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1. Introduction

Monoidal categories play an important role in algebra, representation theory and 
various other areas. The module category of a commutative ring and of a cocommutative 
Hopf algebra over a field naturally possess a monoidal structure. These give rise to 
tensor triangulated categories and finite tensor categories, which have become their own 
areas of study. The symmetric monoidal structure is at the heart of tensor triangular 
geometry, allowing one to attach a topological space to a tensor triangulated category; 
see [1]. Further, a monoidal category is the natural setting for the categorical notion of 
(co)algebra objects.

The aim of this paper is to define a compatibility condition of a monoidal structure 
with an extriangulated structure. Extriangulated categories were introduced by Nakaoka 
and Palu [51], and provide a generalisation of both exact and triangulated categories. An 
extriangulated structure is given by a class of extriangles, generalising exact sequences 
and exact triangles, and extension functors, generalising Ext1 of exact categories and 
Hom(−,Σ−) of triangulated categories.

We introduce biextriangulated functors in Section 3.11 building on extriangulated 
functors introduced in [6]. Roughly speaking, a biextriangulated functor is a functor 
𝒜×ℬ → 𝒞 that is extriangulated in each component, and where each associated natural 
transformation between extension functors is compatible with the other component. For 
many purposes this definition is adequate, though it does not recover bitriangulated 
functors, which involve Hom(−,Σ2−). To recover the notion of a bitriangulated functor 
we introduce the notion of a strong biextriangulated functor for which we use higher 
extensions.

For exact and triangulated categories the higher extensions are Extn(−,−) and 
Hom(−,Σn−). In Section 2 we recall the construction of higher extension functors: in 
the presence of enough injectives or projectives following [29]; and using coends following 
[26]. When any two of these constructions exist they are isomorphic. The higher exten
sions come equipped with a cup product. We show that whenever higher extensions exist, 
the corresponding cup product is compatible with any extriangulated functor, natural 
transformation or adjunction.

Finally, in Section 4 we define a category to be monoidal extriangulated if it is 
monoidal, extriangulated, the tensor product is biextriangulated and the associator and 
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unitors are extriangulated natural transformations. If the monoidal structure is sym
metric we say the category is tensor extriangulated. The higher extensions of the unit, 
together with the cup product, are the homogeneous components of a graded ring. This 
ring generalises the Ext algebra of finite tensor categories as well as the graded cen
tral ring (of the unit) from tensor triangular geometry; see for example [20] and [2]. In 
Lemma 4.5 we see this is a particularly nice ring when the monoidal structure is a strong 
biextriangulated category:

Lemma A. If (𝒜,E, 𝔰,⊗,1) is a strong monoidal extriangulated category then the cup 
product makes E∗(1,1) = {En(1,1)}n⩾0 into a graded-commutative graded ring.

At the end of Section 3 and in Section 5 we present various examples of (strong) 
biextriangulated functors and (strong) monoidal extriangulated categories:

• exact category of (bi)additive functors; see Examples 3.21 and 5.1;
• (stabilisation of the) category of matrix factorisations; see Example 3.26;
• category of flat modules over a commutative ring; see Example 5.2;
• (stabilisation of the) category of modules over a cocommutative Hopf algebra over a 

field; see Example 5.7; and
• extriangulated structure induced by pure-exact triangles; see Section 5.14.

We also look into the behaviour of (strong) biextriangulated functors under stabilisation 
of extriangulated categories in Sections 3.22 and 5.4 and extriangulated substructures in 
Section 5.12.

In closing we generalise Balmer’s classification [1] of radical thick tensor ideals of a 
tensor triangulated category to tensor extriangulated categories. We use the approaches 
of Kock and Pitsch [38] and Buan, Krause and Solberg [9], and the proofs can be directly 
transferred to the extriangulated setting.

Theorem B. Let (𝒜,E, 𝔰,⊗,1) be a tensor extriangulated category. We assume the class 
of radical thick tensor ideals Rad(𝒜) is a set. Then there exists a spectral space BSpc(𝒜)
and a bijection

Rad(𝒜)←→ {Thomason subsets of BSpc(𝒜)} .

This result is contained in Theorem 6.8. We compute the spectral space BSpc(𝒜) for 
the category of projective modules over various commutative rings in Section 6.11 and 
for stabilisations of extriangulated categories in Section 6.15.

2. Higher extensions in extriangulated categories

The notion of extriangulated categories generalises exact categories and triangulated 
categories. They were introduced by Nakaoka and Palu [51]. There exist notions of 
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higher extensions in exact categories (under some mild conditions) and in triangulated 
categories. These have been unified for extriangulated categories in [45,29,26]. In this 
section we recall the definitions and constructions and discuss some properties.

2.1. Extriangulated categories

An extriangulated category 𝒜 = (𝒜,E, 𝔰) consists of an additive category 𝒜, a functor 
E : 𝒜op×𝒜 → 𝒜b, additive in each component, to the category 𝒜b of abelian groups, and 
a correspondence 𝔰 associating an equivalence class 𝔰(d) of a 3-term complex X →W →
Y to each X,Y ∈ 𝒜 and d ∈ E(Y,X), satisfying some axioms; see [51, Definition 2.12]. 
By an extriangle we mean a representative of an equivalence class given by 𝔰, written

X
f −→W

g −→ Y
d --￫ where 𝔰(d) = [X f −→W

g −→ Y ] .

Let R be a commutative ring. An extriangulated category (𝒜,E, 𝔰) is R-linear, if the 
underlying category 𝒜 is R-linear, the functor E factors through the forgetful functor 
Mod(R) → 𝒜b and the induced functor 𝒜op × 𝒜 → Mod(R) is R-bilinear; see [33, 
Section 3.1]. We denote the functor 𝒜op×𝒜 → Mod(R) also by E. Every extriangulated 
category is trivially Z-linear.

As for an exact or triangulated category, an extriangulated category is an additive 
category equipped with some additional extrinsic structure. Any exact or triangulated 
category has a natural extriangulated structure:

Example 2.2. Let ℰ be a (Quillen-)exact category. This means ℰ is equipped with a class 
of short exact sequences. Exact categories were introduced in [55, Section 2], for more 
details see [10]. When ℰ is an essentially small category or ℰ has enough ℰ-projectives or 
enough ℰ-injectives, then ℰ is an extriangulated category with E(Y,X) := Ext1ℰ(Y,X), 
the collection of Baer equivalence classes [X → W → Y ], and 𝔰 the identity; for more 
details see [51, Example 2.13]. The assumptions on ℰ are sufficient to ensure that E(Y,X)
is a set.

Example 2.3. Let 𝒯 be a triangulated category with suspension functor Σ. This means 
𝒯 is equipped with a class of exact triangles. Triangulated categories were introduced 
by Verdier [59]. Then 𝒯 is an extriangulated category with

E(Y,X) := Hom𝒯 (Y,ΣX) and 𝔰(d) := [X → Σ−1 cone(d) → Y ]

for any d ∈ E(Y,X); for more details see [51, Proposition 3.22(1)].

Other examples of extriangulated categories include extension-closed full subcate
gories of triangulated categories [51, Remark 2.18], and certain ideal quotients of exact 
categories [51, Proposition 3.30]. We discuss the latter in more detail in Section 3.22.
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In Examples 2.2 and 2.3 a notion of higher extensions exists. Motivated by higher 
extensions for exact categories, there are two constructions for higher extensions in ex
triangulated categories: via coends by [26] when the underlying category is essentially 
small, and via syzygies or cosyzygies by [45,29] when the extriangulated category has 
enough projectives or injectives, respectively. In the following sections we recall both 
constructions.

2.4. Higher extensions via coends

We briefly recall the definition of a coend. Let F : 𝒜op × 𝒜 → ℬ be a functor where 
𝒜 is essentially small and ℬ has set-indexed colimits. A coend of F is the coequaliser of 
the diagram

∐︁
V,V ′∈sk(𝒜)

∐︁
f∈Hom𝒜(V,V ′)

F(V ′, V )
∐︁

W∈sk(𝒜)
F(W,W ) , 

defined by the morphisms F(f, V ) and F(V ′, f) where sk(𝒜) denotes the skeleton of 𝒜, 
ensuring the coproducts are set-indexed. In particular a coend is a colimit and, if it exists, 
is unique up to unique isomorphism. It is denoted by 

∫︁W F(W,W ), and is equipped with 
morphisms F(X,X)→ ∫︁W F(W,W ) for every X ∈ 𝒜.

Let R be a commutative ring and let (𝒜,E, 𝔰) be an essentially small R-linear extri
angulated category. The higher extensions are functors

En : 𝒜op ×𝒜 → Mod(R) given by

E0(Y,X) := Hom𝒜(Y,X) and En(Y,X) :=
∫︂ W

En−1(W,X)⊗R E(Y,W )
(2.4.1)

for n ≥ 1; that is, the object En(Y,X) is the coend of the functor En−1(−, X)⊗RE(Y,−). 
By [46, Proposition 2.2.1], we have E1 = E. Using the universality of the colimit, it is 
straightforward to check that En(Y,X) is functorial in X and Y , and using also that 
tensoring over R is right exact and commutes with colimits, one has natural isomorphisms

∫︂ W

Ei(W,X)⊗R Ej(Z,W )
∼ =  −→ En(Z,X) (2.4.2)

for any integers i, j ≥ 0 with i + j = n. This immediately yields the cup product

⌣ : Ei(Y,X)⊗R Ej(Z, Y ) → En(Z,X) (2.4.3)

given by composing the morphism in (2.4.2) with the canonical morphism

Ei(Y,X)⊗R Ej(Z, Y )→
∫︂ W

Ei(W,X)⊗R Ej(Z,W ) .
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This is motivated by [26, Definition 3.10] where the cup product is introduced for i+j = 1. 
We have

f ⌣ d = En(Z, f)(d) and e ⌣ g = En(g,X)(e) (2.4.4)

for morphisms f : Y → X and g : Z → Y in 𝒜 and d ∈ En(Z, Y ) and e ∈ En(Y,X).
This construction of higher extension groups for exact categories goes back to [62, 

Section 4]. For extriangulated categories this was foreshadowed in [51, Remark 5.10] for 
the case where i = j = 1 in (2.4.3). It then was extended to any i, j ≥ 0 in [26].

Remark 2.5. The construction in (2.4.1) can be done more generally to obtain a ``folding'' 
of R-bilinear functors. This defines a tensor product of R-bilinear functors. The tensor 
product already appears in [62, Section 4]; for a short survey, see [17]. We discuss this 
later in Example 3.21.

Example 2.6. Let ℰ be an exact category that is essentially small. We consider ℰ as an 
extriangulated category, as in Example 2.2. Roughly speaking, the coend acts as gluing 
exact sequences. This means En(Y,X) is the set of equivalence classes

[X = X0 → X1 → · · · → Xn+1 = Y ] ,

where X1, . . . , Xn ∈ ℰ and there is a commutative diagram of the form

X0 X1 · · · Xn Xn+1

W 0 W 1 Wn−1 Wn

such that Wi → Xi+1 →Wi+1 is exact for each i = 0, . . . , n−1; see [61, Section 3.4] and 
[62, Section 4.3]. The cup product is given by

[X = X0 → · · · → Xn+1 = Y ] ⌣ [Y = Y0 → · · · → Ym+1 = Z]

= [X = X0 → · · · → Xn → Y1 → · · · → Ym+1 = Z]

where the morphism Xn → Y1 is the composition Xn → Y → Y1.

Example 2.7. Let 𝒯 be a triangulated category with suspension functor Σ. We consider 
𝒯 as an extriangulated category, as in Example 2.3. By [26, Corollary 3.23] we have

En(Y,X) = Hom𝒯 (Y,ΣnX) ,

and for d ∈ Ei(Y,X) and e ∈ Ej(Z, Y ) the cup product is

d ⌣ e = (Σjd) ◦ e ∈ Hom𝒯 (Z,Σi+jX) = Ei+j(Z,X) .
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2.8. Higher extensions via syzygies or cosyzygies

We recall from [51, Section 3.4] the definition of an extriangulated category with 
enough projectives. Let (𝒜,E, 𝔰) be an extriangulated category. An object P ∈ 𝒜 is E
projective, if E(P,X) = 0 for any X ∈ 𝒜. We say (𝒜,E, 𝔰) has enough E-projectives if for 
any X ∈ 𝒜 there exists an E-projective object P and an extriangle W → P → X --￫. 
The object W is called a syzygy of X. The syzygy of an object X need not be unique. 
When 𝒜 has enough projectives, we fix a choice of syzygy, and denote it by ΩX; cf. [29, 
Assumption 3.3]. We set

Ω0X := X and ΩnX := Ω(Ωn−1X)

for n ≥ 1.
Let R be a commutative ring. In an R-linear extriangulated category (𝒜,E, 𝔰) with 

enough projectives, the higher extensions are functors

En
Ω : 𝒜op ×𝒜 → Mod(R) given by

E0
Ω(Y,X) := Hom𝒜(Y,X) and En

Ω(Y,X) := E(Ωn−1Y,X)
(2.8.1)

for n ≥ 1; these functors are well-defined and independent of the choice of syzygy by [29, 
Proposition 3.4, Definition 3.6].

Dually, in an extriangulated category (𝒜,E, 𝔰) an object I ∈ 𝒜 is E-injective, if 
E(Y, I) = 0 for any Y ∈ 𝒜. We say (𝒜,E, 𝔰) has enough E-injectives if for any X ∈ 𝒜
there exists an E-injective object I and an extriangle X → I →W --￫. The object W is 
a cosyzygy of X. In an R-linear extriangulated category (𝒜,E, 𝔰) with enough injectives 
we fix a choice of coszyzy ΣX for every X ∈ 𝒯 . The higher extensions are the functors

En
Σ : 𝒜op ×𝒜 → Mod(R) given by

E0
Σ(Y,X) := Hom𝒜(Y,X) and En

Σ(Y,X) := E(Y,Σn−1X)
(2.8.2)

for n ≥ 1; these functors are well-defined and independent of the choice of cosyzygy by 
[29, Proposition 3.4].

When the extriangulated category (𝒜,E, 𝔰) has enough E-injectives and enough E
projectives, the definitions of higher extensions via syzygies and cosyzygies are naturally 
isomorphic by [45, Lemma 5.1].

Example 2.9. Let 𝒯 be a triangulated category with suspension Σ. We consider 𝒯 as 
an extriangulated category as in Example 2.3. The zero object is the only E-projective 

object, and for any object X there exists an exact triangle Σ−1X → 0 → X
idX −−→ X. 

Hence 𝒯 has enough E-projectives and Σ−1X is a syzygy of X. Dually, any triangu
lated category has enough injectives and the suspension ΣX is a cosyzygy of X. It is 
straightforward to see that the higher extensions of any triangulated category 𝒯 are 
given by
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En
Σ(Y,X) = Hom𝒯 (Y,ΣnX) ∼ = Hom𝒯 (Σ−nY,X) = En

Ω(Y,X) .

Next we discuss the cup product on EΩ. The construction for EΣ works analogously. 
Let R be a commutative ring and let (𝒜,E, 𝔰) be an R-linear extriangulated category 
with enough E-projectives. For an object W ∈ 𝒜 there exists an E-projective object 
P and an extriangle ΩW → P → W --￫. For any object Y this extriangle induces a 
surjective map of R-modules

Hom𝒜(ΩW,Y )→ E(W,Y )→ 0

which is natural in Y ; see [51, Corollary 3.12]. Then the cup product for EΩ and i, j > 0
is defined as

Ei
Ω(Y,X)⊗R Ej

Ω(Z, Y ) → Ei
Ω(ΩjZ,X) ∼ = Ei+j

Ω (Z,X) 

d⊗ e ↦→ d ⌣ e := Ei
Ω(fe, X)(d) ,

(2.9.1)

where fe is a pre-image of e under the surjective map above for W = Ωj−1Z. By [29, 
Section 3.1] the cup product is independent of the pre-image, and there are natural 
isomorphisms Ek

Ω(Ωℓ−,−) ∼ = Ek+ℓ
Ω (−,−).

2.10. Comparison

When (𝒜,E, 𝔰) is essentially small and has enough E-injectives or E-projectives, then 
the definitions of higher extensions are naturally isomorphic by [26, Corollary 3.21]. 
The proof in [26] involves proving that the higher extensions and cup products are 
universal among bifunctors satisfying similar properties; see [26, Proposition 3.20]. We 
give an alternative proof, as well as a proof that the cup products are compatible with 
these natural isomorphisms. The main argument for both statements is contained in the 
following technical lemma.

Lemma 2.11. Let R be a commutative ring and (𝒜,E, 𝔰) be an essentially small R-linear 
extriangulated category with enough E-projectives. There exist R-module homomorphisms 
φi,j(Y,X) : Ei(ΩjY,X)→ Ei+j(Y,X) for i, j ≥ 0 and objects X,Y ∈ 𝒜, such that: 

(1) φi,j(Y,X) is surjective when i = 0 and j > 0;
(2) φi,j(Y,X) is an isomorphism when i ≥ 1 or j = 0;
(3) φi,j(Y,X) is natural in X;
(4) φi,j(Y,X) is natural in Y in the sense that the associated diagram commutes for any 

lift ΩjY → ΩjY ′ of a morphism Y → Y ′; and
(5) the morphisms are compatible with the cup product (2.4.3) in the sense that the 

following diagram commutes
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Ei(Y,X)⊗R Ej(ΩkZ, Y ) Ei+j(ΩkZ,X)

Ei(Y,X)⊗R Ej+k(Z, Y ) Ei+j+k(Z,X)

⌣

id⊗φj,k(Z,Y ) φi+j,k(Z,X)

⌣

for all integers i, j, k ≥ 0.

Proof. We use induction on j. For j = 0 we let φi,0(Y,X) be the identity morphism. For 
j = 1 we have an extriangle ΩY → P → Y --￫ with P an E-projective object. Then 
there is a right exact sequence

Hom𝒜(P,W ) → Hom𝒜(ΩY,W )→ E(Y,W )→ 0

in Mod(R) that is natural in W ∈ 𝒜. We apply 
∫︁W

Ei(W,X) ⊗R − to the right exact 
sequence. Since coends preserve right exact sequences, the sequence

Ei(P,X)→ Ei(ΩY,X)→ Ei+1(Y,X)→ 0

is exact; see [46, Proposition 2.2.1]. We let φi,1(Y,X) be the second morphism. Finally, 
for j > 1 we define φi,j(Y,X) as the composition

Ei(ΩjY,X) φi,1(Ωj−1Y,X) −−−−−−−−−→ Ei+1(Ωj−1Y,X) φi+1,j−1(Y,X) −−−−−−−−−→ Ei+j(Y,X) .

The properties (1--3) hold by construction. Property (4) is straightforward to check from 
the construction, and (5) can be shown using induction on k. □
Corollary 2.12. Let R be a commutative ring and (𝒜,E, 𝔰) be an essentially small R
linear extriangulated category with enough E-projectives. There are natural isomorphisms 
Ei

Ω =⇒ Ei for i ≥ 0 that are compatible with the cup products defined in (2.4.3) and 
(2.9.1); that is the following diagram commutes

Ei
Ω(Y,X)⊗R Ej

Ω(Z, Y ) Ei+j
Ω (Z,X)

Ei(Y,X)⊗R Ej(Z, Y ) Ei+j(Z,X) . 

∼ = 

⌣

(2.9.1)
∼ = 

⌣

(2.4.3)

Proof. For i = 0 take the identity on Hom𝒜(Y,X). For i > 0 we use the maps 
φ1,i−1(Y,X) : Ei

Ω(Y,X) = E(Ωi−1Y,X) → Ei(Y,X) from Lemma 2.11 which are iso
morphisms by (2). We prove the square commutes by induction on j.
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Let d ∈ Ei
Ω(Y,X) and e ∈ Ej

Ω(Z, Y ). For the case j = 0 we obtain

φ1,i−1(Z,X)(d ⌣ e) = φ1,i−1(Z,X)(Ei
Ω(e,X)(d))

= φ1,i−1(Z,X)(E(Ωi−1e,X)(d))

= Ei(e,X)(φ1,i−1(Y,X)(d))

= φ1,i−1(Y,X)(d) ⌣ e ;

using property (4) for the third identification. The remaining identifications hold by the 
definitions (2.9.1), (2.8.1) and (2.4.3), respectively.

We assume that the desired square commutes for some j ≥ 0. We now claim that the 
following diagram commutes:

Ei
Ω(Y,X)⊗R Ej+1

Ω (Z, Y ) Ei+j+1
Ω (Z,X)

Ei
Ω(Y,X)⊗R Ej

Ω(ΩZ, Y ) Ei+j
Ω (ΩZ,X)

Ei(Y,X)⊗R Ej(ΩZ, Y ) Ei+j(ΩZ,X)

Ei(Y,X)⊗R Ej+1(Z, Y ) Ei+j+1(Z,X) . 

∼ = 

⌣

(2.9.1)
∼ = 

φ1,i−1(Y,X)⊗φ1,j−1(ΩZ,Y )

⌣

(2.9.1)

φ1,i+j−1(ΩZ,X)

⌣

(2.4.3)
idEi(Y,X) ⊗φj,1(Z,Y ) φi+j,1(Z,X)

⌣

(2.4.3)

The upper square commutes by the definition of EΩ and its cup product. The middle 
square commutes by replacing Z with ΩZ in the inductive hypothesis. The lower square 
commutes by (5). It remains to observe that the outside square is precisely the claim. □
Remark 2.13. Let (𝒜,E, 𝔰) be an extriangulated category. Assume that higher exten
sions exist. Then E∗(X,X) = {En(X,X)}n⩾0 together with the cup product is a 
graded ring for any X ∈ 𝒜. Moreover, for any X,Y ∈ 𝒜 the cup product induces a 
E∗(X,X)-E∗(Y, Y )-bimodule structure on E∗(Y,X) = {En(Y,X)}n⩾0.

Note that there is a category where the objects are the objects of 𝒜, where E∗(X,Y )
is the set of morphisms X → Y , and where the cup product defines composition. This 
is a special case of the additive tensor category in [56].

Remark 2.14. In connection with the cup product it is common to introduce a Koszul sign 
convention; see [47, Theorem III.9.1]. This means, for d ∈ Ei(Y,X) we define morphisms

d∗ : Ej(W,Y )→ Ei+j(W,X) , e ↦→ d ⌣ e and

d∗ : Ej(X,Z)→ Ei+j(Y,Z) , c ↦→ (−1)ijc ⌣ d
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that are natural in W and Z, respectively. For i = 0 one has d∗ = Ej(W,d) and d∗ =
Ej(d, Z). Further, the natural transformations for i = 1 and j = 0 extend those in [51, 
Definition 3.1]. The Koszul sign convention does not appear in any of the previous works 
on the cup product of an extriangulated category.

For a triangulated category 𝒯 the sign seems artificial, but when 𝒯 = D(ℰ) is the 
derived category of an exact category it is standard: An element in En(Y,X) is considered 
a degree n morphism Y → X.

3. Biextriangulated functors

We now discuss functors of the form 𝒜×ℬ → 𝒞 of extriangulated categories. The no
tion of a biextriangulated functor should generalise the notions for exact and triangulated 
categories; see for example [60, II.7.4] and [36, Definition 10.3.6], respectively.

3.1. Extriangulated functors

An extriangulated functor

F = (F, β) : (𝒜,E, 𝔰)→ (ℬ,F , 𝔱)

of extriangulated categories consists of an additive functor F : 𝒜 → ℬ and a natural 
transformation β : E(−,−) =⇒ F(F(−),F(−)) such that for any extriangle X

f −→ W
g −→

Y
d --￫ in 𝒜 there is an extriangle

F(X) F(f) −−−→ F(W ) F(g) −−→ F(Y )
βY,X(d) 
------￫

in ℬ; see [6, Definition 2.32] and also [50, Definition 2.11].
The composition of extriangulated functors (F, β) : (𝒜,E, 𝔰) → (ℬ,F , 𝔱) and (G, γ):

(ℬ,F , 𝔱)→ (𝒞,G, 𝔲) is defined by (GF, α) where αY,X = γFY,FXβY X for all X,Y ∈ 𝒜; see 
[5, Definition 3.18(ii)].

Let (F, β), (G, γ) : (𝒜,E, 𝔰) → (ℬ,F , 𝔱) be extriangulated functors. An extriangulated 
natural transformation η : (F, β) =⇒ (G, γ) is a natural transformation η : F =⇒ G of 
additive functors such that, for all X,Y ∈ 𝒜, the diagram

E(Y,X) F(F(Y ),F(X))

F(G(Y ),G(X)) F(F(Y ),G(X))

βY,X

γY,X (ηX)∗

(ηY )∗

commutes; see [50, Definition 2.11] and also [5, Definition 4.1].
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Remark 3.2. The definition of an extriangulated natural transformation can be phrased 
using the cup product. Explicitly, a natural transformation η : (F, β) =⇒ (G, γ) is extri
angulated if and only if

ηX ⌣ βY,X(d) = γY,X(d) ⌣ ηY

for any d ∈ E(Y,X). This means the natural transformation is compatible with the 
connecting map from Hom to E.

Specialising to exact or triangulated categories, these notions recover the classical 
definitions:

Example 3.3. Let F : ℰ → ℱ be an exact functor of exact categories; this means 
any exact sequence is mapped to an exact sequence. The functor F induces a map 
βY,X : Ext1ℰ(Y,X) → Ext1ℱ (F(Y ),F(X)), which is natural in X and Y since F preserves 
pushout and pullback squares; for the latter see [10, Proposition 5.2]. If we view ℰ and 
ℱ as extriangulated categories as in Example 2.2, then F, together with this natural 
transformation β, is an extriangulated functor.

Conversely, it is clear that any extriangulated functor between exact categories is 
exact; see [6, Theorem 2.34].

Lastly, we note that any natural transformation of exact functors is automatically 
extriangulated [50, p. 349]; see also [5, Example 5.4] for details.

Example 3.4. Let (F, τ) : 𝒮 → 𝒯 be a triangulated functor of triangulated categories; this 
means τ : FΣ → ΣF is a natural transformation and, for any exact triangle X

f −→ X
g −→

Y
h−→ ΣX in 𝒮, there is an exact triangle

F(X) F(f) −−−→ F(W ) F(g) −−→ F(Y ) τXF(h) −−−−→ ΣF(X)

in 𝒯 . Then (F, β) : 𝒮 → 𝒯 is an extriangulated functor of triangulated categories with 
βY,X given by the composition

Hom𝒮(Y,ΣX) F−→ Hom𝒯 (F(Y ),F(ΣX)) Hom𝒯 (F(Y ),τX) −−−−−−−−−−→ Hom𝒯 (F(Y ),ΣF(X))

for all X,Y ∈ 𝒮; see [6, Theorem 2.33].
Conversely, let (F, β) : 𝒮 → 𝒯 be an extriangulated functor between triangulated 

categories. We set

τX := βΣX,X(idΣX) : F(ΣX)→ ΣF(X) .

It is straightforward to check that this map is natural in X. It is an isomorphism, since 
it witnesses the mapping of the (ex)triangles
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(X → 0 → ΣX
idΣX  ----￫ ΣX) ↦→ (F(X) → 0 → F(ΣX) τX  ---￫ ΣF(X)) .

Hence (F, τ) is a triangulated functor.
Unlike the exact case, a natural transformation of triangulated functors is not neces

sarily extriangulated. It is extriangulated if and only if it is a morphism of triangulated 
functors in the sense of [36, Definition 10.1.9(ii)]; see [50, p. 349] and also [5, Example 
5.3].

The next Lemma is a generalisation of the fact that the higher extensions, defined 
using syzygies, are functorial from [29, Proposition 3.4].

Lemma 3.5. Let (F, β) : (𝒜,E, 𝔰)→ (ℬ,F , 𝔱) be an extriangulated functor of extriangulated 
categories. For any morphism f : Y → Y ′ there exists a morphism fω : ΩF(Y )→ F(ΩY ′)
such that there is a commutative diagram

ΩF(Y ) Q F(Y )

F(ΩY ′) F(P ) F(Y ′)

fω f

where each row is an extriangle in ℬ and P and Q are E-projective and F-projective, 
respectively. Moreover, the morphism

F((idY )ω, idW ) : F(F(ΩY ),W )→ F(ΩF(Y ),W )

is natural in W ∈ ℬ and Y ∈ 𝒜.

Proof. Let ΩY ′ → P → Y ′ --￫ be an extriangle with P an E-projective object. Further, 
let ΩF(Y ) → Q→ F(Y ) --￫ be an extriangle with Q a F -projective object. As F(Q,−) =
0, applying Hom(Q,F(−)) to the first extriangle yields a short exact sequence by [51, 
Corollary 3.12]. That is we obtain a commutative diagram

ΩF(Y ) Q F(Y )

F(ΩY ′) F(P ) F(Y ′) . 

f

By the axiom (ET3)op for an extriangulated category in [51, Definition 2.12], there exists 
a morphism fω : ΩF(Y )→ F(ΩY ) such that the diagram commutes. While this morphism 
need not be unique, the induced map

F(fω, idW ) : F(F(ΩY ),W ) → F(ΩF(Y ′),W )

is independent of the choice of fω. In particular, the two compositions
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ΩF(Y )→ ΩF(Y ′) → F(ΩY ′) and ΩF(Y )→ F(ΩY )→ F(ΩY ′)

need not coincide, however after applying F(−,W ) they will be the same. That means 
there is a commutative diagram

F(ΩF(Y ),W ) F(F(ΩY ),W )

F(ΩF(Y ′),W ) F(F(ΩY ′),W )

F((idY )ω,idW )

F(ΩF(f),idW ) F(FΩf,idW )
F((idY ′ )ω,idW )

where the vertical morphisms are well-defined by [29, Proposition 3.4]. □
We record the interplay of extriangulated functors and the higher extensions:

Proposition 3.6. Let (F, β) : (𝒜,E, 𝔰)→ (ℬ,F , 𝔱) be an extriangulated functor of extrian
gulated categories. Assume higher extensions are well-defined in (𝒜,E, 𝔰) and (ℬ,F , 𝔱)
through the same construction, i.e. by means of: 

(1) coends following (2.4.1), assuming 𝒜 and ℬ are essentially small;
(2) syzygies following (2.8.1), assuming 𝒜 and ℬ have enough projectives; or
(3) cosyzygies following (2.8.2), assuming 𝒜 and ℬ have enough injectives.

Then for each n ≥ 0 there are induced natural transformations

βn : En(−,−) =⇒ Fn(F(−),F(−))

such that βi
Y,X(d) ⌣ βj

Z,Y (e) = βi+j
Z,X(d ⌣ e) for d ∈ Ei(Y,X) and e ∈ Ej(Z, Y ).

Proof. (1) Defining higher extensions via coends, we construct the natural transforma
tion βn by induction on n. For n = 0 it is the map given by F and for n = 1 we have 
β1 = β. For n ≥ 2 and any X,Y,W ∈ 𝒜 we obtain the composition

En−1(W,X)⊗R E(Y,W ) Fn(F(Y ),F(X)) . 

Fn−1(F(W ),F(X))⊗R F(F(Y ),F(W ))
βn−1
W,X⊗βY,W

⌣

The colimit property yields a unique morphism βn
Y,X : En(Y,X)→ Fn(F(Y ),F(X)), and 

it is straightforward to check that this map is natural in X and Y . By construction the 
cup product is compatible with these natural transformations.

(2, 3) We define higher extensions via syzygies. The argument for cosyzygies is anal
ogous. Using Lemma 3.5 (n− 1)-times we define
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E(Ωn−1Y,X) F(F(Ωn−1Y ),F(X)) F(Ωn−1F(Y ),F(X))

En
Ω(Y,X) Fn

Ω(F(Y ),F(X))

βΩn−1Y,X

= =

βn
Y,X

for any n ≥ 2. By Lemma 3.5 this morphism is natural in X an Y . It remains to check the 
compatibility of these natural transformations with the cup product. There is a canonical 
and commutative diagram of the form

Hom𝒜(ΩnY,X) E(Ωn−1Y,X) = En
Ω(Y,X)

Homℬ(F(ΩnY ),F(X)) F(F(Ωn−1Y ),F(X))

Homℬ(ΩnF(Y ),F(X)) F(Ωn−1F(Y ),F(X)) = Fn
Ω(F(Y ),F(X)) . 

βn
Y,X

Hence from here it is straightforward to see that the natural transformation is compatible 
with the cup product. □
3.7. Extriangulated adjunction

Let

(F, β) : (𝒜,E, 𝔰)→ (ℬ,F , 𝔱) and (G, γ) : (ℬ,F , 𝔱)→ (𝒜,E, 𝔰)

be extriangulated functors. Following [5, Definition 4.9(i)], we say (G, γ) is an extriangu
lated right adjoint of (F, β) and (G, γ) is an extriangulated left adjoint, if (F,G) is a pair 
of adjoint functors and the unit and counit witnessing the adjunction are extriangulated 
natural transformations. In this situation we say ((F, β), (G, γ)) is a pair of extriangulated 
adjoint functors.

Requiring that the unit and counit are extriangulated is superfluous for triangu
lated category. However, for exact categories it is necessary: For example, if R is a 
commutative ring and X is a flat non-projective R-module, then in the adjunction 
−⊗R X ⊣ HomR(X,−) the functor −⊗R is exact while HomR(X,−) is not.

A consequence of this definition is that we obtain an adjunction relation on the higher 
extensions.

Lemma 3.8. Let (F, β) : (𝒜,E, 𝔰) → (ℬ,F , 𝔱) be an extriangulated left adjoint of 
(G, γ) : (ℬ,F , 𝔱) → (𝒜,E, 𝔰) and η and ε the associated unit and counit, respectively. 
Then the maps

F(F(Y ), X)
γF(Y ),X −−−−−→ E(G(F(Y )),G(X)) (ηY )∗ −−−−→ E(Y,G(X)) and

E(Y,G(X))
βY,G(X) −−−−−→ F(F(Y ),F(G(X)) (εX)∗ −−−−→ F(F(Y ), X)
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are inverse to each other for any Y ∈ 𝒜 and X ∈ ℬ. In particular, this yields an 
isomorphism F(F(Y ), X) ∼ = E(Y,G(X)) for all Y ∈ 𝒜 and X ∈ ℬ that is compatible with 
the adjunction of (F, β) and (G, γ).

Proof. We show that the composition F(F(Y ), X) → E(Y,G(X)) → F(F(Y ), X) is the 
identity map. The proof that the composition E(Y,G(X))→ F(F(Y ), X) → E(Y,G(X))
is the identity is similar and omitted. Consider the following diagram:

F(F(Y ), X) E(G(F(Y )),G(X))

F(F(G(F(Y ))), X) F(F(G(F(Y ))),F(G(X))) E(Y,G(X)) . 

F(F(Y ), X) F(F(Y ),F(G(X)))

γF(Y ),X

(εF(Y ))∗ βG(F(Y )),G(X)
(ηY )∗

F(ηY )∗

(εX)∗

F(ηY )∗
βY,G(X)

(εX)∗

The top left square commutes since ε is an extriangulated natural transformation. The 
bottom left square commutes by virtue of F being a bifunctor. The triangle on the right 
commutes as all the maps are natural. It remains to observe that the vertical composition 
on the left is the identity. □
Corollary 3.9. Let (F, β) : (𝒜,E, 𝔰) → (ℬ,F , 𝔱) be an extriangulated left adjoint of 
(G, γ) : (ℬ,F , 𝔱) → (𝒜,E, 𝔰). With the isomorphisms from Lemma 3.8 the following dia
gram commutes

F(F(X), Y ′) Homℬ(F(X), Y ) F(F(X ′), Y )

E(X,G(Y ′)) Hom𝒜(X,G(Y ′)) E(X ′,G(Y ))

∼ = 

(βX′,X(d))∗e∗

∼ = ∼ = 
d∗(γY,Y ′ (e))∗

for any d ∈ E(X ′, X) and e ∈ F(Y, Y ′).

Proof. As the vertical maps are compositions of γ and the unit, or β and the counit, the 
claim follows from the definition of an extriangulated functor and Remark 3.2. □

From the construction of the higher extensions and Proposition 3.6 we immediately 
obtain:

Corollary 3.10. Let (F, β) : (𝒜,E, 𝔰) → (ℬ,F , 𝔱) be an extriangulated left adjoint of 
(G, γ) : (ℬ,F , 𝔱) → (𝒜,E, 𝔰). We assume that the higher extensions are well-defined in 
(𝒜,E, 𝔰) and (ℬ,F , 𝔱) through the same construction, in the sense of Proposition 3.6. 
Then Fn(F(Y ), X) ∼ = En(Y,G(X)) for all Y ∈ 𝒜 and X ∈ ℬ. Moreover, these isomor
phisms are compatible with the cup product similar to Corollary 3.9. □
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3.11. Biextriangulated functors

Loosely speaking, a biextriangulated functor is a bifunctor that is extriangulated 
functor in each component, satisfying an additional compatibility condition between the 
components. Definition 3.12 below only requires an expected compatibility condition; 
later we discuss a stronger notion.

Definition 3.12. A biextriangulated functor

(F, φ, ψ) : (𝒜,E, 𝔰)× (ℬ,F , 𝔱)→ (𝒞,G, 𝔲)

of extriangulated categories consists of: 

(1) a functor F : 𝒜× ℬ → 𝒞;
(2) for each Y ∈ ℬ, a natural transformation

φY : E(−,−) → G(F(−, Y ),F(−, Y )) ;

(3) for each X ∈ 𝒜, a natural transformation

ψX : F(−,−)→ G(F(X,−),F(X,−)) ;

such that 

(a) for each Y ∈ ℬ, the functor (F(−, Y ), φY ) : 𝒜 → 𝒞 is extriangulated;
(b) for each X ∈ 𝒜, the functor (F(X,−), ψX) : ℬ → 𝒞 is extriangulated;
(c) for X,X ′ ∈ 𝒜 and g : Y → Y ′ in ℬ, the following diagram commutes

E(X ′, X) G(F(X ′, Y ),F(X,Y ))

G(F(X ′, Y ′),F(X,Y ′)) G(F(X ′, Y ),F(X,Y ′)) ; 

φY
X′,X

φY ′
X′,X F(X,g)∗

F(X′,g)∗

(d) for f : X → X ′ in 𝒜 and Y, Y ′ ∈ ℬ, the following diagram commutes

F(Y ′, Y ) G(F(X,Y ′),F(X,Y ))

G(F(X ′, Y ′),F(X ′, Y )) G(F(X,Y ′),F(X ′, Y )) . 

ψX
Y ′,Y

ψX′
Y ′,Y F(f,Y )∗

F(f,Y ′)∗

Remark 3.13. Conditions (c) and (d) mean that φ and ψ are extranatural in ℬ and 𝒜, 
respectively; see [13].
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Example 3.14. Let F : ℰ×ℱ → 𝒢 be a biexact functor of exact categories; this means that 
F(X,−) and F(−, Y ) are exact functors for every X ∈ ℰ and Y ∈ ℱ ; cf. [60, II.7.4]. We 
let φY and ψX be the natural transformations obtained by applying F(−, Y ) and F(X,−)
to a short exact sequence in ℰ and ℱ , respectively; see Example 3.3. Hence, (a) and (b) 
hold. We show that (c) holds without any further assumptions. Let X → W → X ′ be 
a short exact sequence in ℰ and g : Y → Y ′ a morphism in ℱ . By [10, Proposition 3.1], 
the morphism of short exact sequences induced by F(−, g) factors as follows

F(X,Y ) F(W,Y ) F(X ′, Y )

F(X,Y ′) Z F(X ′, Y )

F(X,Y ′) F(W,Y ′) F(X ′, Y ′)

F(X,g) =

= F(X′,g)

where the top left and bottom right squares are bicartesian. The top row is precisely 
φY
X′,X([X → W → X ′]) and the bottom row is φY ′

X′,X([X → W → X ′]). Hence the 
middle row can be obtained by applying Ext1𝒢(F(X ′, Y ),F(X, g)) to the top row, or 
by applying Ext1𝒢(F(X ′, g),F(X,Y ′)) to the bottom row. In particular, (c) holds. An 
analogous argument shows (d). So (F, φ, ψ) is a biextriangulated functor.

Conversely, from Example 3.3 it is clear that any biextriangulated functor of exact 
categories is a biexact functor.

Example 3.15. Let (F, ϑ, ζ) : 𝒮 × 𝒯 → 𝒰 be a bitriangulated functor; this means 
ϑ : F(Σ−,−) → ΣF(−,−) and ζ : F(−,Σ−) → ΣF(−,−) are natural transformations 
such that (F(−, Y ), ϑ−,Y ) and (F(X,−), ζX,−) are triangulated functors for all X ∈ 𝒮
and Y ∈ 𝒯 , and the following diagram anticommutes.

F(ΣX,ΣY ) ΣF(X,ΣY )

ΣF(ΣX,Y ) Σ2F(X,Y ) . 

ϑX,ΣY

ζΣX,Y (−1) ΣζX,Y

ΣϑX,Y

(3.15.1)

We define the natural transformations φY and ψX using ϑ−,Y and ζX,−, respectively, 
similarly to how β was defined in Example 3.4. Hence (a) and (b) hold. In this setting, 
condition (c) is the identification

(ΣF(X, g)) ◦ ϑX,Y ◦ F(f, Y ) = ϑX,Y ′ ◦ F(f, Y ′) ◦ F(X ′, g)

for all f : X ′ → ΣX in 𝒮 and g : Y → Y ′ in 𝒯 . This holds as ϑ, F(f,−) and F(−, g) are 
natural transformations. An analogous argument shows (d). So (F, φ, ψ) is a biextrian
gulated functor.
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The above argument does not use (3.15.1). In fact, a biextriangulated functor of trian
gulated categories need not induce a bitriangulated functor. We resolve this discrepancy 
using ‘strong’ biextriangulated functors in the next Section.

3.16. Strong biextriangulated functors

We now consider a stronger compatibility condition between the components of a 
biextriangulated functor. This will resolve the mismatch between biextriangulated and 
bitriangulated functors of triangulated categories, while not affecting the match between 
biextriangulated and biexact functors of exact categories. A possible disadvantage of this 
definition is that we need to assume that higher extensions exist, however these always 
exist for triangulated categories.

Definition 3.17. Let F = (F, φ, ψ) : (𝒜,E, 𝔰)× (ℬ,F , 𝔱) → (𝒞,G, 𝔲) be a biextriangulated 
functor. We assume that higher extensions are well-defined in (𝒞,G, 𝔲). We say F is 
strong, if for every d ∈ E(X,X ′) and e ∈ F(Y, Y ′) one has

ψX′
Y,Y ′(e) ⌣ φY

X,X′(d) = −φY ′
X,X′(d) ⌣ ψX

Y,Y ′(e) (3.17.1)

in G2(F(X,Y ),F(X ′, Y ′)).

Lemma 3.18. Let F = (F, φ, ψ) : (𝒜,E, 𝔰) × (ℬ,F , 𝔱) → (𝒞,G, 𝔲) be a strong biextriangu
lated functor and assume that higher extensions are well-defined in each of the categories 
through the same construction, as in Proposition 3.6. Then

(ψX′
)jY,Y ′(e) ⌣ (φY )iX,X′(d) = (−1)ij(φY ′

)iX,X′(d) ⌣ (ψX)jY,Y ′(e)

for every d ∈ Ei(X,X ′) and e ∈ F j(Y, Y ′).

Proof. By the construction in Proposition 3.6, the natural transformation (φY )i is fully 
determined by (φY )⊗i on

E(W1, X)⊗R E(W2,W1)⊗R · · · ⊗R E(Y,Wi−1) .

We obtain the claim by interchanging the E and F factors of Ei(X,X ′)⊗RF j(Y, Y ′). □
For exact categories condition (3.17.1) is superfluous:

Proposition 3.19. Let F : ℰ × ℱ → 𝒢 be a biexact functor. Then F is strong viewed as 
a biextriangulated functor. In particular, there is a one-to-one correspondence between 
biexact functors and strong biextriangulated functors of exact categories.
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Proof. Let d = [X f −→ Y
g −→ Z] ∈ Ext1ℰ(X,Z) and e = [X ′ f ′ −→ Y ′ g′ −→ Z ′] ∈ Ext1ℱ (X ′, Z ′). 

Then F(d,X ′) ⌣ F(Z, e) is

[F(X,X ′) F(f,X′) −−−−−→ F(Y,X ′) F(g,f ′) −−−−→ F(Z, Y ′) F(Z,g′) −−−−→ F(Z,Z ′)]

and F(X, e) ⌣ F(d, Z ′) is

[F(X,X ′) F(X,f ′) −−−−−→ F(X,Y ′) F(f,g′) −−−−→ F(Y,Z ′) F(g,Z′) −−−−→ F(Z,Z ′)] ;

see Example 2.6. We take the pushout of the span F(X,Y ′)← F(X,X ′) → F(Y,X ′) and 
obtain a morphism of exact sequences

F(X,X ′) F(Y,X ′) F(Z,X ′)

F(X,Y ′) W F(Z,X ′) . 

F(f,X′)

F(X,f ′)

F(g,X′)

=

a b

The universal property of the pushout yields the commutative diagram

F(X,Y ′) W F(Y, Y ′)

0 F(Z,X ′) F(Z, Y ′)

0 F(Z,Z ′)

a

b

c

F(g,Y ′)
F(Z,f ′)

F(Z,g′)

such that ca = F(f, Y ′), and so the rectangle defined by the top two squares is a pushout 
square. Since (a, b) is a kernel-cokernel pair the top left square is a pushout square. 
By the pasting lemma for pushout squares, every square is a pushout square; see [48, 
p. 72, Exercise 8]. So we obtain an extension

[F(X,X ′)

(︃
F(X,f ′)
−F(f,X′)

)︃
 

−−−−−−−−→ F(X,Y ′)⊕ F(Y,X ′)→ F(Y, Y ′) → F(Z,Z ′)] ,

and a commutative diagram

F(X,X ′) F(Y,X ′) F(Z, Y ′) F(Z,Z ′)

F(X,X ′) F(X,Y ′)⊕ F(Y,X ′) F(Y, Y ′) F(Z,Z ′)

F(X,X ′) F(X,Y ′) F(Y,Z ′) F(Z,Z ′)

−F(f,X′) F(g,f ′) F(Z,g′)

(︃
F(X,f ′)
−F(f,X′)

)︃=

=

=

=

F(X,f ′) F(f,g′) F(g,Z′)
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which exhibits the first claim. The second assertion follows from combining this with 
Example 3.14. □
Proposition 3.20. Let (F, φ, ψ) : 𝒮 ×𝒯 → 𝒰 be a strong biextriangulated functor of trian
gulated categories. With

ϑX,Y := φY
ΣX,X(idΣX) : F(ΣX,Y )→ ΣF(X,Y ) and

ζX,Y := ψX
ΣY,Y (idΣY ) : F(X,ΣY )→ ΣF(X,Y )

the functor (F, ϑ, ζ) is a bitriangulated functor.
Moreover, there is a one-to-one correspondence between bitriangulated functors and 

strong biextriangulated functors on triangulated categories.

Proof. We assume that (F, φ, ψ) : 𝒮×𝒯 → 𝒰 is a biextriangulated functor of triangulated 
categories, and that ϑ and ζ are given as above. From Example 3.4 we know that F, 
together with ϑ and ζ, is a triangulated functor in each component. It remains to show 
(3.15.1). By Example 2.7 this is equivalent to

ζX,Y ⌣ ϑX,ΣY = −ϑX,Y ⌣ ζΣX,Y .

This is just a specialisation of the definition of a strong biextriangulated functor.
For the second part, it remains to show that the biextriangulated functor that is 

induced by a bitriangulated functor is strong. This is straightforward to check using 
Examples 2.7 and 3.4. □

We end this section with examples of biextriangulated functors. For derived categories 
of module categories, the derived tensor product and derived Hom-functor are biextri
angulated. However, for module categories with the abelian exact structure the tensor 
product and the Hom-functor need not be biextriangulated. This can be rectified by 
restricting to flat modules.

Example 3.21. Let R be a commutative ring. Let 𝒳 be an essentially small R-linear cate
gory. Let Mod(𝒳 ) and Mod(𝒳 op) be the categories of R-linear covariant and contravari
ant functors, respectively, of the form 𝒳 → Mod(R). For F ∈ Mod(𝒳 op) and G ∈ Mod(𝒳 )
define an R-bilinear functor 𝒳 op × 𝒳 → Mod(R) by (X,Y ) ↦→ F(X) ⊗R G(Y ). Taking 
coends, discussed in Section 2.4, gives a functor

⊗𝒳 : Mod(𝒳 op)×Mod(𝒳 ) → Mod(R) , (F,G) ↦→
∫︂ W

F(W )⊗R G(W ) ;

see [21, Section 2]. When 𝒳 is a category with one object, the endomorphism ring is an 
R-algebra A and ⊗𝒳 is the classical tensor product of modules over A.
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Let Flat(𝒳 ) be the full subcategory of Mod(𝒳 ) consisting of functors F such that 
F ⊗𝒳 − : Mod(𝒳 op) → Mod(R) is exact, meaning F is flat in the sense of [53, The
orem 3.2(1)]. The subcategory Flat(𝒳 ) (respectively, Flat(𝒳 op)) is extension-closed in 
Mod(𝒳 ) (respectively, Mod(𝒳 op)). With the abelian exact structure on Mod(R), one 
can check that the restriction of ⊗𝒳 defines a biexact functor

Flat(𝒳 op)× Flat(𝒳 ) → Mod(R) .

Thus this restriction is a strong biextriangulated functor by Example 3.14.
The functor categories and their subcategories of flat functors are strongly connected 

to the category of modules over a non-unital R-algebra. For a small R-linear category 𝒳
the functor ring is A :=

⨁︁
X,Y ∈sk(𝒳 ) Hom𝒳 (X,Y ); this ring was studied in [23, Chap

ter II], also see [24]. This is a possibly non-unital ring with enough idempotents. By [23, 
II, Proposition 2], there is an R-linear equivalence between Mod(𝒳 ) and the category of 
unital left A-modules; one says M is unital if AM = M . This equivalence restricts to an 
equivalence between Flat(𝒳 ) and the category of flat unital left A-modules. Similarly, 
the category Mod(𝒳 op) (respectively Flat(𝒳 op)) is equivalent to the category of (respec
tively, flat) unital right A-modules. Under this equivalence, the functor ⊗𝒳 corresponds 
to the classical tensor product ⊗A; see for example [17, Lemma 2].

3.22. Stabilisation of extriangulated categories

There are a few ways to construct extriangulated categories. One is as a stabilisation 
of an exact category. We will see that any biextriangulated functor induced on the 
stabilisation from a biexact functor is strong.

Let (𝒜,E, 𝔰) be an extriangulated category. Let ℐ be a full subcategory of 𝒜 that 
is closed under finite direct sums and consists of objects that are E-projective and E
injective; for the definition of the latter see Section 2.8. The stabilisation of 𝒜 along ℐ, 
denoted by 𝒜ℐ , has the same objects as 𝒜 and the morphisms are defined by

Hom𝒜ℐ
(X,Y ) := Hom𝒜(X,Y )/[ℐ](X,Y ) ,

where [ℐ](X,Y ) is the two-sided ideal of morphisms X → Y in 𝒜 factoring through 
objects in ℐ.

By [51, Proposition 3.30], the extriangulated structure on 𝒜 descends to the stabilisa
tion 𝒜ℐ . The extriangulated structure (E, 𝔰) on 𝒜ℐ is as follows: For objects X,Y ∈ 𝒜ℐ , 
we have

E(Y,X) = E(Y,X) and 𝔰(d) = [X [f ] −−→W
[g] −→ Y ]

where 𝔰(d) = [X f −→W
g −→ Y ].
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Lemma 3.23. Let (𝒜,E, 𝔰) be an extriangulated category and ℐ a full subcategory closed 
under finite direct sums that consists of objects that are E-projective and E-injective. If 
𝒜 has enough E-projectives or E-injectives, then so does 𝒜ℐ .

Furthermore, whenever higher extensions are well-defined in (𝒜,E, 𝔰), then they are 
well-defined in (𝒜ℐ ,E, 𝔰) through the same construction, and

En(X,Y ) = En(X,Y )

for all X,Y ∈ 𝒜 and n ≥ 1.

Proof. The first claim holds, as under stabilisation E-projective and E-injective objects 
become E-projective and E-injective objects, respectively, and stabilisation preserves 
extriangles. The second claim is straightforward to check as the construction of the 
higher extensions commutes with the stabilisation. □

Lemma 3.24 below recovers the n = 1 case of [5, Example 5.9] where (F, β) is the 
identity, ℐ = 0 and 𝒥 consists of all the projective-injectives.

Lemma 3.24. Let (F, β) : (𝒜,E, 𝔰) → (ℬ,F , 𝔱) be an extriangulated functor. Let ℐ and 𝒥
be full subcategories of 𝒜 and ℬ, respectively, that are closed under finite direct sums and 
consist of objects that are projective and injective with respect to the respective extrian
gulated structure. If F(ℐ) ⊆ 𝒥 , then (F, β) induces an extriangulated functor

(F, β) : (𝒜ℐ ,E, 𝔰)→ (ℬ𝒥 ,F , 𝔱) . 

Proof. By assumption we have F([ℐ](X,Y )) ⊆ [𝒥 ](F(X),F(Y )). Hence F induces an 
additive functor F : 𝒜ℐ → ℬ𝒥 . The natural transformation β is well-defined since ℐ and 
𝒥 consist of projective and injective objects in the respective extriangulated structure. 
It now follows from the definition of 𝔰 and 𝔱 that (F, β) is an extriangulated functor. □
Proposition 3.25. Let (F, φ, ψ) : (𝒜,E, 𝔰)×(ℬ,F , 𝔱)→ (𝒞,G, 𝔲) be a biextriangulated func
tor. Let ℐ, 𝒥 and 𝒦 be full subcategories of 𝒜, ℬ and 𝒞, respectively, that are closed under 
finite direct sums and consist of objects that are projective and injective with respect to 
the respective extriangulated structure.

If F(ℐ,ℬ) ⊆ 𝒦 and F(𝒜,𝒥 ) ⊆ 𝒦, then (F, φ, ψ) induces a biextriangulated functor 
(F, φ, ψ) : (𝒜ℐ ,E, 𝔰) × (ℬ𝒥 ,F , 𝔱) → (𝒞𝒦,G , 𝔲). Moreover, if (F, φ, ψ) is strong, then so 
is the induced functor (F, φ, ψ).

Proof. The first claim follows from Lemma 3.24, and the second claim follows from 
Lemma 3.23. □

Stabilisation of an extriangulated category is motivated by the stabilisation of Frobe
nius exact categories. An exact category ℰ is Frobenius, if it has enough projectives and 
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enough injectives and the projectives and injectives coincide. In this situation, the sta
bilisation ℰ = ℰℐ with respect to the subcategory of projective-injective objects ℐ is 
triangulated; see [27, I.2]. As every biexact functor is strong when viewed as a biextrian
gulated functor, such a functor always induces a strong biextriangulated functor on any 
of its stabilisations by Proposition 3.25.

Example 3.26. Let S be a regular local ring. A matrix factorisation of f ∈ S is a pair of 
maps of free modules (Φ : F → G,Ψ : G→ F ) such that

ΦΨ = f idG and ΨΦ = f idF .

The free modules F and G have the same rank, and when they have rank n, we say 
(Φ,Ψ) has size n. Matrix factorisations were introduced in [15, Section 5]; also see [63, 
Chapter 7]. We denote by mfS(f) the category of matrix factorisations of f . Then mfS(f)
is Frobenius and the only indecomposable projective-injective objects are (idS , f idS)
and (f idS , idS). The stabilisation mfS(f) is equivalent as a triangulated category to the 
stabilisation of the category of maximal Cohen–Macaulay modules over S/(f); see [15, 
Section 6] and [63, Theorem 7.4].

Suppose K is a field and that S = K⟦x1, . . . , xs⟧ and T = K⟦y1, . . . , yt⟧ are power 
series rings. We fix f ∈ S and g ∈ T . The tensor product of (Φ,Ψ) ∈ mfS(f) and 
(Φ′,Ψ′) ∈ mfT (g) is defined as

(Φ,Ψ) ⊗̂ (Φ′,Ψ′) :=
(︂(︂

Φ⊗id id⊗Φ′

− id⊗Ψ′ Ψ⊗id

)︂
,
(︂

Ψ⊗id − id⊗Φ′

id⊗Ψ′ Φ⊗id

)︂)︂
;

see [64, Definition 2.1]. The tensor product is a matrix factorisation of f+g over S⊗K T , 
and this yields a functor

⊗̂ : mfS(f)×mfT (g)→ mfS⊗KT (f + g) .

By [64, Lemmas 2.2, 2.8], this functor is biexact, and, by [64, Lemma 2.3], it induces a 
bitriangulated functor on the stabilisations. However, as

(Φ,Ψ) ⊗̂ (idT , g idT ) ∼ = (idS⊗KT , (f + g) idS⊗KT )⊕ ((f + g) idS⊗KT , idS⊗KT ) ,

the tensor product does not induce a functor on the intermediate stabilisations. In par
ticular, it does not induce a tensor product on the category mfS(f)ℐ for ℐ = {(id, f id)}, 
which is equivalent to the category of maximal Cohen–Macaulay modules over S/(f); 
see [63, Theorem 7.4].

There is another tensor product, called the multiplicative tensor product, defined in 
[22, Definition 2.6]. While it is a biexact functor, it does not respect the projective
injective objects, and hence does not induce a functor on the stabilisation.
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4. Tensor extriangulated categories

In this section, we introduce tensor extriangulated categories, generalising the notion 
of a tensor triangulated category; cf. [32, Appendix A.2].

4.1. Monoidal categories

Recall that a monoidal category (𝒜,⊗,1) is a category 𝒜 together with a functor

⊗ : 𝒜×𝒜 → 𝒜,

called the tensor product, and a unit object 1 ∈ 𝒜 equipped with isomorphisms

αX,Y,Z : X ⊗ (Y ⊗ Z)
∼ = −→ (X ⊗ Y )⊗ Z ,

λX : 1⊗X
∼ = −→ X and ρX : X ⊗ 1 ∼ = −→ X

that are natural in each argument, satisfying some coherence axioms. A monoidal cate
gory is symmetric if, in addition, there exists an isomorphism

σX,Y : X ⊗ Y
∼ = −→ Y ⊗X ,

also natural in each argument, satisfying some coherence axioms. For a detailed definition 
see [48, XI.1], and [37] for minimally sufficient coherent axioms.

4.2. Tensor extriangulated categories

We now have all the ingredients to define a monoidal extriangulated category. Roughly 
speaking, it is an extriangulated category with a monoidal structure that respects the 
extriangulated structure. Explicitly, this means:

Definition 4.3. We call a tuple (𝒜,E, 𝔰,⊗,1) a monoidal extriangulated category if: 

(1) (𝒜,⊗,1) is a monoidal category;
(2) (𝒜,E, 𝔰) is an extriangulated category;
(3) ⊗ = (− ⊗ −, φ, ψ) : (𝒜,E, 𝔰) × (𝒜,E, 𝔰) → (𝒜,E, 𝔰) is a biextriangulated functor; 

and
(4) the natural isomorphisms α, λ, ρ from the monoidal structure are extriangulated 

natural transformations in each variable.

We say a monoidal extriangulated category (𝒜,E, 𝔰,⊗,1) is strong, if the biextriangu
lated functor (−⊗−, φ, ψ) is strong (see Definition 3.17).
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A tensor extriangulated category is a monoidal extriangulated category where the 
monoidal structure is symmetric and the corresponding natural transformation σ is ex
triangulated in each variable.

Condition (4) has various consequences. For example, it yields

φ1X,Y = (ρ−1
Y )∗ ◦ (ρX)∗ and ψ1X,Y = (λ−1

Y )∗ ◦ (λX)∗ . (4.3.1)

In particular, φ1 and ψ1 are natural isomorphisms. Further, in a tensor extriangulated 
category, the natural transformations φ and ψ from the tensor product determine each 
other; explicitly

(σX′,Y )∗ ◦ φY
X,X′ = (σX,Y )∗ ◦ ψY

X,X′

as σ is an extriangulated natural isomorphism in each variable.

4.4. Ring of higher extensions

Recall from Remark 2.13 that E∗(X,X) with the cup product is a graded ring. Simi
larly as for triangulated categories, a tensor structure makes the graded endomorphism 
ring graded-commutative.

Lemma 4.5. Let (𝒜,E, 𝔰,⊗,1) be a strong monoidal extriangulated category. We assume 
that higher extensions are well-defined in (𝒜,E, 𝔰). Then E∗(1,1) with the cup product 
is a graded-commutative graded ring.

Proof. Let d ∈ Ei(1,1) and e ∈ Ej(1,1). Then

d ⌣ e = (φ1)i1,1(d) ⌣ (ψ1)j1,1(e)

= (−1)ij(ψ1)j1,1(e) ⌣ (φ1)i1,1(d)

= (−1)ije ⌣ d . 

For the first and third equalities we implicitly use a higher version of (4.3.1). The second 
equality follows from Lemma 3.18. □
Example 4.6. In Example 2.3 we explained that any triangulated category is naturally 
an extriangulated category. By Proposition 3.19 a strong biextriangulated functor on a 
triangulated category is a bitriangulated functor. Hence the definition of a strong tensor 
extriangulated category recovers the notion of a tensor triangulated category in the sense 
of [32, A.2]. Note that other sources use a weaker definition of a tensor triangulated 
category, they might not assume that the monoidal structure is strong or the natural 
transformations α, ρ, λ and σ are extriangulated.
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The extension ring E∗(1,1) of a tensor triangulated category is precisely the non
negatively graded part of the endomorphism ring End∗

𝒯 (1).

Remark 4.7. In an essentially small extriangulated category negative extensions were 
defined in [26, Definition 5.1]. For a triangulated category these yield the negative part 
of the endomorphism ring End∗

𝒯 (1); see [26, Proposition 5.4]. We expect that Lemma 4.5
extends to E∗(X,X) = {En(X,X)}n∈Z.

We will see more examples of (strong) tensor extriangulated categories in Section 5.

4.8. Closed tensor extriangulated categories

A symmetric monoidal category (𝒜,⊗,1) is closed in the sense of [44, p. 119] if there 
is an internal hom

hom(−,−) : 𝒜op ×𝒜 → 𝒜 ,

meaning a bifunctor such that, for every X ∈ 𝒜, the functor hom(X,−) is right adjoint 
to −⊗X.

Definition 4.9. We say a tensor extriangulated category (𝒜,E, 𝔰,⊗,1) is closed if there 
is a biextriangulated functor hom(−,−) : 𝒜op ×𝒜 → 𝒜 such that, for every X ∈ 𝒜, the 
functor hom(X,−) is an extriangulated right adjoint to −⊗X.

We do not know whether the internal hom functor hom(−,−) of a closed and strong 
tensor extriangulated category is strong.

4.10. Tensor extriangulated functors

The following definition generalises the notion of a tensor triangulated functor from 
[3, Definition 3].

Definition 4.11. A tensor extriangulated functor

(F, β) : (𝒜,⊗𝒜,1𝒜)→ (ℬ,⊗ℬ,1ℬ)

of tensor extriangulated categories consists of: 

(1) an extriangulated functor (F, β) : (𝒜,E, 𝔰)→ (ℬ,F , 𝔱);
(2) an isomorphism u : F(1𝒜)→ 1ℬ; and
(3) a natural isomorphism μX,Y : F(X ⊗𝒜 Y )→ F(X)⊗ℬ F(Y )
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such that the following diagrams commute:

F(1𝒜 ⊗𝒜 X) F(1𝒜)⊗ℬ F(X)

F(X) 1ℬ ⊗ℬ F(X)

μ1𝒜,X

F(λX) u⊗ℬF(X)

λF(X)

and

E(X,X ′) F(F(X),F(X ′))

E(X ⊗𝒜 Y,X ′ ⊗𝒜 Y ) F(F(X)⊗ℬ F(Y ),F(X ′)⊗ℬ F(Y ))

F(F(X ⊗𝒜 Y ),F(X ′ ⊗𝒜 Y )) F(F(X ⊗𝒜 Y ),F(X ′)⊗ℬ F(Y )) . 

βX,X′

φY
X,X′ φ

F(Y )
F(X),F(X′)

βX⊗𝒜Y,X′⊗𝒜Y (μX,Y )∗

(μX′,Y )∗

5. Examples of tensor extriangulated categories

By construction the notion of a tensor extriangulated category generalises that of a 
tensor triangulated category. In comparison, there seem to be multiple different notions 
of a tensor exact category. Often the monoidal structure on an exact or abelian category 
is left exact, but not necessarily exact. In Example 3.21 we defined a biexact functor 
by restricting the tensor product to flat functors. In Example 5.1 we obtain a monoidal 
structure, which is not symmetric, by extending the tensor product to bimodules.

Example 5.1. Let R be a commutative ring and 𝒳 a small R-linear category. Let 
Bimod(𝒳 ,𝒳 ) be the category of R-bilinear functors 𝒳 op×𝒳 → Mod(R). We extend the 
functor ⊗𝒳 of Example 3.21 to a functor

⊗𝒳 : Bimod(𝒳 ,𝒳 )× Bimod(𝒳 ,𝒳 ) → Bimod(𝒳 ,𝒳 ) ,

(F,G) ↦→
(︄

(X,Y ) ↦→
∫︂ W

F(W,Y )⊗R G(X,W )
)︄

.

It is straightforward to check that Bimod(𝒳 ,𝒳 ) equipped with ⊗𝒳 is a monoidal category 
and Hom𝒳 (−,−) serves as the monoidal unit; see [17, Proposition 1]. Now consider the 
subcategory Flat(𝒳 ,𝒳 ) of Bimod(𝒳 ,𝒳 ) consisting of R-bilinear functors F such that 
−⊗𝒳 F and F⊗𝒳 − are exact. Then Flat(𝒳 ,𝒳 ) equipped with ⊗𝒳 and Hom𝒳 (−,−) is 
a monoidal extriangulated category.

When A is the functor ring of 𝒳 (see Example 3.21), then there is an equivalence of 
monoidal categories Bimod(𝒳 ,𝒳 ) → Mod(Aop ⊗R A) under which ⊗𝒳 corresponds to 
⊗A; see [17, Proposition 2].

The monoidal structure in the previous Example is generally not symmetric. One 
obtains a symmetric monoidal structure for commutative rings:
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Example 5.2. Let R be a commutative ring with local units; this means that for any 
r1, . . . , rn ∈ R, there exists an idempotent e ∈ R such that eri = ri = rie for each i. The 
standard tensor product ⊗R is a symmetric monoidal structure on the category of unital 
R-modules Mod(R); an R-module M is unital provided M = RM . However, the tensor 
product is generally only right exact. An R-module F is flat, if F ⊗R − is exact. The 
subcategory of flat R-modules, denoted Flat(R), is an extension-closed subcategory of 
Mod(R), and hence inherits an exact structure. Hence (Flat(R),⊗R, R,Ext1R) is a tensor 
extriangulated category. The ring of extensions of the unit R is E∗(R,R) = Ext∗R(R,R) =
R.

A big class of extriangulated categories, that are neither triangulated or exact, are 
the extension-closed subcategories of triangulated categories; see [51, Remark 2.18]. In 
general, extension-closed subcategories of a tensor triangulated category need not inherit 
the monoidal structure. However, in some situations we obtain a tensor extriangulated 
category.

Example 5.3. Let R be a commutative ring. The derived category D(Mod(R)) of R
modules is a tensor triangulated category with tensor product ⊗L

R and unit R. The 
standard t-structure (𝒰 ,𝒱) on D(Mod(R)) is given by

𝒰 := { X ∈ D(Mod(R)) | H<0(X) = 0 } and

𝒱 := { X ∈ D(Mod(R)) | H>0(X) = 0 } ,

the subcategories of complexes with homology concentrated in non-negative and 
non-positive degrees, respectively. As 𝒰 and 𝒱 are extension-closed subcategories of 
D(Mod(R)), they inherit an extriangulated structure. Further, the aisle 𝒰 is closed un
der the tensor product; that is 𝒰 ⊗L

R 𝒰 ⊆ 𝒰 and R ∈ 𝒰 . Hence (𝒰 ,⊗L
R, R) is a tensor 

extriangulated category.
One gets further examples by taking the intersection of 𝒰 with the full subcategory 

of right-bounded complexes. When R is noetherian, then the intersection of 𝒰 with the 
right-bounded derived category of finitely generated modules yields a tensor extriangu
lated category as well.

5.4. Stabilisation of extriangulated categories

In Section 3.22 we gave conditions when a (strong) biextriangulated bifunctor induces 
a (strong) biextriangulated bifunctor on the stabilisation with respect to a subcategory 
of projective-injective objects. We now focus on monoidal extriangulated categories. We 
say an extension-closed subcategory ℐ of a monoidal extriangulated category (𝒜,⊗,1)
is a two-sided tensor ideal, if 𝒜⊗ ℐ ⊆ ℐ and ℐ ⊗ 𝒜 ⊆ ℐ. Then the following result is a 
direct consequence of Proposition 3.25:
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Lemma 5.5. Let (𝒜,⊗,1) be a monoidal extriangulated category. If ℐ is a two-sided 
tensor ideal consisting of objects that are E-projective and E-injective, then 𝒜ℐ inherits 
the monoidal structure form 𝒜. In particular, (𝒜ℐ ,⊗,1) is a monoidal extriangulated 
category. When (𝒜,⊗,1) is tensor extriangulated then so is (𝒜ℐ ,⊗,1). When (𝒜,⊗,1)
is strong, then so is (𝒜ℐ ,⊗,1). □
Lemma 5.6. Let (𝒜,E, 𝔰,⊗,1) be a closed tensor extriangulated category. Then the E
projectives form a two-sided tensor ideal.

Proof. By [51, Corollary 3.12], the E-projectives are extension-closed. Let X,Y ∈ 𝒜. 
We are assuming −⊗X has an extriangulated right adjoint hom(X,−). By Lemma 3.8
this means E(Y ⊗X,−) ∼ = E(Y,hom(X,−)). To say that an object Z is E-projective is 
equivalent to saying that E(Z,−) = 0. Altogether we have shown that if Y is E-projective 
then so is Y ⊗X. Since we are working in a tensor extriangulated category, the tensor 
product is symmetric, and so we have shown that the E-projectives form a two-sided 
tensor ideal. □
Example 5.7. Let H be a cocommutative Hopf algebra over a field k. For H-modules 
M and N the comultiplication induces an H-module structure on M ⊗k N . By [49, 
Chapter 12, Proposition 3], the tensor product is an exact, symmetric monoidal structure 
on Mod(H). Hence (Mod(H),⊗k, k,Ext1H) is a tensor extriangulated category.

Further, a finite-dimensional cocommutative Hopf algebra H over a field k is a Frobe
nius algebra by [43, p. 85, Remark]. Hence Mod(H), as well as the full subcategory of 
finite-dimensional H-modules mod(H), is Frobenius exact. It is well-known that H⊗kM

is free for every H-module M ; see for example [49, Chapter 12, Proposition 4]. Hence, 
every non-trivial two-sided tensor ideal of Mod(H) contains all projective objects. In 
particular, there are exactly two distinct two-sided tensor ideals of Mod(H) consisting 
of projective-injective objects, namely the zero subcategory and the full subcategory of 
projective-injective objects. Hence, the strong tensor extriangulated category Mod(H)
induces one other strong tensor extriangulated category via stabilisation, namely the 
tensor triangulated category Mod(H).

A special case of a finite-dimensional cocommutative Hopf algebra is a group algebra 
kG for a finite group G.

5.8. Dualisable objects

Example 5.7 is an instance of an abelian rigid monoidal category, that is an abelian 
monoidal category in which all objects are dualisable; see [58, p. 254, Examples]. We 
show that the existence of dualisable objects makes the category Frobenius.

Let (𝒜,⊗,1) be a closed monoidal category. The dualisation functor is given by

(−)∨ := hom(−,1) : 𝒜op → 𝒜 .
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An object X in 𝒜 is called strongly dualisable, if the natural transformation

X∨ ⊗ Y → hom(X,Y )

is an isomorphism; see [44, Chapter III, §1]. When the monoidal product is symmetric, 
then there exists a natural transformation X → (X∨)∨. This is an isomorphism if X is 
strongly dualisable by [44, Proposition 1.3]. Note that if (𝒜,E, 𝔰,⊗,1) is closed tensor 
extriangulated and if X is strongly dualisable then the natural isomorphisms X∨ ⊗
− → hom(X,−) and X ⊗ − → (X∨)∨ ⊗ − are compositions of extriangulated natural 
transformations, and hence extriangulated.

Proposition 5.9. Let (𝒜,E, 𝔰,⊗,1) be a closed tensor extriangulated category. If each 
object is strongly dualisable, then E-projectives are the same as E-injectives.

Proof. Let X,Y ∈ 𝒜. Since X is strongly dualisable and 𝒜 is symmetric we have

E(Y,X) ∼ = E(Y,hom(X∨,1)) ∼ = E(Y ⊗X∨,1) ∼ = E(X∨ ⊗ Y,1) ∼ = E(X∨, Y ∨) ;

the second and fourth isomorphisms hold by Lemma 3.8. Hence X is E-injective if and 
only if X∨ is E-projective, and Y is E-projective if and only if Y ∨ is E-injective.

Let U → V → W --￫ be an extriangle in 𝒜. Since X is strongly dualisable, the 
functor hom(X∨,−) ∼ = (X∨)∨⊗− ∼ = X⊗− is an extriangulated right adjoint to −⊗X∨. 
Combining the adjunction with the unitor we obtain a diagram

Hom𝒜(X∨, U) Hom𝒜(X∨, V ) Hom𝒜(X∨,W ) E(X∨, U)

Hom𝒜(1, X ⊗ U) Hom𝒜(1, X ⊗ V ) Hom𝒜(1, X ⊗W ) E(1, X ⊗ U)

which commutes and in which every row is exact and every vertical map is an isomor
phism; see Corollary 3.9 and [51, Proposition (2-ii)].

Suppose X is E-projective. By Lemma 5.6 we have that X ⊗ W is E-projective, 
and so the morphism Hom𝒜(1, X ⊗W ) → E(1, X ⊗ U) in the diagram above is zero, 
meaning that the map Hom𝒜(X∨, V ) → Hom𝒜(X∨,W ) is surjective. Altogether, for 
any extriangle U → V →W --￫ every morphism X∨ →W factors through the deflation 
V →W . Thus X∨ is E-projective by [51, Proposition 3.24], and hence X is E-injective.

If instead X is E-injective, then X∨ is E-projective by the first argument above, 
and so X∨ is E-injective by the second, and so (X∨)∨ is E-projective by the first, and 
X ∼ = (X∨)∨ since ⊗ is symmetric and X is strongly dualisable. □
Corollary 5.10. Let (𝒜,E, 𝔰,⊗,1) be a closed tensor extriangulated category in which each 
object is strongly dualisable. If 1 has an E-projective cover or an E-injective envelope, 
then 𝒜 is Frobenius.
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Proof. Thanks to Proposition 5.9 it is enough to check that 𝒜 has enough E-projectives 
and E-injectives. If P → 1 is an E-projective cover of 1 then P ⊗ X → 1 ⊗ X ∼ = X
is an E-projective cover of X. Hence 𝒜 has enough E-projectives. Further, the dual 
1∨ ∼ = 1 → P∨ of the E-projective cover P → 1 is an E-injective cover. Hence by a 
similar argument as above 𝒜 has enough E-injectives. □
Remark 5.11. In a closed symmetric monoidal category the dual X∨ of a strongly dual
isable object X is a right and left dual of X. In this setting, assuming that all objects 
are strongly dualisable is equivalent to assuming the category is rigid. However, for an 
extriangulated tensor category that is rigid, it is not clear whether the functor given 
by the left or right duals is an extriangulated functor. In the case of abelian categories 
this can be resolved using the universal properties of kernels and cokernels; see [19, 
Proposition 4.2.9].

5.12. Extriangulated substructure

Let (𝒜,E, 𝔰) be an extriangulated category and ℐ a full subcategory of 𝒜. Then there 
is a closed subfunctor of E defined by

Eℐ(Y,X) := {d ∈ E(Y,X) | f∗(d) = 0 for all W ∈ ℐ and f ∈ Hom𝒜(W,Y )} ; 

see [28, Proposition 3.16]. So, (𝒜,Eℐ , 𝔰ℐ) is an extriangulated category by [28, Proposi
tion 3.19] where 𝔰ℐ is the restriction of 𝔰.

Lemma 5.13. Let (𝒜,E, 𝔰,⊗,1) be a monoidal extriangulated category and let ℐ be a full 
subcategory of 𝒜. Suppose that, for the biextriangulated functor (−⊗−, φ, ψ),

φY
X′,X(d) ∈ Eℐ(X ′ ⊗ Y,X ⊗ Y ) and ψX

Y ′,Y (e) ∈ Eℐ(X ⊗ Y ′, X ⊗ Y )

for each X,X ′, Y, Y ′ ∈ 𝒜, and each d ∈ Eℐ(X ′, X) and e ∈ Eℐ(Y ′, Y ). Then 
(𝒜,Eℐ , 𝔰ℐ ,⊗,1) is a monoidal extriangulated category.

When (𝒜,E, 𝔰,⊗,1) is symmetric or strong, then so is (𝒜,Eℐ , 𝔰ℐ ,⊗,1).

Proof. By [28, Proposition 3.16] we have that Eℐ is a subfunctor of E. By our assumption 
the restriction of φY to Eℐ(−,−) defines a subtransformation in the sense of [14, p. 261]. 
We call this restriction φY

ℐ . We also obtain a restriction ψX
ℐ of ψX . We need to check 

conditions (1--4) from Definition 4.3 hold. Condition (1) holds by assumption. Condition 
(2) holds by the discussion before the statement of the lemma. In what remains we check 
conditions (3) and (4).

We start with (3) and we check (a) from Definition 3.12 holds; that is that the functor 
(−⊗Y, φY

ℐ ) is extriangulated. Suppose X → X ′′ → X ′ d --￫ is an extriangle in (𝒜,Eℐ , 𝔰ℐ)
with d ∈ E(X ′, X). Then it is an extriangle in (𝒜,E, 𝔰) and, as (− ⊗ Y, φY ) is an 
extriangulated functor,
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X ⊗ Y → X ′′ ⊗ Y → X ′ ⊗ Y
φY

ℐ (d) 
-----￫

is an extriangle. As 𝔰ℐ is the restriction of 𝔰 to Eℐ the functor (− ⊗ Y, φY
ℐ ) is extri

angulated. Using a similar argument shows that (b) from Definition 3.12 holds; that is 
(X ⊗−, ψX

ℐ ) is extriangulated.
To finish the proof we need to show that certain diagrams in Mod(R) commute; 

namely the compatibility diagrams of φℐ and ψℐ from (c) and (d) of Definition 3.12, and 
their compatibility with α, ρ, λ of the monoidal structure. Each diagram is the restriction 
of the corresponding diagram for (𝒜,⊗,1). Hence they commute.

When (𝒜,⊗,1) is symmetric, then so is (𝒜,⊗,1) by the same argument as above. 
For strongness, note that the cup product is compatible with restriction. □
5.14. Pure-exact extriangulated structure

In the next example we discuss a special case of extriangulated subfunctors for 
compactly generated triangulated categories. The extriangles arising are precisely the 
pure-exact triangles.

We recall some basic definitions concerning triangulated categories. Let 𝒯 be a 
triangulated category with suspension Σ. An object X is compact if the functor 
Hom𝒯 (X,−) : 𝒯 → 𝒜b preserves coproducts, and we write 𝒯 c for the full subcategory 
of compact objects. The triangulated category 𝒯 is compactly generated, if it has small 
coproducts, 𝒯 c is essentially small and for any non-zero object Y in 𝒯 there exists an 
object X ∈ 𝒯 c such that Hom𝒯 (X,Y ) ̸= 0.

Proposition 5.15. Let (𝒯 ,⊗,1) be a compactly generated closed tensor triangulated cat
egory, considered as a tensor extriangulated category (𝒯 ,E, 𝔰,⊗,1). In the notation of 
Section 5.12, we have that (𝒯 ,E𝒯 c , 𝔰𝒯 c ,⊗,1) is a tensor extriangulated category.

We first recall the definition and some basic properties of phantom maps from [39] as 
they are closely connected to the extriangulated substructure E𝒯 c .

Let Mod((𝒯 c)op) be the category of additive functors (𝒯 c)op → 𝒜b. This is an abelian 
AB5 category. Let Y : 𝒯 → Mod((𝒯 c)op) be the restricted Yoneda functor, defined on 
an object X by the restriction of Hom𝒯 (−, X) to 𝒯 c and likewise on morphisms. An 
additive functor F : 𝒯 → Mod((𝒯 c)op) is cohomological if any exact triangle

X Y Z ΣX
f g h (5.15.1)

induces an exact sequence F(X) → F(Y ) → F(Z) → F(ΣX) in 𝒜b. In particular, the 
restricted Yoneda functor Y is cohomological.

A morphism f in 𝒯 is called phantom if Y(f) = 0. The composition of a phantom 
morphism with any morphism is phantom. A triangle (5.15.1) is said to be pure-exact if 
0 → Y(X) → Y(Y ) → Y(Z) → 0 is exact. So (5.15.1) is pure-exact if and only if h is 
phantom; see [39, Lemma 1.3].
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Lemma 5.16. Let (𝒯 ,⊗,1) be a closed tensor triangulated category. Let f and g be mor
phisms in 𝒯 . If f or g is phantom, then so is f ⊗ g.

Proof. As phantom morphisms are closed under composition with any other morphism, 
it is enough to show f ⊗ id is phantom when f is phantom and id⊗g is phantom when 
g is phantom. We give a proof for the former, the latter holds by symmetry.

The restricted Yoneda functor Y preserves coproducts. Since −⊗X is a left adjoint 
for any object X ∈ 𝒯 , it also preserves coproducts. It follows that the composition 
F := Y◦(−⊗X) is a cohomological functor 𝒯 → Mod((𝒯 c)op) that preserves coproducts.

Let f be a phantom morphism. By [39, Corollary 2.5] we have that Y(f ⊗ idX) =
F(f) = 0 as F is cohomological and preserves coproducts. □

We can now give an explicit description of the extriangulated substructure E𝒯 c from 
Proposition 5.15. If d ∈ E(Y,X) = Hom𝒯 (Y,ΣX), then f∗(d) = d◦f for every f : W → Y

in 𝒯 . Hence d ∈ E𝒯 c(Y,X) if and only if d ◦ f = 0 for every map f : C → Y with 
C ∈ 𝒯 c. That means E𝒯 c(Y,X) is the subset of phantom maps in Hom𝒯 (Y,ΣX), and 
X → Y → Z --￫ is an extriangle if and only if X → Y → Z → ΣX is a pure-exact 
triangle.

Example 5.17. Let R be a non-artinian ring. The derived category D(Mod(R)) is com
pactly generated triangulated where compact objects are perfect complexes. We claim 
that the extriangulated structure on D(Mod(R)), given by [28, Proposition 3.19] taking 
ℐ to be the compact objects, is neither triangulated nor exact.

Using that R is not artinian, it cannot be pure-semisimple by the implication (i)⇒ (a)
in [54, Theorem 2.1]. By [25, Corollary 7.2], it follows that D(Mod(R)) is not pure
semisimple, and so there exists an object X that is not pure-injective. By [39, Defi
nition 1.1], there exists a non-split pure-exact triangle X → Y → Z → ΣX. Since 
categorical monics split in triangulated categories, X → Y cannot be monic. If the extri
angulated structure on D(Mod(R)) were exact, the inflation X → Y would be a kernel, 
which is false.

It suffices to find a contradiction assuming the extriangulated structure is triangulated. 
Choose a morphism X → Y in D(Mod(R)) by concentrating an arbitrary homomorphism 
f in Mod(R) in degree 0. By assumption we can complete X → Y to a pure-exact 
triangle X → Y → Z → ΣX. By [25, Lemma 2.4] we have that 0 → Hn(X)→ Hn(Y )→
Hn(Z) → 0 is pure-exact in Mod(R) for each n ∈ Z. Taking n = 0 implies that f is a pure
monomorphism. Since pure-monomorphisms in Mod(R) are injective, a contradiction is 
found by choosing f not injective.

Finally we prove of Proposition 5.15 using the observations in Section 5.12.

Proof of Proposition 5.15. We check that the assumptions of Lemma 5.13 are satisfied. 
By Examples 3.4 and 3.15 we have



R. Bennett-Tennenhaus et al. / Journal of Algebra 685 (2026) 361--405 395

φY
X′,X(d) = (X ′ ⊗ Y

d⊗idY −−−−→ (ΣX)⊗ Y
∼ =  −→ Σ(X ⊗ Y ))

for d ∈ E(X ′, X). If d is phantom, then so is φY
X′,X(d) by Lemma 5.16. The analogous 

condition for ψ can be shown similarly. Hence (𝒯 ,E𝒯 c , 𝔰𝒯 c ,⊗,1) is an extriangulated 
tensor category by Lemma 5.13. □
6. Classification of tensor ideals

The goal of this Section is the classification of the radical thick tensor ideals in an 
essentially small tensor extriangulated category. In [9, Sections 7 and 8] lattices of thick 
tensor ideals were considered for both abelian and triangulated categories simultaneously. 
The arguments for the classification of thick tensor ideals in a triangulated category of 
[1] and [38] generalise straight away to the extriangulated case. For convenience we give 
the details of some important parts.

6.1. Tensor ideals

Let (𝒜,⊗,1) be a symmetric monoidal category. A non-empty strictly full subcategory 
ℐ of 𝒜 is a tensor ideal, if for each X ∈ 𝒜 and Y ∈ ℐ, we have X ⊗ Y ∈ ℐ.

For an object X ∈ 𝒜 and a positive integer n, we set X⊗n := X ⊗ · · · ⊗X, the n-fold 
tensor product of X. For convenience we also set X⊗0 := 1.

We say a tensor ideal ℐ is: 

(1) radical if, for all X ∈ 𝒜, we have that X⊗n ∈ ℐ for some n ≥ 1 implies X ∈ ℐ; and
(2) prime if, for all X,Y ∈ 𝒜, we have that X ⊗ Y ∈ ℐ implies X ∈ ℐ or Y ∈ ℐ.

Note that any prime tensor ideal is radical.
Let (𝒜,E, 𝔰) be an extriangulated category. We say a non-empty full subcategory ℐ

is thick, if it is closed under direct summands and has the 2-out-of-3 property; that is, 
for any extriangle X → Y → Z --￫, if any two of X, Y , or Z lie in ℐ, then so does the 
third.

Let 𝒞 be a collection of objects of 𝒜. We denote by thick⊗(𝒞) the smallest thick 
tensor ideal containing 𝒞, and by rad(𝒞) the smallest radical thick tensor ideal containing 
𝒞. These categories exist as the intersection of (radical) thick tensor ideals is again a 
(radical) thick tensor ideal. The radical thick closure can be described as

rad(𝒞) = { X ∈ 𝒜 | X⊗n ∈ thick⊗(𝒞) for some n ≥ 1 } , (6.1.1)

using the arguments from the proof of [38, Lemma 3.1.6] to see the right-hand side is 
thick. For a tensor extriangulated category (𝒜,⊗,1) we denote by Rad(𝒜) the class of 
all radical thick tensor ideals of 𝒜. When 𝒜 is essentially small, then Rad(𝒜) is a set. 
In Proposition 6.5 we show that, if Rad(𝒜) is a set, it has a rich poset structure.
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6.2. Lattices and frames

For completeness we recall the terminology and fix notation; we loosely follow [34]. 
Recall, in a poset L the join (respectively, meet) of a subset S ⊆ L is the smallest 
(respectively, largest) element that contains (respectively, is contained in) every element 
of S. We denote the join of S by 

⋁︁
S and the meet of S by 

⋀︁
S. For elements a, b ∈ L

we write a ∨ b =
⋁︁{a, b} and a ∧ b =

⋀︁{a, b}.
A lattice is a poset L in which every finite, non-empty subset has a join and a meet. 

A lattice L is distributive if L has a greatest element 1 =
⋀︁ ∅, a least element 0 =

⋁︁ ∅
and it satisfies the distributive law; that is

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) , or equivalently a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

for any a, b, c ∈ L. A morphism of distributive lattices is a map that respects the order, 
finite meets, finite joins, and the greatest and least element.

A lattice F is a frame if the join of any subset exist and it satisfies the infinite join
distributivity law; that is

a ∧
⋁︂

S =
⋁︂
{ a ∧ s | s ∈ S }

for any a ∈ F and any subset S ⊆ F . A morphism of frames is a morphism of distributive 
lattices that preserves arbitrary joins.

6.3. Stone and Hochster duality

The prototypical example of a frame is the set of all open subsets of a topological 
space. In fact, there is a functor

Ω : 𝒯 op → ℱrmop

from the category of topological spaces with continuous maps to the category of frames. 
This functor has a right adjoint, given by the prime spectrum of a frame (F,≤): An 
element a ∈ F is (meet-)prime, if b∧ c ≤ a implies that either a ≤ b or a ≤ c. The prime 
spectrum of F is the set of all prime elements in F endowed with a topology given by 
the closed sets V (a) = { p | a ≤ p }. We denote the right adjoint by pt, due to the fact 
that prime elements in a frame correspond to points; for more details see [34, II.1.3].

The adjoint functors (Ω,pt) restrict to an equivalence between the category of sober 
spaces and the category of spatial frames. This is called Stone duality; for more details 
see [34, II.1.7]. This equivalence restricts further to an equivalence of the category of 
spectral spaces and the category of coherent frames. We recall the latter two notions.

An element a in a frame F is compact if for each subset S of F with a ≤ ⋁︁
S there is 

a finite subset T ⊆ S such that a ≤ ⋁︁
T . A frame F is coherent if the greatest element 
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1 is compact, a ∧ b is compact for any compact elements a, b ∈ F , and for each a ∈ F

there exists a subset S of compact elements satisfying a =
⋁︁

S. A morphism of coherent 
frames is a morphism of frames that preserves compact elements.

In a coherent frame F the set of compact elements is a distributive sublattice of F , 
and the frame F can be recovered from the distributive lattice of compact elements. In 
fact, there is an equivalence 𝒞oh → 𝒟ℒat from the category of coherent frames to the 
category of distributive lattices; see [34, II.3.2].

On the other hand, a topological space X is spectral, if 

(1) X is quasi-compact;
(2) the quasi-compact open subsets of X are closed under finite intersections and form 

a basis of open sets of the topology on X; and
(3) X is sober ; that is every non-empty irreducible closed subset has a generic point;

see [30]. A morphism of spectral spaces is a continuous map such that the preimage of 
every quasi-compact open set is again quasi-compact. We denote the category of spectral 
spaces by 𝒮p. The spectral spaces are precisely those topological spaces that occur as 
the Zariski spectrum of a commutative ring; see [30].

Putting everything together, we obtain a sequence of equivalences:

𝒮p 𝒞ohop 𝒟ℒatop 𝒟ℒatop 𝒞ohop 𝒮p . 
Ω

pt

(−)c (−)op (−)c

pt

Ω

Here, the functor (−)op sends a lattice to its opposite lattice, which has the same un
derlying set and the reversed order. Note, that this is not a contravariant functor. The 
composition of these equivalences yields a functor 𝒮p → 𝒮p, called Hochster duality. 
This equivalence is usually denoted by (−)∨, and (X∨)∨ = X for a spectral space X. 
An open subset in X∨ is precisely a Thomason subset in X, that is, a union 

⋃︁
Xi where 

each Xi is closed and has a quasi-compact complement in X.

6.4. Lattice of tensor ideals

Let (𝒜,⊗,1) be a tensor extriangulated category. The meet of two radical thick tensor 
ideals is given as their intersection. The join of a set of radical thick tensor ideals S is⋁︂

S = rad(
⋃︂
ℐ∈S

ℐ) .

The least element is the nilradical ideal rad({0}) and the greatest element is the whole 
category 𝒜. Using the same arguments as for the triangulated case in [38, Theorem 3.1.9], 
we show the following:

Proposition 6.5. Suppose (𝒜,⊗,1) is a tensor extriangulated category. If Rad(𝒜) is a 
set, then it is a coherent frame.
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Proof. We first show the infinite join-distributive law. Let ℐ ∈ Rad(𝒜) and S ⊆ Rad(𝒜). 
We show ℐ∧⋁︁S ≤ ⋁︁

𝒥∈S(ℐ∧𝒥 ), as the opposite inclusion always hold. For X ∈ ℐ∧⋁︁S

we define

𝒥X := { Y ∈
⋁︂

S | X ⊗ Y ∈
⋁︂
𝒥∈S

(ℐ ∧ 𝒥 ) } .

It is straightforward to check that 𝒥X is a radical thick tensor ideal. As 𝒥X ≥ 𝒥 for all 
𝒥 ∈ S we get

𝒥X ≥
⋁︂

S ∋ X .

Hence X⊗X ∈ ⋁︁
𝒥∈S(ℐ∧𝒥 ), and as 

⋁︁
𝒥∈S(ℐ∧𝒥 ) is radical, this means X ∈ ⋁︁

𝒥∈S(ℐ ∧
𝒥 ). This shows Rad(𝒜) is a frame. Note that the compact objects in Rad(𝒜) are all of 
the form rad(X) for an object X ∈ 𝒜.

Let X ∈ 𝒜 and assume rad(X) ⊆ ⋁︁
S for some S ⊆ Rad(𝒜). Then X⊗n ∈

thick⊗(
⋃︁

𝒥∈S 𝒥 ). Taking the thick tensor closure is a finite process, hence there exists a 
finite subset T ⊆ S such that X⊗n ∈ thick⊗(

⋃︁
𝒥∈T 𝒥 ). Hence X ∈ ⋁︁

T .
For coherence it remains to show that the meet of rad(X) and rad(Y ) for any X,Y ∈ 𝒜

is rad(X ⊗ Y ). Since rad(X) is a radical thick tensor ideal containing X it also contains 
X ⊗ Y , and so rad(X) ≥ rad(X ⊗ Y ). Similarly rad(Y ) ≥ rad(X ⊗ Y ). Thus rad(X) ∧
rad(Y ) ≥ rad(X⊗Y ), and we now require the reverse inclusion. Let U ∈ rad(X)∧rad(Y ). 
Then U⊗2 ∈ rad(X ⊗ Y ) and U ∈ rad(X ⊗ Y ) by (6.1.1). This finishes the proof. □
6.6. Classification

For the classification it remains to apply Stone and Hochster duality to Proposi
tion 6.5. For tensor triangulated categories this result is due to Balmer [1]. The lattice
theoretic proof relies on work by [38] and [9]. However, first we describe the prime 
elements of Rad(𝒜).

Lemma 6.7. Let (𝒜,⊗,1) be a tensor extriangulated category such that Rad(𝒜) is a set. 
A radical thick tensor ideal 𝒫 is prime in Rad(𝒜) if and only if 𝒫 is a prime thick tensor 
ideal.

Proof. We assume 𝒫 is prime as an element in the lattice Rad(𝒜). Suppose X ⊗ Y ∈ 𝒫
for some objects X,Y ∈ 𝒜. Then

𝒫 ≥ rad(X ⊗ Y ) = rad(X) ∧ rad(Y )

using an intermediate claim proven in Proposition 6.5. By assumption, we have that 
rad(X) ≤ 𝒫 or rad(Y ) ≤ 𝒫. Hence X ∈ 𝒫 or Y ∈ 𝒫.

Conversely, we assume that 𝒫 is a prime thick tensor ideal. Let ℐ,𝒥 ∈ Rad(𝒜) such 
that ℐ ∩ 𝒥 ≤ 𝒫 and ℐ ̸≤ 𝒫. We need to show 𝒥 ≤ 𝒫. Let X ∈ ℐ with X / ∈ 𝒫. Then 
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X ⊗ Y ∈ 𝒫 for every Y ∈ 𝒥 . As 𝒫 is a prime thick tensor ideal, this yields Y ∈ 𝒫 for 
every Y ∈ 𝒥 . Hence 𝒥 ≤ 𝒫. □
Theorem 6.8. Let (𝒜,⊗,1) be a tensor extriangulated category such that Rad(𝒜) is a 
set. We let BSpc(𝒜) be the set of all prime thick tensor ideals in 𝒜 and endow it with a 
topology generated by the closed sets

supp(X) := { 𝒫 ∈ BSpc(𝒜) | X / ∈ 𝒫 }

for any X ∈ 𝒜. Then there is a bijection

Rad(𝒜)↔ { Thomason subsets of BSpc(𝒜) } ,
ℐ ↦→ supp(ℐ) =

⋃︂
X∈ℐ

supp(X) and { X ∈ 𝒜 | supp(X) ⊆ V } ← ⫞ V .

Proof. As the prime thick tensor ideals are precisely the prime elements of Rad(𝒜), we 
have

BSpc(𝒜) = (pt(Rad(𝒜)))∨

as topological spaces. The classification follows from the description of the functors pt
and (−)∨. □

The topological space BSpc(𝒜) is called the Balmer spectrum of 𝒜.

6.9. Functoriality

Let (F, β) : (𝒜,⊗𝒜,1𝒜)→ (ℬ,⊗ℬ,1ℬ) be a tensor extriangulated functor. Then

rad(F(
⋁︂

S)) = rad(
⋃︂
X∈S

F(X)) =
⋁︂
X∈S

rad(F(X)) and

rad(F(rad(X) ∧ rad(Y ))) = rad(F(X ⊗ Y )) = rad(F(X)) ∧ rad(F(Y ))

for any set of objects S in 𝒜 and objects X and Y in 𝒜. Hence

rad(F(−)) : Rad(𝒜)→ Rad(ℬ)

is a morphism of coherent frames. Applying Stone and Hochster duality we obtain a 
continuous map

BSpc(F) : BSpc(ℬ)→ BSpc(𝒜) given by 𝒬 ↦→ F−1(𝒬) .

As for triangulated categories in [1, Corollary 3.8] and [4, Proposition 8.7], essentially 
surjective functors yield embeddings on the Balmer spectrum.
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Lemma 6.10. Let (F, β) : (𝒜,⊗𝒜,1𝒜) → (ℬ,⊗ℬ,1ℬ) be an essentially surjective tensor 
extriangulated functor. Then BSpc(F) : BSpc(ℬ)→ BSpc(𝒜) is an embedding.

Proof. The injectivity is clear from the definition of the induced map.
For the second claim, we need to show that BSpc(F) is a closed map onto its image. 

By [12, Theorem 5.3.3], it is enough to show that BSpc(F)(supp(Y )) is closed in the 
image im(BSpc(F)) for any Y ∈ ℬ. Let Y ∈ ℬ. As F is essentially surjective, there exists 
X ∈ 𝒜 with F(X) ∼ = Y . Then Y / ∈ 𝒬 if and only if X / ∈ F−1(𝒬) for any 𝒬 ∈ BSpc(ℬ). 
Hence we have

BSpc(F)(supp(Y )) = supp(X) ∩ im(BSpc(F)) .

Hence the map BSpc(F) is closed and thus an embedding. □
The Balmer spectrum has been computed for many tensor triangulated categories, like 

the perfect complexes of a commutative ring [31,52,57] and the stable module category 
of a group algebra [7]. In the following we describe the Balmer spectrum of some of the 
examples from Section 5.

6.11. Projective modules

Let R be a commutative ring with local units. In Example 5.2 we saw that the category 
of flat modules Flat(R) is a tensor extriangulated category. This category need not be 
essentially small. However, the subcategory of finitely presented flat modules is essentially 
small and so we may consider its Balmer spectrum. In fact, a module is finitely presented 
and flat if and only if it is finitely presented and projective. In the following we compute 
the Balmer spectrum of proj(R) for some classes of commutative rings R.

Note that the exact structure on proj(R) is the split exact structure, so the radical 
thick tensor ideals are precisely the radical tensor ideals that are closed under finite 
coproducts and direct summands.

Lemma 6.12. Let R be a commutative ring that satisfies one of the following conditions: 

(1) R = S[x1, . . . , xn], the polynomial ring over a principal ideal domain S;
(2) R is a local ring; or
(3) R is a Dedekind domain.

Then BSpc(proj(R)) = {rad(0)}; that is the Balmer spectrum consists of one point.

Proof. In the cases (1) and (2) every finitely generated projective R-module is free; for 
(1) this follows from the Quillen–Suslin theorem and for (2) from Kaplansky’s theorem; 
see for example [42, Chapter XXI, Theorem 3.7] and [35, Theorem 2], respectively. Hence 
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there are exactly two radical thick tensor ideals: rad(0) and proj(R), and rad(0) is the 
only prime thick tensor ideal.

In the case (3) the finitely projective R-modules are precisely the torsion-free modules. 
In particular, any ideal is projective. Let I and J be non-zero ideals of R. By [16, 
Exercise 19.5], we obtain J ⊕ I2 ∼ = JI ⊕ I. Since I is projective, we have JI ∼ = J ⊗ I. 
This means J ∈ thick(I). Furthermore, any finitely generated projective R-module is of 
the form Rn ⊕ I for some ideal I; see [16, Exercise 19.6]. So proj(R) has two radical 
thick tensor ideals, namely rad(0) and proj(R), and rad(0) is the only prime thick tensor 
ideal. □
Lemma 6.13. Let R = R1 × . . .×Rn be a product of commutative rings. Then

BSpc(proj(R)) = BSpc(proj(R1))× . . .× BSpc(proj(Rn))

with the product topology.

Proof. By induction it is enough to show the claim for n = 2. Let R = S × T . As an 
R-module R ∼ = S ⊕ T and every R-module decomposes as M ∼ = (S ⊗R M)⊕ (T ⊗R M). 
In particular, M is a finitely presented projective R-module if and only if S ⊗R M and 
T ⊗R M are finitely presented projective over S and T , respectively. The map

Rad(proj(R)) → Rad(proj(S))× Rad(proj(T )) ,

ℐ ↦→ { S ⊗R M |M ∈ ℐ } × { T ⊗R M |M ∈ ℐ }

has an inverse given by

rad(ℐ ∪ 𝒥 )← ⫞ ℐ × 𝒥

where we view the objects in ℐ and 𝒥 as R-modules using restriction. This bijection is 
an isomorphism of coherent frames and hence it yields the desired isomorphism of the 
Balmer spectra. □

Note that a commutative noetherian ring is hereditary if and only if it is regular 
of Krull dimension 1; see for example [18, Corollary 3]. For such rings Corollary 6.14
describes the Balmer spectrum.

Corollary 6.14. If R is a commutative hereditary noetherian ring, then the Balmer spec
trum BSpc(proj(R)) is the finite set of connected components of the Zariski spectrum 
ZSpec(R) equipped with the discrete topology, and |BSpc(proj(R))| is equal to the num
ber of indecomposable factors of R.

Proof. Note that R cannot contain an infinite set of primitive idempotents since it is 
noetherian; see for example [41, Proposition 22.2]. By [8, Theorem 4.4], see also [11, 



402 R. Bennett-Tennenhaus et al. / Journal of Algebra 685 (2026) 361--405 

p. 44, Corollary 1], the ring R is a finite product of Dedekind domains and fields. Hence 
the claim follows from Lemmas 6.12 and 6.13. □
6.15. Stabilisation of extriangulated categories

We discussed the stabilisation of a tensor extriangulated category in Section 5.4. In 
the stabilisation 𝒜ℐ the objects in ℐ are isomorphic to 0. Hence there are fewer radical 
thick tensor ideals in 𝒜ℐ than in 𝒜. In fact, the identity induces a tensor extriangulated 
functor 𝒜 → 𝒜ℐ , and as a direct consequence of Lemma 6.10 we obtain:

Lemma 6.16. Let (𝒜,⊗,1) be a tensor extriangulated category and ℐ a tensor ideal con
sisting of objects that are E-projective and E-injective. Then

BSpc(𝒜ℐ) = { 𝒫 ∈ BSpc(𝒜) | 𝒫 ⊇ ℐ }

with the subspace topology. □
Example 6.17. Let H be a cocommutative Hopf algebra over a field k. We assume that 
H is finite-dimensional over k. Then the category finite-dimensional H-modules is es
sentially small, and by Example 5.7 it becomes a tensor extriangulated category with 
(⊗k, k). Further, mod(H) is a Frobenius exact category, and there exists exactly one 
non-trivial thick tensor ideal consisting of objects that are projective and injective. We 
denote by mod(H) the stabilisation of mod(H) with respect to this tensor ideal. Hence 
under the induced morphism of coherent frames

Rad(mod(H)) → Rad(mod(H))

every ideal has precisely one pre-image except the zero ideal in mod(H), which has 
exactly two pre-images: the zero ideal and the ideal of all projective objects.

Let G be a finite group. By [7],

BSpc(mod(kG)) = Proj(H∗(G, k)) ,

where H∗(G, k) is the group cohomology of G and Proj(H∗(G, k)) the set of homogenous 
primes without the irrelevant ideal with the Zariski topology. Then

BSpc(mod(kG)) = Spec(H∗(G, k))

where the latter is the set of all homogenous prime ideals; also see [40, Example 17].

Example 6.18. Let (𝒜,⊗,1) be an additive monoidal category and Ch(𝒜) the category 
of chain complexes. The degree-wise split exact sequences endow Ch(𝒜) with an exact 
structure. It is straightforward to check that Ch(𝒜) is a tensor extriangulated category 
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with the tensor product induced by ⊗ and the unit the complex with 1 concentrated 
in degree zero. Moreover, the exact structure on Ch(𝒜) is Frobenius and the projective 
objects are precisely the complexes of the form cone(idX) for any complex X; these are 
precisely the contractible complexes.

We endow 𝒜 with the split exact structure. Then there is a bijection

Rad(𝒜)→ { 𝒥 ∈ Rad(Ch(𝒜)) | 𝒥 ⊆ Proj(Ch(𝒜)) }
given by ℐ ↦→ rad({ cone(idM ) |M ∈ ℐ }) .

Hence there may exist intermediate extriangulated stabilisations between the category 
of chain complexes Ch(𝒜) and its homotopy category

K(𝒜) = Ch(𝒜)/Proj(Ch(𝒜)) ;

compare with Lemma 6.13 and Corollary 6.14.
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