Finally, we note that analogues of Theorem A and Corollary B are shown for the weak
idempotent completion in Sect. 5. The importance of being weakly idempotent complete for
extriangulated categories was very recently demonstrated in [23, Prop. 2.7]. It turns out that
for an extriangulated category, the underlying category being weakly idempotent complete
is equivalent to the condition (WIC) defined in [30, Cond. 5.8]. Moreover, (WIC) is a key
assumption in many results on extriangulated categories, e.g. [30, §§5–7], [17, §3], Zhao–
Zhu–Zhuang [36]. We remark that the analogue of (WIC) for n-exangulated categories is
automatic if n ≥ 2, but it is not equivalent to the weak idempotent completeness of the
underlying category; see [23, Thm. B] for more details.

2 On the Splitting of Idempotents

In this section we recall some key definitions regarding idempotents and idempotent com-
pletions of categories. We focus on the idempotent completion of an additive category in
Sect. 2.1 and on the weak idempotent completion in Sect. 2.2. Throughout this section, we
let A denote an additive category. For a more in-depth treatment, we refer the reader to [11,
Secs. 6–7].

2.1 Idempotent Completion

Recall that by an idempotent (in A) we mean a morphism e : X → X satisfying e2 = e for
some object X ∈ A.

The following definition is from Borceux [6].
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Definition 2.1 [6, Defs. 6.5.1, 6.5.3] An idempotent e : X → X in A is said to split if there
exist morphisms r : X → Y and s : Y → X , such that sr = e and rs = idY . The categoryA
is idempotent complete, or has split idempotents, if every idempotent in A splits.

IfA has split idempotents and e : X → X is an idempotent inA, then the object X admits
a direct sum decomposition X ∼= Ker(e) ⊕ Ker(idX −e) (see e.g. Auslander [3, p. 188]).
In particular, the idempotent e and its counterpart idX −e each admit a kernel. Idempotent
complete additive categories can be characterised by such a criterion and its dual.

Proposition 2.2 [6, Prop. 6.5.4] An additive category is idempotent complete if and only if
every idempotent admits a kernel, if and only if every idempotent admits a cokernel.

From this point of view, idempotent complete categories sit between additive categories
and pre-abelian categories, the latter being additive categories in which every morphism
admits a kernel and a cokernel; see for example Bucur–Deleanu [4, §5.4].

Every additive category can be viewed as a full subcategory of an idempotent complete
one. This goes back to Karoubi [20, Sec. 1.2], so the idempotent completion of A is also
often referred to as the Karoubi envelope of A.

Definition 2.3 The idempotent completion ˜A of A is the category defined as follows. Objects
of ˜A are pairs (X , e), where X is an object of A and e ∈ EndA(X) is idempotent. For
objects (X , e), (Y , e′) ∈ obj˜A, a morphism from (X , e) to (Y , e′) is a triplet (e′, r , e), where
r ∈ A(X , Y ) satisfies

re = r = e′r

in A. Composition of morphisms is defined by

(e′′, s, e′) ◦ (e′, r , e) := (e′′, sr , e),

whenever (e′, r , e) ∈ ˜A((X , e), (Y , e′)) and (e′′, s, e′) ∈ ˜A((Y , e′), (Z , e′′)). The identity
of an object (X , e) ∈ obj˜A will be denoted ˜id(X ,e) and is the morphism (e, e, e).

A morphism (e′, r , e) : (X , e) → (Y , e′) in the idempotent completion ˜A of A is usually
denoted more simply as r ; see e.g. [7, Def. 1.2] and [11, Rem. 6.3]. However, for precision in
Sects. 4–5, we use triplets for morphisms in ˜A so that we can easily distinguish morphisms in
A from morphisms in its idempotent completion. Our choice of notation also has the added
benefit of keeping track of the (co)domain of a morphism in ˜A. This becomes important later
when different morphisms in ˜A have the same underlying morphism; see Notation 4.37.

By a functor we always mean a covariant functor. The inclusion functor IA : A → ˜A
is defined as follows. An object X ∈ objA is sent to IA(X) := (X , idX ) ∈ obj˜A and a
morphism r ∈ A(X , Y ) is mapped to IA(r) := (idY , r , idX ) ∈ ˜A(IA(X),IA(Y )).

Lemma 2.4 If e ∈ EndA(X) is a split idempotent, with a splitting e = sr where r : X → Y
and s : Y → X, then (X , e) ∼= IA(Y ).

Proof We have re = rsr = idY r = r and es = srs = s idY = s. Hence, there are
morphisms r̃ := (idY , r , e) : (X , e) → IA(Y ) and s̃ := (e, s, idY ) : IA(Y ) → (X , e) in ˜A
with s̃r̃ = ˜id(X ,e) and r̃ s̃ = ˜idIA(Y ). Hence, r̃ and s̃ are mutually inverse isomorphisms in
˜A. �

If A is an idempotent complete category, then the functor IA is an equivalence of cate-

gories; see e.g. [11, Rem. 6.5]. But more generally we have the following.
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Proposition 2.5 [11, Rem. 6.3] The idempotent completion ˜A is an idempotent complete
additive category with biproduct given by (X , e) ⊕ (Y , e′) = (X ⊕ Y , e⊕ e′). The inclusion
functor IA : A → ˜A is fully faithful and additive.

Remark 2.6 Let (X , e) be an arbitrary object of ˜A. Then (X , e) is a direct summand of
IA(X) = (X , idX ). Indeed, there is an isomorphism (X , idX ) ∼= (X , e)⊕ (X , idX −e). The
canonical inclusion of (X , e) into (X , idX ) is given by the morphism (idX , e, e), and the
projection of (X , idX ) onto (X , e) by (e, e, idX ). Similarly for (X , idX −e).

The functor IA : A → ˜A is 2-universal in some sense; see Proposition 2.8. For this we
recall the notion of whiskering a natural transformation by a functor. We will use Hebrew
letters (e.g. ב (beth), צ (tsadi), ד (daleth), מ (mem)) for natural transformations. Suppose
B, C,D are categories and that we have a diagram

B C D,בF
G

H

where F ,G ,H are functors and ב : G ⇒ H is a natural transformation.

Definition 2.7 The whiskering of F and ב is the natural transformation Fב : GF ⇒ H F
defined by Fב) )X := Fב (X) : GF (X) → H F (X) for each X ∈ B.

The next proposition explains the 2-universal property satisfied by IA : A → ˜A.

Proposition 2.8 [11, Prop. 6.10] For any additive functor F : A → B with B idempotent
complete:

(i) there is an additive functor E : ˜A → B and a natural isomorphism צ : F ∼=�⇒ EIA;
and, in addition,

(ii) for any functor G : ˜A → B and any natural transformation ד : F ⇒ GIA, there
exists a unique natural transformation מ : E ⇒ G with ד = IAמ

.צ

2.2 Weak Idempotent Completion

A weaker notion than being idempotent complete is that of being weakly idempotent com-
plete. This was introduced in the context of exact categories by Thomason–Trobaugh [34,
Axiom A.5.1]. It is, however, a property of the underlying additive category and gives rise
to the following definition.

Definition 2.9 [11, Def. 7.2] An additive category is weakly idempotent complete if every
retraction has a kernel.

Definition 2.9 is actually self-dual. Indeed, in an additive category, every retraction has a
kernel if and only if every section has a cokernel; see e.g. [11, Lem. 7.1].

If r : X → Y is a retraction in A, with corresponding section s : Y → X , and r admits
a kernel k, then the split idempotent e := sr ∈ EndA(X) also has kernel k. Conversely, if
e : X → X is a split idempotent, with splitting given by e = sr where r : X → Y , then
a kernel of e is also a kernel of r . Therefore, weakly idempotent complete categories are
those additive categories in which split idempotents admit kernels, in contrast to idempotent
complete categories in which all idempotents admit kernels (see Proposition 2.2).
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Definition 2.10 The weak idempotent completion ̂A of A is the full subcategory of ˜A con-
sisting of all objects (X , e) ∈ ˜A such that idX −e is a split idempotent in A.

Remark 2.11 We note that Definition 2.10 above differs slightly from the definition of the
weak idempotent completion of A suggested in [11, Rem. 7.8]. If, as in [11], we ask that
objects of ̂A are pairs (X , e) where e : X → X splits, then ̂A is equivalent to A. Indeed,
if sr = e and rs = idY , where r : X → Y and s : Y → X , then (X , e) ∼= (Y , idY ) in
˜A by Lemma 2.4. That is, we have not added any objects that are not already isomorphic
to some object of IA(A). On the other hand, if we take objects in ̂A to be pairs (X , e)
where idX −e splits (as in Definition 2.10), then we have (X , idX ) ∼= (X , e) ⊕ (Y ′, idY ′)
in ̂A, where s′r ′ = idX −e and r ′s′ = idY ′ , where r ′ : X → Y ′ and s′ : Y ′ → X . In this

case, since (X , idX −e) ∼= (Y ′, idY ′) in ˜A, we see that a “complementary” summand of
(X , idX −e) in (X , idX ) has been added. This discrepancy has been noticed previously; see
e.g. Henrard–van Roosmalen [18, Prop. A.11].

It follows that ̂A is an additive subcategory of ˜A and that it is weakly idempotent complete;
see e.g. [11, Rem. 7.8] or [18, Sec. A.2]. From this observation, we immediately have the
next lemma.

Lemma 2.12 Suppose ˜X , ˜Y , ˜Z ∈ ˜A with ˜X ⊕ ˜Y ∼= ˜Z. Then any two of ˜X , ˜Y , ˜Z being
isomorphic to objects in ̂A implies that the third object is also isomorphic to an object in ̂A.

Analogously to the construction in Sect. 2.1, there is an inclusion functor KA : A → ̂A,
given byKA(X) := (X , idX ) on objects, which is 2-universal among additive functors from
A to weakly idempotent complete categories; see e.g. [28, Rem. 1.12] or [11, Rem. 7.8].

Proposition 2.13 For any additive functorF : A → B with B weakly idempotent complete:

(i) there is an additive functor E : ̂A → B and a natural isomorphism צ : F ∼=�⇒ EKA;
and, in addition,

(ii) for any additive functor G : ̂A → B and any natural transformation ד : F ⇒ GKA,
there exists a unique natural transformation מ : E ⇒ G with ד = KAמ

.צ
Let L

̂A : ̂A → ˜A denote the inclusion functor of the subcategory ̂A into ˜A. The functor

IA : A → ˜A factors through KA as IA = L
̂AKA. An additive functor F : ̂A → B to a

weakly idempotent complete category B is determined up to unique natural isomorphism by
its behaviour on the imageKA(A) ofA in ̂A; similarly, a natural transformationב : F ⇒ G
of additive functors ̂A → B is also completely determined by its action onKA(A); see [11,
Rems. 6.7, 6.9].

Remark 2.14 In [11,Rem. 7.9], it is remarked that there is a subtle set-theoretic issue regarding
the existence of the weak idempotent completion of an additive category. Let NBG denote
von Neumann-Bernays-Gödel class theory (see Fraenkel–Bar-Hillel–Levy [13, p. 128]), and
let (AGC) denote the Axiom of Global Choice [13, p. 133]. The combination NBG + (AGC)
is a conservative extension of ZFC [13, p. 131–132, 134]. If one chooses an appropriate class
theory to work with, such as NBG + (AGC), then the weak idempotent completion always
exists as a category. This would follow from the Axiom of Predicative Comprehension for
Classes (see [13, p. 123]); this is also known as the Axiom of Separation (e.g. Smullyan–
Fitting [32, p. 15]). Furthermore, a priori it is not clear to the authors if Proposition 2.8
and 2.13 follow in an arbitrary setting without (AGC). This is because in showing that, for
example, an additive functor F : ˜A → B, where B is idempotent complete, is determined
by its values on IA(A), one must choose a kernel and an image of the idempotentF (e) for
each idempotent e in A.
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3 n-Exangulated Categories, Functors and Natural Transformations

Let n ≥ 1 be an integer. In this section we recall the theory of n-exangulated categories
established in [16], n-exangulated functors as defined in [10], and n-exangulated natural
transformations as recently introduced in [9]. We also use this opportunity to set up some
notation.

3.1 n-Exangulated Categories

The definitions in this subsection and more details can be found in [16, Sec. 2]. For this
subsection, suppose that C is an additive category and that E : Cop × C → Ab is a biadditive
functor.

Let A,C be objects in C. We denote by 0A C the identity element of the abelian group
E(C, A). Suppose δ ∈ E(C, A) and that a : A → B and d : D → C are morphisms in C. We
put a

E
δ:=E(C, a)(δ) ∈ E(C, B) and dEδ:=E(d, A)(δ) ∈ E(D, A). Since E is a bifunctor,

we have that dEa
E
δ = E(d, a)(δ) = a

E
dEδ.

An E-extension is an element δ ∈ E(C, A) for some A,C ∈ C. A morphism of E-
extensions from δ ∈ E(C, A) to ρ ∈ E(D, B) is given by a pair (a, c) of morphisms
a : A → B and c : C → D in C such that a

E
δ = cEρ.

Let A A ⊕ B B
pA pB be a product and C C ⊕ D D

iC iD be a coproduct
in C, and let δ ∈ E(C, A) and ρ ∈ E(D, B) be E-extensions. The direct sum of δ and ρ is
the unique E-extension δ ⊕ ρ ∈ E(C ⊕ D, A ⊕ B) such that the following equations hold.

E(iC , pA)(δ ⊕ ρ) = δ

E(iC , pB)(δ ⊕ ρ) = 0B C

E(iD, pA)(δ ⊕ ρ) = 0A D

E(iD, pB)(δ ⊕ ρ) = ρ

From the Yoneda Lemma, each E-extension δ ∈ E(C, A) induces two natural transfor-
mations. The first is δ

E
: C(A,−) ⇒ E(C,−) given by δ

E B(a) := a
E
δ for all objects B ∈ C

and all morphisms a : A → B. The second is δE : C(−,C) ⇒ E(−, A) and defined by
δE D(d) := dEδ for all objects D ∈ C and all morphisms d : D → C .
Let Ch(C) be the category of complexes in C. Its full subcategory consisting of complexes

concentrated in degrees 0, 1, . . . , n, n + 1 is denoted Ch(C)n. If X• ∈ Ch(C)n, we depict X•
as

X0 X1 · · · Xn Xn+1,
dX0 dX1 dXn−1 dXn

omitting the trails of zeroes at each end.

Definition 3.1 Let X•, Y• ∈ Ch(C)n be complexes, and suppose that δ ∈ E(Xn+1, X0) and
ρ ∈ E(Yn+1, Y0) are E-extensions.

(i) The pair 〈X•, δ〉 is known as anE-attached complex if (dX
0 )

E
δ = 0 and (dX

n )Eδ = 0. An
E-attached complex 〈X•, δ〉 is called an n-exangle (for (C,E)) if, further, the sequences

C(−, X0) C(−, X1) · · · C(−, Xn+1) E(−, X0)
C(−, dX0 ) C(−, dX1 ) C(−, dXn ) δE

and
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C(Xn+1,−) C(Xn,−) · · · C(X0,−) E(Xn+1,−)
C(dXn , −) C(dXn−1, −) C(dX0 , −) δ

E

of functors are exact.
(ii) A morphism f• : 〈X•, δ〉 → 〈Y•, ρ〉 of E-attached complexes is given by a morphism

f• ∈ Ch(C)n(X•, Y•) such that ( f0)Eδ = ( fn+1)
Eρ. Such an f• is called a morphism

of n-exangles if 〈X•, δ〉 and 〈Y•, ρ〉 are both n-exangles.
(iii) The direct sum of the E-attached complexes (or the n-exangles) 〈X•, δ〉 and 〈Y•, ρ〉 is

the pair 〈X• ⊕ Y•, δ ⊕ ρ〉.
From the definition above, one can form the additive category of E-attached complexes,

and its additive full subcategory of n-exangles.
Given a pair of objects A,C ∈ C, we define a subcategory Ch(C)n(A,C) of Ch(C)n in the

following way. An object X• ∈ Ch(C)n(A,C) is an object of Ch(C)n that satisfies X0 = A and
Xn+1 = C . For X•, Y• ∈ Ch(C)n(A,C), a morphism f• ∈ Ch(C)n(A,C)(X•, Y•) is a morphism
f• = ( f0, . . . , fn+1) ∈ Ch(C)n(X•, Y•) with f0 = idA and fn+1 = idC . Note that this
implies Ch(C)n(A,C) is not necessarily a full subcategory of Ch(C)n, nor necessarily additive.

Let X•, Y• ∈ Ch(C)n(A,C) be complexes. Two morphisms in Ch(C)n(A,C)(X•, Y•) are
said to be homotopic if they are homotopic in the standard sense viewed as morphisms
in Ch(C)n. This induces an equivalence relation ∼ on Ch(C)n(A,C)(X•, Y•). We define
K(C)n(A,C) as the categorywith the sameobjects asCh(C)n(A,C) andwithK(C)n(A,C)(X•, Y•) :=
Ch(C)n(A,C)(X•, Y•)/∼.

A morphism f• ∈ Ch(C)n(A,C)(X•, Y•) is called a homotopy equivalence if its image in
the category K(C)n(A,C)(X•, Y•) is an isomorphism. In this case, X• and Y• are said to be
homotopy equivalent. The isomorphism class of X• in K(C)n(A,C) (equivalently, its homotopy
class in Ch(C)n(A,C)) is denoted [X•]. Since the (usual) homotopy class of X• in Ch(C) may
differ from its homotopy class in Ch(C)n(A,C), we reserve the notation [X•] specifically for
its isomorphism class in K(C)n(A,C).

Notation 3.2 For X ∈ C and i ∈ {0, . . . , n}, we denote by trivi (X)• the object in Ch(C)n

given by trivi (X) j = X for j = i, i + 1 and trivi (X) j = 0 for 0 ≤ j ≤ i − 1 and

i + 2 ≤ j ≤ n + 1, as well as d
trivi (X)

i = idX .

Definition 3.3 Let s be an assignment that, for each pair of objects A,C ∈ C and each E-
extension δ ∈ E(C, A), associates to δ an isomorphism class s(δ) = [X•] in K(C)n(A,C). The
correspondence s is called an exact realisation of E if it satisfies the following conditions.

(R0) For any morphism (a, c) : δ → ρ of E-extensions with δ ∈ E(C, A), ρ ∈ E(D, B),
s(δ) = [X•] and s(ρ) = [Y•], there exists f• ∈ Ch(C)n(X•, Y•) such that f0 = a and
fn+1 = c. In this setting, we say that X• realises δ and f• is a lift of (a, c).

(R1) If s(δ) = [X•], then 〈X•, δ〉 is an n-exangle.
(R2) For each object A ∈ C, we have s( 0A 0) = [triv0(A)•] and s( 00 A) = [trivn(A)•].

In case s is an exact realisation of E and s(δ) = [X•], the following terminology is used.
The morphism dX

0 is said to be an s-inflation and the morphism dX
n an s-deflation. The pair

〈X•, δ〉 is known as an s-distinguished n-exangle.

Suppose s is an exact realisation of E and s(δ) = [X•]. We will often use the diagram

X0 X1 · · · Xn Xn+1

dX0 dX1 dXn−1 dXn δ
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to express that 〈X•, δ〉 is an s-distinguished n-exangle. If we also have that s(ρ) = [Y•]
and f• : 〈X•, δ〉 → 〈Y•, ρ〉 is a morphism of n-exangles, then we call f• a morphism of
s-distinguished n-exangles and we depict this by the following commutative diagram.

X0 X1 · · · Xn Xn+1

Y0 Y1 · · · Yn Yn+1

dX0

f0

dX1

f1

dXn−1 dXn

fn

δ

fn+1
dY0 dY1 dYn−1 dYn ρ

We need one last definition before being able to define an n-exangulated category.

Definition 3.4 Suppose f• : X• → Y• is a morphism in Ch(C)n, such that f0 = idA for some
A = X0 = Y0. The mapping cone MC

f • ∈ Ch(C)n of f• is the complex

X1 X2 ⊕ Y1 X3 ⊕ Y2 · · · Xn+1 ⊕ Yn Yn+1,
d
MC

f
0 d

MC
f

1 d
MC

f
2 d

MC
f

n−1 d
MC

f
n

withd
MC

f
0 := [

−dX
1 f1

]�,d
MC

f
n := [

fn+1 dYn
]

, andd
MC

f
i :=

[

−dX
i+1 0

fi+1 dYi

]

for i ∈ {1, . . . , n−1}.

We are in position to state the main definition of this subsection.

Definition 3.5 An n-exangulated category is a triplet (C,E, s), consisting of an additive
category C, a biadditive functor E : Cop × C → Ab and an exact realisation s of E, such that
the following conditions are met.

(EA1) The collection of s-inflations is closed under composition. Dually, the collection of
s-deflations is closed under composition.

(EA2) Suppose δ ∈ E(D, A) and c ∈ C(C, D). If s(cEδ) = [Y•] and s(δ) = [X•], then
there exists a morphism f• : Y• → X• lifting (idA, c), such that s((dY0 )

E
δ) =

[MC
f •]. In this case, the morphism f• is called a good lift of (idA, c).

(EA2)op The dual of (EA2).

Notice that the definition of an n-exangulated category is self-dual. In particular, the dual
statements of several results in Sects. 4–5 are used without proof.

3.2 n-Exangulated Functors and Natural Transformations

In order to show that the canonical functor from an n-exangulated category (C,E, s) to its
idempotent completion is 2-universal among structure-preserving functors from (C,E, s) to
idempotent complete n-exangulated categories, we will need the notion of a morphism of
n-exangulated categories and that of a morphism between such morphisms.

For this subsection, suppose (C,E, s), (C′,E′, s′) and (C′′,E′′, s′′) are n-exangulated cat-
egories. If F : C → C′ is an additive functor, then it induces several other additive functors,
e.g. F op : Cop → (C′)op, or FCh : Ch(C) → Ch(C′) and obvious restrictions thereof. These
are all defined in the usual way. However, by abuse of notation, we simply writeF for each
of these.

Definition 3.6 [10, Def. 2.32] Suppose that F : C → C′ is an additive functor and that
� : E(−,−) ⇒ E

′(F−,F−) is a natural transformation of functors Cop × C → Ab. The
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pair (F , �) : (C,E, s) → (C′,E′, s′) is called an n-exangulated functor if, for all A,C ∈ C
and each δ ∈ E(A,C), we have that s′(�(C,A)(δ)) = [F (X•)] whenever s(δ) = [X•].

If we have a sequence (C,E, s) (C′,E′, s′) (C′′,E′′, s′′)(F , �) (L , �)
of n-

exangulated functors, then the composite of (F , �) and (L ,�) is defined to be

(L ,�) ◦ (F , �) := (L ◦ F ,�F ×F ◦ �).

This is an n-exangulated functor (C,E, s) → (C′′,E′′, s′′); see [9, Lem. 3.19(ii)].
The next result implies that n-exangulated functors preserve finite direct sum decompo-

sitions of distinguished n-exangles. It will be used in the main result of Sect. 4.5.

Proposition 3.7 Let F : C → C′ be an additive functor and � : E(−,−) ⇒ E
′(F−,F−)

a natural transformation. Suppose δ ∈ E(C, A) and ρ ∈ E(D, B) are E-extensions, and
〈X•, δ〉 and 〈Y•, ρ〉 are s-distinguished.
(i) If f• : 〈X•, δ〉 → 〈Y•, ρ〉 is a morphism of E-attached complexes, then the induced

morphismF ( f•) : 〈F (X•), �(C,A)(δ)〉 → 〈F (Y•), �(D,B)(ρ)〉 is a morphism of E′-at-
tached complexes.

(ii) Wehave 〈F (X•⊕Y•), �(C⊕D,A⊕B)(δ⊕ρ)〉 ∼= 〈F (X•), �(C,A)(δ)〉⊕〈F (Y•), �(D,B)(ρ)〉
as E′-attached complexes.

Proof (i) Note that (F (dX
0 ))

E′(�(Xn+1,X0)
(δ)) = �(Xn+1,X1)

((dX
0 )

E
δ) = 0F (X1) F (Xn+1)

since � is natural and 〈X•, δ〉 is an E-attached complex. Similar computations show that
both 〈F (X•), �(C,A)(δ)〉 and 〈F (Y•), �(D,B)(ρ)〉 are E′-attached complexes. As F ( f•) is
a morphism F (X•) → F (Y•) of complexes, it suffices to prove

F ( f0)E′�(Xn+1,X0)
(δ) = F ( fn+1)

E
′
�(Yn+1,Y0)(ρ).

This follows immediately from ( f0)Eδ = ( fn+1)
Eρ and the naturality of �.

(ii) This follows from applying (i) to the morphisms in the appropriate biproduct diagram
of E-attached complexes. �


Lastly, we recall the notion of a morphism of n-exangulated functors. The extriangulated
version was defined in Nakaoka–Ogawa–Sakai [29, Def. 2.11(3)].

Definition 3.8 [9, Def. 4.1] Suppose (F , �), (G ,�) : (C,E, s) → (C′,E′, s′) are n-
exangulated functors. A natural transformation ב : F ⇒ G of functors is said to be
n-exangulated if, for all A,C ∈ C and each δ ∈ E(C, A), we have

(Aב)
E′�(C,A)(δ) = Cב) )E

′
�(C,A)(δ). (3.1)

We denote this by ב : (F , �) ⇒ (G ,�). In addition, if ב has an n-exangulated inverse, then
it is called an n-exangulated natural isomorphism. It is straightforward to check that ב has
an n-exangulated inverse if and only if Xב is an isomorphism for each X ∈ C.

4 The Idempotent Completion of an n-Exangulated Category

Throughout this section we work with the following setup.

Setup 4.1 Let n ≥ 1 be an integer. Let (C,E, s) be an n-exangulated category. We denote by
IC the inclusion of the category C into its idempotent completion ˜C; see Sect. 2.
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In this section, we will construct a biadditive functor F : ˜Cop × ˜C → Ab (see Sect. 4.1) and
an exact realisation t of F (see Sect. 4.2), and then show that (˜C,F, t) is an n-exangulated
category (see Sects. 4.3–4.5). For n = 1, we recover the main results of [27]. First, we
establish some notation to help our exposition.

Notation 4.2 We reserve notation with a tilde for objects and morphisms in ˜C.
(i) If ˜X ∈ ˜A is some object, then we will denote the identity morphism of ˜X by ˜id

˜X . Recall
from Definition 2.3 that the identity of an object (X , e) ∈ ˜A is ˜id(X ,e) = (e, e, e).

(ii) Given a morphism (e′, r , e) ∈ ˜C((X , e), (Y , e′)), we call r : X → Y the underlying
morphism of (e′, r , e).

(iii) Suppose (X , e), (Y , e′) ∈ ˜C and r ∈ C(X , Y )with e′r = r = re. Then there is a unique
morphism r̃ ∈ ˜C((X , e), (Y , e′)) with underlying morphism r . This morphism r̃ is the
triplet (e′, r , e).Moreover,wewill use this notation specifically for this correspondence.
That is, we write s̃ : (X , e) → (Y , e′) is a morphism in ˜C if and only if we implicitly
mean that the underlying morphism of s̃ is denoted s, i.e. we have s̃ = (e′, s, e).

Remark 4.3 By Notation 4.2(iii), two morphisms r̃ , s̃ ∈ ˜C((X , e), (Y , e′)) are equal if and
only if their underlying morphisms r and s, respectively, are equal in C. Thus, for all objects
˜X , ˜Y ∈ ˜C, removing the tilde from morphisms in ˜C(˜X , ˜Y ) defines an injective abelian group
homomorphism ˜C(˜X , ˜Y ) → C(X , Y ). In particular, a diagram in ˜C commutes if and only if
its diagram of underlying morphisms commutes.

4.1 Defining the Biadditive Functor F

The following construction is the higher version of the one given in [27, Sec. 3.1] for extri-
angulated categories.

Definition 4.4 We define a functor F : ˜Cop × ˜C → Ab as follows. For objects (X0, e0) and
(Xn+1, en+1) in ˜C, we put

F((Xn+1, en+1), (X0, e0)) := {(e0, δ, en+1)|δ ∈ E(Xn+1, X0) and (e0)Eδ = δ = (en+1)
Eδ}.

Formorphisms ã : (X0, e0) → (Y0, e
′
0) and c̃ : (Zn+1, e

′′
n+1) → (Xn+1, en+1) in ˜C, we define

F(c̃, ã) : F((Xn+1, en+1), (X0, e0)) −→ F((Zn+1, e
′′
n+1), (Y0, e

′
0))

(e0, δ, en+1) �−→ (e′
0,E(c, a)(δ), e′′

n+1).

Remark 4.5 We make some comments on Definition 4.4.

(i) The assignment F on morphisms takes values where claimed due to the following.
For morphisms ã : (X0, e0) → (Y0, e

′
0) and c̃ : (Zn+1, e

′′
n+1) → (Xn+1, en+1), and an

F-extension (e0, δ, en+1) ∈ F((Xn+1, en+1), (X0, e0)), we have

E(e′′
n+1, e

′
0)E(c, a)(δ) = E(ce′′

n+1, e
′
0a)(δ)

= E(c, a)(δ).

Therefore,F(c̃, ã)(e0, δ, en+1)=(e′′
n+1,E(c, a)(δ), e′

0) lies inF((Zn+1, e
′′
n+1), (Y0, e

′
0)).

It is then straightforward to verify that F is indeed a functor.
(ii) The set F((Xn+1, en+1), (X0, e0)) is an abelian group by defining

(e0, δ, en+1) + (e0, ρ, en+1) := (e0, δ + ρ, en+1)
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for (e0, δ, en+1), (e0, ρ, en+1) ∈ F((Xn+1, en+1), (X0, e0)). The additive identity ele-
ment of F((Xn+1, en+1), (X0, e0)) is ˜0(X0,e0) (Xn+1,en+1)

:= (e0, 0X0 Xn+1
, en+1). The

inverse of (e0, δ, en+1) is (e0,−δ, en+1). Notice that we get an abelian groupmonomor-
phism:

F((Xn+1, en+1), (X0, e0)) −→ E(Xn+1, X0)

(e0, δ, en+1) �−→ δ.

This homomorphism plays a role later in the proof of Theorem 4.39.
(iii) It follows from the definition of F that it is biadditive since E is.
(iv) Given (e0, δ, en+1) ∈ F((Xn+1, en+1), (X0, e0)), the pair (e0, en+1) is a morphism of

E-extensions δ → δ. Indeed, we have that (e0)Eδ = δ = (en+1)
Eδ from Definition 4.4.

Notation 4.6 As for objects and morphisms in ˜C, we use tilde notation for F-extensions,
which gives us a way to pass back to E-extensions.

(i) We will denote an F-extension of the form (e0, δ, en+1) ∈ F((Xn+1, en+1), (X0, e0))

by δ̃. We call δ ∈ E(Xn+1, X0) the underlying E-extension of δ̃.
(ii) For (Xn+1, en+1), (X0, e0) ∈ ˜C and δ ∈ E(Xn+1, X0) with (e0)Eδ = δ = (en+1)

Eδ,

there is a unique F-extension δ̃ ∈ F((Xn+1, en+1), (X0, e0)) with underlying E-

extension δ. This F-extension is δ̃ = (e0, δ, en+1). Again, we use this instance of
the tilde notation for this correspondence: we write ρ̃ ∈ F((Xn+1, en+1), (X0, e0)) if
and only if the underlying E-extension of ρ̃ is ρ, i.e. ρ̃ = (e0, ρ, en+1).

Remark 4.7 Analogously to our observations in Remark 4.3, we note that by Notation 4.6(ii)
any two F-extensions δ̃, ρ̃ ∈ F((Xn+1, en+1), (X0, e0)) are equal if and only if their underly-
ing E-extensions are equal. Hence, removing the tilde from F-extensions defines an injective
abelian group homomorphism F((Y , e′), (X , e)) → E(Y , X) for (X , e), (Y , e′) ∈ ˜C.

4.2 Defining the Realisation t

To define an exact realisation t of the functor F defined in Sect. 4.1, given a morphism of
extensions consisting of two idempotents, we will need to lift this morphism to an (n + 2)-
tuple of idempotents. That is, we require a higher version of the idempotent lifting trick (see
[27, Lem. 3.5] and [7, Lem. 1.13]). This turns out to be quite non-trivial and requires an
abstraction of the case when n = 1 in order to understand the mechanics of why this trick is
successful.

We start with two lemmas related to the polynomial ring Z[x]. Recall that Z[x] has the
universal property that for any (unital, associative) ring R and any element r ∈ R there is
a unique (identity preserving) ring homomorphism ϕr : Z[x] → R with ϕr (x) = r . For
p = p(x) ∈ Z[x], we denote ϕr (p) by p(r) as is usual.

Lemma 4.8 For each m ∈ N, the ideals (xm) = (x)m and ((x − 1)m) = (x − 1)m of Z[x]
are coprime.

Proof The ideals
√

(x)m = (x) and
√

(x − 1)m = (x − 1) are coprime in Z[x]. Hence, (xm)

and ((x − 1)m) are also coprime by Atiyah–MacDonald [2, Prop. 1.16]. �

Lemma 4.9 For each m ∈ N≥1, there is a polynomial pm ∈ (xm)�Z[x], such that for every
(unital, associative) ring R we have:
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(i) pm(e) = e for each idempotent e ∈ R; and
(ii) the element pm(r) ∈ R is an idempotent for each r ∈ R satisfying (r2 − r)m = 0.

Proof Fix an integerm ≥ 1. By Lemma 4.8, we can write 1 = xm p′
m + (x −1)mq ′

m for some
polynomials p′

m and q ′
m in Z[x]. We set pm := xm p′

m .
Let R be a ring. For any idempotent e ∈ R, evaluating x = xm+1 p′

m + x(x − 1)mq ′
m at e

and using e(e − 1) = 0 yields e = em+1 p′
m(e) = em p′

m(e) = pm(e), proving (i).
Now suppose r ∈ R is an element with (r2 − r)m = 0. Evaluation of

pm = (xm p′
m) · 1 = (xm p′

m) · (xm p′
m + (x − 1)mq ′

m) = p2m + (x2 − x)m p′
mq

′
m

at r shows pm(r)2 = pm(r) since (r2 − r)m = 0, which finishes the proof. �

The following is an abstract formulation of [27, Lem. 3.5] and [7, Lem. 1.13].

Lemma 4.10 Let X• : X0 X1 X2

dX0 dX1 be a complex in an additive category A and

suppose dX
1 is a weak cokernel of d X

0 . Suppose (e0, f1, e2) : X• → X• is a morphism of
complexes with e0 ∈ EndA(X0) and e2 ∈ EndA(X2) both idempotent. Then there exists a
morphism f ′

1 : X1 → X1, such that the following hold.

(i) The triplet (e0, f ′
1, e2) : X• → X• is a morphism of complexes.

(ii) The element e1 := f1 f ′
1 ∈ EndA(X1) is idempotent and satisfies e1 = f ′

1 f1.
(iii) The triplet (e0, e1, e2) : X• → X• is an idempotent morphism of complexes.
(iv) If (h1, h2) : (e0, f1, e2) ∼ 0• is a homotopy of morphisms X• → X•, then the pair

(e0h1, f ′
1h2) yields a homotopy (e0, e1, e2) ∼ 0•.

Proof Choose a polynomial p2 = x2 p′
2 ∈ (x2) � Z[x] as obtained in Lemma 4.9. Define

q := xp′
2 and set f ′

1 := q( f1) : X1 → X1. We show this morphism satisfies the claims
in the statement. For this, we will make use of the following. Let p = p(x) ∈ Z[x] be
any polynomial. Since (e0, f1, e2) : X• → X• is a morphism of complexes, we have that
(p(e0), p( f1), p(e2)) : X• → X• is also a morphism of complexes, i.e. the diagram

X0 X1 X2

X0 X1 X2

dX0

p(e0)

dX1

p( f1) p(e2)

dX0 dX1

(4.1)

commutes.
(i) Note that q(e0) = e0 p

′
2(e0) = e20 p

′
2(e0) = p2(e0) = e0, where the last equality

follows from Lemma 4.9(i). Similarly, q(e2) = e2. Thus, using p = q in the commutative
diagram (4.1) shows that (e0, f ′

1, e2) = (q(e0), q( f1), q(e2)) : X• → X• is a morphism of
complexes.

(ii) Since f ′
1 = q( f1) is a polynomial in f1, we immediately have that e1 := f1 f ′

1 = f ′
1 f1.

Furthermore, we see that e1 = f1q( f1) = p2( f1). Thus, to show that e1 is idempotent, it

is enough to show that ( f 21 − f1)2 = 0 by Lemma 4.9(ii). Let r(x) = x2 − x . We see that
r(e0) and r(e2) vanish as e0 and e2 are idempotents. Therefore, by choosing p = r in (4.1)
we have r( f1)dX

0 = 0 and so there is h : X2 → X1 with hdX
1 = r( f1), because dX

1 is a
weak cokernel of dX

0 . This implies ( f 21 − f1)2 = r( f1)2 = hdX
1 r( f1) = hr(e2)d

X
1 = 0 as

r(e2) = 0, and hence e1 is idempotent.
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(iii) Note that (e0, e1, e2)
2 = (e0, e1, e2) = (p2(e0), p2( f1), p2(e2)) : X• → X• is a

morphism of complexes using p = p2 in (4.1).
(iv) Suppose (h1, h2) : (e0, f1, e2) ∼ 0• is a homotopy. Then we see that

(e0, e1, e2) = (e0, f ′
1, e2)(e0, f1, e2) by (ii)

= (e0, f ′
1, e2)(h1d

X
0 , h2d

X
1 + dX

0 h1, d
X
1 h2) as (h1, h2) : (e0, f1, e2) ∼ 0•

= (e0h1d
X
0 , f ′

1h2d
X
1 + f ′

1d
X
0 h1, e2d

X
1 h2)

= ((e0h1)d
X
0 , ( f ′

1h2)d
X
1 + dX

0 (e0h1), d
X
1 ( f ′

1h2)) by (i).

Hence, (e0h1, f ′
1h2) : (e0, e1, e2) ∼ 0• is a null homotopy as desired. �


Remark 4.11 Let p′
2 = −2x + 3 and q ′

2 = 2x + 1. Then indeed 1 = x2 p′
2 + (x − 1)2q ′

2.
Hence, p2 = x2 p′

2 = 3x2 − 2x3 is a possible choice for m = 2 in Lemma 4.9. Letting
h = x2 − x and i = x , we see that p2 = i + h − 2ih. Then the idempotent e1 obtained
in Lemma 4.10 is the idempotent obtained through the idempotent lifting trick in [27, Lem.
3.5].

Lemma 4.12 Suppose 〈X•, δ〉 is an s-distinguished n-exangle and e0 ∈ EndC(X0) is an
idempotent with (e0)Eδ = 0. Then e0 can be extended to a null homotopic, idempotent
morphism e• : 〈X•, δ〉 → 〈X•, δ〉 with ei = 0 for 2 ≤ i ≤ n + 1. Further, the null homotopy
of e• can be chosen to be of the shape h• = (h1, 0, . . . , 0) : e• ∼ 0•.

Proof We have (e0)Eδ = 0 = 0Eδ so (e0, 0) : δ → δ is a morphism of E-extensions. The
solid morphisms of the diagram

X0 X1 X2 · · · Xn−1 Xn Xn+1

X0 X1 X2 · · · Xn−1 Xn Xn+1

dX0

e0

dX1

f1

dX2

0

dXn−2 dXn−1

0

dXn

0

δ

0
dX0 dX1 dX2 dXn−2 dXn−1 dXn δ

clearly commute, so we need to find a morphism f1 : X1 → X1 making the two leftmost
squares commute. Since 〈X•, δ〉 is an s-distinguished n-exangle, there is an exact sequence

C(X1, X0) C(X0, X0) E(Xn+1, X0).
C(dX0 , X0) δ

E

The morphism e0 is in the kernel of δ
E

as δ
E

(e0) = (e0)Eδ = 0. Therefore, there exists
k1 : X1 → X0 with e0 = k1d

X
0 . If we put f1 := dX

0 k1, then (e0, f1, 0, . . . , 0) : 〈X•, δ〉 →
〈X•, δ〉 ismorphismof s-distinguishedn-exangles and (k1, 0, . . . , 0) : e• ∼ 0• is a homotopy.
By Lemma 4.10, using that e0 and 0 are idempotents, there is an idempotent e1 ∈ EndC(X1),
such that (e0, e1, 0, . . . , 0) : X• → X• is an idempotent morphism of complexes and that
h• := (e0k1, 0, . . . , 0) : e• ∼ 0• is a homotopy. Finally, e• is a morphism of s-distinguished
n-exangles since (e0)Eδ = 0 = 0Eδ. �


Corollary 4.13 Suppose δ̃ ∈ F((Xn+1, en+1), (X0, e0)) and that 〈X•, δ〉 is an s-distinguished
n-exangle. Themorphism (e0, en+1) : δ → δ ofE-extensions has a lift e• : 〈X•, δ〉 → 〈X•, δ〉
that is idempotent and satisfies ei = idXi

for all 2 ≤ i ≤ n−1, such that there is a homotopy
h• = (h1, 0, . . . , 0, hn+1) : idX• −e• ∼ 0•.
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Proof Define e′
0 := idX0

−e0 and e
′′
n+1 := idXn+1

−en+1. As δ̃ ∈ F((Xn+1, en+1), (X0, e0)),

we have (e0)Eδ = δ = (en+1)
Eδ and so (e′

0)Eδ = 0 = (e′′
n+1)

Eδ. Therefore, by Lemma
4.12 we can extend e′

0 to an idempotent morphism e′• : 〈X•, δ〉 → 〈X•, δ〉 of s-distinguished
n-exangles with e′

i = 0 for i ∈ {2, . . . , n + 1}, having a homotopy (k1, 0, . . . , 0) : e′• ∼ 0•.
Similarly, by the dual of Lemma 4.12, we can extend e′′

n+1 to an idempotent morphism
e′′• : 〈X•, δ〉 → 〈X•, δ〉 with e′′

i = 0 for i ∈ {0, . . . , n − 1}, such that there is a homotopy
(0, . . . , 0, kn+1) : e′′• ∼ 0•. Consider themorphism f• := idX• −e′•−e′′• : 〈X•, δ〉 → 〈X•, δ〉.
We have idX• − f• = e′• + e′′• and hence (k1, 0, . . . , 0, kn+1) : idX• − f• ∼ 0• is a homotopy.

If n = 1, then e′• + e′′• = (idX0
−e0, e

′
1 + e′′

1 , idX2
−e2) and (k1, k2) : e′• + e′′• ∼ 0• is a

homotopy. Lemma 4.10 yields an idempotent morphism e′′′• = (idX0
−e0, e

′′′
1 , idX2

−e2) :
〈X•, δ〉 → 〈X•, δ〉 and a homotopy (h1, h2) : e′′′• ∼ 0•. Then e• := idX• −e′′′• and h• :=
(h1, h2) are the desired idempotent morphism and homotopy, respectively.

If n ≥ 2, then the compositions e′•e′′• and e′′•e′• are zero. This implies that f• = idX• −e′• −
e′′• is idempotent. Hence, e• := f• and (h1, 0, . . . , 0, hn+1) := (k1, 0, . . . , 0, kn+1) are the
desired idempotent morphism and homotopy, respectively. �


The following simple lemma will be used several times.

Lemma 4.14 Suppose that (X , e), (Y , e′) are objects in ˜C and r : X → Y is a morphism in
C. Setting s := e′re yields a morphism s̃ = (e′, s, e) : (X , e) → (Y , e′) in ˜C.

The previous result allows us to view a complex in C that is equipped with an idempotent
endomorphism as a complex in the idempotent completion ˜C, as follows.

Definition 4.15 Suppose X• is a complex in C and e• : X• → X• is an idempotent morphism
of complexes. We denote by (X•, e•) the complex in ˜C with object (Xi , ei ) in degree i and

differential d̃(X ,e)
i := (ei+1, ei+1d

X
i ei , ei ) : (Xi , ei ) → (Xi+1, ei+1).

In the notation of Definition 4.15, the underlying morphism of the differential d̃(X ,e)
i

satisfies

d(X ,e)
i = ei+1d

X
i ei = dX

i ei = ei+1d
X
i , (4.2)

since e• is a morphism of complexes and consists of idempotents. Furthermore, whenever we
write (X•, e•) to denote a complex in ˜C, we always mean that e• : X• → X• is an idempotent
morphism in Ch(C) and that (X•, e•) is the induced object in Ch(˜C) as described in Definition
4.15.

We make a further remark on the notation (X•, e•). Because of the need to tweak the
differentials in X• according to (4.2), one cannot recover the original complex X• ∈ Ch(C)

with differentials dX
i from the pair (X•, e•) ∈ Ch(˜C) defined in Definition 4.15. This is in

contrast to the description of an object in ˜C as a pair (X , e) where one can recover X ∈ C
uniquely. Thus, (X•, e•) is an abuse of notation but should hopefully cause no confusion.

Lemma 4.14 allows us to induce morphisms of complexes in ˜C given a morphism between
complexes in C if the complexes involved come with idempotent endomorphisms. The proof
is also straightforward.

Lemma 4.16 Suppose that (X•, e•), (Y•, e′•) are objects in Ch(˜C) and that r• : X• → Y• is
a morphism in Ch(C). Then defining si := e′

i ri ei for each i ∈ Z gives rise to a morphism
s̃• : (X•, e•) → (Y•, e′•) in Ch(˜C) with s̃i = (e′

i , si , ei ).
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Notation 4.17 In the setup of Lemma 4.16, the composite e′•r•e• is a morphism of complexes
X• → Y•. In this case, we call s• := e′•r•e• the underlying morphism of s̃•.

We need two more lemmas before we can define a realisation of the functor F.

Lemma 4.18 Assume δ̃ ∈ F((Xn+1, en+1), (X0, e0)). Further, suppose that 〈X•, δ〉 is an s-
distinguished n-exangle and e• : 〈X•, δ〉 → 〈X•, δ〉 is an idempotent lift of (e0, en+1) : δ →
δ. Then 〈(X•, e•), δ̃〉 is an n-exangle for (˜C,F).

Proof Let (Y , e′) ∈ ˜C be arbitrary. We will show that the induced sequence

˜C((Y , e′), (X0, e0)) ˜C((Y , e′), (X1, e1)) · · · ˜C((Y , e′), (Xn+1, en+1)) F((Y , e′), (X0, e0)),
(d̃(X ,e)

0 )∗ (d̃(X ,e)
1 )∗ (d̃(X ,e)

n )∗ δ̃F

where (d̃(X ,e)
i )∗ = ˜C((Y , e′), d̃(X ,e)

i ), is exact. The exactness of the dual sequence can be
verified similarly. Checking the above sequence is a complex is straightforward using that
(dX

n )Eδ = 0 and that d(X ,e)
i = dX

i ei = ei+1d
X
i .

To check exactness at ˜C((Y , e′), (Xi , ei )) for some 1 ≤ i ≤ n, suppose we have a

morphism r̃ : (Y , e′) → (Xi , ei ) with d̃(X ,e)
i r̃ = 0, that is, dX

i ei r = 0. As eir = r , we see
that dX

i r = 0, whence there exists s : Y → Xi−1 such that dX
i−1s = r because 〈X•, δ〉 is an

s-distinguished n-exangle. By Lemma 4.14, there is a morphism t̃ : (Y , e′) → (Xi−1, ei−1)

with t = ei−1se′. Thenwe observe that d(X ,e)
i−1 t = dX

i−1ei−1ei−1se′ = ei d
X
i−1se

′ = eire
′ = r ,

whence d̃(X ,e)
i−1 t̃ = r̃ .

Lastly, suppose ũ ∈ ˜C((Y , e′), (Xn+1, en+1)) is a morphism with δ̃F (ũ) = ũFδ̃ = 0. Then
we have δE (u) = uEδ = 0. Hence, there is a morphism v : Y → Xn such that dX

n v = u
as 〈X•, δ〉 is an s-distinguished n-exangle. Then the morphism w̃ : (Y , e′) → (Xn, en) with

w = enve
′ satisfies d̃(X ,e)

n w̃ = ũ, as required. �

Lemma 4.19 Suppose δ̃ ∈ F((Xn+1, en+1), (X0, e0)) and that [Y•] = s(δ) = [X•] in
(C,E, s). If e• : 〈X•, δ〉 → 〈X•, δ〉 and e′• : 〈Y•, δ〉 → 〈Y•, δ〉 are idempotent lifts of
(e0, en+1) : δ → δ, then (X•, e•) and (Y•, e′•) are isomorphic in K(˜C)n((X0,e0),(Xn+1,en+1))

,

i.e. [(X•, e•)] = [(Y•, e′•)].
Proof We will use [16, Prop. 2.21]. To this end, note that 〈(X•, e•), δ̃〉 and 〈(Y•, e′•), δ̃〉 are
both n-exangles in (˜C,F) by Lemma 4.18. Hence, we only have to show that

Ch(˜C)
n
((X0,e0),(Xn+1,en+1))

((X•, e•), (Y•, e′•)) and Ch(˜C)
n
((X0,e0),(Xn+1,en+1))

((Y•, e′•), (X•, e•))

are both non-empty. Since we have [Y•] = s(δ) = [X•], there are morphisms f• : X• → Y•
and g• : Y• → X• in Ch(C)n(X0,Xn+1)

(with g• f• ∼ idX• and f•g• ∼ idY• ). We then obtain

morphisms h̃• : (X•, e•) → (Y•, e′•) and k̃• : (Y•, e′•) → (X•, e•) in Ch(˜C)n with h• =
e′• f•e• and k• = e•g•e′• by Lemma 4.16. Note that e0 = e′

0, en+1 = e′
n+1, f0 = g0 = idX0

and fn+1 = gn+1 = idXn+1
. So, since id(Xi ,ei )

= ei , we have that h̃• and k̃• are morphisms

in Ch(˜C)n((X0,e0),(Xn+1,en+1))
and we are done. �


Hence, the following is well-defined.

Definition 4.20 For δ̃ ∈ F((Xn+1, en+1), (X0, e0)), pick X• so that s(δ) = [X•] and, by
Corollary 4.13, an idempotent morphism e• : 〈X•, δ〉 → 〈X•, δ〉 lifting (e0, en+1) : δ → δ.

We put t(δ̃) := [(X•, e•)].
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Remark 4.21 For δ̃ ∈ F((Xn+1, en+1), (X0, e0)), the definition of t(δ̃) = [(X•, e•)] depends
on neither the choice of X• with [X•] = s(δ), nor on the choice of e• lifting (e0, en+1) : δ → δ

by Lemma 4.19. By Corollary 4.13, for each δ̃ ∈ F((Xn+1, en+1), (X0, e0)), we can find an
s-distinguished n-exangle 〈X•, δ〉 and an idempotent morphism e• : 〈X•, δ〉 → 〈X•, δ〉, such
that t(δ̃) = [(X•, e•)] and idX• −e• is null homotopic in Ch(C)n.

Proposition 4.22 The assignment t is an exact realisation of F.

Proof (R0) Suppose δ̃ ∈ F((Xn+1, en+1), (X0, e0)) and ρ̃ ∈ F((Yn+1, e
′
n+1), (Y0, e

′
0)), and

let (ã, c̃) : δ̃ → ρ̃ be a morphism of F-extensions. Suppose t(δ̃) = [(X•, e•)] and t(ρ̃) =
[(Y•, e′•)]. Since (a, c) is a morphism of E-extensions, there is a lift f• : X• → Y• of it
using that s is an exact realisation of E. As ã : (X0, e0) → (Y0, e

′
0) and c̃ : (Xn+1, en+1) →

(Yn+1, e
′
n+1) are morphisms in ˜C, we have that e′

0a = a = ae0 and e′
n+1c = c = cen+1.

Hence, by Lemma 4.16, it follows that g̃• : (X•, e•) → (Y•, e′•)with g• = e′• f•e• lifts (ã, c̃).
(R1) This is Lemma 4.18.
(R2) Let (X , e) ∈ ˜C be arbitrary. By Remark 4.5(ii), we have that the zero element of

F((0, 0), (X , e)) has the zero element X00 of E(0, X) as its underlying E-extension. Since s
is an exact realisation of E, we know

s(X00) = [X•] = [ X X 0 · · · 0
idX ].

The tuple (e, e, 0, . . . , 0) : X• → X• is an idempotent morphism lifting (e, 0) : X00 → 0X 0.
Thus, by Definition 4.20 and using id(X ,e) = e, we see that

t((X ,e)˜0(0,0)) = [ (X , e) (X , e) (0, 0) · · · (0, 0)
˜id(X ,e) ].

Dually, t((0,0)˜0(X ,e)) = [ (0, 0) · · · (0, 0) (X , e) (X , e)
˜id(X ,e) ].

�


4.3 The Axiom (EA1) for ( ˜C,F, t)

Now that we have a biadditive functor F : ˜Cop × ˜C → Ab and an exact realisation t of F, we
can begin to verify axioms (EA1), (EA2) and (EA2)op. In this subsection, we will check that
the collection of t-inflations is closed under composition. One can dualise the results here to
see that t-deflations compose to t-deflations.

The following result only needs that s is an exact realisation of E : Cop × C → Ab. It is an
analogue of [22, Lem. 2.1] for n-exangulated categories, allowing us to complete a “partial”
lift of a morphism of extensions.

Lemma 4.23 (Completion Lemma) Let 〈X•, δ〉 and 〈Y•, ρ〉 be s-distinguished n-exangles.
Let l, r be integers with 0 ≤ l ≤ r − 2 ≤ n − 1. Suppose there are morphisms f0, . . . , fl
and fr , . . . , fn+1, where fi : Xi → Yi , such that ( f0, fn+1) : δ → ρ is a morphism of
E-extensions and the solid part of the diagram

X0 · · · Xl Xl+1 · · · Xr−1 Xr · · · Xn+1

Y0 · · · Yl Yl+1 · · · Yr−1 Yr · · · Yn+1

f0 fl fl+1 fr−1 fr fn+1

δ

ρ

(4.3)
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commutes. Then there exist morphisms fi ∈ C(Xi , Yi ) for i ∈ {l + 1, . . . , r − 1} such that
(4.3) commutes.

Proof Weproceed by induction on l ≥ 0. Suppose l = 0.We induct downwards on r ≤ n+1.
If r = n + 1, then the result follows from axiom (R0) for s since ( f0, fn+1) : δ → ρ

is a morphism of E-extensions. Now assume that the result holds for l = 0 and some
3 ≤ r ≤ n + 1. Suppose we are given morphisms f0 and fr−1, fr , . . . , fn+1 such that
fi+1d

X
i = dYi fi for i ∈ {r − 1, . . . , n}. By the induction hypothesis, we obtain a morphism

X0 X1 · · · Xr−1 Xr · · · Xn+1

Y0 Y1 · · · Yr−1 Yr · · · Yn+1

f0 g1 gr−1 fr

δ

fn+1
ρ

(4.4)

of s-distinguished n-exangles. We will denote this morphism by g•. Next, note that we have
dYr−1( fr−1 − gr−1) = ( fr − fr )d

X
r−1 = 0. Since dYr−2 is a weak kernel of dYr−1, there exists

h : Xr−1 → Yr−2 so that fr−1 − gr−1 = dYr−2h. Set fi := gi for 1 ≤ i ≤ r − 3 and
fr−2 := gr−2 + hdX

r−2. Notice that we have fi = gi for i /∈ {r − 1, r − 2}. We claim that
(4.3) commutes. By construction, we only need to check commutativity of the two squares
involving fr−2. These indeed commute since

fr−2d
X
r−3 = (gr−2 + hdX

r−2)d
X
r−3 = gr−2d

X
r−3 = dYr−3gr−3 = dYr−3 fr−3

and

dYr−2 fr−2 = dYr−2(gr−2 + hdX
r−2) = dYr−2gr−2 + ( fr−1 − gr−1)d

X
r−2 = fr−1d

X
r−2,

using the commutativity of (4.4). This concludes the base case l = 0.
The inductive step for l ≥ 0 is carried out in a similar way to the inductive step above on

r , using that dX
l+1 is a weak cokernel of d

X
l . �


From the Completion Lemma 4.23 and some earlier results from this section we derive
the following, which is used in the main result of this subsection.

Lemma 4.24 Suppose 〈X•, δ〉 is an s-distinguished n-exangle. Assume e0 : X0 → X0 and
e1 : X1 → X1 are idempotents, such that (e0)Eδ = δ and

X0 X1

X0 X1

dX0

e0 e1
dX0

commutes. Then e0 and e1 can be extended to an idempotentmorphism e• : 〈X•, δ〉 → 〈X•, δ〉
with ei = idXi

for 3 ≤ i ≤ n + 1, such that δ̃ = (e0, δ, en+1) ∈ F((Xn+1, en+1), (X0, e0)).

Proof First, suppose n = 1. Then the solid morphisms of the diagram

X0 X1 X2

X0 X1 X2

dX0 dX1 δ

dX0

e0 e1 f2
dX1 δ
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form a commutative diagram, and by [16, Prop. 3.6(1)] there is a morphism f2 such that
(e0, e1, f2) : 〈X•, δ〉 → 〈X•, δ〉 is a morphism of s-distinguished 1-exangles. Recall the
polynomial p2 from Lemma 4.9. We will show that e• = (e0, e1, e2), where e2 := p2( f2),
is the desired idempotent morphism of s-distinguished n-exangles.

Since 〈X•, δ〉 is an s-distinguished 1-exangle, there is an exact sequence

C(X2, X1) C(X2, X2) E(X2, X0).
C(X2, d

X
1 ) δE

As δE ( f 22 − f2) = ( f 22 − f2)
Eδ = (e20 −e0)Eδ = 0X0 X2

, there exists a morphism h2 : X2 →
X1 with d

X
1 h2 = f 22 − f2. This shows that ( f

2
2 − f2)

2 = ( f 22 − f2)d
X
1 h2 = dX

1 (e21−e1)h2 = 0
because e1 is idempotent. Hence, e• = (e0, e1, e2) = (e0, e1, p2( f2)) : X• → X• is an
idempotentmorphismof complexes byLemma4.9(ii). Furthermore, (e2)

Eδ = (p2( f2))
Eδ =

(p2(e0))Eδ = (e0)Eδ = δ using Lemma 4.9(i), so that (e0, e2) : δ → δ is a morphism of
E-extensions. This computation also shows the existence of δ̃ ∈ F((X2, e2), (X0, e0)) with
underlying E-extension δ.

Now suppose n ≥ 2. We have (e0)Eδ = δ = (idXn+1
)Eδ. Therefore, δ̃ = (e0, δ, idXn+1

)

is an element of F((Xn+1, idXn+1
), (X0, e0)) with underlying E-extension δ. The solid mor-

phisms of the diagram

X0 X1 X2 X3 · · · Xn Xn+1

X0 X1 X2 X3 · · · Xn Xn+1

dX0

e0 e1 e2
dX0

δ

δ

form a commutative diagram, and (e0, idXn+1
) : δ → δ is a morphism of E-extensions as

(e0)Eδ = δ. Since the rows are the s-distinguished n-exangle 〈X•, δ〉, by Lemma 4.23 we can
find amorphism e2 ∈ EndC(X2), so that the diagram above is amorphism 〈X•, δ〉 → 〈X•, δ〉.
Furthermore, as e1 ∈ EndC(X1) and idX3

∈ EndC(X3) are idempotent, we may assume that
e2 is an idempotent by Lemma 4.10. �


Given a t-inflation f̃ that fits into a t-distinguished n-exangle 〈˜Y•, δ̃〉, we cannot a priori
say too much about how ˜Y• might look. This is one of the main issues in trying to prove
(EA1) for (˜C,F, t). The next lemma gives us a way to deal with this and is the last preparatory
result we need before the main result of this subsection.

Lemma 4.25 Let f̃ : (X0, e0) → (X1, e1) be a t-inflation. Then there is an s-distinguished
n-exangle 〈X ′•, δ〉 with X ′

0 = X0 and X ′
1 = X1 ⊕ C for some C ∈ C, such that (e0)Eδ = δ

and dX ′
0 = [

f f ′(idX0 −e0)
]� : X0 → X1 ⊕ C for some f ′ : X0 → C.

Proof Since f : (X0, e0) → (X1, e1) is an t-inflation, there is a t-distinguished n-exangle

〈˜Y•, δ̃′〉with˜Y0 = (X0, e0),˜Y1 = (X1, e1) and d̃
˜Y
0 = f̃ . By definition of t, this means there is

an s-distinguished n-exangle 〈Y ′•, δ′〉 with an idempotent morphism e′• : 〈Y ′•, δ′〉 → 〈Y ′•, δ′〉,
such that (Y ′

0, e
′
0) = ˜Y0 and (Y ′

n+1, e
′
n+1) = ˜Yn+1, and there are mutually inverse homotopy

equivalences r̃• : ˜Y• → (Y ′•, e′•) and s̃• : (Y ′•, e′•) → ˜Y• which satisfy r̃0 = ˜id
˜Y0

= s̃0 and
r̃n+1 = ˜id

˜Yn+1
= s̃n+1. Note that we, thus, have Y

′
0 = X0 and e

′
0 = e0. In particular, we have
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a commutative diagram

(X0, e0) (X1, e1) ˜Y2 · · · ˜Yn ˜Yn+1

(X0, e0) (Y ′
1, e

′
1) (Y ′

2, e
′
2) · · · (Y ′

n, e
′
n) (Y ′

n+1, e
′
n+1)

(X0, e0) (X1, e1) ˜Y2 · · · ˜Yn ˜Yn+1

f̃

r̃1 r̃2 r̃n

δ̃′

t̃

s̃1 s̃2 s̃n

δ̃′

f̃ δ̃′

in (˜C,F, t), where t = e′
1d

Y ′
0 e0 = dY

′
0 e0 = e′

1d
Y ′
0 .

Consider the complexY ′′• := triv1(X1)• and theE-extension δ′′ := 00 Y ′′
n+1

.Note that ifn =
1, then Y ′′

n+1 = X1; otherwise we have Y
′′
n+1 = 0. In either case, we have an s-distinguished

n-exangle 〈Y ′′• , δ′′〉 using the axiom (R2) for s, and hence also an s-distinguished n-exangle
〈Y ′′• ⊕ Y ′•, δ′′ ⊕ δ′〉 by [16, Prop. 3.3]. Using the canonical isomorphism u : 0 ⊕ X0 → X0
we see that the complex

Z• : X0 X1 ⊕ Y ′
1 X1 ⊕ Y ′

2 0 ⊕ Y ′
3 · · · 0 ⊕ Y ′

n+1

[

0
dY

′
0

]

[

idX1
0

0 dY
′

1

]

[

0 0
0 dY

′
2

] [

0 0
0 dY

′
3

]

[ 0 0
0 dY

′
n

]

realises δ := u
E
(δ′′ ⊕ δ′) in (C,E, s) by [16, Cor. 2.26(2)]. Consider the diagram

X0 X1 ⊕ Y ′
1

X0 X1 ⊕ Y ′
1

X0 X1 ⊕ Y ′
1

[

0
dY

′
0

]

a[

f

dY
′

0

]

b
[ f

dY
′

0 (idX0
−e0)

]

in C, where a :=
[

idX1
s1

0 id
Y ′
1

]

and b :=
[

idX1
0

−r1 id
Y ′
1

]

. This diagram commutes since

[

idX1
s1

0 id
Y ′
1

]

[

0
dY

′
0

]

=
[

s1dY
′

0

dY
′

0

]

=
[

s1e′
1d

Y ′
0

dY
′

0

]

=
[ s1t

dY
′

0

]

=
[ f

dY
′

0

]

and
[

idX1
0

−r1 id
Y ′
1

]

[

f

dY
′

0

]

=
[

f

dY
′

0 −r1 f

]

=
[

f

dY
′

0 −t

]

=
[

f

dY
′

0 (idX0
−e0)

]

.

Notice that the composition ba is an automorphism of X1 ⊕ Y ′
1, and so the complex

X ′• : X0 X1 ⊕ Y ′
1 Z2 Z3 · · · Zn+1

[

f dY
′

0 (idX0
−e0)

]�
dZ1 (ba)−1 dZ2 dZ3 dZn

forms part of an s-distinguished n-exangle 〈X ′•, δ〉 by [16, Cor. 2.26(2)]. We have

(e0)Eδ = (e0)EuE(δ′′ ⊕ δ′) = u
E
(0

E
δ′′ ⊕ (e0)Eδ′) = u

E
(δ′′ ⊕ δ′) = δ

as e0u = u(0⊕ e0), δ
′′ = 00 Y ′′

n+1
and δ̃′ ∈ F(˜Yn+1, (X0, e0)). Setting f ′ := dY

′
0 and C := Y ′

1

finishes the proof. �
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We close this subsection with the following result, which together with its dual demon-
strates that axiom (EA1) holds for (˜C,F, t).

Proposition 4.26 Suppose f̃ : (X0, e0) → (X1, e1) and g̃ : (Y0, e
′
0) → (Y1, e

′
1) are t-

inflations with (X1, e1) = (Y0, e
′
0). Then g̃ f̃ : (X0, e0) → (Y1, e

′
1) is a t-inflation.

Proof By Lemma 4.25, there exists an s-distinguished n-exangle 〈X ′•, δ〉 with X ′
0 = X0 and

X ′
1 = X1 ⊕ C for some C ∈ C, so that dX ′

0 = [

f f ′(idX0 −e0)
]� for some f ′ : X0 → C and

(e0)Eδ = δ. Similarly, there is also an s-distinguished n-exangle 〈Y ′•, δ′〉with Y ′
0 = Y0 = X1

andY ′
1 = Y1⊕C ′ for someC ′ ∈ C, so that dY ′

0 = [

g g′(idX1 −e′
0)

]� for some g′ : X1 → C ′ and
(e′

0)Eδ′ = δ′. Setting Y ′′• := triv0(C)•, we also have the n-exangle 〈Y ′′• , 0C 0〉 by axiom (R2)
for s. Then 〈Y ′•⊕Y ′′• , δ′⊕ 0C 0〉 is s-distinguishedby [16, Prop. 3.3].WehaveY ′

0⊕Y ′′
0 = X1⊕C

and Y ′
1 ⊕ Y ′′

1 = Y1 ⊕ C ′ ⊕ C , and

dY
′⊕Y ′′

0 =
[

g 0
g′(idX1 −e′

0) 0

0 idC

]

is the s-inflation of 〈Y ′• ⊕ Y ′′• , δ′ ⊕ 0C 0〉 with respect to the given decompositions. Since dX ′
0

and dY
′⊕Y ′′

0 are s-inflations, by (EA1) for (C,E, s), we have that the morphism

dY
′⊕Y ′′

0 dX ′
0 =

[

g 0
g′(idX1 −e′

0) 0

0 idC

]

[ f
f ′(idX0 −e0)

]

=
[ g f

g′(idX1 −e′
0) f

f ′(idX0 −e0)

]

=
[ g f

0
f ′(idX0 −e0)

]

is an s-inflation, where we used that e′
0 f = e1 f = f . Therefore, there is an s-distinguished

n-exangle 〈Z ′′• , δ′′〉 with Z ′′
0 = X0, Z

′′
1 = Y1 ⊕ C ′ ⊕ C and dZ ′′

0 = [

g f 0 f ′(idX0 −e0)
]�.

Our next aim is to apply Lemma 4.24 to 〈Z ′′• , δ′′〉. Thus, we claim that (e0)Eδ′′ = δ′′.
Since dY

′⊕Y ′′
0 dX ′

0 = dZ ′′
0 , we can apply [16, Prop. 3.6(1)] to obtain a morphism

X0 Y1 ⊕ C ′ ⊕ C Z ′′
2 · · · Z ′′

n Z ′′
n+1

X1 ⊕ C Y1 ⊕ C ′ ⊕ C Y ′
2 ⊕ 0 · · · Y ′

n ⊕ 0 Y ′
n+1 ⊕ 0

dZ
′′

0

dX
′

0

δ′′

ln+1
dY

′⊕Y ′′
0

δ′ ⊕ 0C 0

of s-distinguished n-exangles. In particular, we have that

(dX ′
0 )

E
δ′′ = (ln+1)

E(δ′ ⊕ 0C 0). (4.5)

As e′
0 = e1, e1 f = f = f e0 and e0 is idempotent, we see that

dX ′
0 e0 =

[

f e0
0

]

=
[

e1 f
0

]

=
[

e1 0
0 0

][ f
f ′(idX0 −e0)

]

=
[

e′
0 0
0 0

]

dX ′
0 . (4.6)

This implies that

(dX ′
0 )

E
(idX0

−e0)Eδ′′ = (dX ′
0 − dX ′

0 e0)Eδ′′

=
(

dX ′
0 −

[

e′
0 0
0 0

]

dX ′
0

)

E

δ′′ by (4.6)

=
(

idX1⊕C −
[

e′
0 0
0 0

])

E

(dX ′
0 )

E
δ′′

=
[

idX1
−e′

0 0

0 idC

]

E

(ln+1)
E(δ′ ⊕ 0C 0) by (4.5)
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= (ln+1)
E

(

(idX1
−e′

0)Eδ′ ⊕ (idC )
E

0C 0

)

= 0X1⊕C Z ′′
n+1

as (e′
0)Eδ′ = δ′.

Since 〈X ′•, δ〉 is an s-distinguished n-exangle, by [16, Lem. 3.5] there is an exact sequence

C(Z ′′
n+1, X

′
n+1) E(Z ′′

n+1, X0) E(Z ′′
n+1, X1 ⊕ C).

δE (dX
′

0 )
E

As seen above, (idX0
−e0)Eδ′′ vanishes under (dX ′

0 )
E
, so there is a morphism rn+1 : Z ′′

n+1 →
X ′
n+1 with δE (rn+1) = (rn+1)

Eδ = (idX0
−e0)Eδ′′. Since (idX0

−e0)Eδ = 0X0 X ′
n+1

, this

implies

0X0 Z ′′
n+1

= (rn+1)
E(idX0

−e0)Eδ = (idX0
−e0)E(rn+1)

Eδ =
(

(idX0
−e0)

2
)

E

δ′′ = (idX0
−e0)Eδ′′,

showing that (e0)Eδ′′ = δ′′.
Now consider the idempotent e′

1⊕0⊕0 ∈ EndC(Y1⊕C ′⊕C). A quick computation yields
the equality (e′

1 ⊕ 0 ⊕ 0)dZ ′′
0 = dZ ′′

0 e0. Therefore, by Lemma 4.24, there is an idempotent
morphism e′′• : 〈Z ′′• , δ′′〉 → 〈Z ′′• , δ′′〉 with e′′

0 = e0, e
′′
1 = e′

1 ⊕ 0 ⊕ 0 as well as an F-
extension ρ̃ ∈ F((X0, e0), (Z

′′
n , e

′′
n+1)) with underlying E-extension ρ = δ′′. We obtain a

t-distinguished n-exangle 〈(Z ′′• , e′′•), ρ̃〉. Then the t-inflation of this n-exangle is given by the
morphism d̃(Z ′′,e′′)

0 : (X0, e0) → (Y1 ⊕ C ′ ⊕ C, e′
1 ⊕ 0 ⊕ 0) satisfying

d(Z ′′,e′′)
0 = e′′

1d
Z ′′
0 e′′

0 = (e′
1 ⊕ 0 ⊕ 0)dZ ′′

0 e0 = [ e′
1g f e0 0 0 ]� = [ g f 0 0 ]�.

As s̃ : (Y1 ⊕ C ′ ⊕ C, e′
1 ⊕ 0 ⊕ 0) → (Y1, e

′
1) with s = [ e′

1 0 0 ] is an isomorphism in ˜C, the
complex

˜X ′′• : (X0, e0) (Y1, e
′
1) (Z ′′

2 , e
′′
2) · · · (Z ′′

n+1, e
′′
n+1)

d̃˜X ′′
0 d̃˜X ′′

1 d̃(Z ′′,e′′)
2 d̃(Z ′′,e′′)

n

with t-inflation d̃˜X ′′
0 := s̃d̃(Z ′′,e′′)

0 = g̃ f̃ and d̃˜X ′′
1 = d̃(Z ′′,e′′)

1 s̃−1 forms part of the t-
distinguished n-exangle 〈˜X ′′• , ρ̃〉 by [16, Cor. 2.26(2)]. �


4.4 The Axiom (EA2) for ( ˜C,F, t)

The goal of this subsection is to show that axiom (EA2) holds for the triplet (˜C,F, t). Again,
by dualising one can deduce that axiom (EA2)op also holds. We need two key technical
lemmas first.

Lemma 4.27 Suppose that:

(i) δ̃ ∈ F((Xn+1, en+1), (X0, e0)) is an F-extension;
(ii) c̃ : (Yn+1, e

′
n+1) → (Xn+1, en+1) is a morphism in ˜C for some (Yn+1, e

′
n+1) ∈ ˜C;

(iii) 〈X•, δ〉 and 〈Y•, cEδ〉 are s-distinguished n-exangles with Y0 = X0;
(iv) e• : 〈X•, δ〉 → 〈X•, δ〉 is an idempotent morphism lifting (e0, en+1) : δ → δ, such that

idX• −e• is null homotopic; and
(v) e′• : 〈Y•, cEδ〉 → 〈Y•, cEδ〉 is an idempotent morphism lifting (e0, e

′
n+1) : cEδ → cEδ,

such that idY• −e′• is null homotopic.
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Then a good lift g• : 〈Y•, cEδ〉 → 〈X•, δ〉 of the morphism (idX0
, c) : cEδ → δ of E-

extensions exists, so that

Y0 Y1 · · · Yn Yn+1

Y0 Y1 · · · Yn Yn+1

X0 X1 · · · Xn Xn+1

X0 X1 · · · Xn Xn+1

dY0

e0 g1

dY1

e′1

dYn−1

e′n gn

dYn

e′n+1
cdY0

g1

dY1 dYn−1

gn

dYn

cdX0

e0

dX1

e1

dXn−1

en

dXn

en+1

dX0 dX1 dXn−1 dXn

(4.7)

is commutative in C. In particular, we have g•e′• = e•g• as morphisms 〈Y•, cEδ〉 → 〈X•, δ〉.
Remark 4.28 Notice that (e0)Eδ = δ and ce′

n+1 = c imply

(e0)E(cEδ) = cEδ = (e′
n+1)

E(cEδ). (4.8)

Therefore, (e0, e
′
n+1) : cEδ → cEδ is indeed a morphism of E-extensions and condition (v)

makes sense. Condition (iv) makes sense due to Remark 4.5(iv).

Proof of Lemma 4.27 Since (idX0
, c) : cEδ → δ is a morphism of E-extensions, it admits a

good lift g′• = (g′
0, . . . , g

′
n+1) = (idX0

, g′
1, . . . , g

′
n, c) : 〈Y•, cEδ〉 → 〈X•, δ〉 using axiom

(EA2) for the n-exangulated category (C,E, s). Define gi := ei g
′
i e

′
i +(idXi

−ei )g
′
i (idYi

−e′
i )

for 0 ≤ i ≤ n + 1. Note that e0 = e′
0 and en+1c = c = ce′

n+1 by assumption. For i = 0, we
have g0 = e0 idX0

e′
0 + (idX0

−e0) idX0
(idX0

−e′
0) = idX0

. On the other hand, for i = n + 1

we have gn+1 = en+1ce
′
n+1+(idXn+1

−en+1)c(idXn+1
−e′

n+1) = c. Therefore, themorphism

g• = e•g′•e′• + (idX• −e•)g′•(idY• −e′•) : Y• → X• is of the form (idX0
, g1, . . . , gn, c).

The squares on the top and bottom faces in (4.7) commute as e′• : Y• → Y• and e• : X• →
X•, respectively, are morphisms of complexes. The squares on the front and back faces
in (4.7) commute because g• is the sum of morphisms of complexes from Y• to X•. This
also implies g• = (idX0

, g1, . . . , gn, c) is a lift of (idX0
, c). Of the remaining squares, the

leftmost clearly commutes and the rightmost commutes as c : (Yn+1, e
′
n+1) → (Xn+1, en+1)

is a morphism in ˜C. For 1 ≤ i ≤ n, we have

gi e
′
i = ei g

′
i e

′
i e

′
i + (idXi

−ei )g
′
i (idYi −e′

i )e
′
i

= ei g
′
i e

′
i as (e′

i )
2 = e′

i

= ei ei g
′
i e

′
i + ei (idXi

−ei )g
′
i (idYi −e′

i ) as (ei )
2 = ei

= ei gi .

Therefore, diagram (4.7) commutes and, further, the last assertion follows.
It remains to show that g• is a good lift of (idX0

, c) : cEδ → δ. Recall that idX• −e•
and idY• −e′• are both null homotopic by assumption, and so g′• − g• = (idX• −e•)g′•e′• +
e•g′•(idY• −e′•) is also null homotopic. Then it follows from [16, Rem. 2.33(1)] that g• is a

good lift of (idX0
, c) since g′• is. �
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The next result allows us to define a good lift in ˜C from the one we created in Lemma
4.27.

Lemma 4.29 In the setup of Lemma 4.27, the morphism h̃• : (Y•, e′•) → (X•, e•) with

under-lying morphism h• = e•g•e′• is a good lift of the morphism (˜id(X0,e0)
, c̃) : c̃Fδ̃ → δ̃ of

F-extensions.

Proof From (4.8), we see that c̃Fδ̃ ∈ F((Yn+1, e
′
n+1), (X0, e0)) is indeed an F-extension and

(˜id(X0,e0)
, c̃) : c̃Fδ̃ → δ̃ a morphism of F-extensions. Using h0 = e0g0e

′
0 = e0 = id(X0,e0)

and hn+1 = en+1ce
′
n+1 = c, as well as the commutativity of (4.7), we see that h̃• is a

morphism 〈(Y•, e′•), c̃Fδ̃〉 → 〈(X•, e•), δ̃〉of t-distinguishedn-exangles, lifting (˜id(X0,e0)
, c̃).

Recall from Definition 3.4 that MC
g • denotes the mapping cone of g• : Y• → X• in C,

and that 〈MC
g •, (d

Y
0 )

E
δ〉 is s-distinguished as g• : 〈Y•, cEδ〉 → 〈X•, δ〉 is a good lift of

(idX0
, c) : cEδ → δ. Using the commutativity of (4.7), that e• : X• → X• and e′• : Y• → Y•

are morphisms of complexes, and that en+1c = c = ce′
n+1, one can verify that the diagram

Y1 Y2 ⊕ X1 Y3 ⊕ X2 · · · Yn+1 ⊕ Xn Xn+1

Y1 Y2 ⊕ X1 Y3 ⊕ X2 · · · Yn+1 ⊕ Xn Xn+1

d
MC
g

0 d
MC
g

1 d
MC
g

2 d
MC
g

n−1 d
MC
g

n

e′1
[

e′2 0
0 e1

] [

e′3 0
0 e2

] [

e′n+1 0
0 en

]

en+1

d
MC
g

0 d
MC
g

1 d
MC
g

2 d
MC
g

n−1 d
MC
g

n

(dY0 )
E
δ

(dY0 )
E
δ

(4.9)

commutes. Thus, the vertical morphisms form an idempotent morphism e′′• : MC
g • → MC

g •
of complexes. Furthermore, (4.9) is a morphism of s-distinguished n-exangles as

(e′
1)E(dY0 )

E
δ = (dY0 )

E
(e0)Eδ as (4.7) is commutative

= (dY0 )
E
δ as δ̃ ∈ F((Xn+1, en+1), (X0, e0))

= (dY0 )
E
(en+1)

Eδ as δ̃ ∈ F((Xn+1, en+1), (X0, e0))

= (en+1)
E(dY0 )

E
δ.

This calculation also shows that ρ̃ := (e′
1, (d

Y
0 )

E
δ, en+1) ∈ F((Xn+1, en+1), (Y1, e

′
1)). Thus,

by definition of t, we have that t(ρ̃) = [(MC
g •, e

′′•)], i.e. 〈(MC
g •, e

′′•), ρ̃〉 is t-distinguished.
It is straightforward to verify that the object (MC

g •, e
′′•) is equal to the mapping cone

M˜C
h̃ • of h̃• in Ch(˜C)n, so 〈M˜C

h̃ •, ρ̃〉 is t-distinguished. Lastly, we note that (d̃(Y ,e′)
0 )

F
(δ̃) = ρ̃

because

(d(Y ,e′)
0 )

E
δ = (dY0 e0)Eδ = (dY0 )

E
(e0)Eδ = (dY0 )

E
δ = ρ.

Hence, 〈M˜C
h̃ •, (d̃

(Y ,e′)
0 )

F
δ̃〉 is a t-distinguished n-exangle. �


We are in position to prove axiom (EA2) for (˜C,F, t). Axiom (EA2)op can be shown dually.

Proposition 4.30 (Axiom (EA2) for (˜C,F, t)) Let δ̃ ∈ F(˜Xn+1,
˜X0) be an F-extension

and suppose c̃ : ˜Yn+1 → ˜Xn+1 is a morphism in ˜C. Suppose 〈˜X•, δ̃〉 and 〈˜Y•, c̃Fδ̃〉 are

t-distinguished n-exangles. Then (˜id
˜X0

, c̃) has a good lift h̃• : ˜Y• → ˜X•.
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Proof Notice that the underlying E-extension of c̃Fδ̃ is cEδ. By definition of t and Remark
4.21, there are s-distinguished n-exangles 〈X ′•, δ〉 and 〈Y ′•, cEδ〉 and idempotent morphisms
e• : 〈X ′•, δ〉 → 〈X ′•, δ〉 and e′• : 〈Y ′•, cEδ〉 → 〈Y ′•, cEδ〉, such that t(δ̃) = [(X ′•, e•)] and
t(c̃Fδ̃) = [(Y ′•, e′•)], and so that idX ′•

−e• and idY ′•
−e′• are null homotopic in Ch(C)n. We

note that since [˜Y•] = t(c̃Fδ̃) = [(Y ′•, e′•)] and [˜X•] = t(δ̃) = [(X ′•, e•)], we have that
(Y ′

0, e
′
0) = ˜Y0 = ˜X0 = (X ′

0, e0) and, in particular, that e0 = e′
0. Moreover, it follows that all

the hypotheses of Lemma 4.27 are satisfied.
Therefore, by Lemma 4.29, the morphism (˜id

˜X0
, c̃) : c̃Fδ̃ → δ̃ of F-extensions has a good

lift h̃′• : (Y ′•, e′•) → (X ′•, e•). Since [(X ′•, e•)] = [˜X•] and [(Y ′•, e′•)] = [˜Y•], there is a
homotopy equivalence ã• : (X ′•, e•) → ˜X• in Ch(˜C)n

(˜X0,
˜Xn+1)

and a homotopy equivalence

b̃• : ˜Y• → (Y ′•, e′•) in Ch(˜C)n
(˜Y0,˜Yn+1)

. By [16, Cor. 2.31], the composite ã•h̃′•b̃• : ˜Y• → ˜X•
is then also a good lift of (˜id

˜X0
, c̃). �


4.5 Main Results

In this subsection we present our main results regarding the idempotent completion and an
n-exangulated structure we can impose on it.

Definition 4.31 We call an n-exangulated category (C,E, s) (resp. weakly) idempotent com-
plete if the underlying additive category C is (resp. weakly) idempotent complete.

In [5, Prop. 2.5] a characterisation of weakly idempotent complete extriangulated cate-
gories is given. Next we note that the first part of Theorem A from Sect. 1 summarises our
work from Sects. 4.1–4.4.

Theorem 4.32 Let (C,E, s) be an n-exangulated category. Then the triplet (˜C,F, t) is an
idempotent complete n-exangulated category.

Proof This follows from Propositions 2.5, 4.22, 4.26 and 4.30, and the duals of the latter
two. �


And Corollary C from Sect. 1 is a nice consequence of this.

Corollary 4.33 Let (C,E, s) be an n-exangulated category, such that each object in C has a
semi-perfect endomorphism ring. Then the idempotent completion (˜C,F, t) is aKrull-Schmidt
n-exangulated category.

Proof By Theorem 4.32, the idempotent completion (˜C,F, t) is an idempotent complete
n-exangulated category. By [12, Thm. A.1] (or [24, Cor. 4.4]), it is enough to show that
endomorphism rings of objects in ˜C are semi-perfect rings. Let (X , e) be an object in ˜C.
We have that End

˜C((X , idX )) ∼= EndC(X) is semi-perfect since IC is fully faithful (see
Proposition 2.5). ByRemark 2.6,we have that (X , idX ) ∼= (X , e)⊕(X , idX −e). In particular,
we see that End

˜C((X , e)) is an idempotent subring of the semi-perfect ring End
˜C((X , idX )).

Hence, byAnderson–Fuller [1, Cor. 27.7], we have that the endomorphism ring of each object
in ˜C is semi-perfect. �


We recall that, by [23, Cor. 4.12], an n-exangulated category is n-exact if and only if its
inflations are monomorphisms and its deflations are epimorphisms.

Corollary 4.34 Suppose (C,E, s) is n-exact. Then (˜C,F, t) is n-exact.
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Proof We use [23, Cor. 4.12] and only show that t-inflations are monomorphisms; showing t-
deflations are epimorphisms is dual. Let f̃ : (X0, e0) → (X1, e1) be a t-inflation and suppose
there is a morphism g̃ : (Y0, e

′
0) → (X0, e0) in ˜C with f̃ g̃ = ˜0. By Lemma 4.25, there is an

s-inflation dX ′
0 = [

f f ′(idX0 −e0)
]� : X0 → X1 ⊕ C , which is monic as (C,E, s) is n-exact.

We have f g = 0 as f̃ g̃ = ˜0, and we also have f ′(idX0
−e0)g = 0 because the underlying

morphism g of g̃ satisfies g = e0g. Thus, we see that d
X ′
0 g = 0 and this implies g = 0 as

dX ′
0 is monic. Hence, g̃ = 0 and we are done. �

The main aim of this subsection is to establish the relevant 2-universal property of the

inclusion functorIC : C → ˜C. We will show thatIC forms part of an n-exangulated functor
(IC, �) : (C,E, s) → (˜C,F, t), and that this is 2-universal in an appropriate sense. The next
lemma is straightforward to check.

Lemma 4.35 The family of abelian group homomorphisms

�(Xn+1,X0)
: E(Xn+1, X0) −→ F(IC(Xn+1),IC(X0))

δ �−→ (idX0
, δ, idXn+1

),

for X0, Xn+1 ∈ C, defines a natural isomorphism � : E(−,−)
∼=�⇒ F(IC−,IC−).

Proposition 4.36 The pair (IC, �) is an n-exangulated functor from (C,E, s) to (˜C,F, t).

Proof Weverify that if 〈X•, δ〉 is an s-distinguished n-exangle, then 〈IC(X•), �(Xn+1,X0)
(δ)〉

is t-distinguished, where �(Xn+1,X0)
(δ) = (idX0

, δ, idXn+1
) ∈ F(IC(Xn+1),IC(X0)). We

have the idempotent morphism idX• : 〈X•, δ〉 → 〈X•, δ〉 that is a lift of (idX0
, idXn+1

) : δ →
δ, so from Definition 4.20 we see that t(�(Xn+1,X0)

(δ)) = [(X•, idX•)] = [IC(X•)]. �


We lay out some notation that will be used in the remainder of this section and also in
Sect. 5.

Notation 4.37 Let (X , e) be an object in the idempotent completion ˜C of C. Then (X , e) is
a direct summand of IA(X) = (X , idX ) by Remark 2.6. By ĩe := (idX , e, e) : (X , e) →
(X , idX ) and p̃e := (e, e, idX ) : (X , idX ) → (X , e), we denote the canonical inclusion and
projection morphisms, respectively.

Recall that, for an additive category C′ and a biadditive functor E′ : (C′)op × C′ → Ab,
the E′-attached complexes and morphisms between them were defined in Definition 3.1, and
together they form an additive category.

Lemma 4.38 Let δ̃ ∈ F((Xn+1, en+1), (X0, e0)) be an F-extension. Suppose s(δ) = [X•]
and e• : 〈X•, δ〉 → 〈X•, δ〉 is an idempotent morphism. With e′• := idX• −e•, we have that

〈IC(X•), �(Xn+1,X0)
(δ)〉 ∼= 〈(X•, e•), δ̃〉 ⊕ 〈(X•, e′•), ˜0

(X0,e
′
0) (Xn+1,e

′
n+1)

〉 (4.10)

as t-distinguished n-exangles.

Proof Let ρ̃ := �(Xn+1,X0)
(δ). First, note that 〈(X•, e•), δ̃〉 and 〈(X•, e′•), ˜0

(X0,e
′
0) (Xn+1,e

′
n+1)

〉
are F-attached complexes, and 〈IC(X•), ρ̃〉 is a t-distinguished n-exangle since (F , �) is
an n-exangulated functor.
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Consider the morphisms ĩe• : (X•, e•) → IC(X•) and p̃e• : IC(X•) → (X•, e•) of
complexes induced by e•, as well as the corresponding ones ĩe′• and p̃e′• for e

′•. We claim that
there is a biproduct diagram

〈(X•, e•), δ̃〉 〈IC(X•), ρ̃〉 〈(X•, e′•), ˜0
(X0,e

′
0) (Xn+1,e

′
n+1)

〉,
ĩe•

p̃e• p̃e′•

ĩe′•

(4.11)

in the category of F-attached complexes. To see that ĩe• is a morphism of F-attached com-
plexes, we just need to check that (ĩe0)Fδ̃ = (ĩen+1

)Fρ̃. By Remark 4.7, it is enough to see that

(e0)Eδ = (en+1)
Eδ holds, and this is indeed true because δ = (e0)Eδ = (en+1)

Eδ. Similarly,

we see that p̃e• is a morphism of F-attached complexes. To see that ĩe′• and p̃e′• are morphisms
of F-attached complexes, one uses that (idX0

−e0)Eδ = 0X0 Xn+1
= (idXn+1

−en+1)
Eδ. Fur-

thermore, we have the identities ˜id(X•,e•) = p̃e• ĩe• , ˜id(X•,e′•) = p̃e′• ĩe′• and ˜idIC(X•) =
ĩe• p̃e• + ĩe′• p̃e′• , so (4.11) is a biproduct diagram in the additive category of F-attached com-
plexes. Therefore, we have that (4.10) is an isomorphism as F-attached complexes.

Lastly, since 〈IC(X•), ρ̃〉 is t-distinguished, it follows from [16, Prop. 3.3] that (4.10) is
an isomorphism of t-distinguished n-exangles. �


Thus, we can now present and prove the main result of this section, which shows that
the n-exangulated inclusion functor (IC, �) : (C,E, s) → (˜C,F, t) is 2-universal amongst
n-exangulated functors from (C,E, s) to idempotent complete n-exangulated categories.

Theorem 4.39 Suppose (F ,�) : (C,E, s) → (C′,E′, s′) is an n-exangulated functor to an
idempotent complete n-exangulated category (C′,E′, s′). Then the following statements hold.
(i) There is an n-exangulated functor (E , 	) : (˜C,F, t) → (C′,E′, s′) and an n-

exangulated natural isomorphism צ : (F ,�)
∼=�⇒ (E , 	) ◦ (IC, �).

(ii) In addition, for any n-exangulated functor (G ,
) : (˜C,F, t) → (C′,E′, s′) and any n-
exangulated natural transformation ד : (F ,�) ⇒ (G ,
) ◦ (IC, �), there is a unique
n-exangulated natural transformation מ : (E , 	) ⇒ (G ,
) with ד = ICמ

.צ

Proof (i) By Proposition 2.8(i), there exists an additive functor E : ˜C → C′ and a natural
isomorphism צ : F ⇒ EIC . It remains to show that E forms part of an n-exangulated
functor (E , 	) and that צ is n-exangulated.

First, we define a natural transformation	 : F(−,−) ⇒ E
′(E−, E−) as the composition

of several abelian group homomorphisms. For X0, Xn+1 ∈ C, we set

T(Xn+1,X0)
:= E

1−צ)′
Xn+1

X0צ,
) : E′(F (Xn+1),F (X0)) → E

′(EIC(Xn+1), EIC(X0)).

For ˜X0 = (X0, e0) and ˜Xn+1 = (Xn+1, en+1) in ˜C, we define an abelian group homomor-
phism

I
(˜Xn+1,

˜X0)
: F(˜Xn+1,

˜X0) −→ E(Xn+1, X0)

δ̃ = (e0, δ, en+1) �−→ δ,

and put

P
(˜Xn+1,

˜X0)
:= E

′(E (ĩen+1
), E ( p̃e0)) : E′(EIC(Xn+1), EIC(X0)) → E

′(E (˜Xn+1), E (˜X0)).
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For morphisms a : X0 → Y0 and c : Yn+1 → Xn+1 in C, we have

T(Yn+1,Y0)
E

′(F (c),F (a)) = E
′(EIC(c), EIC(a))T(Xn+1,X0)

(4.12)

as צ is natural. For morphisms ã : ˜X0 → ˜Y0 and c̃ : ˜Yn+1 → ˜Xn+1 in ˜C, we have

I
(˜Yn+1,

˜Y0)
F(c̃, ã) = E(c, a)I

(˜Xn+1,
˜X0)

, (4.13)

using howF is defined onmorphisms (see Definition 4.4).We claim that the family of abelian
group homomorphisms

	
(˜Xn+1,

˜X0)
:= P

(˜Xn+1,
˜X0)

T(Xn+1,X0)
�(Xn+1,X0)

I
(˜Xn+1,

˜X0)

for ˜X0,
˜Xn+1 ∈ ˜C defines a natural transformation	 : F(−,−) ⇒ E

′(E−, E−). To this end,
fix objects ˜X0 = (X0, e0), ˜Y0 = (Y0, e

′
0),

˜Xn+1 = (Xn+1, en+1) and ˜Yn+1 = (Yn+1, e
′
n+1),

and morphisms ã : ˜X0 → ˜Y0 and c̃ : ˜Yn+1 → ˜Xn+1 in ˜C. First, note that we have

p̃e′
0
IC(a) = p̃e′

0
IC(a)IC(e0) = p̃e′

0
IC(a)ĩe0 p̃e0 = ã p̃e0 (4.14)

and, similarly,

IC(c)ĩe′
n+1

= ĩen+1
c̃. (4.15)

Therefore, we see that

	
(˜Yn+1,

˜Y0)
F(c̃, ã)

= P
(˜Yn+1,

˜Y0)
T(Yn+1,Y0)

�(Yn+1,Y0)
I
(˜Yn+1,

˜Y0)
F(c̃, ã)

= P
(˜Yn+1,

˜Y0)
T(Yn+1,Y0)

�(Yn+1,Y0)
E(c, a)I

(˜Xn+1,
˜X0)

by (4.13)

= P
(˜Yn+1,

˜Y0)
T(Yn+1,Y0)

E
′(F (c),F (a))�(Xn+1,X0)

I
(˜Xn+1,

˜X0)
as � is natural

= P
(˜Yn+1,

˜Y0)
E

′(EIC(c), EIC(a))T(Xn+1,X0)
�(Xn+1,X0)

I
(˜Xn+1,

˜X0)
by (4.12)

= E
′(E (IC(c)ĩe′

n+1
), E ( p̃e′

0
IC(a)))T(Xn+1,X0)

�(Xn+1,X0)
I
(˜Xn+1,

˜X0)

= E
′(E (ĩen+1

c̃), E (ã p̃e0))T(Xn+1,X0)
�(Xn+1,X0)

I
(˜Xn+1,

˜X0)
by (4.14) and (4.15)

= E
′(E (c̃), E (ã))P

(˜Xn+1,
˜X0)

T(Xn+1,X0)
�(Xn+1,X0)

I
(˜Xn+1,

˜X0)

= E
′(E (c̃), E (ã))	

(˜Xn+1,
˜X0)

.

Next, we must show that (E , 	) sends t-distinguished n-exangles to s′-distinguished n-
exangles. Thus, let ˜X0 = (X0, e0), ˜Xn+1 = (Xn+1, en+1) ∈ ˜C and δ̃ ∈ F(˜Xn+1,

˜X0), and

suppose t(δ̃) = [˜X•]. We need that s′(	
(˜Xn+1,

˜X0)
(δ̃)) = [E (˜X•)], which will follow from

seeing that 〈E (˜X•),	(˜Xn+1,
˜X0)

(δ̃)〉 is a direct summand of an s′-distinguished n-exangle.
By Remark 4.21, we may take a complex X• in Ch(C)n with s(δ) = [X•] and

an idempotent morphism e• : 〈X•, δ〉 → 〈X•, δ〉 lifting (e0, en+1) : δ → δ, such that

t(δ̃) = [(X•, e•)]. Note for later that we thus have [(X•, e•)] = [˜X•], and hence
[E ((X•, e•))] = [E (˜X•)]. Let ρ̃ := �(Xn+1,X0)

(δ). Since (F ,�) : (C,E, s) → (C′,E′, s′)
is an n-exangulated functor, the n-exangle 〈F (X•),�(Xn+1,X0)

(δ)〉 is s′-distinguished. As
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we have an isomorphism of complexes •Xצ : F (X•) → EIC(X•), the E
′-attached com-

plex 〈EIC(X•), T(Xn+1,X0)
�(Xn+1,X0)

(δ)〉 is s′-distinguished by [16, Cor. 2.26(2)]. Since

P(IC(Xn+1),IC(X0))
= E

′(E (ĩidXn+1
), E ( p̃idX0

)) is just the identity homomorphism, a quick

computation yields

	(IC(Xn+1),IC(X0))
(ρ̃) = T(Xn+1,X0)

�(Xn+1,X0)
(δ) = E

1−צ)′
Xn+1

X0צ,
)�(Xn+1,X0)

(δ).

(4.16)

In particular, this implies that 〈EIC(X•),	(IC(Xn+1),IC(X0))
(ρ̃)〉 is s′-distinguished.

Note that 〈IC(X•), ρ̃〉 ∼= 〈(X•, e•), δ̃〉⊕〈(X•, e′•), ˜0
(X0,e

′
0) (Xn+1,e

′
n+1)

〉 asF-attached com-

plexes by Lemma 4.38, where e′• := idX• −e•. We see that 〈E ((X•, e•)),	(˜Xn+1,
˜X0)

(δ̃)〉 is
a direct summand of the s′-distinguished n-exangle 〈EIC(X•),	(IC(Xn+1),IC(X0))

(ρ̃)〉 by
Proposition 3.7(ii). Hence, s′(	

(˜Xn+1,
˜X0)

(δ̃)) = [E ((X•, e•))] = [E (˜X•)] by [16, Prop. 3.3],
and so (E , 	) is an n-exangulated functor.

Lastly, it follows immediately from (4.16) that צ is an n-exangulated natural transforma-
tion (F ,�) ⇒ (E , 	) ◦ (IC, �) = (EIC, 	IC×IC

�).

(ii) By Proposition 2.8(ii), there exists a unique natural transformation מ : E ⇒ G with
ד = ICמ

,צ so it remains to show that מ induces an n-exangulated natural transforma-

tion (E , 	) ⇒ (G ,
). For this, let ˜X0 = (X0, e0), ˜Xn+1 = (Xn+1, en+1) ∈ ˜C and

δ̃ ∈ F(˜Xn+1,
˜X0) be arbitrary. Note that we have

δ̃ = F(ĩen+1
, p̃e0)�(Xn+1,X0)

(δ). (4.17)

Hence, we obtain

מ)
˜X0

)
E′	(˜Xn+1,

˜X0)
(δ̃)

= מ)
˜X0

)
E′	(˜Xn+1,

˜X0)
F(ĩen+1

, p̃e0 )�(Xn+1,X0)
(δ) by (4.17)

= מ)
˜X0

)
E′E′(E (ĩen+1

),E ( p̃e0 ))(	IC×IC
�)(Xn+1,X0)

(δ) as 	 is natural

= E
′(E (ĩen+1

מ,(
˜X0
E ( p̃e0 ))(	IC×IC

�)(Xn+1,X0)
(δ)

= E
′(E (ĩen+1

),G ( p̃e0 IC(X0)מ(
)(	IC×IC

�)(Xn+1,X0)
(δ) as מ is natural

= E
′(E (ĩen+1

),G ( p̃e0 ) X0ד
1−צ
X0

)(	IC×IC
�)(Xn+1,X0)

(δ) as ד = ICמ
צ

= E
′(E (ĩen+1

),G ( p̃e0 X0ד)((
)
E′ 1−צ)

X0
)
E′ (	IC×IC

�)(Xn+1,X0)
(δ)

= E
′(E (ĩen+1

),G ( p̃e0 X0ד)((
)
E′ 1−צ)

Xn+1
)E

′
�(Xn+1,X0)

(δ) as צ is n-exangulated

= E
′(E (ĩen+1

),G ( p̃e0 צ)((
−1
Xn+1

)E
′
X0ד)

)
E′�(Xn+1,X0)

(δ)

= E
′(E (ĩen+1

),G ( p̃e0 צ)((
−1
Xn+1

)E
′
Xn+1ד)

)E
′
(
IC×IC

�)(Xn+1,X0)
(δ) as ד is n-exangulated

= E
Xn+1ד)′

1−צ
Xn+1

E (ĩen+1
),G ( p̃e0 ))(
IC×IC

�)(Xn+1,X0)
(δ)

= E
IC(Xn+1)מ)′

E (ĩen+1
),G ( p̃e0 ))(
IC×IC

�)(Xn+1,X0)
(δ) as ד = ICמ

צ
= E

′(G (ĩen+1
מ(

˜Xn+1
,G ( p̃e0 ))(
IC×IC

�)(Xn+1,X0)
(δ) as מ is natural

= מ)
˜Xn+1

)E
′
E

′(G (ĩen+1
),G ( p̃e0 ))(
IC×IC

�)(Xn+1,X0)
(δ)
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= מ)
˜Xn+1

)E
′



(˜Xn+1,
˜X0)

F(ĩen+1
, p̃e0 )�(Xn+1,X0)

(δ) as 
 is natural

= מ)
˜Xn+1

)E
′



(˜Xn+1,
˜X0)

(δ̃) by (4.7),

and the proof is complete. �

We close this section with some remarks on our main results and constructions.

Remark 4.40 Before commenting on how our results unify the constructions in cases in the
literature and on how our proof methods compare, we set up and recall a little terminology.
Suppose (C,E, s) and (C′,E′, s′) are n-exangulated categories. We call an n-exangulated
functor (F , �) : (C,E, s) → (C′,E′, s′) an n-exangulated isomorphism if F is an isomor-
phism of categories and� is a natural isomorphism. This terminology is justified by [9, Prop.
4.11]. Lastly, we recall that n-exangulated functors between (n+2)-angulated categories are
(n + 2)-angulated in the sense of [10, Def. 2.7] (or exact as in Bergh–Thaule [8, Sec. 4]),
and that n-exangulated functors between n-exact categories are n-exact in the sense of [10,
Def. 2.18]; see [10, Thms. 2.33, 2.34].

It has been shown that a triplet (C,E, s) is a 1-exangulated category if and only if it is
extriangulated (see [16, Prop. 4.3]). Suppose that (C,E, s) is an extriangulated category and
consider the idempotent completion ˜C of C. By [27, Thm. 3.1], there is an extriangulated
structure (F′, t′) on ˜C. By our Theorem 4.32, there is a 1-exangulated (or extriangulated)
category (˜C,F, t). By direct comparison of the constructions, one can check that (˜C,F, t)

and (˜C,F′, t′) are n-exangulated isomorphic. Indeed, the bifunctors F and F
′ differ only by

a labelling of the elements due to our convention in Definition 4.4; and, ignoring this re-
labelling, the realisations s and s′ are the same by Lemma 4.19. Furthermore, since (˜C,F′, t′)
recovers the triangulated and exact category cases, we see that our construction agrees with
the classical (i.e. n = 1) cases up to n-exangulated isomorphism.

For larger n, we just need to compare (˜C,F, t)with the construction in [25]. Thus, suppose
(C,E, s) is the n-exangulated category coming from an (n+2)-angulated category (C, �, �).
Recall that in this caseE(Z , X) = C(Z , �X) for X , Z ∈ C. Using [25, Thm. 3.1], one obtains
an (n+2)-angulated category (˜C, ˜�, ˜�),where˜� is inducedby�. From this (n+2)-angulated
category, just like above, we obtain an induced n-exangulated category (˜C,F′, t′). Notice that
F

′(−,−) = ˜C(−, ˜�−). Comparing (˜C,F′, t′) to the n-exangulated category (˜C,F, t) found
from Theorem 4.32, again we see that F and F′ differ by the labelling convention we chose in
Definition 4.4. By [16, Prop. 4.8] we have that (˜C,F, t) induces an (n+2)-angulated category
(˜C, ˜�, �′), and therefore the n-exangulated inclusion functor IC : C → ˜C is, moreover,
(n + 2)-angulated. It follows from [25, Thm. 3.1(2)] that ˜� and �′ must be equal, and hence
(˜C,F, t) and (˜C,F′, t′) are n-exangulated isomorphic.

Remark 4.41 Our proofs in this article differ from the proofs in both the extriangulated and the
(n + 2)-angulated cases. First, the axioms for an n-exangulated category look very different
from the axioms for an extriangulated category. Therefore, the proofs from [27] cannot be
directly generalised to the n > 1 case. Even of the results that seem like theymight generalise
nicely, one comes across immediate obstacles. Indeed, Lin [25, p. 1064] already points out
that lifting idempotent morphisms of extensions to idempotent morphisms of n-exangles is
non-trivial. Despite this, we are able to overcome this here. This, amongst other problems,
forces Lin to use another approach, and hence demonstrates why our methods are distinct.

Remark 4.42 He–He–Zhou [15] have considered idempotent completions of n-exangulated
categories in a specific setup. In their setup, there is an ambient Krull-Schmidt (n + 2)-
angulated category C and an additive subcategoryA that is n-extension-closed (see Definition

123



7 Page 32 of 37 C. Klapproth et al.

5.2) and closed under direct summands in C. The main aim of [15] is to show that the
idempotent completion ˜A of A is an n-exangulated subcategory of ˜C.

Since A is an additive subcategory of and closed under direct summands in a Krull-
Schmidt category, it is Krull-Schmidt itself. In particular, A � ˜A is already idempotent
complete by [24, Cor. 4.4]. Moreover, in the setup of [15], it already follows that A inherits
an n-exangulated structure from C � ˜C. Indeed, (EA1) is proven in [22, Lem. 3.8], and
(EA2) and (EA2)op are straightforward to check directly. It is then clear that A inherits an
n-exangulated structure from C.

5 TheWeak Idempotent Completion of an n-Exangulated Category

Just as in Sect. 4,we assume n ≥ 1 is an integer and that (C,E, s) is an n-exangulated category.
By Theorems 4.32 and 4.39, the idempotent completion of (C,E, s) is an n-exangulated
category (˜C,F, t) and the inclusion functorIC of C into ˜C is part of an n-exangulated functor
(IC, �) : (C,E, s) → (˜C,F, t), which satisfies the 2-universal property from Theorem 4.39.
In this section, we turn our attention to the weak idempotent completion ̂C of C and we
show that it forms part of a triplet (̂C,G, r) that is n-extension-closed (see Definition 5.2) in
(˜C,F, t). It will then follow that (̂C,G, r) is itself n-exangulated, and, moreover, there is an
analogue of Theorem 4.39 for (̂C,G, r); see Theorem 5.5.

We begin with the following proposition, which is an analogue of Lemma 4.38 for the
weak idempotent completion.

Proposition 5.1 Suppose (X0, e0), (Xn+1, en+1) ∈ ̂C are objects, δ̃ ∈ F((Xn+1, en+1),

(X0, e0)) is an F-extension and s(δ) = [X•]. Then there is a t-distinguished n-exangle
〈˜Y•, δ̃〉 with ˜Y• ∈ Ch(̂C)n and an s-distinguished n-exangle 〈Y ′•, 0Y ′

0 Y ′
n+1

〉, such that

〈IC(X•), �(Xn+1,X0)
(δ)〉 ∼= 〈˜Y•, δ̃〉 ⊕ 〈IC(Y ′•), �(Y ′

n+1,Y
′
0)

( 0Y ′
0 Y ′

n+1
)〉

as t-distinguished n-exangles.

Proof By Corollary 4.13, there exists an idempotent morphism e• : 〈X•, δ〉 → 〈X•, δ〉 with
ei = idXi

for 2 ≤ i ≤ n − 1, as well as a homotopy h• = (h1, 0, . . . , 0, hn+1) : e′• ∼ 0•,
where e′• := idX• −e•. Notice (Xi , ei ) ∈ ̂C for i = 0, n + 1 by assumption. Further-

more, (Xi , ei ) = (Xi , idXi
) ∈ IC(C) ⊆ ̂C for 2 ≤ i ≤ n − 1. Set ρ̃ := �(Xn+1,X0)

(δ). By

Lemma 4.38 we have 〈IC(X•), ρ̃〉 ∼= 〈(X•, e•), δ̃〉 ⊕ 〈(X•, e′•), ˜0
(X0,e

′
0) (Xn+1,e

′
n+1)

〉 as t-dis-
tinguished n-exangles. We will show that there is an isomorphism s̃• : (X•, e•) → ˜Y• in
Ch(˜C)n((X0,e0),(Xn+1,en+1))

for some ˜Y• ∈ Ch(̂C)n, as well as an isomorphism s̃′• : (X•, e′•) →
IC(Y ′•) in Ch(˜C)n for some object Y ′• ∈ Ch(C)n.

If i = 0, n + 1, then e′
i = idXi

−ei is split by assumption, so by Lemma 2.4 there are

objects Y ′
i ∈ C and isomorphisms s̃′

i : (Xi , e
′
i ) → IC(Y ′

i ). For 2 ≤ i ≤ n − 1, we see that
e′
i = idXi

−ei = 0, so by Lemma 2.4 again we have isomorphisms s̃′
i : (Xi , e

′
i ) → IC(Y ′

i ),

but now where Y ′
i = 0 ∈ C. Since (X0, e0), (Xn+1, en+1) ∈ ̂C by assumption and because

(Xi , ei ) = (Xi , idXi
) ∈ IC (C) ⊆ ̂C for 2 ≤ i ≤ n − 1, we put ˜Yi := (Xi , ei ) and

s̃i := ˜id(Xi ,ei )
for i ∈ {0, n+1}∪{2, . . . , n−1}. It remains to find appropriate isomorphisms

s̃i and s̃
′
i for i = 1, n.

We have a morphism k̃1 : (X1, e
′
1) → (X0, e

′
0) with underlying morphism k1 :=

e′
0h1e

′
1 and another k̃n+1 : (Xn+1, e

′
n+1) → (Xn, e

′
n) with underlying morphism kn+1 :=
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e′
nhn+1e

′
n+1 by Lemma 4.14. Since (h1, 0, . . . , 0, hn+1) : e′• ∼ 0• is a homotopy, we see that

h1d
X
0 = e′

0. This implies

k1d
(X ,e′)
0 = e′

0h1e
′
1d

X
0 e′

0 = e′
0h1d

X
0 e′

0 = e′
0 = id

(X0,e
′
0)

, (5.1)

and so k̃1d̃
(X ,e′)
0 = ˜id(X0,e

′
0)
. Similarly, we also have d̃(X ,e′)

n k̃n+1 = ˜id(Xn+1,e
′
n+1)

.

1. If n = 1, then (5.1) shows that d̃(X ,e′)
0 is a section in the complex (X•, e′•), and hence

this complex is a split short exact sequence by [16, Claim 2.15]. In particular, we have
that (X1, e

′
1)

∼= (X0, e
′
0) ⊕ (X2, e

′
2)

∼= IC(Y ′
0) ⊕ IC(Y ′

2)
∼= IC(Y ′

0 ⊕ Y ′
2). So we put

Y ′
1 := Y ′

0⊕Y ′
2 and define s̃

′
1 : (X1, e

′
1) → IC(Y ′

1) to be this composition of isomorphisms.
As IC(X1)

∼= (X1, e1) ⊕ (X1, e
′
1), and IC(X1) and (X1, e

′
1) are isomorphic to objects

in ̂C, by Lemma 2.12 there is an isomorphism s̃1 : (X1, e1) → ˜Y1 for some ˜Y1 ∈ ̂C.
2. If n ≥ 2, then the form of the homotopy h• implies that the identities dX

0 h1 = e′
1 and

hn+1d
X
n+1 = e′

n hold. Therefore, we see that

d(X ,e′)
0 k1 = dX

0 e′
0h1e

′
1 = e′

1d
X
0 h1e

′
1 = e′

1 = id
(X1,e

′
1)

,

which shows that k̃1 and d̃
(X ,e′)
0 are mutually inverse isomorphisms. We now define Y ′

1 :=
Y ′
0 and s̃′

1 := s̃′
0k̃1 : (X1, e

′
1) → IC(Y ′

1). Because there are isomorphisms IC(X1)
∼=

(X1, e1) ⊕ (X1, e
′
1)

∼= (X1, e1) ⊕ (X0, e
′
0), and IC(X1) and (X0, e

′
0) are isomorphic to

objects in ̂C, by Lemma 2.12 there is an isomorphism s̃1 : (X1, e1) → ˜Y1 for some ˜Y1 ∈ ̂C.
In a similar way, one can show that k̃n+1 and d̃(X ,e′)

n are mutually inverse isomorphisms.

We set Y ′
n := Y ′

n+1 and s̃′
n := s̃′

n+1d̃
(X ,e′)
n : (Xn, e

′
n) → IC(Y ′

n). In addition, there is an
isomorphism s̃n : (Xn, en) → ˜Yn for some ˜Yn ∈ ̂C.

The complex ˜Y• with object ˜Yi in degree 0 ≤ i ≤ n + 1 and differential d̃˜Y
i :=

s̃i+1d̃
(X ,e)
i s̃i

−1 in degree 0 ≤ i ≤ n is isomorphic to (X•, e•) via s̃•. Furthermore, as

s̃0 and s̃n+1 are identity morphisms, we have that 〈˜Y•, δ̃〉 is t-distinguished by [16, Cor.
2.26(2)]. The complex ˜Y ′• with object ˜Y ′

i := IC(Y ′
i ) in degree 0 ≤ i ≤ n+1 and differential

d̃˜Y ′
i := s̃′

i+1d̃
(X ,e′)
i s̃′−1

i in degree 0 ≤ i ≤ n is isomorphic to (X•, e′•) via s̃′•. Moreover, this
induces an isomorphism s̃′• : 〈(X•, e′•), ˜0

(X0,e
′
0) (Xn+1,e

′
n+1)

〉 → 〈˜Y ′•, ˜0
˜Y ′
0

˜Y ′
n+1

〉 of F-attached

complexes, and hence of t-distinguished n-exangles. It is clear that

〈˜Y ′•, ˜0
˜Y ′
0

˜Y ′
n+1

〉 ∼= 〈IC
(

triv0(Y
′
0)• ⊕ trivn(Y

′
n+1)•

)

, �
(Y ′

n+1,Y
′
0)

( 0Y ′
0 Y ′

n+1
)〉

by the construction of˜Y ′•. Lastly, 〈triv0(Y ′
0)•⊕trivn(Y

′
n+1)•, 0Y ′

0 Y ′
n+1

〉 is s-distinguished using
[16, Prop. 3.3] and that s is an exact realisation of E. �


From Proposition 5.1 we see that ̂C is n-extension-closed in (˜C,F, t) in the following
sense.

Definition 5.2 [17, Def. 4.1] Let (C′,E′, s′) be an n-exangulated category. A full subcategory
D ⊆ C′ is said to be n-extension-closed if, for all A,C ∈ D and each E

′-extension δ ∈
E

′(C, A), there is an object X• ∈ Ch(C′)n such that Xi ∈ D for all 1 ≤ i ≤ n and
s′(δ) = [X•].

Let us now define the biadditive functor and realisation with which we wish to equip ̂C.
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Definition 5.3 (i) LetG := F|
̂Cop×̂C : ̂Cop×̂C → Ab be the restriction ofF : ˜Cop×˜C → Ab.

(ii) For a G-extension δ̃ ∈ G(˜Xn+1,
˜X0), there is a t-distinguished n-exangle 〈˜X•, δ̃〉 with

˜X• ∈ Ch(̂C)n by Proposition 5.1. We put r(δ̃) = [˜X•], the isomorphism class of ˜X• in
K(̂C)n

(˜X0,
˜Xn+1)

.

(iii) Recall from Sect. 2.2 that KC : C → ̂C is the inclusion functor defined by KC(X) =
(X , idX ) on objects X ∈ C. Let � : E(−,−) ⇒ G(KC−,KC−) be the restriction of
the natural transformation� : E(−,−) ⇒ F(IC−,IC−) defined in Lemma 4.35. This
means �(δ) := (idX0

, δ, idXn+1
) ∈ G(KC(Xn+1),KC(X0)) for δ ∈ E(Xn+1, X0).

Since ̂C is an n-extension closed subcategory of (˜C,F, t) by Proposition 5.1, one can use
[17, Prop. 4.2(1)] to deduce axioms (EA2) and (EA2)op hold for the triplet (̂C,G, r). The
difficult part is then to show that (EA1) is satisfied; this follows from Lemma 5.4 below.
We note here, however, it has been shown in [23, Thm. A] that any n-extension-closed
subcategory of an n-exangulated category that is also closed under isomorphisms inherits
an n-exangulated structure in the expected way. Although the isomorphism-closure in [23]
is assumed only for convenience, we highlight that the weak idempotent completion is not
necessarily closed under isomorphisms in the idempotent completion using the constructions
in Sect. 2. Indeed, one can show that ̂C is isomorphism-closed in ˜C if and only if C is already
weakly idempotent complete.

Lemma 5.4 Let f̃ : ˜X0 → ˜X1 be a t-inflation with ˜X0 = (X0, e0), ˜X1 = (X1, e1) ∈ ̂C. Then
there is a t-distinguished n-exangle 〈˜X•, δ̃〉 with ˜X• ∈ Ch(̂C)n and d̃˜X

0 = f̃ .

Proof By Lemma 4.25 there is an object C ∈ C, a morphism f ′ : X0 → C and an s-

distinguished n-exangle 〈Z•, ρ〉 with Z0 = X0, Z1 = X1 ⊕ C , dZ
0 = [

f f ′(idX0 −e0)
]� and

(e0)Eρ = ρ. The solid morphisms of the diagram

X0 X1 ⊕ C Z2 Z3 · · · Zn Zn+1

X0 X1 ⊕ C Z2 Z3 · · · Zn Zn+1

dZ0 ρ

dZ0

e0
[

e1 0
0 0

]

e′2
ρ

form a commutative diagram. By Lemma 4.24 there exists an idempotent morphism of

n-exangles e′• : 〈Z•, ρ〉 → 〈Z•, ρ〉 with e′
0 = e0, e

′
1 =

[

e1 0
0 0

]

and e′
i = idZi

for

3 ≤ i ≤ n + 1, which makes the diagram above commute. Let ρ̃ := �(Zn+1,X0)
(ρ) ∈

F(IC(Zn+1),IC(X0)) and ρ̃′ := F(ĩe′
n+1

, p̃e′
0
)(ρ̃) ∈ F((Zn+1, e

′
n+1), (X0, e0)). Notice

that the underlying E-extension of ρ̃′ is ρ. Set e′′• := idZ• −e′•. Then 〈IC(Z•), ρ̃〉 ∼=
〈(Z•, e′•), ρ̃′〉⊕ 〈(Z•, e′′•), ˜0

(Z0,e
′′
0 ) (Zn+1,e

′′
n+1)

〉 as t-distinguished n-exangles by Lemma 4.38.

We claim that there is a split short exact sequence

0 (Z0, e
′′
0) (Z1, e

′′
1) (Z2, e

′′
2) 0.

d̃(Z ,e′′)
0 d̃(Z ,e′′)

1 (5.2)

Since (Z•, e′′•) realises the trivial F-extension ˜0
(Z0,e

′′
0 ) (Zn+1,e

′′
n+1)

, we have that d̃(Z ,e′′)
0 is a

section by [16, Claim 2.15]. If n = 1, then this is enough to see that (5.2) is split short

exact. For n ≥ 2 we notice that there is an isomorphism (Z3, e
′′
3)

∼= 0 in ˜C, so d̃(Z ,e′′)
2 = 0.
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Thus, since d̃(Z ,e′′)
1 is a weak kernel of d̃(Z ,e′′)

2 , we see that ˜id(Z2,e
′′
2 ) factors through d̃(Z ,e′′)

1 .

In particular, this implies d̃(Z ,e′′)
1 is a cokernel of d̃(Z ,e′′)

0 . Again, (5.2) is split short exact.
In particular, we have an isomorphism (Z1, e

′′
1)

∼= (Z0, e
′′
0) ⊕ (Z2, e

′′
2). We know that

the objects (Z0, e
′′
0) = (X0, idX0

−e0) and (Z1, e
′′
1) = (X1 ⊕ C, (idX1

−e1) ⊕ idC ) are

isomorphic to objects in IC(C) ⊆ ̂C ⊆ ˜C by Lemma 2.4, as idX0
−e0 and (idX1

−e1) ⊕ idC
are split idempotents. This implies that (Z2, e

′′
2) is isomorphic to an object in ̂C by Lemma

2.12. Again Lemma 2.12 and the isomorphism IC(Z2)
∼= (Z2, e

′
2) ⊕ (Z2, e

′′
2) imply that

there is an isomorphism s̃2 : (Z2, e
′
2) → ˜X2 for some ˜X2 ∈ ̂C.

The morphism s̃1 :
(

X1 ⊕ C,
[

e1 0
0 0

])

→ ˜X1 with underlying morphism s1 = [ e1 0 ] is

an isomorphism. Finally, put s̃i = ˜id(Zi ,e
′
i )
for i = 0 and 3 ≤ i ≤ n + 1. Then the complex

˜X• : ˜X0
˜X1

˜X2 (Z3, e
′
3) · · · (Zn+1, e

′
n+1)

f̃ s̃2d̃
(Z ,e′)
1 s̃−1

1 d̃(Z ,e′)
2 s̃−1

2 d̃(Z ,e′)
3 d̃(Z ,e′)

n

is isomorphic to (Z•, e′•) via s̃• : (Z•, e′•) → ˜X• in Ch(˜C)n. With δ̃ := (s̃−1
n+1)

Fρ̃′, we see

that 〈˜X•, δ̃〉 is t-distinguished by [16, Cor. 2.26(2)], as desired. �

We may state and prove our main result of this section.

Theorem 5.5 Suppose that (C,E, s) is an n-exangulated category. Then (̂C,G, r) is a weakly
idempotent complete n-exangulated category, and (KC,�) : (C,E, s) → (̂C,G, r) is an
n-exangulated functor, such that the following 2-universal property is satisfied. Suppose
(F ,�) : (C,E, s) → (C′,E′, s′) is an n-exangulated functor to a weakly idempotent com-
plete n-exangulated category (C′,E′, s′). Then the following statements hold.

(i) There is an n-exangulated functor (E , 	) : (̂C,G, r) → (C′,E′, s′) and an n-

exangulated natural isomorphism צ : (F ,�)
∼=�⇒ (E , 	) ◦ (KC,�).

(ii) In addition, for any n-exangulated functor (G ,
) : (̂C,G, r) → (C′,E′, s′) and any n-
exangulated natural transformationד : (F ,�) ⇒ (G ,
)◦ (KC,�), there is a unique
n-exangulated natural transformation מ : (E , 	) ⇒ (G ,
) with ד = KCמ

.צ

Proof Since ̂C is a full subcategory of ˜C and because (˜C,F, t) is n-exangulated, we can apply
[17, Prop. 4.2] and Definition 5.2. We showed above that ̂C is n-extension-closed in ˜C; see
Proposition 5.1. Moreover, it follows immediately from Lemma 5.4 and its dual that (̂C,G, r)

satisfies (EA1). Therefore, we deduce that (̂C,G, r) is an n-exangulated category.
One may argue that (KC,�) is an n-exangulated functor as in Proposition 4.36, by using

the definition of r and noting that (X , idX ) = KC(X) lies in ̂C for all X ∈ C.
(i) One argues like in the proof of Theorem 4.39(i), but using Proposition 2.13 instead

of Proposition 2.8, and Proposition 5.1 instead of Lemma 4.38. In particular, we note that
the isomorphism 〈IC(X•), �(Xn+1,X0)

(δ)〉 ∼= 〈˜Y•, δ̃〉 ⊕ 〈IC(Y ′•), �(Y ′
n+1,Y

′
0)

( 0Y ′
0 Y ′

n+1
)〉 of t-

distinguished n-exangles from the statement of Proposition 5.1 induces an isomorphism

〈KC(X•),�(Xn+1,X0)
(δ)〉 ∼= 〈˜Y•, δ̃〉 ⊕ 〈KC(Y ′•),�(Y ′

n+1,Y
′
0)

( 0Y ′
0 Y ′

n+1
)〉

of r-distinguished n-exangles.
(ii) Similarly, one adapts the proof of Theorem 4.39(ii), using Proposition 2.13 instead of

Proposition 2.8. �

Finally, we have an analogue of Corollary 4.34 as a consequence.
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Corollary 5.6 Suppose (C,E, s) is n-exact. Then (̂C,G, r) is n-exact.

Proof The n-exangulated category (˜C,F, t) is n-exact by Corollary 4.34. As (̂C,G, r) inherits
its structure as an n-extension closed subcategory of (˜C,F, t), the result follows from the proof
of [23, Cor. 4.15]. �
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