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Abstract

Designing reliable authentication mechanisms for IoT devices is increasingly necessary
to protect citizens’ private information and data. One of the most significant issues in
today’s digital age is authentication. As [oT device technology advances and data grow
rapidly, machine learning techniques improve the accuracy and efficiency of authentication
and offer advantages over traditional methods, making them valuable in both academia
and industry. Device authentication aims to verify legitimate computing devices and
identify impostors based on their behavioral data. This paper explores research that
applies artificial intelligence algorithms to enhance device authentication mechanisms.
We discuss Al authentication models, including deep learning algorithms, convolutional
neural networks, and reinforcement learning. We also highlight research challenges and
provide recommendations for future studies to support innovation in this field.

Keywords: IoT devices; authentication; Artificial Intelligence; Internet of Things

1. Introduction

There has been a significant technological revolution over the last few years, and the
world has begun to witness the onset of this revolution in the realm of the Internet of Things
(IoT). This advancement has increased company efficiency and worker productivity while
providing enhanced customer experiences. Additionally, it has opened up new business
opportunities for creating more innovative products and services.

Both consumers and manufacturers remain concerned about the authenticity of IoT
devices. As IoT devices connect to the Internet, they become susceptible to various vulnera-
bilities. While manufacturers strive to enhance device security, consumers must be aware
of the potential risks associated with these devices [1].

An analysis of the IoT highlights its advancements in healthcare, transportation
models, and the development of smart cities. The management of network authentication
has become increasingly challenging as the number of IoT devices has grown rapidly. Due
to its role in device verification, today’s security proposals require device authentication to
ensure secure network access [2].

In this crucial moment in IoT development, device proliferation is speeding up, and
cyber-attacks are becoming more advanced. Therefore, a survey on Al-based authentication
methods is necessary. In this paper, we highlight the weaknesses of traditional approaches
and provide a clearer understanding of how Al can uniquely contribute to security, serving
as a helpful guide for researchers and industry professionals.

Our paper addresses the challenges related to the use of artificial intelligence in de-
vice authentication and discusses solutions and advancements in the field. Our analysis
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enhances device authentication, making it valuable for researchers and technology ven-
dors seeking guidelines and future directions. Such a comprehensive review not only
encapsulates the accumulated knowledge in the domain but also clarifies the potential
and limitations of Al in device authentication. This research does not concentrate on non-
Al authentication methods, processes that demand substantial computational resources,
or studies where security is not the main focus. When we describe something as compu-
tationally intensive, we mean processes that require a considerable amount of processing
power, memory, or energy, making them unsuitable for resource-limited Internet of Things
devices. Examples include large-scale cryptography and complex Al models.

A. Motivation:

The goal of this paper is to thoroughly analyze the Al algorithms researchers use to
enhance the reliability and security of device authentication. Traditional authentication
processes continue to face security risks as computer networks evolve rapidly.

We have identified and categorized various machine learning techniques, along with
their applications and effectiveness in real-world settings. Machine learning (ML) al-
gorithms enable systems to analyze data in real time, recognize abnormal behaviors,
and promptly implement appropriate responses to emerging security threats. Despite its
immense potential, the application of Al in device authentication has not received sufficient
attention, as several unresolved research issues remain.

We present promising research opportunities and challenges for device authentication
using Al based on the paper’s findings. To achieve our aim, we review advanced device
authentication methods with a focus on Al approaches. We compile the existing research
on effective device authentication solutions and present our findings along with several
unresolved issues for discussion. Lastly, we recommend further investigation in this area
based on our findings.

B. Contribution:

Our key contributions are as follows:

* Assessing and comparing various Al algorithms and methods to enhance authenti-
cation for IoT devices. Additionally, we offer recommendations for authenticating
IoT devices.

*  Analyzing the strengths and weaknesses of machine learning and deep learning
techniques, and outlining scenarios where they could be utilized, along with their
accuracy and functionality.

¢ Outlining current and future research problems in device authentication.

C. Paper structure:

The remainder of this paper is organized as follows. Section 2 addresses the security
challenges and adversarial threats in IoT device authentication. We examine various
types of cyber-attacks that can be executed and vulnerabilities that may compromise IoT
device authentication. Section 3 reviews IoT device authentication using Al techniques to
understand the security issues and challenges. We also introduce different types of Al and
explain the evaluation metrics for authenticating IoT devices.

Section 4 discusses academic research gaps concerning Al-based authentication meth-
ods for IoT devices. We explore the limitations of machine and deep learning algorithms,
comparing them with traditional authentication techniques and presenting each technique
along with its advantages and disadvantages.

Section 5 presents several possible open research areas and challenges in IoT device
authentication, with a focus on future research directions. We clarify IoT authentication
issues by discussing research results, adversarial techniques, and integration concerns
while also recommending research avenues for the next generation of machine learning,
deep learning, and reinforcement learning.
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Finally, Section 6 concludes the paper and highlights opportunities for the improve-
ment of Al-based device authentication methods.

2. Security Challenges and Adversarial Threats

IoT devices face substantial unauthorized access threats due to the absence of stan-
dardized protection protocols. Vulnerabilities in network communication and passwords
allow attackers to access confidential data. Many vendors neglect updates, resulting in
ineffective security measures against attacks. Robust security strategies are crucial for
safeguarding data in IoT software environment [3].

Furthermore, adversarial attacks pose significant security risks that target the authen-
tication systems used in IoT devices, as these systems integrate both machine learning
and hardware-based components. Vulnerabilities exist throughout the entire spectrum
of algorithm structure and software execution. Deep neural networks (DNNs) exhibit
considerable susceptibility since attackers can degrade them, leading to misclassification
and unauthorized access. The security weaknesses associated with advanced machine
learning techniques remain unaddressed due to a lack of response mechanisms to prevent
the circumvention of these systems [4-6].

2.1. Device Authentication Mechanisms

Software vulnerabilities facilitate detection and resolution processes when developers
utilize code auditors along with fuzzers, static analyzers, and debuggers. Conversely,
hardware vulnerabilities are more challenging to address due to a lack of available tools.
IoT manufacturers must remain vigilant to ensure adequate security and safety of their
devices [7]. Device authentication involves confirming that a device is legitimate and
permits access to a specific area of a network or system. This can be achieved in several
ways, including the following:

Static Authentication: This is a one-time authentication using credentials such as
passwords or certificates. Although it is a straightforward approach, it is vulnerable to
specific types of attacks if the credentials are compromised [8,9].

Dynamic Authentication: In this method, multiple device authentications occur
through the analysis of behavioral and contextual data. It provides higher security by
continuously monitoring the device behavior and environment [10,11].

Manufacturers in the IoT industry need to prioritize robust authentication systems
that ensure the secure operation of their devices. The advancement of the IoT necessitates
changes to authentication systems that must address emerging security challenges and
threats [12]. The following two tables were prepared to provide a better understanding
of the device authentication mechanisms. Table 1 discusses IoT device vulnerabilities,
and Table 2 addresses the IoT device authentication classification.

Table 1. Security risks and mitigation across IoT components.

Component

Vulnerabilities

Assessment Tools

Challenges

Security Measures

Software [13,14]

Insecure APIs, encryption
flaws, injection, firmware
bugs, buffer overflows,
MITM, DoS, remote code
exec [13,14]

Firmadyne, DiscovRE,
IoTFuzzer, manual RE,
security frameworks [13,14]

Limited resources, device
variety, lack of standards,
firmware access [13,14]

Secure coding, firmware
analysis, updates,
authentication, patching,
monitoring [13,14]

Hardware [15-17]

Default credentials,
outdated TCP/IP stacks,
open ports, reused

keys [16,17]

Shodan, Nessus [17], NIST
800-22 [15]

Low memory, protocol
diversity (CoAP, MQTT),
device constraints [17]

Secure boot, disable ports,
tamper resistance,
lightweight

encryption [15-17]
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Table 1 analyzes the risks associated with IoT devices regarding hardware and software
vulnerabilities. The articles report various software vulnerabilities, including weak network
configurations, a lack of encryption, insecure interfaces, weak authentication, and vulner-
able firmware, all of which expose IoT devices to threats such as buffer overflows, data
leaks, and command injections [13,14].

In addition to manual reverse engineering, tools such as Firmadyne, DiscovRE, and IoT-
Fuzzer have been used to analyze these vulnerabilities. However, compromises and barriers
to mitigation exist due to a lack of resources, the risk of tampering, and the absence of a
standard testing framework [14]. Effective security measures include encryption, authenti-
cation, hardware security, regular updates, and continuous monitoring [13].

The most common hardware vulnerabilities include weak passwords (default pass-
words or reused passwords), unpatched components (such as vulnerable TCP/IP stacks),
and exposed ports that may be exploited by malware [13,14].

Several tools are available to identify these issues, including Shodan, Nessus, and NIST
800-22. Mitigation is not simple due to resource constraints on many IoT devices (in
terms of computing power and memory), as well as the variety of protocols used for
communication [17]. Utilizing secure boot, disabling unnecessary ports, and implementing
anti-tamper mechanisms can help ensure the security of IoT devices against physical
attacks [16].

To prevent adverse impacts on the performance of a device, it is important to address
these issues within its limits [15]. In conclusion, this study demonstrates that a security as-
sessment process for every IoT device requires a multi-dimensional approach that balances
resource constraints with robust security controls while focusing on the security of each
IoT device. It is crucial to continue developing assessment tools and mitigation strategies
to enhance the security of IoT devices in the future.

Table 2. Comparison of IoT device authentication types.

Type Verification Process Credentials Vulnerabilities Use Case Technologies
. fi K Brute force, phishing, .
Static [8,9,18] Ohne-tlme, ixed Passwords, keys, replay, key %ow-securlty or MD.S, AES, RSA,
checks [8] MD?5, certs [8,18] theft [8,18] egacy IoT [9,18] static certs [9]
Noise,
Dynamic [10,11,19-21] Context or behavior RF prints, keystrokes, impersonation, High-security, LSiSo%/trIi{i\sIN/
y Y based [21] sensors [20] replay, memory adaptive IoT [21] !

limits [10,11] PUFs [10,11]

The research summarized in Table 2, which compares IoT device classification authen-
tication, outlines two major approaches to authentication classification: a static authenti-
cation approach and a dynamic authentication approach. There are differences between
each classification regarding the verification processes, credential types, vulnerabilities,
appropriateness, and key technologies. Static authentication, as described in [8,9,18], uses
one-time verification with static credentials, such as passwords, pre-shared keys, MD5-
hashed passwords, cryptographic keys, or digital certificates. Although these options
are simple and have been widely accepted, they exhibit several serious vulnerabilities,
including brute-force attacks, password guessing, replay attacks, key theft, side-channel
attacks, insecure storage, and phishing.

Moreover, there is a risk of MD5 collusion vulnerabilities. For this reason, static
authentication is considered unsuitable for high-security IoT systems and environments
susceptible to man-in-the-middle (MITM) attacks, as well as legacy systems that still employ
outdated forms of cryptography. The referenced studies indicate that static applications of
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conventional cryptographic algorithms, as well as static AES/RSA keys, are used but are
increasingly inadequate given modern security expectations.

Dynamic authentication is a more advanced strategy based on behavioral and context-
based authentication methods as discussed in [10,11,19-21]. Typically, dynamic authenti-
cation requires a wide range of credentials, including RF fingerprints, sensor fusion data,
keystroke dynamics, mouse movements, context information (such as the user’s location),
and other device characteristics. With dynamic authentication, identity verification can be
performed more flexibly and continuously, especially in environments that require ongoing
identity verification.

However, dynamic approaches face challenges, such as inconsistencies in data capture,
variations between classes’ behavioral data, and susceptibility to environmental changes.
All of which can undermine the trustworthiness of authentication, while sophisticated
impersonation attacks continue to be encountered. Nevertheless, dynamic authentication
methods offer significant value in high-security Internet of Things (IoT) environments,
where continuous user authentication (CUA) is mandatory [11].

For dynamic authentication, machine learning methods (including recurrent neural
networks (RNNs), Long Short-Term Memory (LSTM) networks, and deep learning clas-
sifiers) and behavioral biometrics are utilized. Both devices and users can be verified
continuously and contextually by using these technologies. The integration of Physical
Unclonable Functions (PUFs) enhances the reliability and security of dynamic authenti-
cation systems. These PUFs provide hardware-based security functions that improve the
reliability and security of dynamic authentication systems.

To summarize, the research presented in Table 2 shows that, although static authenti-
cation is a useful and simplistic approach, it carries significant risks and is becoming less
suitable for securing today’s IoT devices. While more secure and adaptable than static
authentication, dynamic authentication can still overwhelm application managers due
to data inconsistency, environmental dependencies, and limited resistance to advanced
attacks. Further studies related to these issues are necessary to address these concerns.

2.2. Threat Landscape in IoT Device Authentication

Unauthorized access to sensitive data or control over device connections poses a
critical risk to the IoT devices. Such breaches can compromise privacy, alter data, and even
cause physical damage to the system. Standardizing authentication protocols across the IoT
ecosystem is challenging due to the wide variety of IoT devices with differing specifications
and requirements. Achieving effective authentication of all IoT devices requires a balance
between security and usability. There are certain threats that IoT device authentication
systems may encounter.

Spoofing Attacks: Attacker devices gain unauthorized access by impersonating
trusted devices, such as their MAC addresses, IP addresses, or biometric information.
They bypass authentication procedures by using stolen credentials or fabricated user iden-
tities. Standardized fingerprints and stolen API keys demonstrate how to exploit biometric
authorization systems [22].

Replay Attacks: Hackers can compromise devices by utilizing valid authentication
messages, such as tokens or session IDs, which they steal for unauthorized access [23]. This
type of attack involves capturing and retransmitting authentication messages obtained
from previous transmissions to deceive the device. For example, an IoT device can be
successfully accessed using a stolen OTP or session cookie, illustrating how OTP capture
is exploited.

Adversarial Attacks: Attackers deceive authentication systems that rely on machine
learning models by providing misleading inputs. This leads to erroneous results for ML-
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based systems such as facial and voice recognition. Manipulating noise in visual data is a
strategy that deceives security devices into granting access to unauthorized users [4].

Man-in-the-Middle (MITM) Attacks: Attackers position themselves between devices
and server connections to intercept and modify the communication flow. These attackers
create a point between the device and server to steal passwords or inject harmful data dur-
ing the authentication process. They obtain login credentials by intercepting data flowing
between smart locks and their control applications over unsecured Wi-Fi connections [3].

Side-Channel Attacks: Attackers exploit the physical and operational characteristics of
a device to expose confidential information through source characterization techniques [22].
They analyze patterns in power consumption, electromagnetic emissions, and timing to
uncover encryption keys and other hidden secrets within devices. Using power analysis
techniques, attackers can recover a private key from authentication hardware security
modules (HSMs).

Brute Force and Dictionary Attacks: Attackers attempt to access accounts by us-
ing various password guesses, employing both automated, system-wide password tests,
and databases of commonly used passwords [24]. They utilize two methods to bypass
device credentials, specifically through automated login systems and pre-generated pass-
word lists. A botnet system executes thousands of login attempts to breach smart home
authentication devices.

Physical Tampering: Attackers directly manipulate the device to obtain data, rewrite
the firmware, and authenticate without approval [24]. They open the device while per-
forming memory readings, modifying hardware components, and installing malicious
firmware. A hacker can access a cryptographic key from an HSM component through
physical manipulation during authentication.

Privilege Escalation: Attackers exploit system weaknesses to achieve security levels
beyond their authorized access. They leverage system vulnerabilities to obtain root access,
allowing them to bypass security authentication procedures. For instance, exploiting a
buffer overflow vulnerability can provide root access to an IoT authentication device [24].

Zero-Day Exploits: Attackers frequently exploit undisclosed vulnerabilities in a com-
pany’s authentication system before developers can create patches. When they take ad-
vantage of undetected software or firmware weaknesses in devices, they gain unautho-
rized access through a biometric authentication system, which constitutes vulnerability
exploitation [25].

Social Engineering Attacks: By using emotional tricks such as fraudulent support
phone lines and deceptive emails, attackers gain confidential information from unsus-
pecting users. These attacks employ psychological manipulation techniques to acquire
passwords and authorization access from individuals [24]. For instance, an attacker may
convince users to disclose their OTP or password during smart home authentication.

Firmware and Software Vulnerabilities: Firmware and software vulnerabilities in
IoT devices represent deficiencies in the underlying code that attackers can exploit to
compromise the device security. These vulnerabilities allow malicious actors to bypass
authorization protocols and gain control over the device, often by injecting malicious
code or manipulating input [26]. Such exploits may target individual devices, control
hubs, or associated cloud services, thereby leading to significant security breaches. For in-
stance, vulnerabilities in smart lock firmware may enable attackers to disable password
authentication through various exploitation techniques, thereby compromising the system’s
overall security.

Denial-of-Service (DoS) Attacks: Attackers render the authentication system inacces-
sible by frequently sending an excessive number of requests. These requests can lead to
device shutdowns or complete unresponsiveness. By using fake login attempts, attackers
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generate thousands of requests that prevent the smart home authentication device from
recognizing valid users [23]. The impact of these requests makes smart home devices
non-functional, rendering them unable to operate effectively. This security vulnerability
causes users to face access difficulties and exposes their systems to potential security risk.

Eavesdropping and Sniffing: Attackers can access authentication data that is unpro-
tected or poorly encrypted. By monitoring network traffic, they can intercept sensitive
security information transmitted through unencrypted HTTP connections that are used to
authenticate smart locks [24].

2.3. IoT Device Authentication Vulnerabilities and Their Solutions

Several security flaws exist that specifically target authentication methods for IoT
devices [27]. IoT devices face challenges in implementing robust security protocols due to
functional limitations such as restricted computing power and memory space. Because of
these constraints, manufacturers are often compelled to deploy basic authentication systems
that cyber attackers can easily compromise [3].

The lack of device monitoring creates significant vulnerability. Manufacturers estab-
lish device-specific identifiers, yet many fail to implement security protocols, complicating
the tracking of suspicious online behavior. Due to their inability to adopt adequate authen-
tication services that would prevent network threats and attackers from breaching privacy
systems, most IoT applications encounter a critical problem [3].

The security of default credentials is crucial because manufacturers often ship devices
with pre-existing passwords without advising users to change them. This flaw in authenti-
cation mechanisms exposes IoT devices to the risk of unauthorized access. Additionally,
organizations can benefit from a wide range of third-party applications available online,
although verifying their authenticity poses a frequent challenge. Threat agents may infil-
trate the system, compromise the embedded database, and potentially jeopardize the entire
system if they install or access unverified applications.

The following measures can be effectively implemented to mitigate the risks associated
with IoT device authentication: 1. Encryption can safeguard IoT data from hackers, render
them unreadable, and secure communication channels between devices and backends.
2. Security awareness can be enhanced, data breaches and IoT attacks can be minimized,
and strong passwords, regular updates, and spam filtering can be encouraged through
user guides and training programs. 3. Device monitoring tools and more frequent up-
dates facilitate threat detection and the development of advanced control mechanisms,
streamlining processes and protecting devices from major security breaches. 4. The LACKA-
IoT is a lightweight access control scheme that adds extra layers of security, aiming to
balance the security needs of IoT devices with their resource limitations. 5. Detecting
attack patterns in unstructured data through machine learning and deep learning, securing
IoT devices, and mitigating emerging threats before they cause significant damage are
achievable. 6. Lightweight device authentication schemes are being developed to prevent
unauthorized access in resource-constrained IoT environments and to address security
challenges as IoT adoption increases.

3. Current Research in IoT Device Authentication Using Al Techniques

This section discusses various categories of artificial intelligence, including machine
learning and deep learning, that are used to recognize authenticated devices.

3.1. Evaluation Metrics

To evaluate Al effectiveness, IoT device authentication systems must use three specific
evaluation metrics: the false acceptance rate (FAR), false rejection rate (FRR), and equal
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error rate (EER), which are essential to ensure the system’s accuracy. The system must
effectively differentiate between authorized and unauthorized access attempts. For the au-
thentication system to function correctly, these metrics need to be established; they facilitate
access for authorized devices while preventing unauthorized entry, thereby ensuring that
the acquired information does not negatively impact users. The purpose of quality measure-
ment methods is to guide in a controlled environment for developers when evaluating and
developing authentication models for IoT devices using artificial intelligence. IoT network
security requires dynamic adjustment capabilities from Al system implementations that
enhance accuracy as well as FAR, FRR, and EER. The evaluation of authentication systems
relies on a set of performance metrics, which include
Accuracy: The percentage which correct predictions represent

TP+TN

A =
Y = TP Y TN+ FP+ EN

where we have the following;:

* TP (True Positives): Legitimate devices were accurately authenticated.

® TN (True Negatives): Unauthorized devices were properly rejected.

*  FP (False Positives): Unauthorized devices were improperly authorized.
*  FN (False Negatives): Legitimate devices were improperly denied access.

False acceptance rate (FAR): The frequency of authenticating unauthorized devices.

FpP

FAR = ————
FP+TN

(2)
False rejection rate (FRR): The frequency at which legitimate devices are denied access.

FN

FRR = tN 7P

3)
Equal error rate (EER): The point where FAR and FRR intersect indicates the balance

of the system.
EER = FAR = FRR (4)

3.2. IoT Device Authentication Using ML

Machine learning investigates automated learning processes that enhance perfor-
mance through experience and produce accurate predictions after analyzing provided data.
The nature of machine learning algorithms makes them ideal for passive authentication
procedures. The application of machine learning analyzes vast volumes of data to identify
validation patterns based on unique device characteristics. Machine learning addresses
issues regarding device authentication by enabling scalable, real-time threat detection.
The key ML paradigms used include supervised and unsupervised learning.

3.2.1. Supervised Learning

A supervised learning approach involves training artificial intelligence algorithms with
labeled datasets to discover hidden patterns between input features and their corresponding
outputs [28]. The key objective of the learning process is to develop a predictive model
to achieve accurate results when using new real-world data. Some popular examples are
regression, vector machine, trees, Bayes, and KNN.

Linear Regression: A linear regression model in machine learning employs super-
vised learning to identify the best-fit line between independent and dependent variables,
establishing a linear relationship between them. The authors in [29] present a Trust Man-
agement System (TMS) for IoT nodes based on linear regression (LR). It includes simulated
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datasets in spreadsheet sheets to enhance security in IoT devices, as well as authentication.
It simulates a 50-node network containing a database with 5000 entries of five different
trust parameters (availability, integrity, security, honesty, and privacy) across 20 iterations.
The TMS was accurate in predicting trust values and detected malicious nodes within
two unsuccessful transactions, achieving a 95% threshold (5% error tolerance, « = 0.05),
and demonstrated confidence in classifying nodes as operational, potentially malicious,
or malicious for that environment. Additionally, the TMS required only 1% of the storage
space needed by a Neural Network-based TMS (i.e., 100 times less, such as 10 KB instead
of 1 MB) and demanded significantly less computational effort, cost, and analysis time.
The authors in [30] focused on the role of ML in power management and optimization
for IoT by using regression analysis. The experiments utilized power consumption data
collected from a living room air quality monitoring device. This data included various
features such as temperature, humidity, occupancy, and the rate of information transmission,
among others, along with the actual power usage at different times. The dataset functions
both as a tool for environmental sensing and as a part of a continuous authentication
system. The methodology developed involved implementing a linear regression method.
The research employed Python to perform the data analysis and calculate the coefficients.
The expressed regression equation can be viewed as the following linear
regression equation:
Y = Bo+ B1X1 + B2Xz +e (5)

where Y is the usage power, By is the intercept point, 1 is the coefficient point of the
temperature, f; is the coefficient point of the humidity, and ¢ is the error term.

The regression method enhanced the overall power usage performance and demon-
strated that using this method for prediction resulted in a low power consumption. With-
out this method, power consumption was significantly higher. For instance, the model
predicted 145 watts under the specific conditions of 20 °C and 50% humidity.

Linear regression can assist in IoT device authentication. For example, it can serve as
a model to predict expected power consumption based on the environment. By modeling
expected power consumption and detecting, for instance, tampering or abnormally high or
low power usage, this would be a sufficient data-driven authentication method.

Logistic Regression: Logistic Regression is a statistical prediction tool and machine
learning approach designed for binary classification to determine potential outcomes,
despite the name referring to classification rather than regression. In [31], the authors
evaluated Logistic Regression (LR) as a supervised algorithm for distinguishing between
legitimate and illegitimate IoT devices in smart homes. The experiments utilized datasets
derived from network packets captured from real IoT devices, including smart bulbs,
smart sensors, and smartphones. These devices are connected to a Raspberry Pi within a
smart home network. In the dataset, each row represents a traffic flow, while the columns
correspond to feature vectors. The researchers directed network traffic from IoT devices
connected via Raspberry Pi to provide LR with information on IP addresses and port
specifics. According to the research findings, LR and alternative machine learning ap-
proaches are effective in detecting unauthorized devices. Logistic Regression achieved 96%
accuracy, 67.8% precision, 80.4% recall, and roughly 73.5% F1-score in the identification
of unauthorized IoT devices, which was based on applying the model on 483 network
traffic flows analyzed from devices connected through Raspberry Pi, comprising 316 true
positives, 150 true negatives, 5 false positives, and 12 false negatives. This combination of
accuracy, precision, recall, and F1-score demonstrate the initiative’s ability within the con-
text of this project to provide security to an IoT environment by detecting and preventing
the use of non-legitimate IoT devices.
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Support Vector Machines (SVMs): The Support Vector Machine (SVM) is a super-
vised machine learning algorithm that creates linear or hyperplane boundaries, separating
various classes in an N-dimensional space while maximizing class separation. For example,
the authors in [32] studied SVM-based user authentication by analyzing user touch patterns
and the movement of mobile devices, and they found varying levels of accuracy. Following
this approach, the datasets include multi-touch dynamics and device motion, such as swipe
data from touchscreens with capacitive frames and pattern lock unlocking movements; the
datasets included some that comprised 160 samples from 8 users. Consequently, along with
their work on touch dynamics, swipe data, and user profiling, they indicated that, with high
classification accuracy and low error rates, SVMs can serve as viable user authentication
mechanisms. Notably, some accuracy levels reached 97.40% and 97.1%, and specific models
demonstrated notably low errors with an Average Error Rate of 3.07% and equal error
rates of 1-2%. The authors’ findings suggest the practical potential of SVMS as accurate
classifiers of user behavior profiles.

Decision Tree: The Decision Tree enables non-parametric supervised learning for both
regression and classification. It is structured in a sequential hierarchy with a root node,
branches, internal nodes, and terminating leaf nodes [33].

In [34], the authors used the Classification and Regression Tree (CART) algorithm for
continuous authentication on mobile devices by classifying keystroke events. The public
Hand Movement, Orientation, and Grasp (HMOG) dataset was selected for this work
because it is publicly accessible and offers extensive data on typing, sensory input, touch,
and gestures, making it suitable for mobile continuous authentication. It includes data
from 100 participants, with 24 sessions recorded per individual (8 reading, 8 writing, and
8 mapping sessions). This study focuses solely on the 8 writing sessions, which contain
712,418 keystroke events, averaging 327 events per participant. Each keystroke event
features detailed information such as press time, intervals between key presses, and key
codes. Random samples of unauthorized keystrokes were generated from random events
across different users. Finally, balanced training datasets were assembled, comprising
roughly equal numbers of known and unauthorized inputs, to simulate typical behavior in
continuous authentication, as authorized users are expected to input considerably more
data than unauthorized users.

The decision model trained on these features achieved an average accuracy of 0.63
during five-fold cross-validation. While the dataset provides a fundamentally strong basis
for evaluating mobile continuous authentication methods, there are limitations. Study
participants are demographically homogeneous; their natural usage behavior may differ
from the structured, timed sessions of the data collection, and participants were not given
contextual explanations for environmental or device (including mobile) use or habits.
These limitations restrict the generalizability of the findings, but the HMOG data remains a
valuable foundation for comparing machine-learning classifiers’ performance.

Standard ML metrics (accuracy, precision, recall, F1-score, AUC, and MCC) were
calculated and analyzed using ANOVA and Tukey’s pairwise comparisons. The CART
classifier aligned with the moderate performance of the GBC, RFC, and ETC classifiers
(accuracy M = 0.63, SD = 0.05; precision M = 0.68, SD = 0.06; recall M = 0.66, SD =
0.06; Fl-score M = 0.67, SD = 0.06; AUC M = 0.61, SD = 0.06; MCC M = 0.41, SD = 0.11).
The ANOVA analysis indicated significant differences for all metrics (p<0.001), and post
hoc testing confirmed that for accuracy, recall, F1, AUC, and MCC, CART performed
significantly worse than the GBC, RFC, ETC, and k-NN classifiers regarding their ability to
differentiate classes.

In [35] , the authors implemented Decision Tree (DT) algorithms, including variations
like Information Gain and Gini Index, to identify botnet attacks on IoT networks. Both
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Decision Tree methods accurately classified attack categories with a 0.99 accuracy rate in
the Bot-IoT dataset.

The Bot-IoT dataset was created by UNSW Canberra in 2018 and was made publicly
available to support machine learning research on detecting botnet attacks on Internet
of Things (IoT) devices. The dataset represents IoT devices such as cameras, routers,
and printers. These IoT devices were used in a controlled laboratory environment where
botnet attacks occurred, so actual data on network traffic was collected. The dataset is
divided into two parts: a training set collected from 10 IoT devices over 20 days (with
devices identified) and a test set gathered from an additional 9 IoT devices over 7 days
(with devices definitely different).

It has two main dependent variables that indicate whether each traffic flow is benign
or malicious, and a set of independent variables categorized into traffic flow-based features
(number of packets, number of bytes, average packet size, flow duration, ports, protocols)
and host-based features (device type, OS version, and manufacturer). These features
enabled ML models to be developed that can distinguish between normal network traffic
and botnet traffic.

However, the main shortcoming is that it was created in a laboratory setting, which
does not capture the complexity and variability found in real IoT networks or the constantly
evolving threat landscape. The dataset can be utilized and models can be built accurately,
but the results should be interpreted with caution, as models need to be validated against
larger, more diverse real-world datasets to be truly generalizable.

Additionally, in [31], the authors employed a Decision Tree to recognize and verify loT
devices in a smart home network. By classifying devices as legitimate or illegitimate based
on their network traffic features, the Decision Tree achieved an accuracy of approximately
96.32%.

Random Forest: The Random Forest (RF) operates as a machine learning method that
accomplishes predictions by employing several Decision Trees to achieve better accuracy
and minimize errors [36]. RF has gained popularity as an IoT device authentication
improvement technique because it effectively utilizes both network traffic information and
device context data. The authors in [37] proposed an RF-based authentication scheme that
uses device context, achieving an accuracy of up to 98.1%. The experiments used the context
information of IoT devices (identity, activity, GPS location, time zone, and device properties)
for 20 to 100 IoT devices, with various-sized context information ranging from 512 bits
to 4096 bits. They integrated a Belief-Desire—-Intention (BDI) agent with the RF to gather
device characteristics before user authentication. This included the validation steps and
eventually collecting context device details, device identity, human activity, location, time,
and device characteristics. These device characteristics were ultimately transformed into
beliefs in the cognitive agency of the authentication server using a BDI model. In contrast,
nonlinear regression was utilized by the RF method to create beliefs for authentication,
breaking down the votes according to the majority preference, ultimately reflecting the
intention to authenticate. The ability of the RF to robustly capture relationships across
diverse data and adapt its outcomes led to substantially high accuracy in this context-aware
authentication approach.

Based on the research in [35], the authors focused on the accurate and efficient security
authentication of IoT devices using machine learning algorithms. It was revealed that the
RF algorithm could detect botnet activity in the IoT traffic with 99% accuracy, utilizing the
Bot-IoT dataset labeled to train and test the algorithm. While the RF was able to classify
malicious IoT traffic with 99% accuracy, the study showed that eXtreme Gradient Boosting
(XGBoost) could classify malicious IoT traffic with an accuracy of 99.98% for the attacks be-
ing classified, and achieved an attack classification accuracy of 99.99%. Ultimately, XGBoost
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employs advanced gradient boosting techniques that enable it to better identify and learn
from the complex network traffic patterns, thereby enhancing the overall performance in
the study.

A study conducted by the authors in [31] examined the use of machine learning
algorithms to enhance device authentication in IoT scenarios. As part of this approach,
the authors selected the RF algorithm and other supervised learning methods to classify IoT
devices. Based on the observed communication patterns, the authors trained the RF model
using features extracted from the network traffic data. By distinguishing and confirming
devices, the goal was to improve the security of IoT networks.

In [38], the authors presented the RADTEC framework, which achieves over 95%
accuracy and a time of less than 0.65 ms by using machine learning to classify IoT device
types based on measurable data found in packet headers. RADTEC relies on network
traffic data (packet capture (pcap) files) from the University of New South Wales and
includes traffic from over 28 active (15 selected) IoT devices. First, the framework detects
and analyzes critical fields from network flows and creates a device fingerprint upon
completing the adjustments. The device fingerprint is classified using fast machine learning
models, primarily the Random Forest, due to its high accuracy and low latency. The RF,
based on the authors’ deep learning study, has the highest accuracy and throughput
together, allowing for optional iterative classification to improve accuracy and consistency.
With the efficiency and accuracy of device classification, the RADTEC framework enables
continuous and real-time device authentication. According to the study, RF is essential in
enhancing the security and reliability of IoT device authentication systems.

The authors of [34] conducted a comprehensive evaluation to understand how ma-
chine learning classifiers function for continuous authentication (CAauth) on mobile de-
vices when detecting keystroke dynamics. The researchers concluded that ensemble algo-
rithms achieve their best results by utilizing Random Forest after conducting their analysis.
The analysis of the RFC for the 100 HMOG dataset users generated these performance
metrics: an accuracy rate of 0.68, a precision of 0.71, a recall of 0.76, an F1-score of 0.73,
and an AUC of 0.72, while MCC amounted to 0.59.

The authors in [39] took advantage of the unique human gait characteristics that were
utilized in this study for the continuous authentication of remote IoT users from both
mobile phones and wearable sensors. The authors captured gait activity from 30 users
in the age range of 15-34 at the time of use, with each subject given a Samsung S7 Edge
smartphone to use that used an Android application to capture both the accelerometer and
gyroscope sensors at a 50 Hz sampling rate.

For authentication, the authors utilized features from 10 gait cycles per user. The au-
thors applied machine learning techniques; Random Forest provided better performance
than the other algorithms used in this research, and thus, it was employed as the classifier.

The authors created a 70/30 train—test split of their data and then used 10-fold cross-
validation, achieving 94% authentication accuracy and an equal error rate (EER) of 6% with
their framework. This type of authentication offers accuracy, unobtrusiveness, and con-
tinuous authentication on IoT devices while also ensuring sufficient security and privacy
without requiring user input on resource-constrained devices.

The authors in [40] outlined research aimed at discovering unauthorized Internet of
Things (IoT) devices on organizational networks using a machine learning model. The re-
search team collected and tagged vast amounts of TCP/IP traffic data from 17 different
IoT devices of nine types over a period of multiple months in two laboratory settings.
Having collected the above data, the team trained a Random Forest using a white-listing
style with a majority vote approach on each device type during 20 sessions to enhance
overall accuracy.
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The sampling of 17 devices resulted in a high accuracy of detecting unauthorized IoT
device types (96% on average) and white-listed device types (99% on average). The research
also measured the time it took for devices to be detected (some within five TCP sessions,
with 100% detection achieved by 110 sessions). Additionally, it demonstrated that the
classifier performed well in various lab settings while also being resilient against attacks.

Nearest Neighbors (KNN): The K-Nearest Neighbors (KNN) algorithm is a supervised
learning classifier that employs non-parametric methods to forecast individual group
associations through distance-based proximity calculations. It is one of the most popular
and simplest classification and regression classifiers used in machine learning today.

The authors of [32] studied the integration of machine learning algorithms into user
authentication schemes. To do this, they collected data on 30 unlocking gestures, imple-
menting the KNN algorithm for classification. The authentication performance using KNN
was evaluated using the equal error rate (EER) metric. The KNN algorithm obtained an
EER of 4.90% in relation to a touch and device movement-based authentication scheme.

In [34], the authors discussed a k-NN based on key-pressing dynamics for continuous
authentication, which achieved an average accuracy of 65% during training and testing
using the HMOG dataset. The details of these models relate to the keystroke dynamics
model on which they are based. Keystroke features include the keys pressed and the time
between key presses. Additionally, a balanced dataset of 100 users was created, containing
both authorized and unauthorized key press events. Finally, five-fold cross-validation was
employed. Thus, the accuracy, or number of correct predictions, was computed.

In [41], the authors also studied the effectiveness of learning algorithms for keystroke-
based user authentication. The KNN algorithm achieved 74.58% accuracy for authenticating
genuine users and 98.61% accuracy for detecting an impostor using the CMU Keystroke
Dynamics Benchmark Dataset, which consisted of keystroke typing data provided by
51 user examined features were dwell time, flight time, and latency time for digraphs.
The dataset was then split such that the first 300 rows of typing were assigned as a training
set for each user. At the same time, the last 100 rows of typing belonged to the original user,
and 100 rows were randomly selected from unrelated users and verified as impostors or
not. The artificial neural applications were then implemented to classify these as real or
impostor classifications for evaluation.

Naive Bayes: The Naive Bayes algorithm is a probabilistic machine learning algorithm
that performs classification operations based on Bayes” Theorem. The model achieved
computational efficiency through conditionally independent assumptions when applied
to real-world scenarios. According to [32], the Gaussian Naive Bayes (GNB) employs
purely behavioral biometrics (all users had the same pattern) and attained 95-97% accuracy
with touch-based pattern lock authentication, establishing it as the best and most efficient
algorithm while also examining accuracy across multiple postures.

An average accuracy of 0.64 was reported in another study on continuous authentica-
tion using keystroke dynamics [34], indicating that Naive Bayes may not be suitable for
such data. In detecting botnet attacks, Naive Bayes achieved a high accuracy of 0.99 in
IoT security, but it showed reduced performance of 0.71 when classifying the attack type.
The use of GNB was implemented in another study [31] to validate smart home IoT devices,
resulting in a 74% accuracy rate based on network traffic analysis. Naive Bayes proves
effective in various security contexts according to these studies, but its performance varies
depending on the dataset and application.

Table 3 discusses several advantages, disadvantages, and security concerns for IoT
device authentication using supervised machine learning algorithms.
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Table 3. Supervised ML for IoT device authentication.

Methods

Benefits

Drawbacks

Security Issues

Support Vector Machines (SVMs)

High accuracy (97.1%) [32]
Effective with 10K+ samples [32]

Long training time: 5-10 min (1 K
samples), 2h (10 K samples) [32]
Limited effectiveness with fewer
than 1 K samples [32]

High false rejection rate (50%) in
low-data settings [32,34]
Vulnerable to adversarial
attacks [28,32,34]

Random Forest (RF)

High accuracy across datasets:
98.1% (IoT authentication) [37],
99% (BoT-IoT) [35]

Large memory requirement (16
GB RAM for 30 K rows x 500
features x 1 K trees) [32]

Fails with extensive datasets (400
K rows x 50 trees) [32,38]

Susceptible to adversarial input,
DoS, and training
contamination [31,35,37]

K-Nearest Neighbors (KNNs)

Effective accuracy: 74.58%
(keystroke analysis) [41]

Low error rate (EER = 2.52% for
known users) [32]

Large dataset requirement (712 K+
keypresses) [34]

High false rejection rate

(FRR = 25%) with noisy input [41]

False acceptance rate

(FAR = 10-15%) for impostors [41]
Privacy concerns due to user
variability [32,34]

Naive Bayes (NB)

Varied accuracy: 64-99% across
datasets [31,34,35]

Assumes feature independence,
impacting real-world
performance [35]

Susceptible to misclassification
and dataset poisoning [32,35]

Decision Trees

High accuracy (96.32% for IoT
smart home) [31]

Reliable across datasets (99% for
BoT-IoT) [35]

Varied precision range (0.97-0.98,
XGBoost performs better) [35]
Performance declines with limited
data (2-8 devices, 483 flows) [31]

Keystroke exposure risks [34]
Traffic manipulation
vulnerabilities [35]

Logistic Regression

Applicable to small datasets (483
traffic flows) [31]

Suitable for IoT (2-8 devices,
Raspberry Pi) [31]

Lower accuracy than Decision
Trees (96.32%) [31]

Limited predictive flexibility due
to linear assumptions [31]

Susceptible to packet
manipulation [31]

False positives: 5, False negatives:
12 [31]

Linear Regression

High real-time accuracy (98.07%)
with minimal delay (<3 s) [42]
Effective billing prediction
(91.98%, RMSE 0.0493) [42]

Reliable variable prediction (e.g.,
89.48% in Room 10A, RMSE
0.0596) [42]

Limited granularity (day-based
intervals, lacks hourly/dynamic
options) [42]

Security risks: Weak/default
passwords on PZEM-004T,
NodeMCU, APIs [42]

Table 3 provides an overview of the various supervised machine learning (ML) meth-

ods used to authenticate IoT devices. The precision and computational performance of
all methods are examined and documented in each analysis, along with their security
weaknesses. This information delves deeper into the contributions of these studies: To
authenticate IoT, it is essential to identify complex relationships with a high accuracy rate
of 97.1% as shown by SVMs [32]. This accuracy results from the effectiveness of the SVM in
distinguishing between classes in high-dimensional spaces.

To maintain performance levels [32], the method requires substantial computational
power and a large number of training datasets. For instance, SVM training takes 5-10
min for 1000 samples and 2 h for 10000 samples. SVM models face accuracy limitations
due to their vulnerability to adversarial attacks, thus producing false rejection rates that
can reach 50% when trained on restricted datasets, according to [28,32]. Dynamic data
patterns and evolving threats pose significant risks in IoT applications in real-world settings.
The results from RF vary across different applications in various studies, such as 68% for
keystroke recognition in HMOG interactions [34], 98.1% for the authentication of IoT
devices [37], 99% for detecting botnets with the BoT-IoT dataset [35], and 95.2% for IoT
re-authentication in UNSW [38]. Although RF is remarkably precise, many devices cannot
utilize it due to the significant memory and processing power required to handle large
datasets; for example, 16GB RAM is needed to process 30K rows with 500 features and
1000 trees, and the imbalance in RF models exacerbates this issue [32],[38]. These security
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concerns are associated with susceptibility to attacks via adversarial relaying inputs, such
as denial-of-service (DoS) attacks, or even alterations to the training data [31,35,37].

An IoT ecosystem would suffer tremendously from all these issues, which would
undermine the model’s defenses. KNN has been studied for various IoT-enabled authenti-
cation tasks, achieving 74.58% accuracy in keystroke authentication [41] and showing equal
error rates (EERs) of 2.52% for familiar users and 4.90% for gesture-based authentication
processes [32]. Although KNN excels in these scenarios, its use entails a high cost in com-
putational processing, especially when dealing with large datasets like the HMOG dataset,
which consists of 712,418 keystroke events [34]. Moreover, KNN has a 25% false rejection
rate (FRR) for authentic users in noisy contexts [41], meaning that spoofers manage to attain
false acceptance rates (FAR) of about 10% and 15% [41]. Privacy concerns, along with the
data variability of KNN-based models, make them unreliable for mobile IoT applications,
according to [32,34].

Naive Bayes (NB) is a reliable and simple tool capable of achieving accuracy rates
of 64% [35], 74.38% [34], and up to 99% in specific IoT tasks [31]. The accuracy reduc-
tion reaches 64% in complex situations where NB models demonstrate independence,
although it provides advantages according to research [35]. Furthermore, NB models are
at risk of misclassification as indicated by a Matthews correlation coefficient (MCC) of
0.45, which shows that they have a moderate level of classification performance [32,35].
The maximum vulnerability of the NB model due to data manipulation diminishes the
reliability of these models in adversarial environments, raising security issues.

Decision Trees (DTs) have been highly successful in addressing a significant number
of Internet of Things (IoT)-related problems, achieving a classification accuracy of 96.32%
when applied to IoT devices in smart homes [31]. Additionally, an accuracy of 0.63 has
been achieved through the use of keystroke-based data in mobile context-aware (CA) ap-
plications [34]. In contrast,an accuracy of 99% has been found in IoT botnet detection [35].
Mobile computing activities utilizing DT models show varying accuracy rates between
0.55 and 0.86, depending on the volume of data and selected features [34]. DT models
have demonstrated high accuracy (0.97-0.98) in IoT behavior but fall short compared to
the performance of advanced algorithms like XGBoost [35]. Security threats are character-
ized by their vulnerability to keystroke pattern eavesdropping in mobile context-aware
activities [34], as well as traffic disruption from IoT botnet attacks [35]. A relatively rare
risk of misclassification arises when the training dataset comprises a homogeneous dataset,
leading to elevated false negative and false positive rates [31].

Logistic Regression (LR) demonstrates sufficient accuracy in small Internet of Things
(IoT) applications when dealing with constrained data collections. LR has been effective in
predicting 483 traffic flows [31] and exhibits applicability on devices ranging from 2 to 8 on
a Raspberry Pi board [31]. However, LR is less effective than Decision Tree (DT) models,
which achieve an accuracy level of 96.32% [31]. Moreover, LR does not perform well under
conditions of small sample sizes, restricting its applicability to many IoT settings [31].
Its security flaws include susceptibility to packet tampering attacks and excessive false
positive and false negative rates, with risks of 5 false positives and 12 false negatives for
access control configurations [31].

Linear regression has also been used to estimate electricity consumption in boarding
houses in [42], based on the (Rooms 9A, 10A, and 14A) datasets collected every minute
over two to four months. Five independent variables—voltage, current, power, frequency,
and power factor—have been employed to estimate electrical energy consumption. The ap-
proach achieved high real-time accuracy of 98.07%, with low latency (<3 s), and efficient
billing estimation at 91.98% accuracy, along with an RMSE of 0.0493, demonstrating timely
and reliable energy prediction. Despite these advantages, linear regression has several
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limitations. It can only predict day-based intervals, restricting hourly or dynamic forecasts.
Variable prediction performs well in some cases, such as 89.48% accuracy in Room 10A
with an RMSE of 0.0596, but overall flexibility remains limited. Security concerns are also
significant, with faulty or default passwords on the PZEM-004T and NodeMCU, as well as
insecure APIs, which potentially compromise system integrity [42].

All ML methods are valuable for IoT device authentication but face significant com-
putational, performance, and security challenges. Their vulnerability to attacks, data
tampering, and IoT threats requires developing robust, adaptive authentication systems to
adequately protect IoT environments.

3.2.2. Unsupervised Learning

Unsupervised learning functions, as a machine learning method, extract information
from samples of untagged data. An unsupervised learning model manages unlabeled data
by discovering patterns, as it does not receive guidance or direction from a supervised
approach [28]. Clustering and Principal Component Analysis are some examples.

Clustering Algorithms(k-means/Hierarchical clustering):

K-means and hierarchical clustering often employ unsupervised machine learning
algorithms to group similar data points into distinct clusters. K-means partitions data
into k-exclusive clusters by calculating the distances to centroids, whereas hierarchical
clustering generates a cluster hierarchy structure using either divisive or agglomerative
approaches [28].

The authors in [43] proposed a hybrid security framework for IoT network devices
based on ML and K-means clustering for intrusion detection. The framework was devel-
oped using Object-Oriented Analysis and Design Methodology and the SQLite database
management system, and has been designed to address the security issues facing IoT
devices by collecting data from the devices and monitoring network traffic baselines.

K-means clustering was used to understand normal behavior based on characteristics
of the device as well as to prepare the data by clustering like data points together, to group
patterns for anomaly identification, and to reduce the dimensions of the information to
allow scaling. An unspecified ML model performed anomaly assessment using a varied set
for each cluster; as the documents were re-clustered, the training on the models would be
updated. The proposed approach is based on clustering and ML for intrusion and anomaly
detection after the data has been collected. The results of the evaluation showed 87% of
detection of known intrusions with a 15% increase in the identification of unknown threats
over previous versions of the method, with a false positive rate of 8%. However, there
are issues with finding known intrusions, resulting in a 5% decrease in accuracy due to
the rapid shifting of K-means traffic; an increase of 20% in processing time allowed for
heterogeneous devices.

Principal Component Analysis (PCA):

PCA is a machine learning technique that converts high-dimensional data to low-
dimensional spaces while preserving meaningful information for better data analysis and
modeling tasks [44].

According to [45], the authors discussed that PCA has also been utilized in previous
ML-based PIN entry system attacks on smartphones. In these attacks, PCA was employed
to process WiFi Channel State Information (CSI) data recorded during Personal Iden-
tification Number (PIN) entry, thus reducing data dimensions while keeping the most
discriminative features corresponding to keystrokes. Authenticators successfully recovered
PINs because the dimensionality reduction technique extracted critical signal features
from WiFi communications, revealing major weaknesses in traditional authorization frame-
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works. The PCA-based inference vulnerability highlights the crucial need for improved
security procedures.

Table 4 demonstrates an evaluation of unsupervised ML authentication methods for
IoT devices, detailing their benefits, drawbacks, and security challenges. A thorough
assessment of authentication systems using K-means clustering and Principal Component
Analysis (PCA) draws from the available empirical evidence in the current academic
literature. K-means clustering employs preprocessing methods to enhance authentication
accuracy, achieving a tested purity gain of 0.877 compared to the baseline of 0.44. This
improvement is beneficial for differentiating between authorized and unauthorized devices
as specified in [41].

Table 4. Unsupervised ML methods for IoT device authentication.

ML Method Benefits Drawbacks Security Issues

Acc. 7 from purity 0.44
K-means to 0.877 with
Clustering [41,46] preprocessing; clusters
efficiently (2-50 clusters)

Noise-sensitive; init.
purity = 0.44 (keystroke);
requires preset k

DoS on IoT; false auth.
due to noise

Reduces dimension;

speeds up processing; Poor clustering: Vulnerable to data
PCA (Principal Comp. useful in CSI-based ¢ purity = 0.20, neg. perturbation; usable for
Analysis) [41,45] Kevstroke inference silhouette; weak on PIN inference attacks
Y fine-grain CSI (64-82%)

(64-82% acc.)

Additionally, the algorithm has been shown to classify data into clusters of sizes
ranging from 2 to 50 members, making it applicable to a wide range of Internet of Things
(IoT) authentication systems [46]. Despite this, one of the main drawbacks of K-means
clustering is its noise sensitivity, which can significantly destabilize classification. The study
demonstrates that in the case of keystroke authentication, the purity may be as low as 0.44
when there is no preprocessing; hence, data augmentation is required to achieve effective
classification [41].

Furthermore, while K-means clustering is utilized, prior knowledge of the number of
clusters (k) is necessary, which limits its effectiveness in dynamic IoT settings with changing
device usage and network conditions [46]. Regarding security matters, K-means clustering
is vulnerable to denial-of-service (DoS) attacks, as invasive noise can adversely affect the
performance of the clustering operation and lead to erroneous authentication outcomes [46].
This vulnerability is expected to result in the unintentional rejection or incorrect acceptance
of legitimate devices, thus representing a severe security threat to Internet of Things (IoT)
frameworks [41].

Authentication systems based on the IoT benefit from Principal Component Analysis
(PCA) as a common technique to reduce their data dimensionality and enhance com-
putational performance. Research findings indicate that analytical results improve after
reducing data dimensions and processing time by applying PCA [41].

However, empirical research shows that PCA has also been utilized in keystroke infer-
ence attacks since it can compress CSI data, enabling the attack to distinguish keystrokes
with varying degrees of accuracy ranging from 64% to 82% [45].

This feature poses a significant privacy threat, as it makes it easy for unauthorized
parties to infer a victim’s personal data. Even though PCA excels in feature extraction, it
performs poorly in clustering for keystroke-based authentication as evidenced by a negative
silhouette value and a purity of 0.20, which together indicate a lack of enhancement in
classification accuracy [41].
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Additionally, PCA is highly vulnerable to variations in adversarial sets. Adversarial
perturbations in the input can influence the derived principal components, thereby under-
mining the reliability of authentication systems [41]. Furthermore, another drawback is its
limited ability to detect slight variations in Channel State Information (CSI) measurements,
particularly concerning complex hand and finger movements, which degrades classification
performance [45]. The security risks associated with using PCA for keystroke inference at-
tacks stem from inherent weaknesses. Attackers enhance their ability to gather and identify
classified user information through the use of dimensionality reduction techniques [45].

When preprocessing steps are implemented, K-means clustering demonstrates im-
proved accuracy. However, it has significant issues with noise attacks and denial-of-service
attacks, rendering the system less reliable in challenging conditions. PCA effectively re-
duces the feature dimensions while simultaneously exposing serious privacy vulnerabilities
through keystroke inference attacks. This table highlights the need for stronger protective
measures to address potential weaknesses in machine learning authentication systems in
the future.

3.3. Reinforcement Learning (RL)

Reinforcement learning (RL) is a key technology for enhancing IoT device authenti-
cation due to its adaptive learning capabilities. By utilizing RL algorithms, systems gain
knowledge through interactions with the environment, which autonomously improves
security mechanisms over time [47]. RL enables a response to evolving IoT threats, allowing
for better adaptation to dynamic security challenges.

The authors in [48] developed a 3D geometry channel model for RSMA-IRS-assisted
ISAC systems in an urban environment. The 3D model describes LoS/NLoS fading,
Doppler effects with user mobility at 1 m/s and target mobility at 5 m/s, and radar
cross-section (RCS) modeling for targets up to 20 m2. They formulated an energy-efficiency
maximization problem under the same configuration, allowing beamforming and IRS phase-
only adjustment with two quantization bits, while the system must meet QoS (minimum
rate of 4 bit/s/Hz) and radar SNR requirements (0 dB). This is solved with a PPO-based
deep reinforcement learning framework, where the state space includes SINR values for
both users, Doppler shift data, and radar echo data; the reward function promotes QoS but
penalizes when QoS is not achieved or when satisfactory SNR is not reported (e.g., Qqos
drops to zero when QoS is unmet).

The authors conducted simulations with 2 users, 4 BS antennas, 9 IRS elements, and a
carrier frequency of 2.4 GHz (adjusted to 1.4 GHz). They reported that after 1 million itera-
tions, the agent converged relatively quickly, achieving energy-efficiency improvements
of up to 50% compared to SDMA and a 67% EE reduction compared to double-Rayleigh
fading at higher frequencies. In SAGIN /RIS networks, for IoT device authentication, robust
capabilities support Doppler-based frequency shifts with a vehicle speed of 1 m/s and
radar-echo properties with 0 dB SNR thresholds, based on multiple SINR policies as unique
fingerprints involving numerous possible iterations up to 10°. The DRL framework enables
recognizing authentication by embedding penalties for spoofing, e.g., O, = 0 when
SNRs are outside similarity thresholds, and using adaptive beamforming to differentiate
legitimate signals from 2-user interference, providing a self-sufficient, secure, and energy-
efficient authentication method that is difficult to spoof in high-mobility scenarios without
solely relying on cryptography.

According to [28], RL is effective for real-time anomaly detection, as it identifies
unusual patterns that may indicate potential security attacks. Moreover, the authors in [28]
stated that RL outperforms traditional ML models in detecting malware on loT devices due
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to its inherent adaptability. RL-based authentication can be implemented as devices learn
from their environment without requiring prior training data.

Additionally, RL can be applied in intrusion detection systems (IDSs) and adaptive
honeypots, both of which can utilize this technology to defend against attacks and mali-
cious behavior. Furthermore, RL can assist with interoperability by determining how to
communicate with poorly documented devices [47].

Table 5 provides a side-by-side comparison of reinforcement learning-based authen-
tication in IoT devices, explaining their merits as well as the specific deficiencies and
security concerns that each poses as the IoT environment becomes more heterogeneous
and dynamic. A study by [49] examined the effectiveness of Dynamic Q learning with
the Double Estimation Strategy (DES DRL) for changing authentication challenges based
on context-related risks as they arise. Based on the G-Mean, the approach is highly accu-
rate, with a specificity of 92.62% for categorizing authentication requests, while the DES
DRL captures most of the true positives as well. To adapt to changing threat scenarios,
the system is designed to retrain every 1000 observations. However, the system requires a
substantial computing resources [49] since offline training takes approximately 130 s and
convergence demands around 6000 samples (one week). With a factor of 0.25 and a A value
set to 1, the model still displays susceptibility to familiar threats, particularly from trusted
users such as coworkers. To maintain privacy, data processing is performed directly on the
device, thereby reducing the risk of exposure to sensitive information.

Table 5. Reinforcement learning (RL) approaches for IoT device authentication.

Approach Pros Cons Security Issues
G-Mean = 92.62%; 130 h offline training; Sfasf (l)n.;g;i'l\a/lrlllcr?erable to
Auth. via RL for Risk dynamic challenge adj. 6000 samples (~1 week) cont_exé-ba’se d misuse:
Adaptation [49] via DES-DRL; trained for convergence; high . .
on-device
every 1000 obs. memory

privacy preserved

RL for IoT Interface
Control [47]

Learns opt. seq.: Goal 1
(2 steps), Goal 2 (4 steps);
400 interactions; finds
alternates (e.g.,

dim = off)

Goal 2 slow (>100
episodes); 40 min per
100 episodes due to
250-600 commands

Learned FSMs may be
exploited via
undocumented
protocols; weak interop.
creates risks

DL + RL for IoT
Auth. [50]

Handles heterogeneous
data; scalable with deep
models

Limited real-world
validation; no detailed
acc. metrics

Modified inputs can
cause auth. failure; DoS
attacks degrade

system integrity

Adaptive e-Greedy RL
for Security [51]

€ adjusted (0.1-0.9) by
attack freq.; PDR = 1.0
(benign), 0.929
(malicious) @ 160 units

Delay: 1489 ms
(malicious), 1178 ms
(non-malicious); slower
in attack scenarios

Proxy user mimicry;
black hole attacks drop
packets; limited
resources increase risk

RL + ECC for Auth. [52]

ECC base G resists
insider attacks; XORed
nonces 11 /r, ensure
confidentiality; no
plaintext shared

>72 h for 1000 users
(Jupyter); a = 0.1-0.5,
v =0.6-0.9; slow for
constrained devices

Without nonces: MITM
risk; ECC/LDAP failure
exposes spoofing/
replay vulnerabilities

In [47], the authors investigated the use of real-time learning for optimizing IoT device
interaction sequences. The system aimed to achieve Goal 1 in two steps and Goal 2 in four
steps after 400 interactions. Although the approach converges quickly to more complex
goals in some situations, it becomes more complicated as more commands are added
(approximately 100-600 commands are required to reach Goal 2). Moreover, the system
operates under a rate limit, resulting in delays of about 40 min for every 100 episodes.
Among the main security issues identified are the interoperability of poorly documented
protocols and the risk of adversaries exploiting the learned state machine to manipulate
protocol states maliciously.
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In [50], the authors presented a hybrid deep learning (DL) and reinforcement learning
(RL)-based authentication framework designed for use in heterogeneous IoT environments.
Several experiments have demonstrated that the model supports a wide range of IoT appli-
cations with high accuracy and effectiveness. However, this method lacks generalization
to real-world scenarios and specific metrics for evaluating accuracy that are necessary for
practical implementation. In addition to data integrity threats (e.g., data tampering), device
heterogeneity creates significant authentication challenges. Furthermore, the increased
complexity introduced by the model processing mechanisms heightens the potential for
DoS attacks.

In [51], the authors developed an adaptive e-greedy RL approach that updates the
exploration—exploitation parameter (¢) based on the volume of observed attacks. In terms
of the packet delivery ratio (PDR), the system can successfully handle both static and
dynamic data sources, achieving a PDR of 1.0 for non-traffic and 0.929 for malicious traffic
at 160 units. Although its end-to-end (E2E) delay increased to 1489.474 ms for malicious
traffic at 40 units, it only increased to 1177.795 ms for normal traffic. This delay may
adversely affect the time-critical IoT applications. A proxy user attack occurs when a third
party exploits a secure user identity and impersonates an entity. In contrast, a black hole
attack involves malignant nodes dropping packets at the network layer. Additionally, IoT
devices have limited memory and computational capacity, making the processing of high
attack volumes particularly challenging.

According to [52], a hybrid RL model is presented to address internal threats by using
elliptic curve cryptography (ECC) the and Lightweight Directory Access Protocol (LDAP).
By using the nonces r; and r;, the system ensures that no plain text data is exchanged,
which maintains data confidentiality. Although the setup is robust, the authentication
process is expensive, taking more than 72 h to authenticate 1000 users in a Jupyter notebook
with the parameter choices (¢ = 0.1-0.5 and v = 0.6-0.9). IoT devices with resource
constraints are not suitable for this type of system. Even if the nonces are exposed in some
way, the model still provides a high level of security, though man-in-the-middle attacks
are not impossible. In addition, if the LDAP or ECC fails, the attacker remains an insider,
and certain vulnerabilities may go unaddressed, such as spoofing and replay attacks.

In combination, the studies reported in Table 5 illustrate the potential of RL for IoT
device authentication by providing solutions that are flexible, data driven, and responsive
to emerging security threats. It is important to note that the proposed implementations
have some limitations as well—for instance, they use expensive computation curves, have
relatively slow response times, and are not foolproof against advanced attacks. Based
on these limitations, additional research is required to improve these approaches for the
practical deployment of resource-constrained IoT systems. To fully leverage RL-based
IoT authentication systems, it will be crucial to keep pace with advancements in RL and
security. The hope and challenges for enhancing IoT authentication systems are highlighted
by RL.

3.4. IoT Device Authentication Using DL

Deep learning (DL) algorithms employ a multi-level neural network that uses numer-
ous nonlinear processing layers so that the representation of the data learned is learned on
the basis of the use of layers determined by a deep learning procedure to find patterns of
any data outputs. DL approaches are noted to be a robust method for many contexts in
image recognition to categorize images for convolutional neural networks (CNNs), general
classification tasks for artificial neural networks (ANNSs), and for sequential data such
as speech and text for recurrent neural networks (RNNs). The ability of DL techniques
to learn complexity makes them suitable for IoT systems due to the volume of data and
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the advanced representation of data on a global scale, and now we are beginning to see
improvements around the complex representation of data to help in the security of IoT
systems including authentication [53].

Neural Networks: Neural networks consisting of interconnected neurons are an
effective tool for authenticating IoT devices. These networks process and analyze data,
recognizing patterns and making decisions based on input. By adjusting connections and
weights, neural networks learn from data and improve performance over time, making
them particularly useful for verifying device identity in resource-constrained environments.

Neural networks can acquire data by inspecting radio frequency signals and analyzing
device operability to distinguish between legitimate devices and security threats, according
to [54]. They demonstrate significant capabilities in maintaining IoT network integrity
due to their adaptability and learning potential. In [54], the authors proposed a unique
authentication method for remote wireless devices based on self-organizing feature maps
(SOFMs), a type of neural network designed to characterize RF fingerprint signatures.

To collect raw RF data, they built an experimental testbed that satisfies the essential
requirements for IoT device authentication, particularly among the less secure, low-cost,
and long-range technologies in use today, such as LoRa. A unique SOFM algorithm was
employed to preprocess the RF data and interpret the highly correlated signals into real-
time RF fingerprint patterns. To determine the actual classification and authentication of
each device, they integrated those patterns into CNNSs. The results of their study showed
nearly 100 per cent accuracy in identifying LoRa devices at an individual device level using
a standard PC CPU; therefore, the novel method demonstrated considerable computational
efficiency, leading to significant improvements in RF cyber-physical security.

The authors in [55] proposed a Process-based Pattern Authentication (PPA) method
to improve the security of Internet of Things (IoT) devices by using dynamic pattern
generation for authentication and touch pattern modeling with the help of an ANN network.
Specific authentication patterns for each login session are created during the PPA process
by combining user-input information (R-code) and the server-generated challenge (P-code),
resulting in a pass-code.

The ANN performs touch dynamics analysis by measuring pressure and velocity
parameters to achieve accurate user identification and authentication. It is trained on a
database of 29,008 samples from 35 users, reaching a classification accuracy of 99.75%,
a false rejection rate (FRR) of 5.03%, and a false acceptance rate (FAR) of 4.36%. Capable of
preventing attacks such as shoulder surfing and smudge attacks, the PPA system provides
a highly secure environment for IoT devices.

CNN: Convolutional Neural Networks

CNN:s function as deep learning algorithms that utilize multiple processing layers to
learn data representations and analyze patterns. They employ sparse interactions, parame-
ter sharing, and equivariant representations to decrease the number of data parameters
compared to traditional artificial neural networks (ANNs). CNN architectures vary, con-
sisting of cascading convolutional and pooling layers organized with multiple filters for
convolving data parameters. The pooling layers typically perform down-sampling, re-
sulting in smaller subsequent layers that may use maximum pooling or average pooling
across a range of layers. Internally, the features include a key component called the acti-
vation unit, also known as the activation function, which applies a nonlinear activation
operation—most commonly the rectified linear unit (ReLU)—to the features [53].

In [56], the authors used a convolutional neural network (CNN) to improve physical
layer authentication in wireless communications.

The experiments used a dataset (4000 x 256) of RSS behavior, comprising 2000 channel
recordings from Alice to Bob and 2000 from Eve to Bob, collected with USRP devices in
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a conference room measuring 6 m X 4 m. Specifically, CNN depends on a Data-Adaptive
Matrix (DAM) that incorporates channel statistics that change over time. It consists of
two convolutional layers with 2 x 2 kernels and ReLU activation, two max-pooling layers
with 2 x 2 kernels, and a final fully connected layer with a logistic activation function
for classification. The detection rate of the CNN was 100% when SNRs were 6 dB and
higher, and 95.89% when the SNR was 4 dB. Research findings show that the CNN yields
superior results compared to GMM and SVM in detecting spoofing attacks in dynamic
system environments.

The authors in [57] discussed EENet-Lite, a lightweight early-exit CNN that uses
whuGAIT IoT data and incorporates authentication methods based on gait recognition
for IoT devices. The model features early-exit branches and specialized loss functions to
balance accuracy and efficiency. It achieves an accuracy of over 85.00% while reducing
multiplications, additions, and relational operations (MAC) by a factor of 5.9 compared to
traditional deep neural networks (DNNSs).

Additionally, the model supports intermittent computing through checkpointing,
which enables it to save up to 34% of redundant computations. EENet-Lite also has
between 166.67- and 357-times fewer parameters than ResNet-based models, making it
well-suited for deployment on low-power platforms with limited memory.

The study in [58] described a new IoT authentication mechanism based on EEG signals
(via a NeuroSky MindWave headset) and hand gestures (via a lightweight CNN) to meet
one of the requirements of 92% effectiveness and 93% efficiency involving 30 subjects.
The EEG signals are processed to determine a binary based on the levels of attention and
meditation over time, using adaptive thresholds, and can generate up to 200 possible values
for each bit.

For the hand gestures, we define three gestures: closed hand, open hand, and raised
index finger. In total, there are four states related to the authentication process, each
involving one of the hand gestures and the transitions between them, all implemented
on a Raspberry Pi. The system achieves user satisfaction deemed acceptable based on the
satisfaction assessment, with an average authentication time of 33 s when measuring a
4-bit key.

The security analysis indicated that the 4-bit EEG password was 4.3 times stronger
than a 4-symbol ASCII password and that EEG signals could resist physical observation
and impersonation threats. The work demonstrates that deep learning (CNN) can be used
as a method for gesture recognition with IoT devices in a way that adheres to compatibility
standards for authentication mechanisms as a security priority.

RNN: Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of deep learning algorithms developed
to work with sequences of data. The prediction in these neural networks relies on current
and past inputs. RNNs have a time layer that encodes temporal data; therefore, they can
learn complex changes in their recurrent hidden units [53].

In [59], the authors developed an ECG-based authentication system for IoT devices
using a deep recurrent neural network (DRNN) architecture, which applied a bidirectional
and late fusion approach. The data to be authenticated in this study are ECG signals, which
they processed with derivative and moving average filters. They segmented the ECG data
using the detected R-peaks to create fixed-length input windows for real-time performance.

They evaluated their model using two open datasets, the MIT-BIH Normal Sinus
Rhythm Database (NSRDB) and the MIT-BIH Arrhythmia Database (MITDB). The authors
reported 100% precision, 100% recall, 100% accuracy, and an F1-score of 1.0 from NSRDB;
from MITDB, they reported 99.8% precision, 99.8% recall, 99.8% accuracy, and an F1-score
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of 0.99. The authors demonstrated that the DRNN has high efficacy and reliability in
delivering accurate and efficient real-time authentication in the IoT context.

The research in [60] presented an RNN-based model for anomaly detection in UAV
sensor data that classified a pavement with 99.7% accuracy in detecting anomalies in north
speed and up to 100% for pneumatic lifting speed anomalies. The analysis was based
on real UAV flight data, with 60% used for training and the remaining 40% for testing.
The model was trained solely on normal data to identify anomalies with 99% confidence.

The north speed had a false negative rate of 7.7%, and pneumatic lifting had a false
negative rate of 0.0%, with neither showing any false positives. Overall, these results
demonstrated that the model performed well and offered strong extrapolation. Further-
more, it presents an intelligent model based on time-series data that could be utilized in
behavioral authentication within IoT-based systems using RNN architectures.

LSTM: Long Short-Term Memory network

The Long Short-Term Memory (LSTM) network uses a recurrent neural network
structure to solve the gradient vanishing problem and improve its ability to learn sequential
patterns in data. LSTMs are vital in enhancing the security and dependability of IoT systems
by offering strong methods for detecting and identifying rogue or compromised devices.

The research studies [53,61] demonstrate the critical role of recurrent neural networks
(RNNs), especially Long Short-Term Memory (LSTM) networks, in improving Internet
of Things (IoT) security through advanced authentication techniques. In source [53], the
authors discussed how LSTMs are used in network traffic analysis to detect malicious
activity by accurately classifying network flows, highlighting their potential in real-time
threat detection. Conversely, the authors in [61] presented an LSTM-based classifier in
the IoT gateway for authenticating device-originated signals and defending against data
injection attacks. Their method achieved high detection accuracy with minimal latency
and processing costs as shown through simulations modeling LoRa transmitters and
embedded watermarks. The flexibility of LSTMs is clear from these outcomes, as they
deliver IoT security solutions both at the network and device levels, forming an integrated
defense system.

The authors in [62] employed the LSTM deep learning technique to predict security
attacks targeting MQTT-based Internet of Things (IoT) networks. The KDDCUP99 MQTT
dataset was used to train the model with various attack types, including DDOS, DoS, Bot,
BruteForce, and Infiltration.

The KDDCUP99 MQTT dataset was chosen because it is one of the few large-scale
datasets specifically adapted for IoT environments. Unlike original datasets, such as the
KDDCUP99, which are not designed for any particular IoT protocols or traffic patterns,
this dataset includes over 10.7 million instances of IoT device data and remains represen-
tative of real-world environments (e.g., smart homes, smart cities, industrial zones, and
automated systems). It contains both benign traffic and a range of modern cybersecurity
threats (e.g., DDoS using HOIC and LOIC-HTTP, DoS with Hulk, SlowHTTPTest, and Gold-
enEye, botnets, brute force attacks on FIP and SSH, and infiltration attacks), making the
KDDCUP99 MQTT dataset more advantageous than other datasets that fail to capture IoT
traffic characteristics. However, a significant limitation is the imbalance between benign
traffic and attack classes. Although the dataset provides extensive data, this imbalance
inflates accuracy in benign traffic prediction and leads to the frequent misclassification of
attack classes. Moreover, this limitation impacts our conclusions regarding the challenges
of imbalanced datasets in IoT security. It also underscores the importance of employing ad-
ditional techniques, such as GloVe embeddings, and highlights the need for more datasets
that are balanced and reflective of IoT characteristics for future research in this field.
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Initially, LSTM outperformed the other algorithms with an accuracy of 78.2%. Af-
ter adjusting hyperparameters, it reduced misclassification with Glove embedding, and
employing other strategies, the final LSTM model was able to predict these cyber-attacks
within the IoT environment with a peak accuracy of 87%.

The authors in [63] proposed LSTM-Gauss-NBayes, an anomaly detection technique
for large-scale Industrial Internet of Things (IloT) time-series data generated by millions of
heterogeneous sensors. The core idea is that an LSTM-NN can be trained exclusively on
normal data, then used to predict future observations based on this training. The difference
between actual data and predicted data, known as a time point error, is then fed into a
Gaussian Naive Bayes model to classify data points as either normal or abnormal relative
to the LSTM-NN forecast.

The method was evaluated using three real-world datasets (Power, Loop Sensor, and
Land Sensor) and outperformed competitor models, achieving an average precision of
0.955 and recall of 0.956. In the results for the Power dataset, their reported precision
was 0.980 and recall was 0.974. Once abnormal scenarios are identified in the IIoT space
through anomaly detection methods, the output can help determine periods of anomalies
by highlighting when irregular data might have occurred, either due to an unauthenticated,
non-compliant unregistered device or because a registered device has been compromised
and is beginning to inject altered data into the entire IoT data system.

The [64] authors introduced DeepAuthen, a deep learning-based framework for contin-
uous user authentication using mobile sensor data. The DeepAuthen framework employs
a hybrid approach combining CNN and LSTM architectures to create a DeepConvLSTM
model that analyzes activity patterns from accelerometer, gyroscope, and magnetometer
data across three benchmark datasets, UCI-HAR, WISDM-HARB, and HMOG.

After filtering, normalization, and segmentation into overlapping time windows,
the model employed CNN layers to capture spatial features and LSTM layers to learn
temporal dependencies. DeepAuthen achieved state-of-the-art performance, reaching up
t0 99.99% accuracy and 0.01% EER for some HMOG activities, demonstrating its potential
for smartphone user authentication.

Deep learning methods produce significant results for IoT device authentication
systems because of their ability to extract advanced features and achieve high accuracy in
the authentication processes. Therefore, it is vital to prioritize addressing major challenges,
including computational demands, reliance on data, and environmental vulnerabilities.

Table 6 summarizes the studies that reviewed deep learning (DL) approaches for IoT
device authentication. These techniques are highly accurate, robust, and scalable across
a wide range of IoT contexts. Although these methods exhibit great potential, they have
several critical shortcomings including high computational complexity, vulnerability to
adversarial attacks, and low efficiency in dynamic or resource-constrained environments.
The following discussion breaks these down in terms of their advantages, disadvantages,
and security risks.

Research on IoT authentication using 2D-CNN, biLSTM, and 3D-CNN coherent blocks
to identify deep temporal patterns (DTPs) showed 96.7% accuracy and high robustness,
especially when analyzing 3D-DTP, as well as fast processing across all cases [20]. However,
these models are computationally intensive, making them unsuitable for constrained IoT
devices with short signal sequences. Moreover, their security is vulnerable due to risks such
as spoofing, denial-of-service attacks, and data poisoning in adversarial environments [20].
The deployment of LSTM models for IoT device authentication has increased because they
have better model sequences and temporal dependencies than the other models. Their
high noise resistance and protocol-agnostic performance enabled them to achieve 99.58%
accuracy under LOS (line-of-sight) conditions [65]. Nevertheless, the accuracy dropped to
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88% in non-line-of-sight (NLOS) scenarios, highlighting a weakness when the base station

is controlled, allowing arbitrary traffic switching by an adversary [65].

Table 6. DL methods for IoT device authentication.

DL Method

Benefits

Drawbacks

Security Issues

2D-CNN, 3D-CNN + biLSTM [20]

96.7% accuracy; good for
3D-DTPs; efficient computation

High resource use; limited with
short signals

Susceptible to spoofing, DoS,
poisoning

LSTM for Auth. [65]

99.58% in LOS; works in noise;
protocol-free

Drops to 88% in NLOS; overfitting
possible

Base station compromise risk

ANN (Touch Dynamics) [55]

FRR 5.03%, FAR 4.36%); no extra
HW

Needs 3040 logins to train

Training data may be leaked

Adaptive ANN [56]

100% detect. @ SNR > 6 dB;
robust @ 4 dB

Drops in low SNR

Susceptible to interference

CNNs (RF Features) [53,66,67]

+10-15% accuracy; tunable;
scalable

Needs 10° samples for HPC

Prone to
adversarial /privacy attacks

LSTMs (Traffic Analysis)
[53,66,68]

2% gain; adapts well to attacks

50-100 ms latency; needs
retraining

30% false negatives (zero-day),
poisoning risk

Autoencoders (Anomaly Detect.)
[66-68]

95% recall; 10% fewer false
positives

15-20% error with >10 GB data

Poor zero-day detect., false
data vulnerable

DNNs (Multi-Device) [53,66,68]

90% accuracy; low preprocessing

100-500mW energy; overfitting
risk

—25% acc. due to adversarial
attacks , privacy threats

RNNss (Traffic Modeling)
[53,67,68]

88% for 1K devices; scalable

Gradient issues on low-RAM
devices

50% miss rate (zero-day);
input manipulation

Federated Learning [66—68]

—80% privacy risk; supports 1K
devices

20-50ms latency with
heterogeneity

Poisoning cuts acc. 15%; risk of
data leaks

CNN-CSI [69,70]

99.64% accuracy; high TPR

Needs 5145 packets;
ResNet50 = 2.5 x 107 params

Acc. drops with user separation

LSTM + Watermarking [61]

0.1 s detect. time;
BER = 0.001 vs. 0.03

Long training; high complexity

Fails if attacker mimics
spectral traits

Hybrid CNN-SVM + VMD [71]

95.01% acc.; 99.9% imitation resist.

High battery use; slow auth.

0.1% imitation breach
leaks privacy

ADN/CNN/ Autoencoder [72]

94.8% botnet, 99.9% fall detect.

Lower acc. in fading channels

Trojan detect. unreliable
under latency

In [55], ANNS were studied as a passive authentication measure based on touch dy-

namics and mental calculations. Mental calculations involve a user performing arithmetic
with their registered R-code digits and the P-code digits provided by the server. The user
constructs pass-code digits for authentication based on their touch pattern to enter their
code. With this method, the false rejection and false acceptance rates (FRRs and FARs) were
reduced to 5.03% and 4.36%, respectively, significantly lowering shoulder-surfing risks
without additional hardware [55]. However, this approach requires 3040 login attempts
for training, leading to lengthy initial setup times and potential data compromise during
the training process [55].

Adaptive ANN models have been demonstrated to adapt dynamically to environ-
mental changes, achieving 100% detection for all SNRs above 6 db and 95% detection for
SNRs below 4 db [56]. However, the performance of existing models declines in low SNR
conditions, making adaptive ANN models vulnerable to adverse channel conditions and
interference [56].

CNN-based models have been widely utilized for RF feature extraction, achieving
accuracy comparable to previous state-of-the-art methods, with improvements of at least
10-15% in most cases. CNN models can scale for both small and large IoT networks;
however, they require 10° samples for training, which entails significant computational
cost [53,66-68]. Additionally, CNN models are vulnerable to adversarial attacks and
privacy issues.
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An adversary can compromise authentication results by manipulating the input
data [53,66-68]. The performance of LSTM-based systems for traffic analysis in time-series
has demonstrated usable accuracy (92%) and good sensitivity to changing attack pat-
terns [53,66,68]. However, these LSTM-based systems create about 50-100 ms of latency
in real-time scenarios and require repeated training, which diminishes the system’s value.
Additionally, they experience a 30% false-negative rate when attempting to detect zero-day
attacks, indicating potential vulnerability to poisoning attacks or other types of unknown
attacks [53,66,68].

Based on the results of combining anomaly detection with autoencoders for IoT
networks, it has been found that state-of-the-art accuracy can be achieved at 95% recall
rates with a 10% reduction in false positives compared to traditional techniques [66—68].
In contrast, these approaches have large data storage requirements (i.e., >10 GB) and can
produce error rates of 15-20% when faced with these changing dynamics. Additionally,
the systems were unable to detect more than 60% of zero-day attacks, indicating that they
were ineffective against unknown attack scenarios [66-68].

DNNSs have also been studied for the purpose of multi-device authentication, achiev-
ing performance of over 90% accuracy with limited preprocessing methods. DNNs have
also been examined for multi-device authentication, achieving accuracy rates over 90% with
limited preprocessing techniques [53,66,68]. However, DNNs consume more energy, aver-
aging between 100 and 500 mW, and are particularly susceptible to overfitting when limited
feature data is available. Notably, DNN accuracy decreased by 25% during adversarial
attacks, further highlighting its limited viability in hostile environments [53,66,68].

RNNs showed 88% accuracy in modeling temporal traffic patterns and were compati-
ble with over 1000 devices [53,67,68]. Conversely, RNNs are prone to gradient-related issues
that may limit their convergence or performance, making them unsuitable for low-memory
devices. Additionally, RNNs exhibited a 50% zero-day detection error rate, indicating they
are not resilient to suggested inputs [53,68].

Federated Learning (FL) decreases privacy risks by 80%, while providing decentralized
IoT authentication for over 103 devices [66-68]. However, FL encounters latency issues
with heterogeneous data (20-50 ms), affecting performance. There is also a risk of data
poisoning attacks in FL, which could reduce accuracy by 15% if encryption protocols are
not implemented [66-68].

CNN-based systems that utilize Channel State Information (CSI) have demonstrated a
higher true positive rate (TPR) of 99.64% [69,70]. However, they require 5145 packets for
dual-input CNNs and exhibit substantial computational overhead, especially for ResNet50
models, which have 2.5 x 107 parameters. Additionally, model accuracy continues to de-
cline as the distance between devices and the number of concurrent users increases [69,70].

Dynamic watermarking and LSTM models have demonstrated promising performance
by detecting attacks within 0.1 s and attaining a bit error rate (BER) of 0.001, compared
to 0.03 for static watermarking at 8/c = 1 [61]. Although this method involves high
computation and longer training times, it becomes ineffective if an adversary replicates
the signal’s spectral properties [61]. In a CNN-SVM hybrid model with VMD and Tri-
Training, 95.01% accuracy was achieved, with a 99.90% success rate for imitation attacks [71].
However, this increases authentication time and battery consumption, making it unsuitable
for IoT devices with limited power sources.

Additionally, privacy concerns remain due to a 0.10% success rate of imitation attacks,
indicating that further improvements are needed [71]. Finally, ADN models, CNNs, and au-
toencoders were employed to enhance IoT security, achieving 94.8% accuracy in botnet
detection and 99.9% accuracy in fall detection [72]. One limitation of their work is that the
model had issues with fading channels and latency in dynamic environments. Moreover,
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their approach would not be resistant to Trojan-based attacks, which could compromise its
effectiveness against complex malware [72].

In Table 6, the research studies presented and organized demonstrate the significant
potential of DL approaches for advancing IoT device authentication. However, the afore-
mentioned frameworks face serious challenges due to their high computational costs,
adversarial attacks, and poor performance in dynamic environments. To further promote
the security and reliability of IoT authentication frameworks, future research should focus
on optimizing the computational costs, enhancing adversarial resilience, and improving
the ability to detect zero-day attacks.

4. Research Gaps in Al-Based Authentication for IoT Devices

The development of secure and efficient IoT device authentication requires identifying
research gaps that align with machine learning fundamentals. One major challenge in IoT
security is addressing network scalability alongside device resource limitations, as current
authentication schemes do not resolve this issue. Furthermore, the dynamic nature of
IoT environments and the need for real-time data processing present significant obstacles.
Future research should focus on developing authentication solutions that incorporate
attack resistance, flexibility, and scalability to ensure secure networking among everyday
IoT devices.

4.1. Challenges in Machine Learning-Based Authentication

Due to limited computational power, the deployment of machine learning algorithms
on IoT devices is difficult, resulting in high resource consumption, intensive computations,
and possible privacy issues. Below, we explore all potential machine learning challenges
related to IoT device authentication.

4.1.1. Identifying Research Gaps in Current Authentication Approaches

Many existing authentication schemes find it difficult to integrate with the dynamic
and heterogeneous nature of IoT ecosystems, and often concentrate on only a limited aspect
of machine learning. The key research gaps include the following.

Lack of Standardized Taxonomies: According to [28], the inconsistent nature of
IoT security taxonomies results in fragmented solution approaches, leading to significant
problems. There is a need for a systematic review of authentication and authorization meth-
ods, as specific reviews only address particular IoT security threats. Research on battery
performance and light computing fails to cover the full range of necessary security needs.

Current research studies focus solely on specialized aspects of IoT security threats
while neglecting the changes nodes undergo in IoT networks. The authors in [28] discussed
dedicated IoT-specific assaults, such as node capturing and sleep deprivation attacks,
highlighting side-channel vulnerabilities that receive isolated treatment instead of being
integrated into a comprehensive security design. To achieve suitable IoT applications,
a complete and standardized approach to IoT security must be developed through clear
taxonomical definitions, alongside the consideration of IoT network dynamism.

Insufficient Threat Adaptability: In [73], the authors applied machine learning and
deep learning as essential tools for IoT security, as they require adaptive intelligent solutions
for real-time threat response. Traditional computing methods are inadequate for addressing
the new attack vulnerabilities created by IoT network connections. Protecting IoT systems
necessitates the evolution of ML and DL from enabling secure IoT system connections to
becoming intelligent security systems.

Enhancing ML and DL models primarily involves three techniques: input preprocess-
ing, improving model resilience, and using malware detection methods. There is a need
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for evolving security models, as no single defense approach provides complete protection
against adversary threats, making ongoing updates necessary. Implementing machine
learning models requires anti-spoofing solutions and diverse, extensive datasets, along with
real-time processing efficiency and adaptability to changes in physiological and behavioral
traits [74].

Limited Cross-Layer Security: Research on IoT security concentrates its analysis on
individual layers—from perception to communication, and then to data processing and
application. However, this approach fails to identify the underlying vulnerabilities that
span across different layers, such as man-in-the-middle (MiTM) attacks on MQTT brokers
and signature wrapping attacks in cloud servers.

Modern authentication systems implement their protocols across various layers but
do not adopt three-way procedural authentication protocols. Research from [20] highlights
the need for cross-layer schemes aimed at combating attacks that occur within overlapping
IoT architecture layers between IT and OT. The defense system must protect against attacks
between layers, including MiTM attacks on MQTT brokers and signature wrapping on
cloud servers.

4.1.2. Limitations of Existing Machine Learning Models in IoT Security

The security challenges posed by ML models in the IoT technology are explained below.

Resource Constraints: Most IoT devices operate with limited processing power and
memory, making it difficult to install standard machine learning models. These devices lack
sufficient processing resources to run existing ML methods, particularly in edge computing
environments that require power-efficient algorithms. Many traditional IT security tools
struggle to integrate with IoT platforms due to specific issues.

The IoT requires specialized security methods that improve both encryption and
algorithm efficiency. The most effective way to incorporate ML into IoT security involves
finding methods to embed intelligent systems without overloading the device performance.
Machine learning offers an ideal framework for adding intelligence to IoT devices, while
deep learning excels in predictions; however, ML needs feature engineering and training
updates to work effectively in IoT applications [75].

Data Scarcity and Bias: Authentication methods in IoT face numerous challenges due
to limited information and biased data. Machine learning models require large datasets
with diverse entries, but such data are often scarce in IoT settings, which affects the accu-
racy and predictive performance. Data collected from IoT environments shows irregular
collection patterns and unbalanced representations of user behavior, caused by intermittent
transmissions and an improper mix of legitimate and malicious requests.

This situation complicates effective training. Biases originating from users, devices,
and locations exacerbate authentication challenges, and may lead to unfair outcomes.
The successful development of fair ML-based authentication systems relies on using ad-
vanced algorithms, data enhancement techniques, bias mitigation methods, and exploring
new strategies for learning and circuit design [28].

Vulnerability to Adversarial Attacks: In [76], the authors examined the vulnerabilities
of deep learning-based IoT device identification through adversarial attacks. Attackers
make subtle adjustments to the input data, leading to incorrect predictions with high
confidence scores. Such threats can cause significant damage to IoT systems by breaching
equipment authentication and compromising device identification, reliable transmission,
communication security, and privacy. The signal domain remains vulnerable because of
flaws in DL models that perform modulation recognition.
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4.1.3. Scalability and Adaptability Concerns in Real-World Implementations

Scalability is a major challenge because IoT networks continue to grow exponentially.

Dynamic Network Topologies: The dynamic nature of IoT network topologies poses
a significant challenge to effective authentication methods that use machine learning
algorithms. Traditional authentication techniques employed in distributed systems, such as
5G or edge computing, require improvements because they struggle to adapt to dynamic
adversarial environments.

Authentication processes benefit from machine learning, as it detects temporal char-
acteristics that facilitate secure system adaptation. This enhanced approach incorporates
various attributes, such as network selection labels and physical layer specifications, to im-
prove system performance. Machine learning tools assist organizations in utilizing data to
create security systems that can scale and operate continuously [77].

Heterogeneous Device Management: Managing various devices within IoT systems
poses a significant challenge due to the integration of different hardware systems and mul-
tiple communication protocols. Currently, ML models struggle to apply generic knowledge
across diverse devices, resulting in limited connectivity among them. Security and privacy
in IoT networks should depend on traditional cryptographic methods; however, these
security solutions are often insufficient for IoT nodes as indicated by [75].

The integration of machine learning and deep learning techniques presents a solution
for securing IoT devices and networks through intelligent enhancement of their capabilities.
The heterogeneous properties of end devices emphasize a critical requirement for authenti-
cation and authorization (AA) schemes as discussed in [28]. Addressing security issues
across various IoT devices is possible through the design of heterogeneous AA schemes.

Latency and Throughput: Implementing real-time authentication in extensive IoT
networks requires an essential evaluation of metrics between latency and throughput,
as traditional ML-based designs often overlook handshake duration and end-to-end de-
lay measurements.

In [28], the authors outline several general factors relevant to authentication and
authorization (AA) schemes, including average response time, impact on throughput,
packet delivery ratio, communication costs, computation costs, and storage/memory costs.
Handshake duration evaluates the time needed for the communication setup, whereas
the end-to-end delay (E2ED) measures the time taken for data packets to reach their
destination. Academic studies face challenges because they use various performance
evaluation methods without standardized procedures and overlook the authentication
duration standards. The research field should focus on ML-driven AA schemes that
incorporate both standard and ML-specific performance metrics to improve security and
efficiency in IoT environments.

4.1.4. Addressing Data Privacy and Security Risks in the Authentication System

Sensitive Data Exposure: Implementing ML-based authentication in IoT systems
forces users to navigate challenges between ensuring security and maintaining privacy,
as their biometric and behavioral information becomes vulnerable to attack. When an IoT
gateway fails in security protocols, it exposes the decrypted data through conversions from
Zigbee to HTTP, making the network highly susceptible to attackers.

Various machine learning and deep learning techniques can be employed alongside
authentication protocols for MiTM (man-in-the-middle) defense, as well as nonlinear
kernel SVM methods for secure medical data classification. Combining deep learning
with intrusion detection systems (IDS) strengthens network security, while end-to-end
encryption ensures data confidentiality. Fundamental security measures start with adopting
an accepted cybersecurity framework, followed by regular credential updates, network
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segmentation, threat intelligence monitoring, and ultimately deploying security software
to protect IoT systems and their networks. Weak passwords and vulnerabilities in deep
learning algorithms must be addressed, as these enhancements will improve the overall
security of IoT systems.

Regulatory Compliance: Implementing machine learning-based authentication re-
quires fundamental changes because privacy laws, such as GDPR, present challenges
when utilizing private data. Two key strategies for data privacy, federated learning and
differential privacy, help address the conflicting demands of authentication systems.

The distributed training method in federated learning allows model development
through decentralized devices and servers without transferring data, thereby reducing the
data concentration needs. Adding noise to the data or model parameters during training
under differential privacy ensures that individual data points remain indistinguishable,
thus safeguarding users from data disclosure, even from attackers with model access.

The limited application of these strategies in current authentication solutions presents
both a challenge and an opportunity, enabling privacy protection without compromising
the effectiveness of biometric systems.

Model Inversion Attacks: Model Inversion (MI) attacks pose a significant threat to
machine learning systems because they allow attackers to extract confidential training infor-
mation through either attribute inference or data reconstruction. These attacks can be catego-
rized into three access levels: white-box, black-box, and label-only attacks, with white-box
attacks being the most perilous due to their provision of complete model access.

The various inference and reconstruction methods employed in MI attacks allow for
a distinction between attribute deduction via inference attacks and data reconstruction.
The risk escalates notably in systems that manage the real-time processing of sensitive
information, such as continuous authentication systems. Several defense strategies should
be adopted to protect against these attacks, including differential privacy, input/output
masking, secure multi-party computation, and federated learning [78].

4.2. Comparative Analysis of loT Authentication by Machine Learning and Traditional IoT Device
Authentication Methods

The traditional method of authenticating IoT devices relies on static credentials such
as passwords and pre-shared keys. Standard authentication practices for IoT devices re-
main vulnerable to attacks utilizing brute force methods and credential theft. Integrating
machine learning enables the development of adaptive authentication systems that adjust
to environmental contexts. System analysis via ML algorithms facilitates the identification
of live security threats by employing three types of data: device behavior patterns, net-
work activities, and user performance. The system enhances security through a dynamic
mechanism that allows it to learn and adapt to emerging threats.

The next part of this analysis explores these areas. According to research on [39,79,80],
traditional methods often depend on password-based systems, cryptographic techniques,
and hardware-based solutions. However, the machine learning mechanisms for IoT device
authentication use algorithms such as SVM, DT, RF, and deep learning models like CNN,
RNN, and LSTM for anomaly detection and threat identification. A comprehensive analysis
of both authentication approaches involves examining several key dimensions that include
the following:

*  Scalability:

Typical security frameworks in traditional methods struggle at a large scale due to the
need for manual intervention, which limits their operational capabilities. However, device
fingerprinting combined with behavioral biometrics in machine learning systems provides
exceptional scalability, as it can automatically maintain security for numerous devices.
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*  Resource Efficiency:

Low-power IoT devices encounter challenges because of the resource-intensive nature
of PKI authentication. Nevertheless, machine learning algorithms can be designed to
function efficiently, which makes them suitable for various IoT devices.

e  User Experience:

Behavioral biometrics, which provide continuous user authentication through machine
learning, allow users to enjoy seamless experiences without interruptions to their work.
While control losses are minimized, negative user experiences may still arise through
two-factor authentication (2FA) methods. This analysis focuses on the key advantages and
drawbacks of two authentication methods.

Weaknesses:

Traditional authentication methods face three significant weaknesses: vulnerability
to brute-force attacks, password theft, and limited resources available. Machine learning
approaches require human assistance to function and lack sufficient flexibility for growth.
Their primary limitations include the need for extensive training data, lengthy compu-
tational processing, additional challenges related to data privacy, and the potential for
model bias.

Benefits:

Traditional security provision involves utilizing existing infrastructure systems and
implementing established security practices. Enhanced security and real-time anomaly
detection can be achieved through machine learning techniques, which also provide scala-
bility, improve the user experience, and automate the identification of new threats. In the
table below, detailed comparisons of both are shown.

Table 7 shows a comparative evaluation of traditional authentication methods and
those using machine learning (ML) for IoT systems, evaluating both similarities and differ-
ences across several aspects. We assess them through key dimensions, namely authenti-
cation approach, security aspect, vulnerability to attack, scalability, adaptation to threats,
latency, energy consumption, maintenance, cost, and integration with IoT devices.

Table 7. Comparison of traditional vs. machine learning-based IoT authentication.

Aspect

Traditional Methods

ML-Based Methods

Similarity

Difference

Auth. Mechanism [81]

Passwords, PKI, MAC/IP, MFA

Behavioral patterns,
anomaly detection

Both secure IoT access

Static credentials vs.
dynamic profiling

Security Features [82-84]

Low to high (PSK to MFA)

Real-time threat
detection,
learning models

Strong security goals

Manual strength vs.
adaptive response

Attack Vulnerability [56,85]

Spoofing, brute force, theft

Resistant to
new /unseen attacks

Access control against
threats

Static failure vs.
adaptive resilience

Scalability [38,86]

Manual setup limits scale

Auto-model updates,
online learning

Scale with IoT growth

Manual vs.
autonomous scalability

Threat Adaptation [56,87]

Manual updates needed

Continuously adapts
to attacks

Evolves with threat
landscape

Reactive vs.
proactive learning

Latency [56,88]

High due to crypto/MFA ops

Low with optimized
inference

Impacts user access time

Traditional slower
than ML

Energy Use [86,89]

High for certs/MFA

Efficient edge models

Energy-constrained IoT
relevance

Higher
traditional consumption

Maintenance [85,90]

Frequent manual updates

Minimal updates,
self-adaptive

Ongoing system upkeep

Traditional needs more
manual work

Cost [91,92]

Low setup, high upkeep

High setup, low upkeep

Resource investment
trade-off

Traditional
cheaper upfront

IoT Integration [38,93]

Easy for simple devices

Needs infrastructure,
compute

IoT device compatibility

Traditional fits
constrained IoT
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The analysis reveals that while both approaches fundamentally share the objective of
securing IoT devices from unauthorized access, the methods and impacts vary significantly.
Traditional authentication mechanisms (PKI, passwords, digital certificates, biometrics,
IP/MAC addresses, tokens, and MFA) utilize static credentials that are useful, but if they
are not updated frequently, they are susceptible to compromise.

In contrast, ML-based approaches (anomaly detection, behavior profiles, and contin-
uous monitoring) use dynamic techniques to identify when a device behaves differently
from its expected behavior, thus increasing security in response to changes in the threat
landscape. Security mechanisms associated with traditional solutions vary from low assur-
ance (e.g., passwords and PSK) to high assurance (e.g., digital certificates and MFA) but are
generally vulnerable to brute-force attacks and credential theft [82,83].

Alternatively, methods based on ML employ continuous learning and pattern recogni-
tion to detect abnormal actions in real time and provide better protection against emerging
cyber threats [84]. In terms of vulnerability to cyber-attacks, static credentialing approaches
are susceptible to credential theft and brute-force attacks simply because they rely on static
credentials [56,85]. In contrast, machine learning (ML)-based models are inherently more
robust, as they continuously learn from data and are consequently capable of identifying
and mitigating newly emerging cyber threats. Scalability is another major issue that poses
challenges for traditional methods, primarily because of the need for manual credential
management and configuration of each device [38,86].

ML-based methods enable automatic updates and the real-time detection of new
anomalies, making them highly scalable for large-scale IoT environments. In conventional
techniques, when addressing new threats, the traditional approach relies on manual updates
(e.g., updating passwords and renewing certificates), which adds to the administrative
burden [56]. In contrast, systems based on ML utilize continuous learning and data-
rich information to automatically adjust to evolving threats, thereby minimizing human
engagement [87].

Latency performance is another area in which ML-based systems excel. Certificate
validation and MFA methods, for example, incur high latency due to their reliance on
cryptographic operations [56]. For ML models optimized for edge computing and real-time
anomaly detection, they eliminate latency caused by cryptographic operations, enabling
quicker processing and decision-making processes [88]. In relation to energy consumption,
traditional methods, particularly digital certificates and MFA, are highly resource intensive
and consume a significant amount of energy, which can be problematic for resource-limited
IoT devices [89].

Conversely, ML-based systems can ease resource limitations by using low-power
learning algorithms. Traditional maintenance involves extensive manual updates, which
increases operational complexity. In contrast, ML techniques continue to learn and adapt,
reduce maintenance requirements, and boost security with minimal or no manual effort [90].
The financial analysis indicates that traditional authentication methods are low cost ini-
tially; however, they incur higher operational costs because of credential management and
updates [91].

In contrast, ML-based systems have higher initial costs for training the model but
very low operational expenses in the long run because of automated monitoring and
anomaly detection [92]. Finally, while traditional approaches are easier to implement for
IoT devices, especially fundamental methods such as PSKs and passwords, the simplicity
of implementation becomes more complicated when considering recent approaches such as
multi-factor authentication [93]. ML-based methods do not require additional complexity
for integration with IoT devices because they use edge computing and continuous learning
for seamless integration [38].
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5. Lessons Learned and Open Challenges
5.1. Research Challenges

Lack of Real-World Datasets

The datasets currently in use do not adequately represent the diverse operational
environments of IoT devices under dynamic conditions. As a result, developing and testing
resilient IoT applications is challenging. For example, deploying deep learning models
in IoT necessitates access to large datasets from edge locations, as these models require
substantial real-world data. Research aimed at detecting performance anomalies in edge
computing relies on publicly available edge datasets, which are currently lacking in the
public domain. The creation of extensive datasets has become increasingly complicated
due to the intricacies of IoT time series data, which display various spatial and temporal
patterns [94].

Adversarial Vulnerabilities

Adversarial attacks on the ML used in IoT systems aim to deceive the models with ma-
licious inputs. Security and reliability in IoT applications are compromised by adversarial
vulnerabilities. Research shows that deep models are especially vulnerable to various ad-
versarial attacks, and the existing defense mechanisms are inadequate. Systematic research
demonstrates the need to develop effective defense mechanisms to ensure security in ML
models. Adversarial ML presents challenges in identifying the specific goals of attacks,
crafting effective solutions, and understanding the causes of adversarial vulnerabilities.

Integration Constraints

The implementation of ML-based systems within IoT networks faces challenges related
to data management, complex computations, and privacy issues. The integration of ML
and Al into IoT systems necessitates solutions for three primary challenges: ensuring data
management accuracy, cloud computing security, and blockchain security. To address these
objectives, edge computing combined with federated learning and distributed intelligent
systems must be employed, as they help overcome existing barriers in IoT systems. These
strategies enhance the efficiency and security of IoT systems by positioning data processing
and computational tasks closer to their data sources.

5.2. Future Directions

Advanced Machine Learning and Deep Learning for IoT Authentication

Modern IoT networks demand sophisticated authentication methods due to their
increasing complexity. Advanced analytics, including ML and DL, can effectively detect
and address vulnerabilities through real-time communications. Future research should
focus on creating lightweight and scalable ML /DL models tailored to IoT requirements such
as limited computational capacity and energy efficiency. Additionally, deep learning models
must be resilient against adversarial attacks and secure in dynamic IoT environments.

Reinforcement Learning for Adaptive Security Policies

The security policies of IoT devices can achieve optimal performance levels through RL,
as these devices learn through ongoing interactions with their environment. Authentication
methods built with RL do not rely on static dataset information; instead, these mechanisms
can respond dynamically to device behavior, network conditions, and emerging threats.
The study of reinforcement learning techniques for optimizing authentication strategies
requires further investigation, particularly for extensive and resource-limited IoT systems.
Combining multi-agent RL solutions can enhance cooperative authentication methods and
strengthen security against complex cyber-attacks.

Adversarial Robustness and Secure Model Training

Authentication systems utilizing ML are vulnerable to adversarial attacks, as attackers
can manipulate input data to bypass security protocols. Future research could enhance the
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resilience of ML /DL authentication systems by developing adversarial training, robust
feature extraction, and anomaly detection methods. Additionally, creating new defensive
countermeasures, such as uncertainty-aware learning and automated adversarial detection,
will be crucial for ensuring the reliability of authentication in high-threat IoT environments.

Standardized Benchmarks and Model Evaluation

The lack of standardized datasets and evaluation metrics for IoT authentication hinders
the reproducibility and replication of the research findings. Standardized benchmarks
can enable the fair assessment of different authentication technologies and accelerate
advancements in the field. Future efforts should focus on establishing open-access datasets,
clearly defined performance metrics, and a comprehensive testing protocol to ensure
reliability and scalability of authentication solutions.

Ethical Considerations and Regulatory Compliance

The privacy, data ownership, and algorithmic bias related to the increasingly advanced
use of IoT authentication mechanisms must be addressed. Future research should ensure
that authentication techniques comply with regulatory frameworks such as the GDPR and
HIPAA. Furthermore, it is essential to study user acceptance and trust in ML/DL-based
authentication to develop security solutions that are both effective and ethically responsible.

6. Conclusions

This paper thoroughly reviews ML-based authentication protocols, their methods,
and implementation challenges. Active ML-based authentication systems will become
increasingly vital as the number of networked devices grows. Device authentication has
made significant progress through the integration of ML, deep learning, and reinforce-
ment learning.

The evolution of device authentication via machine learning introduces innovative
solutions that address issues of scalability and security vulnerabilities. By employing
ML techniques, systems can effectively detect abnormal behaviors. Implementing a deep
learning framework to support multi-layer neural networks enables users to learn and
extract important feature sets from data with different dimensions, thereby creating scalable
authentication models.

These models contain advanced features for securely verifying identities across vari-
ous platforms. Deep learning technology allows the development of robust and reliable
authentication systems that protect data, making it difficult for unauthorized individuals
to gain access. Reinforcement learning offers IoT applications a proactive approach to
optimize authentication methods based on changing environmental conditions, especially
when resources are limited.

Using techniques from machine learning (ML), deep learning (DL), and reinforce-
ment learning (RL) creates a layered defense system that manages persistent threats while
improving threat assessment. This three-method approach enhances resilience against
sophisticated attacks on IoT ecosystems, and can only improve the safety of IoT environ-
ments. However, implementing these methods in practice faces considerable challenges.
High computational requirements, extensive training durations, and the difficulty of using
casually collected large-scale datasets significantly hinder their effectiveness. Although RL
provides an alternative by learning in a customized manner, it struggles to converge from
optimal states as policies change substantially over time. DL models tend to be accurate
but often lack interpretability and are vulnerable to attacks that exploit their weaknesses
through adversarial tactics. Many of these issues are worsened by data limitations, such
as difficulties in obtaining relevant datasets and labeled data for rare but critical attacks
like Advanced Persistent Threats (APTs). There is also a heightened privacy risk when



Sensors 2025, 1, 0 35 of 40

ML-based approaches handle sensitive, identifiable, and sometimes harmful behavior data
and attempts.

Besides technical limitations, resource constraints in IoT devices worsen these issues.
Computing power, memory capacity, and energy availability limit the ability of resource-
intensive models, such as ML or DL, to operate on local devices. Cloud offloading can
ease some of these burdens, but introduces additional challenges by causing latencies and
creating single points of failure. Furthermore, with large-scale deployments, deploying
across diverse devices and enabling continual learning to address new threats, such as zero-
day vulnerabilities. Currently, static models cannot be easily adapted to ongoing learning.

Future research could focus on developing lightweight algorithms specifically for Iot
devices and federated learning based on privacy-preserving training and lifelong learning,
enabling IoT users to adapt in dynamic environments (i.e., adjusting their authentication).
New standardized datasets and benchmarks are essential for fair evaluation and compari-
son of solutions. Finally, hybrid edge—cloud architectures would support energy-efficient
methods and offer the best compromise to develop secure, scalable, and practical IoT
authentication techniques.
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