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Abstract

An additive category in which each object has a Krull-Remak-Schmidt decomposition—that is,
finite direct sum decomposition consisting of objects with local endomorphism rings—is known

s a Krull-Schmidt category. A Hom-finite category is an additive category A for which there is
a commutative unital ring k, such that each Hom-set in A is a finite length k-module. The aim
of this note is to provide a proof that a Hom-finite category is Krull-Schmidt, if and only if it
has split idempotents, if and only if each indecomposable object has a local endomorphism ring.
© 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

If one blurts out “decomposition theorem” to an undergraduate in mathematics, one
ight expect them to think of the fundamental theorem of arithmetic or perhaps the

undamental theorem of finitely generated abelian groups. Such results are of interest
and importance) because we can hope to understand a more complicated object by
rst understanding the simpler components of which it is comprised. It is this kind of
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pplication that has made another famous decomposition theorem of such wide interest.
et A be an additive category. An object X is said to satisfy the Krull–Remak–Schmidt

heorem if, whenever M1⊕· · ·⊕Mm and N1⊕· · ·⊕Nn are finite direct sum decompositions
f X into objects each having local endomorphism rings, then m = n and there is a
ermutation σ in Sym(n) such that M j is isomorphic to Nσ ( j) for all 1 ⩽ j ⩽ n.

The Krull–Remak–Schmidt theorem has its roots in finite group theory: first Frobenius–
tickelberger [12] demonstrated it for finite abelian groups; Remak [26] for finite
roups1; Schmidt [28] also for finite groups but with a substantially shorter proof;
nd Krull [19] for abelian operator groups (usually stated in the language of modules)
ith ascending and descending chain conditions.2 The first categorical version of the

heorem was established by Atiyah [4]. For a nice introduction on the Krull–Remak–
chmidt theorem for module categories see Facchini [10], and for additive categories see
alker–Warfield [30].
A finite direct sum decomposition of an object in A into objects having local

ndomorphism rings is known as a Krull-Remak-Schmidt decomposition. If each object
n A admits such a decomposition, then A is known as a Krull-Schmidt category. Krull-
chmidt categories appear naturally in representation theory of algebras and in algebraic
eometry. For example, the category modΛ of finite-dimensional modules over a finite-
imensional algebra Λ, the bounded derived category of modΛ, the category fg (R,m, k)
f finitely generated modules over a commutative complete local ring (R,m, k), the
ategory of coherent algebraic sheaves over a complete algebraic variety X over an
lgebraically-closed field, and the category of coherent analytic sheaves over a compact
omplex manifold Y are all Krull-Schmidt categories.

If there is a commutative unital ring k such that each Hom-set in A is a finite length
-module, then we call A Hom-finite. The purpose of this note is to show that if A is
om-finite, then A is Krull-Schmidt, if and only if it is idempotent complete, if and only

f the endomorphism ring of any indecomposable object in A is local (see Theorem 6.1).
he equivalence of the first two conditions follows from the theory of projective covers;
ee Chen–Ye–Zhang [8, §A.1], Krause [18, §4], or Corollary 4.13. The motivation for
his note is the equivalence of the latter two conditions. Although this is certainly known
hen k is a field (see e.g. Ringel [27, §2.2], Happel [13, §I.3.2], [8, Cor. A.2]), it remains

rue when k is any commutative unital ring. However, the author failed to find a proof
n the literature.

We assume the reader is familiar with the theory of modules and the notions of a
ategory and a functor. In Sections 4 and 5 we rely on several results from [18], which
e typically do not reprove here. As such, this note is not self-contained. However, by
eeping [18] to hand the reader should not struggle.

This article is organised as follows. We recall some concepts from category theory
n Section 2. Section 3 contains some preliminaries on idempotents and local rings. In

1 Remak proved a stronger conclusion: m = n, and there exists σ ∈ Sym(n) and an automorphism
f : X → X that is the identity on X modulo its centre, such that M j ∼= Nσ ( j) via f for 1 ⩽ j ⩽ n.

edderburn [23] proposed a proof for finite groups slightly before Remak, but with no central isomorphism
spect. Moreover, it is not clear if Wedderburn’s proof is complete, with Remak having commented on
eficiencies in the proof at the end of [26].
2 Jacobson [16, Ch. V] provides an exposition of the theorem for operator groups without the abelian

ssumption.
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Section 4 we turn to Krull-Schmidt categories and the relation to semi-perfect rings. We
recall some material on bi-chain conditions in abelian categories in Section 5. Lastly, we
demonstrate the main result—Theorem 6.1—in Section 6.

Remark 1.1. It is not so clear why the terminology ‘Krull-Schmidt category’ fails to
include Remak’s name. It perhaps originates from Dür [9], in which Dür mentions [4]
or influence on the choice of terminology. Atiyah referred only to the ‘Krull–Schmidt
heorem’ and to a ‘Remak decomposition’. Although this terminology is now entrenched
n our mathematical language, we ought to remember that the statement Remak proved
or finite groups is the assertion Schmidt re-proved in a shorter way.

Remak demonstrated this significant result in his PhD thesis in 1911. His contributions
o mathematics covered a wide range of areas, including group theory, number theory
nd analysis. Remak was murdered in Auschwitz in or after 1942 [29, p. 64]. A nice
iography of Remak is given by Merzbach [24].

. Additive and abelian categories

The notions we recall here are standard. We mainly use this section to set up notation
or the remainder of the article. An accessible introduction to these concepts can be found
n Aluffi [1, Chs. I, IX]. The reader who is more familiar with category theory can safely
kip this section.

Suppose that A is a category and let X, Y be objects in A. We denote the collection of
orphisms X → Y in A by HomA(X, Y ). The collection of endomorphisms f : X → X

of X are denoted EndA(X ). A zero object in A is an object X ∈ A for which HomA(X, Y )
and HomA(Y, X ) are both singletons for each Y ∈ A.

Definition 2.1. For X, Y ∈ A, a coproduct of X and Y is an object X ⨿Y in A endowed
ith morphisms iX : X → X ⨿ Y and iY : Y → X ⨿ Y satisfying the following universal
roperty: given Z ∈ A and morphisms f : X → Z , g : Y → Z , there exists a unique
orphism h : X ⨿ Y → Z such that the diagram below commutes in A.

X

X ⨿ Y Z

Y

iX

f

⟲

∃!h

iY

g

⟲

A product X 5 Y of X and Y is the dual notion, and we omit the description here.

As with all objects defined by a universal property of this kind, (co)products and zero
bjects (where they exist) are unique up to unique isomorphism. Furthermore, although
e only defined binary (co)products above, one can define finite (co)products similarly.
e are now in a position to define an additive category.
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efinition 2.2. The category A is called preadditive if

(i) HomA(X, Y ) has the structure of an abelian group for all X, Y in A, such that
the composition function HomA(X, Y ) × HomA(Y, Z ) → HomA(X, Z ) (sending
( f, g) to g f = g ◦ f ) is Z-bilinear for all objects X, Y, Z in A.

he category A is additive if it is preadditive and it has

(ii) a zero object, which we denote by 0, and
(iii) finite products and finite coproducts.

For the rest of this section suppose that A is an additive category.

emark 2.3. Let X, Y ∈ A be objects.

(i) We denote the abelian group operation of HomA(X, Y ) by +, and the identity
element by 0.

(ii) The product X5Y and coproduct X ⨿ Y are isomorphic; see Mac Lane [22, Exer.
VIII.2.1]. This object is denoted X ⊕ Y and called the direct sum of X and Y .
In particular, it is equipped with morphisms iX : X → X ⊕ Y , iY : Y → X ⊕ Y ,
pX : X ⊕ Y → X and pY : X ⊕ Y → Y , such that pX iX = idX , pY iY = idY and
iX pX + iY pY = idX⊕Y . It is a nice exercise to show that these equations also imply
that pX iY = 0 and pY iX = 0.

Later we deal with additive categories that have extra structure on their Hom-sets.
he following notion captures this. We always assume rings are associative and unital.
owever, we do not necessarily assume the additive identity 0 and the multiplicative

dentity 1 of a ring are distinct.

efinition 2.4. Let k be a commutative ring. The category A is called a k-linear category
f HomA(X, Y ) is a k-module for all objects X, Y in A and the composition of morphisms
s k-bilinear.

xample 2.5.

(i) Recall that an abelian group is nothing other than a Z-module. Thus, a category
that is additive in the sense of Definition 2.2 is just a Z-linear category in the sense
of Definition 2.4.

(ii) Let Λ be a ring. We denote by ModΛ the category of all right Λ-modules. If
Λ = k is commutative, then Mod k is k-linear. See e.g. [1, Chp. III] for details.
More generally, if Λ is a k-algebra, then Mod k is k-linear.

Lastly we recall the concepts of (co)kernels and abelian categories.

efinition 2.6. Let f : X → Y be a morphism in A. A weak kernel of f is a morphism

: K → X in A with f i = 0, and such that: for any a : A → X with f a = 0 there exists
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b : A → K such that a = ib.

A

K X Y

a∃b

i f

If the morphism b obtained in this way is always uniquely determined, then i : K → X
s called a kernel of f .

One defines a weak cokernel and a cokernel of f dually.

Recall that a morphism f : X → Y in the additive category A is monic (or a
onomorphism) if for any morphism a : A → X with f a = 0 we must have that a = 0.
n epic morphism (or epimorphism) is defined dually.

efinition 2.7. An additive category A is said to be abelian if:

(i) each morphism f : X → Y in A has a kernel ker f : Ker f → X and a cokernel
coker f : Y → Coker f ; and

(ii) in A every monomorphism is the kernel of some morphism, and every epimor-
phism is the cokernel of some morphism.

xample 2.8. If k is a commutative ring, then the category Mod k (see Example 2.5(ii))
s an abelian k-linear category.

We conclude this section with the following straightforward lemma.

emma 2.9. A morphism f in A is a kernel if and only if it is a monic weak kernel.
t is a cokernel if and only if it is an epic weak cokernel.

. Idempotents

We will see in the next section that an additive category having Krull-Remak-Schmidt
ecompositions is very closely related to it having so-called split idempotents. However,
ne can define idempotents in any ring and we begin with such considerations now.

.1. Idempotents in rings

Let Λ be a ring with multiplicative identity 1 = 1Λ.

efinition 3.1.

(i) An element e ∈ Λ is called an idempotent if e2
= e.

(ii) Two idempotents e, f ∈ Λ are called orthogonal if e f = 0 = f e. A set
{e j }

n
j=1 ⊆ Λ of idempotents is called orthogonal if its elements are pairwise

orthogonal.
(iii) A non-zero idempotent e ∈ Λ is called primitive if e = f + g implies f = 0 or

g = 0 for all pairs of orthogonal idempotents f, g ∈ Λ.
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(iv) A set {e j }
n
j=1 ⊆ Λ of idempotents is called complete if e1 + · · · + en = 1.

Example 3.2.

(i) Let A be an additive category and suppose X ∈ A is an object. The identity
morphism idX : X → X and the zero morphism 0 : X → X are always idempotents
of the endomorphism ring EndA(X ) = HomA(X, X ).

(ii) Given any idempotent e ∈ Λ, the element 1 − e ∈ Λ is also idempotent, and e
and 1 − e are orthogonal. Furthermore, the right Λ-module ΛΛ decomposes as
Λ = eΛ ⊕ (1 − e)Λ.

Lastly in this subsection, we recall the definition of a local ring, and its connection
with idempotents and indecomposable modules.

Definition 3.3. If 0 ̸= 1 and the sum of any two non-units in Λ is again a non-unit,
hen Λ is called a local ring.

emark 3.4. A ring Λ is local if, equivalently, 0 ̸= 1 and Λ has a unique maximal
ight ideal. This right ideal is precisely the collection of non-units in such a ring. In
articular, given an element x in a local ring Λ, we have that x or 1 − x is invertible.
ee Anderson–Fuller [2, Prop. 15.15], or Lam [20, Thm. 19.1].

Local rings have very few idempotents as we now see. The converse of the following
emma holds if Λ is artinian; see e.g. [20, Cor. 19.19].

emma 3.5. If Λ is local, then Λ has precisely two idempotents 0 and 1. In particular,
he idempotent 1 is primitive.

roof. Let e ∈ Λ be an idempotent. Then 1 − e is also idempotent by Example 3.2(ii).
ince Λ is local, we have that e or 1 − e is invertible by Remark 3.4. If e is a unit and
f = 1 = f e for some f ∈ Λ, then e = e · 1 = e(e f ) = e f = 1 as e = e2. On the other
and, if 1 − e is invertible then a similar argument shows that 1 − e = 1, whence e = 0.

For the other assertion, suppose 0 ̸= 1 = e + f for some orthogonal idempotents
e, f ∈ Λ. If e = f = 0 then 1 = 0, which is impossible. Therefore, without loss of
generality, e = 1 and so f = 0. ■

A corner ring of Λ is a ring of the form eΛe for some idempotent e ∈ Λ. Note that
Λe is unital with unit 1eΛe = e. There is an isomorphism

Φ : EndModΛ(eΛ)
∼=

−→ eΛe (3.1)

f right eΛe-modules given by Φ(h) := h(e) = h(e)e. Moreover, Φ is an isomorphism
f rings. See Assem–Simson–Skowroński [3, Lem. I.4.2].

A non-zero module M is called indecomposable if, whenever there is an isomorphism
M ∼= M1 ⊕ M2 of modules, we have M1 = 0 or M2 = 0. When we have a decomposition
ike M ∼= M1 ⊕ M2, we usually more simply write M = M1 ⊕ M2. Nothing is lost with
his identification for our purposes since we are studying the uniqueness of direct sum
ecompositions up to permutation and isomorphism of summands.
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Lemma 3.6. Let e ∈ Λ be an idempotent. Then the following are equivalent.

(i) The idempotent e is primitive.
(ii) The only idempotents of eΛe are 0 and 1eΛe = e ̸= 0.

(iii) The right Λ-module eΛ is indecomposable.

Proof. (i) ⇒ (ii) Let e f e ∈ eΛe be an idempotent. We have e = e f e + (e − e f e),
hich implies e f e = 0 or e − e f e = 0, because e is primitive by assumption, and we

re done.
(ii) ⇒ (iii) Let eΛ = X1 ⊕ X2 be a decomposition of eΛ ̸= 0, and let f : eΛ →→

X1 ↪→ eΛ, g : eΛ →→ X2 ↪→ eΛ be the compositions of the canonical projections and
nclusions. Then f, g are idempotents in EndModΛ(eΛ) and, moreover, ideΛ = f + g.

Using the isomorphism Φ from (3.1) and that e ̸= 0, we see that EndModΛ(eΛ) ̸= 0.
Since Φ( f ),Φ(g) ∈ eΛe are idempotents, we have Φ( f ),Φ(g) ∈ {0, e} by assumption.
If Φ( f ) = Φ(g) = 0, then f = g = 0 as Φ is an isomorphism, whence X1 = X2 = 0.

ut this forces eΛ = 0, which is a contradiction. Thus, without loss of generality,
( f ) = e = Φ(ideΛ). This implies f = ideΛ and hence g = 0. In particular, this
eans X2 = 0 and X1 = eΛ is indecomposable.
(iii) ⇒ (i) Note that e is non-zero as eΛ ̸= 0. If e = f + g where f, g are orthogonal

dempotents, then eΛ = ( f + g)Λ = f Λ ⊕ gΛ. But then, without loss of generality,
f Λ = 0 as eΛ is indecomposable by assumption and so f = 0. Thus, e is primitive. ■

.2. Idempotents in categories

By an idempotent in a category A we mean any endomorphism e : X → X for some
bject X satisfying e2

= e. In other words, e ∈ EndA(X ) is an idempotent element. We
egin with an easy lemma.

emma 3.7. Let A be an additive category with an object X. Suppose X = A ⊕ B
here EndA(A) is local. Consider the canonical projection p : X →→ A and canonical

nclusion i : A ↪→ X. Then the idempotent e := i p ∈ EndA(X ) is primitive.

roof. If e = i p were zero, then it would follow that p were zero since i is a
onomorphism. This would in turn imply that A were the zero object, which is not

ossible as EndA(A) is assumed to be local. Now suppose e = f +g for some orthogonal
dempotents f, g ∈ EndA(X ). Note that e f e = f . A straightforward verification shows
p f i, pgi ∈ EndA(A) are orthogonal idempotents and that idA = p f i + pgi . Since
ndA(A) is local, by Lemma 3.5 and without loss of generality, we have that p f i = 0.

This implies f = e f e = i(p f i)p = 0, and so e is primitive. ■

efinition 3.8. A category A has split idempotents if, for each X ∈ A and every
dempotent e ∈ EndA(X ), there exists an object Y ∈ A and morphisms r : X → Y ,

s : Y → X such that e = sr and rs = idY .

emark 3.9. With the notation as in Definition 3.8, we see that r is a retraction (hence
an epimorphism) and s is a section (hence a monomorphism).
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It turns out that any additive category embeds into one that has split idempotents; see
aroubi [17], or Bühler [7, §6] for a nice exposition. The following set of equivalent

onditions for a category to have split idempotents is well-known for additive categories
see e.g. [7, Rmk. 6.2]). The same argument, however, also works for preadditive
ategories.

roposition 3.10. Let A be a preadditive category. Then the following are equivalent.

(i) A has split idempotents.
(ii) Each idempotent in A admits a kernel in A.

(iii) Each idempotent in A admits a cokernel in A.

Proof. (i) ⇒ (ii) Let e : X → X be an arbitrary idempotent in A. By assumption,
dX − e splits and so there exist t : X → Z , u : Z → X with idX − e = ut and tu = idZ .

Recall that t is epic and u is monic (see Remark 3.9). We claim that Z
u

→ X is a kernel
for e. Since (eu)t = e(ut) = e(idX − e) = 0 and t is epic, we see that eu = 0. Suppose
: A → X is a morphism in A such that ea = 0. Then

a = a − 0 = a − ea = (idX − e)a = (ut)a = u(ta),

o a factors through u. Thus, u is a monomorphism that is a weak kernel of e and hence
kernel of e by Lemma 2.9.
(ii) ⇒ (i) Let e ∈ EndA(X ) be an idempotent. The idempotent idX − e admits a

ernel Y := Ker(idX − e)
s

↪→ X . As (idX − e)e = 0, we have that e factors through s.
hus, there exists a unique morphism r : X → Y such that e = sr , so it suffices to show
s = idY . As s is the kernel of idX − e we obtain s − es = (idX − e)s = 0, so es = s.
hus, s(rs) = (sr )s = es = s and hence rs = idY as s is a monomorphism. This shows
splits.
The equivalence between (i) and (iii) is dual. ■

Given an idempotent e : X → X in an additive category with split idempotents, we can
dentify two direct summands of X . This result is also classical (see e.g. Auslander [5,
. 188]).

roposition 3.11. If an additive category A has split idempotents, then for each
dempotent e : X → X we have X = Ker(e) ⊕ Ker(idX − e).

roof. Let e ∈ EndA(X ) be an idempotent. Arguing as in the proof of Proposition 3.10,
e obtain a commutative diagram

X

X1 := Ker(e) X

X2 := Ker(idX − e) X X,

∃!p1
idX − e

i1

∃!p2
e

i2 idX − e
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where p j i j = idX j for j = 1, 2. We also have idX = (idX − e) + e = i1 p1 + i2 p2.
Furthermore, i1 p1i2 = (idX −e)i2 = 0 as i2 = ker(idX −e), so p1i2 = 0 since i1 is monic.
Similarly, p2i1 = 0. One can then easily check that X satisfies the universal property for
the coproduct X1 ⨿ X2. Hence, X = X1 ⨿ X2 = X1 ⊕ X2 = Ker(e) ⊕ Ker(idX − e). ■

4. Krull-Schmidt categories and semi-perfect rings

In this section, we follow [18] in introducing Krull-Remak-Schmidt decompositions
and Krull-Schmidt categories (see Definition 4.6). We include proofs where we think the
reader may benefit from some extra detail; otherwise proofs are omitted and can be found
in [18]. See also [8, App. A].

For this section, let A denote an additive category. For an object X ∈ A, we let add X
denote the full subcategory of A consisting of all direct summands of finite direct sums of
copies of X . For a ring Λ, we denote by projΛ the full subcategory of ModΛ consisting
of finitely generated projective right Λ-modules. We note that projΛ = addΛ.

Remark 4.1. The category projΛ has split idempotents (see [18, Exam. 2.2(2)]).
Indeed, suppose that e ∈ EndprojΛ(P) = EndModΛ(P) is an idempotent. As ModΛ is
abelian, the idempotents e and idP − e have kernels in ModΛ. By Proposition 3.11, we
know P = Ker(e) ⊕ Ker(idP − e) in ModΛ. It follows that Ker(e) is projective and
finitely generated, so e has a kernel in projΛ. Therefore, projΛ has split idempotents by

roposition 3.10.

The following result gives a way to turn questions about an object in an additive
ategory into questions about projective modules in a module category. This was termed
projectivization” in [6, §II.2].

roposition 4.2. Suppose that X ∈ A and set ΛX := EndA(X ). The additive
unctor HX (−) := HomA(X, −) :A → ModΛX induces a fully faithful additive functor
dd X → projΛX . If A has split idempotents then this is an equivalence. For each X0 ∈

add X, the induced map FX0 : EndA(X0) → EndModΛX (HX (X0)) is an isomorphism of
ings.

roof. The first two assertions follow from [18, Prop. 2.3]. For the last claim, we
ave that the induced map FX0 is a bijective homomorphism of abelian groups since
omA(X, −) is additive and fully faithful on add X . Since HomA(X, −) is a covariant

functor, the map FX0 preserves composition (i.e. is multiplicative) and identities (i.e. is
map of unital rings). Hence, FX0 is a unital ring isomorphism. ■

The next definition is a generalisation of an indecomposable module.

efinition 4.3. An object X ∈ A is called indecomposable if X is non-zero, and if
X1 = 0 or X2 = 0 whenever there is an isomorphism X ∼= X1 ⊕ X2.

emark 4.4. Let X ∈ A. Since add X is closed under direct summands, an object
Y ∈ add X is indecomposable in add X if and only if it is indecomposable in A.
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The following result is very well-known (see e.g. Harada [14]).

emma 4.5. If EndA(X ) is local, then X is indecomposable.

roof. Suppose EndA(X ) is local and that X = X1 ⊕ X2. Note that EndA(X ) ̸= 0
see Definition 3.3) so, in particular, we see that idX ̸= 0 and hence X ̸= 0. Let
p j : X →→ X j , respectively, i j : X j ↪→ X , be the canonical projection, respectively,
inclusion for j = 1, 2. Then e j := i j p j ∈ EndA(X ) is idempotent and so we must
have e j is 0 or idX for j = 1, 2 by Lemma 3.5. If e1 = 0 = e2, then we would
have idX = e1 + e2 = 0, which is a contradiction. Hence, without loss of generality,
e1 ̸= 0 and so e1 = idX . Moreover, this yields e2 = 0 and hence X2 = 0, so X is
ndecomposable. ■

Let us now state the main definition of this section.

efinition 4.6. A finite direct sum decomposition X = X1 ⊕ · · · ⊕ Xn of X ∈ A,
here EndA(X j ) is a local ring for all 1 ⩽ j ⩽ n, is called a Krull-Remak-Schmidt
ecomposition of X . Two Krull-Remak-Schmidt decompositions X = X1 ⊕· · ·⊕ Xn and

X = Y1 ⊕ · · · ⊕ Ym of X are said to be equivalent if m = n and there is a permutation
∈ Sym(n) such that X j ∼= Yσ ( j) for all 1 ⩽ j ⩽ n.
If every object in A admits a Krull-Remak-Schmidt decomposition, then A is known

s a Krull-Schmidt category.

emark 4.7. Notice that in an additive category A, a zero object is the direct sum of
n empty (and hence finite) family of objects each having a local endomorphism ring.

An immediate consequence of Definition 4.6 is the following.

emma 4.8. In a Krull-Schmidt category A, an object X ∈ A is indecomposable if
nd only if EndA(X ) is local.

roof. Lemma 4.5 treats one direction, so we suppose that X is indecomposable
nd show that EndA(X ) is local. As A is Krull-Schmidt, we have a decomposition

X = X1 ⊕ · · · ⊕ Xn , where each EndA(X j ) is local. However, we must have n = 1
s X is indecomposable, and so EndA(X ) = EndA(X1) is local. ■

The next proposition follows from [18, Prop. 4.1].

roposition 4.9. The following are equivalent for a ring Λ.

(i) The category projΛ is Krull-Schmidt.
(ii) The right Λ-module ΛΛ admits a decomposition ΛΛ = P1 ⊕ · · · ⊕ Pn , where each

Pj has a local endomorphism ring.

efinition 4.10. If a ring Λ satisfies the equivalent conditions of Proposition 4.9, then

t is called semi-perfect.
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Notice that for a semi-perfect ring Λ, the decomposition in Proposition 4.9(ii) is a
rull-Remak-Schmidt decomposition in projΛ ⊆ ModΛ.
As remarked in [18], the following theorem is a consequence of the existence and

niqueness of projective covers over a semi-perfect ring.

heorem 4.11 ([18, Thm. 4.2]). Let X ∈ A be an object. Suppose X1 ⊕ · · · ⊕ Xn =

X = Y1 ⊕ · · · ⊕ Ym for some objects X j , Yl each having a local endomorphism ring.
Then these two Krull-Remak-Schmidt decompositions are equivalent.

There are two immediate consequences.

Corollary 4.12 ([18, Cor. 4.3]). If A is Krull-Schmidt and there are two decompositions
X1 ⊕ · · · ⊕ Xn = X = X ′

⊕ X ′′, where each X j is indecomposable, then there exists
t ⩽ n such that X = X1 ⊕ · · · ⊕ X t ⊕ X ′ (possibly after reindexing).

Corollary 4.13 ([8, Thm. A.1], [18, Cor. 4.4]). An additive category A is Krull-Schmidt,
if and only if it has split idempotents and EndA(X ) is semi-perfect for each X ∈ A.

Proof. If A has split idempotents and ΛX := EndA(X ) is semi-perfect for all
X ∈ A, then by Propositions 4.2 and 4.9 we have that A is Krull-Schmidt. Indeed,
a Krull-Remak-Schmidt decomposition of ΛX as in Proposition 4.9(ii) yields a Krull-
Remak-Schmidt decomposition of X in A using the equivalence add X ≃ projΛX

induced by HomA(X, −).
Conversely, suppose A is a Krull-Schmidt category and let X ∈ A be arbitrary. By

hypothesis, we may take a finite direct sum decomposition X = X1 ⊕ · · · ⊕ Xn such
that EndA(X j ) is local for each j . We have (ΛX )ΛX = EndA(X ) ∼= HomA(X, X1) ⊕

· · ·⊕HomA(X, Xn) and EndModΛX (HomA(X, X j )) ∼= EndA(X j ) is local (using the fully
faithfulness in Proposition 4.2). Therefore, ΛX is a semi-perfect ring, and equivalently
projΛX is Krull-Schmidt by Proposition 4.9. Therefore, given any finitely generated
projective ΛX -module, it will isomorphic to a direct summand of Λm

X = HomA(X, X1)m
⊕

· · · ⊕ HomA(X, Xn)m by Corollary 4.12. This means that HomA(X, −) : add X →

projΛX is also dense, and hence an equivalence. The category projΛX has split
idempotents (see Remark 4.1) and hence so does add X . Moreover, this implies A has
split idempotents. ■

We close this section with two results related to semi-perfect rings that will be needed
for the main result of the paper. Although a stronger version of the next lemma can
be found in [2, Thm. 27.6], the proof below is inspired by that of Auslander–Reiten–
Smalø [6, Prop. I.4.8].

Lemma 4.14. Suppose Λ is semi-perfect and that Λ = P1⊕· · ·⊕ Pn as right Λ-modules,
where EndModΛ(Pj ) is local for 1 ⩽ j ⩽ n. Then Λ admits a complete set {e j }

n
j=1 of

primitive orthogonal idempotents, such that Pj = e jΛ and e jΛe j is local for 1 ⩽ j ⩽ n.

Proof. Since Λ = P1⊕· · ·⊕Pn , we may express the identity 1Λ of Λ as 1Λ = e1+· · ·+en
for some elements e j ∈ Pj . Fix l ∈ {1, . . . , n}. Then we have e1el + · · · + enel =
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e1 + · · · + en)el = 1Λ · el = el ∈ Pl . But since each Pj is a right Λ-module, we have
j el ∈ Pj . Therefore, using the direct sum decomposition of Λ, we see that e j el = 0

for all j ̸= l and that el = elel , i.e. the set {e j }
n
j=1 forms a complete set of orthogonal

idempotents.
We claim that elΛ = Pl . Since el ∈ Pl and Pl is a right Λ-module, we immediately

ee that elΛ ⊆ Pl . Conversely, let x ∈ Pl ⊆ Λ be arbitrary. By the same argument as
bove, e j x = 0 for j ̸= l and x = el x ∈ elΛ, so that we have the equality elΛ = Pl .

Lastly, using the isomorphism (3.1), we have elΛel ∼= EndModΛ(elΛ) = EndModΛ(Pl) is
local, so el = 1elΛel ̸= 0 and el is primitive by combining Lemmas 3.5 and 3.6. ■

The following result is a consequence of Jacobson [15, Thm. III.10.2]. Jacobson states
the result with the assumption that the primitive idempotents give rise to local corner
rings. Here we suppose that the ring Λ itself is semi-perfect so that projΛ is Krull-
Schmidt, and this implies the hypothesis needed in [15]. Furthermore, we note that the
proof below appears in a pre-published version of Liu–Ng–Paquette [21].

Proposition 4.15. Let Λ be a semi-perfect ring, and suppose {e j }
n
j=1, { fl}

m
l=1 are

complete sets of primitive orthogonal idempotents in Λ. Then m = n, and there exists a
permutation σ ∈ Sym(n) and an invertible element a ∈ Λ such that fσ ( j) = ae j a−1 for
all 1 ⩽ j ⩽ n.

Proof. Since {e j }
n
j=1, { fl}

m
l=1 are complete sets of primitive orthogonal idempotents in

Λ, we obtain e1Λ ⊕ · · · ⊕ enΛ = Λ = f1Λ ⊕ · · · ⊕ fmΛ, where e jΛ and flΛ are
ndecomposable by Lemma 3.6. Moreover, since Λ is semi-perfect we know projΛ is
rull-Schmidt and so by Proposition 4.9 we have that EndModΛ(e jΛ) and EndModΛ( flΛ)

re local rings. Therefore, we may apply Theorem 4.11 so that m = n and there is a
ermutation σ ∈ Sym(n), such that e jΛ = fσ ( j)Λ, for all 1 ⩽ j ⩽ n.

Hence, there exist b j , c j ∈ Λ, such that e j = fσ ( j)b j = fσ ( j)b j e j and fσ ( j) = e j c j fσ ( j)

or each 1 ⩽ j ⩽ n. In particular, e j = (e j c j fσ ( j))( fσ ( j)b j e j ) and

fσ ( j) = ( fσ (i)b j e j )(e j c j fσ ( j)). (4.1)

et a :=
∑n

j=1 fσ ( j)b j e j and a−1
:=
∑n

l=1 elcl fσ (l). We observe that

a · a−1
=

⎛⎝ n∑
j=1

fσ ( j)b j e j

⎞⎠( n∑
l=1

elcl fσ (l)

)

=

n∑
j=1

( fσ ( j)b j e j )(e j c j fσ ( j)) as {e j }
n
j=1 is orthogonal

=

n∑
j=1

fσ ( j) using (4.1)

= 1Λ as { f j }
m is complete.
j=1
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Similarly, one can show a−1a = 1Λ. Finally, for r ∈ {1, . . . , n}, we see that

aer a−1
=

⎛⎝ n∑
j=1

fσ ( j)b j e j

⎞⎠ er

(
n∑

l=1

elcl fσ (l)

)
= ( fσ (r )br er )er (er cr fσ (r )) = fσ (r ),

gain using that {e j }
n
j=1 is orthogonal and (4.1), and this finishes the proof. ■

. Subobjects, the bi-chain condition and Homhom-finiteness

The goal of this section is to see that the endomorphism ring of any object in a Hom-
nite additive category (see Definition 5.7) is semi-perfect (see Corollary 5.9). This is
hown via Atiyah’s bi-chain conditions (see Definition 5.5).

efinition 5.1 ([25, §I.5], [18, p. 539]). Suppose B is an abelian category and let
X ∈ A. Two monomorphisms a : X1 ↪→ X and b : X2 ↪→ X are equivalent if there
s an isomorphism c : X1

∼=
−→ X2 such that bc = a. This is an equivalence relation on

he collection of monomorphisms in B with codomain X , and an equivalence class of
his relation is called a subobject of X . By abuse of notation we just write a : X1 ↪→ X
or the equivalence class containing the monomorphism a.

Given two subobjects A
f

↪→ X and B
g

↪→ X of X , we say that A is contained in
B (denoted A ⊆ B) if there is a (necessarily monic) morphism h : A → B such that
f = gh. In this way, we obtain a partial order on the collection of subobjects of X .

We assume the following throughout this section.

etup 5.2. We denote by B an abelian category. We make the implicit assumption that
he collection of subobjects of an object X ∈ B is a set.

emark 5.3. The set-theoretic restriction in Setup 5.2 is not so strong. For example,
he condition is satisfied if B has a generator (see Freyd [11, Prop. 3.35]), or if B is
keletally small. In particular, the category of all (right) modules over a ring falls into
etup 5.2.

We call X ∈ B simple if X ̸= 0 and its only subobjects are 0 and X itself (see [18,

. 539]). Given a subobject A
f

↪→ X , we denote by X/A the codomain of the cokernel
ap coker f : X →→ Coker f .

efinition 5.4 ([18, p. 547]). An object X ∈ B is said to have finite length if there is a
nite chain (called a composition series)

0 = X0 ⊆ X1 ⊆ · · · ⊆ Xn−1 ⊆ Xn = X

f subobjects of X such that each successive quotient X j+1/X j is simple.

Now we recall the bi-chain condition in an abelian category as introduced in [4].



A. Shah / Expo. Math. 41 (2023) 220–237 233

D

i
s
s

E

L
c

D
a
k
s

L

T
c
E

C
f

P
k
a
t
fi
w

A
a

6

I
p

efinition 5.5 ([4, p. 310], [18, p. 546]). A bi-chain in B is a sequence of morphisms

( X j X j+1 X j
α j β j

) j⩾0 (5.1)

n B, for which α j is epic and β j is monic for all j ⩾ 0. An object X ∈ B is said to
atisfy the bi-chain condition if for any bi-chain (5.1) with X0 = X , there exists N ⩾ 0
uch that α j , β j are isomorphisms ∀ j ⩾ N .

If X ∈ B satisfies the bi-chain condition, then X is indecomposable if and only if
ndB(X ) is local; see [18, Prop. 5.4], also [4, Lem. 6].

emma 5.6 ([18, Lem. 5.1]). If X ∈ B has finite length, then X satisfies the bi-chain
ondition.

efinition 5.7 ([18, p. 547]). We call a category A a Hom-finite k-linear category if k is
commutative ring, such that A is k-linear and for which HomA(X, Y ) is a finite length
-module for all X, Y ∈ A. If the ring k or its existence is understood, then we more
imply say that A is Hom-finite.

Any object X of a Hom-finite abelian category satisfies the bi-chain condition; see [18,
em. 5.2].

heorem 5.8 ([18, Thm. 5.5], [4, Lem. 4]). Suppose X ∈ B satisfies the bi-chain
ondition. Then X admits a finite direct sum decomposition X = X1 ⊕ · · · ⊕ Xn , with
ndB(X j ) local for all 1 ⩽ j ⩽ n.

Putting together the results above we derive the following.

orollary 5.9. If A is a Hom-finite k-linear category, then EndA(X ) is semi-perfect
or each X ∈ A.

roof. If A is a Hom-finite k-linear category, then ΛX := EndA(X ) is a finite length
-module. That is, ΛX is a finite length object in the abelian category Mod k, and hence
lso a finite length object in ModΛX . Therefore, by Lemma 5.6 we know ΛX satisfies
he bi-chain condition in ModΛX . This implies that ΛX admits a decomposition into a
nite direct sum of right ΛX -modules with local endomorphism rings by Theorem 5.8,
hich is precisely condition (ii) of Proposition 4.9. Hence, ΛX is semi-perfect. ■

nother proof of Corollary 5.9. If ΛX is a finite length object in ModΛX , then it is
n artinian ring. By [20, p. 336], any (one-sided) artinian ring is semi-perfect. ■

. The main theorem

We are now in position to state and prove the theorem we have been building too.
t is well-known and stated in several places, e.g. [27, §2.2], but we could not find a
roof. The equivalence below is asserted in [13, §I.3.2] without an explicit Hom-finiteness



234 A. Shah / Expo. Math. 41 (2023) 220–237

l
i
b

T
t

F

o

P
Λ
t

i
S

s
e
i

w⨁
e
a

assumption, but we believe this may be in error. It was a desire to understand this that
motivated this note.

We note that the equivalence of (i) and (ii) in Theorem 6.1 follows from Corol-
ary 4.13 once we know each endomorphism ring arising from a Hom-finite category
s semi-perfect (see Corollary 5.9). We give a more pedestrian proof of (i) implies (ii)
elow.

heorem 6.1. Let k be a commutative ring and A a Hom-finite k-linear category. Then
he following are equivalent.

(i) A is a Krull-Schmidt category.
(ii) A has split idempotents.

(iii) For any object Y ∈ A, the ring EndA(Y ) is local if and only if Y is indecompos-
able.

urthermore, in this case, an object X ∈ A admits a Krull-Remak-Schmidt decomposition
X = X1 ⊕ · · · ⊕ Xn in A if and only if EndA(X ) admits a complete set of primitive
rthogonal idempotents of size n.

roof. Throughout this proof we use that, since A is Hom-finite, the endomorphism ring
X := EndA(X ) of each object X ∈ A is semi-perfect by Corollary 5.9. Furthermore,

his implies projΛX is Krull-Schmidt by Proposition 4.9.
(i) ⇒ (ii) Fix an object X ∈ A. If X = 0 then any idempotent e ∈ EndA(X )

s trivially split, so assume X ̸= 0. Since A is Krull-Schmidt, there is a Krull-Remak-
chmidt decomposition X = X1⊕· · ·⊕ Xn of X in A. Consider the canonical projections

p j : X →→ X j and inclusions i j : X j ↪→ X . Putting e j := i j p j for each 1 ⩽ j ⩽ n, we
ee that {e j }

n
j=1 forms a complete set of orthogonal idempotents of ΛX . Each idempotent

j is primitive by Lemma 3.7, and hence ΛX = e1ΛX ⊕ · · · ⊕ enΛX is a decomposition
nto indecomposable right ΛX -modules using Lemma 3.6.

Suppose e : X → X is an idempotent morphism. If e = 0, then it trivially splits, so
e may assume e ̸= 0. By Example 3.2(ii), we have eΛX ⊕ (idX − e)ΛX = ΛX =

n
j=1 e jΛX . Therefore, working in the Krull-Schmidt category projΛX , we see that

ΛX =
⨁t

j=1 e jΛX and (idX − e)ΛX =
⨁n

j=t+1 e jΛX for some t ∈ {1, . . . , n} (possibly
fter reindexing) by Corollary 4.12. Therefore, we may express e = e1r1 +· · ·+ etrt and

1ΛX −e = idX −e = et+1rt+1 +· · ·+enrn for some r j ∈ ΛX , where 1 ⩽ j ⩽ n. We claim
that {g j := e jr j }

n
j=1 ⊆ ΛX is a complete set of primitive orthogonal idempotents and that

g jΛX = e jΛX . First, note that g jΛX = e jr jΛX ⊆ e jΛX for all 1 ⩽ j ⩽ n. Now fix
j ∈ {1, . . . , t}. If we have x ∈ e jΛX ⊆ eΛX , then it satisfies ex = x and (idX − e)x = 0.
Hence, the identity

x = 1ΛX · x = e1r1x + · · · + enrn x = g1x + · · · + gn x

implies x = g j x and gl x = 0 for all l ̸= j , using ΛX =
⨁n

j=1 e jΛX , as gl x ∈ elΛX

and x ∈ e jΛX . In particular, this yields e jΛX ⊆ g jΛX and so g jΛX = e jΛX for each
1 ⩽ j ⩽ t . Furthermore, we also see that gl g j = 0 for l ̸= j and g2

j = g j by choosing
x = g j . A similar argument yields the same conclusions for j ∈ {t+1, . . . , n}. Moreover,

by Lemma 3.6 we deduce that g j is primitive as g jΛX = e jΛX is indecomposable.
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ence, {g j }
n
j=1 is a set of primitive orthogonal idempotents in ΛX , and it is clear that it

s complete.
By Proposition 4.15 there exists an invertible element a ∈ ΛX and a permutation
∈ Sym(n), such that gσ ( j) = ae j a−1 for all j = 1, . . . , n. But, by inspecting the

roof of Proposition 4.15, we observe that σ ( j) = j for each j as e jΛX = g jΛX .
Therefore, g j = ae j a−1 for each 1 ⩽ j ⩽ n. Define Y := X1 ⊕ · · · ⊕ X t and
Z := X t+1⊕· · ·⊕Xn , then X = Y ⊕Z . Define morphisms p := ( p1 . . . pt )T a−1

: X → Y
nd i := a( i1 . . . it ) : Y → X . Then

i p = a( i1 . . . it ) ◦ ( p1 . . . pt )T a−1
=

t∑
j=1

ai j p j a−1
=

t∑
j=1

ae j a−1
=

t∑
j=1

g j = e,

and pi is the (t × t)-diagonal matrix with diagonal (p1i1, . . . , pt it ) = (idX1 , . . . , idX t ),
i.e. pi = idY . That is, we have shown e splits and hence A has split idempotents.

(ii) ⇒ (iii) Let Y ∈ A be arbitrary and note ΛY = EndA(Y ) = Endadd Y (Y ). As A
as split idempotents, there is an equivalence add Y ≃ projΛY by Proposition 4.2. In
articular, add Y is a Krull-Schmidt category. Using this, Remark 4.4 and Lemma 4.8,
e know Y is indecomposable in A, if and only if it is indecomposable in add Y , if and
nly if ΛY is local.

(iii) ⇒ (i) Fix an object X ∈ A. If X = 0 then it trivially has a Krull-Remak-
chmidt decomposition (see Remark 4.7). Thus, assume X ̸= 0. As ΛX = EndA(X )

s semi-perfect, there is a direct sum decomposition (ΛX )ΛX = P1 ⊕ · · · ⊕ Pn with
ndModΛX (Pj ) local for each 1 ⩽ j ⩽ n. By Lemma 4.14, there is a complete set
f j }

n
j=1 ⊆ ΛX of primitive orthogonal idempotents, such that Pj = f jΛX . As in

roposition 4.2, put HX (−) = HomA(X, −) and recall that there is a ring isomorphism
ndA(X0) → EndModΛX (HX (X0)) induced by HX (−) for each object X0 ∈ add X .

We prove by induction on n that X admits a Krull-Remak-Schmidt decomposition
X = X1 ⊕· · ·⊕ Xn of length n in A. If n = 1, then ΛX = P1 has a local endomorphism
ing. Then the ring isomorphism EndA(X ) ∼= EndModΛX (ΛX ) implies EndA(X ) is local,
o we set X1 := X and we are done in this case.

Now suppose n ⩾ 2 and that the claim holds for positive integers m < n. If X is
ndecomposable, then ΛX = EndA(X ) is local by assumption (iii). This would imply
hat 1ΛX = idX is primitive by Lemma 3.5, and then in turn force n = 1 by combining
emma 4.14 and Proposition 4.15, leading to a contradiction. Hence, X = Y1 ⊕ Y2 for
ome non-zero objects Y j ∈ add X . We have HX (Y1) ⊕ HX (Y2) ∼= HX (X ) = ΛX =

n
j=1 f jΛX in the Krull-Schmidt category projΛX . Thus,

HX (Y1) =

m1⨁
j=1

f jΛX (6.1)

nd HX (Y2) =
⨁n

j=m1+1 f jΛX for some 0 ⩽ m1 ⩽ n (possibly after reindexing) by
orollary 4.12. Since there is the non-zero canonical projection of X onto its summand

Y j for j = 1, 2, we must actually have that 1 ⩽ m1 ⩽ n −1. Define f := f1 +· · ·+ fm1 .
hen

Λ = End (Y )
Y1 A 1
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∼= EndprojΛX (HX (Y1)) by Proposition 4.2 since Y1 ∈ add X

= EndModΛX (HX (Y1)) as projΛX ⊆ ModΛX is a full subcategory

= EndModΛX

⎛⎝ m1⨁
j=1

f jΛX

⎞⎠ using (6.1)

∼= f ΛX f using (3.1),

here the two isomorphisms are ring isomorphisms. It is straightforward to check that
f j }

m1
j=1 ⊆ f ΛX f is a complete set of primitive orthogonal idempotents, and hence ΛY1

lso admits a complete set of primitive orthogonal idempotents of size m1. Similarly,
Y2 has a complete set of primitive orthogonal idempotents of size m2 := n − m1, where
⩽ m2 ⩽ n − 1. Therefore, we can apply our induction hypothesis to Y1 and Y2, which

roduces a Krull-Remak-Schmidt decomposition X = Y1 ⊕Y2 = X ′

1 ⊕· · ·⊕ X ′
m1

⊕ X ′′

1 ⊕

· · ⊕ X ′′
m2

of X in A of length m1 + m2 = n. ■
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[17] M. Karoubi, Algèbres de Clifford et K -théorie, Ann. Sci. Éc. Norm. Supér. (4) 1 (1968) 161–270.
[18] H. Krause, Krull–Schmidt categories and projective covers, Expo. Math. 33 (4) (2015) 535–549.
[19] W. Krull, Über verallgemeinerte endliche Abelsche Gruppen, Math. Z. 23 (1) (1925) 161–196.
[20] T.Y. Lam, A First Course in Noncommutative Rings, second ed., in: Graduate Texts in Mathematics,

vol. 131, Springer-Verlag, New York, 2001, p. xx+385.
[21] S. Liu, P. Ng, C. Paquette, Almost split sequences and approximations, Algebr. Represent. Theory 16

(6) (2013) 1809–1827.
[22] S. Mac Lane, Categories for the Working Mathematician, second ed., in: Grad. Texts in Math., vol.

5, Springer-Verlag, New York, 1998, p. xii+314.
[23] J.H. Maclagan-Wedderburn, On the direct product in the theory of finite groups, Ann. of Math. (2)

10 (4) (1909) 173–176.
[24] U.C. Merzbach, Robert Remak and the estimation of units and regulators, in: Amphora, Birkhäuser,

Basel, 1992, pp. 481–522.
[25] B. Mitchell, Theory of Categories, in: Pure and Applied Mathematics, vol. XVII, Academic Press,

New York-London, 1965, p. xi+273.
[26] R. Remak, Über die Zerlegung der endlichen Gruppen in direkte unzerlegbare Faktoren, J. Reine

Angew. Math. 139 (1911) 293–308.
[27] C.M. Ringel, Tame Algebras and Integral Quadratic Forms, in: Lecture Notes in Mathematics, vol.

1099, Springer-Verlag, Berlin, 1984, p. xiii+376.
[28] O. Schmidt, Sur les produits directs, Bull. Soc. Math. France 41 (1913) 161–164.
[29] S.L. Segal, Mathematicians Under the Nazis, Princeton University Press, Princeton, NJ, 2003

p. xxiv+530.
[30] C.L. Walker, R.B. Warfield Jr., Unique decomposition and isomorphic refinement theorems in additive

categories, J. Pure Appl. Algebra 7 (3) (1976) 347–359.

http://refhub.elsevier.com/S0723-0869(22)00081-0/sb1
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb1
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb1
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb2
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb2
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb2
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb3
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb3
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb3
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb3
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb3
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb4
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb4
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb4
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb5
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb6
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb6
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb6
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb7
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb8
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb8
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb8
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb9
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb9
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb9
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb10
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb10
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb10
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb11
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb12
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb12
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb12
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb13
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb13
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb13
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb14
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb14
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb14
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb15
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb15
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb15
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb16
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb16
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb16
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb17
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb18
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb19
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb20
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb20
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb20
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb21
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb21
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb21
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb22
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb22
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb22
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb23
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb23
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb23
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb24
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb24
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb24
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb25
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb25
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb25
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb26
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb26
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb26
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb27
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb27
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb27
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb28
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb29
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb29
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb29
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb30
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb30
http://refhub.elsevier.com/S0723-0869(22)00081-0/sb30

	Krull-Remak-Schmidt decompositions in Hom-finite additive categories
	Introduction
	Additive and abelian categories
	Idempotents
	Idempotents in rings
	Idempotents in categories

	Krull-Schmidt categories and semi-perfect rings
	Subobjects, the bi-chain condition and Hom-finiteness
	The main theorem
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


