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several different contexts in (higher) homological algebra, 
typically with respect to a (higher) cluster-tilting subcategory 
𝒳 of the relevant ambient category 𝒞. The recent tools 
of extriangulated and higher-exangulated categories have 
permitted some conditions on the subcategory 𝒳 to be 
relaxed. In this paper, we introduce the index with respect to 
a generating, contravariantly finite subcategory of a d-exact 
category that has d-kernels. We show that our index has the 
important property of being additive on d-exact sequences up 
to an error term.
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1. Introduction

Auslander and Reiten first introduced the concept of an index of a module in [7, Sec. 3], 
defined as [P0] − [P1] in a suitable Grothendieck group when P1 −→ P0 −→ M −→ 0 is a 
minimal projective presentation of a finitely generated module over a finite-dimensional 
algebra.

Starting from the above, the idea of an index has then been generalised to many differ
ent contexts. Palu introduced the index with respect to a cluster-tilting subcategory of a 
triangulated category in [36, Sec. 2.1]. Padrol–Palu--Pilaud--Plamondon then showed in 
[35, Prop 4.11] that this can be recovered using the theory of extriangulated categories, 
leading to the definition of the index in a triangulated category 𝒞 with respect to a 
contravariantly finite, rigid subcategory 𝒳 in [26]. For C ∈ 𝒞, the index is defined as the 
class [C]𝒳 in the Grothendieck group K0(𝒞,𝔼𝒳 , 𝔰𝒳 ), where (𝒞,𝔼𝒳 , 𝔰𝒳 ) is an extrian
gulated structure on 𝒞 relative to the triangulated structure. In [17], taking inspiration 
from methods used in [13] by Conde–Gorksy--Marks--Zvonareva, we widened the theory 
by showing that the assumption on 𝒳 being rigid can be dropped, augmenting the class 
of subcategories that admit a well-defined index.

The present paper uses similar methods to continue the investigation on the index, but 
in the different direction of higher homological algebra. Let d be a positive integer. The 
index with respect to a d-cluster tilting subcategory of a triangulated or abelian category 
has been introduced by Jørgensen in [25, Def. 3.3] and Reid in [39, Sec. 1], respectively. 
Since we focus on the exact category setting here, let us assume (𝒞,E ) is a skeletally 
small exact category (see [12, Def. 2.1]) and that 𝒯 ⊆ 𝒞 is a d-cluster tilting subcategory 
in the sense of [23, Def. 4.13]. Then, for C ∈ 𝒞, by the dual of [23, Prop. 4.15], there is 
an E -acyclic complex

0 Td−1 Td−2 · · · T0 C 0

with Ti ∈ 𝒯 for 0 ⩽ i ⩽ d− 1. In this case, the index of C with respect to 𝒯 is

index𝒯 (C) :=
d−1 ∑︂
i=0 

(−1)i[Ti]sp

viewed as an element of the split Grothendieck group Ksp
0 (𝒯 ) of 𝒯 .

As an application of [34, Thm. 4.5], one can verify Theorem 1.1 where the hypotheses 
of [34, Thm. 4.5] are satisfied using arguments analogous to those in [34, Sec. 6]. In 
particular, the isomorphism below suggests that one can interpret the class [C]𝒯 as the 
index of C with respect to 𝒯 .

Theorem 1.1. (cf. [34, Thm. 6.5]) Let (𝒞,E ) be a skeletally small exact category and 
𝒯 ⊆ 𝒞 a d-cluster tilting subcategory. Consider the relative exact category (𝒞,E𝒯 ) as 
obtained via Proposition 3.7 (with d = 1). There is an isomorphism
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K0(𝒞,E𝒯 )
∼ = −→ Ksp

0 (𝒯 )

[C]𝒯 ↦−→ index𝒯 (C)

[T ]𝒯 ←−⫞ [T ]sp𝒯 .

The higher-dimensional version of an exact category is called a d-exact category and 
was introduced by Jasso [23, Def. 4.2] (or see Definition 3.5). Let (𝒞,E ) be a skele
tally small, d-exact category and suppose 𝒳 ⊆ 𝒞 is a full subcategory. Motivated by 
Theorem 1.1, we define the index of C ∈ 𝒞 with respect to 𝒳 to be the class [C]𝒳 in 
K0(𝒞,E𝒳 ), where (𝒞,E𝒳 ) is the relative d-exact category defined as in Proposition 3.7
and its Grothendieck group as in Definition 3.8.

One of the key properties of the classical index is that it is additive up to a well
behaved error term on triangles [36, Prop. 2.2], (d + 2)-angles [25, Thm. C], and short 
exact sequences [39, Thm. C]. Importantly, such additivity permits use of the index to 
build cluster characters [36] and tropical friezes [18,25]. Using methods similar to those 
in [13] and [17], in Section 4 we prove our main result, showing that our index is also 
additive on d-exact sequences in E up to an error term.

Theorem 1.2. Suppose (𝒞,E ) is a skeletally small, idempotent complete, d-exact category 
that has d-kernels. Let 𝒳 ⊆ 𝒞 be a full, contravariantly finite, additive subcategory that 
is closed under direct summands and is also generating, see Definition 4.1. Then there 
is a group homomorphism θ𝒳 : K0(mod𝒳 ) → K0(𝒞,E𝒳 ), satisfying: if

Ad+1 Ad · · · A2 A1 A0
∂A
d+1 ∂A

d ∂A
3 ∂A

2 ∂A
1

is a d-exact sequence in E , then θ𝒳 ([Coker
(︁𝒞(−, ∂A

1 )
⃓⃓
𝒳
)︁
]) =

∑︁d+1
i=0 (−1)i[Ai]𝒳 .

Moreover, we note that the morphism θ𝒳 in the above result is unique with respect 
to a stronger property on left d-exact sequences in 𝒞.

Proposition 1.3. In the situation of Theorem 1.2, let

Ad+1 Ad · · · A2 A1 A0
∂A
d+1 ∂A

d ∂A
3 ∂A

2 ∂A
1

be a left d-exact sequence in 𝒞. Then θ𝒳 ([Coker
(︁𝒞(−, ∂A

1 )
⃓⃓
𝒳
)︁
]) =

∑︁d+1
i=0 (−1)i[Ai]𝒳 and 

θ𝒳 is unique with respect to this property.

We observe here that [39, Thm. C] is a special case of Theorem 1.2. Indeed, in the 
setup of [39], one has a d-cluster tilting subcategory 𝒯 = add (T ) of a module category 
𝒞, so one may choose 𝒳 = 𝒯 in Theorem 1.2 (see Example 4.6). Then, for a short exact 

sequence δ : A2 A1 A0
∂A
2 ∂A

1 in 𝒞, our term θ𝒯 ([Coker
(︁𝒞(−, ∂A

1 )
⃓⃓
𝒯
)︁
]) specialises to 
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the term κ−1([δ∗(T )]Λ) of [39, Thm. C], using that our index [−]𝒯 corresponds to Reid’s 
Ind𝒯 (−) (which is just index𝒯 (−) in our notation above) via the isomorphism given in 
Theorem 1.1.

A natural choice of (𝒞,E ) as in Theorem 1.2 is a d-abelian category. However, there 
are many examples of such (𝒞,E ) that are not d-abelian. For instance, any d-torsion class 
of a Krull-Schmidt d-abelian category that embeds in a finite length abelian category 
can serve as (𝒞,E ) (see Example A.10). We study d-exact categories that have d-kernels 
in more detail in Appendix A, where we also give several examples.

2. Background and notation

In this section, we present a summary on the module category of an additive category 
and recall some results we will apply later. Let 𝒞 denote an additive category. We say 
that 𝒞 has weak kernels if, for every morphism b : B → C in 𝒞, there is a morphism 
a : A → B in 𝒞 inducing an exact sequence as follows.

𝒞(−, A) 𝒞(−, B) 𝒞(−, C)𝒞(−, a) 𝒞(−, b)

We give a brief overview of the category of 𝒞-modules and its subcategory of finitely 
presented 𝒞-modules.

Definition 2.1. Suppose 𝒞 is a skeletally small, idempotent complete, additive category 
that has weak kernels. Let Ab denote the category of all abelian groups.

(1) The category of 𝒞-modules, denoted by Mod𝒞, is the abelian category of all (covari
ant) additive functors M : 𝒞op → Ab.

(2) A 𝒞-module M : 𝒞op → Ab is finitely presented if there is an exact sequence

𝒞(−, A) 𝒞(−, B) M 0

in Mod 𝒞 for some objects A,B ∈ 𝒞 (see [10, p. 155]). We denote by mod 𝒞 the 
full subcategory of Mod 𝒞 consisting of the finitely presented 𝒞-modules. Under the 
assumptions on 𝒞, we have that mod 𝒞 is abelian and the inclusion functor mod 𝒞 →
Mod 𝒞 is exact (see e.g. [4, Sec. III.2]).

(3) Under the assumptions on 𝒞, the Yoneda embedding 𝕐 : 𝒞 → mod 𝒞 given by A ↦→
𝕐A := 𝒞(−, A) and (A a → B) ↦→ 𝕐a := 𝒞(−, a) is fully faithful, additive, and its 
values are, up to isomorphism, all the projective objects in mod 𝒞 (and in Mod 𝒞). 
See [5, Prop. 2.2].

We will further assume that 𝒞 has a nice enough subcategory. We recall the definitions 
of the needed properties.
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Definition 2.2. By an additive subcategory 𝒳 of an additive category 𝒞 we mean a full 
subcategory that is closed under isomorphisms, finite direct sums and direct summands.

Let 𝒳 ⊆ 𝒞 be a full subcategory and C an object in 𝒞. A morphism x : X → C with 
X ∈ 𝒳 is called a right 𝒳 -approximation of C if, for each X ′ ∈ 𝒳 , the induced morphism 
𝒞(X ′, x) : 𝒞(X ′, X) →→ 𝒞(X ′, C) is surjective. If each C ∈ 𝒞 has a right 𝒳 -approximation, 
then 𝒳 is said to be contravariantly finite (see [8, pp. 113--114]).

For the rest of this section, we work in the following setup.

Setup 2.3. Let 𝒞 be a skeletally small, idempotent complete, additive category that has 
weak kernels. In addition, suppose 𝒳 ⊆ 𝒞 is a contravariantly finite, additive subcategory.

We recall the connection between the categories of 𝒳 -modules and of 𝒞-modules.

Remark 2.4. First note that the assumptions on 𝒳 ensure it is itself a skeletally small, 
idempotent complete, additive category with weak kernels. Hence, Definition 2.1 holds 
replacing 𝒞 by 𝒳 . Moreover, there is a triplet of adjoint functors

Mod 𝒞 Mod𝒳 ,
(−)|𝒳

L

R

(2.1)

where the left adjoint L and the right adjoint R of the restriction functor (−)|𝒳 are 
fully faithful functors. Furthermore, L is right exact and R is left exact, while (−)|𝒳 is 
exact. See [5, Props. 3.1 and 3.4].

We conclude this section by recalling the following result that we will use in the proof 
of the main result in Section 4.2. In the following, let ι denote the inclusion of Ker (−)|𝒳
into mod 𝒞. Then the induced homomorphism on the Grothendieck groups is

K0(Ker (−)|𝒳 ) K0(mod 𝒞),K0(ι)

where K0(ι)([M]) = [M] for M ∈ Ker (−)|𝒳 .

Lemma 2.5 ([17, Lem.   2.3 and Prop.   2.6]). The exact functor (−)|𝒳 : Mod 𝒞 → Mod𝒳
restricts to an exact functor on finitely presented modules (−)|𝒳 : mod 𝒞 → mod𝒳 . 
Moreover, the latter induces an exact sequence of Grothendieck groups

K0(Ker (−)|𝒳 ) K0(mod 𝒞) K0(mod𝒳 ) 0.K0(ι) K0((−)|𝒳 )

Consequently, the subgroup KerK0((−)|𝒳 ) of K0(mod 𝒞) is generated by
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{ [M] | M ∈ mod 𝒞 and M|𝒳 = 0 } .

3. 𝒅-exact categories

Let d ⩾ 1 be an integer. Abelian and exact categories are central in homological 
algebra. Their d-dimensional analogues have been introduced in the development of 
higher homological algebra, and they are known as d-abelian and d-exact categories [23]. 
Just like in the classical theory, each d-abelian category has a canonical d-exact structure 
[23, Thm. 4.4] and we focus on d-exact categories in this article. Throughout this section, 
let 𝒞 denote an additive category.

Definition 3.1. [23, Def. 2.2] Suppose ∂B
1 : B1 → B0 is a morphism in 𝒞. A d-kernel in 𝒞

of ∂B
1 is a sequence

(∂B
d+1, . . . , ∂

B
2 ) : Bd+1 Bd · · · B2 B1

∂B
d+1 ∂B

d ∂B
3 ∂B

2

of d composable morphisms in 𝒞, such that the induced sequence

0 𝕐Bd+1 𝕐Bd · · · 𝕐B1 𝕐B0
𝕐∂B

d+1 𝕐∂B
d 𝕐∂B

2 𝕐∂B
1

in Mod 𝒞 is exact. In this case, we say that

Bd+1 Bd · · · B2 B1 B0
∂B
d+1 ∂B

d ∂B
3 ∂B

2 ∂B
1 (3.1)

is a left d-exact sequence.
One defines a d-cokernel and a right d-exact sequence dually.

For a left d-exact sequence (3.1), it follows from the definition that ∂B
d+1 is a monomor

phism in 𝒞. We note that left d-exact sequences were called ‘d-kernel sequences’ in [22, 
Def. 4.9].

Definition 3.2. We say that 𝒞 has d-kernels if, for each morphism ∂B
1 : B1 → B0 in 𝒞, 

there is a left d-exact sequence of the form (3.1).

Definition 3.3. [23, Def. 2.4] A sequence

Bd+1 Bd · · · B2 B1 B0
∂B
d+1 ∂B

d ∂B
3 ∂B

2 ∂B
1 (3.2)

of morphisms in 𝒞 is called d-exact if it is both left d-exact and right d-exact, i.e. 
(∂B

d+1, . . . , ∂
B
2 ) is a d-kernel of ∂B

1 and (∂B
d , . . . , ∂B

1 ) is a d-cokernel of ∂B
d+1. We denote 

the complex (3.2) by B•.
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Remark 3.4. We emphasise here that the definition of a left d-exact sequence is purely 
about intrinsic properties of 𝒞; indeed, for the left d-exact sequence (3.1) to be left exact 
means precisely that the first d morphisms (∂B

d+1, . . . , ∂
B
2 ) constitute a d-kernel of the 

rightmost morphism ∂B
1 , and nothing more. Similarly for a (right) d-exact sequence. In 

particular, there is no reference to a d-exact structure on 𝒞 (cf. Definition 3.5 below).

We now recall the definition of a d-exact category. However, we omit the details we 
will not use in the sequel. For complete definitions, see [23, Sec. 4] or [22, Def. 4.19].

Definition 3.5. [23, Def. 4.2] Suppose E is a class of d-exact sequences in the additive 
category 𝒞. If B• ∈ E , then B• is called E -admissible, the morphism ∂B

d+1 is called an 
E -admissible inflation and ∂B

1 an E -admissible deflation. The pair (𝒞,E ) is a d-exact 
category if the following axioms are satisfied.

(EC) The class E is closed under weak isomorphisms (see [23, Def. 4.1]).
(E0) The zero complex 0 → · · · → 0 belongs to E .
(E1) The class of E -admissible inflations is closed under composition.

(E1op) Dually, the class of E -admissible deflations is closed under composition.
(E2) Dual of (E2op) below.

(E2op) For each B• ∈ E and each morphism g : C0 → B0, there is a d-pullback diagram 
(see [23, dual of Def. 2.11])

(Cd+1 ) Cd · · · C1 C0

(Bd+1 ) Bd · · · B1 B0,

∂C
d+1 ∂C

d

fd

∂C
1

f1 g

∂B
d+1 ∂B

d ∂B
1

(3.3)

such that C• ∈ E .

Remark 3.6. The axiom (E2op) (and hence also (E2)) we give above differ by a small 
subtlety compared to the original in [23, Def. 4.2]. However, nothing is lost due to [23, 
Prop. 4.8]. We use the version stated above for simplicity in our exposition below.

3.1. Relative theory via d-exangulated categories

Herschend–Liu--Nakaoka introduced d-exangulated categories in [22], giving a simul
taneous generalisation of d-exact and (d + 2)-angulated categories. Since we do not use 
the specific mechanics of d-exangulated categories here, we omit the details. However, 
the relative theory of [22, Sec. 3.2] allows us to produce a d-exact substructure of a 
skeletally small d-exact category as follows. When d = 1, this is done in [15, Sec. 1.2].

Proposition 3.7. Suppose (𝒞,E ) is a skeletally small d-exact category and that 𝒳 ⊆ 𝒞 is 
a full subcategory. Define E𝒳 ⊆ E to be all the E -admissible d-exact sequences B• such 
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that (𝕐∂B
1 )

⃓⃓
𝒳 : (𝕐B1)|𝒳 →→ (𝕐B0)|𝒳 is an epimorphism. Then (𝒞,E𝒳 ) is a skeletally 

small d-exact category.

Proof. By [22, Prop. 4.34], we can view (𝒞,E ) as a d-exangulated category (𝒞,𝔼, 𝔰). The 
biadditive functor 𝔼 : 𝒞op × 𝒞 → Ab is given as follows.

(1) For A,C ∈ 𝒞, define 𝔼(C,A) := { [B•] | B• ∈ E , Bd+1 = A and B0 = C }, where 
[B•] denotes the (Yoneda) equivalence class of the d-exact sequence B•; see the 
homotopy equivalence relation defined for complexes with fixed end terms in [22, 
p. 540]. Equipped with the Baer sum (see [22, Def. 4.28]), the set 𝔼(C,A) is an 
abelian group with identity element being the class

0 = [ A A 0 · · · 0 C C
idA idC ].

(2) For a morphism g : C0 → B0 in 𝒞, define 𝔼(g,Bd+1) : 𝔼(B0, Bd+1) → 𝔼(C0, Bd+1)
by 𝔼(g,Bd+1)([B•]) := [C•] whenever [B•] ∈ 𝔼(B0, Bd+1) and there is a d-pullback 
diagram (3.3). The mapping 𝔼(B0, h) : 𝔼(B0, Bd+1) → 𝔼(B0, Dd+1) is defined dually 
for a morphism h : Bd+1 → Dd+1.

The exact realisation 𝔰 is simply given by 𝔰([B•]) := [B•]; see [22, Def. 2.22]. (For more 
details, see [22, Sec. 4.3].) Importantly, for a complex B•, we have [B•] ∈ 𝔼(B0, Bd+1), 
if and only if B• is part of a distinguished d-exangle in (𝒞,𝔼, 𝔰), if and only if B• is an 
E -admissible d-exact sequence.

Now we use the relative theory for d-exangulated categories. Define a subfunctor 𝔼𝒳
of 𝔼 by

𝔼𝒳 (C,A) := { [B•] ∈ 𝔼(C,A) | ∀g : X → C with X ∈ 𝒳 , we have 𝔼(g,A)([B•]) = 0 } ,

and 𝔼𝒳 is just the restriction of 𝔼 on morphisms. Note that 𝔼𝒳 is the first bifunctor 
defined in [22, Def. 3.18] with ℐ = 𝒳 , and hence (𝒞,𝔼𝒳 , 𝔰𝒳 ) is a d-exangulated category 
by [22, Props. 3.16 and 3.19], where 𝔰𝒳 := 𝔰|

𝔼𝒳 . It follows from [22, Rem. 4.38] that 
(𝒞,𝔼𝒳 , 𝔰𝒳 ) is also a d-exact category (see also [27, Cor. 4.12]). That is, there is a (skele
tally small) d-exact category (𝒞,E ′) such that [B•] ∈ 𝔼𝒳 (B0, Bd+1) if and only if B• lies 
in E ′.

Therefore, it suffices to show that E ′ = E𝒳 . This is a consequence of the following 
identities, where the first equality is by [22, Claim 2.15]:

𝔼𝒳 (B0, Bd+1) =
{︄

[B•] ∈ 𝔼(B0, Bd+1)

⃓⃓⃓
⃓⃓ ∀g : X → B0 with X ∈ 𝒳 , there exists
h : X → B1 with g = ∂B

1 h

}︄

=
{︄

[B•] ∈ 𝔼(B0, Bd+1)

⃓⃓⃓
⃓⃓ 𝒞(X, ∂B

1 ) : 𝒞(X,B1) →→ 𝒞(X,B0)
is surjective for each X ∈ 𝒳

}︄
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=
{︄

[B•] ∈ 𝔼(B0, Bd+1)

⃓⃓⃓
⃓⃓ (𝕐∂B

1 )
⃓⃓
𝒳 : (𝕐B1)|𝒳 →→ (𝕐B0)|𝒳

is an epimorphism in mod𝒳

}︄
. ■

3.2. The Grothendieck group of a d-exact category

Suppose 𝒞 is now also skeletally small. Denote by Iso (𝒞) the set of isomorphism 
classes of objects in 𝒞. For an object A ∈ 𝒞, we denote the isomorphism class of A
by [A] ∈ Iso (𝒞). The split Grothendieck group Ksp

0 (𝒞) of 𝒞 is the free abelian group 
generated by Iso (𝒞) modulo the subgroup

⟨[A] − [B] + [C] |A → B → C is a split short exact sequence in 𝒞⟩ .

We denote the class in Ksp
0 (𝒞) of an object A ∈ 𝒞 by [A]sp.

Definition 3.8. The Grothendieck group of a skeletally small d-exact category (𝒞,E ) is 
the abelian group

K0(𝒞,E ) := Ksp
0 (𝒞)

/︄⟨︄
d+1 ∑︂
i=0 

(−1)i[Bi]sp
⃓⃓⃓
⃓⃓B• ∈ E

⟩︄
.

The class of A ∈ 𝒞 in K0(𝒞,E ) is denoted [A].

By Proposition 3.7, given a full subcategory 𝒳 of a skeletally small d-exact category 
(𝒞,E ), there is an induced d-exact subcategory (𝒞,E𝒳 ) of (𝒞,E ). Hence, we may consider 
the Grothendieck group K0(𝒞,E𝒳 ) and the canonical surjection

π𝒳 : Ksp
0 (𝒞) K0(𝒞,E𝒳 ). (3.4)

For an object C ∈ 𝒞, we denote its class in K0(𝒞,E𝒳 ) by [C]𝒳 , so that the homomorphism 
π𝒳 of abelian groups is given by π𝒳 ([C]sp) = [C]𝒳 on generators.

4. Main results

For the main results in this section, we assume Setup 4.2 (see below), which includes 
that (𝒞,E ) is an idempotent complete d-exact category and 𝒳 is a contravariantly finite 
(see Definition 2.2), generating subcategory of 𝒞. When d = 1, Definition 4.1 below 
recovers that of a generating subcategory of an exact category as defined in [20, Def. 5.1].

Definition 4.1. Let (𝒞,E ) be a d-exact category. We call a subcategory 𝒳 of 𝒞 generating 
if, for each C ∈ 𝒞, there is an E -admissible deflation X →→ C for some X ∈ 𝒳 .

In this section, we work under the following setup.



F. Fedele et al. / Journal of Algebra 686 (2026) 814--835 823

Setup 4.2. Let (𝒞,E ) be a skeletally small, idempotent complete, d-exact category that 
has d-kernels. In addition, let 𝒳 be a contravariantly finite, generating, additive subcat
egory of 𝒞.

By Definition 2.12, we know that mod 𝒞 is a skeletally small abelian category, and 
hence a skeletally small 1-exact category. The Grothendieck group K0(mod 𝒞) is thus 
defined as in Definition 3.8; it is the split Grothendieck group of mod𝒞 modulo relations 
arising from short exact sequences of functors in mod 𝒞. Similarly for K0(mod𝒳 ).

We prove Theorem 1.2 in Section 4.2. Our strategy is to first produce a homomor
phism θ𝒞 : K0(mod 𝒞) → Ksp

0 (𝒞) (see Theorem 4.10 in Section 4.1), and then use that 
K0(mod𝒳 ) is the cokernel of K0(ι) as in Lemma 2.5 to obtain θ𝒳 : K0(mod𝒳 ) →
K0(𝒞,E𝒳 ).

Before we give some examples to see that Setup 4.2 is reasonable, we observe the 
following, where an additive category 𝒞 is weakly idempotent complete if every split 
epimorphism has a kernel (or equivalently, every split monomorphism has a cokernel).

Lemma 4.3. Suppose (𝒞,E ) is a d-exact category and 𝒳 ⊆ 𝒞 is a subcategory. If d = 1, 
assume further that 𝒞 is weakly idempotent complete. Then 𝒳 is contravariantly finite 
and generating, if and only if 𝒳 satisfies:

(Gen) For each C ∈ 𝒞, there exists a right 𝒳 -approximation X →→ C of C that is also 
an E -admissible deflation.

Proof. Suppose 𝒳 is contravariantly finite and generating in 𝒞, so that for C ∈ 𝒞 there 
is a right 𝒳 -approximation x : X → C and an E -admissible deflation x′ : X ′ →→ C with 
X ′ ∈ 𝒳 . This implies that there exists a morphism y : X ′ → X with xy = x′. Since 𝒞
is weakly idempotent complete, it follows from [27, dual of Cor. 2.5] that x : X →→ C is 
also an E -admissible deflation. Hence, 𝒳 satisfies (Gen).

For the converse there is nothing to show. ■

Note that in Lemma 4.3, the implication

𝒳 satisfies (Gen) =⇒ 𝒳 is contravariantly finite and generating

always holds (even when d = 1 we need not assume 𝒞 is weakly idempotent complete).

Remark 4.4. When d = 1, the condition (Gen) was called ‘strongly contravariantly finite’ 
in e.g. [44, Def. 3.19], [16, p. 6]. However, ‘strongly’ has also been used previously (e.g. in 
[21, Def. 4.3]) to indicate a uniqueness in factorisations for approximations. Therefore, 
we avoid this terminology here.

Now we recall some contexts in which generating subcategories appear.
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Example 4.5. Consider an exact category (𝒞,E ) where 𝒞 is abelian and ℰ is the ex
act structure consisting of all the short exact sequences in 𝒞. In this case, since the 
E -admissible deflations are precisely the epimorphisms in 𝒞, a subcategory 𝒳 ⊆ 𝒞 is 
generating in the sense of Definition 4.1 if and only if, for each C ∈ 𝒞, there is an 
epimorphism X →→ C in 𝒞 for some X ∈ 𝒳 (see also [23, p. 724]).

As an explicit example, let R be a ring and consider the abelian category ModR of 
right R-modules. The subcategory ProjR of projective right R-modules is generating in 
ModR.

Example 4.6. By definition, any d-cluster tilting subcategory of an abelian category 
is contravariantly finite and generating (see [23, Def. 3.14]). More generally, any d
cluster tilting subcategory of an exact category satisfies (Gen) by definition (see [23, 
Def. 4.13(ii)]), and hence is contravariantly finite and generating by Lemma 4.3.

4.1. Defining θ𝒞

We define θ𝒞 : K0(mod 𝒞) → Ksp
0 (𝒞) via three lemmas, which are analogues of the 

results in [17, Sec. 4.1]. We start by showing that any finitely presented 𝒞-module M has 
projective dimension at most d + 1 in mod 𝒞.

Lemma 4.7. For each M ∈ mod 𝒞, there is a left d-exact sequence

Ad+1 Ad · · · A1 A0
∂A
d+1 ∂A

d ∂A
2 ∂A

1 (4.1)

in 𝒞, such that the following induced sequence is exact in mod𝒞.

0 𝕐Ad+1 𝕐Ad · · · 𝕐A1 𝕐A0 M 0
𝕐∂A

d+1 𝕐∂A
d 𝕐∂A

2 𝕐∂A
1

(4.2)

Proof. If M ∈ mod 𝒞, then there is an exact sequence 𝕐A1 𝕐A0 M 0
𝕐∂A

1

for some morphism ∂A
1 : A1 → A0 in 𝒞 (see Definition 2.1). Since 𝒞 has d-kernels, we ob

tain a left d-exact sequence of the form (4.1), which induces the exact sequence (4.2). ■

Note that (4.1) is not necessarily ℰ-admissible. Moreover, it follows from Lemma 4.7
that each M ∈ mod 𝒞 fits in an exact sequence of the form (4.2) and in this case M is 
isomorphic to Coker(𝕐∂A

1 ). Over the next two lemmas, we will show that the assignment 
Coker(𝕐∂A

1 ) θ𝒞↦−→ ∑︁d+1
i=0 (−1)i[Ai]sp is well-defined on K0(mod 𝒞).

Lemma 4.8. Assume that (4.1) and

Bd+1 Bd · · · B1 B0
∂B
d+1 ∂B

d ∂B
2 ∂B

1 (4.3)
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are left d-exact sequences in 𝒞 with Coker(𝕐∂A
1 ) ∼ = Coker(𝕐∂B

1 ). Then in Ksp
0 (𝒞) we have

d+1 ∑︂
i=0 

(−1)i[Ai]sp =
d+1 ∑︂
i=0 

(−1)i[Bi]sp.

Proof. Since 𝕐Ai and 𝕐Bi are projective objects in mod 𝒞, by [1, Lem. IX.6.3] we obtain 
the following commutative diagram with exact rows in the abelian category mod 𝒞.

0 𝕐Ad+1 𝕐Ad · · · 𝕐A1 𝕐A0 Coker(𝕐∂A
1 ) 0

0 𝕐Bd+1 𝕐Bd · · · 𝕐B1 𝕐B0 Coker(𝕐∂B
1 ) 0

𝕐∂A
d+1 𝕐∂A

d 𝕐∂A
2 𝕐∂A

1

∼ = 
𝕐∂B

d+1 𝕐∂B
d 𝕐∂B

2 𝕐∂B
1

Repeated use of Schanuel’s Lemma (see [9, Cor. I.6.4]) yields
⎛
⎝ ⨁︂

0⩽2i⩽d+1

𝕐A2i

⎞
⎠⊕

⎛
⎝ ⨁︂

0⩽2i+1⩽d+1

𝕐B2i+1

⎞
⎠ ∼ = 

⎛
⎝ ⨁︂

0⩽2i+1⩽d+1

𝕐A2i+1

⎞
⎠⊕

⎛
⎝ ⨁︂

0⩽2i⩽d+1

𝕐B2i

⎞
⎠

in mod 𝒞. Since 𝕐 is fully faithful and additive, this implies⎛
⎝ ⨁︂

0⩽2i⩽d+1

A2i

⎞
⎠⊕

⎛
⎝ ⨁︂

0⩽2i+1⩽d+1

B2i+1

⎞
⎠ ∼ = 

⎛
⎝ ⨁︂

0⩽2i+1⩽d+1

A2i+1

⎞
⎠⊕

⎛
⎝ ⨁︂

0⩽2i⩽d+1

B2i

⎞
⎠

in 𝒞, and hence in Ksp
0 (𝒞) we have

⎛
⎝ ∑︂

0⩽2i⩽d+1

[A2i]sp
⎞
⎠ +

⎛
⎝ ∑︂

0⩽2i+1⩽d+1

[B2i+1]sp
⎞
⎠ =

⎛
⎝ ∑︂

0⩽2i+1⩽d+1

[A2i+1]sp
⎞
⎠

+

⎛
⎝ ∑︂

0⩽2i⩽d+1

[B2i]sp
⎞
⎠ .

Rearranging this gives the desired equation. ■

The final ingredient for our first main result is as follows.

Lemma 4.9. Suppose 0 M′ M M′′ 0α β is a short exact sequence in 
mod 𝒞. Then there are left d-exact sequences (4.1) and (4.3) in 𝒞, satisfying Coker(𝕐∂A

1 )∼ = 
M′ and Coker(𝕐∂B

1 ) ∼ = M′′, such that there is also a left d-exact sequence of the form

Ad+1 ⊕Bd+1 Ad ⊕Bd · · · A1 ⊕B1 A0 ⊕B0
∂ (4.4)

with Coker(𝕐∂) ∼ = M.
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Proof. Lemma 4.7 ensures the existence of left d-exact sequences (4.1) and (4.3) so that

0 𝕐Ad+1 𝕐Ad · · · 𝕐A1 𝕐A0 M′ 0
𝕐∂A

d+1 𝕐∂A
d 𝕐∂A

2 𝕐∂A
1

(4.5)

0 𝕐Bd+1 𝕐Bd · · · 𝕐B1 𝕐B0 M′′ 0
𝕐∂B

d+1 𝕐∂B
d 𝕐∂B

2 𝕐∂B
1

(4.6)

are exact in mod 𝒞. Since the objects 𝕐Ai and 𝕐Bi are projective in mod 𝒞, we can use 
the Horseshoe Lemma (see [1, Lem. IX.7.8]) to obtain the commutative diagram

0 0 0 0

0 𝕐Ad+1 · · · 𝕐A1 𝕐A0 M′ 0

0 𝕐Ad+1 ⊕ 𝕐Bd+1 · · · 𝕐A1 ⊕ 𝕐B1 𝕐A0 ⊕ 𝕐B0 M 0

0 𝕐Bd+1 · · · 𝕐B1 𝕐B0 M′′ 0

0 0 0 0

𝕐∂A
d+1 𝕐∂A

2 𝕐∂A
1

α

𝕐∂

β

𝕐∂B
d+1 𝕐∂B

2 𝕐∂B
1

(4.7)
in mod 𝒞 with exact rows and columns. The functor 𝕐 being fully faithful and additive 
yields a sequence of the form (4.4) in 𝒞, and the exactness of the middle row of (4.7)
says that (4.4) is left d-exact with Coker(𝕐∂) ∼ = M, as required. ■

Theorem 4.10. There is a group homomorphism θ𝒞 : K0(mod 𝒞) → Ksp
0 (𝒞) defined 

by θ𝒞([M]) =
∑︁d+1

i=0 (−1)i[Ai]sp, for any left d-exact sequence (4.1) in 𝒞 satisfying 
Coker(𝕐∂A

1 ) ∼ = M.

Proof. Combining Lemmas 4.7 and 4.8, we see that θ𝒞, as defined in the statement of the 
theorem, gives a well-defined group homomorphism from the free abelian group generated 
by Iso (mod 𝒞) to Ksp

0 (𝒞). Lemma 4.9 shows that this induces the group homomorphism 
θ𝒞 : K0(mod 𝒞) → Ksp

0 (𝒞) as claimed. ■

4.2. The proof of Theorem 1.2

Since we assume (𝒞,E ) has d-kernels, it follows that 𝒞 has weak kernels. Thus, 
Setup 2.3 is satisfied and the results from Section 2 apply. We are now ready to prove 
Theorem 1.2. Recall that the d-exact subcategory (𝒞,E𝒳 ) ⊆ (𝒞,E ) was defined in Propo
sition 3.7, and that π𝒳 ([C]sp) = [C]𝒳 for C ∈ 𝒞 (see (3.4)).
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Proof of Theorem 1.2. For the existence of θ𝒳 : K0(mod𝒳 ) → K0(𝒞,E𝒳 ), we will show 
π𝒳 θ𝒞K0(ι) = 0, where ι is the inclusion of Ker (−)|𝒳 into mod 𝒞, and then use 
Lemma 2.5. To this end, let M ∈ Ker (−)|𝒳 be arbitrary and, as in Lemma 4.7, let

Ad+1 Ad · · · A1 A0
∂A
d+1 ∂A

d ∂A
2 ∂A

1

be a left d-exact sequence in 𝒞 with Coker(𝕐∂A
1 ) ∼ = M. We claim that we have

π𝒳 θ𝒞K0(ι)([M]) = π𝒳 θ𝒞([M]) = π𝒳

(︄
d+1 ∑︂
i=0 

(−1)i[Ai]sp
)︄

=
d+1 ∑︂
i=0 

(−1)i[Ai]𝒳 = 0

in K0(𝒞,E𝒳 ), using Theorem 4.10 for the second equality. Indeed, Coker(𝕐∂A
1 ) ∼ = M

implies Coker
(︁
(𝕐∂A

1 )
⃓⃓
𝒳
)︁

= (Coker(𝕐∂A
1 ))

⃓⃓
𝒳

∼ = M|𝒳 = 0 since (−)|𝒳 is an exact functor 
and M ∈ Ker (−)|𝒳 . But this means that (𝕐∂A

1 )
⃓⃓
𝒳 is an epimorphism, and hence (4.1) is 

an E𝒳 -admissible d-exact sequence (see Proposition 3.7). Thus, 
∑︁d+1

i=0 (−1)i[Ai]𝒳 vanishes 
in K0(𝒞,E𝒳 ) (see Definition 3.8), as claimed.

Hence, Lemma 2.5 yields a unique group homomorphism θ𝒳 : K0(mod𝒳 ) →
K0(𝒞,E𝒳 ) such that the following diagram commutes.

K0(mod 𝒞) K0(mod𝒳 )

K0(𝒞,E𝒳 )

K0((−)|𝒳 )

π𝒳 θ𝒞
θ𝒳

(4.8)

It follows from Theorem 4.10, the exactness of (−)|𝒳 and the commutativity of (4.8) that 
θ𝒳 satisfies θ𝒳 ([Coker

(︁
(𝕐∂A

1 )
⃓⃓
𝒳
)︁
]) =

∑︁d+1
i=0 (−1)i[Ai]𝒳 whenever (4.1) is an E -admissible 

d-exact sequence, concluding the proof. ■

Proof of Proposition 1.3. We first show that θ𝒳 respects the stated property. Let

Ad+1 Ad · · · A1 A0
∂A
d+1 ∂A

d ∂A
2 ∂A

1 (4.9)

be a left d-exact sequence in 𝒞. Then

0 𝕐Ad+1 · · · 𝕐A1 𝕐A0 Coker𝕐∂A
1 0

𝕐∂A
d+1 𝕐∂A

2 𝕐∂A
1

is exact in mod 𝒞. Since (−)|𝒳 is exact, letting 𝕐𝒳 := 𝕐(−)|𝒳 , we have that

0 𝕐𝒳Ad+1 · · · 𝕐𝒳A1 𝕐𝒳A0 Coker𝕐𝒳∂A
1 0

𝕐𝒳∂A
d+1 𝕐𝒳∂A

2 𝕐𝒳∂A
1
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is exact in mod𝒳 and so [Coker(𝒞(−, ∂A
1 )

⃓⃓
𝒳 )]𝒳 = [Coker𝕐𝒳∂A

1 ]𝒳 =
∑︁d+1

i=0 (−1)i[𝕐𝒳Ai]𝒳 . 
Hence

θ𝒳 [Coker(𝒞(−, ∂A
1 )

⃓⃓
𝒳 )]𝒳 =

d+1 ∑︂
i=0 

(−1)iθ𝒳 [𝕐𝒳Ai]𝒳 =
d+1 ∑︂
i=0 

(−1)iθ𝒳K0((−)|𝒳 )[𝕐Ai]

=
d+1 ∑︂
i=0 

(−1)iπ𝒳 θ𝒞 [𝕐Ai] =
d+1 ∑︂
i=0 

(−1)iπ𝒳 [Ai]sp

=
d+1 ∑︂
i=0 

(−1)i[Ai]𝒳

as wished.
We now prove that θ𝒳 is unique with respect to this property. Suppose that F :

K0(mod𝒳 ) → K0(𝒞, ℰ𝒳 ) is a group homomorphism such that if (4.9) is a left d-exact 
sequence in 𝒞, then F [Coker(𝒞(−, ∂A

1 )
⃓⃓
𝒳 )]𝒳 =

∑︁d+1
i=0 (−1)i[Ai]𝒳 . By the universal prop

erty of cokernels, to prove that F = θ𝒳 , it is enough to show that F ◦K0((−)|𝒳 ) = π𝒳 ◦θ𝒞
on generators [M] ∈ K0(mod 𝒞). By Lemma 4.7, for any M ∈ mod 𝒞, there is a left d-exact 
sequence in 𝒞 of the form (4.9) such that

0 𝕐Ad+1 · · · 𝕐A1 𝕐A0 M 0
𝕐∂A

d+1 𝕐∂A
2 𝕐∂A

1

is exact in mod 𝒞. Applying the exact functor (−)|𝒳 to it, we obtain an exact sequence 
in mod𝒳 and so

[Coker𝕐𝒳∂A
1 ]𝒳 = [M|𝒳 ]𝒳 =

d+1 ∑︂
i=0 

(−1)i[𝕐𝒳Ai]𝒳

in K0(mod𝒳 ). By the assumption on F , we then have that

F ◦K0((−)|𝒳 )[M] = F [M|𝒳 ]𝒳 =
d+1 ∑︂
i=0 

(−1)i[Ai]𝒳 = π𝒳 θ𝒞
(︂ d+1 ∑︂

i=0 
(−1)i[𝕐Ai]

)︂
= π𝒳 θ𝒞 [M],

concluding the proof. ■
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Appendix A. Examples of 𝒅-exact categories with 𝒅-kernels

Recall that in Setup 4.2 for our main results, we assume that (𝒞,E ) is a skeletally 
small, idempotent complete, d-exact category that has d-kernels. We motivate our choice 
in working in this generality in the present appendix. In classical homological algebra, 
i.e. when d = 1, this reduces to exhibiting meaningful examples of exact categories 
with kernels. To start with, abelian categories, which are exact and have kernels, are in 
abundance in homological algebra. Let us explore some other examples.

Example A.1 (Torsion(-free) classes). Let 𝒰 be a torsion class in an abelian category 𝒞. 
Then 𝒰 is extension-closed in 𝒞, and hence inherits an exact structure from the abelian 
structure on 𝒞. Furthermore, 𝒰 has kernels and cokernels; see e.g. [11, Sec. 5.4]. Note 
that, unlike the cokernel, the kernel of a morphism f in 𝒰 will not in general agree with 
the kernel of f in 𝒞. Dual statements hold for a torsion-free class in 𝒞.

By [40, p. 193, Cor.] (see also [11, Prop. B.3]), we can view torsion(-free) classes 
through the lens of quasi-abelian categories.

Example A.2 (Quasi-abelian categories). A quasi-abelian category is an additive category 
that has kernels and cokernels, and in which the pushout (resp. pullback) of each kernel 
(resp. cokernel) is again a kernel (resp. cokernel) (see e.g. [19, Def. 2.3]). The class of 
all kernel-cokernel pairs in a quasi-abelian category 𝒞 forms an exact structure on 𝒞 [42, 
Rem. 1.1.11], and hence 𝒞 is an exact category with kernels (and cokernels). Note that 
this exact structure on quasi-abelian category is intrinsic to the category and usually 
not the split exact structure.

Besides algebraic settings, quasi-abelian categories show up in more analytic fields, 
such as functional analysis and harmonic analysis. Indeed, the category of Banach spaces 
[38, Prop. 3.1.7] and the category of topological abelian groups [40, Sec. 2] are quasi
abelian, amongst many other examples.

There is a wider class of examples that Examples A.1 and A.2 belong to.

Example A.3 (Pre-abelian categories). An additive category 𝒞 is said to be pre-abelian 
if every morphism in 𝒞 has a kernel and a cokernel in 𝒞. By [41, Cor. 2] (see also [14, 
Thm. 3.5] and [43, Thm. 3.3]), one can equip 𝒞 with a (unique) maximal exact structure, 
yielding an exact category that has kernels. However, it is harder to say explicitly what 
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the admissible conflations are for an arbitrary pre-abelian category, unlike for a quasi
abelian one.

Examples of pre-abelian categories that are not quasi-abelian include the categories 
of complete Hausdorff locally convex spaces and of bornological (Hausdorff and non
Hausdorff) locally convex spaces over the real (or complex) numbers. See [19, Fig. 1] for 
a recent overview of various pre-abelian categories and their properties.

The categories in the examples above have both kernels and cokernels. However, we 
emphasise that there are also examples of exact categories with kernels that typically 
do not have cokernels. We give two such examples below. Example A.4 is a category
theoretic and Example A.5 is ring-theoretic.

Example A.4. For an additive category 𝒞, the category mod 𝒞 always has cokernels, but 
it has kernels if and only if 𝒞 has weak kernels; see [4, p. 41, Prop.]. Therefore, (mod 𝒞)op
always has kernels, but not necessarily cokernels.

The authors are very grateful to Raphael Bennett-Tennenhaus for several discussions 
in preparation of Example A.5, and to Dag Oskar Madsen for communicating the ring 
D we define below to them.

Example A.5. In this example, we will give a triangular matrix ring D that is:

• right artinian, right noetherian and right coherent;
• semiprimary with (right and left) global dimension 2; and
• not left coherent.

From this we can deduce that the category of finitely presented (equivalently, finitely 
generated) right D-modules projD has kernels but does not have arbitrary cokernels, 
using the following facts.

Let R be a ring. We equip the idempotent complete, additive category projR with 
its split exact structure. By [10, Exam. 4.2, Prop. 4.5(1), and the second paragraph on 
p. 158], we have that modR is abelian if and only if R is right coherent. Any right 
noetherian ring is right coherent by [30, Exam. (4.46)(a)].

In addition, we know modR has enough projectives by [10, Prop. 3.6(1) and Exam. 4.2] 
and projR is subcategory of projectives in modR. Thus, if M ∈ modR, then we define 
fpdmodR M to be the minimal length (possibly infinite) of a resolution of M by objects 
in projR. There are obvious left versions of these definitions too. The next lemma then 
follows from Schanuel’s lemma; see [33, Ch. 7, 1.2].

Lemma A.6. Suppose R is a right noetherian ring and suppose M ∈ modR is a finitely 
presented (equivalently, finitely generated) right R-module. Then the (usual) projective 
dimension pdModR M of M is equal to fpdmodR M .
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Since there is an equivalence projR ≃ (projRop)op = (R proj)op (see e.g. [28, 
Prop. 2.3]), it follows from [10, Exam. 4.2, and Prop. 4.5(1), (6)] that projR has kernels 
(resp. cokernels) if and only if R is right coherent and fpdmodR M ⩽ 2 for all M ∈ modR

(resp. R is left coherent and fpdRmod M ⩽ 2 for all M ∈ Rmod). In particular, it fol
lows from Lemma A.6 that if R is right noetherian and r. gl. dimR ⩽ 2, then projR has 
kernels.

Now we shall define the ring D, which combines the rings from [30, Exam. (4.66)(e)] 
and [32]. Let K := ℚ(x1, x2, . . .) be the field of rational functions over ℚ in a countably 
infinite number of indeterminates. Define a field monomorphism φ : K → K by φ(xi) :=
xi+1 for all i ⩾ 1. We define a (K,K)-bimodule N as follows: the underlying set of N
is K, the right K-action on N is the usual action (i.e. NK is the regular module KK), 
and left K-action on N is λ · n = φ(λ)n for all λ ∈ K and n ∈ N . Notice that N is a 
1-dimensional right K-module, but it is an infinite-dimensional left K-module with basis 
{ 1, x1, x

2
1, x

3
1, . . . }. Finally, we put

T :=
(︄
K N N
0 K K
0 0 K

)︄
, L :=

(︄0 0 N
0 0 0
0 0 0

)︄
and D := T/L.

By [31, Thm. (1.22)], we see that D is right artinian. Hence, D is right noetherian 
and semiprimary by [31, Thm. (4.15)], and it is right coherent by [30, Exam. (4.46)(a)]. 
Since D is semiprimary, we have r. gl. dimD = l. gl. dimD by [3, Cor. 9]. Arguing as in 
[31, p. 57, (6)], we have that the Jacobson radical of D is

radD =
(︄0 N N

0 0 K
0 0 0

)︄/︄
L

and hence the simple right D-modules are (K 0 0), (0 K 0) and (0 0 K ), 
which have projective dimensions 2, 1 and 0, respectively. Thus, r. gl. dimD = 2 by [3, 
Cor. 11]. It follows that projD has kernels.

Lastly, to see that D is not left coherent consider the left ideal I/L of D, where

I :=
(︄0 0 N

0 0 K
0 0 0

)︄
.

There is a left D-module epimorphism α : D →→ I/L given by

α

(︄(︄
a b c
0 d e
0 0 f

)︄
+ L

)︄
:=

(︄
a b c
0 d e
0 0 f

)︄
·
(︄0 0 0

0 0 1
0 0 0

)︄
+ L =

(︄0 0 0
0 0 d
0 0 0

)︄
+ L,

which has kernel
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Kerα =
(︄
K N N
0 0 K
0 0 K

)︄/︄
L .

Moreover, notice that Kerα is not a finitely generated left D-module because N is not 
finitely generated as a left K-module. Thus, the short exact sequence

0 Kerα D I/L 0α

demonstrates that I/L is a finitely generated left ideal of D that cannot be finitely 
presented by [30, Prop. (4.26)(b)]. In particular, D is not left coherent, which concludes 
this example.

We now turn our attention to higher homological algebra and prove a d-analogue of 
Example A.1 where d ⩾ 1 is an integer. That is, we will show that a d-torsion class 
of a suitable d-abelian category is d-exact (see Definition 3.5) and has d-kernels (see 
Definition 3.2). We recall below only the definitions we will use explicitly.

A d-abelian category is defined using the notions of d-(co)kernels and d-exact sequences 
(see Definitions 3.1 and 3.3); see [23, Def. 3.1]. In particular, each morphism in a d-abelian 
category has a d-kernel. Combining [23, Thm. 3.16] and [29, Cor. 1.3(ii)], we know that 
a skeletally small additive category is d-abelian if and only if it is d-cluster tilting in an 
abelian category.

Definition A.7. [24, Def. 1.1] Suppose 𝒞 is d-abelian. A full subcategory 𝒰 ⊆ 𝒞 is a 
d-torsion class if, for each B ∈ 𝒞, there is a d-exact sequence

UB B Vd−1 · · · V0
ud+1 ud ud−1 u1

in 𝒞, such that UB ∈ 𝒰 and the sequence

0 (𝕐Vd−1)|𝒰 (𝕐Vd−2)|𝒰 · · · (𝕐V0)|𝒰 0
(𝕐ud−1)|𝒰 (𝕐ud−2)|𝒰 (𝕐u1)|𝒰

is exact in Mod𝒰 .

Remark A.8. In Definition A.7, notice that the morphism ud+1 : UB ↣ B is a monic 
right 𝒰-approximation of B by [24, Lem. 2.7(i)(b)]. This fact is fundamental for the next 
result.

Proposition A.9. Any d-torsion class 𝒰 in a d-abelian category 𝒞 has d-kernels.

Proof. Let f1 : U1 → U0 be an arbitrary morphism in 𝒰 . Since 𝒞 is d-abelian, we know 
f1 has a d-kernel in 𝒞, giving rise to a left d-exact sequence

Bd+1 Bd · · · B2 U1 U0.
fd+1 fd f3 f2 f1
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By Remark A.8, we may take a monic right 𝒰-approximation ai : Ui → Bi of Bi for each 
2 ⩽ i ⩽ d + 1. For each i = 3, . . . , d+ 1, we have the morphism fiai : Ui → Bi−1, and so 
there exists gi : Ui → Ui−1 such that ai−1gi = fiai. This gives rise to the commutative 
diagram

0 Ud+1 Ud · · · U2 U1 U0

0 Bd+1 Bd · · · B2 U1 U0,

gd+1

ad+1

gd

ad

g3 g2

a2

g1

a1

fd+1 fd f3 f2 f1

(A.1)

where g2 := f2a2, g1 := f1 and a1 := idU1 .
We claim that the top row of (A.1) is a left d-exact sequence in 𝒰 . First note that 

gd+1 is indeed a monomorphism because adgd+1 = fd+1ad+1 is monic. Thus, it remains 
to show that gi+1 is a weak kernel of gi for each 1 ⩽ i ⩽ d. Fix i ∈ { 1, . . . , d } and 
suppose h : U → Ui is now a morphism in 𝒰 with gih = 0. Then fiaih = ai−1gih = 0
implies there exists b : U → Bi+1 such that aih = fi+1b. Since ai+1 : Ui+1 → Bi+1 is 
a right 𝒰-approximation, there exists c : U → Ui+1 with b = ai+1c. In particular, we 
have aih = fi+1b = fi+1ai+1c = aigi+1c, so h = gi+1c as ai is monic, completing the 
proof. ■

Example A.10 (d-torsion(-free) classes). We explain how, under reasonable assumptions, 
a d-torsion class 𝒰 of a skeletally small, Krull-Schmidt, d-abelian category 𝒞 meets the 
conditions required of the category 𝒞 in Setup 4.2. It is clear that 𝒰 is skeletally small 
as 𝒞 is, and 𝒰 is idempotent complete by [24, Lem. 2.7(iii)]. By [29, Cor. 1.3(ii)], the 
d-abelian category 𝒞 embeds in an abelian category 𝒜 as a d-cluster tilting subcategory. 
If 𝒜 is a finite length category, then 𝒰 is closed under d-extensions and d-quotients by [2, 
Prop. 3.11]. (Actually, one need only assume 𝒜 is noetherian or has arbitrary coproducts 
for then the existence of a smallest torsion class in 𝒜 containing 𝒰 is guaranteed; see 
[37, Sec. 1.3].) It follows from closure under d-quotients that 𝒰 has d-cokernels and 
that they agree with d-cokernels taken in 𝒞 (see [2, Def. 3.7, Rem. 3.12]). Furthermore, 
Proposition A.9 shows that 𝒰 has d-kernels.

It remains to show that 𝒰 is d-exact. By [23, Thm. 4.4], we have that 𝒞 is a d-exact 
category, and hence the class E of all d-exact sequences in 𝒞 with all terms in 𝒰 forms 
a d-exact structure on 𝒰 by [27, Cor. 4.15]; this is also observed in [2, Cor. 3.19]. Thus, 
(𝒰 ,E ) is a d-exact category with d-kernels and d-cokernels.

Dual statements hold for a d-torsion-free class in 𝒞.

Data availability

No data was used for the research described in the article.
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