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ABSTRACT

The study of problems and structural properties of regular and extended 

state space theory may be reduced to a study of first—order linear differen-

tial equations

S(F,G): Fx(t) = Gx(t), F, G e3R10X11

Matrix pencil theory is the key tool for the study of S(F,G) differential sy-

stems. The developement of a general theory for S(F,G) systems, and thus the 

developement of a unifying theory for linear systems, necessitates the further 

enrichment of the classical theory of strict equivalenve for matrix pencils. 

To cover the needs of linear systems, a matrix pencil theory has to be ge-

neral enough and should have a geometric, dynamic, topological, invariant 

theory and computational dimension. This thesis aspires to contribute in the 

developement of the matrix pencil theory along the above lines and thus con-

tribute in the foundations of a matrix pencil based unifying theory for li-

near systems.

The theory of strict equivalence is detached from its algebraic context 

and it is presented as a theory of ordered pairs (F,G). The strict equiva-

lence invariants are defined in a number theoretic way, by the properties 

of appropriate Peicewise Arithmetic progression sequences defined on a pair 

(F,G). This new characterisation of strict equivalence invariants allows the 

derivation of new procedures for computing the Kronecker canonical form, for 

constructing minimal bases, and provides the means for the establishment of 

the geometric theory of strict equivalence invariants. The subspaces of the 

domain of (F,G) are classified in terms of the invariants of the restriction 

pencil. A variety of notions of invariant subspaces emerges, such as (F,G)- , 

(G,F)-, complete-(F,G)-invariant subspaces and extended-(F,G)-, (G,F)-, com-

plete- (F,G)-invariant subspaces. These notions of invariant subspaces are
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the counterparts of the standard notions of invariant subspaces of the geo-

metric theory. The properties of the solution space of S(F,G) differential 

systems are studied and the different norions of invariant subspaces are cha-
00

racterised dynamically in terms of the properties of C distributional-hol- 

00
dability and C -, distributional reachability. Once more, these dynamic pro-

perties are generalisations of the fundamental notions of geometric theory. 

The theory of invatiants of matrix pencils, or ordered pairs, is enriched by 

the study of invariants under Bilinear strict equivalence; a complete set of 

invariants is defined under this equivalence. This study leads to a ’’space 

frequency” relativistic classification of the dynamic and geometric proper-

ties of S(F,G) systems and their invariant subspaces; furthermore, it pro-

vides the means for a systematic study of dual systems and problems in linear 

systems. The further developement of the theory of invariant forced realisa-

tions, allows the translation of results and properties derived on S(F,G) 

back to linear systems theory. Finally, the problem of defining appropriate 

topological settings for the study of properties of pencils under under un-

certainty in their description is examined. New metric topologies are intro-

duced and their links to. known results of the perturbation theory of the ge-

neralised eigenvalue-eigenvector problem are established.
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NOTATION AND ABBREVIATIONS

Throughout this thesis, the following notation and abbreviations will be

used:

the field of real, complex numbers and rational functions, 

respectively

Z,M the set of integers and natural numbers, respectively

Et[s] the ring of polynomials over IR

Kn,i:n,lRr‘(s) the n-dimensional vector spaces over ]R,C,]R(s)

the set of mxn matrices with elements from the field T

PGL(1,C) the general projective group on the projective straight 

line of C U {<»}

the set of zero, infinite and a elementary divisors, 

respectively

IC<F,G) the set of column minimal indices of sF-sG

Ir(F>G) the set of row minimal indices of sF-sG

eh the strict equivalence

£h-b the bilinear-strict equivalence

Eh (F,G)

Pk*(F,G)  
ci

the strict equivalence class of L = (F,G)

the a-Toeplitz matrices which are specified by a and

the pair (F,G)

Nk
a

k kdenote a nested basis matrix of M =N {P (F,G)}
a r a

Sa(F,G),Wa(F,G) the Segre, Weyr characteristics of sF-G at s«a, re-

spectively

Ep(f) the projective equivalence class of f(s,s)

lei ie{l,2,...,r}

the (E-tt )-(]R-it ) basis matrix of f(s,s), respectively

V£> the complex list of f(s,s)

V£> the real list of f(s,s)
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(it —it  1)—basis matrix of f(s,s)

Ec Er 
eh’ eh

APV

the complex-real Hermite equivalence, respectively

the p-th exterior power of the vector space 1/

%,n the set of lexicographically ordered, strictly increasing

sequences of m integers from l,2,...,n

a.A...^ =a^A
1 m

the exterior product of the vectors ^,...,3^ of an n-di-

mensional vector space V where uj  = (ij,...,im) e 0 
— 9 Ti

Cp(A) the p-th compound matrix of AeF™™, p<min(m,n)

*r the set of quadruples

P 
r the set of r-prime PlUcker vectors of T

L(V;W) the set of all linear mappings from V into W

c.-(F,G)-i.s. complete-(F,G)-invariant subspace

(F,G)-i.s.

M1
a
*

Ma

(F,G)-invariant subspace

i-th generalised null space of (F,G) at s=a

maximal generalised null space of (F,G) at s=a

S(F,G) a the Segre characteristic of (F,G) at s=a

Wa(F,G) the Weyr characteristic of (F,G) at s=a

Ea(F,G) normal complete prime set of chains of (F,G) at s=a

Le(s,s) the standard c.m.i. block associated with £

“r right Weyr sequence of (F,G)

Pk[(s,s);NkJ

°1 °1

N^-right annihilating set of sF-sG

1R[s ]-, 1R[s ]-, -right annihilating modules of (F,G)

respectively

W±(Nk) ith supporting space of

«r(F,G) right set of singularity of (F,G)

L m,n
the set: {(F,G): F^e^R11^11}

APR arithmetic progression relationship

APS arithmetic progression sequence
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BE bilinear equivalence

BSEG bilinear strict equivalence group

BSE bilinear strict equivalence

BEG bilinear equivalence group

(C,UFS)e complex unique factorisation set

c.i.v. consistent initial vector

d.g.s. dual generalised state

d.s.t. distributional state trajectory

e.d. elementary divisor

e.r.o.’s elementary row operations

e.c.o.’s elementary column operations

e. 1. s. entirely left singular

e.r.s. entirely right singular

e.e.r.s. extended entirely right singular

e.e.r.r. extended entirely right regular

f.e.d. finite elementary divisors

g.c.d. greatest common divisor

G.R.D. greatest right divisor

G • L • D • greatest left divisor

G.C.R.D. greatest common right divisor

G.C.L.D. greatest common left divisor

G.L.M.P. general linear mapping problem

g.s. generalised state

(K-a-(F,G)_T.M.) K-th order a-(F,G)-Toeplitz matrices

L.D. left divisor

M.F.D. matrix fraction description

m.r.f.i.r. minimal regular forced invariant realisation

m.r.i.r. minimal regular invariant realisation
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(NI.PAPS) non-increasing PAPS

n.K.o. natural KrBnecker orbit

n.B.o. natural Brunovsky orbit

n.s.t. normal state trajectory

O.I.M. orthogonal invariant metric

PAPS piecewise arithmetic progression sequence

PAPSD piecewise arithmetic progression diagram

p.r.f.i.r. proper regular invariant realisations

RPAPS right piecewise arithmetic progression sequence

(3R-UFS) real unique factorisation set

r.f.i.r. regular forced invariant realisation

r.i.r. regular invariant realisation

SEG strict equivalence group

TVS topological vector space

UFS unique factorisation set

WSD Weyr sequence diagram

z.e.d. zero elementary divisors
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CHAPTER 1: INTRODUCTION

The theory that will be presented in this thesis falls within an area of 

research that is referred to as "matrix pencil approach" to the geometric 

theory of linear systems. The two fundamental parts of this approach are the 

geometric theory of linear systems and the algebraic theory of matrix pencils. 

The work presented here is an attempt to unify the geometric, algebraic and 

dynamic aspects of linear system problems, which may be reduced to the study 

of properties of generalised autonomous differential systems S(F,G):fx=Gx, 

F, GeIR10X11.

The basic philosophy underlying the geometric approach to linear systems, 

is that a system is an entity defined by a number of mappings defined on ab-

stract linear spaces (the input, the state and the output space); several 

relevant structural features of the system are therefore determined by the 

way in which these mappings interwine in their domains and codomains. These 

structural features can be expressed in terms of the geometrical properties 

of different types of subspaces connected with these mappings. Questions in-

volving the existence and synthesis of controllers may be reduced to problems 

concerning the interelationships of certain subspaces and the existence of 

mappings with given properties. Of key importance to this approach is the 

characterisation and properties of various different types of invariant sub-

spaces. The basic references for the geometric approach may be found in [Won. 

-l],[Will. -1].

The matrix pencil approach to geometric theory [Was. & Eck. -l],[MacF. & 

Kar. -l],[Kar. -l],[jaf. & Kar. *-1]  has been motivated by the need to simpli-

fy the characterisation of the basic concepts and the solution of problems 

of the geometric theory, by introducing an algebraic dimension to them. The 

characterisation of subspaces of the state space is based on the strict equi-
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valence invariants of a special pencil, called the "restriction pencil of 

the subspace. This approach has provided the means for a better understanding 

of the structural aspects of linear systems and it has reduced the problem 

of computations to the study of a generalised eigenvalue-eigenvector problem. 

The present research is motivated by the results of the standard matrix pen-

cil approach. It aspires to contribute in the developement of a matrix pencil 

approach for a broader class of linear systems, that includes both regular 

and extended state space systems. Of crucial importance for such an attempt 

is the developement of a geometric and dynamic theory of matrix pencils, or 

of autonomous generalised differential systems. The main emphasis of the pre-

sent work is on the developement of a general theory of S(F,G) systems.

The geometric approach for linear regular state space systems is a theory 

developed for first order non-singular differential equations. The intimate 

link of general first order linear differential equations with matrix pencil 

operators, suggests that the matrix pencil theory is the natural setting for 

the developement of the geometric, algebraic, dynamic and computational as-

pects of broad classes of linear dynamical systems; within the families of 

linear systems that may be studied in terms of matrix pencils, we distinguish 

the singular, or extended state space systems, regular state space systems 

and systems with uncertainty in their parameters. In the attempt to generali-

se the standard geometric theory to singular systems we face a number of dif-

ficulties; these are due to the lack of a geometric theory of matrix pencils 

and to the obstacles in the interpretation of strict equivalence transforma-

tions as meaning full feedback operations on the system. Extending the stan-

dard theory to linear systems with uncertainty in the description of the ba-

sic maps, becomes a more difficult problem; apart from results on the pertur-

bation theory of eigenvalues, there is no general theory of topological pro-

perties of the S.E. invariants and associated subspaces for matrix pencils.
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A special case of "uncertain” descriptions is the family of singularly per-

turbed systems; for this case, the natural operator becomes the ’’matrix com-
ic

binant", or "matrix net", I X.F , F. elR™* 11, X. indeterminates. A theory for 
i«l 1 1 1

such operators has not been developed yet. The algebraic theory of S.E. of 

matrix pencils is also inadequate in dealing with problems involving "space-

frequency" transformations on matrix pencils and which arise in the study of 

dual systems and problems [Kar. & Hay. -1,3], in the "space-frequency rela-

tivistic" classification of system properties, as well as in the conditioning 

of the generalised eigenvalue-eigenvector problem [Kubl. -1].

It is evident, that a prerequisite of the developement of a general theory 

for linear systems is the further enrichment of matrix pencil theory beyond 

the classifical theory of S.E. and the recent numerical analysis advances 

[Kag. & Ruh. -1]. The aim of the present work is to contribute in the deve-

lopement of those aspects of matrix pencil theory, which primarily concern 

linear systems theory. The main topis discussed are:

(1) Number theoretic aspects of S.E. invariants.

(2) Geometric theory of matrix pencils.

(3) Bilinear-Strict equivalence of matrix pencils.

(4) Dynamic aspects of S(F,G) differential systems.

(5) Framework for the study of topological properties of matrix pencils. 

These topics are of key importance for the developement of a general theory 

of generalised autonomous differential systems that encompasses the algebraic, 

geometric, dynamic, "relativistic", topological and computational aspects.

A general theory for such differential systems, may provide the means for a 

unifying and general approach for linear systems of the regular and extended 

state space type.

The standard eigenvalue-eigenvactor problem defined on a matrix AeiR1^11 

has algebraic, geometric and number theoretic aspects. The algebraic pro-
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perties are defined by the S.E. invariants of the pencil sI-A, the geometric 

properties are connected with the structural aspects of generalised null spa-

ces (elementary A-invariant subspaces) and the number theoretic properties 

are implicit in the Segr&, Weyr characteristic theory [Tur. & Ait. -1]. Note 

that each one of the above properties, and quite independently from the others, 
e

may be used for the computation of the Jordan form and thus for defining the 

structure of the eigenvalue-eigenvector problem. This implies that the theo-

ry of the eigenvalue-eigenvector problem may be presented on the pair (I,A) 

without using the algebraic structure of the pencil sI-A.

Generalising the geometric and number theoretic properties from sI-A to the 

general sF-G case, implies also a detachment of the theory of S.E. invariants 

from its purely algebraic basis (Smith form, theory of minimal bases [For. 

“1])> this is equivalent to presenting the theory on the ordered pairs (F,G) 

without resorting to the algebraic notion of the matrix pencil. A theory of 

S.E. presented on (F,G) has a number of important advantages from the conce-

ptual and computational points of view. In fact, similarly to the (I,A) simple 

case, the number theoretic properties, expressed by an extended Segrfe-Weyr 

theory, may be used for the definition of the set of S.E. invariants of (F,G) 

and thus for the computation of the Kronecker form. The computational advan-

tages, within the framework of the new definitions, stem from that standard 

numerical linear algebra techniques may be deployed. Extending the geometric 

properties from (I,A) to the general (F,G) case, it is expected that a va-

riety of new notions of invariant subspaces, rich in dynamic properties will 

emerge; the standard matrix pencil approach and geometric theory indicate 

the existence of such subspaces, which are rich in dynamic properties and 

thus may describe a number of important properties in linear systems. Final-

ly, we should point out, that a S.E. theory presented on pairs (F,G) provi-

des a more convenient setting for generalisations of the theory, when it is 

compared with the algebraic approach based on sF-G.
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Frequency domain transformations of the bilinear type, have been used in 

the study of various problems of linear systems theory, as well as in nume-

rical analysis. In the context of linear systems, special bilinear transfor-

mations have been deployed for the definition of infinite zeros of a ratio-

nal matrix [Verg. —1], for the computation of finite and infinite zeros of 

a rational matrix [Kouv. & Edm. -1] and the definition and study of proper-

ties of the ’’integrator-differentiator” type of duality [Kar. & Hay. -1,3]. 

In the context of numerical analysis, special bilinear transformations have 

been used for improving the bad-conditioning of the generalised eigenvalue-

eigenvector problem [Kubl. -1]. The need for a general theory ’’space-frequen-

cy” domain transformations is apparent.

The origins of Bilinear-Strict Equivalence (B.S.E.) go back to the classi-

cal theory of matrix pencils [Tur. & Ait. -1]. However, apart from some pre-

liminary results, there is no general theory of invariants under B.S.E. Gi-

ven that B.S.E. expresses coordinate transformations in the space (domain 

and codomain of a pair (F,G)) and frequency (coordinate transformations on 

the Riemann sphere) domains, such a theory has a "relativistic”, space-fre- f 

quency dimension. From the theoretical viewpoint, a general theory of in-

variants under B.S.E. is a prerequisite for the developement of a theory of 

dual problems, as well as for the "relativistic” classification of important 

linear systems concepts. Thus, such a theory may provide the means for a 

"relativistic" classification of system theoretic notions, such as stabili-

ty, controllability, observability, (A,B)-invariance e.t.c,, according to 

their properties to vary, or remain invariant under "space-frequency” trans-

formations. From the numerical analysis viewpoint, it is believed that such 

a theory is necessary for the ’’optimal" conditioning of the generalised ei-

genvalue-eigenvector problem. The basic idea behind the latter problem, is 

the definition of a suitable equivalent problem, with "nice" computational 
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properties; the computations may then be carried out on the equivalent pro-

blem and the results are then interpreted back to the original badly conditio-

ned problem.

The importance of the study of dynamic aspects of the autonomous genralised 

differential system S(F,G), stems from its links to the study of motions, which 

are restricted in a given subspace of the state space of a linear regular, or 

singular system. This study, provides the means for a dynamic characterisation 

of the various types of invariant subspaces of the domain of (F,G); it is the-

refore, instrumental in generalising the fundamental notions of (A,B)-invariant, 

almost controllability subspaces of linear systems, to the case of S(F,G) dif-

ferential systems. By establishing an expression for these fundamental dyna-

mical concepts, on the more abstract level of S(F,G) descriptions, the problem 

of their translation to particular cases, such extended state space systems, be-

comes much easier.

There are certain conceptual difficulties associated with the S(F,G) differen-

tial systems. In fact, in the general case, there exist certain initial condi-

tions for which the uniqueness property of the solution does not hold true; 

thus, S(F,G) descriptions do not always represent a dynamical system. To over-

come these conceptual obstacles, a theory is needed to parametrise the solutions 

and explain the arbitrariness in a meaningfull system theoretic way. The theory 

of invariant forced realisations” of the S(F,G) differential systems [Kar. & 

Hay. -2], has been introduced to serve that purpose. In fact, it allows the 

parametrisation of trajectories in a family of a given initial condition, in 

terms of external control inputs; furthermore, it allows the interpretation of 

S(F,G) as a ’’feedback free” description of a control problem defined on an or-

bit of linear systems.

The necessity for an appropriate topological framework for studying the pro-

perties of a pair (F,G), or the pencil sF-G needs hardly to be emphasised. The 
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uncertainty in the exact values of parameters of real life linear models is in-

herent; two of the main reasons are inaccuracies in the experimental data and 

rounding off errors in computations. Implicit on the study of robustness of the 

algebraic and geometric properties of a pair (F,G), is the setting up of an ap-

propriate topological framework; for a topological framework to be suitable for 

the study of robustness it must have the following properties: It must be na-

tural, as far as describing the origins of uncertainty, should be related to 

the fundamental properties-of (F,G), and must be strong enough for the deri-

vation of strong robustness results.

The origins of the theory presented in this thesis, come from the work of Kar- 

canias [Kar. & Hay. -1,2],[Kar. -5] on the theory of generalised autonomous dif-

ferential systems S(F,G). This thesis aspires to contribute in the developement 

of the proper foundations of a general theory of S(F,G) type differential sy-

stems; such a theory is considered as a prerequisite of a metric pencil approach 

for broader families of linear systems. The material presented here is structu-

red in the following way.

The second chapter of this thesis provides a selective summary of concepts 

results, and tools from the mathematical topics which are essential for the de-

velopement of the results in the following chapters. The range of topics dis-

cussed there are from: the theory of invariants, polynomial matrices and ratio-

nal vector spaces theory, the classical theory of matrix pencils, the Segrfe- 

Weyr characteristic theory of the eigenvalue-eigenvector problem, Exterior al-

gebra and Compound matrix theory, and finally, the essential topological notions.

The third chapter "set the scene" for the theory that will be developed in the 

following chapters. Section (3.2) provides a brief summary of the fundamental 

concepts of geometric theory, as they have been developed [Won. -l],[Will. -1]» 

The emphasis is on the dynamic and geometric characterisation of (A,B)-invariant, 
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almost (A,B)-invariant, controllability, almost controllability subspaces. In 

the same section, a brief summary of the matrix pencil approach to geometric 

theory [Kar. -l],[Jaf & Kar. -1] is also given; the emphasis there is on the 

algebraic characterisation of the fundamental invariant subspaces. Section (3.3) 

shows how matrix pencil theory and the generalised autonomous differential sy-

stems S(F,G), arise in the context of regular and extended state space systems. 

It is there, where the S(F,G) description emerges as the unifying object for 

the study of structural properties of linear systems. In section (3.4) the no-

tions of duality and dual problems, arising from the S(F,G) description are 

examined. This topic provides the motivation for the material in chapter (6).

The fourth chapter generalises the Segr^-Weyr characteristic theory and the 

generalised null spaces results from the standard eigenvalue-eigenvector pro-

blem defined by a regular pencil. For every generalised eigenvalue (|XF-G|=0), 

a special sequence of the "Piecewise Arithmentic Progression" (PAP) type is 

defined; the analysis of PAP sequences, leads to the derivation of the Segr& 

characteristic of (F,G) at s=X, which in turn, provides a number theoretic 

definition of e.d., independetly from the algebraic one. A method for construct-

ing the Weierstrass canonical form is suggested, which makes use of Ferrer’s 

diagrams for the analysis of PAP sequences and avoids the use of special trans-

formations. The geometry of a regular pencil is investigated by defining the 

notion of the generalised null space at s=X and then by investigating its struc-

tural properties. The structure of basis matrices for the null space of Toe- 

plitz matrices reveals the complete geometric dimension of e.d.; a systematic 

procedure for computing independent Jordan type chains is given, which in turn 

provides an alternative technique for computing the Weierstrass form. The re-

sults of the chapter reveal the complete geometric and number theoretic dimen-

sion of e.d. and provide alternative means for their definition/computation.
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Chapter (5) is an extension of the Segrfe-Weyr theory to the case of singu-

lar pencils. It is shown that the number theoretic and geometric results de-

veloped for regular pencils may extended for the case of column, row minimal 

indices (c.m.i.), (r.m.i.) of a singular pencil. In fact, the set of c.m.i. 

(r.m.i.) may be defined by analysing the properties of appropriate piecewise 

Arithmetic Progression sequences; these results demonstrate the unity between 

the S.E. invariants and provide the number theoretic dimension of c.m.i. (r.m. 

i.) is associated with the structure of the maximal annihilating spaces defi-

ned on a pair (F,G). The module structures of the pair (F,G) are examined and 

a systematic procedure for constructing minimal polynomial bases, based on 

standard linear algebra, is suggested. The results provide a thorough descrip-

tion of the number theoretic, geometric and algebraic properties of c.m.i., 

r.m.i.

The sixth chapter develops a general theory of algebraic invariants of ma-

trix pencils, or ordered pairs, under Bilinear Strict Equivalence (B.S.E). 

Starting from the invariance property of c.m.i., r.m.i. and the covariance 

property of e.d. a complete set of invariants under B.S.E. is defined. These 

invariants are defined by the real, complex lists (degrees of all e.d., or all 

Segr& characteristics) and vectors defined as PlUcker vectors and canonical 

Grassmann vectors. A fundamental part of the analysis is the determination of 

a complete set of invariants of homogeneous binary polynomials under projec-

tive equivalence; this problem is shown to be equivalent to the general linear 

mapping problem on a Riemann sphere. Finally, the effect of B.E. on stability 

of e.d. is examined and the role of B.E. transformations on assigning diffe-

rent properties to matrix pencils is discussed. These results in this chapter 

provide the tools for the relativistic classification of system properties, 

construction of dual problems and investigating the existence of pencils with 

"good" numerical analysis characteristics.
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Chapter (7) deals with the number theoretic, geometric and dynamic apsects 

of a general pencil and it is derived into four main parts. Section (7.2) ex-

tends the theory of PAP sequences characterising the sets of elementary divi-

sors (e.d.) to the general case of singular pencils. These results together 

with the PAP sequences characterisation of c.m.i. and r.m.i. provide the means 

for a number theoretic definition of the set of S.E, invariants on the pair 

(F,G), as well as a procedure for finding the Kronecker form without use of 

special transformations. The basic element of the procedure is the singular 

value decomposition which is used for the computation of the different types 

of PAP sequences. Section (7.3) deals with the geometric properties of the 

subspaces of the domain of (F,G). The key tool is the restriction pencil (F,G)/V 

with set of S.E. invariants. The geometry of simple invariant subspaces (cha-

racterised by one type only of S.E. invariants) is examined first; the stuc- 

ture of such subspaces leads to the definition of (F,G)-, (G,F)-, and comple-

te (F,G)-invariant subspaces. A detailed account of the structure of such sub-

spaces is given and these notions of invariant subspaces are extended to those 

of partitioned-(F,G)-invariant subspaces (p.-(F,G)-i.s.), extended (F,G)-, (G,F)-, 

complete-(F,G)-invariant subspaces. The geometry and spectrum properties of 

such subspaces are examined in detail. Finally, the relationships of abstract 

subspace algorithms defined on (F,G) pair with the different notions of inva-

riant subspaces is discussed. This latter study leads to a characterisation and 

computation of the various types of supremal invariant subspaces of the domain 

of (F,G). The results of this section establish a complete geometric theory for 

matrix pencils, which may be presented on ordered pairs (F,G) and independently 

from the underlying algebra.

In section (7.4) the theory of invariant realisations [Kar. & Hay. -1,2] is 

further developed. The theory is presented on ordered triples (F,G;V), where 

is a subspace of the domain of (F,G); these results allow the interpretation
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of the geometric and dynamic results derived on S(F,G) descriptions, or matrix 

pencils, back to the theory of linear systems. The essence of the theory is 

the definition of another triple (F',G';V’), where (F*,G*)  is entirely right 

singular (characterised only by c.m.i.), such that the restriction pencils 

(F,G)/V, (F*,G ’)/V'are S.E. The final section (7.5), deals with the properties 

of the solution space of the S(F,G) descriptions and the dynamic characterisa-

tion of the invariant subspaces of (F,G). The solution space is characterised 

by defining the initial and redundancy spaces of S(F,G); the initial space is 

further characterised by defining the regular (uniqueness of solutions) and 

non regular (no uniqueness of solutions) subspaces. A further classification 

of the regular initial space is given in terms of the C , distributional natu 

re of the solutions. These notions of initial subspaces are related to the in-

variant subspaces of the pair (F,G). The dynamic characterisation of invariant 

subspaces is done in terms of two fundamental properties; the holdability and 

the reachability properties. According to the nature of solutions we distin- 

oo °oguish the familes of C distributionally-holding subspaces and C - , distn- 

butionally reachability subspaces; these notions, defined on S(F,G) systems, 

are extensions of the notions of (A,B)-invariant, almost (A,B)-invariant, con-

trollability, almost controllability subspaces of the geometric theory. The dif-

ferent types of invariant subspaces of (F,G) are classified according to the a- 

bove four properties. Finally, the parametrisation of the solution is discussed; 

this is achieved by using the notion of invariant forced realisation.

Chapter (8) provides a framework for discussing the topological (properties 

under uncertainty) aspects of pairs (F,G) and a "space-frequency” relativistic 

classification of the geometric and dynamic properties of S(F,G) systems. 

Different types of convinient (as far as description of uncertainty) metric 

topologies are introduced. The new metrics are related to already known ones; 

thus, the links with standard perturbation results are established. The notion 
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of deflating subspace [Stew. -1], which plays an important role in perturba-

tion theory, is shown to be equivalent to the notion of elementary divisor ty-

pe subspace discussed in section (7.3). Finally, the results of chapter (6) 

are used to classify the geometric and dynamic properties of S(F,G) systems 

to those which depend on frequency coordinate transformations and those which 

are invariant under such transformations. The conclusions and future research

extensions of this work are given in chapter (9).



CHAPTER 2:

Mathematical Background
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CHAPTER 2: MATHEMATICAL BACKGROUND

In this chapter we give a brief account of some important mathematical to-

pics which form an essential background to the topics discussed in the folow-

ing Chapters.

In Section (2.1) we review some of the fundamental concepts and results on 

invariants and canonical forms defined on equivalence classes. In Section 

(2.2) a brief account of results from the theory of polynomial matrices and 

rational vector spaces is given. Particular emphasis is given to the theory 

of polynomial minimal bases, which in the context of matrix pencils plays a 

crucial role, especially in Chapter (5). The background on Exterior algebra 

is needed for the developement of the theory of invariants of matrix pencils 

under Bilinear strict equivalence, presented in Chapter (6), as well as for 

the developement of a new angle metric for ordered pairs (F,G), or matrix 

pencils given in the last Chapter. In Section (2.4) a brief review of the 

results on Segr& characteristics of the standard eigenvalue problem is 

given; this review is needed as a background to Chapters (4) and (5), where 

the Segre theory is extended to the generalised eigenvalue-eigenvector pro-

blem. A brief account of the classical matrix pencil theory is given in 

Section (2.5). Finally, a summary of essential topological notions is given 

in Section (2.6).

2.1 Equivalence Relations, Invariants and Canonical forms [Bir. & Macl>. -1]

We shall begin by introducing some definitions and results which will be 

used later in this thesis.

Definition (2.1): A relation from a set X to a set / is a subset of Xx/ 

where XxV is the set of all ordered pairs of the form (x,y) where x€X, y€/.

Definition (2.2): A relation R on X (RCXxX) is called an equivalence rela-

tion if it satisfies the following three conditions
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(i) ¥ x€X, (x,x)eR (reflexive)

(ii) If (x,x’)eR then (x’,x)6R (symmetric)

(iii) If (x,x’)eR and (x’,x”)eR then (x,x”)eR (transitive)

Definition (2.3): Let X be a set W0) and E be an equivalence relation on X

Let xeX ; then the equivalence class or orbit of x is befined by.

E(x)=»{y: yeX and (x,y)eE} , (2.1)

The set of all equivalence classes is called the quotient set or orbit set 

and it is denoted by X/E

Theorem (2.1): If R is an equivalence relation on X, then the family of all

equivalence classes form a partition of X, i.e.

X=R(X1)UR(x 2)U. . .UR(xi)U... R(xi)QR(xj)=0

Definition (2.4): A system of distrinct representatives for R, is a set T, 

TcX that contains precisely one element from each of the equivalence classes.

Definition (2.5): Let X,T are sets, E an equivalence relation defined on X. 

A function ^:X+T is called an invariant of E, when xEy implies £(x)=^(y). 

^:X*T  is called a complete invariant for E, when £(x)=^(y) implies xEy.

*(A complete invariant defines a one to one correspondence between the equi-

valence classes E(x) and the image of ^).

Definition (2.6): A set of invariants ^sX+T. i=l,2,...,k} is a complete 

set for E, if the map defined by:

(2.2)

is a complete invariant for E on X.

Let £:X-> x L is a complete invariant for E on X. Then ^(x), i=l,2,...,k
i=l

characterise uniquely E(x). If we specialize the invariant such that its 

image TcX we define a canonical element or a canonical form.
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Definiition (2.7): A set of canonical forms for E equivalence on X is a sub-

set C of X such that ¥ xeX there exists a unique ceC for which xEc.

Indeed, if £ is a complete invariant and ^(X)“C, then for any xeX and Cp 

c 26C, x Ec l  and xEc2 implies 1{(x)-<(c1)-< (c^-c^c^c by the invariance pro-

perty. By completeness, we have that for any ceC, if ^(X|)*c  and ^(x2)-c, 

then x^Exp

Thus, c«^(x) is a unique member of E(x) ¥ xeX.

The values ^(x) are often called a complete set of invariants.

2.2. Polynomial matrices, Rational Vector Spaces and Smith form 

2.2.1.IR[s]-unimodular equivalence, Smith form. [Gant. 1]

Let IR^Xq[s] the set of pxq matrices from !R[s]; an equivalence relation on 

this set may be defined as follows:

Definition (2.8): Let M1(s),M2(s) ]RpXq[sJ. M1(s),M2(s) are said to be lR[s]- 

equivalent if

M2(s )-R(s )M1(s )Q(s ), (2.3)

where R(s) €.IRpxp[s] , Q(s) elR qxq[s] , | R(s) | , |Q(s)| 6 JR-{0}.

The matrices R(s), Q(s) with detemrinants in 1R-{O} are known as !R[s]-uni-

modular matrices. If R(s)=Ip and Q(s) IR (s)-unimodular, then M^(s), M2(s) are 

called IR [s]-right-equivalent and if Q(s)=Iq, and R(s) JR [s]-unimodular, then 

they are called IR [s]-left-equivalent. It is well known that the relations

defined above are equivalence relations and a complete set of invariants may 

be defined, as well as canonical forms. The IR[s]-equivalence class of M(s)e 

IRpXq[s] will be denoted by and the right, left IR[s]-equivalence

r 1classes by ^[^(M), E^^^M) respectively.
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Theorem (2.1): Let M(s)elRpXq[s].

(i) There exist unimodular matrices L(s)e3RP * [s] (obtained by e.r.o. s.) 

and R(s)elRqxq[s] (obtained by e.c.o.’s.) such that

L(s)M(s)R(s)-S(s)

Xj(s)

Xi(s)

iii
ii i
! oii ii i 

Xr(s)'l 

---------H-
I
I 
II

e IRpXq[s] (2.4)

p-r

q-r

where S(s) is called the Smith form of M(s) and

(a)

(b)

r=max {rank M(s)} £ min (p,q)
s€R

the polynomials X^(s)eIR[s], ier called invariant polynomials of M(s), 

are monic, uniquely defined by M(s) and satisfy the division property

(ii) The set (X^Cs), ier} of invariant polynomials defined above forms a comple- 

te set of invariants for -equivalence and S(s) is a canonical form

fOr ^R[s] (M) •

Moreover, consider the polynomials Ai(s)eiR[s], i=O,l,...,r given by 

&0(s)sl» A^(s):=the monic g.c.d. of all ixi minors of M(s).

These polynomials are called the determinantal divisors of M(s). They are

related to the invariant polynomials of M(s) by the Smith algorithm.

A.(s)
X. (s) - —----—> iGr

Ai-l(s)
i.e. (2.5)

If Xi(s) = (s-si • • (s-si^)011^, ier is the unique factorisation over

C of Xi(s), where si k eC and a^, ‘ ” ,aik’€z+* then’ the elements

of the set {(s-s^)a^» j=l,2,.. .k^, i=l,2,...,k} are called the elementary 

divisors of M(s). An elementary divisor is said to be linear or non linear

according as aij=l or a.jj>l

0

r

0

0 0

r
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Remark (2.1): Some different elementary divisors may contain the same polyno-

mial (s—SoA (this happens, for example, in case l^(s)“li+^ (s) for some i). 

The total number of elementary divisors of M(s) is therefore E .
i=l 1 □
r ki 

Remark (2.2): Let M(s)eRnxn[s] and detM(s)^O. Then the sum E E a±4 of 
i“lj=l 3 

degrees of its elementary divisors (s-s*̂)®^  coincides with the degree of 

detM(s).

Note that the knowledge of the elementary divisors of M(s) and of the number 

r of invariant polynomials (s),...,1^(8) is sufficient to construct l^(s), 

•••>A^(s). In this construction we use the fact that A^s) is divisible A^_^(s). 

Let SpS2,...,sp be all the different numbers from t which appear in the ele-

mentary divisors, and let that (s-sp011 ’1,. • • , (s-s-t)®1’ki, (iep) be the ele-

mentary divisors containing the number s^, and ordered in the descending order 

of the degrees Clearly, the number r of invariant polynomials

must be greater than equal to max {k4,...,k }.
i P

Under this condition, the invariant polynomials A^(s),...,Ar(s) are given 

by the formulas:

where we put (s-si)ai»j=l for j>ki

□ 

2^2.2. Rational matrices, M.F.Ds, coprimeness[Kail., 1]

Consider the rational matrix G(s) e IR^Cs), rank^ {G(s)}=min{m,£}. It is 

then well known that G(s) can always be factored (in a non-unique way) as 

G(s) = D'1(s)NL(s) = NR(s)DR1(s) (2.7)

where NL(s), NR(s) e ^[s], ^(s) e ^““[s], DR(s) e ^[s] with det Dj/s), 

det DR(s) 0*  The pair {d r (s), NR(s)} ({D^(s), N^(s )}) is called a right 

(left) matrix fraction description (MFD) of the rational matrix G(s).
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The above definition, and the other results to be described later, show that 

matrix fraction descriptions provide a natural generalisation of the scalar 

rational function representation of a scalar rational function.

Furthermore, descriptions (2.7) establish the links between rational matrix 

theory and polynomial matrix theory.

Definition (2.9): A square polynomial matrix Q(s)€ !RqXq[s] is said to be a 

right divisor (R.D.) of a polynomial matrix M(s)€lRpXq[s], with p*q>  if and 

only if there exists a polynomial matrix Mj(s) 6 1Rpxq[s], such that

M(s) = M1(s)Q(s) (2.8)

Let G(s) be a R.D. of M(s). Then Qq (s ) is said to be a greatest right divi-

sor (G.R.D.) of M(s) if and only if deg{det(^s)} £ deg{detQ(s)} for every R.D. 

Q(s) of M(s)i

□
Remark (2.3): Greatest right divisors of polynomial matrices are not

They differ only by unimodular (left) factors.

unique.

2ef-inition (2.10); A polynomial matrix M(s) e ]RpXq[s], p*q,  

is said to

equivalent

tankR(s)

ke A.r-reducible or least degree if and only if one of the 

conditions is satisfied:

{M(s)}=q

following

(i) all

(ii) the

(iii) the

the G.R.D. of M(s) are unimodular matrices;

Smith form of M(s) is [*q];

greatest common divisor of all q-order minors of M(s) is 1;

rankj^g) <M(s) }=q, for every s€C.(iv)

□
Definition (2.11): A square polynomial matrix Q(s) € IRqxq[s] is said to be 

a greatest common right divisor (G.C.R.D.) of the two polynomial matrices

M|(s) £ 1RP q[s], ^2(3) € 1R q[s] if and only if Q(s) satisfies the following 

properties:
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(i) Q(s) is a common right divisor of M^(s) and M2(s);

(ii) if Q’(s) 6 IRqxq[s] is any other common right divisor of M^(s) and M2(s), 

then Q’(s) is a right divisor of Q(s), or in other words deg{det{Q(s) 

deg{det{Q'(s)}}.

Remark (2.4): Greatest common right divisors of two polynomial matrices are 

not unique. They differ only by unimodular (left) factors. □
Definition (2.12): Two polynomial matrices M^s) e 3RpXq[s], M2(s) e rf^ts] 

With ranklR(s) are said to be relatively right prime or right 

coprime if and only of one of the following equivalent conditions is satis-

fied:

(i)

(ii)

(iii)

(iv)

all the G.C.R.D. of M1(s) and M2(s ) are unimodular matrices;

the Smith form of ±S ^0^ 5

the greatest common divisor of all q-order minors of 

rank|R(s) {[M2(s ) ]}=q ’ f Or  eve ry  s SC-

Remark (2.5): Left divisors (L.D.), Greatest left divisors (G.L.D) and Grea-

test common left divisors (G.C.L.D.) can be defined with the obvious changes. 

For convinience, we shall henceforth talk onlv of right divisors.
□ 

Remark (2.6): A right MFD (left MFD) <DR(s), NR(s)}(<DL(s), NL(s)}) of a 

transfer function matrix G(s) is called a right coprime MFD (a left coprime

MFD) if and only if the matrixes DR(s), NR(s) (DL(s), N^(s)) are tight co-

prime (left coprime).

Let now M(s) e !Rpxq[s], p^q be a polynomial matrix with rankfc(s){M(s)}=q

and let us write it in terms of its q column polynomial vectors as

M(s) = [m^(s),...,mq(s)]

where

m^s) = [mxjfs) ,... ,mpi(s)] i=l,...,q

(2.9a)

(2.9b)
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Definition (2.13): The degree of the polynomial vector mj(s) is the highest 

degree occuring among the degrees of its polynomial elements mj-j/s), i.e.

i=l,...,q (2.10)

Definition (2.14) [Rosenbrock -1]: The complexity of M(s) is the sum of the 

degrees of its column polynomial vectors, i.e.

q
c = Z deg(m1(s)} 

i=l
(2.11)

□
Definition (2.15) [Rosenbrock -1]: The degree d of M(s) is the highest degree 

occuring among the degrees of all its q-order minors.

Since a q-order minor of M(s) is a sum of products of polynomials one from 

each column, the maximum degree occuring among all the q-order minors of M(s), 

i.e. its degree d cannot exceed its complexity c, i.e. we have [Rosenbrock -1] 

c-d. Let now that gi=degmi(s), i*l,...,q,  and write

k=0
(2.12)

Then M(s) can be written as

0

M(s) -[m1(s),...,m (s)] = [m^1,...,m^q] + M^s) (2.13)

0

where e 3RpXC (c= E gi), and

1
s

0

Z(s) = (2.14)

s
0



21

The matrix [m^,... ,m|<l]!SMa e IRpX^ is called the highest (column) degree 

coefficient matrix of M(s) .------------------------------------ D

Definition (2.16): A polynomial matrix M(s) 6 B?X^[s] is said to be column 

Pr0Per_ °r column reduced if the matrix Ma has full rank q.

Propos it ion (2.1): A polynomial matrix M(s) e !RpX^[s] is a column reduced if 

its complexity c is equal to its degree d.

Proposition (2^2): Let M(s) e 3RpX<^[s] be a polynomial matrix which is not co-

lumn reduced. Then there always exists a unimodular matrix U(s) elRqX<1[s], 

det{U(s)} e such that the polynomial matrix M*  (s)®M(s)U(s) is column

reduced. □
J-~^iS£^£al£.?££2££H££-2£-S£ti2S£l, Vector Spaces

Let G(s) elR-H^fs], m^£, rank^^ (G(s) }=£ be a transfer function matrix.

Let us also denote by V the set of all linear combinations of the columns 

of G(s) with multipliers in IR(s), i.e.

if G(s) = [g1(s),...,g^(s)], then UG - span^^^ {gL (s),... ,g^(s) } (2.15) 

Clearly is a linear vector space over 3R(s) and dimU^Z, and it is called 

t^ie Xati°nal vector space generated by G(s).

From any rational basis G(s) of (/ we can generate a polynomial basis of 
G

by means of a right MFD of G(s) , i.e. if G(s)=N(s)D~1 (s) with N(s) elR^ts], 

D(s) e IR [s], det{D(s)}^0, then clearly the columns of N(s) define a polyno-

mial basis of VG. More precisely, if N(s)-{n1(s),...,n^(s)] then

SpailR(s) {~1 ’ * * * »—J =

and (2.16)

sPan]R(s){n1(s),...,n£(s)} =
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where denotes the set of all linear combinations of the columns of N(s) 

with multipliers in IR[s]. The set is a free !R[s]-module [Bir. -1] and it 

is called the polynomial module generated by N(s). ,

Proposition (2.3): Let be the polynomial modules generated by the poly-

nomial matrices N^s), N2(s) eB^s], with rank]^(s){Nt (s) }=rank]R(s)(N2(s) }-£. 

If N1(s )-N2(s )Q(s ) , where Q(s) elR^Cs], det{Q(s)}^0, then

(2.17)

□
Proposition (2.4): Let N^s), N2(s) e IR [s] be two polynomial bases of the 

same polynomial module M . Then, there exists a unimodular matrix Q(s)e U^[s], 
N 

det{Q(s)}=c eIR-{0} such that

Nx(s) = N2(s)Q(s) (2.18)

Thus unimodular matrices represent coordinate transformations of a polynomial 

module.

Proposition (2.5): Let N(s) € IR^fs] be a basis of the polynomial module

Then the degree of 

N^s) e ^[s] is
N(s) is an invariant of or in other words if 

any other basis of then deg{N(s)}=deg{N1(s)}. □
Prpposition (2.6): Let N^s), N2(s) e rankIR(s){N1(s)}=£,

rankIR(s){N2(s)}=Z and let d1=deg{N1(s)}, d2=deg{N2(s)}. If

Nt(s) = N2(s )Q(s ), Q(s)eK£xZ[s], deg{detQ(s)} - q>l (2.19)

then

(i) d1 = d2 + q

(ii) MN1 c

(2.20)

(2.21)

where are the polynomial modules generated by the polynomial matri-

ces N^(s), N2(s), respectively.
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Clearly, Eqn. (2.19) represents the extraction of a right divisor Q(s) of 

the polynomial matrix N^s). This observation leads us to the following con-

clusions:

Let N^s) e rank^^ (N(s) >£ be a polynomial matrix which can

be written in terms of its column%as (s)“[n^(s),...,n£(s)J. Let us assume 

that N^(s) is not irreducible and let

V - span^) fn*  (s),... ,n|(s)}, span^^^ {nJ (s),... ,n^(s)} (2.22)

be the rational vector space (/ and the polynomial module spanned by its 

columns. Then if Qi(s), i«l,2,... are right divisors of N^s), i.e.

Nx(s) « Ni+1(s)Qi(s), i»l,2,... (2.23)

and the deg{detQi(s)}=qi>l are such that q^^q^-q^***  we will have that

(2.24)

deg(N^(s)) > deg(N2(s)) > deg(N^(s)) £ ... (2.25)

Moreover, if QG(s) is a greatest right divisor of N^(s) so that N^s)58 

N(s )Qg (s ), then

Mn C Mn  and deg(N1(s)) > deg(N(s)) (2.26)

The polynomial module is the maximal submodule of the rational vector (/ 

and all its polynomial bases are least degree or irreducible polynomial ma-

trices. In other words, if we consider the set of all polynomial vectors in 

(/ then this set coincides with the module defined above.

Clearly, although the ascending chain of modules which is defines by Eqn.

(2.24) is not unique (it depends on the choice of Q^(s)) the maximal module

is uniquely defined.



Definition (2.17) [For. -11: A polynomial matrix N(s) 6 m>£ and

rank^^ (N(s) }•£ is said to be a minimal basis of the rational vector space 

V spanned by the columns of a polynomial matrix N^s) € ^“^[s], mi£, 

rank^fe^s)}"*,  if and only if N1(s)=N(s)Q(.(s) where GG<s) is a greatest 

right divisor of N^s) and N(s) has the following properties: 

(1) N(s) is least degree;

(ii) N(s) is column reduced.

Remark (2.7): Let N^(s) 

T^ts] are two minimal

□ 

e ran^tN^s)}^. If N(.), N*(s)  e

bases of the rational vector space V spanned by the

columns of N(s), then

N(s) :N*(s)Q(s) (2.27)

where Q(s) e is a unimodular matrix. □
Remark (2.8): Let x.(s) be a polynomial vector of the rational vector space

V spanned by the columns of N^(s) € ^[s], m>£, rank3R(s){N1(s)}«£ and let 

N(s) be a minimal basis of (/. Then x(s) can be expressed as a polynomial

combination of the columns of N(s).

Given in general, a G(s) e IB^Cs], m>£, rank^^^ (G(s) }»£, then Forney - 

describes a way of computing a minimal basis for the rational vector space

spanned by its columns(i.e. U^). He then shows that the column degrees <5^= 

degni(s), i=l,...,£ of a minimal basis N(s)=[n1(s),...,n^(s)] are the same 

(i.e. invariant) for every minimal basis of l/G» i.e. 6i» i=l,...,£ characte-

rise UG. Forney calls these degrees the "invariant dynamic indices" of VG 

and their sum

£
6 » E <54 

i»l x
(2.28)

the "invariant dynamic order" of UG- Clearly, the invariant dynamical order 
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is the complexity of N(s) and since N(s) is a minimal basis it is equal to 

the degree of N(s). We have to note that the invariant dynamical indices and 

the invariant dynamical order do not characterise (/ uniquely, i.e. they are
G

not complete invariants.
□

2.3.. Background from Exterior Algebra [Gre, -1]

Let V be an arbitrary vector space and p>2 be an integer. Then a vector

space AP(/ together with a skew symmetric p-linear map

p
Ap : xV APU (2.29)

1

is called a p-th exterior power of (/ if the following conditions are satisfied:

(i) The vectors AP(x^,...,xp) generate APV.
p

(ii) If ip is any skew symmetric p-linear map of xV into an arbitrary vector
1

space U, then there exists a linear map f:Ap(/-4/ such that <p=foAP.

It is proved that conditions (i) and (ii) are equivalent to the follow-

ing condition

(iii) If ip is any skew symmetric p-linear map of xl/ into a vector space U, 

then there exists a unique linear map f :AP(/+U such that ip=foAP.

The elements of APU are called p-vectors. A p-vector of the form Ap(x.,...,x ) 
—1 -p

is called decomposable, and it is denoted by x^.-.AXp. Condition (i) states 

that Ap 1/ is generated by its decomposable elements.
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The skew symmetric property of the p-linear map AP implies that for every

permutation a es

2So(l)A,”A^j(p) “ signcr ^...AXp (2.30)

Now suppose that ...,xp are linearly dependent vectors. Then the skew sym-

metry of Ap implies that

2C^A. . .Ax = 0 (2.31)

Conversely, p vectors which satisfy (2.31) are linearly dependent.

The results and definitions given above for general vector spaces will be 

specialised and discussed in more detail for the case of finite dimensional 

vector spaces.
4

Suppose that 1/ is a vector space of dimension u over the field F. Then the 

p-th exterior power of (/, Ap(/ may always be defined ; APV is a vector sub-

space of the p-th tensorial power of V. The pair (AP(/,AP) is uniquely defined 

up to an isomorphism. If e^, i=»l,...,n is a basis of (/then the products

(2.32)

span the vector space AP(Z. There are (*)  choises of distinct indices i1,...,ip 

from 1 to n, and they can be arranged uniquely in increasing order. It can be 

proved that the elements definec above, e^A.. .Aeip are linearly independent 

and thus form a basis for APV. Clearly then

dim Apl/ = (^), p=o,l,...,n 
(2.33)

and Apl/=0 for p>n.

An arbitrary vector of AP(/ is called a p—vector and an element of the form 

x^A,..AXp where 2£i»***>2Sp  € U is called decomposable. Every p-vector u of (/ 

can be uniquely represented in the form

(2,34) 
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where the symbol < indicates that the indices (i1>...,ip) are ordered lexico-

graphically (Ui1<i2<...<ipSn). The coefficients aili2-..ip are called the co-

ordinates of the p-vector u with respect to the basis {e^, i“l,.».,n} of U.

2.3.1. Exterior powers of linear maps

Theorem (2.2) [Bir, -1] : Let (/> U be finite dimensional vector spaces over 

a field F, and let h:(/-*U  be a linear map. Then, there is a unique homomorphis, 

h: AI/+AU of the exterior algebras such that h(x)»h(x) for any x in (/. Notice 

that h maps AP(/ to APU for all p.

The homomorphism h is a linear map. The above result*simply  means the fol-

lowing: If h is a linear map of a vector space (/ into a vector space U over 
P

F, then to (xp... ,xp) e x(/ we may correspond the element h(x^) a ...a  h(xp) 
1 P

of APU. This defines an alternating multilinear map of xy into APU*  By the
1 - P

definition of the exterior product there exists a unique linear map h of A (/

into APU (APU is a vector space) such that

b(2£|> • • • ,Xp) = h(x^) a . . .a  h(xp) (2.35)

identically. The following commutative diagram describes the construction 

procedure for h

where we write APh for h and we call it the p-th exterior power of linear 

map h. We have
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APh(x1, • • • ,Xp) * h(xp ... h(Xp) (2.36)

Eqn. (2.36) defines the linear map APh of APU into APU. An important property 

of the map Aph are summarised below [Mar. -1].

Corollary (2.1): Let f:IMl and g:LMV be linear maps of finite dimensional 

vector spaces over the field F. Set h=gof. Then for the maps APh, APf, APg 

we have

Ap(gof) = Aph - Aph o Apf (2.37)

□
2.3.2. Representation theory of exterior powers of linear maps [Kar. -4]

Definitions and basic results [Ma. ~l^_GreA -1]

Let V be an m-dimensional vector space over the field F and let APU, p^m 

be the p-th exterior power of U. If (v^» 1=1,...,m} is a basis of V, then 

APU is spanned by the vectors of the basis w=(ip ... ,ip) , l^i^<...<ip^m,

v^V-i 1 A v~? 2 A,”A Vi Every vector ve APV pay be written as y^Za^v^.
p zmx w

Let rp be the map of APU into h pJ defined by

rv<v) * I-”*’%)’•••] (2.38)

Then rp is linear and it is called the representation map of APl/ associated 

with the basis i=l,...,m}. It can be seen that there is such a map asso-

ciated to every basis of U. The image of APV under this map is called the 

representation of APU relative to the basis {v^, i=l,...,m} of V. The follow-

ing result can be easily verified.
□ 

Proposition (2.7): The representations of the p-th exterior power of an m- 

dimensional vector space (/ over f, are isomorphisms of APU onto F^p\

Let I/, U be two vector spaces over the field f of dimensions m, n, respec-

tively and let h be a linear map of (/ into U. The linear map h can be repre-

sented with respect to the bases Bvs3^Zi» and Bu={u£, i=l,...,n} 
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of V and U by a matrix Hu which is defined by the following commutative dia-

gram

Figure (2.3)

where r^, r^ are the representation maps of V and U onto Fm and Fn respecti-

vely. Because U, U are isomorphic to Fm, Fn respectively, F01, Fn may be used

*to represent (/, U and the matrix to represent the linear map h.

Let A^U, A?U be the p-th exterior powers of V, U respectively, where p<min{m,n}. 

Then h:l/->U implies the existence of a linear map A^h of A^U into A^U. If we de-

note by r^, the representation maps of A^U, A?U with respect to the bases 

i’ and i=l,...,n} of V, U respectively, then applying

the representation result for linear maps, which has been discussed above, we 

have the following commutative diagram.

I

,m.

Figure (2.4)



30

and thus the matrix APHV is defined 
u by the equation

(2.39)

The description of ApHV in terms 
u

will establish the links between

the HV will be defined below and that 
u

the present subject and the compound matrix

of

theory.

Let i-1,.

and let APBv= (v^v^a . . .Ayip, a)«(ii

P*O1»  • • • jp) , l^j^.. .<jp<nJ be the

..,m}» b u ={11£» isal»»»‘»n} be bases of V and U respectively

,...,ip), l£i1<...<ip<m}, APBu«{up-Uj]A...AUjp, 

of AP(/ and APU respectively.induced bases

a .

Let

-i 1 1 f • • • f m, Hu “ Ccij] (2.40)

Then for all basis vectors v^ € we have

APh(v a ...av  ) = h(v. ) ... h(v, )
1 xp 1i “ip

n
( E Ci ju.) A...A ( C, ju,) 
j-1 1 J j»l p 3

(2.41)

But we know that

v •,A % •*!»•••> Kp J ]_ •••% (2.42)

Also by the theory of determinants

Cilh"’Cipjl

Jl» • • • dp
H,
£1.......... Ip = E

Hence we have

Aph(v. A...a
_il

c. , ...c.
11JP Mp

y. ) =
P

E
l<j1<...<jp^n

Jl» 
sign(

il»

•’jPx

•’^p hh Ip^P (2"43)

j I»• ••>jp
H. . u.
1|,...,ip j

A. . . A U4-Jp (2.44)
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Clearly, the quantities of the Eqn. (2.43) are the entries of the matrix, 

AV which represents the linear map with respect to the bases

ApB , APB .
v* u

2.3.3. Compound matrices and Grassman products [Mar. & Min. -1]

The results of the section 2.3.2. may be simplified by introducing some 

useful notation and definitions on the sequences of integers and on subma-

trices of a given matrix.

(i) Notation

(a) denotes the set of strictly increasing sequences of p integers

(l^p<n) chosen from l,...,n, e.g. Q2 ^={(1,2), (1,3), (2,3)}. Thus, the 

number of the sequences which belong to Q is (n).
'p,n p

If ot, B € Q_ _ we say that a precedes 0 (ct<&), if there exists an integer p, n

t (l<t<p) for which otj^Bp • • • > at<^t’ where ai» denote the

elements of a, 6 respectively, e.g. in the set Qo O(3,5,8)<(4,5,6). This 
3,o

describes the lexicographic ordering of the elements of Q . The set of 
p,n

sequences Qp,n from now on will be assumed with its sequences lexicogra-

phically ordered and the elements of the ordered set Q will be denoted 
p,n

by Qp>n(t), *>(p)  or simply by uj,.

(b)

quence in Q_ , l<p<n, then the product c. c4 ..
P,n 12

If cp...,cn are elements of the field F and w=(i1 ,i2>... ,ip) is a se- 

•cip wiH be designated

(c) Suppose A=[a..] e „(F), where „ denotes the set of mxn matrices 
ij m,n m,n

over the field F; let k, p be positive integers satisfying l^k£m, lSp<n 

and let a-(i1,...,lk) e Qk>m and B=(jx..........jp) e Qp>n. Then A[a|B] Mk>p(F)

denotes the submatrix of A which contains the rows i|,...,i^ and the 

columns ji>»*»,jp.  We use the notation A(a|8j to designate the submatrix
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of A which excludes rows 1,and includes columns ii . The 1 7 k Jl* ,Jp

submatrices A[a|g) and A(a|0) can be defined similarly.

□
(11) Compound matrices

Let A eM 
m,n (F) and l*p_min{m,n} , then the p-th compound matrix or p-th adju-

_gate*of  A is the (m) x (n) matrix whose entries are det{A[a|$]}, a e Q f,
P P P,m

e Qp>n ^ranged lexicographically in a and 0. This matrix will be designated 

by Cp(A). For example if A 6 M^F) and p«2, then Q£ 3«={(1,2), (1,3), (2,3)} 

and 

c 2(a ) =

det{A[(l,2)|(l,2)]} det{A[(l,2)|(l,3)]} det{A[(l,2)|(2,3)]} 

det{A[(l,3)|(l,2)]} det{A[(l,3)|(l,3)]} det{A[(l,3)|(2,3)]} 

det{A[(2,3)|(l,2)]} det{A[(2,3)|(1,3)]} det{A[(2,3)|(2,3)]}

(2.45)

□ 
Properties of compound matrices

(a) If A € Mn(F), l^p^-n and also A is non-singular

(1) [Cp(A)]’1 = Cp(A_1)

(ii) Cp(A) = [Cp(A)J , where A*  is the conjugate transpose

of A(F=£)

(iii) Cp(A ) = [Cp(A)J , where A^ is the transpose of A

(lv) Cp(A) = Cp(A), where A is the conjugate of A(F=£)

(v) C (kA) = kPC (A), for any k e F
P P

(vi) C (I ) = I n
p n (p)

(p-1)
(vii) det{Cp(A)} = {detA}H Sylvester-Franke Theorem

(b) If A £ n(F) and B e ^(F) and l-p^min{m,n,k}, then

C_(AB) = C_(A)C_(B) Binet-Cauchy Theorem
p P P ------------------- - ---------------

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)
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and it is called the Grassmann

(c) If A e JU? n(F) and the p rows of A are denoted by . ,apt in succes-

sion (l^p^n), then Cp(A) is an (p)-tuple 

product or skew symmetric product of the -t -t -vectors ,...,ap for reasons

usualwhich will become apparent later on. The 

of subdeterminants of A is a^A.e.A a C and it
—1 —p

Grassmann product of the columns of a matrix A

notation for this (^)-tuple 

denotes a row vector. The

e M (F) (l^p^n) may n,p

defined in a similar manner; the product in this case, however, will

be

be

an (n)-column vector. If a.,...,a are the columns of A, in this case, then 
P ”1 “P

this (p)-tuple of sub de terminants of A will be denoted by a,iA.«»«Aap« By

properties of determinants, if creS (where S denotes the totality of permuta- 
P P

tions of (1,...,p)) , then

a/.\A...A a f x-<T(1) -<J(p) signer _a^A.. .A a
“P

(2.54)

If B e M (F), A e M n I (F), then by n,p the Binet-Cauchy theorem it follows

that

cp (B)^A ... A ap » Ba^A... A Bap (2.55)

Grassmann products suitably deployed may greatly reduce the complexity of

the

The

expressions in compound matrices. Thus, let A e M (F) and l£p£min{m,n}. 
m,n

matrix A may be written in terms of its rows or columns respectively as

or A = [a_|, • •.,aj|JA (2.56)
-t
*m

4

Let

the

The

• • • ,ip) e Qp,m an<* 4>“(j J. > • • • > jp) e Qp,n and let us denote by a^

-t -t
Grassmann product a j ... a.^

p-th compound matrix of A may

and by a^ the Grassmann product ... aj^. 

then be expressed in either of the following

forms

Cp(A)
-t a. • " e Qp,m or Cp (A) — C••.,a^, • • • J (2.57)
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which will be referred to as row, columns representations of Cp(A) respecti-

vely.

2.3.4. Compound matrices and exterior algebra [Kar.--4], [Gian. -1]

We may now return to the Eqn. (2.44). We first note that the 

defined by (2.40) or by

v
matrix Hu

cllc21’”cml

[hCvp.h^),...^^)] = [^>212’
c12c22”’cm2

(2.58)

□

c. cn ...c In 2n mn

is the matrix representation of h:lMl with respect to the bases Bv, Bu of 

U respectively. Note that

J1*  • •Jp 
H.

> •

’ • • • ’—ip

P) 6 Qp,m’

A hCXfc/O ~ [• • • • • •] h^A, p e Qp,n

Given that the relationship holds for all uj e Qp>m’ {v ^a , cd  e Qp m} 

basis of A (/ and {up a , p e Qp,n^ a basis of APl/» we may write 

(2.59)

is a

[... ,APh(v^A),..= [... ,UpA,...] [... jh^jA,...] = APBuAPH^ = APB^Cp(Hv)

(2.60) 

where APH^ = Cp(H^) is the matrix representation of Aph with respect to the 

bases APBv> APBu, and it is defined that by the p-th compound matrix of H^. 

These considerations lead to the following result.

□
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Theorem (2.3): Let U, U be two vector spaces over F, with dim(/=m, dimll^n and

let h:<Ml be a linear map of V into U. Let Bv*{vp  i«l,...,m}» B^=-fu^, j=l,...,n} 

be bases of V, U respectively and let be the matrix representation of h with 

repsect to the bases B^, B^. If APh:AP^-*A P^» l^p^min(m,n}, is the p-th exterior 

power of h, then APh may be represented with respect to the induced bases 

w € Qp APBu ={u ^a , P € Qp n) of APV, APU repsectively, by the 

matrix APHV=C (Hv) where C (HV) is the p-th compound matrix of h\
u p u p u u

The above result can be represented by the following commutative diagram

—-------- *A PU.APBuBV,IZ ,B ’ u
ApBv,Apv

rp
V

rp
u

V
Fm T/in- 

pvp. CP(<) F<P>

h------------

1 rv
1 r u

Figure (2.5)

It has been shown that the pairs of the vectors spaces (ApV,F^Pb and 

(A U,F P') are isomorphic. In fact, every basis By of V and Bu of U induces 

a decomposable basis for Ap(/, APU and the corresponding representation maps 

rP, rP define isomorphisms between APU, F(p) and APU, F^p). The linear map 

APH^=Cp(H^) jFQ^FQO is induced by the map H^:Fm-*F n and it is a representa-

tion of the linear map APh:ApV-*A PU. Thus, it is clear that, as any pair of 

vector spaces U, U of finite dimension and their linear map h can be discus-

sed by means of m-tuples, n-tuples and matrices, their p-th exterior powers 

APU, APU and their linear map APh may be discussed in terms of (™)-tuples, 

(n)-tuples and compound matrices.
P

Let L(V,U) be the vector space of linear maps of the m-dimensional vector 

space 1/ into the n-dimensional vector space U, both spaces being defined 
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over the field F. Let M be the set of nxm matrices over F; then each ma-
tt,m

trix representation of an element of L(V,U) is an element of *- s ^n0WT1

that the map which is defined by matrix representation is an isomorphism of 

L(V,U) onto M [Bir. -1]. In diagramatic terms we may represent the above 
n,m

discussion as follows.

Proposition (2.8) [Kar. -4]: Let (/, U be two vector spaces over the field F,

dim(/=m, dimU=n and let B , B be v u bases of (/, U repsectively.

space.(i) The set ,APU) of linear maps of APU into APU is a vector

(ii) The map r^ that associates every map APh with its matrix representation

C (HV) is an isomorphism of L (API/,APU) onto the set of matrices M n m . 
P u P (pXp)

In diagramatic terms we may represent this result as follows:

Figure (2.7)
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Using the above results, it can be readily shown [Kar. -4] that the Binet-

Cauchy Theorem, in its compound matrix form expressed the composition law of

the exterior powers of linear maps, when matrix representations are considered.

□
2.3.5. PlUcker coordinates and decomposability [Mar. -l],[Gre. -l],[Hod.& Bed, -

Let V be an m-dimensional subspace of an n-dimensional vector space U over

a field F. The map defined by f(x)=x, x e (/ is linear and by theorem

2.2 there is a unique homomorphism f:AV-*AU  associated with f. Since dim(/=m,
.tn -. _
A U is a one-dimensional space and it is mapped by f onto a one-dimensional

subspace of AmU. This if i-l,...,m} is

ned by the element v a . .. a  vm an^ maps this

a basis of (/ then Am(/ is span-

element onto

(2.61)

in A U. The vectors v^, i=l,...,m are linearly independent and so v ^a . ..a ^ 

is a non-zero element of AmU. In fact the injection map f: (/-*U  defined by

f(x)=x, x e (/ induces an injection map Amf:defined by Amf(xa ) =xa ,

.m,f m
A U whichxa  e A V. The vector VjA.-.av ^ spans a one-dimensional subspace of 

depends only on V. Now let Bu={uj, j=l,...,n} be a basis of U, then 

trix representations we have the following commutative diagram

using ma-

f

1 rv
1 r u

V
F“-

A=FV
u >F"

Figure (2.8)

where A=F^ is the matrix representation of f with respect to B and B . In 
u r v u

fact if

n
(2.62)
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The column span of A is a subspace of Fn and it is the representation of f ((/)

with respect to the bases B^, B^. The representation of 

to the bases AmBu> A^^ is defined by the commutative diagram

with respect

A®B ,AmlA 
V*

Amf

C (A)mu m Rn) >Fkm'

*A“(J,AmBu

m rv

p=p km'_

m ru

Figure (2.9)

Thus

-1A",ATH • SaoA)A ’ ao) , a)*(i. ,... ,i ) g Q1 m m,m (2.63)

and hence the matrix

Cm(A) “ Cm(I0 ’ a.A.^Aa
m mu —1 —m a0) (2.64)G

is the "matrix” representation of Amf O-m
with respect to AmB , AmB .

u’ v
,...) are the coordinates of the one-dimensional subspace Amf(AmV)

The

tuple (...,a^

with respect to the two given bases. If B^b^, i=l,...,m} and B T={v|, i=l, 

...,m} are two bases of V and Bu is a fixed basis of U, then the matrix re-

presentations of f with respect to those two bases B^, B^, are related by the 

coordinate transformation QV.
v

F:'>F>Fnxm.
and thus

Cm(Fu’> = Cm(Fu)CX'> - Cffl(F>’ e F-{0}

(2.65)

(2.66)
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The two vectors t_*V|  a . . .av ^, t/^vjA* . «Ay^ are related by

q = <11 (2.67)

or

(2.68)

□
Definition (2.18): The scalars a of Eqn. (2.64) are called Plttcker coordina-

tes of the subspace relative to the bases Bv of 1/ and of U.

Eqn. (2.68) shows that any two sets of PlUcker coordinates of V, which cor-

respond to two different bases of V, with respect to the fixed basis B^ of U 

differ by a non-zero scalar factor. Hence the ratios of a^’s are the same as 

the corresponding ratios of a^'s (a^=qa' a^-qaj^ and so a^J a^-a^J a^). 

Therefore, the ratios are uniquely determined by U. Sometimes, the ratios of 

the a^, rather that the themselves, are called the Plllcker coordinates of 

V.

Consider now the vector space of (p+l)-tuples x=(xo,2^ >•••»xp)> x-£ € F*

Let us call two such vectors x and y equivalent if they are both non-zero 

and if 2£3qy f°r s°nie q e F-{0}. This equivalence relation splits the non- 

zero vectors in into equivalence classes, and clearly each equivalence

class consists of all non-zero elements in a one-dimensional subspace of

. Thus the equivalence classes are in one-to-one correspondence with the

lines through the origin o □
Definition (2.19): The set of all equivalence classes of non-zero vectors in

as defined above, is called the projective space of dimension p over F,
p

denoted by IP (F) . Each equivalence class defines a point of this projective 
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space. If Q is any point in 3RP(F) and if x«(xQ,.«.,Xp) is any vector of the 

equivalence class which defines Q, then the x^s are called homogeneous coordi-

nates of Q.

If we set p=(^)-l=dimAmU-l, then we can easily see that the Plllcker coordi-

nates, of V, enumerated in lexicographic order, may be considered as the homo-

geneous coordinates of a point in 1PP(F). However, every point in 3Pp(f) does 

not represent an m-dimensional subspace of U. Elements of AmU of the type 

^VjA.^av ^ where Vp...,are linearly independent vectors of U and q e F-{0} 

are called simple or decomposable m-vectors. Decomposable multivectors unique-

ly define m-dimensional subspaces of U as it is shown below.
□ 

Proposition (2.9); Let U be an n-dimensional vector space over F and let 

X =XiAe•’^Xm’ — =—be two decomposable non-zero elements of AmU and 

let us denote by (/ =sspan{y1 ,...,v } and 1/ =span{z ,..., z } the subspaces of 

U defines by yA and _za  respectively. Necessary and sufficients condition for 

is

yA «2x a  = qz1A...Azm = qza , q € F-{0} (2.69)

□ 
2g.fX111 io.n (2.20); Let U be a vector space over a field F with diml/=n. The 

GrassmannianJ,^^ is defined as the set of m-dimensional subspaces V of U; 

G(m,U) actually admits the structure of an analytic manifold which is known 

as t-he Grassmann manifold.

It is clear that the mapping f:G(m,U)-H}(l,AmU) expresses a natural injecti-

ve correspondence between G(m,U) and the set of one-dimensional subspaces of 

AmU (i.e. G(l,AmU)).

□ 

Xx.amPle (2.1): To demonstrate that every vector of AmU does not define an 

m-dimensional subspace 1/ of U, we consider the simple case of dimlf=n=4, 

diml/=m=2. Let be a basis of (/. Then, as ir is well known, we can
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extend B to B = {v, ,v„,vo,v.} which is a basis of U. Thus the induced basis 
V u “1 —J ~4

of A2U is A2Bu={v1Av2,v1Ay3,v1Ay4»y2Ay3,y2Ay4,v3AV4} and so

v = V]Ay2 “
l^i<jS4 Cij^i “j

(2.70)

where c
ij

l<i<j<4 is a set of PlUcker coordinates of I/. It can be shown that

V is 'decomposable [Mar. -1] if and only if

C12C34 - C13C24 + C14C23 ’ ° U ’

Clearly, the above condition is a necessary condition for the general 6-tuple 

^C12’C13,c 14,c 23,C24’C34^ t0 be the P1^cker coordinates of a 2-dimensional 

subspace (/, or in other words to be the coordinates of a decomposable vector.

This condition may also be proved sifficient.

Such a condition is knows as a Quadratic PlUcker Relationship. This Quadra-

tic PlUcker Relationship defines a hypersurface in the 5-dimensional projec-

tive space IP 5(f), which is known as the Grassmann variety of this projective 

space.

In general, those points of IPP(F), p=(^)-1 which correspond to m-dimensio- 

nal subspaces V of the n-dimensional vector space U must satisfy a set of 

quadratic relationships of the type (2.71). It will be seen that this set of 

relationship defines an algebraic variety of the projective space IPP (F)

p 
which is known as the Grassmann variety of IP (p).

By associating to every V e G(m,U) its PlUcker coordinates (...,a ,...),
0)

0) e Qm n the map g:G(m,U)->IPP(F) is defined, and this is known as the PlUcker 

embedding of G(m,U) in the projective space IPP(F). The PlUcker image of 

G(m,U) in IPP(F) the above defined Grassmann variety if IPP(F) [Hod. -1].

Finally if (/ is any m-dimensional subspace of the n-dimensional vector spa-

ce U, then any non-zero decomposable multivector y^A...av ^ with v^e U, i=l,2. 

...,m is called a Grassmann representative of (/. We have already seen that
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all the Grassmann representatives differ only by non-zero scalar factors so

that we shall denote any one of them simply by g(U). □
2.4. Segre characteristic of AelR^11, Ferrer's diagram, Jordan form [Tur. &

Ait. -1]

2_«4.1. Generalized Nullspace and Range of an operator

Let T:IA*(/  be a linear operator on an n-dimensional vector space (/ and let

A the nxn matrix representation of T.

If we define: (T1), i=l,2,...

decreasing, because ¥ i € IN and because U is finite dimensional there

exist the supremal element, i.e., € IN. such that N =N
q q+1

then this sequence of subspaces is non-

of T is the

M (T) A n = M (Tq) 
g q r (2.72)

The power q of T required for maximum annihilation is called the 

annihilation of T.

index of

(2.73)

then both N (T) and R (T) are T-invariant subspaces and IM (T)®R (T)
g g g g

□
2.4.2. Generalised Eigenspaces

Let A be an nxn matrix with the characteristic polynomial, <p(X)=det(XI -A) = 

(X-Xp 1(X-X2)T2...(X-Xp)Tp, where X±I4X^ and Tj+Tp-.. .+Tp=n.

Define, U± A Ng(A-XiI) - Nr{(A-XiDqi} A Ng(A,X1) (2.74)

where q.^ is the index of annihilation of A-Xp, then will be called the 

generalised eigenspace of A at X^ and of course is the largest subspace of

(or In) annihilated by powers of A-Xfl.
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□

Properties of generalised eigenspaces

(i) M (A,X<)^0 iff X. € o(A)
g 1 1

(ii) If U^MgCA.Xi), Xi€G(A), them dimUi=Ti=algebraic multiplicity of XX.

(iii) (U*«Ng(A tXi), ^i 6 P(A), i=p} are linearly independent <=> Uifl( E . ^j)
p j

={0} and IRn (or Cn)=© Z U
i-1 1

2.4.3. Generalised Eigenvectors and chains of Generalised Eigenvectors

Definition (2.22): is called a generalised eigenvector of A of rank k for

xt iff (A-Xp^Uj-O and (A-X I^u^O.

Thus eigenvectors of A for X.^ are generalised eigenvectors of A for X.^ of 

rank 1.



A chain is said to be a maximal chain if its elements cannot be considered a 

proper subset of another chain.

Maximal chains must exist since the vectors that make up a chain are linear-

ly independent and the generalised eigenspace in which they lie is of finite 

dimension.

Note that the index of annihilation q^ is the largest rank of any genera-

lised eigenvector in U^, also there may be more than one maximal chains in 

consisting of vectors and there may be maximal chains in consisting of 

fewer than q^ vectors.

It can be seen that if qi is the index of annihilation then IL is kernel 

of (Every element of this kernel is a generalised eigenvector cor-

responding to X^ and every generalised eigenvector is an element of this ker-

nel) .

a 3
Theorem (2.6): Assume u^, u^ generalised eigenvectors of A for X of ranks k, 

Z and the corresponding chains 

(2.75)i 1,2,...,k}

j-1,2, (2.76)

linearly independent.

□
number of independent eigenvectors.

In order to find the number of elements in each of the independent chains 

we can use the Weyr characteristic and the Ferrer’s diagram [Tur. & Ait. -1].

Let A € JR , <p(X) = | Xl-A|* (X-X^) .. (X-X^)Ti... (X-Xp)^P. For X=X^ compu-

te: 
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rk=rank(A-X.I)k, k-0,1,2,...,qi» where q±’index of annihilation of A-X^.

Note that r?=n, r°-rh=d=geomentric multiplicity of X^.

We define as Weyr characteristic the following set

1 
i*

2
i

(2.77)
i i 1

By using the Weyr characteristic we can construct the following Ferrer’s 

diagram. In each row of this diagram we put as many asterisks as the numbers 

o 1 12
ri“r£» as indicated bellow:

o 1
ri”ri —* * * ••• * *

1 2
—> * * • • • *

(2.78)

t t e„ , e

The set {6, ,0_,... ,0, .,0,} A J which is the set of numbers of asteriscs 
12 d-1 d

in the columns of the Ferrer’s diagram is the Segrfe characteristic.

The Segr& characteristic {0, ,0_,...,0 ,} defines the dimensions of each of the 
12 d

d independent chains.

2.4.4. Jordan canonical form

Let T e L(Cn). Then [Hir. & Smale -1] there are unique operators S, N 

on Cn such that T=S+N, where SN=NS and S is diagonalizable (semisimple) and 

N is nilpotent. In the case where a(T)={X} we have S=XI and hence T=XI+N.

We start with an operator T e L(Cn) that has only one eigenvalue X, (a(T)= 

{X}); in that case T=XI+N with N nilpotent. Also there is a basis

that 8ives N a matrix representation in nilpotent canonical 
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form A. That means that A is composed of diagonal blocks, each of which is

an elementary nilpotent matrix i’P*  So,we have:

[T]g « XIn+A 58 t>lock diag. {XI^+Hkp • • • »XIkp+^kp}

The blocks making up XIn+A are called elementary Jordan matrices, or elemen-

tary. X-block. A matrix of the form (2.79) is called a Jordan matrix belonging 

to X, or briefly, a Jordan X-block.

Consider next an operator T:Cn^Cn whose distinct eigenvalues are X^,X2>««*»  

X ; Then Cn=® E IL, where Ui=Ne(T,Xi) is the generalised Xk-eigenspace, 
1=1

k=l,2.......... m. We know that T/Uk=XkI+Nk, k«l,2,...,m with Nk nilpotent. We give

Ufe a basis B. which gives T/Uk a Jordan matrix belonging to Xk. The basis
k

B= U B. of Cn gives T a matrix representation of the form:

(2.80)

where each is a Jordan matrix belonging to X^. Thus C is composed of dia-

gonal blocks, each of which is an elementary Jordan matrix C^. The matrix C 

is called the Jordan form of T.

It is easy to prove that similar operators have the same Jordan forms (per-

sed X-eigenspace of To isomorphically onto the generalised X-eigenspace of

Tp hence the Jordan X-blocks are the same for To and

Note that the Jordan canonical form may be constructed from the set of Se- 

gr& characteristics which correspond to all distrinct eigenvalues. In fact, 

every number, k, in the Segrfe characteristic S(X) of the eigenvalue X defines 

a kxk elementary Jordan matrix that corresponds to the eigenvalue X.

2.5. Matrix pencils

Let (F,G) e IR^^IR111X11 and (s,s) be a pair of indeterminates. The polyno-

mial matrix sF-sG e RmXn[s,s] is defined as the homogeneous matrix pencil 
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of the pair (F,G). Clearly, sF-sG is a matrix over the ring ®£s,§] (polyno-

mials in (s,s) with coefficients from B), but it may be also viewed as a ma-

trix over the rings R(s)[s], or*(§)[s].  On the set L^/s.S) we may define 

the following notions of equivalence.

Definition (2.23): Let sF-sG, sF'-sG' elm>n(s,s) and let R(s,3) e uf™“(s,S), 

Q(s,s) e Knxn(s>s)> lR(s,s)|-c1(s,s)!‘O, |Q(s ,8)|=c 2(s ,§)5‘0 for which

R(s,S){sF-sG}Q(s,s) - sF'-sG’ (2.81)

(i) If R(s,s), Q(s,s) are defined over 11(3) [s] (R(s)[3j) and c1(s,3), 

c2(s,s) 6 lR(s)-{0} QR(s)-{0}), then sF-sG, sF’-sG' are said to be 

]R(s) [sj-equivalent (IR(s) [s]-equivalent) and shall be denoted by 

(sF-sG)Er^/s F'- s G') ((sF-§G)ER(s)[g](sF’-§G’)).

(ii) If R(s,s), Q(s,s) are defined over JR[s,s]and c^(s,s), C2(s,s) e >-{0} 

then sF-sG, sF'-s.G*  are said to be >[s,s]-equivalent and shall be de-

noted by (sF-sG)E^g gj(sF'-sG’).

(iii) If R(s,s), Q(s,s) are defined over 1R and Cp € 1R-{O}, then sF-sG, 

sF’-sG’are called strict equivalent [Gan. -1] and shall be denoted by 

(sF-sG)E (sF’-sG1).s
□ 

It is readily shown that the above relations are equivalence relations.

The symbols ER(g)[s]» ^R(s)[a]» ^R[s,§]and Es wil1 be used for these equiva-

lence relations.

Definition (2.24): The Smith form over lR[s,s] of the pencil sF-sG e L (s.s)
—   ........—’ ‘ —■ m,n

is defined as the matrix

S(s,s)
S*(s,s) | 0

0 j 0
(2.82a)

n-pP
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s ,s
tk x {s F-s G} and S*(s,s)=diag.{f . (s,s), ie p} € MPxf>[s,§]; the 
s) 1 ~

f-i/s.s) are the invariant polynomials over 1R[s ,s ] of sF-sG. If (di(s,s), 1-0, 

dQ(s,s)=l} is the set of deterninantal divisors of sF-sG (di(s,s) is 

the g.c.d. of all minors of order i), then the invariant polynomials f^(s,s) 

may be defined by the standard Smith algorithm [Tur. & Ait. -1] as follows.

f±(s,g) - di(s,s)/di_1(s,s), i=l,...,p, do(s,s)=l (2.82b)

The polynomials f^(s,8) are monic over 1R[s ,s ] and it can shown that 

^(3,8) divides fi+1(s,s) (fi(s,s)/fi+1(s,s)) for ¥ i^p-1. □
The Smith form Ss(s,s) overJR(s)[s] (Smith form SS(s,s) over 3R(s)[§]) of 

sF-sG has the same form as S(s,s) in (2.82a) except that the invariant poly-

nomials are defined in terms of the determinantal divisors which are monic 

over R(s)[s] GR(s)[s]). Some interesting observations on the relationships 

between the various Smith forms have led to the introduction of the motion 

of dual pencils [Kar. & Hay -1,2,3]. This topic will be discussed in following 

chapter. In the following we give a summary of the well known results of ma-

trix pencil theory under strict equivalence [Gan. -l][Tur. & Ait. -1].

Definition (2.23): The pencil sF-sG is said to be regular if F, Ge IRnXn and 

p=rank^z g\{sF~sG}=n; in all other cases, i.e. m=n and p<n, m<n or m>n, it 

will be called singular.

□
Note that the terms given for the pencils, will be also used for the pairs 

(F,G) which "generate” the pencil sF-sG. In the following the single varia-

ble pencil sF-G is used; the summary of the results is based on the treatment 

given in [Gan. -1].

By factorising the invariant polynomials fi(s,s) of S(s,s) into powers of 

homogeneous polynomials irreducible over I, we obtain the set of elementary 

divisors (e.d.) of the pencil sF-sG; these are of the following type: s^, sq, 
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and pairs of complex conjugate e.d. (s-as)T, (s-as)T, a,a 6 C. For the pencil 

sF-G we define: e.d. of the type sQ are called infinite elementary divisors 

(i.e.d.), e.d. of the type s^ are called zero elementary divisors (z.e.d.), 

and e.d. of the type (s-a)T are called non zero finite elementary divisors 

(nz.f.e.d.). Whenever, there is no distinction between the e.d. of the type 

s^, (s-a)T, a^O, they will be referred to as as finite elementary divisors 

(f.e.d.). The sat of all i.e.d., z.e.d., nz.f.e.d. and f.e.d. of sF-G will 

be denoted in short by {i.e.d.}, {z.e.d.}, {nz.f.e.d.}, {f.e.d.} respective-

ly. whenever there is no ambiguity about the pencil sF-G on which these sets 

are defined. In the following Lr , LS shall denote the sets of regular, 
n,n m,n

singular pencils of dimensions nxn, mxn respectively. An element sF-G, of the 

above sets, will be denoted in short by L. Note that strict equivalence have

been defined over the real s; however it may also be defined over the complex 

numbers. The real strict equivalence will be denoted by E$ and the complex 

strict equivalence by E?; of course E^ is defined over sets of complex pencils, 
o s

JR £By E (L) , EC(L) we shall denote the corresponding equivalence classes.

The classical theory of matrix pencils deals with the study of invariant 

and canonical forms of the strict equivalence classes E^(L), Eg(L), when 

r sLei or L e 1 . The results are presented below for single variableIT p n ID f n

pencils sF-G; for homogeneous pencils sF-sG, the results are similar (homo-

genise the results stated for sF-G).

Theorem (2.7): The map {f.e.d.}x{i.e.d.}

<(L)> I- e £n.

is a complete invariant for

□
Note that for E?~equivalence the invariant polynomials are factorised

□
over

1R and thus {f.e.d.} is made up from irreducible over M e.d. of the type 

(s-a)T ,a e K, (s^-gs-y)^, a,(J,ye 3R. The existence of a complete set of in-
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“ diag. {... jsHq—Iq j • • • ; • •.} (2.83)

where sI^-j^(X) is the Jordan canonical block associated with the f.e.d. 

(s-X) and sH -I is a canonical block associated with an i.e.d. sq (H is 
q q q

an elementary qxq nilpotent matrix, whose elements in the first superdiago-

nal are one , whereas the remaining elements are all zero).

□
A jreal Weierstrass form, sF'-G’, may be constructed by appropriate modifi- 

cation of the blocks in (2.83), as it will be shown below; sF*-G ’ will be 
w w 

then a canonical form of the E^(L) class. Thus, let a^-o-jw, a=-o+ja) e C and 

let q(s)-(s-a) (s—a) = (s -Bs—y)T be the quadratic real elementary divisor 

that corresponds to the pair of complex conjugate e.d. (s-a)T, (s-a)T. Using 

standard results from [Tur. & Ait. -1], we may construct two different real 

Weierstrass forms. Thus, to q(s) we may associate the canonical blocks Ct (B,y ), 

DT(a,w) of dimensions 2tx 2t  where

0 1 0 0 0 ... 0 0
r

Y B 1 0 0 ... 0 0

0 0 0 1 0 ... 0 0

0 0 Y B 1 ... 0 0
•
• ••

•• •
• ••

•
• (2.84a)

0 0 0 0 0 ... 0 1

0 0 0 0 0 ... Y 0

and
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w 0 • • • 0 0

DT(a,uj)

It can be proved

X2

w X2

X2

0)
(2.84b)

-0)

that under

a real canonical form, of the

E^-equivalence,

type (2.83), where instead of a pair of blocks

sF-G € Lr may be reduced to 
n,n

0 0 0
a

9
W =

o

0 0 0 w

0 0 0 0

sIT-JT(a), sIT-JT(a), the

those two canonical forms

blocks 0^(8,y), or DT(a,u)) are used; the first of 

will be referred to as the Real Weierstrass canoni-

cal form, whereas the second will be called the Real spectral Weierstrass ca-

nonical form [Kar. & Hay. -2].

Unlike the case of regular pencils, however, the characterisation of the 

E^(L) class, L e apart from the set of the determinantal divisors re-

quires the definition of additional sets of invariants, the minimal indices.

(sF-G)x = 0 ,

Thus assume that m^n and that p=rankK(g) {sF-G}<min{m,n}. Then the equations 

yt(sF-G) - 0fc
(2.85)

have solutions in x and which are vectors in the rational vector spaces 

Wr(s)’Wr{sF-G} and N£(s)=N£{sF-G} respectively.

Let p=dimA/^(s), t=dimN^(s). It is known [For. -1] that ^^(s) and A/^(s), as 

rational vector spaces, are spanned by minimal polynomial bases {^(s), i ep} 

and (yt(s), jet} correspondingly, of minimal degrees (e =...=e =0<e < £
J ~ 1 g g+r"‘

ep} and{C1=...=^g,=0<^g,+1<...^Ct} respectively. The set of minimal indices 

and {^} are known [Gan. -1] as column minimal indices (c.m.i.) and

Xow minimal indices (r.m.i.) of sF-G respectively. Note that if the homoge-

neous pencil, sF—sG, is considered, then the same set of minimal indices is 

defined for the two rational vector spaces N_, which are now defined 
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over R(s,s) [Tur. & Ait. - ]. The sets of c.m.i., r.m.i. of sF-G will be deno-

ted in short by {c.m.i.}, {r.m.i.} correspondingly.

Theorem (2.9): The map f:£S •* {f.e.d.}x{i.e.d.}x{c.m.i.}x{r.m.i.} is a comple- 
m,n

te invariant for E"?(L) , E^(L), L € LS
S S m,n

□
g

The existence of a complete set of invariants for pencils sF-G e n im-

plies the existence of a canonical form, known as Kronecker canonical form 

[Gant. -1].

C sTheorem (2.10): The equivalence class E„(L), L € L is characterised by a b m,n

canonical element, sF^-G^, the complex Kronecker canonical form, defined

by

sFk’Gk ■ quasi dia8* {°h,g;Leg+l.......... Lep;L^h+1,...,Lnt;SFw-Gw} (2.86).

where sF^-G^ is the complex Weierstrass canonical form, associated with the

f.e.d. and i.e.d. of the pencil, 0. is a zero block parametrized 
n,g

zero c.m.i. and h zero r.m.i. and and are blocks corresponding to

non zero c.m.i. and r.m.i. respectively, of the type

by the g

The

s

0

-1

s

0 ...

-1 ...

0

0

0

0

r* ii •• • »• •• •• €
• * • • •

0 0 0 ... s -1
__

C=ei or nj (2.87)

real Kronecker canonical form, sF^-G^, may be defined by

sFk“Gk “ <Juasi diag.{0, :L
k k h.g eg+1 (2.88).

C+l ------------- ►

where sF’-G*  is the real Weierstrass form.
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2.6. Topological bankground

The norm for a vector x e ®n will be denoted by ||x|| and satisfies the

following relations:

(i) l|x|l-° V x e lRn unless x=0

(ii) < || tat||-|k| • Hill Vket, xe®“

(iii) ||xtx|| ||x|l + llxll Vx.^eK”

(2.89)

Also from (iii) we have || x-j|| || x || -1| y || | ¥ x,£ SR .

We use three vector norms. They are defined by:

l|x||p = (|x1|P+|x2|P+...+|xn|P)1/p (P-1.2,-) (2.90)

where x=[x1,x2,...,xn]te 3RU and IJx^ is interpreted as max|xi|, i~l,2,...,n. 

The norm || x ||2 is the Euclidean length of the vector x. Corresponding to any 

vector norm a non-negative quantity, defined by Sup'1 —■' /j| II » asso"
x^O

dated with any matrix A.

From (ii) of (2.89) we see that this is equivalent to sup II Ax II .
Uib1

Also for ||A|| £ sup ^^l/||x|| = sup || Ax || we have: 

II^OH ~ Hxll-i "

|| Ax || < || A || • ||x|| (2.91)

Matrix and vector norms for which (2.91) is true for all A and x are said to 

be compatible.

The matrix norm subordinate to is denoted by

These norms satrisfy the relations

|| A || = max£|a, . |
1 j i 1J

II AH<» “ ““E lay |

iiaii 2=[wa ha )]1/2
2 is called the spectral norm or the bound norm. 

(2.92)
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Another norm which is compatible with the Euclidean vector norm is the Fro- 

benious or Hilbert-Schmidt norm:

|| A||j3 (trace(AHA))1/2 = 12]1/2 (2.93)

For any mxn matrix A, with m£n, we have:

(2.94)

when A=AH then || A || 2=max{ | Xj | , | X2|,..., |Xn| }=spectral radious of A and

i=l 1

The next proposition says that a sequence of unitary transformations cannot 

change either norm.
□ 

Proposition (2.10): For any A mxn matrix we have PAQ || 2= || A || 2» || PAQ || » 

II A || F if and only if P, Q are orhonormal, i.e. P^-PP^I^, QHQ=*QQ H=In.

Definitions 2.24 [Kato -1]: Let X,/ C Cn be subspaces. The gap between X and 

V is the number:

(2.95)

The gap function is not quite a metric, for it does not satisfy the triangle 

inequality, however the neighborhoods A/(X,e), e>0 defined by: 

W(X,e)^{y: Y(X,/)<e} form a basis for a topology on the set of all subspaces 

of E .

In the case where the norm used in the definition of gap is the 2-norm the 

gap function is a metric.

More important for our purposes is the following theorem that relates the 

gap between X and / to the projectors onto X and V.
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Theorem (2.11)[Kato -1]; Let P^, Py are the orthogonal projectors onto the 

subspaces X and / of En. If the 2-norm is used to define the gap in previous 

definition then:

y (x ,/) - || prpz|| 2

□
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CHAPTER 3: GENERALISED AUTONOMOUS DIFFERENTIAL SYSTEMS MATRIX PENCILS AND 
LINEAR SYSTEMS

3.1 Introduction

The aim of this chapter is to ’’set the scene” for the theory that we will 

develop in this thesis. It will be shown that problems of regular and exten-

ded state space theory may be described in quite a natural way in terms of 

generalised autonomous differential systems. It is because of this unified 

description, that matrix pencil theory plays an instrumental role in the stu-

dy of algebraic, geometric and dynamic properties of linear systems. The ge-

neralised autonomous differential systems provide a natural setting for de-

fining different notions of duality; the notion of "integrator-differentia-

tor” type of duality, motivates the study of a new type of equivalence on 

matrix pencils, namely the "Bilinear-Strictequivalence”. The link between 

the algebraic structure of matrix pencils with the structure of the subspaces 

of the domain and codomain of a pair (F,G), motivates the need for the de- 

velopement of a geometric theory of matrix pencils; detaching this theory 

from its algebraic basis is of considerable importance, since extensions of 

the theory to pencils of more general operators is easier in a geometric, 

rather than an algebraic context. The equivalence between the dynamic, geo-

metric characterisations of invariant subspaces of the geometric theory 

[Won. -1], [Will. -1] and the algebraic characterisation provided by the 

restriction pencil [Kar. -1], [Jaf. & Kar. -1], indicates that the subspaces 

of the domain of (F,G) may be characterised dynamically.

The chapter is structured as follows: In Section (3.2) we will briefly 

recall some of the basic concepts from state space theory, in particular 

those related to the dynamic, geometric characterisation of subspaces of 

tbe state space. In Section (3.3) it is shown how the generalised autonomous 

differential systems, and thus matrix pencils, arise in the theory of regular 
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and extended state space linear systems. Section (3.4) reviews the fundamen-

tal duality notions on autonomous differential descriptions. Finally, Section 

(3.5) explains the motivation behind the theory developed in the subsequent 

chapters.

3.2 Background concepts from linear geometric theory

Consider the dynamical system whose evolution in time is modelled by the 

linear time invariant differential and algebraic equations

x(t) = Ax(t)+Bu(t) tX) (3.1a)
S(A,B,C,D):

^(t) = Cx(t)+Du(t) (3.1b)

where u(’): R+-^> «(*):  R+*X,  £(•): R+*/  and U,X,/ are real linear rector 

spaces, with dim Ol, dim X=n, dim /=m. Here X is the state space, y the 

output space and U the input space. A,B,C,D are linear mappings defined by 

A: X*X,  B: lf*X,  C: X-*/,  D: If*/  and they are referred to as state-, input-state, 

state-output, input-output maps respectively. _u(*)  may be piecewise conti-
00

nuous, C , or distributional; for the study of most properties the piecewise 

continuous assumption for _u(*)  is sufficient. The linear spaces X,l/,/ are 

isomorphic to JRn, r \ Rm and thus A,B,C,D may be represented in terms ma- 

trices of R , R , R , R correspondingly. Throughout the thesis 

we shall consider the matrix representations of A,B,C,D maps and we shall 

use the same notation. It will be also assumed that rank(B)=l and rank(C)=m.

The S(A,B,C,D) model is usually referred as a regular state space model, 

to distinguish from a more general model defined subsequently. Whenever the 

symbols S(A), S(A,B), S(A,B,C) are used, that means we consider the systems 

described by the corresponding maps. A more general than the S(A,B,C,D) model 

will be also considered, i.e.

E x(t) = A,x(t)+Bru(t) t>.0_ (3.2a)
S (E.A'.B^C'.D1):

6 i(t) = C'x(t)+D'u(t) (3.2b)
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where u(-): x(-): R^IR11, •): E^IR® and E^’elR^, Bre]Rnxl,

C’eIR111*11, D'eJR1132^. Note that E is singular (otherwise, this description may 

be reduced to the previous one) and it is known as extended state-space model 

[Ros. -2], [Verg. -1], or descriptor type model [Lue. -1]. There are essential 

differences between the system models S and S^, the most important one has 

to do with the nature of the solutions of S(A) and Se(A) (see [Camp. -1,2]).

In the following we shall consider the S(A,B) system and shall give a brief 

summary of the important concepts of subspaces developed in the geometric 

thoery; for a full exposition see [Won. -1], [Wil. -1].

The system S(A): x(t)=Ax(t) represents a linear flow [Hir. & Sm. -1]. An 

important notion in the study of flows is the notion of invariance. A sub-

space l/CX will be said to be dynamically invariant with respect to the flow 

S(A), if every initial condition x(o)=xoe(/ gives rise to a trajectory x(t) 

that lies entirely in U. We will call Ugeometrically invariant, or A-inva-

riant if Al/Cl/. It is clear that the families of dynamically and geometrically 

invariant subspaces coincide. Suppose now that it is possible to change the 

dynamic behaviour of S(A) by some external mechanism. In particular assume 

that our system is given by

S(A,B): x(t) = Ax(t)+Bu(t) (3.3)

Under the further assumption that we are allowed to use for u(t) linear 

functions of the current state x(t) (accessibility of the states for measu-

rement) we may take u.(t)=Fx(t) in (3.3), where F is a linear map from X into 

U, called a state feedback. With this expression for u(t), we may change the 

dynamics of (3.3) to

S’(A+BF): x(t) = (A+BF)x(t) (3.4)

It is clear that the notions of dynamically invariant and geometrically in-

variant subspaces may be extended to the S(A,B) systems. These observations 

have led to the developement of the geometric theory of linear systems



[Bas. & Mar. -1], [Won. & Mor. -1], [Won. -1], [Will. -1]; the fundamental 

concepts and results are summarised below.

Consider the system S(A,B), xCo)3"^ denote an initial condition and let 

u(t) be a control input. The resulting state trajectory is given by

x(t) - eAtx +/te(t_T)Bu(T)dT (3.5)
—• ' —o o

The linear space of all absolutely continuous trajectories will be denoted 

by E(A,B) and it is formally defined by

E(A,B) = {x: R->X: x is absolutely continuous

and x.(t)-Ax(t) £ im B a.c.} (3.6)

In the following, if F: X-Hl is a mapping we shall often denote Ay=A+BF. The 

space ImBcX shall be denoted by B.

Definition (3.1): (i) A subspace V of X will be called controlled invariant

subspace, if 32^E<A’B) such that ^(o)=^o and 2£<t)€(/, VteiR^.

(ii) A subspace R of X will be called a controllabity subspcace (c.s.) if 

xteR, 3?>0 and *s£(A,B)  such that ^(o)^, xfr)^ and x(t)eR, 

VtelR

□
Controlled invariant subspaces are also called (A,B)-invariant subspaces, 

or A(mod B)-invariant subspaces. The classes of all controlled invariant, 

controllability subspaces defined on S(A,B) shall be denoted by V(A,B), 

R(A,B) respectively. The notion of c.s. is an extension of the standard no-

tion of controllability [Kai. -1]; the meaning of a c.s. is that it is pos-

sible to travel between any two points of the subspace, moving along a tra-

jectory that lies entirely in that subspace. It is clear that c.s. are al-

ways controlled invariant subspaces, and thus R(A,B)c(/(A,B). In the follow-

ing, if 8

<Ay/8!> “

is a subspace of B and F: X+U is a mapping, we will demote

B|+ApB^+.. »+Ay B^. The classes U(A,B), R(A,B) have been characte-
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rised geometrically [Bus. & Mar. -1], [Won. & Mor. -1] by the following re. 

suits:

Proposition (3.1): The following statements are equivaltent:

(i) Ue {(/(A,B)},

(ii) ^F: X-HI such that A^l/ c V

(iii) Al/cV+B 0
Proposition (3.2): The following statements are equivalent:

(i) Re{R(A,B)}

(ii) ^a subspace B' cB and a mapping F: XX/ such that R=<AF/B'>

(iii) 33 mapping F: XX/ such that R=t<Ap/BnR>

For a proof of these results see [Won. -1], It may be readily proved that the 

classes l/(A,B) and R(A,B) are closed under the operation of subspace addition. 

Because of this latter property for every subspace KcX, there is a supremal 

(maximal) controlled invariant subspace and a supremal (maximal) c.s. which 

are contained in X; these subspaces will be denoted by U*(X)  and R*(K)  re-

spectively. The subspaces U*(X)  and R*(X)  may be computed by the following 

algorithms (see [Won. -1]).

Controlled invariant subspace algorithm: Let XcX be a subspace. Consider
«

the following sequence of subspaces

</£ - X, (/£+1 - Kfl A_1(^+B) , ]4>0
(3.7)

This sequence is non increasing and converges to (/*(X),  the supremal (A,B) 

(or controlled) invariant subspace contained in X. □
Controllability subspace algorithm: Let XcX be a subspace. Consider the 

following sequence of subspaces

R° - 0, l?£+1 - l/*(K)  f) (AR^+B) , u>0
(3.8)

where l/*(X)  is the supremal (A,B)-invariant subspace in X. The above se
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quence is non decreasing and converges to R*(K)  the supremal controllability 

subspace contained in K, n

The dynamic notions of controlled invariant and controllability subspaces 

have been extended by Willems [Will. -1] to the notions of almost controlled 

invariant subspace (a.c.i.s.) and almost controllability subspace (a.c. s.). 

The essence of the a.c.i.s. is that beginning a motion in it, one can stay 

arbitrarily close to it by choosing the input appropriately. In the same way, 

an a.c.s. has been defined as a subspace with the property that, starting in 

it, one can steer to an arbitrary point in the same subspace while staying 

arbitrarily close to that subspace. To formally define these two notions we 

need a measure of the distance of a point from a subspace. Thus, assume that 

X is a normed vector space with || ’ II norm. If W is a subspace of X and xeX 

we will define the distance of x to W to be

d(x,W) = inf || x-xr || (3.9)

x'e W

We may give the following definition:

Definition (3.2): (i) A subspace C X is said to be an almost controlled

invariant subspace (a.c.i.s.), if ¥Xq  e V& and e>0, 3x(t) eE(A,B) such 

that .x(o) =x q and.d(x(t), Vp.SE, ¥t e 1R+.

(ii) A subspace ^cX is said to bean almost controllability subspace (a.c.s.), if 

¥x ,x. eR , -]t >0 such that ¥e>0 eE(A,B) with the properties that

x(°)!“x0» 2£(T^=—| an^ d(x(t) »Rp<£> ¥te3R+. |-j

The families of a.c.i.s. and a.c.s. will be denoted by Vq (A,B), Ra(A,B) 

respectively. It is a trivial matter to verify that R(A,B) c V(A,B) c VpA,B) 

and R(A,B) cR (A,B) C V (A,B). The families V (A,B) and R (A,B) are closed
0C CX ix tx

under the operation of subspace addition and thus it may immediately concluded



62

Proposition (3.3): (i) l^eRjA^), if and only if there is a mapping F: X-+U

and a chain B3 B^S B^o • •• 38^ such that

Ra - Bj+AyB^.. .+A^_1Bk (3.10)

(ii) V e Va(A,B), if and only if there exists Ue U(A,B) and ^aeRa(A,B) such 

that Va = V+Ra r.

The subspace 

for R*(K)  [Won.

R*(K)  may be computed by a variation of the algorithm given 
a

-1]. This algorithm is given below [Will. -1].

Almost controllability subspace algorithm: Let KCX be a subspace. Consi-

der the following sequence of subspaces

= 0, - k  n (ar £k +B) , u>0 (3.11)

The sequence is non decreasing and converges to R^(K)9 the supremal almost 

controllability subspace contained in K. q

The families (/^(AjB), ??a(A,B) have been also characterised dynamically in 

two different ways. The first, due to Willems [Will. -1], [Tren. -1] is ma-

king use of distributional inputs and the second due to Karcanius [Kar. -1], 

[MacF. & Kar. -1] is based on the problem of frequency transmission through 

subspaces [Kar. & Kouv. -2] of the state space of a linear system. The first 

of the above two approaches suggests that the families Ua(A,B), Ra(A,B) may 

be viewed as ’’exact” invariant subspaces when we allow the class of state-

trajectories to include not only absolutely continuous functions, but also 

distributions; this is achieved by introducing a convenient class of admis- 

siable distributional inputs and thus allowing the definition of state tra-
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jectories satisfying certain initial conditions. It has been shown, that in 

order to give a characterisation of the U^(A,B), R^(A,B) families it is suf-

ficient to consider an even smaller class of inputs, the class of inputs that 

are Bohl distributions [Will. -1]. This characterisation is similar to that 

given for controlled invariant subspaces and controllability subspaces (Defi-

nition (3.1)) with the only difference that E(A,B) changes to ED<A,B), where 

the latter denotes the set of distributional solutions of S(A,B). It is 

because of this characterisation and the equivalence of these new definitions 

to those given previously, that a I/*  e l^(A,B) is also referred as a distri- 

butionally controlled invariant subspace (d.c.i.s.) and an RaeRa(A,B) as a 

distributionally controllability subspace (d.c.s.). For a proper exposition 

of the topic see [Will. -1], [Tren. -1]. The second approach [Kar. -1] has 

been based on the ’’filter” properties of subspaces (type of frequencies that 

may be propagated through them) and was the first effort to extend the stan-

dard notions of the geometric theory. The characterisation of the subspaces 

of X was given in algebraic terms, i.e. by the type of invariants of a "re-

striction” pencil which may be associated with a subspace (/. The matrix pen-

cil approach has provided a simple characterisation of the subspaces of X 

and a simple method for the computation of l/*(K),  (/ *(K),  R(K), R *(K)  in
— ex

terms of the Kronecker canonical form. The equivalence of the subspaces in-

troduced by algebraic means the subspaces defined by Willems [Will. -1] has 

been established by Jaffe and Karcanias [Jaf. & Kar. -1], The matrix pencil 

approach forms the basis for the treatment given in this thesis and it will 

be briefly summarised below. The dynamic problems which lead to the algebraic 

definitions presented next are discussed in [Kar. & Kouv. -2,3], [Jaf. & 

Kar. -1]. We define [MacF. & Kar. -1], [Kar. -1].
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Definition (3.3): Let S(A,B) be a linear system, N€IR^n 1^xn be a left an- 

nihilator of B and let 1/cXbea subspace.

(a) The pencil (sN-NA)V, where V is a basis matrix of V is called a (/-re-

striction pencil (U-r.p.) and the set of strict equivalence invariants 

of (sN-NA)V will be denoted by Iy(A,B).

(b) The subspace (/ will be called:

(i) A finite elementary divisor subspace (f.e.d.s.), if Iy(A,B) contains 

only f.e.d. and possibly zero r.m.i.

(ii) An infinite elementary divisor subspace (i.e.d.s.), if I^(A,B) contains 

only i.e.d. and possibly zero r.m.i.

(iii) A colircm minimal indices subspace (c.m.i.s.), if I^(A,B) contains 

only c.m.i. and possibly zero r.m.i.

(iv) A row minimal indices subspace (r.m.i.s.), if I^(A,B) contains only

r.m.i. rr

The families of f.e.d.s., i.e.d.s., c.m.i.s., r.m.i.s. will be denoted by 

l/f(A,B), l/co(A,B), l/e(A,B), Vn(A,B) respectively. The relationships between 

those fami 1 -fand the families l/(A,B), Ua(A,B), R(A,B), Ra(A,B) are defined 

by the following classification theorem [juff. & Kar. -1].

Theorem (3.1): Let S(A,B) be a linear system and let 1/cX be a subspace. 

Then,

(i) Ve. V(A,B), iff 3</f eVf(A,B) and (/£el/£(A,B) such that V - l/f ® 

(il) V£(A,B) = R(A,B).

(iii) V e.V (A,B), iff 3 e (A>B) > K»(A,B) and ^e^fA.B) such that

(tv) V eR (A,B), iff gikelUA.B), l/ge,,eCA»B) such that u

□
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Clearly Voo(A,B) C Ra(A,B). The subspaces (/« e V«(A,B) and e l/f(A,B) have 

been called infinite spectrum invariant subspaces, fixed spectrum invariant 

subspaces respectively [Kar. -1]. Subspaces such as 1/^, (/„, have been defined 

by Willems [Will. -1] and they have been referred to as coasting, sliding 

subspaces correspondingly.

The matrix pencil approach leads to a procedure for the computation of the 

supremal subspaces V*(K) 9 R*(K)  and R^*(K)  which are contained in a

given subspace K, by making use of the Kronecher form of (sN-NA)V [Kar. -1], 

Ijaff. & Kar. -1].

Corollary (3.1): Let K be a subspace of X. There always exist subspaces 

l/n € (/n(A,B), l/f e l/f (A,B) , (/a, e UooCAjB) and l/£€(/£(A,B) such that

K = l/n $ l/f ® l/oo ® l/e (3.12)

Furthermore, we have that

(i) l/*(K)  = (/f©(/£, R*(K)  = (/e

(ii) Va*(K)  = l/f ©l/co®(/£, Ra*(K)  = l/oo©(/£ q

3.3 Generalised autonomous differential systems, and matrix pencils in linear 
systems theory

The objective of the work presented in this thesis is the study of the 

algebraic, geometric and dynamic properties of the set of linear, autonomous, 

first-order differential equations.

S(F,G): Fpx(t) = Gx(t), P F,G e IR1™ (3.13)

where x(«): (0”,°°) ->IRn. Differential systems of the above type are intimately 

related with the theory of matrix pencils, since the algebraic, geometric.and 

dynamic properties stem from the structure by the associated matrix pencil 

sF-sG. In general, S(F,G) systems do not always represent physical dynamical 

systems, since as we shall see, for a given initial condition, a solution may 
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not be uniquely defined. It is the purpose of this section to show that S(F,G) 

type systems are intimately related to problems of linear state space theory

of the

emerge

regular, or extended state space type; thus, matrix pencil theory will 

as the key operator description in the study of linear systems. The

formal unification of linear state space theory by means of S(F,G) descriptions

and the matrix pencil theory, has been initiated by the work in [MacF. & Kar.

-1], [Kar. -1], [Kar. & Kouv. -1], [jaf. & Kar. -1], [Kar. 4 MacB. -1], [Kar.

& Hay. -1,2], [Apl. -1]; the origins of the ’’matrix pencil approach”, however, 

go back to the work of Rosenbrock [Ros. -1], and Kalman [Kai. -1],

In justification of a study of (3»13) consider the system

Se(E,A',B’,C,D):
E x(t) = A’x(t)+B’u(t) (3.14a)

where E,A’

full rank,

reduced to

X(t) = C’x(t)+D’u(t) (3.14b)

B’ € IR112^, C’ € ]RmXn, D’ elR™* 1. B’ is assumed to have

but E may be singular. If E has full rank Se(E,Ar,B',C*,D* ) is

the standard regular state space description

x = A 5c(t)+B ti(t)
S(A,B,C,D):

y » Cx(t)+Dii(t)

. A ’ E_1A’, B = E_1B’
(3.15a)

(3.15b)

whereas, if E singular we have the extended state space description

equivalent descriptions of Se, or S of theSe(E,A,,B’,C’,D’). A number of

S(F,G) type may be derived by inspection of (3.14), or (3.15) respectively. 

Thus, by defining the composite vectors £(t), £(t) where ^(t)=[x(t)t, u(t)t]t, 

^(t)-[x(t)fc, u(t)fc, we obtain the following equivalent descriptions

Hay. -1,2].&of (3.14) [Kar.

S(r,A,e):
En x(t) A’ B’ x(t)

_ A(t) - c’ D’
+

- u(t) . - ”im
x(t) (3.16)

0

0 0

A r = 5(t)
494- A



67

or

S (<&,«):
0 0 r ±(t) i B’ 0 r x<t> i'1 aw = * U(t)

_0 0$, 0m _ L±(t) J ^c’ D’ “Im J LZ(t) J
(3.17)

- <(t) - n
Implicit in the above descriptions is of course the differentiability of 

the u(t), jr(t); this may be guaranteed by appropriate definition of the space 

of control inputs. A representation similar in nature to S(r,A,0) has also 

appeared in [Appl. -1], [Ber. -1] and has been termed as an implicit descrip-

tion. Such a description is defined by

En
i(t) =

“A» ’
x(t) +

*0 B’ “ ’x(t) “

_o _c' _ rzm D’ J _u(t) J (3.18)

The above description has emerged as a natural representation from the 

work on non-oriented models [Apl. -2j..

The S($,Q) description is clearly of the S(F,G) type and its importance 

will be emphasized when the problem of dual systems is addressed later on 

[Kar. & Hay. -2,3]. The importance of the S(r,A,0) representation stems from 

its links to the dynamic characterisation of finite and infinite zeros [MacF. 

& Kar. -2], [Kar. & Hay. -3], as well as to the theory of multivariable Ny-

quist and Root locus [MacF. & Kar. -1], [Kar. & Hay. -1]. Thus, by setting 

u(t) = 0 (3.16) yields

S(T,A): r £(t) « A £(t) (3.19)

which expresses the general output zeroing problem on

[Kar. & Kouv. -1], [MacF. & Kar. -2], [Kar. & Hay. -3]. The S(T,A) system 

has been defined as the output zeroing differential system and its solutions 

define the zero structure of SQ.

Variable structureS(F,G) type systems arise in problems such as the Multi-

variable Nyquist and Root locus ([Post. & MacF. -1], [Kouv. & Sha. -1]);
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thus, assume m=£ and let u(t)-ky(t), where k represents a scalar output feed-

back. By substituting in (3.16) and setting g=k~1, we obtain the "closed- 

loop" description

"Er, 0 - “x(t) “ “a ’ B1 1 .x(t)
S(r,A(g)): =

• °Z. _i(t). _c’ -gl+D'- _u(t) _
(3.20) ,

S(r,A(g)) is a variable structure generalised differential system and has 

been defined as the scalar-gain closed-loop differential system [Kar. & Hay. 

-1]. The analysis of such systems differes from that of the fixed structure 

S(F,G) systems; in fact, the fixed structure case is characterised by the 

pencil pF-G (p»d/dt), whereas the variable structure is characterised by the 

matrix net

pe(p,g) =pr+g=-a = p (3.21)

Pe(P’8> has been defined In [MacF. & Kar. -1] as the closed loop system net: 

for the case where E-In, p(p,g) is related to the characteristic gain-frequen 

cy algebraic functions [MacF. & Kar. -1] which in turn define the generalised

Nyquist and Root locus ([Post. S MacF. -1], [Smi. -1]). The system S(r,A(g)) 

may be thought of as the singularly perturbed S(r,4) system; in fact, if gX)

(K*»,  asymptotic root locus case), lim S(r,A(g))=S(r,A) which clearly demon- 
g-*0

strates the equivalence between the asymptotic root locus and output zeroing 

problems [Kar. & Hay. -3].

Alternative generalised autonomous descriptions for Se system problems a- 

rise in the matrix pencil characterisation of the various notions of inva-

riant subspaces of the geometric theory ([Kar. -1], [jaf. & Kar. -1]). Such 

differential systems are defined next in the more general context of 

•Se(E,A’,Bf) descriptions. Thus, let us assume £<n and let Nf e IR ^n"*̂ xn 

3’+elR^xn be matrices such that
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B,+Bf - and Q = ,2LL.
B,+

(3.22)

where N’ is a left annihilator of B1 and Bl+ is a left inverse of B’. By pre-

multiplying (3.14a) by Q, the following equivalent conditions is obtained

NrE x(t) = N'A'x(t) (3.23a)

Se(N’E,N'A'): u(t) = B,+{E x(t) - A’x(t)} (3.23b)

z(t) = C'x(t)+D'u(t) (3.23c)

Clearly, (3.23a) is of the S(F,G) type; for any solution of (3.23a) x(t), 

the corresponding ju(t) that generates x(t) and the resulting y(t) are given 

by (3.23b,c). The Se(NrE, N’A’) description has been termed the input-space 

restricted state mechanism model [Kar. & Huy. -1]. For S(A,B) systems equations 

(3.23a), (3.23b) take the simpler form

Nx(t)=NAx(t) (3.24a)
S(N,NA): +

u(t) = B (x-Ax(t)} (3.24b)

If we now consider the family of systems derived from (A,B) under state 

feedback i.e. S(A+BL,B): x(t)=(A+BL)x(t)+Bu(t), then

Nx(t) = N(A+BL)x(t) Nx(t) = NAx(t) (3.25)

The above equation demonstrates that S(N,NA) does not characterise a parti-

cular element of S(A+BL,B) but the orbit itself; it is for this reason that 

S(N,NA) has been termed as a "feedback free" description [Kar. -1].

Differential systems of S(F,G) type also arise in the study of solutions 

of Se, or S which are restricted to a given subspace 1/ of ]Rn. This problem 

Provides the basis for the dynamic, geometric and algebraic characterisation 

of subspaces of 5 or S. Thus, let x(t) eU and write x(t)=Vv(t), where V is 

3 basis matrix for Then eq (3,23a,b) yield

NrEV$(t) » N’A’Vv(t), x(t) - Vv(t) 
S (N’EV,N’At V): ,

u(t) - B’+{E x(t) - A’x(t)}

(3.26a)

(3.26b)
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The system -S (N’EV, N’A’V) has been termed as the input and U space restricted 

state mechanism model of S . Note that S (NfEV, N*A rV) is the key differential 
—■ ........................... ... 1   * e “

system for the developement of an algebrogeometric theory of subspaces of 

starting from simple dynamic problems; the formulation given above is an ex- 

tensipn of the formulation given by Karcanins [Kar. -1] for S(A,B,C) systems 

and which have led to the matrix pencil characterisation of the geometric 

concepts ([Kar. -1], [jaf. & Kar. -1]).

The autonomous differential systems defined above are intimately related 

with matrix pencils in the variable p=d/dt, or s, the Laplace variable. A 

■qinmnary of the various pencils which are important in linear systems is given 

in Table (3.1). For the regular state space case, the importance of the va-

rious pencils for linear systems is well established; for the extended state 

space theory although some results, similar in nature to the regular case, 

are known, but the general theory is not fully developed. Thus, T(p) characte-

rises the pole structure (eigenvalues, eigenspaces). The pencils P(p), Z(p) 

characterise the zero structure (zeros, elementary output nulling subspaces) 

[MacF. & Kar. -2], [Kar. & Kav. -1]; the relationships between the invariants 

of the two pencils are given in [Kar. & MacB. -1]. The pencils C(p), Q(p) 

define the controllability properties and the pencils R(p), Y(p) characterise 

the observability properties; the relationships between the invariants of the 

corresponding pencils is given in [Kar. & MacB; -1]. The system net P(p,g) 

is instrumental in defining the characteristic frequency and characteristic 

Sain algebraic functions [MacF. & Kar. -1] and thus it is related to the ge-

neralised Nyquist and Root locus theory [Post. & MacF. -1]. The pencil E(p) 

is the key tool in the algebraic characterisation of the various notions of 

invariant subspaces of the geometric theory [Kar. -1], [jaf. & Kar. -1]. 

The theory of invariants and canonical forms in linear systems is based on 

the theory of strict equivalence of matrix pencils [Kai. -1], [Ros. -1],
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Table (3.1): Matrix pencils in linear systems theory

Extended state space Regular state space Matrix pencil 

pF-G, p=d/dt
E x » Afx + B’u. 

y - C’x + D\u

x = Ax + Bu 

y » Cx + Du

• pE-A' Te(p) pI-A = T(p) Pole pencil

[pE-A',-B'] & Ce(p) [pI-A,-B] C(p) Input-state pencil

r pE"A' i a
* Re(p)

-C'

’ pI-A "

-C
= R(p) State-output pencil

~ pE-A’ -B’ ’

-C' -D’ _
- pe(p)

~ pl-A -B '

_ -C “D _
= P(p)

Rosenbrock’s 
system matrix 

pencil

“pE-A’ -B’ 0

-C’ -D’ -I
= 9e(p)

‘pI-A -B 0

-C -D -I
- 0(p) Input-state- 

output pencil

pN’E-N'A' £ Qe(p) pN-NA = Q(p) Restricted- 
input-state pencil

pEM'-A'M’ = Ye(p)

M,M* : Right annihilate
pM-AM = Y(p)

»rs of Cf ,C
Restricted- 

state-output pencil

pN'EM'-N'A'M' = Ze(p)

(D'-O)
pNM-NAM = Z(p)

(D-0)
Zero pencil

pN’EV-N’A’V = 5 (p) pNV-NAV » S(p) (/-restriction 
pencil

r pE-A’ -Br

-C’ gl-D’ _

m=£

= Pe<P.g)
"pI-A -B

-C gl-D _

m=£

= P(p,g) Closed-loop 
system net
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[Thor. -1], [Mor. -1], [Bru. -1], [Kar. & MacB. -1]; the transformation groups 

associated with the particular canonical forms are defined by the special 

strict equivalence transformations which reduce a pencil from a given class 

to a Kronecher canonical form from the same class of pencils.

3.4 Autonomous differential systems, matrix pencils and duality

The generalised autonomous differential system S(F,G) has emerged as a uni-

fying description for the study of properties in linear systems. Their impor-

tance has been further emphasized by their role in defining some important 

notions of duality [Kar. & Hay. -1,3]. The notion of "dual configuration" 

and of the "dual problem" originates from Projective geometry [Grun. & Wei. 

-1]; the essence of the "dual systems" defined next, is of similar nature to 

that of Projective geometry and is defined by the 

valence invariants of homogeneous matrix penr11 r  .

properties of strict equi-

The importance of the dual

differential systems stems from that a "Principle of Duality" similar to that

of Projective geometry may be stated for autonomous differential system;

using this principle, if a proposition is true on one system, 

sit ion is true for the dual syst-pm,

For a pair (F,G) elR x IR™* 11, we may always associate with

[Kar. & Hay. -1]

the dual propo-

it the diffe-

rential systems

S(F,G):

S(F,G):

F px(t) = G x(t)

Ftpx(t) = G^x(t)
(3.27)

(3.28)

S'(F,G): (3.29)

S(F,G) will be referred to as the prime system, S(F,G) as the transposed dual

and S(F,G) as the proper dual system, or simply dual. The duality between 

•S(F,G) and S(F,G) has been termed as transposed duality and the duality bet-

ween S(F,G) and S(F,G) as differentiator-integrator duality, since p is the 

derivative operator and p the integrator operator. The following diagram 
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surnmari aas  the relationships between the three systems

Given that with S(F,G), §(F,G), S(F,G) we may associate the pencils pF-G, 

pFt-Gt, F-pG respectively, it is clear that the essence of the various types 

of duality depends on the relationships between the associated pencils. In 

the following we shall assume that the indeterminates in the pencils are the 

Laplace variables; infact, by taching Laplace transforms of (3.27), (3.28), 

(3.29) we have

S(F,G): ■*  (sF-G) x(s) - Fx(O~) (3.30)

S(F,G): *(sF t-Gt) x(s) = FCx(0-) (3.31)

S(F,G): -(F-sG)x(S) = Gx(0_) (3.32)

where x(0 ), x(0 ),. jc(O ) denote the initial conditions at t=0 of the cor- 

responding vectors, s, s, s denote the Laplace variable and x(s), x(s), x(s) 

the Laplace transforms of x(t), x(t), x(t) respectively [Doe. -1]. The study 

of duality between S(F,G), S(F,G), S(F,G), is reduced to an investigation of 

the links between the pencils sF-G, sFt-Gt, F-sG; it is clear that the homo-

geneous pencil sF-sG is the appropriate tool for the establishment of the 

duality relationships.

The notions of duality defined above may be qualified algebraically in 

terms of relationships between the strict equivalence invariants of the as-
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sociated pencils. These relationships are summarised below [Kar. & Hay. -1, 

2].

Theorem (3.2): The strict equivalence invariants of the pencils sF-G, F-sG 

defined on a general pair (F,G) e IR1113^1 x JRnixn are related as follows:

(i) ' A z.e.d. sp of sF-G is an i.e.d. of F-sG and vice-versa.

(ii) An i.e.d. s^ of SF-G is a z.e.d. of F-sG and vice-versa.

(iii) A n.-z.f.e.d. (s-a)T of sF-G defines a n.-z.f.e.d. (s-l/a)T of F-sG 

and vice versa.

(iv) The sets of c.m.i. and r.m.i. of sF-G and F-sG are equal. n
Clearly, the dominant characteristic in this type of duality is the "in-

version” of frequency which is defined by the dual role of the different 

types of e.d.; since this duality is dominated by the relationships between 

the set of e.d., it has been called as elementary divisors type duality 

([Kar. & Hay. -1,2]). It is worth pointing out that for singular pencils, 

not only the degrees but also the real spaces associated with polynomial 

vectors in Nr(sF-G), Nr(F-sG) (N£(sF-G), N£(F-sG)) are related. Thus, we 

have [Kar. & Hay. -2]:

Corollary (3.2): Let x(s) = s+.. .+xns^ e !Rn[s] be such that (sF-G) x(s) “0.

Then 2t(s) “jc ^s ^+x .!3^ ^+.. e ]Rn[s] also satisfies (F-sG) x(s) = JO and vice 

versa. Q
Clearly, the space - spfx^ Xp • • •, characterises both vectors x(s), 

jc(s) and thus it is an invariant under this duality. A similar result may be 

stated for the generalised eigenspaces associated with the various types of 

e.d. (finite and infinite). For the duality between sF-G and §Ft-Gt we have 

[Kar. & Hay. -1].
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Theorem (3.3): The strict equivalence invariants of the pencils sF-G, §F -G 

defined on a general pair (F,G) elR^x/™ are related as follows:

(i) The sets of z.e.d., n.-z.f.e.d., i.e.d. of sF-G and sFt-Gt are equal 

(modulo change of variables s to s).

(ii) The set of c.m.i. of sF-G is equal to the set of r.m.i. of §Ft-Gt.

(iii) The set of r.m.i. of sF-G is equal to the set of c.m.i. of §Ft-Gt.

□
It is because of the above property that such duality has been referred to 

as minimal index type duality. By combining the above two theorems we may ex-

press the duality between sF-G and Ft-sGt as follows:

Theorem (3.4): The strict equivalence invariant of the pencils sF-G, Ft-sGt 

defined on a general pair (F,G) e JR™"* 11 x JR™* 11 are related as follows:

(i) A z.e.d. sp of sF-G is an i.e.d. of Ft-sGt and vice versa.

(ii) An i.e.d. sq of SF-G is a z.e.d. of Ft-sGt and vice versa.

(iii) A n.-z.f.e.d. (s-a)T of sF-G defines a n.-z.f.e.d. (s-l/a)T of Ft-sGt 

and vice versa.

(iv) The set of c.m.i. of sF-G is equal to the set of r.m.i. of Ft-sGt.

(v) The set of r.m.i. of sF-G is equal to the set of c.m.i. of Ft-sGt.

□
The differential system defined on (F,G) e!RmXnxlRmxn by

3(F,G): FCi(t) = Gtpx(t) (3.33)

will be called the completely dual system of S(F,G) and the duality between 

S(F,G), S(F,G) will be referred to as complete duality, or elementary divisor- 

minimal index duality. The duality notions discussed here may also be charac-

terised dynamically (in terms of relationships between the basic solutions 

associated with each type of invariants); such a property has been used in 

[Kar. & Hay. -3] for the characterisation of infinite zeros of state space 
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models in terms of standard frequency transmission blocking problems [MacF. & 

Kar. -2] on appropriately defined dual system. It is worth noting that in 

this case, a uniquely defined impulsive solution (associated with i.e.d.) 

becomes the dual of a uniquely defined solution involving step, rump, etc. 

functions (associated with a z.e.d.). The various aspects of the duality 

notions will be further clarified in the following chapters.

3.5 Conclusions

The differential system S(F,G) has emerged as the unifying description for 

the study of properties and problems of regular and extended state space 

linear systems. The importance of S(F,G) descriptions is due to its intimate 

links to a rather simple in form, but rich in structure linear operator, the 

matrix pencil sF-G. The classical theory of matrix pencils deals with the 

algebraic structure of sF-G under strict equivalence. Almost all new deve- 

lopements in the theory of matrix pencils have been in the area of numerical 

analysis [Wilk. -1,2,3], [Stew. -1,2], [Van Dor. -1,3] etc.; however, until 

recently [Kar. & Hay. -1,2], [Ber. -1] the other aspects of the matrix pencil 

theory have not taken any significant attention. From the linear systems 

viewpoint, there is a need for further developement of the classical theory 

especially in the direction of the geometric aspects of the theory. One of 

the major aims of the present work is to contribute in the enrichment of 

the classical theory of matrix pencils by exploring the geometric, number 

theoretic and more general invariant theory aspects; by transferring the 

new results on the differential system description S(F,G) the dynamic and 

"relativistic” aspects of the theory also emerge. The intimate link of 

S(F,G) descriptions with linear systems theory, indicates that matrix pencil 

theory, enriched with new results, may provide a general theory for linear 

systems based on the structure and properties of a single linear operator.
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The importance of Segre*  theory in the study of the standard eigenvalue-

eigenvector problem motivates the study of extending the results from the 

context of the simple pencil sI-A to the general case sF-G. A geometric al-

gebraic and dynamic theory of subspaces of the domain of (F,G) is developed. 

The characterisation of invariants from the number theoretic viewpoint pro-

vides the means for novel calculations of canonical forms of matrix pencils. 

The duality of S(F,G), S(F,G) systems motivates the study of algebraic and 

geometric invariants of matrix pencils under Bilinear strict equivalence; 

it is through this study, that a ’’space-frequency relativistic” classifi-

cation of properties of S(F,G) descriptions, and thus of linear systems, 

may be given.



CHAPTER 4:
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CHAPTER 4: NUMBER THEORETIC AND GEOMETRIC ASPECTS OF THE STRICT 
EQUIVALENCE INVARIANTS OF REGULAR PENCILS

4.1 Introduction

The aim of this chapter is to provide a detailed study of the number 

theoretic and geometric aspects of the strict equivalence invariants of a 

regular homogeneous pencil sF-sG. The main idea running throughout this 

chapter is the generalisation of the number theoretic and geometric aspects 

of the standard eigenvalue-eigenvector problem associated with the regular 

pencil sI-A, AelRnXn, to the case of the generalised eigenvalue problem 

associated with the regular pencil sF-G, F,G€RnXn, with F not necessarily 

invertible.

The e.d. structure of the pencil sI-A may be characterised from the num-

ber theoretic point of view by the Segre' and Weyr characteristics of each 

distinct eigenvalue of A; the computation of the Jordan form is then re-

duced to a problem of constructing a Ferrer’s diagram [Tur. & Ait - 1]. An 

essential part in the computation of a similarity transformation, which 

reduces A to its Jordan normal form is the notion of the generalised null 

space of A, defined for each distinct eigenvalue of A [Dor. -11; in fact 

the selection of linearly independent chains of generalised eigenvectors, 

characterising each Jordan block corresponding to an eigenvalue X^, makes 

use of the properties of the generalised nullspace of A. The Segre, Weyr 

characteristics provide the number theoretic aspects of sI-A, whereas the 

properties of the generalised nullspaces (for the various distinct eigen-

values) provide the basis for the study of the geometric properties of 

sI-A, as they are expressed by the chains of generalised eigenvectors.

With every root of an e.d. of sF-sG, finite or infinite, a subspace 

spanned by generalised eigenvectors is associated. This, provides the 

means for the characterisation of the set of e.d. at s = aeCuf®}, as 
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number invariants, defined by the nullspace properties of the a-Toeplitz 

matrices P^(F,G), K-1,2,..., which are completely specified by a and the 

pair (F,G). The notions of Segre, Weyr characteristics, and the Ferrer's 

diagram are extended to the case of sF-sG. An alternative way for com-

puting the Segre characteristic at s - a (different than that based on the 

Ferrer's diagram) is given; this new approach is based on properties of 

sequences defined by a and (F,G), which satisfy the piecewise arithmetic 

progression property.

The study of the geometry of the set of e.d. at s =a is based on the

k kproperties of W {P (F,G)} = W ; the key tool in this study is the notion of 

k ka nested basis matrix of N*.  The study of properties of the nested 
tr a #

bases matrices of N& suggests the way we can select maximal independent 

chains characterising each e.d. at s = a and it also provides a third method 

for computing the Segre characteristic of (F,G) at s = a. The results 

presented here are generalisations and extensions of well-known facts for 

sI-A to the more general case of sF-sG. Such a study provides also the 

means for an alternative method of constructing the Weierstrass form of a 

regular pencil.

4.2 The a-Toeplitz matrices and the k-th generalised nullspace of (F,G): 
preliminary results and definitions

In this section, a number of preliminate results are derived which lead 

to the definition of the a-Toeplitz matrices associated with the pair (F,G) 

and to the definition of the k-th generalised nullspace of (F,G) at s«a. 

For the nxn regular pencil sF-sG, the sets of e.d. corresponding to the 

same frequency (represented by an ordered pair) shall be denoted by

PCI,0) = (s 1,ieu,p1<...<PW),P(O,1) = {s 1,iev,q1<...<q^}

0(1,a) = {(s-as) 1,i€T,aeC-{0},d1^...<dT) or 

P(a,l) = { (as-s) ^,ieT,a=l/a€(C-{O},dj<.. .<dT)

C4.1)
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In the case of sF-G the sets P(1,0) ,l>(0,1) ,0(1 ,a) will be denoted simply 

by P(0) ,P(“) ,P(“) and represent the sets of zero, infinite and a e.d. 

respectively. For the case of F-sG, the P(1,0),P(0,1),P(S,1) will be 

denoted simply by t>(-) ,0(0) ,0(o) correspondingly and represent the sets of 

infinite, zero and 1/a e.d. respectively.

The sets of e.d. P(1,0) ,P(0,1) ,P(1 ,a) define the Weierstrass form sFw-sGw 

of sF-sG described by

(4.2)

Dp(s,s) = si -sH
P P

-> (3P)

6 (s,s) = sH -si -> (S'* 1)
q q q

T01/Jd(s,s) - sId-sJd(a) -> (s-as)d, a*0

A
Jd(s,s) = sJd(a)-sId (as-s)d, a-1.

d •
be the set of a-e.d. of sF-G and {(s-a) 1,i€Tt} be the set of a-e.d. of

F-sG.
di

(i) For every (s-a) e.d. there exists a maximal chain of linearly

Note that (4.2) is the Complex Weierstrass form, since the set of e.d. is 

considered over CD. The pencil sF-sG is reduced to sF^-sG^ by complex 

transformations (R,Q), where R,Q€(Cn><ri and |R|,|Q|*0.

The elementary divisors of sF-sG (finite and infinite) may be associated

with maximal length linearly independent vector chains, as it is shown 

next. The case of finite, non-zero e.d. is considered first and then the 

results are extended to the 0 and 00 e.d. The existence of the vector 

chains is established by the following result.

a  di
Proposition (4.1): Let sF-sG be an n*n  regular pencil and let {(s-a) ,ier}
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independent vectors (x\xi,...,Xj } such that
-l -Z £

(4.4)

and with the further property that the set of vectors {xj,...,x^ 

2q»...,Xj } is linearly independent.
T d ’

(i'i) For every (s-a) i e.d. there exists a maximal chain of linearly

independent vectors {x^x^,... ,x*  } such that

(4.5)

and with the further property that the set of vectors {xj,...,x^t;...; 

at ’ at ’-i . ,. ,Xj ,. ,.,Xpj is linearly
T

independent.

Proof

(i) Let (R,Q) be a pair of

(4.2). Then, all blocks in

for which a=cn. For, every

matrices reducing sF-G to its Weierstrass form

ai are nonsingular apart from those Jje(s)

corresponding block becomes

aF -G w w 
d.

(s-a) 1 e.d. the

0 1 0 0

-ald.+Jd.(o) - Hd.
11 1

0 0 1 0

1

0 ... .. 0

By choosing the set of standard basis vectors
d.

(®j>***>®J  ® JR , then

it is clear that

J (a)e. - al e.+I e e -0 (4.6)
1 J 11

The set of vectors {e.,jed.} is clearly linearly independent and the chain 

is maximal since any attempt to generate more independent vectors using 

the (4.6) algorithm fails. Consider now the vectors {ej,...,ej } of !Rn 

which have all their coordinates zero apart from the coordinates of the 

vectors {ej,...,e^ } at the position of the -sl^ +J^ (a) block, i.e.
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Then

G e! 
w-j

By premultiplying the

C0...0,e.t,0...0]t

= aF

above by R and using the fact that QQ_1-Q^=In we have

RG Q$eX = aRF Q$eX+RF QQeX ,, jed., eX=0 
J W ~J WX -J~l’ J ~1’ -o

or

G{$eh = aF{$eh+F{V_p.
J 3 1

The existence of e.d. guarantees the existence of maximal and linearly 

independent chains of vectors which satisfy eqns(4.4) for sF-G, or (4.5) 

for F-sG. The inverse problem is considered next.

Proposition (4.2): Let sF-sG be an nxn regular pencil.

(i) If there exists a maximal chain of linearly independent vectors 

{«!»•••such that

Gx. = aFx.+Fx. .
“J "J -J-l

then sF-G has an e.d.

jed, *o=2 (4.7)

(ii) If there exists a maximal chain of linearly independent vectors 

rA A , , ,
iXj,...,xd»} such that

jed’, (4.8)

then F-sG has an e.d. (s-a)^ .
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Proof

(i) From (4.7) we have that

(G-aF)Xj x =0—o
(4.9)

and thus for j = l we have that (G-aF)Xj=0; this implies that sF-G loses

rank at s=a and thus sF-G has an e.d. at s=a. We have to show that the

degree of such an e.d. is d. Let (R,Q) be a pair of transformations such

that R(sF-G)Q=sF^-G^. Premultiply (4.9) by R and 

transformation x,=Qx., jed.
“J j ~

define the coordinate

Assume that all blocks in G

Then, (4.9) yields

(4.10)

d.
r -sF associated with {(s-a) ,ier} e.d. 
w w ~

are the

last blocks in the Weierstrass form. Then

Gw“aFw = diag{...;J^ (B.)-aIT ~aH (a)-al^ ;...
i i Hi Hi 1 1

...;Jd (a)-ald }
t  r

(4.11)

Clearly all blocks J (B.)-al , I -aH associated with finite
T. Ti 1 TiAq.Qi qi

(s-^) 1, and infinite e.d. s i respectively are nonsingular;

the blocks J, (a)--al =H, for all iex and thus they are singular. 
1 di i~
the vectors x.

“J
now partition

e.d.

however,

Let us

according to the partitioning of G -aF as in
W w

(4.11), i.e.

(4.12)

/w 4 r>/ 4 ~ e
where xJ ,x are the subvectors of x. corresponding

“Ti ”1
blocks J (B.)-al , I -aH respectively and x-1 is

Ti 1 Ti
corresponding to the singular matrix diag{J, (a)-al, Q | u.

to the nonsingular

the subvector

;...;J (.a)-al, }=
1 dT dT

=diag{H, }. Conditions (4.10) are then reduced to the following
dl dT

equivalent set of conditions
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and

I >
/»q

jed, x t  =0
i

jed, xq.=o

diag{Hd ;...;Hd }x£ = x^"1, jed, x°-0

(4.13)

(4.14)

(4.15)

For j=l, conditions (4.13) and (4.14) have as only possible solution

=0, x*  =0 respectively since the coefficient matrices are nonsingular; 
~Ti <l£
thus all vectors for j>l in (4.13) and (4.14) are zero and (4.12) yields

x. « [0...0;x^]t 
-J -a

For j=l, eqn(4.15) yields that

-a Cc1,0...0;c1,0...0;...,cJ,0...0]

(4.16)

(4.17a)

where cJe(E, jet are constants. It is clear that the number of vector

chains which may be generated is equal to the number of Hj blocks, or 
i

equal to the number of elementary divisors.

Let us now assume that d =f <d =...=d =f_<...<d ^.=...=d =f
1 P] 1 Pj+1 p2 2 pv_l+l T V

be the ordered set of degrees of the e.d. at s=a and let us define the 

vectors

(4.17b)

and the subspaces l/j =span{ej,... ,e^1}, l/2s“sPan{e^1 + 1,... ,e2}f#

^•P 1 1
l/^=span{e^ , ...,ej}. Furthermore, let us denote by $...$(/J

and by V, o .®l/ .J l,2,...,i) 1+1 v
For all j<fj, eqn(4.15) generates vectors x^, which may be readily 

v

shown

to have the following general form

(4.17c)
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(x^ has a nonzero projection on at least one of the 

*}), then by using (4.15) for j=fj+l, it may be readily 

!=0 which contradicts the assumption that x ^Vq .

is f|; note that any chain 

completed by selecting

If Vuo’ but ^'?1)

,~1 ~Pvectors teJ,...,e1

1 Pshown that Cj“...^Cj

Thus, if the maximal length of the chain

of length j<f| is not maximal, since it may be 

linearly independent vectors up to j—f » ns it 

x^Vj) the length of the maximal

r* *u  | nu | au  J «

(i) If there exist maximal chains of linearly independent vectors
• A

{X|,...,x^ }, ie£, such that
ai

Gx* = aFx!+Fx^ ,, jed., xL=0 (4.18)
"J “J -J-l ~1 -o

that x eV.v, but x /I/. (x has no projection on-al)’ -a 1,2) -a
and has at least a nonzero projection on (e^1 + \ ...,e^2}).

is indicated by (4.17c).

Therefore, if chain is f j.

Assume next

{e1 eP1)<S1,...,e1 j, -1

For all j£f2» the vectors generated by (4.15) have the general form

(4.17d)

t---------  d , -------------- f i------- d
Pi+I T

If the chain has length greater than f£> then for j^f^+l it may be readily 

shown that c^..»cP^«0, which contradicts the assumption that 

by x^el/j^; thus, in this case the maximal length is f£. If the chain has 

length less than f^, then it cannot be maximal, since (4.17d) may generate 

more linearly independent vectors up to f^ in number.

Using similar arguments it may be shown that if x^V^ .x but 
»•••>!/

■f ,‘j.i th® chain has length f.^. and thus the e.d. has,...,!, 1T 1 J 1+ 1

degree f.+ J. The proof of part (it) is similar. □
An obvious generalization of the above result is the following 

proposition.

Proposition (4.3): Let sF-sG be an nxn regular pencil.

with the vector set 1
•Sd/ } linearly independent, then
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d 1 dp
sF~G has a set of e.d. {(s-a) ,...,(s-a) p}.

(ii) If there exist maximal chain of linearly independent 

{x£ x1

1

vectors

that

with

then

By

Fx^
“J

(4.19)

a 1 . Ap

F-sG has a set of e.d. {(§-a)dl,...,

the vector _ rA* set {Xj,

Propositions (4.1)

a regular pencil may be

Theorem (4,1): (i) The

’ APT i,...,xd, f } linearly 

(s-a)d’p’}.

independent,

and (4.2) a characterization of

derived. Thus, we have:

regular pencil sF-G has an e.d

if there exists a maximal chain of linearly independent

(Xj,£2,...,xd> such that

Gx. = aFx.+Fx. ., ied, x =0 -i -1 -1-1’ -o -

the set of e.d. of

or equivalently

G-aF 0 ..

-F G-aF ..
• •

♦

0 0 ..

ied

(s-a)d, if and only

vectors

(4.20)

(4.21)

□

(ii) The regular pencil F-sG has an e.d. (s-a)d , if and only if there 

exists a maximal chain of linearly independent vectors {x,,...,x,} such
— I —d

that

a a a «A • j  t A «Fx. = aGx.+Gx. ,, led’, x =0 -1 -i -i-l’ ~ ’ —o - 

or equivalently
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F-aG 0 ... 0

-G F-aG... 0
• •• •

0 0 ... -G

(4.22)

□
By noting that e.d. of the type and sq are special cases of (s-a)^ 

for a=0 and (s-a)q for a=0 respectively and taking into account the 

duality of e.d. established in the previous section we have the 

following two results:

Corollary (4.1): The regular pencil sF-G (F-sG) has a zero e.d.

(infinite e.d.) s^ if and only if there exists a maximal linearly 

independent vector chain {x],...,x } eRn such that

Gx. = Fx. ,, iep, x =0 -i -i-l’ —o (4.23)

or equivalently

G 0 

-F G

0 0

0 0

0

0

G

-F

(4.24)

□
Corollary (4.2): The regular pencil sF-G (F-sG) has an infinite e.d. 

(zero e.d.) sq if and only if there exists a maximal linearly independent 

vector chain {xj jX^,... ,x^} eRn such that

Fx. = Gx. ,, ieq, x 0 -1 -1-1’ -o - (4.25)

or equivalently
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0 ... 0

F ... 0

0 ... F

0 ..•—G

(4.26)

□
The above results suggest that the finite and infinite e.d. of a regular 

pencil may be defined independently of the Smith algorithm originally used 

for their definition. In the following, the problem of computing the 

degrees of the e.d. as well as of the vector chains associated with them 

is examined.

Let sF-G be an nxn regular pencil. For every ael, we may define the

following matrices associated with the pair (F,G):

01
P (F,G) = G-aF e C a

p2cf ,g )
G-aF

e a:2nx2n
-F G-aF

G-aF 0 0 0

...,P*(F,G)

The rank of the matrix P1(F,G) 
a

a

-F G-aF -inxin e (E (4.27)
0 0

0 0 ... G-aF

0 0

0 i-1,2,...

-F G-aF

For the case of s=« we define the matrices PX(F,G) by
00

F 0
P!(F,G) - F eRnXn,

00

P^(F.G)
-G

eR2nx2n,...

-G e Rinxin (4.28)

F 0 0 0

F 0 0

F

F 000
i»l 9X 1 , to , . • .

0 0 . -G F J

(P1(F,G)) shall be denoted by
00

i 
pa
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and the corresponding nullity (rank deficiency) shall be denoted by n3 (n*)  

respectively, note that n1=ni-p1. Matrices of the type P1(F,G), P1(F,G)
CL CL CL 00

shall be referred to as i-th order a-, °°-Toeplitz matrices of (F,G) 

respectively; some important notions associated with them are defined next.

Definition (4.1): (i) We define as the index of annihilation of (F,G) at

s=a (s=«>), the smallest integer t (t  ) for which n a=nTa+1 (nT°°=nToo+1).

(ii) Let W^=Wr(P^(F,G)) (a is finite or infinite) and let N^e(En^xna be a

* . . i
basis matrix for n (a right annihilator of PX(F,G)). Let M16<CnXTla be the 

CL CL CL
* • 

submatrix of N*  which is made up from the last n rows of n\ The vector 

space M3 = col.spanfM3} is defined as the i-th generalized null space of 

(F,G) at s=a.

The above notions are natural extensions of the notions of index of 

annihilation and generalized nullspace defined on linear operators, to the 

case of a pair of linear operators. The spectral analysis of regular 

matrix pencils heavily relies on those two notions. We start off by 

stating the following preliminary result.

Proposition (4.4): Let sF-G be a nxn regular pencil. The following 

properties hold true:

(i) The i-th generalized nullspaces of (F,G) at s=a, i»l,2»... is non-

trivial (*{0})  if and only if G-aF is singular.

(ii) The i-th generalized nullspaces of (F,G) at s=a, i-1,2,... are nested,

L*e* iasl,2,... and the chain has a maximal
a a a a a

4c
element M .a

Proof

There are two possible cases: G-aF nonsingular and G-aF singular. If 

|G-aF|*0,  then because of the upper triangular structure of p\f ,G), 

PX(F,G) are nonsingular and thus, W1={0} and M3"—{0}. The upper triangular
™ Ct ot

structure of P^(F,G) and the fact that G-aF is on the diagonal guarantees
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that the Nx*{0}.  In order to show that Mx*{0}  we apply induction. Thus, 
a a

for i=l, P^(F,G)=G-aF and since |G-aF|=0 there exists a right annihilator

N «x!eCI1Xn<x of G-aF, i.e.
a 1

[G-aFlx! = o, xj *0

Thus, For i-2, P2(F,G) becomes

P^(F,G)
G-aF 0

-F G-aF

2
Clearly, the nullity of P^CFjG)

1 - - - - - -

is greater or equal to
_2

P^FjG) since the columns of the matrix N , where 
a a

the nullity of

N2
a X1

X1

1 * n
■ I 

n

2
are in Starting

right annihilator of

from N2 we
a

P2(F,G) of

may complete the basis 2of W and obtain a a

form

N2 
a

the

0 ■x!
1 ' 21 X! X2

2 
_2nxp e <C 'a

x!
2 11? •

Ma*{0};  furthermore, sp{CX j l}csp(CX} ^X-^J} Assume now that Nx is a right 

annihilator of PX(F,G),

Since the columns of are • 1 2linearly independent, sp{Cx j ,X23}*{0}  and thus

N1
a

where

1
•

Op

0 i x; •
' 31

yr
0 ! x? :x3!-
1 ! „2 ; 3i.

X1 1 x2 i i

.i-1
1__

X^
1

x!
1

e CniXT1a

a

a
’ 0

and M^=sp{[X j,..., x!]M0}. Then we may write that
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P^+'(F,G) -F

0 P^(F,G)

0

and clearly the columns of N^, where

0

s1a

are independent and in W^+1.

of Ni+1
acompleted to a basis

the form

Ni+1
a

Thus, M^+1=sp{CX J,

N1 
a .

• n1* 
a

T4T i+1

If na

A right annihilator

* n
I. 

ni

>T)1, then the 
a

0 ix! 1
1+1

1

N1
a

1
1
1 •

• x?;
■ 1+1.

and £M^+
a a

(F,G) and

columns of N1 may be
a

is then ofof P^+1(F,G)

T£ 1+1 X If n =n , a a’
then N1 is

a
a right annihilator of P^+^(’ , 1

Note that M\(Cn and thus there is an upper bound for dim 

property

the nesting
* 

implies then the existence of a maximal element
□ 

The following Corollary is readily established from the above result.

Corollary (4.3): Let sF-G be an nxn regular pencil and let G-aF be

singular for aeCC. There exists a basis for A/1 of the type 
a

(4.29)
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where 1 is a basis matrix for A/1 1, x! a basis matrix for A/1 and the 
a a 1 a

columns of x!, j=2,3,...i are in A?.

J a □
Remark (4.1); The subspaces i=l,2,... are nontrivial (*{0}),  if and 

only if G-aF is singular; the matrix G-aF, however, is nonsingular if and 

only if the regular pencil sF-G has a set of e.d. at s=a. Thus, it 

follows that the subspaces A/^ (A/^) are nontrivial if and only if sF-G has 

a set of e.d. at s=a (s3'®®).

4.3 Segrez, Weyr characteristics, and the piecewise arithmetic progression 
sequences of (F,G) at s=a(°°)

In this section, attention is focussed on the investigation of the links
• •

between the properties of A/*  (A/^ and the structure of the e.d. set of 

sF-G at s=a. The result of the present analysis is the introduction of 

two alternative procedures for the computation of the set of degrees of 

the e.d. at s=a (s=«>) of sF-sG, rather than the Smith form based 

definition of them. The results will be presented for s=ae<E, whereas the 

case of s= °° is similar (simply use P1(F,G) instead of Pi(F,G)). We start 
00 a

off by giving the following useful result.

LgTO. I4-1)’ Let H-diaglHj,... ,^1 eRnxn, where

" 0 1 0 ...o'

II 0••
0 1 ... 0• •• •• •

_ d^xd*.  elR i i

0 0 0 ... 1

_ 0 0 0 ...0 _

dj<d£^.. .<d^, W^=A/r(H } and ri^=dim A/^. Then, the following properties 

hold true:

(i) The set of subspaces AL is nested, i.e. ALsAL^ and the chain has a 

maximal element A/*  = IR^ where d = .I, d..
1=1 1

(ii) The smallest index t  for which is called the index of

annihilation of H and T=max{d.,iev}.
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Proof

k 1=1 ni where ni=di k^di and Th«k if k<d..1 i

It is clear that Hk=diag{Hp ... ,H^} 

block-diagonal structure of Hk, is

k • to the H. matrices 1

for all k=l,2,... Because of the

defined as a direct sum of the

null spaces corresponding

H^=0 and if k<d_., then

Note, that if k>d^, then

...0 0*•  • • 0

...0

•0

0... 0

and thus a basis matrix

0
for NJH*} is

= I if k>d.d. d. 11 1
and

By inspection of the above it

d.-k 1
....k

defined by

Tk
if k<d.1

(4.30a)

(4.30b)

is clear that N with equalityn 1 r i

holding only when k>d^. Since 

the nullspaces associated with

k } may be expressed as a direct sum of

the blocks, it follows that ALcA/.^.

Clearly the smallest index for

this is

which ^T=^T+j is T=max{dpi€v}, because

minimal value of j for which lL=0 and thus A/ =]Rd, where d= . E, d.
T 1=1 1

Because n. =dimN {Hk} • .1 dimN {Hk} and the 
r x— 1 T 1

have that if k<d., then n%dimM {H^}=k and
1 i r 1

and dimA/ {H^}=d..
r i i

special structure of IL, we 

if k£d., then since H^=0

h T1

-•

0

0

0

1

0

0

1

1

0

1 0

□
pencil, let G-aF be singular atTheorem (4.3): Let sF-G be an nxn regular

d 1 d^
s=a and let {(s-a) ,...,(s-a) } be the set of e.d. at s=a. The following 

properties hold true:

(i) - dim n^, where n^d., if k>d. and n^=k, if k<d..

(ii) dim = dim A/^ = n^.
a a a

(iii) The smallest integer t  for which MT 1cMT=MT+1=M* , is the index of
a a a a

* V
annihilation t of (F,G) at s=a; t  =max{d.,igv} and dimM =d= .£. d^.

Ct Ct X 0*  i-*"" * *
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Proof 

(i) It is clear that if R,Qe(EnXn> |R|,!Q'-0, then rank{P1(F,G) } » 

=rank{diag{R,...,R}pi(F,G)diag{Q,...,Q}} and thus, the rank property may 

be tested by using the Weierstrass canonical pair (F ,G ). Assume G -aFJ & w’ w w w

since 6|*a, and thus we may writeare non-singular,

G -aFw w

T

0

0

H

where T is the block diagonal matrix made up from the non-singular blocks

and H=diag{H ,... ,H }, where H.=»Jj  , (a)-alj. eRdixdi. Note that
i v 1

k . k kn “dimA/ <P (F ,G )} and thus n is defined by finding the maximal number ot r tv  ct

of linearly independent solutions of the equation

v
^et i=i d^=d and a=n-d. 

of Pk(F ,G )
a w w

every k

to the partitioning

we have that the following conditions must be satisfied for

It may be readily

o’; 

H!
. - A.

f
I •

H

0

A

_i2_

A

_lk_

I 1_
__

_

= 0, D eRaXG (4.31)

verified that the above equation is equivalent to the

T 0

0 H

following two equations
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and

(4.32a)

(4.32b)

Given that T is nonsingular, eqn(4.32a) has as the only solution the

c^us> na i-s defined by the number of independent solutions

of (4.32b). Eqn(4.32b) is equivalent to

h 2j = °> *1  = H^2’””^k-1 * n^k (4.32c)

or equivalently

hx 2, ^2 = ’ H^k’ nk^k = (4.32d)

Let be a 

matrices x.
i may

and thus

where

Clearly the

right annihilator of H . Conditions (4.32d) suggest that

be defined by

t
^-1 - K-2 ’ HX>-’ *k-j  ’ H\ (4.32e)

;k-j] 
*k

t
j

is the submatrix of formed from the last k-j rows.

row space of the matrices

(4.43f)

0

0
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X =

x; 0Axi
0
^-1

0 "

(4.32g)

P 
iid

. id
9 X

are equal to the row space of X^. X, however, is a right annihilator of 

k k kP (F ,G ) and thus n -divaN is equal to the number of independent rows, 
(X W W (X 01

Thus, dimM^=n^=
’ a a

the proof of part (i) and part (ii) is

* . kor columns of X^, or otherwise equal to dimN^fH }. 

=dimA/r{Hk} and by Lemma (4.1) 

established.

(iii) Since X, as defined by 
If 

(4.32g), is a right annihilator of Po(F ,Gw) 

of (full rank matrix), N1 and thus M1 
a a

By Lemma (4.1) becomes

for whicha

and ^k is a ^Sht annihilator 

become maximal xvhen W^fH^lbecomes maximal, 

maximal for k>max{d^,iev}; the smallest integer t

^aa ' cA/T(x=MTa+* is clearly t  =max(d.,i€v} for which N {HTa {HT(X}=
u a a ai ~ r r

q,Wr>{H a 1}. For k>max{d^,iev}, H^=0 and thus X^=I^, 

dimM = d = y ha a 14] d£- 

Thus,di-

□
above result establishes the links between the

the degrees of the e.d. at s=a and thus provides the

spaces

basis for

and a

the

definition of the degrees of the e.d. at s=a without resorting to the
*

construction of the Smith form. The maximal subspace M*  plays an 

important role in the determination of the chains of vectors associated 

with the set of e.d. and shall be referred to as the maximal generalized 

nullspace of (F,G) at s=a. Before we examine the geometry of the e.d. 

set of (F,G) at s=a, a number of important results characterising the 

e.d. as numerical invariants of the pair (F,G) are given first. Some 

useful notation is introduced first. Let cj \ be the multiplicity of the
d.

e,d, (s-a) x; the ordered pair (d.,<j\) characterises such e.d. The 
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ordered set (d^,0^),...,(d ,(7 ),dj<♦..<dp} characterises the totality

of the e.d. of sF-G at s=a and shall be referred to as the index set of

(F,G) at s=a.

Corollary (4.4): Let sF-G be a regular pencil, G-aF singular and let

{(dpCTj),..., (dp,op);d1<...<dp) be the index set of (F,G) at s=a. The 

«*  kdimensions nk of the subspaces ft*  of (F,G) at s=a satisfy the following

properties: 

(i) If d.^k<d..., then
1 1+1

nk=,Vjdj+k(’i+i+---+<ip) 

j = l J J
(4.33)

and nk’k^al+< -,+ap) k<dl and nk = i»l °idi k“dp*  

Cii) For all k=0,l,2,..., then \+i“\“a£+’*‘+ap» where 

multiplicities of the e.d. (s—a) i for which k<d^<...<d^

CTi,“* ,<7p 

and n =0.o

are the

For

kadp’ nk+rv°-

Proof

Ci)

C4.3)

The proof of part (i) follows immediately from part Ci) of Theorem

by adopting the notation introduced before.

Cii) If d,<...<d.<...<d are the degrees of the e.d. at s=a then the 
1 i P

following possibilities exist

Ca) d|-1^k<k+l<di. Then, by C4.33) we have

i-i
nk+rnk ’ ,Hjdj+<k+D^i+---+%) - J/jdj-k(ai+---+%)

= O.+...+O
i P

(b) di-!

nk+rnk

<k<k+l=d£. Then, by (4.33) we have

i i“1
J1^jdj+di<<ji+l+---+ap) - .^<Jjdj'cdi-l)c<Ji+"-+<’p)

o.+1 . . .+0
p

(c) d £k<k+1. 
P

Then, by part (i) we have Hk+1=nk and nk+1”nk=O.
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(d) k»0. Then, n 30 and n =a,+...+a . Thus, n.-n =o,+...+o
o ii p lol p

The above corollary provides the means for the computation of the e.d. 

structure of (F,G) at s=a by using the dimensions of the subspaces 
a*  

or the nullities of the Pk(F,G) matrices.

Remark (4.2): The differences provide the following information

about the e.d. structure of sF-G at s=a.

(i)

(ii)

the number of e.d. at s=a.

The smallest index k for which nk+l“nk3S° 8ives the index of

(iii)

annihilation t  , which is alsoa

The difference nk+l-nk defines

equal to the maximal degree d 
p’

the number of e.d. with degrees

higher than k.

The computation of the complete set of degrees and multiplicities mahs

use of the following result.

Corollary (4.5): For all k-1,2,..., the numbers satisfy the relationship

. nk-l+nk+l
"k 4 2 (4.34)

in particular, we have that

(i) Strict inequality holds if and only if k is the degree of an e.d.

of (F,G) at s=a.

(ii) Equality holds if and only if k is not the degree of an e.d.

Proof

Necessary and sufficient condition for the to be nonzero is that sF-G

has a set of e.d. at s=a. Assume, then that ((d. ,cr.(d ,o )} be the
11 P p

set of ordered pairs of degrees and multiplicities. We may distinguish 

the following cases:

k>dp‘ Then> by Corollary (4-4) bave nk+l“nkSS°3xnk“nk-l and thus

(4.34) holds with the equality sign.

di-jSk-l<k<k+l£d.. Then, by Corollary C4.4) we have n -n asa. + <>.+(J
* 1 k k-1 i * o
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(c)

and Pk+j-Pk=cr^+.. ,+Op from which the equality sign holds true 

d^_j<k-l<k=d_^<k+Kd^+j. Then, by Corollary (4.4) we have

nk+rv°i+i+---+<JP and thus Wi>nk+rnk and 

the inequality sign holds true.

(d) If k=l=d <2£do, then p.-p »a.+...+o and pn-p.=<JO+...+a and thus 1 Z lol p Z 1 Z p

inequality holds true.

(e) If k=l<2£d., then p,-p “O.+...+O and po-p =o,+...+o , from which the 1 loi p z I 1 p

equality sign holds true.

The above analysis proves the necessity of part (i) and (ii). The

sufficiency is proved by contradiction. Thus, let us first assume that

inequality holds true for some k and that k is not the degree of an e.d.

Then cases (a), (b), or (e) are the only possibilities for k. Clearly, in

either of these cases equality holds and this leads to a contradiction.

Similarly, if we assume that equality holds for some which is the degree

of an e.d., then the only possible cases are (c) and (d) which clearly

imply that inequality holds true, thus contradicting our assumption.

The above result results in a very important property of the non-

decreasing sequence of natural

which are not degrees of e.d.,

numbers pQ,Pj,...,p^,... For all k integers 

the numbers pk satisfy the arithmetic

progression relationship (APR)

which coincide with degrees of

Pk=l/2(Pk_j+Pk+1)• For those values of k

e.d., the arithmetic progression

relationship is violated since pfc>1/2 Cnfc_ j +Pk+ j). The sequence

k

□

ti q,, • • •»n^,... is partitioned by those values of k which correspond to 

the degrees of the e.d. If dj<d2<...<dp are the possible degrees of

elementary divisors, then the numbers p, ,p ,...,p ,p are
a • a. +1 a...-1 a.. ,11 1+1 1+1 

elements of an arithmetic progression sequence (APS), since

Pk“l/2(Pk_j+Pk+|) for k=d.+l,...,d£+i”l; this relationship that holds in 

the (d^+1,...,d^+j-1) range of k values cannot be continued in the
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(di_]+l,...,di«l), or (di+1+l,...,d.+2-l) since nd >l/2(nd +1+nd _j)
i i i

and nd_ >1 /2(nd, *n  ). The number «d.-<nd -nd p-Chj -nd )-
1+1 1+11+1 111 11

=2nd -nd +j i-s a measure of discontinuity, or deviation between the
i i i

APR holding in (d^_^+1,...,d^-l) and (d^+1,...,dd+j-l) respectively. The 

sequence nQ,hj,...,... therefore satisfies the arithmetic progression 

type relationships in finite sets of successive natural numbers; the only

ld.

points where such relationships do not hold (but become inequalities) are

the degrees of the e.d. Such a sequence will be referred to as piecewise

arithmetic progression sequence (PAPS) of (F,G) at s=a; the value of k=d,

where there is a discontinuity in the APR, will be referred to as a

singular point and the number <$d will be called the gap of the sequence

With these observations in mind we can state the following result

relating the PAPS n . of (F,G) at s=a with the index set of (F,G)

at s~a.

Proposition (4.5): Let n. ,ri|,... ,n.,.. • be the PAPS of (F,G) at s=a.

Then

(i) An index k=d.
1

is a singular point of the sequence, if and only if

Cii)

Proof

d.
1

If

is the degree of an e.d. of sF-G at s=a.

k=d. is a singular point, then the gap <5, at k=d is equal to 1 u•
1

the multiplicity cr, of the e.d. at s=a with degree d..
d. 1

1

Part (i) follows immediately by Corollary (4.5). Since k=d. is the
1

degree of an e.d., then by Corollary (4.4) we have that

=a.+ai+l+...+ap and V rnk=<W ’' ’+<7p and thuS 5d. = (Wl )_(nk+rnk)=Ci ‘

1 ■ □

By finding the singular points of the PAPS, t ]q , . ,r^,... and the

corresponding gaps, the index set of (F,G) at s=a is defined. The analysis
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presented so far leads to the following procedure for the determination of 

the degrees of the e.d. at s=a.

Piecewise arithmetic progression sequence diagram (PAPSD) : Compute the 

numbers n ,n,,,...,n, ,..., with n =0 until we find the first index t  for ol’2 k o

which n =n . Then, t  is the index of annihilation of (F,G) at s=a. 
t t + 1

Compute then the gaps of the PAPS, i.e.

<5. « 2n.-n. for i=i ,2,...,t ,t +i ,n =01 li-li+l ’ o

and form a table of the following type: For every index i there is a 

value <5.^0; if 5.=0 a dot is placed below 6. and if 6.>0, then we create 

a column with asterisks below 6^, with the number of asterisks being equal 

to the value of 5^. This procedure is illustrated by the following 

diagram:

index: 1 , 2 ,..., i-1 , i , i+1 ,..., t  , t + 1

gap : 61,<S2,...,5i_1,6.,5i+1,...,3T,6T+1

• • .
* • .* • .

• **

Fig.(4.1)

The indices characterised by dots do not correspond to degrees of e.d., 

whereas those characterised by asterisks define the degrees of the e.d. 

The number of asterisks in a column gives the multiplicity of the e.d. 

whose degree is the corresponding index. Thus for instance, in the above 

diagram we have e.d. with degrees 2,i,r; the multiplicities indicated by 

this diagram are 2,4,3 respectively.

The above procedure will be illustrated later on by an example. An 

alternative technique, which may be used for determining the index set 

of (F,G) at s=a is discussed next. The following procedure is a
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generalisation of the standard procedure used for finding the Jordan blocks 

of a square matrix A, which is based on the notions of Weyr and Segre 

characteristics and used a Ferrer’s type diagram for the partitioning of 

natural numbers CTurn&Ait].

The extensions of the standard notions used in the analysis of the sI-A 

pencil to the case of sF-G regular pencil is considered first.

Definition (4,2): Let sF-G be a regular pencil, G-aF singular and let 

no,hj,...,n£,... be the nullities of P^(F,G), i=0,1,...,i,..., where 

P°(F,G)=In. We may define the following:

(i) The Segre' characteristic of (F,G) with respect to a is defined as 

the set of the first nonzero differences of the powers to which the scalar 

factor (s-ot) occurs in | sF—G[ and in the H.C.F.s of its minors of 

descending order. Clearly, if {(d^),...,(dp,cr); dj<...<d^} is the 

index set at s=a of (F,G), then the Segre characteristic at s=u is 

defined by _

So(F,G) = {dp C4.35)

(ii) The set of the first nonzero successive differences in n ,h|,...... 

is defined as the Weyr characteristic of (F,G) at s=a and it is denoted by 

(Va(F,G). Clearly, if t  is the index of annihilation of (F,G) at s=a, then

Wa(F,G) = ^1’n1-no,Y2*n 2-n1,...,YTarnT-nT_1} (4.36)

The Weyr characteristic contains all the information we need to define 

the Segre characteristic, as it is shown by the following result. 

Proposition (4.6): Let Sa(F,G) ,Wa(F,G) be the Segre',Weyr characteristics 

respectively of sF-G at s=a, as denoted by (4.35) and (4.36), 

correspondingly. Then,
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(i)

(ii)

Yj^Yj+| for all j=l,2,...,T and Yk+|=*0  for all k=T,T+l,...

The strict inequality Y^Y^i holds true if and only if k=d^, where

a Segre index (element of Sa(F,G)). The multiplicity ofd.
1

is

The

d.
1

is

above

then defined by o.=y, ~Yj .•J 1 d. d.+1
1 1

result is an alternative presentation of Proposition (4.6) and

□

thus its proof is omitted. The proposition suggests a method for computing

Sa(F,G) from Wa.(F,G), which is known as a Ferrer’s diagram [Turn& Ait].

Ferrer’s diagram: Let £Va(F,G)={Y|,Y2»•••,YT J be the Weyr characteristic 
a

of (F,G) at a. For every number y. create a row with asterisks. In each

row we put as many asterisks as the numbers Yj »Y2>»««,Y

Then we count the number of asterisks in each column.

respectively, 
a

This gives us the

elements of the Segrez characteristic Sa(F,G)

is shown below:

of (F,G) at s=a. An

illustration of this diagram

d
P

d .-..d- d,
p-1 2 1

Y1

A

Yd] + 1

'f

** • • •

*-°l

*..

* ..

*

• • •

Yd2+1
*.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* * * * *

* * * *
* * *

* * *

*
°2'

V. *.. * * *

**
p-1

+ 1 Fig.(4.2)

v
Yd *.. *

a -
P

An example demonstrating the determination of the index set of the

pair (F,G) at s=ct, using both methods discussed before is given next.
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Example (4.1): Let sF-G be a 20x20 regular pencil and let G-2F be rank
d.

deficient. The pencil sF-G has e.d. of the type (s-2) x; the degrees and

numbers of such e.d. may be found as follows: Let the ranks of P^CFjG)

and the corresponding nullities be

po = 20, P1 = 15, p2 = 30, P3 * 47, P4 " 64’ p5 = 82, p6 = 102

n = 0 , n, = 5 , = 10, no = 13, n, = 16, nc = 18, rv = 18
O 1 L J 4 _) oI

Since ^=5 we have 5 e.d. and let d}^d^^d^<d^^d^ be their corresponding 

degrees. The index of annihilation is t =5 and thus d^=5; because ri^=18, 

we also have dj+d^+d^+d^+d^^l8. The prediction of the distinct degrees may 

be achieved by using the piecewise arithmetic progression property of the 

sequence rigthj,.-., or by using the Ferrer diagram.

n1=5=i/2(no+n2), n2=io>i/2(n1+n3)=9, n 3=i 3=1/2 (ti 2+n4) 

n4=16>l/2(n3+n5)=31/2, r] 3=18>l/2(n4+n^) = 17, and 

’lk=‘1/2(1\-l'H\+l) for all k=6,7,...

The singular points of the PAPS of (F,G) at s=2 are k=2,4,5 and thus the 

possible values of e.d. degrees are 2,4,5. The multiplicities of the 

degrees are found by computing the gaps at the singular points k=2,4,5 of 

the no,nj,..* ,n<,... sequence. Thus,

k=2: )-(n3~n2) = 5-3 = 2 = <$2

k=4: Cn_4-n3)-(n5-n4) = 3-2 = 1 = <5^

k=5: (n5-n4)-(n6-ri5) = 2-0 = 2 = <5^

Thus, the degrees of the e.d. are (2,2,4,5,5). The PAPSD may be readily 

constructed as follows:
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PAPS diagram:

index: 1 2 3 4 5 6

gap : 6. 62 53 54 S5 S6

• * • * * •

* *

and thus the e.d. have degrees {5, 5,4 ,2,2}.

The alternative technique based on the Ferrer' s diagram is illustrated

next.

Ferrer’s diagram:

Wa(F,G) - {n1-no-5,n2-n,-5,n3-n2-3,n4-n3-3,n5-n4=2}

The Ferrer's diagram is

V5 * * * * *
V5 * * * * *

Y3=3 * * *

V3 * * *

Y5-2 *

1

*

1 1 1 I
I

5
f
5

f
4

f
2

f
2

and thus 5*0?, G) ={5,5, 4,2,2}.
□

Remark (4.3): The results presented for the determination of the degrees

of e.d. at s=a may also be applied for finding the degrees of e.d. at s=,». 

The only difference, however, is that the matrices P^(F,G) have now to be 

used instead of the P^CF,G) matrices. This is a mere consequence of the 

fact that an infinite e.d. of sF-G is a zero-e.d. of F-sG.

4.4 The structure of nested basis matrices and the maximal generalised 
nullspace of (F,G) at s=a (°°)

The analysis so far has produced two procedures for the determination of
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the Segre characteristics of sF-sG for all values of a (finite, infinite) 

for which |aF—g |=0. Our attention is focussed now on the geometric aspects 

A
of the e.d. set of sF-sG; those aspects are summarised in the structure of 

basis matrices 

are of the type

a
N1 

a

v »

oo

and especially by the properties of the 

of a
(A/*)  introduced by Corollary C4.3)

' Y1 I X.i 1 
" 2 
! X7 J
i

0

a

0

canonical

and which

0 I x!
i 1 
T• X? 
i i

Ni_1
a

(4.37)

Mi-1 .N is A/^ 1. Clearly, 

basis matrices of a similar type may be defined for A/\ Such matrices 

will be referred to as nested basis matrices of A/1 (A/1), because of the
------------------------------------------------- a »

special properties summarised by eqn(4.37).

The aim of the present section is to provide a detailed analysis of the 

properties of (N*)  nested basis matrices; of special interest are those 

properties related to the selection of maximal length, linear independent 

vector chains, where each of these chains characterises an e.d. of (F,G) 

at s=a. The results will be presented for an s=ae(C, whereas the case of 

s=°° is similar (the only difference being that the analysis is based on 

the p\f ,G) matrices). It will be shown that the maximal generalised 

nullspace A4 of (F,G) at s=a may be decomposed as a direct sum of 

elementary subspaces; an alternative procedure for finding the degrees of 

the e.d. at s=a will also be given.

We start off by giving a Corollary of Theorem (4.3).

N1 is a basis matrix of A/^ and a basis matrix of
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Corollary (4.6): Let P^1 e (CknXrik be a right annihilator of P^(F,G) and

k • kl kllet M be the submatrix of P made up from the last n rows of P . Thena a r a

is a basis matrix of the k-th generalised nullspace of (F,G) at s=p.

Proof

From the proof of Theorem (4.3) we have that X is a right annihilator of 

k’ A kP^(F^,G^), and that has full rank. A basis matrix for N* is given by 

k£ -J -J
P^ =diag{Q ,...,Q }X, where Q is the right transformation used in the

reduction of (F,G) to its Weierstrass form. Thus, M^=Q 1X^ has full rank 

ftp

and thus it is a basis matrix for M .a □
Clearly, the above result also applies to the case of nested basis 

kmatrices of W . Thus, we have the following remark.

Remark (4.4): The submatrix Qxj,X^,...jX^lc (CnXni of in (4.37) has

12 i
rank p,.. The s^ubmatrices XpX^,...^^ have dimensions nxpj j),. ..

... ,nx(n^-ri£_|) correspondingly and their respective ranks are

»n2”r,l * * ,r|i ’"'i-l * By Corollary (4.5), we also have that

The problem considered next is the establishment of the relationship 

between two nested basis matrices of M1; as a result of this study a 
a 

canonical decomposition of all nested basis matrices will be given.

Proposition (4.7): Let be two basis matrices for N1 of the
a a a 

(4.37). Then,

N1
a

= NLP.. 
a 1)

type

(4.38a)

where

pi) ■
n.xn 

et (4.38b)
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where P"! are (n.-n. ,)x(n.-n. ,) nonsingular matrices and j=l,2,...,i 
J J J”1 J J"1

(n =0).o

Proof

The result is proved by induction. In fact, we prove it for i=l,2,3 and

the

(aO

(b)

generalisation is rather trivial.

-11
i=l: Clearly, XX are basis matrices for N {G-aF} and thus— Il r
xj'xjpj, pJeeniXn', |p[|* o .

i-2: n 2,N2
----- a

2as basis matrices of Wr{P^(F,G)} are related by
a

0 | x o
I 2

r *ii0 ;x2 rP>:
11 _ _ _ J.

®1 1 ~2X ' XL 1 I 2 J
x’]Tx’2'

L I ! 2j p'i. 2' P2.

from which

Since J »x} are

X1
1

- 1 12
X2 =X2P2’

basis matrices of W

x^p1
X2P2 = 0

-2 12 2 2
X2 = X1P?X2P2

' {G-aF} r
P [ €Cni Xril, |pj|*O  and thus by the first of

t. v 1^1we have that X j =X|P },

(4.39b) we have

(4.39a)

(4.39b)

where

Because

then

(c) i=3:

r~i
p -p i i

4

0 (4.39c)

[XpX 2] e £nXri2, and by Corollary (4.6) has full rank,

and P]=p J and this completes the proof for i=2.
P
- '1

The N^,N^ basis 
a a

3
of N {P (F,G)} are related by 

r a

1 !

matrices
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from which

-1
X3P3 ■ °> X3P3 * °’X3P3 ”X3 (4.40a)

~1
-2»

4P1+X& - °> X2P2+X3P3 ’ *2 ’ XlP2+*̂3  “ X3 (4.40b)

first of (4.40c)

i\, x Jp^+X^P^4^ 3^3 = X3 (4.40c)

0 (4.40d)

(4.6) has full rank. Thus,

-2 1-2 2-2By step (b) we have that X^^XjPj+X^P2; by substituting into the second

of (4.40c) equations we have

[Xi’X2

2-2 2-2
and thus Pj=P{, P2 P2’ P

= 0 (4.40e)

is readily completed by induction.
□

From the above proof we also have the following Remark.

Remark (4.5): Let N^,N^ be two nested bases of W (PL(F,G)} and let P.x 
---------------------- a’ a r a i)

type (4.38b) for which If

of W {pi+1(F,G)} obtained from N^,N^ by 
r a a a

be the transformation of the

N1+1,N1+1 are basis matrices 
a a

extension as in (4.37), then

Ni+1
a

= N1+1P. n
a 1+1)

(4.41a)
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where

i • 
i : (4.41b)

□

2d. ■
1

. •
..,0,1,0...0] elR \ j = l,2,...d_. 

j

(4.42a)

and

Ed 
di’°i

AL, o'

1 1 1
• -d.;

o.d.xo.
ID 1 1 XeJR. (4.42b)

•I—
o x

j ~1, 2,.•.,d^

I ai+ldi+l

t P

t °i-ldi-l

a.d.
1 1

v
(4.42c)

0

With this preliminary notation we may define:
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Definition (4,3): Let { (cr, d^) (a ,d );d <...<d } be the index set of 
PPi P

(F,G) at s=a and let 4>={d For all positive integers

k=l,2, we define as <p the ordered set of all integers in <j> which

are greater or equal to k, i.e.

= (d.,d.^1,...,d }, if d. .<k<d. k i’ 1+1 P 1-1 i

4>k = <d1,d2,...,dp} , if k<dj

We may now state the following result:

0

Proposition (4.8): Let {(d,,c,).......... (d ,a ):d.<...<d } be the index set
------------------------------------ 11 ppi p

of (F,G) at s=a and let <j>={dj ,d2,... ,dp}. There exists a nested basis 

matrix of N (Pk(F,G)} for all k=l,2,...,d_
a r a ’ ’ p of the following type

where

Nk = diag{Q,...,Q}E
V--- K.

k

(4.43a)

Ek

n

+■
0

E1(♦,)0 1
4---------------— _L J

0 ; e 1c *2 ) ' E2C4>3)

e * (♦])! e 2g 2) ; e 3G3)

I 
I 
I

I
4.
I 
I 
+
I .
I

(4.43b)

Proof

Let (R 1,Q !) be the pair of transformations which reduce (F,G) to the

(4.11) type Weierstrass form (the blocks associated with the e.d. at s=a

are the last and they ordered according to the degrees of the e.d.). Then,
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R 1 (G-aF)Q lj=G -aF , where 
w w’

Gw‘aFw = dia8<T;Hd

--------- >
°1P

The result is proved by induction. Thus consider the cases:

(4.44)

(a) k=£: By inspection of (4.44) it is clear that

F1 P1
LEd|.aI’-’Edp,a2 

is a right annihilator G -aF .° w w

e ’Oj )
nx(o +

e R
• t" . •. o )
1 P

(b) l<k<d^: From the proof of Theorem (4.3)

• 1cannihilator of M {P (F ,G )}, then it may be r a w’ w ’ 7

we have that if .
k

expressed as

is a right

, *k  where X, k

kn*nk "k ~k eR kXk,...Xk

X1

0

XK 
1

. . 
. 1 1 1

•• •
0

17 xk 
k-i_ 

r ° i

XK 
k

is a right • • kannihilator of H*  , where

(n-T)xn

(4.45a)

(4.45b)

(4.45c).

If we define by H the matrix

H = diag(Ip;H}

then by (4.45c) we have that the matrices

. ~k
to Xk by

h=l ..,k-l are

(4.46a)

related
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is

(4.56b)

The problem of defining the structure of then reduced to a problem

• ~ k •of computing the structure of X^,. Since *k is • ka right annihilator of H ,

it is readily verified that a choice for is given by

2 k ’ CE' (*1  >^2^2> >e 3(*3 ) ’ • • • ] (4.46c)

• • a • a **k  •which is a right annihilator of H . From the special structure of the

E1(<|)^) matrices and the compatible special structure of H we may easily

verify the following property

^-0, if p>i
HPEX (<f>.) = -/

Ex“p($.), if 0<p<i
(4.47)

From (4.47) and (4.46b) it then follows that is a right annihilator of 

kP (F ,G ), when G -aF is expressed in the (4.44) form. However, with an Cl XhT X^T W

appropriate choice of the (R 1,Q pair, G^-aF^ may always be expressed

as in (4.44). It is obvious that if E^ is a right annihilator of

k kP^CF^jG^), then diag{(),... is a right annihilator of Pa(F,G).
k 0

The special structure of the EL(<J>j ) matrices clearly implies the 

following property.

Remark (4.6): If A e!RniXn, A’ e!Rmxn , n’<n, then we shall write A1 cC A,

if the columns of A’ is a subset of the columns of A. For the matrices

Ex(d>.) in E. 
J k

we have that

E'(* k)

E2(<t>k)

s c ... sc E1 Cc e ‘u 2) s c e 'c *])

E2(*k-1 ) £C ••• SC e 2(<*,3) SC e 2<*2 )c c
•

Ek-2(* n)^k_2(* n-l>SCEk"2(*n-2>

_k-1 , , x c_k-2 z , k
E E ^n-1

(4.48)

c
2

n
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By combining Propositions (4.8) and (4.7) we have the following 

characterisation of nested basis matrices of N {P1(F,G)}.
r a

Theorem (4.4); Every nested basis k k
matrix N of W (P (F,G)} may be a r a 7

expressed as

*

0

Nk
a

1

•
i.
1 k-2

______ Lxk__

;xk-2 Lk-1

• x^1 lxk
lk-1 • k

diag{Q,...,Q}Ek PR) 
v,---- v----- )

k

(4.49)
I

• • •

• • •

where Qe<EnXn, |Q|*0,  Pk^e(CnkXnk, jp^ | *0  and with 

(4.38b) and the matrix defined by (4.43b).

a structure defined by

□
Corollary (4.7); kLet N be a nested basis matrix

every vector ael

of Nk. For every i,

i=I,2,...,k and for

• • 1 1{Xta,Xt a,... ,X ^ot} are linearly independent.

, a*0.  the set of vectors

Proof
* I

Assume that the set of vectors (X^ot,...,X^ot} is linearly dependent.

Then, there exist Cj, j=l,2,...,i not all of them zero such that

cl^i-+ci-lX£ ,S+»«»+C|X^a = 0 (4.50a)

x ! -qe ’c +.jp J

X- - Q{E1(<|li_1)py_1+E2(4>i)Pj}

(4.50b)
x-’‘ = Q{E1U2)P2+E2U3)Pj+...+E1“2(<tli_])Py_1 +E1_1(<t>.)P?-}

xi - Q{El(* I)P^+E2(* 2)P2*...+E 1-1(* i_1)P^_1+E1(1t>.)P^

i
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If we define P^’a-^, »• • •» Pj2“2|» then bY (4.50b) we have that

(4.50a) may be expressed as

QfCjE1 (<j>i)ai+c2(E1 + -

+c._](E1(* *2)22+E2(* 3)23+...+E1'2<* i_I)2i_i+E1"1 

+ci(E1(dI)2|+E2(4'2)S2+"-+E1'I(*i-l )2i-l+E1(*i )-i)} =0 (4.50c)

column of a nested basis matrix N , according to the natural partitioning 

of Nk (as in (4.49)) is linearly independent.
a

• «. I I
The vector chain {XuXjXf a,...,X.a} is by Corollary (4.7) linearly

k
independent, it corresponds to the i-th column block of and it is 

parametrised by a; such vector chains we shall denote then by S(i,ot). 

The properties of S(i,a) chains are examined next.

Because Q is nonsingular (4.50c) yields

* 112 -c.E1(<|). )a. = c E (<{>. )a.+c?(E (<!>• i )<J« i+E ($.)a.)+..
X 1 “1 1 X —1 1 * "*  X 1 XX

+ci(E1 (<|)1)a1+E2((|)2)a2+.. .+E1 (4.50d)

By Remark (4.6), it is clear that the right hand side of (4.50d) is a 

vector in sp{[E1 (| ) ,E2(<t>2),... ,E1 1(4>i_j)3h however, since the left hand 

side is a vector in sp{E^(c{)^) } and that spRE^ (<t>*),...  ,E1 

nspfE1^) }={0} we have that c^a^=0. If a^=0, then p|a=0 which implies 

that a=0, since IP^I^O. Thus, it is shown that c^=0. Set c^=0 in (4.50c) 

and by repeating the same arguments it follows that c^_j=O etc. Thus, 

eventually Cj=c2=...=c^=0, which contradicts the linear dependence 

assumption. q

t (Vni-i)
If we choose a=£0,...,0,1,0,...01 eR , then we select a column

of Nk and Corollary (4.7) yields the following important property.

Remark (4.7): The set of nonzero vectors obtained by partitioning every
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k . kCorollary (4.8): Let be a nested basis matrix of Wr(P (F,G)} and let

• • • • • kS(i,a.) be the vector chains associated with the i-th column block of N 
-J a

and parametrised by the on vectors. The set of vectors S(i)={S(i,aj);...;

...;S(i,a )} is linearly independent if and only if either of the following

equivalent conditions hold true:

(1)

(ii)

the set ,«2» • • • *- s independent.

the set {X !a j * * *’X i-v^ in<^ePen<^ent

Proof

Let us assume that the set S(i) is linearly dependent. Then, 

constants c^, k«I,...,v, j=l,2,...,i, not all of them zero such

there exist

that

i . . i . . i . .
( £ cJxJhj + C I cM )a2+... + ( y c^d)a = 0 
j=l 1 1 j = i z 1 z j=1 v 1 v

This may be rewritten as

v
*•( I

k=l
(4.51a)

Let us now denote by

8. 
-J

and P1^. (4.51b)
k=l R K

By (4.51b) and (4.50b), condition (4.51a) is equivalent to

_j+...+E i-l'+

0 (4.51c)

The above condition is similar in nature to (4.50d); thus, by using 

similar arguments (based on the properties of EJ (<*>  ) matrices) it follows 

that

5i,i = 0 = pk =0 
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Repeating the arguments on the reduced equation (4.51c) (after setting

|3.=0) we have that

v
« I ck-k = 0, j=l,2,...,i (4.51d)

J k=l

If the vectors (Sj>•••>« I are linearly independent, then (4.51d) conditions 

imply that ck=0 for all k=l,2,...v, j=l,2,...i and thus the assumption that 

S(i) is dependent leads to a contradiction. If the vectors {a,,...,a } are 
-1 -v 

dependent, then at least one of (4.51d) may be satisfied with nonzero 

constants and thus S(i) is dependent.

To prove the equivalence of parts (i) and (ii) we notice that if Oj are 

linearly dependent, then

v
E c.a, - 0 (4.52a)

j-1 J J

By the first of (4.50b), x|=QE (^.)py and thus X

1 V v 1
X- 2. 0 = Jc.X.a. (4.52b)

1 j-1 J J j-1 J 1 J

If the set is independent and (xiupiev} dependent then (4.52b)

and the fact that N^fQE 1 (<£^)}={0}, yields that {cHjjev} is dependent, 

which contradicts our assumption. _

There exist subspacesS j, j = l,2,...,rjwhich characterise the

• • k •i-th column block of the given nested basis matrix. By the way nested 

basis matrices are constructed, it is clear that the i-th dimensional 

subspaces Sj are characteristic of the nested basis, where t  is the 

index of annihilation, and not just of the given N^; such subspaces will 



118

be referred to as i-th order characteristic spaces of (F,G) at s=a. By

Corollary (4.8) we have:

Remark (4.8): The set j”! >2,... } of i-th order characteristic

spaces of (F,G) at s=a are linearly independent for any given i, 

i=l,2,...,t , where t  is the index of annihilation of (F,G) at s=a.

The relationship of the set of Sj subspaces for all i,j to the maximal 

generalised nullspace of (F,G) at s=a is established by the following 

result.

Proposition C4.9): If is the maximal generalised nullspace of (F,G) 

at s=a and j”l > 2,... ,n.-ri£_ j } the i-th order characteristic spaces of

(F,G) at s=a, then

T

i=l
} (4.54)

Proof

By definition of the we have that
J

ni’ni-I .
y s. = sp{Xb+sP{X: }+...+sp{X.> 

j-i j 1 1 1

and thus

n--n. .T 1 1-1 . 9
y { £ = sp{X. }+sp{X “}+.. .+sp{ ld}+.. ,+sp{ xb

i“l j=l J z 1 T

+sp{ X21+...+sp{X£ }+...+sp{X^ }+...

from which since

(4.55a)

By eqn(4.50b) we have that
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sp{x[} S sptQE1 } 

sptX?} c sp{Q[E'(*.  ),E2(4>.)]}

(4.55b) 

spfx }“’} £ sp (QCe ’(<|>2),E2G3)........... E1-1 (4>i) ]}

sptf} £ sp{Q[El(<t>1),E2G2),...)E1~l(<|>i_1),E1((t>i)J}

By Remark (4.6) and conditions (4.55b) it is clear that

sp{xp S spfQEE1 (♦]) ,E2U2),... ,Ej (♦j) ]}, j=l,2,...,i (4.55c)

and thus

Vw . . .
2 S7 = sp(X. }+.. ,+sp{x!- }+sp{X^} c sp{Q(E G.)]}+...

j-1 J 11 1

...+sp(Q[E1 G j ),..., E1 (4>i) J } c spiQCE1 ($ j ),...,E1 Up]} (4.55d)

Clearly then

n.-n. ,T 1 1-1 .
Z{ Z S7} c sp{Q[E «> )]}+...+sp(Q[:E G ),...,ET(*)]}

i-1 j-1 J T

c spfQCE1 G,),...,ETG)]} = M*  (4.55e)
1 T CX

By (4.55a) and (4.55e) condition (4.54) is established. n

i 3» 1 1 3» 1 1Note that a vector chain S(i,a)={x£a,X£ $*>••>  X^aMu.jU. , ...,u^} is 

an independent chain of vectors (not necessarily maximal) which satisfies 

conditions (4.4) with a first vector u^-X^a. The above result then implies 

the following remark.

Remark (4.9): All generalised eigenvector chains S(i,a) satisfying 

conditions (4.4) belong to and is spanned by the set of all chains 

S(i,a) defined by any nested basis matrix.

Clearly, this remark generalises the well-known property for the

. . • n a -mnxngeneralised eigenvector chains of AeJR
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The

which

problem considered next is the investigation of the conditions under 

various vector chains of the S(i,ot) type (corresponding to different

i and a vectors) are linearly independent. The following lemma is useful

in this investigation.

Lemma (4.2): Let T. eRnX'1'c be the submatrices of E, defined by 
J k

T. = CO,O,...,O,e !,E? ,...,E^+1"^J, j=l,2,...,k
J «------------ *■ J J+ * k

j-1

(4.56a)

where Ep denotes in short E^($ ), and let z.=[z^ . ,z^
t r —J —J,*  —J,z ~J,k

j=l,2,...k be arbitrary vectors partitioned according to the block

partitioning of Tj in (4.56a). The matrix equation

(4.56b)

implies the following equivalent conditions.

(i)
E^z. .+e\,z q . - + ...+E-1 z. . . . = 0 

1-1,1 1+1-2,1+1 k-k-i+l,k (4.56c)

for all i=l,2,...,k.

(ii) If we trivially expand the vectors z^ £+j,•••,z^_£+1 to vectors 
. ,11,

of I by adding zeros on top of them, then

z. .. +
-1,1

— 00
+ 0

-2,i+l -3,i+2

for all i=l,2,...,k.

Proof

By using the partitioned forms of z. and

(4.56d)

-k-i+1,k

Tj, it may be readily verified

+. . . +

0

0

0

= 0

that (4.56c) yields

(4.57a)
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where the vectors are given by

(4.57b)

By Remark (4.6), it is clear that €sp{E^} and given that the set of 

subspaces (sp{Ej},...,sp{E^}} are linearly independent for all i=l,2,...,k 

it follows that proves part (i) of the lemma.

By Remark (4.6) and the definition of e |, j=i,...,k we have that E^ may 

be partitioned as

E^ = Ce ! . o ,...,E.X . . E.1]
1 1,1+1 i+l,i+2’ ’ k-l,kk

• • •
CEx,i* 1,Ei+l,i+2’*•• ,Ek-2,k-l,Ek-l3

= ... = tEi,i+i’Ei+i,i+2’Ei+2’1 * CEi,i+l,Ei+l3

(4.57c)

With this in mind, eqn(4.56c) may be expressed as

0

0

0E^z. . + CEX . .,E\J
1-1,1 1,1+1 1+1

■ Ei

given that A/^fE^}={0}, (4.56d) follows

-2,i+l

+...+CEJ .+i,...,e £ ]

-k-i+1,k

= 0

□
The independence of the S(i,a) vector chains, for various indices i and 

vectors a is characterised by the following result.

lc • • k •Proposition (4.10): Let N be a nested basis matrix of N , {i,,...,i } be ----- c-------------------------- a a 1 ’ ’ v

a set of indices taking values from {l,2,...,k} and let a.,...,a be
(hi -n. _j) Cn£ -n£ ) v

vectors of (E 1 1 ,...,(£ v V”1 respectively.

The set of vector chains S(i^,... ,in)={S(ij ,otj) ;... ;S(i^,a^) } are 

linearly independent if and only if the vectors

{X. a.,X. a_,...,X. a } 
X1 2 v

are linearly independent.
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Proof

The necessity of the proposition (the set S(i,,...,i ) independent,1 n
then {x! a,,...,x! a } is independent) is obvious.

ij-1 iv—v r

r

that i,£io£...£i1 2 v 4 ,Then there exist coefficients c ., p-I,...,i., P,J F J

j=i,,...,i , not all j I > » of them zero, such that

V b-p* 1
> c .X. a,

p-1 P’1! X1 _1

12 1,-p+l
♦ I c .X.2 

p,ln In p=l r 2 2

i v 
a0+...+ V c
_2 ■ 

p=l

i -p+1
. . X? a = 0 (4.58a)
p,iv i  -v

By Theorem (4.4), the vectors in

“J
and then partitioning according

the chains may be computed by taking

• . kthe a. linear combination of the columns of the i.-th column block of N
J a

• • • kto the natural partitioning of the N .

Thus, for the S (i.,cl  .)
J -J

♦

chain we have

k-i.
J

zero blocks

where p(i.,a.) is the K J -J

column block of P. x, k)

0

0
x!

1.
J

x2
xj

i.-l 
xJ

1.
J
i.

X.J
1.

J

cl  .
-J

i.e.

linear

otj = diag{Q,... ,Q}Ekg(ij ,oij ) 

k

combination of the columns of the i. 
J

(4.58b)
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i.
P.J u. J

—J. 1
i.

V u. ~-J,2
•• •

i.
P.J

1. 
J

•
P(i.,a.) = 
“ J J

a. = u. .
-J.Xj

0 0
k-i.

J
zero blocks

•
•
•

•
•
•

0 0 _

(4.58c)

Because Qe (CnXn, |Q|*O,  in the investigation of (4.58a) the transformation

Q in (4.58b) may be ignored and we can work with the subvectors of

E.P(i.,2.)
K J J.

0
•
•
•
0

= -1 1
q x:i. 

: j• •
-1 x- 

Q XJ
L j J

(4.58d)

To facilitate the analysis we expand trivially the summations in (4.58a)

by including the zero vectors T. P (i. ,ot.),... ,T. ,P(i.,a.) with zero
j 7 j l  • +1 — j — j

coefficients as

k 
z 

j-1

cj>.irjP(i1>ai) + ...4cj>ivrjP(vav) =°
(4.58e)

where c. . =0 for j>ic.
J.l] 1

. . =0 for j>i . If we define 1,1 vj  »

(4.58f)

then (4.58e) may be rewritten as

riSl+r2S2+”-+rA = 2 (4.59a)
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By partitioning z^ according to the partitioning of as 

t t t tz^=[z^ j,z^ 2,...,z^ , then by Lemma (4.2) we have

0
+

0

0 + ...+

0

0

0z. . +
-1,1

(4.59b)

-2,i+l 0
-3,i+2

-k-i+1,k

for all i«l,2,...,k. By (4.58c) and (4.58f) we have that

i=l,2,...,k

,2+CZ,i^2,2+

c£,iI-l,k+c£,i2-2,k+

(4.59c)

where u. =0
-J»f -

for all f>ij, j=l,2,...v. The original problem is

reduced to proving that conditions (4.59b),(4.59c) have as the only

thus

solution c„ =0 for all £=1,2,...,k, p=i,,...,£,p r 1
X! a } are independent.

v
that from (4.58d) we have that

i , if the v vectors

{ x. Ct. , . . . , 
1

Note

_1 n1!
. u,. - E. P. a.
1]-1 1] 1]-I
1 

X- a
1

1 >E. u, . , •. • x • l]-!,!] a -vv
= e ! i

1 V

P>a
1 -v » V

= e ! 1 
1 v

u -v,i• v
(4.59d)

and by (4.57c) we may write

E1
1,2’*’*’

e !
ij”1,i

,e !
i xi

E'
1,2’

E>’Ei],i1 + 1’"-’ e ! .
V1’1

,e !
V V

Thus, the vectors X. a,,...»X. a may be expressed as
1.-1 1 -v1 V

0 0
1 _1 1

•>*i
a =e [

-l,i.1
u 
-v,iV

= E.u
1—V,1 V

(4.59e)-v

vectorswhere u, . ,...,u . are (n. -H» .),...,(n. -fl. ,) dimensional
-1,1] ’-V,lv 1] 1,-1 ] 1V 1V-1

The linear independence offx! a ,—,X . a } then implies that the vectors 
xri
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(u, . ,...,u . } of 
-1,1. *-v,i’1 ’ V
In the case where

rij dimension, are linearly independent.

1 =i„=...=i , the independence of {u. . ,...,u . }12 v -1,1’ -v,i’1 v
, ...,i (see Corollary (4.8)).for all £=l,2,...,k, P=iimplies that c. =0

In the case where at least one strict inequality holds true, the result is

proved for a simple case and the general case follows along similar lines.

i2=4 and let

two chains respectively be a j

the vectors defining the

have

and <*2. Then, by taking k=4(max{ij ,i2}) we

P(3,21)

--
---

---
-1

•■
U

•—
 CO IP

__
__

__
1

-3,1

p221 -3,2

P3-l -3,3

1— 0

—
1

0___
1

P(4,a2) =

pt-2" H4,l

p222 S4.2

p3“3
kj

J* 8* . .-4,4.

(4.60a)

By (4.59c) and (4.59b) we obtain the following set of conditions

0
0

2

The assumption that X

+

1,4-4,4

c^ 3-3 3+c3 4—4 3

0

0

c4,4-4,4

(4.60b)

(4.60c)

0
(4.60d)

(4.60e)

X !a, are independent implies that
4-4
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-3,3 * y
0

, y*0  <*>

" 3 '
-3,3

4 * y

0 ■

u
_~3,3_ A*.

(4.60f)

The vectors in equations (4.60b-e) are partitioned next in the natural 

way implied by the form of these equations. Clearly, since u^ *̂0  

(4.60e) implies that c} ^=0. By setting Cj ^=0 in (4.60b-d) and using 

the partitioned form of the vectors, (4.60d) yields

3 4C, n = 0, c, nun o+c« ,u, . = 01,3-3,3 ’ 1,3-3,3 2,4-4,4 (4.61a)

3
(i) u^ 3*0:  (4.61a) implies c^ 3=0 and ^=0 from which c^ ^=0

(since u^ *̂0).  By setting c^ ^-c^ ^=Cj ^=0 into (4.60c) and using the 

partitioned form we have

3 4cn _uo o = 0, c„ nu„ _+co ,u, . = 0 2,3-3,3 2,3-3,3 3,4-4,4 (4.61b)

from =c

that

(ii)

that

Cl,4

which c2 j=c3 ^=0. By substitution in (4.60b) it is readily shown 

cQ o=c/ /=0 and this leads to a contradiction.3,3 4,4

3 4
u^ 3=0 and U3 3*̂4  4: By the second of (4.61a) and (4.60f) we have

C1 3=c2 4=0 (otherwise the first vectors are dependent). By setting

1 3=C2 4=0 into (4.60c) we have=c

3 4c„ ou„ = 0, Cn -U„ n+c„ ,u, .2,3-3,3 2,3-3,3 3,4-4,4 (4.61c)

From the second of the above conditions and the (4.60f) condition we have

C2 3=c3 4=0*  Finally,

we have

by substituting into the reduced (4.60b) conditions

3
c3,3-3,3 - 0, c3# 3^3,3^4,4^4,4 - 0 (4.61d)

0

by (4.60f) then we have that c^ 3=04 4=^ an^ this once more leads to a 

contradiction.

The steps and arguments used in the simple case considered above are
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general; along similar lines it may be shown that the independence of

implies that the only solution of (4.59b) is the

c0 =0 for ¥ £=1 £,p 2,...,k, p—ij,. and thus sufficience of the result

is established. □
The results so far suggest a procedure for selecting linear independent 

vector chains of the S(i,a«) type.

Definition (4.4): Let N be a nested basis matrix of M , as in (4.49), ------------------------------ a a ’ 

where t  is the index of annihilation of (F,G) at s=a and let T,,...,T.,...,T 
1 1 T

be the matrices defined by

Tt -1
Ex' X*  ], T=[x’]

T T—I T T (4.62)

X1 X1 
and T .=sp{T.} for all i=l,...,t . A basis B ={x ,...,x ;.

i i' a - ’ *-w.’
i i . ■ *

...;x^...,x u} for Tj may be defined in the following way: 
£1

B (i,)={x, ,—,x } is a basis for T and i =t .
a I -1 —u)| t  1

for which T =7 ,3b...®7. -.c-T.
T T—1 i2+l i2

of independent column

i. i.
••JXj3,...,xj;..

j

ximal set

Similarly, let i^ be the maximal 

(i3)={x 3,...,x 3}
3-1 -m3

vectors in T. , which are not
x3

terminates for

then let Ba
be

in

T. =.. =T •v1 1
column vectors

If i9 is the maximal index 
i2 i2

, then B (i_)={x. ,...,x } is a ma-
a 2 -1 ”a>2

vectors in T. which do not belong to T- .
X2 L1 

index for which 7. =7 =...=T. ,c 7. ;
12 t2+1 x3+ x3

the maximal set of independent column

T. . The procedure eventually
x2

which we have that ,=T. ,<zT. =
• i. “2 - i+l i.,
Xu . . P P U

______  , ,...,x } is a maximal set of independent 
a p -1 r

in T. which are not in 7. ..
1 1-1

P P

some index i for 
p i

then B (i )={x U 
a p -1

The basis B for a
T 1

Ba ^Ba(ij);•••;Ba(ij);• • •; 

, Li xi . Lj 
(-1 ’•••’-a >•••>51 

1

--;B (i )}’ a p
i. i

»• • •»*  Qj
j

i
P P->

-1 ’•••’-u) 3
P

(4.63)

which has been constructed with the procedure described above, will be

called a normal basis of generators of (F,G) at s=a. The ordered set of
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------- a

an i.-th order generator of (F,G) 
i; .

x. J in 8 (i.) defines a column in N -k a j i

vector in the natural way implied

indices L={(i,,u).(i.,w.(i ,w): i=T>io>..,>i.>..,>i } will 
11 J J P y 1 2 j p

be referred to as the list of 8 and every vector in 8 (i.) will be called 
-------  " a j

at s=a. Every i^-th order generator

' , and by partitioning this column

by the partitioning of N we obtain an
< • ot •
1. !• 1.

X J

J

i.-th length independent chain of vectors S (i.,) = {x, J 
a j —k —k, 

i; i, ,
x^Jj=x^l for which

x i xx
“ aFSkJ’ G^2 ’ ^2*̂1  «"•

i. i. i.

J J J
(4.64)

called an i.-th order prime chain of (F,G) at s=a and 
• J 2

y S. =sp{x. J.,...,x, J.} is i.-dimensional and will b

• • •,

complete prime set of subspaces of (F,G) at s=a.

An obvious

fact that NT
a

given next.

property of every ij“th order prime chain, following from the 

a basis matrix of the maximal dimension type space isis

i.
Every i^.-th order prime chain S^CipX^^) is of maximal 

set Ea(F,G) is made up from maximal chains with possiblelength ij. The 

lengths i1,i2,...,i^.

With these definitions in mind, we may give the following result 

summarising the properties of the S^(F,G) and £^(F,G). sets.
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T TTheorem (4.5): Let N be a nested basis of N , t  is the index of 

annihilation of (F,G) at s=a, B^ a corresponding normal basis of generators, 

with an associated list L={ Ci j , co (i^,u>^): ij=T>i2>...>i^}, and let

Sa(F,G) be the corresponding complete prime set of subspaces of (F,G) at 

s=a. Then, we have the following properties:

(L) The list L is an invariant of all nested basis matrices of NT.
a

(ii) If T={ (d ,<j ),..., (d ,a ): d.<...<d } is the index set of (F,G) ati i ppi p

s=ot, then u=p and the sets I,L are related as follows:

(d, ,a.) = (i ,ui ), (d ,cr ) = Ci ,,0) .),..., (d ,a ) = (i ) (4.65)
11 P P 4 4 p~1 p—1 P P 1 1

where by (d,cr) = (i,u>) we mean that d=i and o=u).

(iii) Any complete prime set of subspaces S^(F,G), or any complete prime 

set of chains Za(F,G), is linearly independent.

(iv) If M is the maximal generalised nullspace of (F,G) at s=a, then Ma ° a
kmay be expressed in terms of the order prime subspaces S. of any

set S^CFjG) as

* 1 W1 1 wM = S. <3>...eS. 3...&S. e...eS.y (4.66)
a 1. i i

1 1 P p

Proof

(i) Let N ,N be two nested basis matrices of M . By Proposition (4.7)a’ a a J
~T T . .N =N P . and thus the blocks on the mam nonzero diagonal are related bya a t ) 7 **
**11* X
X^=X^P^, i=l,2,...,T, where P^ are square nonsingular matrices. Then,

.,x!l =
i=l,2,...,T (4.67a)

By (4.67a) and the selection procedure given in Definition (4.4), it is 

obvious that the lists of B and B are the same.a a

Cii) Since the list is an invariant of any nested basis of we may use 

a particular basis for the exploration of the links of L and I. Choose as
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a nested basis the
TN*=diag{Q, ...,Q}E^. Then we have that

T1 (4.67b)

where e | » E1 ($.) Clearly, the lists computed on T. and T are the same; I e

thus, we may use for the computation of the
* I

the definition of the E. matrices we have that 1

list of any Tj matrix. From 

rank{E^}=rank{E^}=n^~n^_j;

thus for the (ipWj) pair we have that ij=T=dp 

the maximal index for which sp{E^}=sp{E^ ,}=...=sp{E‘
T T~ 1 1

and u)t=n “H i=o .1 t T-l p

- i2+l}csp{Ei2}>

If i2 is

then we

have that

_1
E « E , 

T T-l
= +1 =c e !

12+! 12
(4.67c)

C . . 1
where c implies that the columns of are strictly contained in

1
columns of E. , and that

L2

the

n -nT j=n 0=...=n. xl-n. <n. -n. .
T T-l T-l T-2 12+1 1^ 1~2 12”

(4.67d)

By Proposition (4.5) and conditions (4.67d), it follows that i^ is

singular point of the piecewise arithmetic progression sequence

the(n ,n-,...,n. ,p. .,...,11 } and thus i?=d .. By condition (4.67c)
o 1 i^ 12'r 1

maximal number of independent vectors in T. , which are not in T.
x2 x2+1

equal to <o -(n, -n. .)“(«.• )-2n. -n. .-n. .,=s. , where «. is the
z i2 12~l z 1 z z z 1 z 1 x z

gap of the sequence at By Proposition (4.5), we have that

o _jSX(5^ =6. =(jj 2- By repeating the arguments used in the above step, it
p-1 2

follows that u=p and that

is

(iii)

%-2’ap-2^ = .......... Wp"!?

A complete prime set of chains Ea(F,G) is generated by the vectors

Since the vectors in B are linearly independent, then by 
ot

subspaces S (F,G) is also independent.
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(iv) Since the set Sa(F,G) is linearly independent, in order to prove the

direct sum decomposition (4.66) we have to show that

By Proposition (4.9) 

SLc M*;  given that
1k a xk

have that the subspace

it follows that for ¥ ke^i and we have that

are linearly independent for all kejj and jem, we

0) U)

(4.67e)W

V
and that dimW= J

k=l
J S. » J i.w.. By part (ii) of the theorem and the 

j-1 Xk j=l J J p
last expression for dimG/, we also have that dimW= £ d.o., where (d.,o.) 

i=l p 11
I. However, by Corollary (4.4), n = £ d.a.=dimW, and 

T i=l 1 1
* . . . * * have dimM =dim£V. The conditions dimM =dim(V and WcM
a a a

are the element of
£

since r) =dimM , we 
t a

clearly imply that (V=M .
a

The above result suggests an alternative procedure for the computation

of the index set I of (F,G) at s=a; a procedure for finding a set of

n

linearly independent maximal prime chains of vectors characterising the 

set of e.d. at s=a, is also suggested by Theorem (4.5). We may summarise 

this procedure as follows:

Nested basis matrix approach: Let t  be the index of annihilation of (F,G) 

at s=a and let N^ be a nested basis matrix for A/\ Following the steps 

suggested by Definition (4.4) we find:

(i) A normal basis for generators B^={B^(ij) ;... ;B^(ij);... jB^d^) }, 

the associated list of Ba L={ (ij ,ujj)
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(ii) By reordering the elements of L in ascending order of the ij and 

renaming them, we obtain I as follows: set p»p and define

(iii) By reordering the elements of E (F,G) in ascending order of the i.
J

and by using I for its parametrisation we obtain the set

d dl d
Eo(F,G)-{Sa(d1,X].,so(d],xa );.••;Sa(dp,x P)

E (F,G) will be referred to as normal complete prime set of chains of (F,G) 
d.

at s=a. Every chain S (d.,x.x), jeo., is a maximal chain of linearly 
a 1 -J -1 d>

independent vectors characterising an e.d. (s-a) X; the chain in E^fFjG)

are linearly independent and the associated subspaces provide a direct 
* 1

sum decomposition for as in (4.66). □

This third approach, based on a nested basis matrix, has the advantage 

that apart from the computation of I, also yields the set E^CFjG) of vector 

chains characterising the set of e.d. of (F,G) at s=a; thus, on one hand 

provides the means for the computation of the Weierstrass canonical form, 

and on the other hand indicates the procedure for the derivation of a
(R,Q)

transformation pair (R,Q) that reduces (F,G)-------- *►  (F^G^). We conclude

this section by giving a result that suggests how we can construct a nested 

basis matrix of W from any basis matrix of W .
a a

Proposition (4.11): The column echelon form basis matrix, H^, of which 

has its column ordered from right to left, is a canonical nested basis 

matrix of MT.
a

Proof

Let ^T,NT€(CTnXr*T be two right annihilators of PT(F,G), where t  is the 
a a a

index of annihilation of (F,G) at s=a, and is a nested basis matrix.

Then there exists TeCnTXr|T, |T|*0,  such that N^T, and thus N^,P^ are 
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right (column) equivalent and the equivalence class of all right 

annihilators of W is characterised by a unique column Hermite form 

(column echelon form) [Mar & Min - 11. To construct the echelon form we may 

start from n\ The standard procedure for the construction of the column 

echelon form may be applied on the column blocks of Nq , with the only 

difference that we start from the last block, the x-th order and we go 

backward to the l~st order block. It is readily verified that every column 

operation used does not affect the structure of the nested basis, and thus

the reduction of N to H is achieved by transformations of the type 
a a J

(4.38a,b). □

1? TRemark (4.12); A nested basis matrix N*  for may be constructed from any

basis matrix of by the type of elementary column operations used for

the reduction of PT to its column echelon form, which has its columns 

ordered from right to left.

The analysis so far has been restricted to the case of a single 

frequency s=a; clearly, the results are the same for the case of s=®, with 

the only difference that the matrices P^(F,G) are now considered instead 

of the pi(F,G) matrices. We close this chapter by discussing some 

properties of the set of subspaces M&, where aeCu{»} and aF-G singular. 

The results presented next provide alternative techniques for the 

derivation of the Weierstrass canonical form of a regular pencil.

4.5 On the derivation of Weierstrass canonical form of a regular pencil

The key notion for the derivation of the Weierstrass canonical form is 

the index set 1^, or equivalently the Segre characteristic of (F,G) at 

s«a. The computation of the Weierstrass form may be achieved, without 

finding the pair of transformations (R,Q) which reduce (F,G) to (Fw>G ); 

however, in a number of applications it is important to know also a pair 

(R,Q), apart from the canonical form itself. In the following, those two 

problems are considered.
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Segrez characteristic based approach: For the nxn regular pencil sF-G the

Weierstrass form sF^-G^ may be computed without finding a pair (R,Q) for 

which R(sF-G)Q=sF^-G^. The suggested procedure is as follows:

(i) Find sF-G »c sm+c ,sm ^+...+c_, where m<n, and find the roots of 
m m-1 U

sF-G , with multiplicities included, say the set { (a^ ,7^ ),..., (a^,iT^) }, 

where a. is a root and tu  is the corresponding algebraic multiplicity of 

the root. If m<n, then sF-G loses rank at s=~, and |sF-G| has a root at 

s=°° with algebraic multiplicity ir^n-m. The set (°°, t O , (a^, 7^ ) ,...,

..., (ct^,7r^)} will be called the root set of (F,G), whereas the set of 

distinct roots R={°°,a. ,oO will be called the root range of (F,G). 

the matrices P^(F,G) and dimensions of 
p

Cii) For every ge R compute

N {Pq (F,G)}» i-1,2,..., say r p
g g g

{n|>•••, ,•••find the

o
nT, i=l,2,... From the numbers

Segre characteristic by using the Ferrer’s 

diagram, or the Piecewise Arithmetic Progression Sequence diagram. Note 

that since the set {ap...,a^} is symmetric (the complex numbers are in 

complex conjugate pairs), the computations are carried out foroo , the real 

elements of R and for only one number of every complex conjugate pair

(ai’ a.).

(iii) The set S (F,G)={S,S ,...,$ }, where S is the Segre'
e 00 a | p

characteristic of (F,G) at s=g, BeR, is called the Segre' characteristic 

of (F,G) and defined the Weierstrass form of (F,G). Note if t _ is the
p

index of annihilation of (F,G) at s=g, then n »ir .
Tg 6

Remark (4.13): For the derivation of the Weierstrass form with the 

procedure suggested above, the set R is needed for the computations, i.e. 

the set of distinct complex numbers in for which sF-G loses rank,

and not R. If R is available, then it may be used for the computation- of

since t will be the index for which n =tt  .
B

The procedure discussed so far for the computation of (F ,G ) does not w w
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indicate how a pair (R,Q), such that R(sF-G)Q=sF^-Gv may be computed. To 

define such a pair of transformations we have to use the properties of the 

nested basis matrices discussed in section (4.4). Before we proceed to 

the discussion of an alternative procedure for the derivation of the 

Weierstrass form we give the following useful result.

Theorem (4.6): Let R={«,a,,...,a .} be the root range of (F,G) and let M*
1 ■■ ■ ■ 1 U p

be the maximal generalised nullspace of (F,G) at s=£, BeR. The following 

properties hold true:

(i) The set of subspaces of <Dn {M ,M , ...,M } are linearly independent.
00 oi j ct

(ii) ln=M*eM*  e...eM*  .
°° a, a

Proof

Let (R,Q) be a pair of transformations which reduce (F,G) to its 

Weierstrass form (F ,G ), i.e.w w

R(sF-G)Q=sF -G =diagtD O) ;D Ca. ) ;... ;D(a )}
w w i p

where

D(«»)«diag{I -sH -sH }
ql ql qp qp

DCa. C-diag{sIj -J, Cot.);... jsl^ -J^ (a.)}, ieji
1,1 1,1 1’ i 1’ i

If we partition Q according to the partitioning of sF^-G^ in (.4.68a), 

i.e. Q=CQro,Q.,...,then clearly the set of subspaces defined by 

T^col.-spfQ^},t =col.-sp{Q3, ie^ are linearly independent, since
i

Qw,Qj,...,Q are column blocks of the full rank matrix Q. We shall show
•

that t  =M =M ,ieu and thus part Ci) and Cii) of the result will be » » a. a. *
1 i

evident. The result will be proved for a general a, whereas the proof 

for a=°° is similar.

Let I^CCdpOj),..., Cdp,op),d j <...<dp} be the index set of CF,G) at s=a 

and let Q be the column block of Q that corresponds to D(a). The block 

(4.68a)

C6.68b)
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diagonal structure of D(ot) (as in (4.68b)) implies that may be

partitioned as

% = Q a
>.d, • .o’1’41 a ,d

•0 -0 P p
■>dp 

I *•  
a (4.68c)

If we now write every column block Q^,di, ie£ into terms of its

columns, i.e. ,X,... ,x^,X], then by the proof of Proposition (4.1)
i

we have that

(G-aF)xj’1 (4.68d)—o

From the set of linearly

construct a matrix Y of a

• «

independent vectors {x^’1,k€d.,j€a.,iegj we can
P ~i 1

dimension nr x £ a, and with the structure of a 
a i»l 1

nested basis matrix (eqn(4.37)), where the various blocks are formed in the 

following way:

(i) xj=Cxj’1,...,x^ ’1;...;xj,p,...jX^P,pl, i.e. all vectors x^,x

arranged in increasing order of d^.

(ii) Find all

the set of all

vector chains of length greater or equal to 2, and consider 

ordered pairs (xj ’^x^’1) from these chains. The matrices

constructed as

> • • • , where d.>21

2 1
^2^2 are t^ien

and the columns are arranged in increasing order of 

k k-1 1(iii) The set of matrices ,...X^, k=l,...,p

d..
1

are constructed as

follows: Find all vector chains of length greater or equal to k, and 

consider the set of all ordered k-tuples (x^,X,... ,x^2.j ,x^,X) from 

these chains. Then construct the matrix
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1 
1

i!!

SB • • • >

Xj,i 

-1

Xj,i 
_”2_-

••

*k &
•--

---
---

---
i i

where d.>k1

and the columns are arranged in increasing order of d..

The matrix constructed with the above procedure has the following
P P

properties: it has dimensions nt x £ cr., rank(Y )= £ a. (since the set
. i l=l l=l

{x^ ’ 1,ked., jeo.,ieg,} is linearly independent) and every column of Y is in 
“K 1 01

'^r^a (F,G)} (by conditions (4.68d)); thus, Y^ is a nested basis matrix of

have the same set of columns, arranged in different order; thus 

col-spfY1 }=M*=col-sp{Q  }=t and the result is established. _
r a a r a □

The problem of finding a pair (R,Q) ,R,Q€(CnXn, [R| , |Q| *Q,  such that

CR,Q)
(F,-G) ------- 9- (RFQ,-RGQ) = (F^-G^) is considered next. This problem may be

expressed in matrix form by the equation 

R[F,-G1 (4.69)0

Q

or equivalently by the matrix equation

CFQ,-GQI = RCFw,-GvI (4.70)

A M 1

where R=R , (F,-G) the given pair, (F ,-G ) its Weierstrass form and (Q,R) 

are the unknown nxn matrices which must be of full rank. The solvability 

of this equation is characterised by the following result.

Corollary C4.9): Necessary and sufficient condition for the existence of 

a solution pair (R,Q) of eqn(4.70), where R,Q are nxn full rank matrices, 

is that Q is expressed as
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Q = CQ~’Qa,.......... %’•••’% 1
1 y

(4.71)

where the columns of Q form
p

s=B, for every BeR- If Q is

inverse [F ,-G ], then R=R 1 
w’ w

a complete prime set of chains of

Fw

•Gw
chosen as above and if

is given by

is a

(F,G)

right

at

R = FQF +GQGw w (4.72)

Proof

(Necessity): If (R,Q) reduces (F,G) to (F ,G ), w w

Theorem (4.6), the columns of the Qo column blocks
p

T 
define a nested basis matrix Y for N {P ®(F,G)}. 

p r p

it is clear from the conditions (4.68c) and (4.68d) that

then by the Proof of

of Q,

If we

for

now

the

form a complete prime set of chains of (F,G) at s=B and this

every BeR,

start from Y ,
8

columns of Q 
p

proves the

necessity.

(Sufficiency): Assume that Q is selected as in (4.71), where for every

BeR the columns of Qo form a complete prime set of chains of (F,G) at s=B. 
p

Because of this property we have that the following conditions hold true:

(i) If then

GQ = FVn ’ F(*«  dia2<Jx <B),...,JA (B)> 
B 8 Pg 8 %

where {6j,...,60} are the degrees of the e.d. at s=B, J^ (8) denote 
i

standard Jordan blocks at B of dimensions d.xfi. and p =16..
11 pl

(ii) If B=eo, then

FQ^ = GQ^J («) = GQ^ diag{J CO),...,J CO)}
°° % ql %

(4.73a)

(4.73b)

where {q,,...,q } are the degrees of the infinite e.d., J (0) denote
nl u) qj

standard Jordan blocks at 0 of dimensions q.xq. and q =Eq.. 
J J 00 J

Before we begin the study of solvability of eqn(4.70) for a given matrix

Q satisfying conditions (4.73a) and (4.73b) we note that both sF-G,sFw-Gw 
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are regular and thus rank [FQ,-GQ]=n=rank[F ,-G ]. Thus, if a solution R

exists, then it is a nonsingular matrix. Since T «[F ,-G ]e(Cnx2n and has 
w w w

2nxnrank n, a right inverse Tt g <C exists, that is T T=I . If t is a right 
w w w n w 6

annihilator of T , T1e(E2n n, rankfT1}^ and T T1=0, then it is known that 
w w w w w

U=[T^,T^]e(E2nx2n and has full rank (2n). By multiplying both sides of

(4*.  70) on the right by U we reduce (4.70) to the following equivalent set

of conditions

[FQ,-GQ]T^ = 0 

R = [FQ,-GQ]T^

(4.74a)

(4.74b)

Clearly (4.74a) is necessary and sufficient for the solvability of (4.70),

since if (4.74a) is satisfied, then R is defined by (4.74b).

In order to check (4.74a) we must compute a right annihilator of

From the special structure of T , indicated below,

T = CF ,-G 1 w w’ w

JqJ")

Ip 
°1 (4.75a)

we can construct a

Ipa -Jp (a ) p 
P

matrix A as

F’w

■G’ w

Jp^Ca,)

Jq (°°) *•00
IP

al

Jp (a ) a p 
P 

o

(4.75b)A =

o

P

1

T . w

o

IP a
P

Clearly A€(C2nXn, rank{A}=n and TWA=°; 

and in (4.74a) we may set T^=A. With

A=0; thus, A is a right annihilator of T w
this choice of T^. and by writing Q
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as in (4.71), eqn(4.74a) is reduced to the following equivalent set of 

conditions

FQoo’GQooJq *V p C3)-GQ , ¥ BeU,,... ,<Xy}
oo g

(4.75c)

However, by conditions (4.73a) and (4.73b) it is obvious that conditions

(4*.  75c) are

If we now

automatically satisfied and this proves the sufficiency 

" F 
wdenote by T1

J w G 
u W 

(4.74b), eqn(4.72) is derived.

a right inverse of T , then by condition w

□
The matrices R, defined for a given Q, which satisfies the conditions of 

Corollary (4.9), are not uniquely defined, since the right inverse is not 

uniquely defined. The parametrisation of the family of the R matrices is 

described next. Before we state the result we introduce some useful

notation. Let

the columns of

(F,G) at s-0.

d,<..,<d }
1 P

the Jp (B)

Q=CQoo,Qa ,... ,Q^,... ,Qa 1 be n*n  nonsingular matrix, where 

Q , V BeR, form a normal complete prime set of chains of
D

Qg is of dimension nxp^ and Ig-{(dj,Oj),...,(dp,Op); 

index set of (F,G) at s=B, po= 7 d., then we define as
8 i-1 1

of Q , for B€{a.,...,a }, the matrix
p 1 P

If

is the

matrix

J
PB

diag{J, (g);...;Jd (B);...;Jd (B)}
_____________Lx v_e____________ p ,

a, a
1 P

(4.76a)

where J, (B) are standard Jordan blocks for B of dimension d.. For the 
d. 1

1
case of B=°°, and if (qj ,tj),..., (q^, t^) ;qj <.. .<q^} is the index set 

V
of (F,G) at s-«,qw« £«1qi*  then

J (•») = diagtJ
1- ,ql ql

------------
;J (0);...;J (0)}

t:v

(4.76b)

Remark (4.14): For every matrix Q=[Qoo,Qa ,...,Q_,...,Q 1, where the
1 6 %

columns of Q form a normal complete set of chains of (F,G) at s=B, BeR, 
3

the following properties hold true:

(0) ;...;
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GQ - FQ J (B) for V Be
p p Pg 1 y

(4.77a)

FQ = GQ J (-)
00 OO H

noo

The family of matrices R is defined by.

Corollary (4.10): Let Q=[Q ,Q ,...,Q_,...,Q ] be any nxn matrix for 
----------------------------- - O) B ap

the columns of Q form a normal complete set of chains of (F,G) at 
p

V BeR

s=B. Then,

(i) A particular solution of eqn(4.70) is given by

nxn nxn

(4.78)

(ii) The general family of solutions of eqn(4.70) is defined by

R = Ro+F[Qm,Q J (a,)..........
1 “1

-GCVq
°° 1

QoJ (a)]U+ 
u

y
(4.78)

where is an arbitrary nxn matrix.

Proof

U

(i) By inspection of (4.57a) a right inverse of T is defined by w 7

F wT+
w

G = diag{I ,0,...,0}
w %

, F - diag{0,I

1 y

and thus, by (4.72) and the partitioned form of Q (4.78) is established.

-G 
L w.

(4.79a)

(ii) It is known ([Ra&Mit - 1]) that a general family of right inverses

for T^ is given by

T+ 
w

U, Ue<EnXn arbitrary (4.79b)

a particular right inverse (as in (4.79a))where F ,-G define w w

is a right annihilator of T^. By choosing F^,G^ as in (4.75b)

by noting that ^q =FQFw +GQGw , (4.78) is established.

F’"
w

-G’
, I w and u J

and

□
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With Corollaries (4.9) and (4.10) the problem of defining the pairs

(R,Q) is solved. The general procedure for the construction of the pairs 

is summarised below.

Integrated nested basis matrix approach: For the nxn regular pencil sF-G, 

the Weierstrass form sF -G and the pairs (R,Q) for which R(sF-G)Q=sF -G
X^Z Xa Z X^Z Xr Z

may be constructed as it is discussed below:

(i) As with the Segre characteristic based approach, define the root 

range of (F,G), R={oo,a1,...,a }, the indices of annihilation t o of (F,G)
P T8 -TB

at s=g for V and a right annihilator of P P(F,G), P p of P P(F,G) for 
p  Bp

V BeK-

Cii) By the Segre' characteristic based approach, the canonical pair 

(Fw>Gw) may be constructed. Alternatively, (Fw,G^) may be found as it is 

described below; the following approach also yields the pairs (R,Q).
ATe Tg

Ciii) Reduce every matrix P p to a nested basis matrix N , for every
p  p

BeR, by elementary column operations.

(iv) Follow the steps of the nested basis matrix approach, described

before to compute a normal complete prime set of chains E (F,G) for V BeR. 
p

procedure generates (F ,G ) in an alternative way.

Construct an n*n,  nonsingular matrix Q, as Q^CQ ,Q ,...,Q„ 1, where 00 0C. Ct
1 u

the ordered set

The

(v)

columns of every block Qo, BeR, are the vectors in
p

E (F,G). The general family of R=R matrices is then 
p

the

given by (4.78).

4.6 Conclusions

Three different approaches for the derivation of the Weierstrass 

canonical form of a regular pencil have been presented and a systematic 

procedure for the derivation of the pairs of transformations (R,Q) which 

reduce a pair (F,G) to its Weierstrass canonical description has been 

given. The approaches discussed present the set of strict equivalent 

invariants of a regular pencil as numerical invariants of the ordered 
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pair (F,G); this provides an alternative interpretation of the e.d. of a 

matrix pencil to that originally given in terms of the Smith form. The 

advantage of the approach is that it highlights the geometric aspects of 

the set of e.d., as these are defined by the properties of the nested basis 

matrices and the structure of the maximal generalised nullspaces. The
r

geometry of the e.d. will be considered in some more details in Chapter 7; 

the results presented here will form the basis for the study of more 

general properties of the geometry of matrix pencils. The central feature 

of the present approach is that it is based on the rank properties and 

nullspaces properties of a-Toeplitz matrices; thus, an efficient singular 

value decomposition algorithm for such matrices is the only numerical tool 

needed for the computations of OF ,G ) and of the pairs (R,Q). The aim of w w

the following chapter is to extend the present approach to the case of 

singular pencils.



CHAPTER 5:

Number Theoretic and Geometric aspects 
of the column and row minimal indices 
of a Singular Pencil
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CHAPTER 5: NUMBER THEORETIC AND GEOMETRIC ASPECTS OF THE COLUMN
AND ROW MINIMAL INDICES OF A SINGULAR PENCIL

5.1 Introduction

The aim of this chapter is to extend the number theoretic results, 

derived in chapter (4) for the characterisation of the e.d. structure of 

a regular pencil, to the case of c.m.i. and r.m.i. of a singular pencil
*

and to provide a detailed study of the geometry of subspaces associated 

with the c.m.i., r.m.i. of a singular pencil. The number theoretic 

properties of c.m.i. (r.m.i.) are shown to be similar to those of an e.d. 

at s=a, but the results are now based on the Toeplitz matrices of the pair 

(F,G) and not on the truncated a- («-) Toeplitz matrices used for the e.d. 

of a regular pencil. The unifying property between the present treatment 

and that of chapter (4) is the use of Piecewise Arithmetic Progression 

sequences. The geonetric aspects of c.m.i. (r.m.i.) stem from the 

properties of the subspaces associated with the homogeneous polynomial 

vectors characterising the set of c.m.i. (r.m.i.). Such vectors are 

defined from the vectors in the right (left) nullspaces of the appropriate 

Toeplitz matrices and thus their definition is geometric, rather than 

algebraic (the classical approach is based on the theory of minimal bases 

of rational vector spaces).

The results presented here provide: First, an alternative procedure for 

the computation of minimal indices, which is independent from the use of 

strict equivalence transformations ([Gant. -1], [Van Do. -1]) and 

independent from the algebraic minimal basis approach ([For. -1]). Second, 

a purely geometric approach to the minimal basis theory [For. 1] . The 

geometric aspects of a singular pencil emerge as byproducts of the 

properties of Teoplitz matrices and thus they may be discussed as properties 

of the ordered pair (F,G) and independently from the pencil sF-sG.
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5.2 Toeplitz matrices and characteristic spaces of (F,G): 
definitions and preliminary results

In this section the notion of right and left Toeplitz matrices which may 

be associated with a general pencil sF-sG, or a pair (F,G) is introduced 

and some preliminary nature results on the right, left nullspaces 

correspondingly are derived. These results form the basis for the 

analysis presented in the following section. The pencil sF-sG (or the 

pair (F,G)), is assumed to be a general singular pencil (pair).

Let sF-s€ eRmXn[s,s] and let rank^^g ^{sF-sG}=p^min(m,n). For singular 

pencils, a complete set of invariants under strict equivalence is defined 

by the set of e. d. (finite and infinite) and the sets of c.m.i. and r.m.i. 

[Gan. -1], [Tur. &Ait. -1]. The minimal indices arise because of the 

singularity of the pencil, which in turn implies linear dependence amongst 

its columns and/or its rows; thus there exist polynomial vectors 

x(s,s) €Kn[s,s], y(s,s) ejRm[s,s] such that at least one of the following 

conditions is satisfied

{ sF-sG }x(s,s)=0 x(.s,s)eN^{ sF-sG} (5.1)

yt(s,s){sF-sG}=0 yt(.s,s)eMJi{sF-sG} (5.2)

where N {sF-sG}, M {sF-sG} denote the right, left nullspaces over JR(s,s) 
r £

(binary rational vector spaces) respectively of sF-sG. The binary vectors 

x(s,s) and ^(SjS) express dependence relationships among the columns 

and rows correspondingly of sF-sG; conversely, every such relationship 

may be represented by a binary polynomial vector. Given that a non- 

homogeneous identity in (s,s) implies that each of its distinct homogeneous 

parts is an identity, there is no loss of generality in confining the 

discussion to the homogeneous identity of any order; thus, homogeneous 

polynomials x(s,s) and yt(s,s) are considered. Nonhomogeneous solutions 

may always be expressed in terms of fundamental homogeneous solutions.
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Let Rd[s,s] be the abelian additive group of homogeneous polynomials 

with degree d and let Rd[s,s]n be the n-vector (n-tuple) with elements 

from Rd[s,s]. If x(s,s) e®d[s,s]n, y (s,s) eR™[s,s], then we may write

x<s.2)=xo,d®d+51,d-ls’d'1 + "-+^d-l,lsd’1S+2d,osd’Xd5d(s>®) (5-3a)

? <s • 8) -Zo,c’C+4, c-! S®C_1 *•  • • +*c- 1,1sC”' S+ZC, o^’-c (s ’S) Yc (5 •3b)

. , r-'k *k-l  k-l~ k-i t .a .. _nx(d+l)
where e^(s,s)»[s ,ss ,. ..,s s,s ] . The matrices Xd eR ,

Yc €]R^c+1^Xm, uniquely characterise the homogeneous binary polynomial 

vectors x(s,s), yt(s,s) correspondingly and shall be referred to as basis 

matrices of x(s,s), yt(s,s) respectively. The real vector spaces

X=col. span._{X,} and /=row span_{Y } will be called the supporting spaces Rd lx c
of x(.s,s), ytCs,s) correspondingly. The vector e^(s,s) will be referred 

to as the k-th vector of apolarity [Tur. &Ait. -1]. The characterisation

of the binary homogeneous polynomial vectors which satisfy conditions (5.1)

or (5.2) is given by the following result.

Proposition (5.1): Let x(s,s)=Xded(s,s) eRd[s,s]n, yt(s,s)«e^(s,s)Yde 

e JRc[s,s]1Xm, where Xd,Yd are defined as in (5.3a),(5.3b).

Ci) The condition { sF-sG }xCs,s)=0 is equivalent to

(5.4a)

or equivalently,

“ F 0 ... 0 0 -d,o

-GF ... 0 0 Sd-1,1

0 0 ... -G F -l,d-l

0 0 ... 0 -G . -o.d .

(5.4b)

(ii) The condition zt(s,S){sF-sG}=Ot is equivalent to

(5.5a)
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or equivalently

f*c,o ’Xc-l, 1 = 0*F

0

-G

F

0

0

0

0

0

0

0

0

(5.5b)

-G

F -G

0

□
The proof of this result follows by substituting x(s,s),yt (s,s), 

expressed as in (5.3a),(5.3b), into (5.1),(5.2) correspondingly and by 

equating coefficients of equal powers. Condition (5.4b),(5.5b) imply

that the study of homogeneous binary vectors in W {sF-sG},W {sF-sG} may be r Jt

reduced to a study of right, left nullspaces of matrices defined from the

ordered pair (F,G). The matrices defined by

0

T](F,G)=

1 rp °iF
,T,0?,G) = -G F

-G
_ 0 "G.

.... ,TkO?,G)£

-G

-G

F

-G

... -G

... 0

- k _
blocks

-G

F

-G

o'

0
f

,,k . (5.7)
blocks

0

0

F

0

0

0

0

F 0

0 F

0

0

F

0

F

0

0

0

0

0

-G

0 ... -G

0 ... F

__ k+1 ___
blocks

are clearly Toeplitz matrices; T^(F,G) ^n,T^(F,G) and

shall be called k-th order right-Jeft Toeplitz matrices of (F,G) 

respectively. The vector spaces N^=N^{T^(F,G)},N^=N^{T^(F,G)} will be 

referred to as the k-th right-,left characteristic spaces of (F,G)

kn fan
correspondingly; vectors x^eR ’^k € ^r and ^k *̂k  e wil1 be called 

k-th right- and k-th left-annihilating vectors of (F,G) respectively.

Every k-th right annihilating vector x^ and k-th left annihilating vector 

may be partitioned as
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5k" [5k-l,o’5k-2,l.......... Shk-a’So.k-J*

2k ” fck-l,o’Xk-2,l”"’21,k-2’E0,k-l}

(5.5a)

(5.5b)

and the binary polynomial vectors defined from x^,y^ by

(5.6a)

(5.6b)

will be referred to as the associated k-th right-, left-annihilating 

polynomial vectors generated by corresPondingly• The supporting

subspaces X^),/^) of the annihilating polynomial vectors ^(x^js.s), 

yt(X^;s,s) will be referred to as the associated k-th right-, left- 

annihilating spaces of x^.,y^ respectively.

There is an obvious duality between the results concerning the structure 

of right and left Toeplitz matrices of (F,G); the basis of this duality 

is the fact that T^(F,G) t=T^(F,G). Thus, results concerning T^(F,G) may 

be translated into corresponding results for T^(F,G) and vice-versa. In 

the following, the case of right Toeplitz matrices will be considered and 

the interpretation of the results to left Toeplitz matrices is rather obvious.

A useful property of annihilating vectors, which readily follows from

Proposition C5.1) is stated below.

Remark (5.1): Let x^ be a k-th right annihilating vector of (F,G). Every 

vector derived by a trivial expansion of x^ as xr=[0fc;...;0t;x^;0t;...0fc] 

€ ]Rrn, where 0 is an n-dimensional zero vector, is an r-th right 

annihilating vector of (F,G).
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The Toeplitz matrices of (F,G) have been used by Gantmacher [Gan. -1] 

for the definition of c.m.i. and r.m.i. of a pencil. The procedure

suggested in [Gan. -1] for determining the c.m.i. involves the following 

steps: Find the smallest integer e for which then e is the value

of the smallest c.m.i. By strict equivalence transformation reduce sF-sG

to the pencil

sF’-sG
L£(.s ,s )

0

0
(5.8)

where L (s,s) is a standard c.m.i. block associated with e. The pencil

sF-sG is considered next and the procedure is repeated. The main 

objective here is to study the structure of the Toeplitz matrices and

find the set of c.m.i. without having to resort to the use of strict

equivalence transformations implied in the above procedure. The dominant 

idea in the present study is that the set of spaces contains all the 

information needed to find the set of c.m.i. Our first step in our study 

of the right characteristic spaces is the determination of their dimension. 

The following standard result will be used.

exists a pair (R,Q) of strict equivalence transformations such that

Lemma C5.1) [Gan. -I]: Let sF-sG eKmxn[s,s], p=rankR(g ^{sF-sG}. There

sF-sG (R,Q) R(sF-sG)Q=sF’-sG' where

sF’-sG

i 
i 
i i
i 
i i

1
syiGr :

" “ “ '
} sA-sB

(5.9)

sA-sB is regular, sFc~sGc is characterised by c.m.i. and sF^-sG^ is 

characterised by r.m.i. only.

The pencils sA-sB,sFc-sGc,sFr«sGr, defined for a general singular 

pencil sF-sG, will be referred to as a regular-, right-, left-restrictions 

correspondingly of sF—sG. A singular pencil characterised only by r.m.i. 
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will be called entirely left singular; if it is characterised only by

c.m.i., then it will be called entirely right singular. The restrictions 

sA-sB,sF -sG ,sF -sG of a pencil sF-sG are not uniquely defined; the
C C IT IT

following property, however, is readily verified.

Remark (5.2): If {sA-sB,sF_-sG ,sF -sG },{sA’-sBf,sF’-sG',sF*-sG* } are ---------------------- ccrr ccrr

two triples of a regular-, right-, left-strictrictions of sF-sG, then 

(sA-sB)E (sA'-sB'), (sF -sG )E (s F'-s G'), (sF -Sg )E (sF’-sG').
s c c s c c rrsrr

For regular, entirely left singular, and entirely right singular pencils 

we have the following properties:

* k kProposition (5.2): Let sF-sG be a pencil and let N_(F,G),Nn(F,G) be the* r Jt

corresponding k-th right, left characteristic spaces of (F,G). The 

following properties hold true:

Ci) sF-sG is regular if and only if W^(F,G)={0},M^CF,G)»{0} for all k, 

k-1,2,...

Cii) If sF-sG is entirely left singular, then M^(F,G)={0} for all k,

k=» 1,2,...

(iii) If sF-sG is entirely right singular, then W^(.F,G)={0} for all k,

k=1,2.

Proof

(i) If sF-sG is regular, then N {sF-sG}={Q},W {sF-sG}={0} and thus there r x
is no nonzero vectors x(s,s) e M^{sF-sG},yt(s,s) eW^{sF-sG}; these two 

conditions imply that the only solutions of equations

(5.10)T^(F,G)x^ - 0, z^Tfc(F,G) = 0 for all k-l,2,...

are ^=0,^=0. Conversely, if C5.10) hold true for all k, then the only

vectors x(s,s).^(s.s) which may he found such that (5.1) and (5.2) are 

satisfied, are the zero vectors. This clearly implies that sF-sG is 

regular.



151

(ii) Assume that W^(F,G)*{0). Then, there exists a k-th right annihilating

vector 3^ and thus an annihilating polynomial vector x(x^;s,s) such that 

(sF-sG)x(x^;s,s)=0. This condition implies that Wr{sF-sG}*{0}  and that 

sF-sG is characterised also by c.m.i.; this contradicts the assumption 

that the pencil is entirely left singular. The proof of part (iii) is 

identical.

The importance of entirely right (left) singular pencils in the study of 

right (left) characteristic spaces of a general pencil is demonstrated by 

the following result.

Proposition (5.3): Let sF-sG eRniXn[s,s] and let sFc~sGc be a right 

restriction of sF-sG. If W^(F,G),M^(F ,G ) are the k-th right
r 1, c c

characteristic spaces of (F,G),(F* c,Gc) correspondingly, then

dim N^(F,G) - dim ^(F^G^ for V k, k=l,2,...

e^(F,G) jX^O, and let us partition x^ according to the

Proof

Let Sk 

partitioning of T^(F,G), as x^-fXj,k,...,x? k,...,x£ k]t, where x^ keRn, 

V i e k. Then Tk(F,0x^-0 implies that

F-l,k=0,G-l,k"F-2,k’'’',G5k-l,k"F5k,k’G5k,k”° (5‘1

Let (R,Q) be a pair of strict equivalence transformations which reduce 

sF-sG to the decomposition (5.9). By writing x. k=Qx! V iek, and 

premultiplying eqn(5.11). by R we obtain the equivalent conditions

(5.12a)

(5.12b)
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By using the partitioning of x! . as above, equations (5.12a) are reduced “1,K

to the following equivalent set

Mi,k“2’Gcstk“M2,k’ •••’GA-i,k=FX,k’GA,k-2 (5.13a)

Ml ,k"G,Gr-I,k”Fr-2,k’ ’ '' ’Mk-1 ,k"FX,k’Mk,k"2

_ w . w _ w n
’•••’BSk-i,k=ASk,k’B*k,k ’2

(5.13b)

(5.13c)
. w _ w . w
^l,k’°’^l.k“^2,k

The pencil sFr-sGr is entirely left singular and sA-sB is regular; thus, 

by Proposition (5.2) conditions (5.13b) and (5.13c) have as the only

• r wpossible solution the zero vectors, i.e. x. =0,x. =0 for ¥k, k«l,2,...

Ct t t tand Vi, iek. We may thus write that x! = [x. , ;0 ;0 ] and it is obvious *** ”1, K ”1, K. “ “

that the number of independent vectors in W^(F,G) is equal to the number 

of independent vectors in N>C,GC).

sF-sG and thus an

□
This result demonstrates that the study of W^fFjG) is reduced to a study 

kof N (F ,G ), where sF -sG is a right restriction ofr c c c c

entirely right singular pencil. An obvious Corollary of the above result

is stated below.

Corollary C5.1): Let sF-sG be an mxn singular pencil 
A k

an r*p  right restriction of sF-sG. If Nc 

then there exists a QeRnXn, |Q|*0  such that

- >,k _of

and let sF -sG be c c
• • ir
is a basis matrix of N (F ,G ), r c c

a basis matrix for M^(F,G)

may be expressed in terms

- diag{Q,...,Q}
l - - >V

k

N as c

t
Xl,k p

V
4

0 n-p Xl,k♦

x.k ♦
P
* . k

X2,k

0 4 , where N =n-p c •
•

x,/ 4
P
V

*k,k

0I— J
♦ 
n-p 
V

l 
P 
ir 
t
P 
I

(5.14)

♦
P

□
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In the following, attention is focussed on the study of properties of 

the right characteristic space of entirely right singular matrix pencils. 

The derived results form the basis for the study of the right 

characteristic spaces of a general pencil. Note that by duality, we may 

obtain aim-i 1 ar results for the left characteristic spaces of entirely 

left singular pencils, which are essential for the study of left♦
characteristic spaces of a general pencil.

5.3 The right characteristic spaces of entirely right singular pencils

Let sF-sG e3RmXn[s,s] be an entirely right singular pencil and let

I (F,G)={e 1=...=£ =0<e <...£e } be the set of c.m.i. of sF-sG. The
c^’ 1 g g+1 P

set I CF,G) is a complete set of invariants for the strict equivalence 

class of sF-sG; this equivalence class has a canonical element, the 

Kronecker form, which is of the following type

L£(s,S) - sL£-sL£, where L£ - [j£ ! 0 ] e , L£ = [o ■ I£ ] | (5.15b)

-*-£+1*  *£+t-*

The canonical pencil L (s,s)~sL -sL plays a key role in the study of the £ EE

right characteristic space of a general pencil sF-sG; we start off by 

k Agiving some preliminary results on the properties of Wr(Le,L£).

Lemma (5.2): Let L ,L €ReX^e+1^ be the matrices defined by (5.15b).

The set of matrix equations 

(5.16)

where x. e]Re+1,iek, has always a solution. The general family of solutions

is given By:
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(i)

(ii)

If k<e+l, then x. = [O,...,O,aI m and a. eR arbitrary.

If k>e+l, then x.«[0,... ,0^,... ,a£]C for Vice; for i-c+1,... ,k, 

xi“[a._e,a._£.+1,...,a.]t with a. eR arbitrary.

The proof of this Lemma follows by inspection of the canonical structure 

of the L ,L matrices. Using this Lemma we have:
£ £

Preposition (5.4): Let Nk(Lg,Lg) be the right characteristic space of the 

canonical pencil sL -sL . Nk(L ,L )*{0}  if and only if k£e+l; furthermore, 

if k^e+1, then 6 =dim Nk(L ,L )=k-£.
K r £ o

Proof

Let Jt.-[XpX2,...,x^]te^(I.e,Le), where Xj sR , then the vectors x. 

must satisfy the conditions

Le5r0’£eSl-M2’ • •' ’£eSk-l’L (5‘I7)

If k<£+l, then by Lemma (.5.2) the general solution of the first k equations 

of (5.17) is given by x.«[0,... ,O,aj,... ,a.] C, V iek and thus £^*0  

implies that a^a^.. .^-0. This shows that Mk(L£,Lg)«{0} for all k such 

that k<e+l. Furthermore, since Mk(L£,L£)={0} it follows that if k<e+l, 

then the matrix T^(L£,L£) has full rank.

If k^e+1, then by Lemma (5.2), the general solution of the first k 

equations of (5.17) are given by

,a^]t, for i=e+l,...,k

The last condition L£xk=0, then implies that ak.e+1=ak-e+2=-* *=ak=0 and 

that the first k-e parameters a1 ,a2»... ,3^ are arbitrary. The general 

expression for the vector is thus obtained and by inspection it follows 

that there are k-e independent vectors in N^CL^); thus dimN^(Le,Le)-k-e.

If k>e+l then T (L ,L ) has a right null space; the minimum dimension of 
’ k £

this null space is dmin=kCe+l)-(k+l)e=k-e= dimMr(L£,£e); this shows that
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Tk(Le’£p has rank.

Remark (5.3): For all e>0, the Toeplitz matrices T. (L ,L ) have full rank • • K £ £

for all k=l,2,...

Remark (5.4): For all k<e+l, then W^(L^,L^)={0}.

Note that the vector solutions {Xj,... ,x^} of (5.16) are vector coefficients 

of a k-th right annihilating vector x(s,s)-XjSk 1+B2S^ 2s+...+xk_1ssk”2+

!»•••» 

matrix } has a canonical structure, and this is defined by the

following result.

+V ‘[Sk’Sfc-

Corollary (5.2): Let k>e+l and let x(s,s)=[xk,xfc_1,...,Xj]ek_J(s,s)=

=Dt e, (s,s) be a k-th right annihilating polynomial of sL -sL . The 
—k-1 £ £

following canonical structure

k,e
_ . • ,_(E+l)*k  - ..basis matrix D, sR has the

K, E

al 0 0a2 a3 * • • Ve

00 al a2 ’ * ’%-£-!

Dk>e (5.18)

0 al 0

0 . 0 al a2 Sl-e-I ^k-e

where the parameters a^ eR, but otherwise arbitrary. □
Matrices of D type have a canonical Toeplitz structure 

9 £
referred to as (k,£)-Toeplitz matrices of sL£-sL£.

and shall be

The number of free

parameters is k—e ; D, defines the total 
K, £

vectors of the canonical pencil sL^-sL^.

family of k-th right annihilating

Remark (5.5): Let ’ * * * *-l t^ie Senera^- (arbitrary

parameters) (k,c)-Toeplitz matrix of sL£-sL£. The linear vector space 



156

generated by the k-th right annihilating vectors, 

has dimension k-e.

We may now state the main result of this section.

Theorem (5.1): Let sF-sG eRmXn[s,s] be an entirely right singular pencil

and let I (F,G)*{ e =. . .=»£ =0<£ £....£e } be the set of c.m.i. If Mk(F,G)
c ’ 1 g g+1 p r *

is .the k-th right characteristic space of sF-sG then the following 

properties hold true:

(i)

(ii)

Mk(F,G)ss{0} if and only if k<min{fij+l,jeg}.

If k>min{e . + 1, jep}, then N (F,G)*{0} . In this case the dimension 
J r

0k of Mk(F,G) is given by

(5.19)

Proof

(i) Let (R,Q) be a pair of strict equivalence transformations which 

reduce sF-sG to the Kronecker form (5.15a), i.e. sF-sG R(sF-sG)Q=

“sF^-sG^. If . • • >x£] C € W^(F,G) , x^ eJRn, then the vectors x^

must satisfy the conditions
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and that for every e., j=g+l,...,P we have the following set of conditions
J

(5.20d)

zero c.m.i. In fact, if a zero c.m.i. exists, then there is no k for which

^(F Q)«{o} • in the case there are no zero c.m.i. the condition is reduced 

to k<min{ej+l,j=g+l,...,pl and thus M^(F,G)={0}. This completes the proof 

of part (i).

(ii) The direct sum decomposition of x£, as in (5.20c) implies that if

W^(F,G) is nonzero, then its dimension may be found as a sum of the 

dimensions of the spaces generated by vectors of the type

x —£ J J ” jj
(5.20e)

where j=O,g+l,... ,p. If %+1-k<%+1 and the pencil has zero c.m.i., then

we have the following: with the g zero c.m.i. there exist kg arbitrary 

vectors x1 eR8 and thus the space generated by xg =[x*  \... ,xg t]has kg 

dimension (since there exist kg free parameters in xg ). By Proposition 
o

(5.4) the dimension of the space generated by xg , for Vj: j=g+l,...,v,
~ j

is k-E.; by Proposition (5.4), the vectors xg =0 for j: j=v+l,...,p. If
J . < ~

the pencil has no zero c.m.i., then the dimensions of xg for j=l,...,v
j

only are taken into account. I

Corollary (5.3): Let sF-sG elR™ n[s,s] be an entirely right singular pencil 

and let T (F,G) be the set of c.m.i. Let %+l^<ev+1 + l and x(s,s)=

(s,s) be a k-th right annihilating polynomial of sF-sG. There
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always exists a Q eRnXn, !QI*0  such that the family of basis matrices

may be expressed as

Dk.o.g

■Q eRnXk (5.21)

Dk,e 
. _ 2 -V.

0

where D are the (k,£.)-Toeplitz matrices corresponding to the nonzero 
k’Ej J OXk

c.m.i. £. for j=g+l,...and D, n o elR& is an arbitrary matrix 
j

associated with the g zero c.m.i. □

The proof of this result readily follows from the proof of Theorem (5.1). 

It is clear that the dimensions of the Wr(F,G) spaces of an entirely 

right singular pencil are functions of the set of c.m.i. only. In the 

following, attention is focussed on the problem of determining the set of 

c.m.i. from the dimensions of the M^fF,G) spaces. From now on, we 

shall adopt the following representation for the set of c.m.i. of sF-sG: 

T CF,G)={(e .,p.), ie£: 0^e.<...<e , where pi is the multiplicity of e .}; 

clearly {£.,iejj} denotes the set of distinct values of the c.m.i. of the 

general pencil sF-sG and shall be referred to as the right singular set 

of sF-sG. The results derived for the case of entirely right singular 

pencils are used next to the case of a general matrix pencil.

5.4 (F,G)-Piecewise arithmetic progression sequences and the
minimal indices of a general singular pencil

The study of the dimensions of the Mr(F,G) characteristic spaces of an 

entirely right singular pencil reveals that there exist strong similarities 

between the present study and that developed in Chapter (4) for the 

computation of the Segre' characteristics of a regular pencil. These links 

will be further explored in this section and it will be shown that certain 
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piecewise arithmetic progression sequences may be used for the computation 

of minimal indices. The results developed in the last section for the

readily extended to the case of a general singular pencil; this is due to

Proposition (5.3), which establishes that dim W^(F,G) =dim (F ,G ), where 
r r c c

sF^-sG^ is a right restriction of sF-sG. Matrix pencils with a right 

restriction will be called right singular, and those with a left 

restriction, left singular; clearly a pencil may be both right and left 

singular.

Remark (5.6): A singular pencil sF-sG eB.mXn[s,s] is right singular, if 

and only if there exists a k, k-1,2,... for which (F,G)*{0) . Similarly, 

the pencil is left singular, if and only if there exists a k, k=I,2,...

for which W^(F,G)*{0}.

In the following, the case of right singular pencils will be considered; 

the results then may be interpreted to the case of left singular pencils 

by "transposed duality". A result characterising right (left) singularity 

of a pencil is considered first.

Proposition (5.5) : Let sF-sG eKmXn[s,s] be a singular pencil. Then,

(i) sF-sG is right singular if and only if for some ke{ 1,2,.. ,o: where 

if m<n and o=n if m£n} Wr(F,G)*{0}.

Cii) sF-sG is left singular if and only if for some ke{1,2,...,p: where
1c

p-m, if m<n and p*=n+l  if m>n}, Mr(F,G)*{0}.  .

The proof of this result is readily established by Remark (5.6) and by 

the maximal possible dimension of a c.m.i. (r.m.i.) block of a singular 

pencil. For right singular pencils Theorem (5.1) and Proposition (5.3) 

yield the following result.

Theorem (5.2): Let sF-sG eKm*n[s,s] be a right singular pencil and let 

Ic(F,G)-{(ei,Pi), iejj: 0^e1<...<ep> be the set of c.m.i. If A/^(F,G) is the
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k-th characteristic space of sF-sG, then we have:

W^(F,G)*(0},  if and only if £j=0; then 9^ = dim M^(F,G)=pj.

Wk(F,G)={0}, and thus 6. =dim Wk(F,G)=0, if and only if 
r k  r

k<£j+l=min{£.+l

Nk(F,G)*{01  if and only if k>min{£. + l,ieji}.

is defined by:

(i)

(ii)

(iii) Then 0^ «dim A/k(F,G)

(a)

(b)

V J1pi(k_ei)

1-1

9k“ I Pi(k-ei)
K 1=1

if

if

Theorem (5.2) may be used to provide

a right singular pencil as it is shown 

denote by 0^ the dimension of N^QF,G).

e. +1<k< e.,,+1
J J + 1 (5.22a)

k£max{e.+1,iey}=e +11 ** p (5.22b)

□
a characterisation of the c.m.i. of

next. In the following we shall

Corollary (5.4): Let Ic<F,G)={ (£ppp , iejj, <.. ,<£^} be the c.m.i. set 

of sF-sG. The following properties hold true:

9k’9k-l- J'pj’if(i) et+1-k<£t+l+1
Cii) e + l<k 

y

(iii)

Proof

result is proved by distinguishing the following cases:The

(a) et+l<k-l<k<£

(r) e +l<k-l<k, 
y

Thus , we have:

t
(a) wrJ/.

t+1(el V9k-i=^,p.

yCr)

t+l+l, CS) et+lSk-l<k-et+1+l

(<5) k-Hej + l^k, Ce) k-l<k<ej+l

t t
•(k-e.)- Z PjCk-l-e.l-J Pj
J j j sb  J J J J«1 J
.(k-e.)-J Pj(k-l-e.)’Pt+1(et+1 + l-et+1) + J p = j'p

J J J=1 J J J=1 J J=1 J

(k-e.)- ! p.(k-l-Ej)-J Pj

J J j=l J J J-l J
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<5) 9k“0k-l* pl (k”e1)~0==P1 (£j+ 1“e1 )=pj
(e) 0^=0, 0k_j*O  and thus 9k-"0k_i=O □

Corollary (5.4) is similar in nature with Corollary (4.4) and thus it

provides

We first

thus the

the basis for the computation of I (F,G) from the numbers 0, .

N {sF-sG}; for all k>e +1, 0,-0, =p and 

for which ek“ek_1=P may be defined by the 

to as the right index of (F,G). From the

P
note that J P • = P = dim 

j-1 J 
smallest integer k=£^+l

rank tests and shall be referred

above results, we may deduce the following information about the right

singular pencil.

Remark (5.7): The differences 9k“9k_i are non-decreasing and the following 

properties hold true:

(i) There is an integer t  such that for Vk>T, 9k'”9k-l=Sp* T^e ^nteSer 

p =dim M {sF-sG} and the smallest integer r for which 0.-6, =p is 

T«ey+1, the right index of (F,G).

(ii) The smallest index t ’ for which Oo s 0) is + where

9t t “9t ’-1=p 1 the multiplicity of smallest c.m.i. .

(iii) The difference 9k“9k_j defines the total number of c.m.i. with value 

less or equal to k-1.

The sequence C “(9,: k=-l,0,1,2,..., where 9_1=9 =0, 0, =dim W^(F,G), k>l }
f K- *"*  1 0 1C IT

is defined as the right-(F,G) sequence of sF-sG. The properties of this 

sequence are defined by the following result.

Corollary (5.5): For every k=0,1,2,..., the sequence C? is characterised 

by the property

(5.23)2

In particular, we have that:

(i) Strict inequality holds, if and only if k=e, where e is a c.m.i.

(ii) Equality holds, if and only if k is not the value of a c.m.i.
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Proof

The proof of this result follows by using Corollary (5.4) and by 

considering all possible cases which may occur. Thus we have:

(1) £ =0: 6 -0 =O<0,-0 =p,
1 o-l lol

(2)

(3)

(4)

(5)

et+Uk-l<k<k+l<e ♦!: 8k+r6k'J,pj=9k’9k-1 ’
J-l J 
t+1 t 

et+lsk-l<k<k+l=et+1 + l: pj'9k’9k-r
J J

et-I+1 1 1 <k+1 <et+ ] +1: efc+ ] j”8k-8k_ , •

t+1 t 
et_1+l£k-l<k-et+l<k+l-et+1 + l: ®k+r«k".^Pj*  I pj“9k‘9k-l

•3 3

(6)

C7)

e^+lsk-l<k<k+l: ek+I-ek= .^fVk-1 •

y
e , + l^k-l<k=£ +l<k+l: 9 -0 = 7 p.=9,-0. ,
y-1 y k+1 k j Xj J k k-1

(8) k-l<k<k+Ke, + l: ek+1-V°=9k-9k-l

C9) k-1 <k<k+1 -e,+1: ek+ ] -ek=P 1 >»V9k-1

(10) k-l<e]+l=k<k+l<e2+1: ®k+1-9k=p1=9k~9k-1'

(11) k-Ke^l-^k+l-ej+l: 0k+i_0k=P1+P2>Pi“8k-8k_1

From the above cases, it is clear that 0. . -0 >0 -0
K+ IKK K“ 1 if and only if

k=E, where e is a c.m.i. and that 0jc+i"0ks=0k“0k_i if and only if k is

not a c.m.i

Given that 0fc-0fc_l>O for all k=0,l,2,..., the sequence is non-

□

decreasing For all integers k which are not values of c.m.i., the 

elements 9^ satisfy the arithmetic progression relationship 

0k"^k+l+9k-l^2* F°r those values of k which coincide with a c.m.i. 

the arithmetic progression relationship is violated since then 

0k<(0k+1+9fc-1)12. The sequence is thus partitioned by the values of 

the c.m.i., i.e. the integers 0<£j<e2<*••<ep* For a11 k in the range
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however, cannot be

of values (e^ ,... ,£j + 1) » starting from k=E^+l and ending with k-e^-l, 

the relationship )/2 holds true; this relationship,

continued in the range of values (...,e .-1,e .), or
J J

since for k=£., 0£ <(0£ _j+ee + 1>/2 and for k=e; + ]»
J j j j J

+l)/2. The sequence therefore satisfies the6 <(0 -1+0
j+1 £j+l Ej+1

arithmetic progression property in the range of values (e.,...»£«+J) 

of k, but violates the arithmetic progression property at the boundary

values e,,e. The number «e.-Cee.+J-9e.)"(9s.-ee.-l)“ee.*l +ee.-r2ee.
JJ J J J J J J J J

is a measure of deviation from the arithmetic progression type property

at k’Ej; the value k-Ej will be called a singular point of C*. and the 

number <5 will be called the gap of the sequence at k=E.. The sequence 
£ * J

J
Cr will be regerred to as the right Piecewise Arithmetic Progression 

sequence (RPAPS) of (F,G) and it is clearly of similar nature to the PAPS 

of (F,G) at s=a defined on a regular pencil in Chapter (4). We may now 

state the following result relating the properties of to the set 

Ic(F,G) of the right singular pencil sF-sG.

Proposition (5.6): Let be the RPAPS of (F,G). Then,

(i) An index k«£ is a singular point of the sequence C^, if and only if

e is the value of a c.m.i. of sF-sG. Then, 0£<(0£+j+0£_j)/2.

(ii) If k=£ is a singular point, then the gap 6^ =0£+i+e£_]“2ee is equal 

to the multiplicity p of the c.m.i. with value e .

Proof

Part (i) follows immediately by Corollary (5.5). If k«e is the value 
t t-l C

c.m.i., then ev.,-9v= Z P; and 9k* 9k-l= 2 pi (by c°rollary (5.4)); 
t t-l * J-1 J j-1 J

«k- I Pj- I p;=p;-* j-i J j-1 0 J

finding the singular points of C and the corresponding gaps, the set

of a

thus

By

□

of c.m.i. T (F,G) is thus defined. The analysis presented so far leads to 

the following procedure for the determination of Ic(F,G).
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Piecewise Arithmetic Progression sequence diagram (PAPSD): Compute the 

numbers ,0O>9| »e2’ * * ’ ,6o+l ’ where 9~l=9o=°’ and Q!sm+1, m<n and n=n, 

if m>n. Compute then the gaps of RPAPS C^, i.e.

5k " 6k+I+9k-r20k’ k=°.'»2.••••<’

and form a table of the following type: For every index k there is a

value <5k>0. then we create

a column with asterisks below <5^, with the number of asterisks being equal

to the value of 6, . k

diagram:

index:

gap:

This procredure is illustrated by the following

0 , 1 , 2 ,..., k-1 , k , k+1

5o,{l,52’,",4k-l’5k’6k+l’-"’lSa,4ort-l

*•*...  • * ...•
* * *

* * Figure (5.1)
*

The indices characterised by dots do not correspond to values of c.m.i., 

whereas those characterised by asterisks define values of c.m.i. The 

number of asterisks in a column gives the multiplicity of the c.m.i., 

whose value is the corresponding index. Thus, for instance, in the above

diagram we have c.m.i. with values, 0,2,k.

The above procedure will be illustrated later on by an example. An 

alternative procedure for the computation of Ic(F,G) is discussed next. 

This technique is similar to that presented for the computation of the 

Segrez characteristic at s=n of a regular pencil and which has been based 

on the notion of Weyr characteristic and FerrerTs type diagram. For the 

sequence C we first define the following induced sequence:

, k-0,1,2,...} (5.24)
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The sequence will be referred to as the right ft/eyr sequence of (F,G) 

and its properties are characterised by the following result.

Proposition (5.7): Let W*.  be the right (Veyr sequence of (F,G).

Then,

(i) \~Yk+l for all k=0,l,2,... There always exists an integer t ,

• (o=m+l, if m<n, and o=n, if m>n), such that for Vk>T,

V\+i •

(ii) The strict inequality holds true, if and only if k=e,

where e is the value of a c.m.i. The multiplicity p of e is 

then defined by P“Yk+|“Yk«

This result is an alternative statement of the results established 

by Corollary (5.5) and Proposition (5.6). Proposition (5.7) suggests 

the following alternative procedure for the computation of Ic(F,G).

Weyr sequence diagram (WSD): Let a be the integer defined by a=m+l,

if m<n, and o=n, if m>n. For every k=0,1,2,... ,o we create a

row in the following way: If Yk=0, the row is filled in with dots

and if y^>0,‘ the row is filled with y^ asterisks. The table created 

is parametrised by k and has the following general shape:
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Yo’°

el
Y =0 ------- *

E1

Yel+l>0

\l+2>0

s«rpi------- *

e2
Y >0 
e2

\*l >0
\+2>0

^2~p2

* * • • •
:=p2--

Figure (5.2)

Ye -l>0 
V

Ye >0
v 6® =pev v-----------------

* ... * *

e
v

* *

* * *

* * *
* * *

* * * * * •.. *

*

*

*

*

*

*

*

*

*

* * *

* • • • • * *
* * *

v° ** * ** * * **

From the above staircase diagram, the values of c.m.i. are computed as

those integers associated with the different steps; the multiplicities of

the corresponding c.m.i. are defined by the width (gap) 6 =y -y of 
e I e

the step. □
The following example illustrates the two procedures presented above.

Example (5.1): Let sF-sG be a 24x32 singular pencil and let the

sequences C and til be given for k—1,0,1,... ,25 (a-25) in the r r

following tables:
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k 9k k 9k

-1 0 13 80

0 0 14 88

1 2 15 96

2 4 16 104

3 9 17 112

4 14 18 120

5 19 19 128

6 26 20 136

7 33 21 144

8 40 22 152

9 48 23 160

10 56 24 168

11 64 25 176

12 72

sequence table

k Yk k Yk

0 0 13 8

1 2 14 8

2 2 15 8

3 5 16 8

4 5 17 8

5 5 18 8

6 7 19 8

7 7 20 8

8 7 21 8

9 8 22 8

10 8 23 8

11 8 24 8

12 8 25 8

(Figure (5.5))

From the above tables we may now form the RPAPS diagram and the WS 

diagram ; these two diagrams are shown in Figure (5.3) and Figure (5.4) 

respectively. The set of c.m.i. Ic(F,G) is then given by

Tc (F,G) = {(e|=sO,pj:s2),(e2=2rp2=3),(e3=5,P3=2),(e4=8,p4=l)}

4
Note that since £ p. 

j = l J
(e.+l)=32, the pencil sF-sG is entirely singular.

□

RPAPS Diagram

index: 0 I 2 3 4 5 6 7 8 9 .... 24

gap: 2 0 3 0 0 2 0 0 1 0 .... 0

* . * • • w • • * • • • • •

* * *

* Figure (5.3)
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WS Diagram

*1 -2

*10

*3 = 5 * A * * *

*4 = 5 * * * A *

eq=5
Yc = 5 3 * * * * *

5 p3~2

*6 = 7 * * A * * * *

*7 = 7 * * * * * * *

*8 = 7
e =8

y, * * * * * * *

*9 = 8 * * * * * * * *

= 8 * * * * * * * *

********

Figure (5.4)

Note that the integer a used for the evaluation of the first elements

of C , or (V sequences may be rather large. A procedure involving less 

computations is suggested by the following result.

Proposition (5.8); Let Icv(F»G) ((£j,Pj),•••»(£V»PV)^sIc(F,G) be the 

subset computed from the elements,9q ,9j,...,6£ ,0£ + P of the
u v

sequence of the mxn singular pencil sF-sG. Then,

v
(i) i\f ,G)=I (F,G) if ir J Pj.Ctj+1 )-Cev+l )<0,

c c v 1=1

(ii) If ir >0, then at most the elements {0£ +2.......... 6k+]} are needed for
%

determining the I (F,G) set, where k=n-J p.(e.+l)-l>e +1.
u 1=1
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Proof

The proof of the result follows by inspection of the dimension of the

pencil and by taking into account the sum of the dimensions of the
e

already defined c.m.i. blocks. Thus, if the set Icv(F,G) has been 

defined, an additional block of dimension ex(e+l), where e>e , may 

possibly exist if n- £ p.(c.+l)>e +1; otherwise, there is no c.m.i. block
_ • • X X V

V 1=1
with e>Ev. If n- £ P<(££+1)>e v +1, and another c.m.i. block ex(e+l) 

v i«l * *
exists with e>e , then its maximal possible dimension is k (k+1), where

v
k+l=n- y p.(e.+l).

i-1 1 1

This result provides a test for terminating the computation of the

elements of C ; when an extra c.m.i. is found, then it also indicates the 
r

maximal possible number of additional elements of which are needed for 

the computation of Ic(F,G). Note that the results presented in this 

section for the set Tc<F,G) may also be interpreted for the set Ir(F,G) 

if the pencil sFt-sGt is used as the starting point.

5.5 The annihilating spaces of a singular pencil

In this section, we examine a number of properties of the annihilating 

spaces associated with a singular pencil. The case of right annihilating 

spaces will be considered; the interpretation of these results to the 

case of left annihilating spaces is rather obvious ("transposed duality").

Let xCs,s)«[xo,k_j ,Xj ,k_2,... ,*̂2,1  ’-k-l ,o^-l (s ’ s)==Xk-l-k-I (s’s) be 

a k-th right annihilating polynomial, generated by the k-th right 

t t tzannihilating vector xk=[xk_j o ,...,x q k-J] . The associated supporting

k-th right annihilating space of xfc, and shall be denoted by RG^,).

The properties of RG^,) stem from the fact that ^.eM^CF.G); the analysis 

in the previous sections thus provides the rools for the study of the 

properties of R(x, ) spaces. Of special interest, is the parametrisation
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of the basis matrices . This analysis leads to the definition of the 

maximal right annihilating space of sF-sG and to the introduction of a 

minimal dimension direct sum decomposition for this subspace.

c.m.i. Let us also

Proposition (5.9): Let sF-sG eRmXn[s,s] be a right singular pencil and

let Ic(F,G)={£I’...=Eg=0<eg+I^.ep}be the set of

assume that x(s,s)=XR_1ek_1(s,s) be a general k-th right annihilating 

polynomial of sF-sG. There always exists a Q €RnXn, |Q|*0,  such that the

general family of basis matrices X^_j is expressed by

, if k£e +1
P

k, o, g
ak,o,g

Dfc’eg+1 Dk’eg+I

•••
. if %+lsk<%+l+1> 4-1*0 •••

\ e
’ V

Dk,£
___ ’_P__

0 0

(5.25)

where D. are the 
k,£j 

e. and 
J

c.m.i.

c.m.i. °k,o,g

(k,e.)-Toeplitz matrices corresponding to nonzero 

£]Rgxk is an arbitrary matrix associated with the

g zero

This result is an extension of the basis matrix parametrisation result

VrQ

0

for entirely right singular matrices [Kar. -2] and its proof readily 

follows by Corollaries (5.1) and (5.3). By assigning arbitrarily the 

parameters in D and D, blocks, families of supporting subspaces
K k,O,g K,Ej
R(xk) are defined. The properties of supporting subspaces K(xfc) are 

examined next.

Let x(s,s)=Xk jek j(a,s) be a right annihilating polynomial vector. 

x(s,s) will be called prime, if rankR{Xfe_1 }-k; then R(xk)=col-span{Xk_|} 

has dimension k. The polynomial vector x(s,s) will be called non-prime 

if rankf^ j}<k. For non-prime annihilating vectors we have:
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Lemma (5.3): Let x (s ,s )=[x q ,x 1,...,xk]ek(s,s)=Xkek(s,s) be a non-prime

annihilating polynomial and let v be the index for which the vector

chain {x q ,Xj ,... ,xv-J } is independent but {x^Xj,... ,x^__j ,x^} is 

dependent. There exists a prime right annihilating polynomial vector 

x*(s,S)=[x*,x*,...,x*_ 1]ev_I(s,s)=X*_ 1ev_1(s,s) for which 

spanfx*, ... ,x*_]  }=span{xo,x],... }.

Proof

Since x(s,s)eWr{sF-sG}, we have that

(5.26)G5o=0»G5rF^o,G-2=F-l ’ ’ ’ * ,G^k=F-k-l ,F-k=°

, Gxv_, +«2Gx v _2+ • • • , Gx ]
H
0

or

rSu_l=V^-2+a2F£v-3+- • -+%-l^o

Then, it is clear that

FX*_]=O,  where /.^x^-a^-a.,^-.. .-a^x,

By (5.27a) and (5.26) it follows that

(5.27a)

GE*_ 1=Gxv_I-aIGxv_2-...-%_IG52

II
0

and define the vectors

(5.27b)

We may continue the process



172

£v-3”£\>-3"°l-v-4_’- •-av-3-o’ •- ’ ’^T-l ■“iSo’-o=x-o (5.27c)

and the vectors (x*,x*, ... } satisfy the conditions

vector of degree v-1. Note that

feX..........S*-l ] = [5o’21’-">5v-l] 1

0

0

* *
Since P has full rank, {x q ,...,x^_j1 are

A A
sp^5o>S1>•••»xv_i}* SP<* O>*1 .......... Sv-1

2’^*-r°
(5.27d)

-a 1

1 ’“I

1

0

a right

-a » v-1

”%-2

-°1

1

linearly independent

The above Lemma is implicit in the reduction of a pencil to

Proposition (5.10): Let sF-§G elRmXn[s,s] be a right singular

annihilating

(5.28

and

□
the Kronecker

pencil.

There exists a minimal basis B(s,s)=fx£ (s,s), ieg} for N {sF-sG} with 
i r

the following properties:

Ci) The vectors xg (s,s)s=X .e (s,s)c» • c. •1 1
are prime for ¥ ieg.

Cii) The set of subspaces R(B)={R :E•. R =sp(X }, iq>} is linearly
1 i i

independent.

Proof

Let a  r A £ A £"" 1ee(s,s)=[s ,s
* £-1 Eqt,SS ,s j be the e-th order vector of <

polarity, when e>0 is a nonzero c.m.i. and let e£(s,s)*l,  when e=0.

The matrix
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defines a minimal basis for A/^fsF^-sG^}. If (R,Q) is a pair of strict

equivalence transformations that reduce sF-sG (R,Q)
R(sF-sG)Q-sFk-sGk,

then the columns of the matrix

(5.30a)

are linearly independent over JR(s,s) and since the degrees are e., 

they define a minimal basis for sF-sG}. If we partition Q as

ie2’

then rankfX }=e.+I
e. 1

1
right

Q = [x >•••?x > • • • ;x £1 E

e| + l

;Xe.
1

e. + l 
i

a basis

;Q’]
£

e +1
P

matrix for the minimal degree

(5.30b)

e. 
i

e.
1 

dim R
e. □

The basis matrix E(s,s) elR [s,s] will be referred to as the right- 

structure matrix of sF-sG. A set of vectors S(s,s)-{x^(s,s): 

x«(s,s) e!Rn[s,s], ier} with the vectors x.(s,s) linearly independent 

over K(s,s) will be referred to as an r-rank set of ]Rn[s,s]. If the 

vectors of the r-rank set S(s,s) are all prime, then S(s,§) will be 

called an r-rank prime set of !Rn[s,s]. With every vector x^(s,s)= 

•X e (s,s) of S(s,s), we associate the supporting subspace R =sp{X };
Pi Pi f • Pi Pi

the linear vector space Z called the characteristic space

of S(s,s). If S(s,s) is an r-rank prime set and the subspaces {R , i€r}
A . pi ~

are linearly independent, then S(s,s) will be called complete. With a 
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rank r set S(s,s) we may associate two modules; by setting s=l , and s=l 

respectively, we obtain the sets S(s)=S(s,1)={x^(s): x^(s)=x^(s, 1) €Hn[s], 

ier}

S(s)

and S(s)“S(1,s)»{x^(s): x^(s)=x^(l ,s) eRn[s], ier}. The sets S(s), 

have the same characteristic space, which is the space associated

with S(s,s). The finitely generated R[s], R[s] modules defined by the

sets S(s),S(s) respectively shall be denoted by correspondingly and

shall be referred to as the associated modules of S(s,s). An important

property of R^ is defined below.

Lemma (5.4): Let S(s,s)={x.(s,s): x^(s,s)=X e (s,s) eKn[s,s], ier} be 
-1 -1 pi”pi

be the corresponding characteristic space and letan r-rank set, R^

be the !R[s]-,3R[s]-associated modules with the set S(s,s). Then,

Ci)

(ii)

R$ is an invariant of both and modules.

If R are the supporting subspaces of x (s,s), then 
Pi -Pi

dim Rn £ dim R +...+dim R
S P1 Pr

linearly independent.

Proof

(i)

(5.31a)

If R’
Qj

qj 
of Sf(s).

is the supporting subspace of x!(s), then (5.31a) implies that 
r

thus w^ere i-s t^ie characteristic space
i=1 qj

Similarly, since S1(s) is a basis of we have

and

(5.31b)

and thus R
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(ii) This part is a straightforward application of a standard result 

[God. -1].

The notion of the characteristic space introduced for an r-rank set 

S(s,s) is now specialised to the minimal basis sets of W^fsF-sG}. We may-

state the following result.

Theorem (5.3): Let B(s,s)={x_ (s,s): x„ (s,s) eRn[s,s], iep} be a 
-C£ -E£ a-

minimal basis for sF-sG} and let R be the characteristic space of

B(s,s). Then the following properties hold true:

(i)

(ii)

(iii) The characteristic space R is the maximal right annihilating

space of sF-sG. If R£ is the supporting subspace of a minimal

basis B(s,s), then R may be decomposed as

(5.32)

Proof

(i) By Lemma (5.4), all minimal bases of W^fsF-G}, A/^fF-sG} have the
*

same characteristic space R , which is the characteristic space of the

R[s,s] minimal basis of AOsF-sG}. By Proposition (5.10), there exists

a complete minimal basis for A/ {sF-sG}. If R_ are the supporting sub- 
r i *

spaces of the x£ (s,s) vectors of this basis, then R =R£ ®...eR£ and
* E 1 E 1 P

thus dim R = £ dim R - £ (e _- + O •
i=l i i-1

(ii).  Consider the complete minimal basis B(s,s)={x (s,s):
-Gi

x£>(s,s) e!Rn[s,s], iej)} and another minimal basis B' (s,s)={x^ (s,s):

x£ (s,s) e!Rn[s,s], ieg}. If R£ are the supporting subspaces 
"1 i
associated with the minimal degree g£ vectors x£ (s,s), then clearly

i
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thus

p.»dimR*  £(e.+l), V ieg; however, by the invariance of the characteristic i e # i
1 . * ?

space (part (i)) we have that R = / R*  and
i-1 ei

dim R ) dimR*  
i=l ei a.pi (5.33a)2 (e4 + D * 

i«l x

since p.£(e.+l), it follows that
11

> p. = / dimR’ 
i=l i=l

.W”
1 1=1

dim R (5.33b)

By (5.33a) and (5.33b) it follows that

dimR = ) (e.+l) = ) dimR,L. 1 . , e.
1=1 1=1 1

(5.33c)

By part (ii) of Lemma (5.4) it follows that the subspaces {Rf , iep} are 
P p ei

linearly independent; furthermore, since £ (e.+l)= 2 P*  and p.^(e.+l)
• « 1 • « 1 1 JL1=1 1=1

we have that p.=e. + l,¥iep and thus the basis 8T(s,s) is complete.

(iii) If B(s,s) is any minimal basis of A/^fsF-sG} and x(s,s) is an

arbitrary right annihilating polynomial vector, then x(s,l)=x(s) (or 

x(l,s)=x(s)) may be expressed as

P 
xCs) = X e (s) = £a.(_s)x (s), a.Cs)eR[s] (5.34)

q-Q i=1 1 -e*  i

* * .from which sp{X^}cR . This proves that R is the maximal right 

annihilating space of sF-sG. The direct sum decomposition of R*  follows

from the fact that any minimal basis is complete. I

This result establishes that the characteristic subspace R associated 

with a minimal basis of M^fsF-sG) is an invariant of the rational vector 

space N^tsF-sG); furthermore, any minimal basis is complete and thus

* .defines a direct sum decomposition for R , which however is not uniquely 

defined. The set of supporting subspaces {Rg}={R , iep} associated with
i

a minimal basis 8(s,s) is linearly independent and their dimensions are

minimal; such a set {Rg} will be referred to as the minimal right 

annihilating set of B(s,s). The characteristic space R*  will be referred
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to as the maximal right annihilating space of sF-sG. R may be computed

without resorting to the computation of a minimal basis; furthermore,

minimal bases may be computed without the use of algebraic tools, but by

using the properties of the k-th right characteristic spaces of (F,G).

Some further properties of the minimal bases are considered first.

Corollary (5.6): Let sF-sG eKmXn[s,s] be a right singular pencil, 

B(s,s)«{x (s,s): x (s,s)“[x\xx,...,xx ]e (s,s)=X
£ . — £ « — O — 1 —£ • —£ * I   .
1 1 A 1 1 1 11 1

minimal basis of M {sF-sG} and let R =sp{x ,...,xpJ and R =sp{x 
r £-o-o h -Ej

be the subspaces of R . Then,

:£ ee (s,s), ieg} be a 
i i ,

xp 1 > • • •’Ac f9 
i £P

(i) The subspaces R^,R^ are i-nvariants tBie rational vector space

Mr<sF-sG}.

*
(ii) A/r(G}nR'’=R£ and

(i) Let x(a,s) elRn[s,s]sF-sG} he a homogeneous polynomial vector 

homogeneous degree k. For s=l, x(s)=x(s,l) may be expressed in terms

of

of

the vectors of the minimal basis B(s,l) as

x(s) » J c (s)x (s) 
jzEjSk ej "ej

k 
where c (s) eR[s] and deg{c (s)}=k-e.. If x(s)=x +x.s+...+x,s , then £ • £ . 1 — —O — 1 — K

J j A A

(5.35) implies that XQeR&. If B’(s,s)={x’ (s,s), ieg} is another minimal 
i

basis of W {sF-sG}, then every vector x*  (s) may be expressed as in (5.35)

and thus

(5.35)

However,

x’^eR ; this clearly implies that RJ=sp(x’1,...,xlp}cR . 
—O —O —O x,

every vector of B(s,I) may be expressed in terms of the basis

Bf(s,l) as in (5.35) and thus R^sR^. BY the conditions R’cR^ and R^cR^ 

it follows R^=R^, which proves the invariance. The invariance of R^ is 

proved along similar lines (i.e. set s=l and consider the vector

x(s)»x(l,s) etc.).

(ii) Clearly N^fGlriR =R*{0}  and R^cR. To prove that we ^ave to sh°w
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that M (G}nR*sR  .
r x

sufficient to show

In order to establish the latter condition, it is
*

that the general vector z e N {G}nR is the constant —o r

coefficient vector of some z(s,s)eN^{sF-sG} homogeneous polynomial vector;

if this is shown then from the proof of part (i) it follows that z eR.. —o Z

Let z eN {G}nR and—o r

defined by the

i r i i i ilet t  i • • •; x q  , x j, • •. jX^ ;... J 
i

coefficient of minimal basis vectors

. n*be the basis for R

x (s,s) of B(s,s) —* £ •1
Then,

? > >+z = ) a.x.+.-o . i-ij=0 J J

e
I a?x? and Gz = 0
L n-1 —o -+j-0 (5.36a)

Note that

Fz-o

er!
j=0 J

e -1 £j
2 a?Fx? = 2 a! .Gx ! + 

-j ji0 J j-i ’J
,Fx.+

e
♦ fa? ,Gx?
j-1 J"' "J

(5.36b)

{xo,...,~£^ 

x!+...+ a? .X?, 
j,! j-i J-‘-J

process and define vectors

since the vectors

V 1vector z,« E a, ,x.-r.
-1 • , J-l-J

xi } satisfy conditions
> *■

2? a? , x?, then Fz =Gz,.
- ’ -o-l

(5.4a). If we define the

We may continue the

•+ f., i -k-1 j=k J J
(5.36c)

where =0 if k>e.. The vectors z.j-k i  -k satisfy the conditions

Gz =O,Gz=Fz ,...,Gz —O -1 -o’ “£
=Fz .,O=Fz -£ -1 —E

P P P
(5.36d)

and thus there exists a homogeneous polynomial vector z(s,s)=zosGP+

1s+...+z s^PeN {sF-sG} for every zoeNr{G}nR*.  The proof of the 
’£P

. statement of part (ii) is similar.

+Zj seP

second □
A 1 k

+5|c_iss be a general k-th(5.8): Let x(s,s)=xQsk+XjSk ls+.

right annihilating polynomial vector of sF-sG. Then, xq e R^ and

Remark

Corollary (5.6): Let sF-sG e!Rm n[s,s] be a right singular pencil,

B(s ,s )={x £ (s ,s ): x £ (s ,s )=[x ^,Xj,...,x ^ ]e£ (s,s)-X e (s,s), ieg} be a 
i i i i 1 1

homogeneous minimal basis of sF-sG} and let T =col-sp{GX } for Viejo. 
ei ei
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Then:

(i)

(ii)

(iii)

The set of vectors {zS Zj«GXj e R™, form a basis for the

subspace T , for V iep, for which e.>0.
ei 1

The set of subspaces {T : for V £.>0} is linearly independent.
£ • X

1

If {0<£g+j^...£ep} is the set of nonzero c.m.i., then the subspace

T*  - T
£g+l

(5.37)

is an invariant of sF-sG}.

Proof

(i) Clearly, Gx^=0 and the vectors { 

that the vectors {z^

z^i
-J

'GXj, jee^} are nonzero. Assume 

jee^} are dependent and let Gx^ (h£l) be the first 

vector in {z^,...,z^,...} that is linearly dependent on the preceding

ones and let

V41 +a2GSh-2+ • • • +°h-1GS1

Clearly, the vector

Following identical steps to those suggested in [Gant. -1] (Vol.2, pp32) 

it follows that vectors x^_k=x^_k~aj5^_k_j“• • • > k=l,...,h may be

defined for which conditions (5.4a) are satisfied.

(s,s)=xh_1eh_1 (s,s)eWr{sF-sG}, splx^}^ and deglx^ (s,s)}=h-l<£i. 
i

If h-1 <min{£j, jeg}, then the existence of Xji_j (s ,s ) 

minimality assumption for the lc(F,G) set of indices. If h-1>min{Ej,jeg} 

and e is the maximal minimal index for which E,>h-1>£ , then thev 1 v*

polynomial vector x^_] (s, 1 )=?h_1 (s) jj (s) may be expressed in 

terms of the vectors of 8(.s,l) as

violates the

j:Ej£h-l j j

where c (s) eR[s] and degfc (s)}^h-l-E.. The above relationship then 
j j J

implies that

(5.38a)
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(5.38b)

Given that sp{X^__j } is a proper subspace of R£ , the above condition
A

violates the completeness property of the basis B(s,s) and thus leads 

to a contradition. Therefore, th? “??t?r? C-1
-J

given that they span T (Gx1=0) , they form a
i

(ii) Let Ic (F,G)«{e 1

the vectors {z.,je£^} are independent and 

basis for 7 .
£.

1

.. .“£ as0<£ . .^e }.
g g+1 P

nontrivial (*{0})  and

The subspaces T ,
ei

for every such subspacei“g+1»•••>? a^e clearly

G[x^,...,x*  1=G& is a
1 ei el

{T : £.>0} is linearly dependent. Then, there exist vectors c 
ei 1 “ei

i=g+l,...,p, not all of them zero such that

basis matrix. Assume that the set of subspaces

GX c +...+GX c =0 
eg+reg+i V£P

If we define by £-[...,ct ,...]t and X=[...;X ;...], then (5.39a)

A a *
GXc=0. Given that X has linearly independent columns, the latter

(5.39a)

yields

condition implies that z=Xc*0  and Gz=0, or that

zesp{X}=R and zeM^fG} (5.39b)

a *
Given that RcR , conditions (5.39b)

% •

we have that zeR^.Corollary (5.6),
A 

that RfiR^{0}, since z*0.  However, 

and R are linearly independent and thus ^nR^={0}

A 
that X

imply that zeM^fGlnR and by

The conditions zeft and zeR^ imply

by construction, the subspaces R^

has full column rank, it follows that c=0

linear dependence assumption.

(iii) The subspace T*  is well defined since the

from which z=0; given

which contradicts the

{T : e.>0} is linearly independent. Given that 
£ • 1

1 *
of the invariant subspace R , it is also invariant.

set of subspaces 

T is the image in Rm

□
The subspace T is the G-image of R and shall be called the maximal

G-right annihilating space of sF-sG. In a similar way we may define the
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subspace W as the F-image of R ; W will be called the maximal F-right 

annihilating space of sF-sG and its properties are similar to those of
* it *

T described by Corollary (5.6). The bases for R and T defined by the 

vector coefficients of a minimal basis B(s,s) of sF-sG} by

B^*  = { • • • jx^ ’ — 1 * * * • ’ —£ ;.••• iej^} (5 • 40a)
1

By*  ={...;GXj,Gx^,...,Gx^ j=g+l,...,p} (5.40b)
j

will be referred to as canonical bases of R and T respectively induced 

by the minimal basis B(s,s); the corresponding basis matrices defined by 

B^* a,[... ;x^,Xj,... ,x^ ie^> ••;GX|jGx^* •••,Gx^ ;...],
i . " j

j=g+l,...,p will be referred to with the same name. The importance of 

such bases in the canonical reduction of a singular pencil is demonstrated 

by the following result, which is an extension of a standard result in 

[Gant. -1].

Proposition (5.11): Let sF-sG e!RmXrl[s,s] be a right singular pencil,

.^...<e } be the set of c.m.i., B(s,s) be a minimal ' - 1 g g+1 p

for sF-sG} and let B^*,By*  be the canonical basis matrices of

respectively induced by BCs,s). Then,

IcCF,G)={e1=...=ert=0<e 

basis
* *

R ,T

Ci) For every pair (R,Q), where R=[By*,B"]  €RmXm,Q=[B^*,B ’] eRnXn,

|R|,lQl*0>  but with B",B' otherwise arbitrary, then

R-1(sF-§G)Q •
l £(s ,s ) ;

1
sC-sD

1
0 ! sA-sE

C5.15)

(5.41)

where L Cs,s) has the canonical structure and Wr{sA-sE}={0}.

(ii) There always exists a choice of the B’,B" such that for the

resulting (R,Q), we have

R-1(sF-sG)Q =
0 

sA-sE
(5.42)
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Proof

For the matrices R=[B^*,B ”],Q»[B^*,B ’] we have that

(5.43a)

(5.43b)

where the matrices L ,L are defined by L <s,s)=sL -sL , where L (s,s)Co Co Co Co

has the canonical structure (5.15). Conditions (5.43) readily follow

from the properties of B^*.  Clearly then R (sF-sG)Q ha? the (5.41 ) 

structure. To prove that N^fsA-sEj-fO}, set s=l in (5.41 ) and note that 

the nonzero columns of L (s,l)=L (s) define a minimal basis for the£ £
Eg•

maximal JR[s]-module of 1R 1(s); thus, we may write

sC-D = L (s)K(s) (5.44a)e

where K(s) is some appropriate matrix with elements from !R[s]. If now

x(s) is a nonzero polynomial vector for which (sA-sE)x(s)=0, then a 

polynomial vector ^(s) may be defined by

y(s) = -K(s)x(s)+p(s), g(s)eM {L (s)}
Co

(5.44b)

By conditions (5.44a) and (5.44b), it is readily seen that

(sF-G)r(s)
L (s) sC-D e y(s)

0 sA-E x(s)
(5.44c)

The polynomial vector r'(s)=Q 1r(s)€Mr{sF-G} and because x(s)*O,  the 

corresponding supporting subspace is independent from R ; clearly, this
*

contradicts the maximality property of R .

(ii) The proof of part (ii) follows along similar lines to those 

discussed in [Gant. -1] (Vol.2, pp33-34).
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The above result demonstrates the nature of the matrix Q in the 

parametrisation of the basis matrices of right annihilating polynomials 

of sF-sG (Proposition (5.9)). Using Proposition (5.11), Proposition (5.9) 

may be stated as follows:

Proposition (5.12): Let sF-sG eRmXn[s,s] be a right singular pencil

I (F,G)“{e,=...=£ =0<£ , <...^£ } be the set of c.m.i., 
c. 1 g g+1 P

ieg} be an ordered minimal basis for sF-sG} and let

B(s ,s )«{x £ (s,s),
i

(5.45)

be the canonical basis matrix of R induced by B(s,s). The basis matrix 

of a general k-th right annihilating vector x(s,s)=X^__je^_j(s,s) of

sF-sG may be expressed by

Vl ' BR* Dk = ®R*

Dt 
k,o,g

Dk,e +1
8 B D!£. k,£.

J 1
(5.46)

°k’£p

where d? . are k-th dimension row vectors, D, =0 , . if k<£.+l
-k,i,o k,E. £.+l,k 1

(£•+1) k 11
and e]R i are the canonical blocks of (5.18) if k^e.+l.K, £^ 1 □

The above description of the basis matrix may be translated in terms of 

the corresponding homogeneous polynomials as follows:

Remark (5.9): Let B(s,s)={x (s,s), iep, deg x (s ,s )=e .} be a homogeneous
i „ -ei 1

minimal basis of sF-sG} and let xts,s)eN^{sF-sG} be a homogeneous 

polynomial vector of degree k-1. Then x(s,s) may be uniquely expressed as

x(s,s) = E a.(s,s)x (s,s) 
i:£.<k-l 1 ei

(5.4 7)

where a.(s,s) €R[s,s] are 

deg{a,. (s,s)}<k-l-E£.

homogeneous polynomials such that

□
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Every k-th right annihilating polynomial vector x^(s,s) is generated 

by a k-th right annihilating vector z eN (T. (F,G) }=A/k; thus, the study 
—k r k  r

of the x^(s,s) vectors, as well as of the associated right annihilating 

kspaces is intimately related to the study of basis matrices of

Thus, let us assume that Wk*{0}  and that €RknX0fc be a basis matrix

for Let us partition as

1 2 ek
5k-l -k-1 •••’ Vi

I 2 »k
Sk-2

•
*k-2 ....

•
5k-l

•
•
•
1

51

•
•
2

*1 ....
x9k
=1

1 2 x9k
A 
—o -o • • • • —o

(5.48)

and define the set of k-th order right annihilating polynomials 

Pk((s,s);Nk]-{x£(s,8): x^(s,s)=x^sk’1+..x£_2ssk~2+ x^_1sk“1 €Rn[s,s],

ie6k . The set Pk[Cs,s);Nk] will be referred to as N^-right annihilating 

set of sF-sG. The K[s]-, lR[s]-modules generated by the polynomial

vectors of Pk(Cs,l);Nk] (.set s=l), P^[Cl,s) jN^] (set s=l) will be denoted
A

by M[Nk], M[N ] respectively and shall be referred to as R[s]-, K[s]-

Nk generated modules of (F,G) respectively. In the following the case of
A

M[NkJ modules will be considered, and the case of M[NkJ modules is similar.

Theorem C5.4): Let sF-sG eRmXn[s,s] be a right singular pencil and let
O'

Oj be the smallest integer for which M 1 ^{o}, dimA/ i=p . Let 1
a r

basis matrix for N 1, P [(s,s);N ] be the associated N -right
r -1 A °1 al

annihilating set and M[N ], M[N ] be the corresponding modules. Then, Oj Oj

The set P [Cs,s);N ] is a p.-rank complete set.
al al

P [Cs,l);N ], P [G,s );N ] are minimal bases for the p.-rankOj Oj Oj 1

maximal modules M[N ], M[N ] respectively.
al al

* o
The modules M[N ], M[N ] are invariants of W 1 and sF-sG has 

O| Qj r

N be a 
CT1

Ci)

(ii)

Ciii)
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£^=0^-1 as the smallest minimal index with multiplicity p^.

Proof

To prove the result, it is sufficient, as well as necessary, to prove 

it for the P^ [(s,l);N^ ] set. Thus,

(i) Assume that x^ (s) be the first vector that is dependent on the

1 1 h— 1 h
preceding ones in P [(s,l);N ]={x (s),...,x (s),x” (s),...}. Given

O] Oj -Oj -Oj -o1

that Oj is the smallest integer for which it follows that

x^ for V jepj (otherwise there would exist a smaller than integer,
1 a1

i i ~i i• ••;x ,x1,...,x «>x i -o -1 -Oj-2 -Oj-1

is linearly independent. Assume that they are 

there exist a. . eR, not all of them zero such

say q| for which AM^fO}). Thus all vectors x^(s) have degree

and thus we may write

h-1
x“ (s) = 2 “,-xi <»> (5.49a)
_al i-l 1_al

where a. elR and not all of them zero. By equating coefficients of equal 

powers in C5.49a), we have that

a = 0, a = [-Q],... , 1 >0 ... 0] (5.49b)

However, N has linearly independent columns and thus a=0, which 
C1

contradicts the linear dependence assumption. Therefore P^ [(s,l);N^ ]

and hence P [(s,s);N ], is linearly independent, and thus it is aO| Oj

Pj-rank set. By Lemma (5.3) and the minimality of <jj, it is readily

shown that all vectors in P [(s,s);N ] are prime. To prove the
al al

completeness we have to show that the set of vectors

linearly dependent; then

that

picr'
I I

i-l j=0

Given that for ¥ iep, , the set {x^,x\ ... ,xL , 
-o-l -Oj-l

a. .x^ = 0 (5.50a)

} satisfies conditions
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(5.4a), then by multiplying (5.50a) by F and using (5.4a) we have that

a vector z^ may be defined by

P1 v .
5. = Z Z ®{ and  g 2i = 01 i=.i j=i 1«J 1 J 1

(5.50b)

By deploying steps similar to those used in the proof of part (ii) of

Corollary (5.6), it follows that vectors of the type 

pi V .

2k - Z Z “i k=l,...,a -1
K i-i j=k ’■■J K J 1

(5.50c)

may be defined which satisfy conditions (5.4a) and thus establish the 

existence of a z(s)*Z|+sz2+. ..+sQ^ ^z^ _} eA/^fsF-sG}; clearly, this 

violates the minimality assumption for a,. Therefore is independent
' p!

and P [(s,s);N ] is a p.-rankOj Oj
A

(ii) The completeness property of P [(s,s);N ] implies that the
& i

1 P imatrix M(s) = [x (s) ,... ,x ^s)]-O] -aj

and it is column reduced (otherwise the set Sw could be dependent, u I

Therefore P [(s,l);N ] is a minimal basis for M[N ]. Since M[N ]
°l O] _ O]

is generated by a minimal basis, it is clearly maximal.

complete set.

'-l 1
has independent columns, no finite zeros

(iii) To prove that M[N ] is an invariant of N°^we have to show that it 
al r

is independent of the particular basis which has been used to define it.

Thus, let N’

corresponding

be another

set. Then

N' ,N as in 
’1 °1

(5.48), it

basis of WG1and let P’ [( 
r o

0 i XO 1NT =N T,TeK 1 |T|*0
Q1 Q1

may be readily shown that

(5.51a)

where T=[t^]. (5.51a) then yields

5a]1(s) x1 (s),...,x 1(s)]T 

1 1
(5.51b)

and thus M[N ]=M[N’ ]. Thus M[N ] is invariant. The rest of the proof 
<j] a, a]

is obvious. □
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The modules M[N ],M[N ] characterise the W 1 space of (F,G), shall
al °1 r

be denoted simply by and shall be referred to as the R[s]-, JR[s]~

Qpright annihilating modules of (F,G) respectively.

i . . aiRemark (5.10): Let N , i=I,2 be two basis matrices of W 1 and let 
i • i 01 1 i - i

P1 [(s,s):NL 1 be the basis matrices of the associated sets P1 [(s ,s);n  ].
°1 °1 CT1 °1

If-N2 =N*  T, TeRP1XpI, |T|»0, then P2 [(s,s);N2 ]=P*  [(s,s);N*  ]T and
<7] Oj O] C] <>! <7|

vice versa.

A matrix N^eRknX0^, which has been partitioned according to (5.4 8) will 

be referred to as naturally partitioned. With the naturally partitioned 

matrix N. we may associate the vector set .:ie9^};

SN will be referred to as the R -basis set of N^ and the subset of SN ,
.k k

S*  ’’{^k-1 ’ * * * *-l ’-o called the i-th R-basis subset of N^.
1 k

Nt will be called prime if for V ieO, , SXT is linearly independent and
k Nk

shall be called complete if is linearly independent. Within this
k

(5.4) yields:terminology, Theorem

Remark (5.11): If Oj

al
basis matrix for W 1, r

complete matrix.

<y
is the minimal index for which W **{0}and  N is a 

r al
then may be naturally partitioned and it is a

Note that completeness of N^ implies primeness, but not vice versa.

It is worth pointing out that the arguments used in the proof of 

Theorem (5.4) are independent from the use of the Kronecker form and 

thus may provide the basis for the computation of the Tc(F,G) set as 

well as the minimal bases of sF-sG} in geometric terms. Before 

proceeding with this study we define the following:

Let z=[x£ j,... ,XpX^] eRkn be a naturally partitioned vector. The 

matrix defined by
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will be called the

Tk,n<2> "

then we

5k-1 0 ...................... . 0

5fc-2 5k-i 0
•

•
•

Sk-3 5k-2 5k-l •
• •

• • • 0
• •
•
•
•

•
•
•

5k-1

51 52 -3 .

•
•
•

X 51 xn •
—o -2 •

0 X 51 ' •

•

•
—o •

• 0 5o •
• •

• • • •• 52
• • •
• •

•
• 51

0 o • • • • o X—o J

i-th Toeplitz matrix of z. If

eK(kn+i-l)xi (5.52a)

€ RknXp £g a naturally partitioned matrix,

Nk“^-1»•••’£]>••

i define as the

. ,z ]e

i-th

Toeplitz matrix of the matrix

eR(kn+i-l)xpi
(5.5 2b)

It is clear that for i«l, (N,)=N, and that for Vi, T*  (N,) is

• kinterest here are the basis matrices of Some further definitions

and properties of naturally partitioned matrices are discussed first.

naturally partitioned matrix, we may define the

K jll K K K j 11 K
naturally partitioned. Note that the definitions given for basis matrix

lc ** *Nk ^r’ such as t^ie sets Pk[(s,s);Nk ]and the modules M[Nfc] ,M[N^] 

generated by P^[(s,1);N^J,P^[(I,s);N^] vector sets respectively, stem 

from the natural partitioning of N^ and thus hold true for every naturally 

partitioned matrix. The only distinguishing feature for the case of basis 

matrices of is that the vectors of Pk[(s,s);Nfc] and the modules
A

M[Nfc],M[Nk] possess the right annihilation property for sF-sG. Of special 

With an N, e]RknXp
k
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following subspaces of ]Rn: W1(N^)=sp{S^ }, ft/ (N^)=sp{SN }, where
. k k

S ,S are the i-th 1R -basis set and JR"-basis set of N. correspondingly, 
.k k

U/ (N.^), ft/ (N^) will be referred to as the i-th supporting space,
p i n

supporting space of N, respectively. Clearly, ft/ (N, )= E ft/ (N, ) c]Rn.
K k i=l k

Some useful properties of general, naturally partitioned matrices are

discussed next.

A={N^:N^=NkT,T eKpXp,|T|*0}, T* n(Nk) be the i-th Toeplitz matrix of Nfc.

Lemma (5.5): Let Nk £RknXp be a naturally partitioned matrix,

The following properties hold true:

(i) If ft/ (Nk) is the supporting space of N^, then for every N^eA

and every i, i=1,2,...

w (Tk>n<Nk>) = w <Nk> <5.5 3)

*
(ii) If M[Nk],M[Nk] are the lR[s] —, K[s]- ^-generated modules, then

for every N’eA and every i, i“l,2,...

(5.5 4)

(iii) If Nk is complete, then

(a) Every N^eA is complete.

(b) rank[T*  (N,)]=ip for all i»I,2,...
tC n K

(c) The modules M[NkJ,M[NkJ are maximal Noetherian modules.

Proof

(i) The proof readily follows from the definition of ft/ (Nk) and by 

inspection of the special structure of the Toeplitz matrices and the 

relationship N^=NRT, T elRpXp, IT|*0.

(ii) The proof of M[NkJ=M[Nk], N^eA is identical to that given in 

part (iii) of the proof of Theorem (5.4). Note that in that proof the 

arguments used are independent from the completeness property of N
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above

To complete the proof we have to show that M[N,]=M[T?’ (N )]. If
K- K, n K

f(s,s) ;N^]={xj (s,s) , je]i, deg Xj (s,s)=k} is the N^-polynomial set, then 

pk[(s,D;NkJ={Xj (s) ,je^, degXj(s)=k} and pk+i((s>1) ;T^n<Nk)] =

...; {x. (s) ,sx. (s),... ,sxx. (s) , jeji). By inspection of the
J J 3

two sets, it is readily seen that MfN^] and M[TX n(Nk)] have the 

rank and that every vector in M[N^] may be expressed in terms of 

of M[Tk n(Nk)l and vice versa; thus M(Nk]=M[Tk n(Nk)l*

same

elements

(iii) From the definition of completeness and given that N^-N^T we

have that 

,.., k-1 and that

(5.55)

(V (N, )= ® sp{X.}= ® sp{X’.} with dim W (N )=ku, part (a) is proved.
j=0 J j=0 J

Part (b) readily follows from the structure of Toeplitz matrices and the

completeness of N^. The proof of part (c) is identical to that given in

the proof of Theorem (5.4).

Using the above Lemma we may state the following result.

sF-sG e RmXn[s,s] be a right singular pencil, cr^ be

the smallest index for which A/^^fO}, dim A/^1 =p j, N eJRalnXpl be a basis 

k 1
dimA/ =0, . ^he following properties hold true: T? K.

For all indices k: k=Oj-l+i, i-1,2,..., then 0^>pj(k-Oj+1).

Corollary (5.7): Let

Qi

matrix for M and let r

Ci)

Cii) If is t^ie minimal of the indices k: k=Oj+i -1, i=l,2,.. for which 

0. >p.(k-o. + l), then the Toeplitz matrices TX (N ) £R^G1+^"1^nXp1X, 
k i i a. ,n a.

. k1€02-0j are basis matrices for k=Oj ,(J| + 1,... ,a2-l.

(iii) basis matrices

P. is an 
J

□
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appropriate matrix and T*  (N ) is the corresponding Toeplitz 
I’n 1

matrix.

Proof

For

Lemma

it is

k=Oj, Nq is a basis matrix and by Remark (5.11) is complete. By
•

(5.5), part (iii)(b), T*  (N ) has full rank for Vi, i-1,2,...; 
I’n 1

verified that for Vk: k=o,-l+i the columns of T1 (N )
1 . °l’n al

thus 8, kp.(k-o. +1)=p,i=#columns of T1 (N ). For all 
K 1 1 1 CTj,n Oj

0=p(k-o+l)=pi, the matrices T*  (N ) are basis 
k i i i Oj,n O|

this completes the proof of parts (i) and (ii). From

readily

are in andr

indices k for which

matrices for A/ and r

the above arguments it follows that for all indices k: k-o^-l+i, i=cr2”Oj+j, 

j®l,2,..., the columns of T1 (N ) are linearly independent vectors in 
k 01 k

but since 9^>p}(k-o^+l)=pji, they do not span Ar any more. Therefore,

• • • k(N ) we may always expand it to a basis matrix of N
1 k r 

Pj, whose columns are in and they are independent 

T1 (N ); this completes the proof.
al’n °1

suggests a procedure for computing basis matrices for

k P1
starting from T1

cFrn a

by finding a matrix

from the columns of

The above result

A/k with the minimal

for those spaces which correspond to the singular indices of the

amount of effort; that is by computing basis matrices

RPAPS,

and then by expanding them using the appropriate Toeplitz matrices. This

technique is discussed next, and the suggested procedure leads to a

geometric definition of minimal bases. We first state the following result.

Proposition (5.13): Let sF-sG elRinXn[s,s] be a right singular pencil, A/^ 

be the k-th right characteristic space, 0, =dim^ ,

• Icmatrix for A/^. Let us further assume that (o^,p^)

of integers defined by

and let N, be a basis k

be the ordered pairs

k ai
Oj =min{k: A/^^fO}}, = dim

i-1
a.=min{k: 0R > £ p.(k-a.+l)}, p£ = %

j = l J J °i

i-1
2 

j=i

(5.56)

Pi(Qi“a4+1)
-J J

□
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a.
For every integer a., there exists a family of naturally partitioned basis 

* ~ naix0a. ~ no-xn-
matrices N of M 1, N =[N ,N ] eR 1, where N ell 1 P1 and

i i i i i/X
complete, W(N ) is the maximal space spanned by all right-annihilating

i
spaces, generated by right annihilating polynomials of maximal degree o^-2

and W(N )nft/(N )={0}. a. a.1 1

Proof

The result will be proved by induction. For i=l, N is a naturally 
al

partitioned and complete matrix (see Remark (5.11) and Theorem (5.4)). By

Corollary (5.7), it follows that N =TQ2 q 1(n ) and that N = 
. V Cl’n °1 °2

=[TG2 al (N );P ]. Clearly T0^ 01+ (N ) has full rank and the problem 
al’n al 1 a1"n al

proving that P^ may be chosen to be a complete matrix.is reduced to

naturally partitioned as in (5.48) and define the matrices

B
°1

P1
(5.57a)

[Gx !,...,Gx ' ,;...;Gx ,
-1’ -C]-!’ -1 9 • • • >Gx , °r'

(5.57b)

r 1 1 1 P1 P1 ,
•51 •••••5CTi_11

By Theorem (5.4) it follows that the vectors of P [(s,s);N ] is the
Q1 G1

subset of the vectors of a minimal basis of sF-sG} which corresponds

to all c.m.i. with value o.-l; thus, by Corollary (5.6) B has full rank.
CT1

We may now define the matrices Q=[B^ ,Bf] eRnXn, R=[B^ ,B"]

|QI,|Q|*0,  where BT,B” are suitable matrices. Using similar arguments to

those of Proposition (5.11), it may be readily established that 

R 1CsF-sG)Q=sF-sG, where sF-sG has the form

sF-sG = (5.58a)

where L (s,s) 
eI’pl

-•-------p j blocks--------

=block-diag{L (s,s),...,L (s,s)}
el el J

e|j-1 and
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N^fsF* ;sG’} has no vector in it with homogeneous degree less than (this

result is a trivial extension of the result stated in [Gant. -1] (Vol.2,

pp33-34)); furthermore, the matrices B’,B" may be suitably chosen such that

L (s,3) ; 0
el’pl |

I _____ __
I
[ sF’-sG’0

pair for which sF-sG is given by (5.58b), it

(5.58b)

Using the special (R,Q)

follows that N Z(F,G) may be expressed as a direct sum of the null spaces 

n °2(l

r ei’pi
U be the

G2
restricted

n ’2(f ',g ’).

,L ) and N 2(F',G’), where L
1,P1 el,pl

representation of the basis matrix T

to the L (s,s) 
eI’pl

We may partition

subpencil and

U ,W as 
a2 G2

W
°2

(s,s)=sL -sL . Let 
erpl epPj 

al (N ), when it is
Gl’n GI
be any basis matrix of

U O W
p2

W’
G2

W’ 9
_f£2

-1

W’ o

Then, a basis matrix defined by

By Theorem (5.4) and

n’Plal

n-p.o.

nfpiai

(5.59a)

Z
P2

for

u’ 1 1
i
i 
L

0

0 1 wr”7
V1

• •• I •

u»0
i
1 0

0
“1“

1 W’
l o

Remark

(5.59b)

is naturally partitioned and(5.11), W

complete matrix and thus is also naturally partitioned and complete

matrix. By translating the expression for Z back to our original frame, 
G2

we have that if <Q>=diag{Q,.,,,Q}, then
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Clearly N is a basis matrix for M and N elR0^11 p2 anj has fun rank. 
a2~ r o2

The matrix N is complete since the columns of
a2

annihilating polynomials of maximal degree ct 2~2. Finally, for the matrix

(5.59e)

there are no nonzero vectors a,0 for which P ot+R 8=0; therefore 
a2~ a2~

W(N )n(V(N )={0} and for the step i=2 the result is established. The 
a2 a2

generalization for any arbitrary index is identical. The arbitrariness 

of the basis matrices Wa. 
i □implies the existence of a family.

The set of ordered pairs of integers Kr(F,G)={ (cr^pp :Oj<.. .<ct^<... } 

defined by (5.56) will be called the right set of singularity of (F,G) 

and every index o^ will be referred to as a right singular index of (F,G). 

A useful remark that readily follows from the proof of the above result 

(expression (5.59e) etc.) is stated next.

Remark (5.12): Let N =[N ,N ] €Rnaix0ai be a basis matrix for N i
■------------- -------- — ct . ct . ct « r1 ii
which satisfies the properties of Proposition (5.13). Every other basis

CT*
matrix N' of N 1 which is related to N by

°i r ai

“h , H?
N’ = | N' ,N' = N H = N ,N 1 2
ai ai ai"^ ai L ai aiJ 0 H3
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where HeE 1 1, |h |*0,  has also the properties of the bases defined by

Proposition (5.13). I

In the following we investigate the relationship between the sets 

K.(F,G) and Ic(F,G).

Proposition (5.14): Let Kr(F,G)*{(cr.  ,pp ,i«l ,2,...} and Ic(F,G)={ (e.,p!), 

iejj} be the right set of singularity and the c.m.i. sets respectively of a 

right singular pencil. Then ^(F,G) is finite and its cardinality is y; 

furthermore, for V ieji, p.=p! and a.*e<+l.

Proof

The proof of the result readily follows by Theorem (5.2) and

Proposition (5.6). An alternative proof to this result will be also given 

at the end of this section. r

Systematic Procedure for the computation of K^(F,G)

The right set of singularity has been defined in Proposition (5.13) and 

by Proposition (5.14), it is related to Ic(F,G) in a simple manner and 

thus may be used for the computation of Ic(F,G). The systematic procedure 

adopted for the computation of K^(F,G) is described below:

lc(i) Define the set of indices Ij={k: Nr*{0},  k€g, where o=m+l, if m<n 

and o=n if m>n}.

(a) If lj=0, then K^CF,G)-0 and sF-sG is not right singular.
a.

(b) If I#0, find o,=min I. and define p =dim N *=0I 11 1 r Oj

Define the number ir =n-p, cr.-cr..
o I i * *

(c) If tt <0, then y«l and K (F,G)={ (a. ,p. ) } .
CTj Til

(d) If tt >0, continue to the following step.
al

(ii) Define the set of indices I2={k: 9k>p 1 + 1) » k=Oj+i, icrr^ }.

(a) If I2=0, th®11 U“1 and Kr(F,G)={ (Oj ,p *)  }.

(b) If I2*0,  find o2=min I£ and define P2=0a "Pj(c^-Oj+l).
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. ADefine the number ir =n-p 
1 ! 2 z 2

(c) If tt ^ £0, then y»2 and ^(FjO-CCOj ,pj) , (o2,p2) }.

(d) If iT^ >0, continue to the following step.

(iii) Assume that from the previous steps the subset K^(F,G)=

={ (p I ,Oj),..., (ppcrp } of K^(F,G) has been defined as well as the

A v. number ir =n- / p.o.-o. and that tt >0, otherwiseo. ,L. 1 11 a.
1 j-1 1

could have terminated. Define the set of indices
1

e.> y P . (k-o.+l) ,k=O.+p,p€TT }.
K j-1 J J 1 i .

(a) If

the procedure

Ti+r{k:

(b) If

pi+l

(c)

T^+1=0, then p-i and K^(F ,G)-K^(F,G).

T. + 1si60, find cr^+j=min I.+ J and define the 

i
- 7 p.(o- .-o.+l) and it

°i+l j-1 1+1 J

If

numbers

=0

7T £0,
°i+l

A 1+1

«n- £ p.o.-a. .. 
°i+l j-1 J J 1+1

then p-i+l and (F,G)*{(Oj,pj) ,j-1,...,i+l}.

(d) If tt + j>0, continue to the following 
i

step.

Note that it >ir , and thus the procedureo. o.+l K
J J

for some t , tt <0, or when It +j=0. Having
T

(F,G)={ ,ie£j, then Ic(F,G)-{ (<K-1 .pp ,iqj}.

terminates either when

found the set

Finally,

note that a is the 
P

right index of (F,G). □
existence of basis matrices

a. , i singular index; such matrices

they are naturally partitioned,

(2) W(N ) is the maximal space spanned by all right annihilating spaces CT.
1 ~

generated by vectors of maximal degree of cr.-2, (3) N is complete and

C4) Q/(N )nW(N )-{0}. A basis matrix of W , where a. is a singular a. a. r i
i 1

index, which satisfies the above four properties will be called a.-
o. ~

regular basis matrix of N 1 and the submatrix N --- a------------------------------- r

referred to as a (o^jp^)-regular basis complement of N

regular basis matrices provide the means for the computation of minimal

£lRcinxPi 
o

T—

—1—

will be

The o.-
1

bases of sF-sG} and they also reveal a number of important properties
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of N sF-sG as it is shown next. A useful family of basis matrices of 

the subspaces is considered first.

Proposition (5.15): Let sF-sG €]RmXn[s,s] be a right singular pencil,

K(F,G)“{ (<JpP.) ,i€jj;Oj <.. ,<o^} be the right set of singularity and let 

n(Ax) denote the i-th Toeplitz matrix of the naturally partitioned 

matrix elRTnXP. For all , there exist families of basis matrices 

{N^: for the sequence of subspaces {W^: k^Oj} which are defined as

follows:

(i)

(ii)

1 (N ) 
a.,n a.X X i

for which M
,ai=u 
r a.i

(iii) For every k: k>o , N =[T 1 (N
P k opn Oj

N =TJ (N ) e]RaPnXpP is a basis 
a a ,n a

y p y a o -U for which N V=V ecol-spfT0*1 
a r a a.»

P P 1

Proof

(i) By Remark (5.11), any basis matrix, say N of N<?1 Oj

the part (ii) of Corollary (5.7) this part of the result

is complete and by

is established.

, *
(ii) From part (i) it follows that N .

.* +1 _ 2
The column vectors of N =T°2 (N ) are

a2 Gl,n al
independent; furthermore, Z*

always exist nontrivial

* a basis matrix for U ,
g 2On X

M . We shall prove that N 
r

By Proposition (5.13),
Q Q

of Thus, there exists an M eR |m |*0  such that

thus there

a basis of 1.=Ta2_<Jl(N ) is

1 Co 1 in M 2 and 
r

col-sp{N^ } is a proper
*

(/ such

then N" = [N*  ,N*  ]
a2 a2 a2

G2
there exists a a -regular basis matrix N =[N ,N 1

2 °2 a2 °2

they are linearly

a2 subspace of and
Oo * *

that -Z_ eU .
~2 a2

is clearly a basis

‘ °2 
subspaces

*
t____ “

a2 a2 a
is a O2_reguiar Basis matrix.

(Jo * I Z-7
r ’a



198

(5.60a)

By the construction of the O2“reSular basis matrix (eqns.(5.59a)-
2

(5.59c)) and Lemma (5.5) it follows that col-sp{N }»col-sp{N } and thus 
°2 °2

by (5.60a) it is readily seen that M^=0 (otherwise some columns of
A

could have been linearly dependent on the columns of N ). Since M9=0,
°2 J

then by (5.60a) we have

* 
N

°2

M2

M4

*
By Remark (5.12), N belongs to the family of

a, a2
of and thus NQ^ is a (O2»p2)“re8ular basis 

Lemma (5.5), T^ Q2+1(n  ) has full rank for ¥k>a„ and its
o„,n o« 2

k z k-o i + l ~
in N . From the previous step, T 1 (N ) has full rankr K o ,n a '

1 1 k
and its columns are also in M r

(5.60b)

c^-regular basis matrices 
o2 

of N . Bycomplement

(Lemma (5.5)),

columns are

for Yk>Oi

The columns of

0

n
*

Nk ) (5.60c)

are thus in Wr for and they are linearly independent; in fact, if

we assume dependence of the columns of (5.60c) matrix, then it is readily 

shown that ft/(T^ al + 1(N ))n(V(T^ C2+\n  ))*{0}  which in turn implies that
* Cj,n Oj a 2,n  ct 2

W(N )rW(N )*{0} and thus violates the (o9,p9)-regular basis complement 
al ~2 * 2

nature of . Thus, rank(N^)=p{(k-Oj+1)+p2(k-O2+1)=dim for ¥k:
2 * k

and the N^, defined by (5.60c), is a basis matrix for N^. By 

induction (the rest of the steps are similar) the proof of the result is 

readily completed. □
Every family (N^: k^o^} of basis matrices for the sequence of subspaces 

k(F,G)-{A/r: k^Oj}, constructed as in Proposition (5.15) will be called a

complete family. By the construction procedure, it is clear that a 

complete family is uniquely defined, as long as the set of basis matrices
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~ a.
{N , ieji}, for the set of subspaces G= {(/ : ieji, V has been

1 i 1
defined. The set of subspaces G will be referred to as a set of 

generating subspaces of Sr(F,G) and every set of basis matrices of G,

, ie}i} will be called the set of generators of the complete family 

B(Ar,)={N. : k£cj,}. Note that the elements of G (apart from (/ ) are notG k 1 Oj

uniquely defined; and the family of all sets of generating subspaces of 

(F,G) will be denoted by <(F,G)r>. For every Ge<(F,G)r>, there exists a 

family of sets of generators which shall be denoted by <A^>. If 

{N^: k>Oj} is a sequence of basis matrices for the elements of Sr(F,G) 

(clearly, such a sequence is not uniquely defined), then for

modules

this

V we shall denote by P[(s,s);N^] the N^-right annihilating

set, by M[N.],M[N^] the corresponding R[s]-,lR[s]-N^-generated 

and by W(N^) the supporting subspace of N^. The main result of 

section is stated below.

Theorem (5.5): Let sF-sG eRmXn[s,s] be a right singular pencil and let

be a

K(F,G)={(a.,p.),ieu: o,<...<o } be the right set of singularity,
* 1 1 U

B(A^)={N^: k>0|} be a complete family of basis matrices of Sr(F,G), 

corresponding to a set of generators A^fN^ ,iey} and let 8={N^: k>cJj } 

general family of basis matrices of S^CFjG). Then,

For every singular index cr., the matrix N e B(Ar) is a a.-regular
1 O * 1

O. ~ 1
basis matrix of W 1 and N e A^ is a (cr. ,p.)-regular basis 

r o. b ii
ai 1

complement of . Furthermore, for any set A^, the corresponding

set of supporting subspaces W(Ag)={(V(NCJ, ),iejj} is linearly
i

(i)

independent.

(ii)

(5.61)
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(iii) For every set of generators A^, then

(a) The set of homogeneous binary polynomials
y A A/

P(Ar)-{P [(s,s): N ], ieji} is complete and of rank p= I p.. 
~ i=l

(b) For every singular index o. the ]R[s]-module M[n ] has
1

rank p., it is maximal Noetherian and the vectors of

P [(s,l): N ] define a minimal basis for M[n ] .
a. a. a.

the set of K[s]-modules defined by M[A/-,]={M[n ] ,
V O’ £

Furthermore,

iejj} is

linearly independent.

(iv) basisLet Qfc={at,t€v: at€^ai»•••and ot<k}. For any 

N, of Nk, the R[s]-module M[n . ] is an invariant of A/\
K r v k  r

maximal Noetherian of £ p. rank and it may be expressed as
t-1 X

matrix

it is

(5.62)

Proof

is a (j^-regular matrix of

of Proposition (5.15). By

* 
N
°i

(5.63a)

i-1 ~
and W(N )nW(N )={0}. By Lemma (5.5) W(fl )= £ W(N ) and thus

°i °i j-1 ’j

y W(N )flW(N )={0} for V igu; the last condition clearly implies 
J = 1 J 1
independence of

the

(ii) Let

family of

N. be k

basis

such that

the set W(Ag), as well as that

* 
any basis matrix and

matrices. There exists

w-

(5.63b)

the k-th element of a complete

a square, full rank matrix H

This relationship5in the natural partitioned form?may

1

be expressed as
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(5.64a)

H,...,N*°H] }» 

=col-sp{[Nk^ \...,Nv°]diag{H,...,H}}«W(NV). This condition implies 

that: (1) (V(Nfc) is invariant of and (2) that the properties of W(N^)

k may be studied by considering a complete basis for W^.

Let Ofc be the set of singular indices for which crt<k. Then, may be 

expressed as

(5.64b)

is established.

(iii) (a)

the set Po.
1

Since N is a naturally partitioned and complete matrix then 
~i

[(s,s);N^ ] is linearly independent and rank p^, since

otherwise, the completeness of N is violated. The primeness and the
i 

independence of the characteristic subspaces of the vectors of

P [(s,s):N ] follow immediately from the primeness of N . Thus,
CF • G CF •
1^1 1

P [Cs,s);N ] is a complete set. The independence of the set of subspaces O •< CT «
11 ~ 

£V(Ag) established in part (i) and the completeness of every P^ [(s,s);N^ ] 
i i

implies that the vectors of P(Ag) are linearly independent (otherwise 

the independence of W(Ag) is violated); clearly, the rank of P(A^) is
P A ~
2 p.. The completeness property of every subset P^ [(s,s);N^ ] of P(A^) 

i-1 1 ai ai
and the independence of the set W(Aq ) implies that P(A^) is complete.

(b) By definition M[n ] is generated by P^ [(s,l);N^ ]; the completeness 

of P [(s,1);N ] implies that it is a minimal basis of M[n ] which has 
O< CT. <7.

1 1 ~ 1
a minimal degree and thus M[N ] is maximal Noetherian and its rank is p..

O'. 1
i
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The completeness of the set of vectors P(A^), immediately imply the 

independence of the M[A^ set.

12 k(iv) Let be any two basis matrices of Then, there exists a

square and invertible H matrix such that N^=N^H. Let (s,1);N^]= 

■{xj’(s) ,... ,xj (s)}, i=l,2 be the vectors generating the K[s]-modules

1 2,M[Nk] respectively. Following identical steps as in the Proof of

2 1
Theorem (5.4), it follows that N^N^H implies that

[x^(s)..,x^ Cs )] « [xj(s),...,x^ (s )]H 

k k
(5.65a)

* •
Note that P^[(s,1);N^J generates MfN^j, i-1,2; given that H is invertible, 

1 2(5.65a) implies that and thus any MtN^] is an invariant of

The invariance of suggests that for the study of its

properties we may select any basis of Let us consider as a basis

matrix for the k-th element of a complete family, say N^. Such a

basis matrix is expressed as in (5.64b) and thus, by Lemma (5.5) it 

follows that MCN^], and thus , is generated by the vectors

PQ * <P [Cs,l);N ];.. -;P [(s,l);N ]}
1 1 v v

(5.65b)

Corollary C5.8): Let A^»{N^ ,iejil be a set of generators of a complete
1

family B(A^), B-fN^zk^Oj) be any sequence of basis matrices of Sr(F,G) 

and let ft/CB)={W(Nk) zk>Oj} be the corresponding sequence of supporting 

subspaces.

(i) For every pair of integers (i,j) for which either at-i,j<at+j,
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(ii)

(iii)

The

or CT^i,j, CT^=max{K(F,G) }, then W(N^)=W(Nj).

For every pair of integers (i,j) for which CTt<i<ot+j^CT^<j, then

W(Ni)cW(Nj).

is the right index of (F,G), then W(N )=R is the maximal 
P

If a
P

right annihilating space of (F,G) and

(5.66)

□
proof of the result is a straightforward consequence of part (ii)

of Theorem (5.5).

Corollary (5.9): Let A^’fN^ ,iejji} be a set of 

family BGAg), B={N^:k>CTj} be any sequence of basis matrices of Sr(F,G) 

and let :k>a^} be the corresponding sequence of R[s]-modules.

generators of a complete

(i) For every pair of integers (i,j) for which either o^i,j<ot+J,

or CT^i,j, CT^=max{K(F,G)}, then =M[Nj] .

(ii) For every pair of integers (i,j) for which CTt^i<CTt+J^CTp<j, then 

rank{M[Np }<rank{M[Nj] } and M[N.]c M[Nj].

(iii) If ct is the right index of (F,G), then M[N ] =M*  is the maximal 
P P

>[s] -Noetherian module which is contained in N^(sF-G).

(iv) For every set of generators A^, the set of polynomial vectors

P[s ;Ag ]-(P [(s ,1);N ];...;P [(s ,1);Nq ]}
1 1 p P

defines a minimal basis for M and thus for N^(sF-G) with a set 

of minimal indices Ic (F,G)«{(ct .-1 ,p^) ,i€}i}.

(5.67)

Proof

Parts (i), (ii) and (iii) follow immediately from part (iv) of

Theorem (5.5). The completeness of P(A^), implies that the set
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P[s »Aq ] is independent, has no zeros and it is column reduced. Given 

that P[s;Ag] is a basis for M , it follows that it is a minimal basis and 

its degree set is Ic<F,G)={ (a^-1 ,pp ,iejJ} .

The results stated above for the M[8] sequence of R[s]-modules may be

R['s]-modules. Clearly, Corollary (5.9) provides alternative means for the 

construction of minimal bases which are independent from the algebraic 

tools, used for their definition. Similarly, Corollary (5.8) provides a
• n*  . . .

procedure for computing k , which is also independent from the construction 

of a minimal basis. The key tools in both procedures is the construction 

of a set Ag of generators of a complete family of basis matrices of

Sr(F,G).

Remark (5.13): For any set of generators A^, the set of homogeneous 

binary polynomials P(Aq )s {P [(s ,s );N^ ],ieji} is a, homogeneous minimal 
ai ai

basis for (sF-sG). □
The last problem considered in this section is that of determining the 

possible degrees of prime right annihilating vectors; such a problem is 

intimately related to the study of possible dimensions of right 

annihilating spaces. In the context of linear systems, this problem has 

been first studied by Warren and Eckberg [War&Eck-l] in their 

investigation of the possible dimensions of controllability subspaces. 

Using the properties of the canonical basis matrix or right annihilating 

vectors of an entirely right singular pencil, an alternative proof to 

the Warren and Eckberg result was given in [Kar - 2]. The proof of the 

result stated next is a straightforward generalisation of the proof given 

in [Kar-2] for entirely right singular pencils.
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be a right singular pencil and let 

be the set of c.m.i. Let us assume 

right annihilating vector and that 

+l<d. Then.

Theorem (5.6): Let sF-sG eRmXm[s,s]

Ic(F,G)-{(e. ,p.0^£j<e2<.. .<ey} 

that x(s,s)=X^_je^_j(s,s) be a prime 

£ is the maximal c.m.i. for which ev v
v

(i) If e +l^d< J p., (e . + 1), there always exists at least one prime
i=l 1 1

. vector x(s,s) with degree d-1.

v
(ii) If d> 2 p*(e.+l),  there exists no prime vector x(s,s) with

i-1 1 1
degree d-1.

Proof

If x(s,s)=X^_1ek_1(s,s) e M^fsF-sG} then by Proposition (5.9)

D.
k,o,g

V. = Q
Ve *1

g+1 = QDk (5.67a)

0

where {e =...=e =0<£ <...£e }=I (F,G) and D, €R^ei+1^xk is the
1 g g+1 pc k,£<

canonical block (5.18) if k>£.+l and D, =0 . . if k<E.+l. If we
1 K » c « £ • • 1 • iC X

1 1• . cpartition Q into column blocks according to the partitioning of i.e.

Q=[Q_.Q_ >•••»<?_ .5], Q_ eKn*(ei+1), then (5.67a) yields
8 g+1 £P i

D.k,o,g

Vi
|Ve , 

L * g+i
1

PJ

Dk e
’g+1 (5.67b)

Dk £
k’£p

Clearly, }■(0} and thus

properties of the columns of

the linear dependence, or independence

j is defined by the dependence, or 
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independence properties of the columns of D^. The proof of the result 

is then reduced to that of Theorem (5) [Kar - 2].

Theorem (5.5) and its Corollaries have established the existence, as 

well as the properties of the families of right annihilating spaces (V(B) 

and right annihilating modules M[B] (M[B]). The families (V(B),M[B] are 

independent from the family of basis matrices B, which have been used for 

their definition, and they characterise the pencil sF-sG, or the pair 

(F,G). W(B) will be referred to as the right family of vector spaces of 

(F,G) and M[B] as the right family of !R[s]-modules of (F,G) and because 

they are independent from the particular family B will be simply denoted

ordered by

by W(F,G)«{(l/k:k>Oj } and M[F,G]={M^:k>cr} respectively. Note that both 

families W(F,G),M[F,G] are partially the set K(F,G)={(oi,pi),

i€y,0<Oj<...<o^} since for W(F,G) we have that

W. - Wj Viej e (V. = W. 
i J

Vi,j
J y

(5.68a)9

and

W c W c
°1 ct 2

c W 
o 

y
(5.68b)

and similarly for M[F,G] we have that

and

Mi ’ Viej e . M.i - M. 
J

Vi,j (5.69a)

M c ... c
02

Ma 
y

(5.69b)

By ie[ov,crv+1) we mean that

{o ,cr +l,...,cr ,,-1). Note v v ’ ’ v+1

takes values from the set of integers

that

T
dim W = rank M = £ P«cr-

o 4-1 J J
T T J-l

(5.70)

Both families W(F,G),M[F,G] are bounded and
£ £ • 

sup M[F,G]=M =M . R is the maximal right
* y

and M is the maximal ]R[s]-module in Nr{sF-G}.

sup (V(F,G)=(V =R*  and
o 

y 
annihilating space of (F,G)

M c

1
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Remark (5.14): The families W(F,G),M(F,G) are invariants of the 

equivalence class (F,G)={(F’,G’):Fr=RF,G’=RG,R eRmXm,|r |^0}. Q

The results presented in this chapter for right Toeplitz matrices and 

the right annihilating spaces may be readily translated to the case of 

left Toeplitz matrices and left annihilating spaces; this is achieved by 

considering the pair (Ft,Gt) and then by transposed duality interpreting 

the results for (F,G).

5,6 Conclusions

The results of this chapter extend the number theoretic, geometric and 

algebraic results of Chapter 4 for regular pencils to the case of 

singular pencils. The sets Ic(F,G),Ir(F,G) of c.m.i., r.m.i. respectively 

of a singular pencil have been defined by the study of discontinuity 

properties of Piecewise Arithmetic Progression sequences defined on the 

pair (F,G); this definition demonstrates the unity (from the number 

theoretic viewpoint) between the minimal indices and the Segre' 

characteristics. The computation of Ic(F,G),Ir(F,G), which is based on 

the Piecewise Arithmetic Progression Sequence Diagram, or Weyr Sequence 

Diagram, or on the set K(F,G), is independent from the algebraic definition 

of those two sets (degrees of a minimal basis); the key numerical tool 

involved in such computations is the computation of the rank of real 

matrices. An additional advantage of this approach is that the 

computation of those two sets is also independent from the Kronecker 

canonical form based procedures [Van Door - 1],[Wil - 1]. Apart from the 

obvious computational advantages, the present approach allows the 

definition of the sets of c.m.i., r.m.i. as functions defined on an ordered 

pair (F,G) and independently from the associated pencil.

The study of properties of the Toeplitz matrices of (F,G) has revealed 

a number of important aspects of the families of right (left) spaces and 
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right (left) modules of the pair (F,G). The families W(F,G) ,M[F,Gj of 

subspaces and modules have been shown to be invariants of the rational 

vector space M^Is F-G); both families have also been defined geometrically 

and independent from their algebraic nature. The study of properties of 

&/(F,G) ,M[F,G] families has led to a new procedure for computing minimal 

bases for the rational vector spaces W {sF-sG},N {sF-sG}, which once« r x

more is purely geometric and independent from the algebraic definition of 

minimal bases.

One of the key tools in the development of the results of this section 

has been the theory of naturally partitioned matrices, also developed in 

this chapter. These results are general and they do not depend on the 

case of matrix pencils; it is believed that use of these tools to the 

general case of polynomial matrices may lead to general results concerning 

the properties and the computation of minimal bases of rational vector 

spaces. Finally, it is worth pointing out that the results of this 

chapter, on the computation of Ic(F,G),1^CF,G) sets, may be combined with 

those of the previous section, on the computation of the Segrez 

characteristics, to provide a procedure for the computation of the Kronecker 

canonical form of a singular pencil. The key characteristic of this new 

procedure is the analysis of the singularities of appropriate Piecewise 

Arithmetic Progression sequences, which leads to the derivation of the 

Kronecker form without resorting to the use of special transformations.



CHAPTER 6:
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CHAPTER 6: BILINEAR-STRICT EQUIVALENCE OF MATRIX PENCILS

6.1 Introduction

The study of properties of the matrix pencils sF-G and F-sG, defined from
A

the homogeneous pencil sF-sG, or defined on a pair (F,-G), has demonstrated 

the existence of an important notion of duality, the so-called "elementary 

divisor type duality", or "integrator-differentiator type duality" [Kar. & 

Hay- 1,21. The matrix pencils sF-G,F-sG are related by the special type 

of bilinear transformation: s-*l/s,  which clearly transforms the points 

0,«>,a*0  of the compactified complex plane (Cu{°°}) (or of the Riemann sphere) 

to the points °»,0,l/a correspondingly. The duality notion between sF-G 

and F-sG stems from the nature of this special bilinear transformation.

The aim of this chapter is to study the properties of matrix pencils under 

the combined action of the general bilinear and strict equivalence groups 

acting on a homogeneous matrix pencil sF-sG, or on the ordered pair (F,-G). 

A complete set of invariants for matrix pencils under Bilinear-Strict 

Equivalence will be defined; this work forms the basis for the study of 

various notions of duality defined on linear systems and provides the means 

for the development of a unifying approach for the study of properties of 

regular and extended state space systems.

The study of the Bilinear-Strict Equivalence of matrix pencils has been 

initiated by the work of Turnbull and Aitken (Tur & Ait - 11; in CTur &Ait- 1] 

the covariance property of invariant polynomials and the invariance of the 

minimal indices is established. The results in this chapter complete the 

work in [Tur & Ait - 11 by defining a complete set of invariants for the 

Bilinear-Strict Equivalence class of a matrix pencil, or of an ordered pair 

(F,G). An essential part in the search for a complete set of invariants
A

of sF-sG under Bilinear-Strict Equivalence is the study of invariants of 

homogeneous binary polynomials, f(s,s), under Projective-Equivalence 
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transformations; such a study of invariants is reduced to an equivalent 

study of invariants of matrices under Extended-Hermite type transformations. 

The final result is that set of column, row minimal indices, the set of all 

index sets of (F,-G), a set of vectors defined as Pliicker vectors, and a 

set of Grassmann-type vectors, emerge as the set of complete and independent 

invariants for the Bilinear-Strict Equivalence class of a given matrix 

pencil. These results provide the means for the study of properties of 

linear state space systems under space and frequency coordinate 

transformations. The application of this theory to linear systems is 

discussed in Chapter 8.

The chapter is structured as follows: The notion of Bilinear-Strict 

Equivalence of homogeneous matrix pencils and an interpretation of this 

equivalence as coordinate transformations in the frequency domain is given 

in Section (6.2). In Section (6.3), a number of preliminary results are 

summarised; the covariance of the Smith form of sF-sG and the invariance 

of the column and row minimal indices under Bilinear-Strict Equivalence is 

established, and the notion of Projective-Equivalence of binary homogeneous 

polynomials is introduced. Section (6.4) is devoted to the study of 

Projective-Equivalence (PE) of homogeneous polynomials f(s,s). The 

complex and real lists of f(s,s) are shown to be invariant under PE and the 

search for a complete set of invariants under PE is finally reduced to a 

study of invariants of matrices under Extended Hermite Equivalence (EHE). 

The theory of EHE of matrices is developed in Section (6.5); the set of 

r-prime Plucker vectors, and the (r,i|, i2)-(C-canonical Grassmann vector 

are shown to be equivalent complete invariants under complex EHE. For the 

case of real EHE, it is proved that the (r,ij ,i£)-lR-canonical Grassmann 

vector is a complete invariant. In Section (6.6), a complete set of 

invariants for binary polynomials and sets of binary polynomials under PE 

is derived. For both cases (a single polynomial and a set of polynomials), 
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it is shown that the complete set of invariants is made up from the real 

and complex lists and the (r,i^,i2)-]R-canonical Grassmann vectors 

(characterising the real Extended Hermite Equivalence). Finally, in 

Section (6.7) a complete set of invariants for Bilinear-Strict Equivalence 

of matrix pencils is derived by combining the results of Sections (6.3) 

and (6.6).

6.2 Definitions, statement of the problem and interpretation of bilinear 
transformations

The study of Bilinear-Strict Equivalence is greatly simplified by the 

introduction of appropriate notation and definitions. Thus, let 

1={L:L=(F,-G) ,F,G elRinXT1} be the set of ordered pairs of mxn matrices and 

let 0={0:9=(X,A)} be the set of ordered pairs of indeterminates. For 

V L=(F,-G)el and 9=(s,s)e0, the matrix [Ll=[F,-G3 eRmX^n will be called a 

matrix representation of L and the homogeneous polynomial matrix 

L0 - L(s,s) = CF,-G] - sF-sG (6.1)

will be referred to as the 9-matrix pencil of L. We define the following 

sets of matrix pencils: Lg = {L^: for a fixed 9=(s,s)e0 and VL=(F,-G)€1}, 

L(0) = {LO: ¥6=(s,s)e0 and V L=(F,~G)€1}. In the following, three types of 

equivalence are defined on L, or equivalently on 1(0). These equivalence 

relations are generated by the action of appropriate transformation groups 

acting on 1, or 1(0).

Consider first the set K={k:k=(M,N) ,M eRmXm, N€R^nX^n, |M| , |N| *0}  and a 

composition rule (*)  defined on K as follows: ¥ kj = (Mj,Nj),

k2=(M2,N2)eK, then

= CM],N1)*(M 2,N2) = (M|M2,N2N1) (6.2)

It may be readily verified that (K,*)  is a group with identity element
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(I ,IO ). The action of K on L is defined by: © :KxL-*L  : Vk=(M,N)eK and for m zn

an L“(F,-G)€l, then

k°L - k»(F,-G) - L' - (F',-G’)eL: CL'] - M[L]N (6.3a)

or equivalently

CF',-G’] - MCF,-G]N (6.3b)

Such an action defines an equivalence relation E^ 

the equivalence class, or orbit, of Lei under K.

on L, and E^(L) denotes

Three important subgroups

of K, and thus three notions of equivalence on L or L(9) are defined next: 

(i) STRICT EQUIVALENCE; The subgroup (H,*)  of (K,*) , where

H = {fa/r=(R,P) ,R elRnXn,P=diag{Q,Q},Q eRnXn, |R|, |Q|*0}  (6.4a)

is called the Strict-Equivalence Group (SEG). The action of H on L is

defined by V heH and for an L-(F,-G)eL, then

(R,P)o(F,-G) = L' = (F',-G')el: CL'] - R[F,-G]P (6.4b)

or equivalently:

CF',-G'] = R[F,-G] = [RFQ,-RGQ] (6.4c)

The equivalence relation E^ defined on L as above, is called Strict- 

Equivalence (SE) (CGan-11). Two pencils

. 1 2said to be strict equivalent, LQE^L^, iff

=^l°(F1 ,-Gj). By E^(F,G) we denote the SE 

equivalently of L=(F,-G).

1*2*
Lg=sFj-sGj, L0=sF2“sG2e^-0 are 

exist (F2,-G2) = 

or orbit of L =sF-sG, or □

there

class

GB,*) of (K,*) , whereCii) BILINEAR EQUIVALENCE: The subgroup

al bl ' a b
B = {b:b=(I ,

m
n n 

cl di _c
_ n n_

€R2x2,|£|=ad-bc*O} (6.5a)

Q

0

0

Q
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is called the Bilinear-Equivalence Group (BEG) CKar&Kal-ll. Every beB

is generated by a projective transformation B, the meaning of which will

be discussed later. The action of B on L is defined by:

b©L = b©(F,-G) «L’ = (F’, -G')el: [L’j = i El Itm (3 (6.5b)

or equivalently:

CF^-Gn = I CF,-G1 m al n
cl n

bl n
di n

= CaF-cG,bF-dGl (6.5c)

on L, is called Bilinear-EquivalenceThe equivalence relation Eg, defined

(BE). Two pencils L^sFj-sG^ ,Lg ^XFz-XGz, 9-(s, s) ,9T=(X,A)e0, are said to

12.be bilinearly equivalent, LgEgLg,, iff there exists a transformation 

B: (s,s)-*O,A)  and thus a 6eB, generated by B, such that: (F^-Gp^h© (Fj ,-G|).

By Eg(F,G) we denote the BE class of L0=sF-sG, or equivalently of L=(F,-G).

Note that the composition rule (*)  is not commutative on K; however, the

following property holds true:

Proposition (6.1): For V beB and V heH, then b*h=h*b.

Proof

b*h.

h*b  = I R, "Q 0‘ )*  1
rI(

al n
bl ' 

n ).(«, "al 
n

bl ‘ 
n

■

I 0 Q_ 1 1 •

cl di / \ m cl di• 1 n n_ n n_

al n
cl n

I R,
■Q 0“

r _o Q
bln 
din □

Remark (6.1): b*keK,  but generally b*h£B  and b*h£H.

(iii) BILINEAR-STRICT EQUIVALENCE: The subgroup CH-B,*}  of where 

H-B = b, V heH, V beB) (6.6a)

is called the Bilinear-Strict Equivalence Group (BSEG). The action of H-B 

on L is defined by °:H-BxL->L: v SieH-B and for an L=(F,-G)et-, then



214

/l°L = (/i*b)°(F,-G)  = /i°{ b°(F,-G) } =

(i) If L—*-b°L=Lb, then E^(L)E^(Lb) is a bijection.

(ii) If L-> h°L=Lb, then Eg(L) —>Eg(Lb) is a bijection.

Proof

Ci) Let L’eE^(Lb), then 3 A.eH:L’=h° (Lb) and since Lb=boL, we have that 

Lr=h.o (b<>L)=bo (hoL)=b® (Lb) , where Lb=h.°LeE^(L) , so 6°CLb)3sLr.

If we assume that 3 Lb eE^(L), such that bo(Lb )=LT, then 6<> (h’oL)=LT = 

ko(boL), or h1 o (Lb)=/t® (Lb) . Let us assume that k= (R,P) ,/iT=!(Rr ,P1) , then 

R[LblP=R’[LblP’ implies that (R,“1R,PP’"1)=(Im,I2n) and thus R’=R,P’=P, 

or h.=k'. The proof of part (ii) follows along similar steps.

Note that the action of Ji=(R,P)eH on the pencil Lg=sF-sG may be 

interpreted as

= 6o{fo°(F,-G)} = (aRFQ-cRGQ,bRFQ-dRGQ) (6.6b)

The equivalence relation E^_g defined on L is called Bilinear-Strict

1*2  Equivalence (BSE) [Kar& Kai-1]. Two pencils LQ=sF}-sG^,LQt=XF2~XG2eb(9),
** 12 

6=»(s,s),0’=(X,X) are said to be bilinearly-strict equivalent, L^E^_gLg,,

beB, as well asiff there exists a transformation B: (s,s)-*(X,X)  and thus a

an

be

keH: (F2,-G2)=(k*b)° (Fj,-Gj). In matrix 

[Lq OC Gi*6)  olj I, orexpressed by

[F2,-G2] = RCFp-Gjl
aQ

cQ

form the above

bQ

dQ

By we shall denote the BSE class of L =sF-sG, or

condition may

(6.6c)

equivalently of

L=(F-G).

A preliminary result characterising the effects of H,B,H~B on an Let is 

stated next.

Proposition (6.2); Let LeL,b€B,keH.
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= RfF,-G] ■Q o ' sin
.° Q. siL nJ

* R(sF-sG)Q = sF’-sG’ = L’u (6.7)

and thus SE implies a coordinate transformation in the domain and codomain 

of the ordered pair (F,-G), but not a change in the indeterminates (s,s).

The action of b=(I,TQ) on Lfi=sF-sG,m p □ however, may be interpreted as

6®L(s ,s ) bl n
di n XI 

n

= X(aF-cG)-X(-bF+dG) = XF’-XG’ = L’
u

(6.8)

which clearly expresses a change in the indeterminates from (s,s) (X,X) 

by the bilinear transformation:

where a,b,c,delR and 6=ad-bc*0 (6.9)

Thus, a bilinear transformation expresses a coordinate type transformation 

in the indeterminates but not in the domain and codomain of the pair (F,-G). 

The action of H=h*b  on a matrix pencil L =sF-sG has the features of both H□

and 8 groups and thus implies a coordinate transformation in the domain and
-

codomain of (F,-G) and a change of indeterminates from (s,s) to (X,X) 

according to eqn(6.9). The nature of the transformation g, that generates 

the transformation beB is discussed next.

It is known [Se&Kn- 1J that an n-dimensional projective domain over a 

field F, or a projective space IP^CF), is a set of entities (usually called 

the points of the space) that admits of a certain class {R} of 

representations by homogeneous coordinates (x q ,Xj,...,xj in F; this class 

is such that, if Rq is any representation, the whole class {R} consists of 

all those representations that can be obtained from R° by nonsingular 

linear transformation

n
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Thus, the representations R of are connected by a group of non-

singular linear transformations. This group is referred to as the general 

projective group and it is denoted by PGL(n;F). In our case, n=l,F=(E, the 

projective domain IP j ((E) is the projective straight line on the compactified 

complex plane ((Eu{°°}); the class {R}, is the class of all bilinear 

transformations B:(s,s) + (X,X) defined by

6: s=aX+bX, s=cX+dX, a,b,c,de(E, ad-bc*0 (6.10)

Of particular interest are the subgroups of {R}, the {R.^} for which

a,b,c,de!R. The nature of the homogeneous coordinates of points in a line 

and the geometric meaning of B is discussed next.

On a straight line of (Eu{«} (Figure (6.1)), we employ two fixed points A 

and B as points of reference. The homogeneous coordinates of a general 

point P of the line, is any pair (s,s) such that s/s=c AP / PB, where c is

a nonzero constant, and the same for all points P, wh’ile AP,PB are directed 

line segments, so that AP=-PA and PB=-BP. We agree to take s=0, if P=B

and s=0 if P=A.

Figure (6.1)

Given P we have the ratio s/s. Conversely, given the latter ratio, we 

have the ratio AP/PB, as well as their sum AP+PB=AB, and hence we can find

AP and therefore locate the point P.

Let us now assume that we wish to express the values of s and s in terms 

of the coordinates X and X of the same point P referred to new fixed points

of reference A’,B*  (see Figure (6.2)). By definition, there is a certain
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new constant k*0,  such that X/X=k.A'P/PB’. Since A’P+PB’=A’B’, we may

replace A’P by A’B’-PB*  and get

PB*  = kX.A’B’/(X+kX) (6.1 la)

Let A have the coordinates X’,X*  referred to A’,B*.  Then

kX’.A’B*

X’+kX’

(XX*-XX*)kA*B*

(X+kX)(X’+kX* )
(6.11b)

Similarly, if B has the coordinates Xj, Xj referred to A*,B ’, then

(XX -XX ).Pb 1-
PB = ------L !------.—

(X+kX)(X +kX )
(6.11c)

Hence, by dividing (6.1 lb),(6.1lc) we have

£ = AP = r (XX*-XX*)  
s PB q (AXj -XXj ) ’

where — = 
q

-c^j+kXj)

X’+kX*
(6.lid)

Since we are concerned only with the ratio s/s, we may set

s = -rX’X+rX’X, s = -qXjX+qXjX (6.lie)

Since the location of A and B with reference to A’ and B’ is at our
* *

choice, as also the constant c, the values of rX’-rX’, qX^ and -qXj are 

at our choice. There is, however, the restriction that A^B, hence
A a

X’Xj^XjX’. Thus, a change of reference points and constant multiplier c, 

gives rise to a linear transformation:

8: s = aX+bX, s = cX+dX, 6 = ad-bc * 0 (6.Ilf)

which is clearly a coordinate transformation on the straight line. 

Conversely, every transformation 8 can be interpreted as the formulae for 

a change of reference points and constant multiplier.

The general projective group on the projective straight line of

will be denoted by PGL(1,(C); it is made up from the coordinate 

transformations 8 with a,b,c,de(C and 6=ad-bc7<). The subgroup of PLG(1,(C),
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defined by the extra condition that a,b,c,de!R will be referred to as the 

R-general projective group on the projective straight line of and

shall be denoted by PGL(1,0/1R). The group PGL(1,C/1R) generates B and 

thus plays a crucial role in our study here.

Throughout this chapter the following notation will be adopted for the 

points of tCu{°°}, or equivalently of the Riemann sphere. The equivalence 

class of ordered pairs (ty,£5), where y,6e(C given (y,5)*(0,0)  and te(C-{0}, 

otherwise arbitrary, defines a point of (Cui0®}, or equivalently a point on 

the unit radius Riemann sphere sph(Rie). The pairs (0,1),(1,0) 

characterise the origin of I (the south pole of sph(Rie)), the point at 

infinity of (Cu{«»} (the north pole of sph(Rie)) respectively. For every 

class of pairs (^y,t6) the invariant ratios Cy/c5=y/5, if 5*0  and 

^5/^y=5/y, if y*0,  are defined as the frequency and the inverse frequency 

of the class correspondingly. The inverse frequency of (0,1) is defined 

as °° and the frequency of (1,0) also as «.

By defining the reference points (0,1) and (1,0) on sph(Rie), every 

class generated by (y,5), with the only exception the pair (0,0), uniquely 

defines a point on sph(Rie); such points are characterised by the 

invariants, the frequency and inverse frequency. The action of BePGL(l ,(E) 

on a pair (y,6) may thus be interpreted as redescription of the same point 

with respect to a pair of new reference points on sph(Rie). In fact the 

parameters (a,b,c,d) of B are uniquely defined by the coordinates of the 

new reference points (a,b) and (c,d) with respect to the old reference 

points (1,0) and 0,1) respectively.

The essence of the BSE notion, defined on matrix pencils (or equivalently 

on ordered pairs (F,-G)), is that it represents coordinate transformations 

on the domain and codomain of (F,-G) (space coordinate transformations), as 

well as coordinate transformations on the sph(Rie) (frequency coordinate 

transformations). The study of the invariants of BSE is the main 
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objective of this chapter; such a study will be carried out on the sets 1, 

or equivalently on 1(0), since transformations on 1 may be interpreted on 

1(0) and vice-versa. The starting point in this study is the investigation 

of the properties of the set of SE invariants of a matrix pencil under BE 

transformations. The results discussed in the following section are 

based on the work of Turnbull and Aitken [Tur & Ait - 1] and provide the 

basis for the derivation of a complete set of invariants of matrix pencils 

under BSE.

6.3 The properties of the set of SE invariants under BE

Let L=(F,-G)el, 0=(s,s)e0 and let L =L(s,s)=sF-sG be the associated□
matrix pencil in (s,s); L(s,s) eR[s,s]mXn and assume that rank^^g g^{sF-sG}= 

a’p<min(m,n). The Smith form of L(s,s) over K[s,s] ([Gan-1]) is defined by

S(s,s) =

S*(s,s)
P
0 m-p,p

0p,n-p

0m-p,n-p

(6.12*)

where S^ (s,s)=diag{f} (s,s) ,f2(s,s) ,... ,f (s,s) }, the fL(s,s) €R[s,s] being 

the invariant polynomials of L(s,§) over!R[s,sj, and with the property 

that fi(s,s) divides f.+ J(s,s) for V ie£, with f.(s,s)=0 for i>p. The set 

of {f^(s,s),iegj is defined by the standard Smith algorithm ([Gan - 1]) by

f.(s,s) = d.(s,s)/d. .(s,s), iep and d (s,s)=lI 1 1— 1 o (6.12b)

where d^(s,s) is the ith-determinantal divisor of L(s,s), that is the

g.c.d. of all ixi minors of L(s,s). If there are k nonzero trivial 

elements in (f.(s,s),iep}, i.e. S (s,s)=diag{1,...,1,f,(s,s),...,f . (s,s)},1 ~ p ' ' 1 p—K

then k will be referred to as the power of L(s,s) and the ordered set of 

homogeneous invariant polynomials F(F,G)={f£(s,s),iep-k (ordering is 

defined by divisibility) will be referred to as the homogeneous invariant 

polynomial set of L(s, s).
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It is a well known result (iGan - 11, CTur & Ait - 11) that if Ic(F,G),
A

Ir(F,G) are the c.m. i., r.m.i. respectively of L(s,s), then the sets

F(F,G) (equivalently the set of homogeneous e.d.), Ic(F,G), Ir<F,G) form a 

complete and independent set of invariants for the E^(F,G) equivalence 

class. The study of the effect of beB on the set (F(F,G) ,Ic(F,G) ,Ir(F,G)} 

of'SE invariants is examined next. It will be shown that such a study is 

reduced to an investigation of the effects of the projective transformation 

BePGL(l ,C/R.) on homogeneous polynomials. Some preliminary definitions are 

given first.

Let R^f©} be the set of homogeneous polynomials of degree d with 

coefficients from R, in all possible indeterminates 0=s(s,s)c0. Let 
A

B: (s,s)(X,X) be the projective transformation defined by eqn(6.9). The 

action of B on f(s,s) eR^{0} may be defined by

B°f(s,s) = f(X,X) = f(aX+bX,cX+dX) C6.13)

Two polynomials f j (s,s) ,f2(\. , X) eR^fO} will be said to be projectively 

equivalent (PE), and shall be denoted by f}(s,s)Epf2(X,X), if there exists
A

a BePGL(l ,(C/R) such that B: (s,s)-> (X,X) and a c eR-{0} such that

B®f|(s,s) = c.f2(X,X)

Clearly, (6.14) defines an equivalence relation Ep, onR^{0}, which 

(6.14)

is

called projective equivalence (PE).
A

Let Fj«{f^(s,s) eR^ {0},iejo}, F2={f^(X,X) eR^ {0},i€£} are two ordered 

sets of homogeneous 

equivalent, FjEpF2,

same transformation

1 1

polynomials. Fj ,F2 are said to Pr°jectively
A

if and only if f^(s,s)EpfL (X,X) for V ieg, and for the

B. The projective equivalence class of f(s,s)(F)

shall be denoted by Ep(f)(Ep(F)).

Lemma (6.1): Let fj(s,s) eR^ {0}, f2(s,s) eRd {0} and let g(s,s) eRp{0}
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be their greatest common divisor (gcd). Let B be any transformation in

PGL(1,C/K): (s,s)-^ (X,X) and let fj(X,X)-B°fj(s,s), f2(X,X)=B°f2(s,s) and

A A A A

g(X,X)=B°g(s,s). Then g(X,X) is a g.c.d. of f}(X,X),f2(X,X).

Proof

Since g(s,s) is a g.c.d. of f(s,s),f2<s,s), then fj(s,s)=hJ(s,s).g(s,s), 

f 2’(s, s)=h2(s, s).g(s,s) where h}(s,s),h2<s,s) are homogeneous polynomials. 

Clearly, B°f j(s,s)=(Bohj(s,s))(B°g(s,s))=hj (X,X).g(X,X), B°f2(s,s)= 

=(g°h2(s,s))(S°g(s,s))»h2(X,X)g(X,X) and thus g(X,X)|fJ(X,X),g(X,X)|f2(X,X). 

If g*(X,X)=gcd{fj(X,X),f 2(X,X)}, then g(X,X)|g»(X,X). By applying the
— J * 3 ’ A — | M A M A

inverse transformation B :CX,X)“* (s,s), then B °gr(X,X)=g(s,s) and 

clearly g(s,s)|fj(s,s),g(s,s)|f2(s,s); thus, g(s,s)|g(s,s) and hence 

g(s,s)=g(s,s)h(s,s). By applying B, we have B°g(s,s)=(B°g(s,s))(B°h(s,s))= 

=g’(X,X)h(X,X) and hence g1 CX,X) | g(X,X) . Since g(X,X)|g’(X,X) and 

gf (X,X) | g(X,X) , then g(X,X) and gT(X,X) are associates*  n

This property defines the covariance of the g.c.d. under PE transformations

CTur&Ait-l], An immediate consequence of this lemma is the following 

result [Tur&Ait-I].

Proposition (6.3): Let (s,s)=sFj-sGj, L£(X,X)=XF2-XG2€L(0), F(Fj ,Gj )= 
X

={f^(s,s),iepi“kj}, F(F2,G2)»{f.(X,X),iep2“k2} be the corresponding

homogeneous invariant polynomial sets of Lj (s,s) ,L2<X,X) , where <Pj,kj), 

(p2,k2) are the respective pairs of rank, power, 

some heH, and some 6eB, generated by BePGL(l ,(C/K) 

then

(i) p1=p2=p and kj=k2=k.

(ii) F(f 1,g 1)EpF(f 2,g 2).

If Lj(s,s)Etf_gL2(X,X) for 
’ A B

such that (s,s)—► (X,X),

L(s,s) is given next [Tur & Ait -1].

of
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Proposition (6.4): Let Lj (s,s)=sFJ“sG1, L£(A,and let

Ic(Fj ,G|) ,Ic (F2»G2) and I ^_(Fj ,Gj) ,(F2^2) be the corresponding sets of
A A

c.m.i., r.m.i of L j (s,s) ,L2(X,X) . If L(s,s)E^_gL2(X,X), then

= Ic (F2’G2) and Ir(Fl’Gl) ’ Ir(F2’G2)

Proof

Let U(s,s) be a homogeneous minimal basis for W^fsF-sG} and let u(s,s) 

be a minimal degree vector of U(s,s). Note that the linear transformation 
A

6:(s,s) •*  (X,X) cannot raise the degree in the transformed vector 

u(X,X)=£°u(s,s), which is in W^fXF-XG} (XF-XG is the transformed pencil); 

however, this transformation might lend to the lowering of the degree of
A

u(X,X), through the cancelling of some common factor in the elements of 

the vector. In such a case, however, by transforming uCX,X) by
| A A

B :(X,X) + (s,s), a vector u’(s,s) in Nr{sF-sG} is obtained, which 

contradicts the hypothesis that u(s,s) is a vector of the minimal basis 

U(s,s). By the same reasoning applied to the transposed pencil (sF-sG)t, 

the invariance of Ir(F,G) is established.

Propositions (6.3), (6.4) express respectively the covariance property of 

the homogeneous invariant polynomials and the invariance property of the 

sets of c.m.i. and r.m.i. of L(.s,s) under E^__g equivalence. By combining 

the above two results, the following criterion for E^_g equivalence of 

matrix pencils is obtained.

A A

Theorem (6.1): Let Lj Cs,sl-sFj-s Gj , L2(X,X)=XF2”XG2eLC0).

Lj(s,s)E^_gL2(X,X) if and only if the following conditions hold true:

(i) ^(Fj ,G1)=Ic (F2,G2) , Tr(Fj ,G1)-Ir(F2,G2).

(ii) F(F1,G1)EpE(F2,G2).

Proof

The necessity of the result follows immediately by combining 
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Propositions (6.3) and (6.4). To prove the sufficiency assume that the 

conditions in (i) and (ii) hold true. Since F(Fj ,Gj)EpF(F2,G2), then
A *

Lj(s,s),L2(X,X) have the same rank p (P]=P2=p) and the same power k 

(k}=k2=k) and there exists a transformation BePGLG ,I/1R): (X,X)—*-(s,s)
A

for which £of9 .(X,X)=c9 ..f9 .(s,s) V iep-k. The transformation
z,i z, i z, 1 .—

A
6ePGL(l/(C/JR) generates a beB and let boL^XjX^sF^-sS^L^SjS). Since 

L2(s,s)EgL2(X,X), then ^(F^WjF^Gp^IjFj ,Gj), Ir (F2,G2)=Ir (F2,G2)= 

Ir(Fj,G|); furthermore, the sets of homogeneous invariant polynomials of 

L2(s ,s ) and Lj(s,s) differ only by scalars (units of jR[s,sj) (8 has been 

constructed this way) and thus Lj Cs,s),L2(s,s) have the same Smith form. 

The pencils L2(s,s),L|(s,s) have therefore the same Smith form over IRCs,sj 

(or equivalently the same sets of e.d.) and the same sets of c.m.i. and 

r.m.i. and thus L2(s ,s )E^Lj Cs,s) CGan-1]. Therefore, there exists an heH 

such that Lj (s,s)=A.oL2(s,s); given that L2(s,s)=boL2(X,X) it follows that 

Lj(s,s)=(h*6)oL 2(X,X) and thus Lj(s,s)E^_gL2(X,X).

The key notion in the characterisation of equivalence of matrix

pencils is thus the notion of Ep equivalence which is defined on the set of 

homogeneous invariant polynomials F(F,G) of the pencil sF-sG. By 

definition, such a study is reduced to an investigation of the conditions 

under which two polynomials fCs,s),f(X,X) eK^{0} are Ep-equivalent; the
*

problem of finding the conditions under which f(s,s)Epf(X,X) is equivalent 

to a problem of finding a complete and independent set of invariants for 

the orbit Ep(fCs,s)). This problem is considered next.

6.4 Projective equivalence of homogeneous binary polynomials: 
preliminary results

The aim of this section is to give a number of preliminary results on the 

Ep-equivalence defined on the set R^{0}, and provide the means for the 

definition of a complete set of invariants for the orbit Ep(f(s,s)), 

f(s,s) eR^{0}. The origins of Ep-equivalence stem from the classical work 
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in CTur - 11 on the algebraic theory of invariants; however, apart from some 

preliminary results on the effect of the projective transformation B on the
.A

factorisation properties of f(s,s), no complete set of invariants for 

Ep(f) has been defined so far. It will be shown here that finding a 

complete set of invariants for Ep-equivalence is equivalent to a classical 

problem of algebraic projective geometry [Se&Kn-l] that is: find the 

conditions under which two symmetric sets of points of may be

transformed to each other under a projective transformation BePGL(l ,(E/1R) . 

The latter problem will be expressed in an equivalent form as study of 

invariants of matrices under the notion of Extended-Hermite equivalence.

We start off by investigating the effect of PE transformations on the 

factorisation properties of f(s,s) eK^{9}.

Lemma (6.2) [Tur- 11: Let f(s,s)=rs +pss+qs ,f(X,X)=rX +pXX+qX elR^fG} and 

let A=p -4rq,A=p -4rq be their corresponding discriminants. If 

f(s,s)E f(X,X), i.e. B°f(s,s)=c.f(X,X), then
r

a = «2/c 2.a

where 6=ad-bc is the determinant of BePGLtl ,(E/]R).

Proof
A

We may write f (s,s),f (X,X) as

’r p/21fs r * r ~ r p/2 V
Cs,s]

p/2 q
A 
s

= sL)s, f(X,X)=[X,XJ
p/2 q _

A
X

(6.15a)

and obviously |d |=—1/4.A, |d |=-1/4.A. Because B: (s,s) -> (X,X) we have that

, 6 = | CB11 =ad-bc *0
s

- CBJ
X
A

a b X

A
s. X c d X

and thus

B»f(s,S) - ([B]X)tD(CB]X) = Xt([B]tD[:B])X-x'l)*X  

(6.15b)

(6.15c)
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By (6.15a) and (6.15c) we have that Cgj^Cgj^c.D and thus <52A=c2A.

~22.Remark (6.1): The condition A=<5 /c A implies that the discriminant A is an 

invariant of the f(s,s)=rs +pss+qs of weight 2 under PE transformations 

[Tur-lj. Furthermore, sign{A}=sign[A} and the reducibility properties 

over R of f(s,s) are invariant under Ep-equivalence.

By Lemma (6.2) and its remark we have the following result.

Proposition (6.5): Let p^(s,^“(y^s-d^s) ,y^,6^e(E, (y ^,6^)*(0,0)  be the
A *

primes over (C of f(s,s) eJR^fO}. If f(X,A) eR^{0} and f(s,s)Epf(X,X), with 

some BePGL(l ,<C/]R), then:

(i) Any pair Pi(s,s) ,pj (s,s) of distinct primes ((y.,(Yj ,<5j ),£ e C-{0})
A

of f(s,s) is mapped under 6 to a distinct pair of primes of f(X,X) and vice- 

versa.

Cii) Any pair of complex conjugate primes pCs,s)=s(Ys-ds) ,p(s,s)=(ys-ds)
A 

of f(s,s) is mapped under g to a pair of complex conjugate primes of f(X,X) 

and vice-versa.

(iii) Any pair p(s,s) ,p’(s,s) of repeated primes C(y, <$)=£ (y ’, d ’) , ?e(C-{0}) 

of f(s,s) is mapped under g to a pair of repeated primes of f(X,X) and 

vice-versa.

The proof of the above result follows immediately by the way the 

projective transformation gePGL(l ,<E/1R) is applied on the unique 

factorisation of f(s,s) and by Lemma (6.2) and its remark.

Let us now consider an f(s,s) eR^{0} and let us denote by

P-p(f) = {(a.s-B.s) \a.,g. eR,(a.,g.)*(0,0),i €p} (6.16)
XX. 11 11 11 ~

p. _ p.
Pfl.Cf) = <(Y_-s-d.s) X,(y.s-d.s) 1,y. ,6.el, (y.,6.) *(.0,0) ,iev} (6.17) 

vL 11 11 11 11

the sets of real, complex e.d. of f(s,s) over (E respectively; note that
A Pi

Pg,(f) is symmetric, i.e. if (y^s-d^s) eP^ff), then the complex conjugate
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(y^s-5^s) eP^(f). By Proposition (6.5), the Ep-equivalence may be

characterised as an equivalence defined on the sets V_(f), and P (f) inJR (l

the following way:

Proposition (6.6): Let f (s,s) ,f (X,X) eJR^fQ} and let (P-^f ) ,Pg,(f ) ) ,

(P^f) ,Pg,(f )) be the corresponding unique factorisation sets defined
A

ab'ove. f(s,s)Epf(X,X), if and only if there exists a BePGL(l ,1/lR) such 

that the following conditions hold true:
A

(i) For V e. (s,s)eP_(f), there exists an e.(X,X)eP (f) such that
1 IK 1 IK

aw '*  A

e^(s,s)Epe^(X,X), or equivalently: c^.e^(X,X)=B°e.(s,s),c^ elR—{0} and 

vice-versa.
A nj

(ii) For V e!(s,s)eP_(f), there exists an e!(X,X)eP (f) such that
1 (k L Qi

A

e!(s,s)Epe|(X,X), or equivalently: c!.elCX,X)=£oe!(s,s),c^e(C-{0} and vice-

versa. □
This

f(s,s)

result expresses the covariance property of the sets V (f),P (f) of 
K (l

under Ep-equivalence and reduces the study of invariants of Ep(f) 

to the study of properties of the e.d. sets under a common PE transformation

B. Before we proceed to this study, we note that a real e.d. Cas-Bs)T may 

be represented by an ordered triple C«,B;t ), where a,BelR and reZ and that 

a pair of complex conjugate e.d. (ys-<5s).P, (ys-<5s)P may be represented by an 

ordered triple Cy,5;p), where y,<5el, peZ; using those two representations 

we may define the following sets for an fCs,s) eK^{0}.

Definition (6.1):

(i) We define by B! « { (yj,6j ;p.) J yj^jettjp^eZ, jev^, (y^,sj)*̂(y^,6^)  , 

V j*k,Ce<C-{0}},  as the set of all ordered triples corresponding to all 
. . p. . . p.

pairs (y^s-d^s) ’’.(y^s-d^s) 1 in P^Cf) with the same degree p£. An
3 3 3 3

ordering of the elements of B! is defined by any permutation of its 

elements; such a permutation will be denoted by it (B^) and the set of all 

such permutations by <B!>.
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(ii) B^Cf) ={Bj;.....<pa) corresponds to the set of all pairs of 
A

complex conjugate e.d. of f(s,s) and shall be referred to as the complex 

unique factorisation set ((D-UFS) of f(s,s). The set J^(f) = ( (Pj, Vj) ,... 

.(pa,\>a)}» where v£=#B! (the cardinality of Bp, is defined as

the complex list of f(s,s). Every permutation of B^Cf) of the type 

ir(Ba,(f))={'ir(Bp,... ,ir(Bp :ir(Bpe<B!>} defines a normal ordering of BQ,(f)

(iv) For the set P-^(f) we may define in a similar manner the sets

8j “{(aj’6j;Ti):aj’8jeR’Ti£Z’jeUi’(“j’8j)*?(ak’Sk)’ ¥j*k’

B]R(f) ={B1,... jBpjtj<t 2<. . .<Tp} and J]R(f) = {(T1 ,pp ,..., (Tp,pp)}, as well 

as the notions of normal ordering and of the matrix representation. The 

sets B^(f),J^(f) will be referred to as the real unique factorisation set 

(1R-UFS), real list respectively of fCs,s) and the matrix CB^,(f)3 defined——————— JK
as in (6.18a) for some permutation it  will be called an (R-^)-basis matrix 

of f(s,s).

(v) The sets B(f) = {B^(f) ;B^,(f) } and J(f)= {J^(f) ; J^(f) } will be called 

the unique factorisation set (UFS) and the list of f(s,s) correspondingly. 

For every ?T€<B1R(f)> and ir*€<B^(fP  a matrix representation of B(f) 

according to (tt ,-^) is defined by
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(f)] =

TB^(f) J 

rBj’(f)]
(6.18b)

Remark (6.2): From the above definitions it is clear that since #B!=v., ---------------------- L

#^i='^i’ t^ien ,#<B^>=u^ and thus #<B^(f)>=Vj!^21...,

#<B (f)>=p !yo!...y I and #<B(f)>=v.I...v !.JR 1 z p 1 a 1 p

With this notation in mind we may state the main result of this section.

Theorem (6.2): Let f(s,s),f(X,X) eKje) and let (BR(f),JR(f).B^f)

{B_ (f),J— (f),B_(f),J_(f)} be the corresponding sets associated with JK JK 0. (E
/k

f(s,s),f(X,A). f(s.s)Epf(X,X), if and only if the following conditions

hold true:

Ci) J^Cf) = JK(f) and Jc(f) = J^Cf).

(ii) There exist Tr(B^(f))e<B-^(f)>,7r(B^(f))e<B-^(f)>,tt ’(B^(f) )€<B^(f)>,

'll*  (B(j,(f))e<Ba,(f)>, a 8ePGL(l ,(E/1R), ?.eR-{0} and ^e(E-{0} such that

EB^(f)] = diagU.KB’(f) ][B1 (6.19a)

EBj'(f)] = diag{5.}[Bj'(f)]CBJ (6.19b)

□
The proof of the above result follows immediately by Propositions (6.5)

and (6.6) and the fact that the pair (y,6) characterising an e.d. is

defined modulo some nonzero constant.

Corollary (6.1): The real and complex lists J^(f) ,Jq,(f) of f(s,s) are 

invariants of the Ep(f) equivalence class.

Two pairs of sets B(f) = {B^(f) , B^(f)}, B(f)={B^(f) , B^Cf) } for which 

J]R(f)=J1R(f) ,Jfl,(f)=J(E(f) and conditions (ii) of Theorem (6.2) hold true 

for some 8ePGL(l ,C/1R) and nonzero constants CpSp will be called 

normally projective equivalent (NPE) and shall be denoted by B(f)EpB(f).
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Clearly, this notion of equivalence defined now on the sets B(f) is 

equivalent to the Ep-equivalence notion defined onR^{0}. In other words, 

Ep-equivalence is nothing else but Ep-equivalence defined on the UFS of 

the polynomials inE^{0}. The advantage of the Ep-equivalence notion is 

that the study of invariants of Ep(f) is reduced to a standard matrix 

algebra problem, i.e. the study of solvability of condition (6.19a,b).

Before we proceed to the investigation of the conditions for the 

solvability of (6.19a),(6.19b), it is worth pointing out that the study of 

Ep-equivalence, as it has been expressed by Theorem (6.2), is equivalent 

to the following problem of algebraic projective geometry: Given two 

symmetric sets of points 5,5 of Cu{°°}, find the necessary and sufficient 

conditions for the existence of a projective transformation gePGLCl ,(C/]R) 

such that 5 is mapped to 5 under g; this problem will be referred to as 

the general linear mapping problem (GLMP) on (Eu{°°}. In our attempt to 

characterise Ep(f) by a complete set of invariants, it is. clear that we 

have to solve the GLMP. Apart from some general necessary conditions 

[Se&Kn-lj, characterising the solvability of GLMP, the set of necessary 

and sufficient conditions characterising the solvability of GLMP have not 

been worked out before. Central to our attempt to solve the GLMP and 

thus find a complete set of invariants for EpCf) is the study of the 

notion of extended Hermite equivalence of matrices discussed next.

6,5 Extended Hermite equivalence of matrices

6.5.1 Statement of the problem and background definitions

The central problem in the study of invariants of Ep(f), or the study of 

GLMP is the investigation of the solvability of conditions C6.19a,b); 

these conditions express a notion of equivalence defined on matrices and 

it is studied here.

kx 2 •Let Te! . The matrix T will be called entirely nonsingular if none of
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its 2x2 minors is zero. The set of entirely nonsingular matrices of k*2  

kx2 kx2dimensions shall be denoted by (C ; the subset of (E , defined by those J n n 7
kx2 matrices T having real elements, will be denoted by JR-n . Clearly, 

[Bj (f)],CB^(f)l are entirely nonsingular matrices (complex, real 

respectively).

» . kx2Definition (6.2): Let Tj,T2£<E . Tj,?£ will be called complex extended

• « c • •Hermite equivalent and shall be denoted by there exist

2x2
C^eflC-fOljiek and Qe(E , |Q|=<5elR-{0} such that

T2 = diag{?i}T1Q (6.20)

equivalent, and shall be denoted 

iff (6.20) holds true for some QelR^*̂,  | Q | «6elR-{0}.

Tj ,T2 will be called real extended Hermite 

by T,E'hT2,

Remark (6.3): In the case of E^-equivalence we may always assume that 

|q |=<5=1, whereas in the case of E^-equivalence, we may always assume that 

|Q |=6=1, or -1. This is due to the fact' that if 6*(±1),  then | <51 may be 

incorporated into the parameters 5^.

Clearly, the study of Ep-equivalence of sets B(f) is reduced to an

r 7T IT ’equivalent study of E^-equivalence defined on the corresponding [B ’ (f) ] 

entirely nonsingular matrix. Given that E^-equivalence is a special case 

of E£^-equivalence, the more general notion of E^-equivalence is

kx2considered first on the set , and then the results will be specialised 

to the E^-equivalence case.

The main problem considered here is the definition of a complete set of 

invariants of Te(C^X^ matrices under E^-equivalence first and then under 

E^-equivalence. Such a study involves the use of some extra notation and

definitions from exterior algebra.

Definition (6.3): Let A=[aj,... m,m+2<n and let

(n)
= (a^)e(E be the exterior product of the columns

g(A)=a,a ...Aa =“ -1 -m

of A (Grassmann
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vector), where a^ denote the coordinates of g(A).

(i)

i.e.

%,n

[Mar-1] A triangle of Q^, based on * ={i,, i,, i^,, W^+a.n’ 

ij {1,2,...,n},ij<12<...<im<im+j<im+2» is a set of six sequences in 

of the following form:

(i2,i3,... ,im+1 ‘ ,:Lm-l ,1m,1m+2^ ’ ^12,13’ ’ ’ ’ ,3m-l ,1m,1m+l

(ii) A Pliicker vector of A based on the triangle defined by (f> is defined by

a(i2,i3

(iii) Let <k>={1,2,...,k} be the k~set of positive integers and let re<k> 

be a fixed integer. The set of quadrapies

,i2,i3,i4)€Q4,k for which r«<ij ,i2,i3,i4>}

will be called the set of prime quadrapie of re<k>. For each prime 

quadrapie 4>r€#r we can consider the corresponding triangle, 6<|>r, of 

sequences of Q2 based on 4^; the set of all triangles based on all prime 

quadrapies of r will be called the set of prime triangles of r and shall 

be denoted by A^. Thus,

A4>r = {<$ 4>r: <54>r={ (ij,i2),(ij,i3),(ij .i^) , C±2»±3) > <i2>i4) » ^3’^4)

for V <f>r=(i1,i2,i3,i4)e$r}

(iv) If T=[tj ,t2]e(Ekx2,k>4, g(T)=tjAt2=(a^)e(T 2', co-dj ,i2)«Q2 fc, and 

re<k> fixed, then we define as the set of r-prime Plucker vectors of T,
3

the set of vectors of (E defined by:
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Pr -{p(«*r):P(«*r) ,i3)a(i2,i4)

,i4)a(i2,i3)

, V 6<j) eASr r }

□
We may illustrate the above definition by the following examples:

Example (6.1): Let Te(E^X^, and let r=le<5>={ 1,2,3,4,5}.

(i) The set of prime quadrapies of r=l is given by:

♦ ] - {(1,2,3,4),(1,2,3,5),(1,2,4,5),(1,3,4,5)} = {*J

where

= {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},

= {(1,2),(1,3),(1,5),(2,3),(2,5),(3,5)},

= {(1,2),(1,4),(1,5),(2,4),(2,5),(4,5)},

» {(1,3),(1,4),(1,5),(3,4),(3,5),(4,5)}.

where a is the 2*2
0)

minor of T that corresponds to the (i rows of T, then the set of

1-prime vectors is defined by

■ a(l ,2)a(3,4)‘ ’ a(l,2)a(3,5)

p, ={ -a(l,3)a(2,4) -a(l,3)a(2,5)

. a(l,4)a(2,3). a(l,5)a(2,3)

a(l,2)a(4,5)

-a(l,4)a(2,5)

. a(l,5)a(2,4).

a(l,3)a(4,5)

-a(l,4)a(3,5)

. a(l,5)a(3,4)_

}

□
Remark (6.4): Note that a triangle of sequences

the derivation of the three term Quadratic Plucker relationships (QPR), 

characterising decomposability of multivectors CMar-11. By construction 

g(T) is decomposable, and thus the sum of the coordinates for every 

Pliicker vector is equal to zero (a^ satisfy the three term QPR), i.e. 
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a(l,2)a(3,4)-a(l,3)a(2,4)+a(l,4)a(2,3)=0. The term "Pliicker vectors” has 

been used because of the links of these vectors with the set of 3-term 

QPR’s.

6.5.2 The Plucker vectors as a complete set of invariants for matrices 
under E^-equivalence

With those preliminary definitions in mind we may proceed to the

kx2 
investigation of the conditions under which two matrices of <E^ are

c
E^-equivalent. This study eventually yields a complete set of invariants 

c k*2for the equivalence class Ee^(T), where Tel^ . We start off with the 

following obvious result:

kx2Proposition (6.7): Let T}jT^e® . Necessary and sufficient conditions 

for T.Er_To are:
1 eh 2

(i) There exist S.eCE—(0} such that

col-span^fT^} = col-span^tdiagK 3^ } (6.21)

(ii) For at least a set of solutions of (6.21), the following two

conditions hold true:

col-span_{Re(To) } « col-span {Re(diag{}T. ) } (6.22a)
JK 2 JK 11

col-span^{ImCT2) } = col-span;R{Im(diag{^^}T1) } (6.22b)

□
Part (i) of the above result expresses the necessary and sufficient 

conditions for T^E^^T^. Part (ii) is the extra condition needed to 

guarantee the existence of a real Q. In some sense, Proposition (6.7) is 

a restatement of the notion of E^-equivalence. The fact that conditions 

(6.21) and (6.22) depend on the set of {£3 does not make this result 

particularly useful; however, Proposition (6.7) is the starting point in 

the search for a complete set of invariants.
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Q 
Remark (6.5): Condition (6.21) is necessary and sufficient for E ---------------------- eh

k^2 k*2equivalence of matrices of (C . If Tj,T2eR , then (6.21) is a
J*

necessary and sufficient condition for E^-equivalence.

In the following, attention is focussed on E^-equivalence of matrices 

kx2of (E^ . By Proposition (6.7) we have:

kx2
Proposition (6.8): Let T} =Et},C»T2~^—21 ’—22e<En and ^et

1 2 (o) 1 2-11A-12ss(au?’-21 A-22=(ao?€a‘ 2 »a)€Q2 k’ wtiere aw’aw are t^ie ^x2 minors of

TpTz respectively, which correspond to the w«(ipi2) rows, and let

a2/a‘ = E S, 5 e eR-{0}
U) U) W ’ W

(6.23a)

Necessary and sufficient condition for T^E^T^ is that there exists a set 

of ^eC-fOljiek, such that

(6.23b)

Proof

By taking the second compound matrix of both sides of (6.20) and by using 

the Binet-Cauchy Theorem CMar&Min-l], we have

gCT2) =C2CT2) =C2(diag{q}T1Q) = C2(diag{q})g(T1 )C2(Q) (6.24a)

Note that C9(Q)=|QI=6*0  and that C9(diag{£.})=diag{£ }, where £ =£. £. , 
z z i co co x | i*  2

co’dj ,i2)eQ2 fc. Thus, by (6.24a) we have

•
2 a = diag{£ }

•
•

1 a 6 , E "5. E. ,5 £H-{0} 
“ X1 X2

(6.24b)
0) CO CO

•

and the necessity is established. To prove sufficiency, we note that if

Z =£. for V w=(i.,i9)eQ9 . and some k parameters E., then
Ci) X« 1a  1 Z ZjK X

i z 2 1
diag{£. C. }=diag{£ }=C„(diag{£.}) and because the multivectors (a ), (a ) 

1| 12 U) Z 1 CO CO

are decomposable we may write (6.24b) as
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g(T2) - ^(diagfqDgapS = g(diag{Ci}T1)6 (6.24c)

From the above it follows that T2 and diagf^lTj have the same column space 

(they are Grassmann representatives of the same space) and thus there

2x2 •exists a Qe(E , |Q|=6*0  for which T^^diagf^^jT^Q.

• ccompound matrix of some diag{£.} matrix. Thus the study of E^-equivalence 

may be expressed as a problem of decomposability of linear operators. We 

may summarise the discussion as follows:

Remark (6.6): Products £^6 are uniquely defined by eqn(6.23a). For the

case of E^-equivalence, if 6*1  then

T2 - diagfqlTjQ <=> T2 = diagfZjqjTj (Q. 1 /Zs} (6.25a)

where |Q. 1 /ZT|«1. Thus for E^, 5 may be assumed to be 1. For the case of

J*
E^fr-equivalence, if <5*1,  then

(6.25b)

equivalence, 6 may be assumed to be either 1, or -1.

Note that Proposition (6.8) provides the necessary and

for Er. • 
eh

sufficient

real determinantconditions for the existence of complex scalars and a

complex transformation Q for which T2=diag{?£}TjQ; however, this result

does not guarantee the existence of a real Q. In the case, however, where

Tj and T? are real, then Proposition (6.8) guarantees the existence of a

□

□

real Q.

The essence of Proposition (6.8) is that it reduces the study of E

equivalence to a factorisation problem of the set of defined by (6.23a) 

into the form E, £. for all o)eQ9 , , in terms of the k-parametersu) i2 1

Such a factorisation is necessary and sufficient for the matrix
2 1 (2)Xt2) 

diag(C }=*diag{a  /a . l/6}e(C to be considered as the second order0) to co
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Proposition (6.9):

(i) Necessary condition for TjE^T2 is that the set of equations

(6.26a)

have a solution •••,£.eC-{0}} for 6=1 or 6=-l.

(i’i) Necessary and sufficient condition for is that the set of

equations 

“ “ <il’i2) e*2 k (6.26b)

have a solution (Cj ,$2> • • • □
Before we examine the conditions under which a solution of (6.26a) and 

(6.26b) exists we give a result expressing the uniqueness property of 

such solutions.

Proposition (6.10):

(i) If {£.: £. e(C-{0}, iek} and (5!: £! etC-fO), iek} are two solutions of

(6.26a) for 6=1 or 6s*—1, then either for V iek or for V i^k.

(ii) If ,iek) is a solution of £6.26b), then it is uniquely 

defined.

Proof

Since {£..},are two solutions, then for any three indices ij,i2»ig

we have that 

from which it is readily seen that
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2
or that (£•! /£. ) =6/6*.  Similarly, it can be proved that 

x2 x2

6/6’ for all jek

and since 6=±1 the result follows. In the case eqn(6.26b), 6=6’=1 and 

from the last expression the result is established.

Remark (6.7) clearly demonstrates that the solutions of (6.26a),(6.26b) 

do not possess the properties described by Proposition (6.10), if 6*1.  

In the following, it will be assumed that 6=1, in the case of E^^- 

equivalence, and 6=1 or -1, in the case of E^~equivalence. The 

conditions under which are exam^-ne<^ next; we start off by

considering the simple cases where k=l,2,3.

lex c
Proposition (6.11): Let T. ,Toe(E , where k=l,2,3. Then T.E ,TO. --------------------------------- 1 Z n 1 en z

Proof

The proof for k=l,2 is rather obvious and it is omitted. For the case 

k=3, conditions (6.26a) may be solved. Thus we have

?! = — C, “ — /D, £ = —------vf (6.27a)
^2,3 2 ^2,3 3 ^%2

where 6=1, or -1, and

D“ <6-27b)

3x2
Therefore, for all TpT^el^ , we can always find two solutions (Sp^,^)

2x2and (j^|,j,J^3) where the first corresponds to a Qe(E with |Q| = 1 and 

the second to a Q with |Q|=-1. n

Remark (6.7): Any set of three distinct real points may be mapped by a 

projective transformation 8ePGL(l ,(E 11R) to any three real distinct points.

We may now state the main result of this section.
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(k)
Theorem (6.3): Let T, ,Toe<EkX2,k^4,g(T1 )«(a/i) ,g(Tn)=(a2) e (E 2 be the 
------------------------ I l n 1 u)“z u) n

12 . 
corresponding Grassmann vectors, and a(j0»aa)»a)€Q2 k t^ie resPect^ve Plucker 

coordinates. Let us further assume that re<k>, is a fixed integer, $ and

are the sets of prime quadruples and prime triangles of r and that

1 2Pr,P^ are the r-prime Plucker vectors of T,,T9 respectively.

sufficient

E2«* r>ePr

I, 2 * coFck"*-•*- vcij• Necessary and

c 1 1
condition for T.E .To are that for V <5<|> eA$ and p C<5<#> )eP , 1 en L r r *■ r r

£2(<54>r) = Xjp1 C64>r) for some X^eC-{0} (6.28)

Proof

We shall prove the result for r=l, whereas the proof for any general 

re<k> is identical. We consider first the cases where k=4,k=5 and by 

induction we shall prove the general case. In the following, we shall

2 1*  12denote by q =a /a ,q =a /a , for V w=(i1,io)eQn . .
u) u) u) a) co id  1’2 2,k

(i) k=4: Conditions (6.26a) yield

(6.29a)

^^2^3 = ^2 3’ ^2^4 ^2 4’ ^^3^4 ~~ ^3 4

Solving (6.29a) for in terms of 6 eR-{0} and e(E-{0} and

substituting into (6.29b), we have the equivalent set

?2 " ql,2/5?l> h " ql,3/6Sl’ «4 ’ ’1,4/65l

ql,2ql,3q2,3 “ ql,2ql,4q2,4 = ql,3ql,4q3,4 = 551

However, (6.30b) is equivalent to the following conditions

ql,2ql,3q2,3 “ ql,2ql,4q2,4 <_> ql,3q2,4 = ql,4q2,3 = X

ql,2ql,3q2,3 = ql,3ql,4q3.4 <=> ql,2q3,4 ’ ql,4q2,3 = X

(6.29b)

(6.30a)

(6.30b)

C6.30c)

(6.30d)
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from which

is

2 2 1 1
al,2 a3,4 •1 ,2 a3,4

2 1 1
’al,3 a2,4 = X -al ,3 a2,4

2 2 1 1
a!,4 a2,3 al ,4 ®2,3

proved.

or j>2(1,2,3,4) = Xp‘(l,2,3,4) (6.30e)

and thus necessity The sufficiency follows by a mere reversion

of the steps.

(ii) k=5: There are ten conditions of the (6.26a) type. By solving the

first four for ^2’^3’^4’^5 *n terTns and substituting into the rest,

the following equivalent set is obtained

(6.31a)

ql,2ql,3q2,3 " ql,2ql,4q2,4 ql,2ql,5q2,5 451

ql,3ql,5q3,5 ql,4ql,5q4,5 (6.31b)

For the set <5>={1,2,3,4,51 the prime quadruples of 1 are {(1,2,3,4),

fl,2,3,5),Cl,2,4,5),(1,3,4,5)}; for each of those prime quadruples a

three-term relationship is obtained from (6.31b), i.e.

(1,2,3,4)

Cl,2,3,5) -►

a.2,4,5)

(1,3,4,5) -►

ql,2ql,3q2,3 = q

ql,3ql,4q3,4 q

ql,2ql,4q2,4 “ q

ql,2ql,3q2,3 ” q l,2ql,4q2,4 = ql,3ql,4q3,4 “ 551 (6.31c)

I,2ql,5q2,5 " ql,3ql,5q3,5 “ 4C1 (6.31d)

* 2
l,2ql,5q2,5 “ ql,4ql,5q4,5 = 451 (6.31e)

l,3ql,5q3,5 = ql,4ql,5q4,5 = (6.31f)

Using similar arguments as in the case k=4, the above conditions

"2 2 ■ ‘ 1 1
ai,2a3,4 al,2a3,4

2 2 1 1
”al,3a2,4 "X1 ”al,3a2,4

2 2 1 1
. al,4a2,3_ al,4a2,3

yield

’ 2 2 'll"
al,2a3,5 al,2a3,5

2 2 1 1
al,3a2,5 ~X2 "ai,3a2,5

2 2 1 1
al,5a2,3 . al,5a2,3j
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2 2 1 1
a>,2%5 al ,2%,5

(6.31e) « 2 2
■a>,4a2,5

1 1
■al,4a2,5

2 2 1 1
al,5a2,4j . ,5a2,4j

2 2 1 1
aI,3a4,5 al,3a4,5

, (6.31f) « 2 2
“al,4a3,5 =X4

1 1
’al,4a3,5

2 2 1 1
al,5a3,4j _ al,5a3,4

Note that (6.31g) is the minimum set 

eqh(6.31b). The sufficiency follows

(iii) The general__case k^6: Before 

the following: Let <k,1>={2,3,... ,k

(6.31g)

of necessary conditions implied from 

by a mere reversion of the arguments, 

we proceed with the proof we define 

and let Q^k-l t^ie set °f strictly

increasing 2 integers chosen from <k,l> which are lexicographically

ordered. We also define by - {(1 ,i] ,i2>: Ci] »i2)eQ2^k-l }cQ3,k; Q3^k iS

the subset of k which contain 1 as an element (L is always first

because of the lexicographic ordering of Q_ ). By solving as before the 3 , K

first k-1 of conditions (6.26a) with respect to g 6 and substituting into

the rest, we have the following set of equivalent conditions

- q1>3/6Sj,..., (6.32a)

for all (6.32b)

If is the set of prime quadruples of (1), i.e. $]«{(1ji^ji^ji^): 

i^ji^ji^e-^k,l>,i2<i3<i^}» then for each prime quadrupole (1,i2,ig,i^), a 

three-term relationship is obtained from (6.32b), of the type

(6.32c)

The set of conditions (6.32c), defined for every (1,i2,i3>i^)e£j, is the 

minimal set of conditions needed for (6.32b) to be true. Following a 

similar procedure as in the (i),(ii) cases, it is readily shown that 

(6.32c) defined for a given Cl,i2»i3»i^)e$] is equivalent to
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(6.32d)

follows by a mere reversion of the arguments.

The sufficiency

□
The result stated above establishes the necessary and sufficient condition 

kx2 cfor matrices of (E^ ,k>4 to be E^-equivalent. The property expressed by

eqn(6.28) will be referred to in short as collinearity of the r-prime

•• 12
Plucker vector sets of ^1’^2 resPect^ve^y*  Some interesting remarks

• C 1?
the determinant 6 of the transformation Q for which TjEe^T2 are

and a corollary are stated next.

1 2Remark (6.8): The collinearity property of Pr»?r implies collinearity of 

12 . cPj»Pj for any other je<k>. Thus for testing E^-equivalence of T^T^, it 

1 2is enough to check the collinearity of PpPj.

Corollary (6.2): The set of Plucker vectors P? which correspond to any 

fixed index re<k>, forms a complete and independent set of invariants for 

the following cases: <•
lex 2 c(i) Matrices TeflC ,k>4, under E . -equivalence.
n en

(ii) Matrices TglR^x ,k>4, under E^-equivalence. .

Note that the independence of the set P^ follows from the proof of 

Theorem (6.3); that is, the set P , or equivalently the set of conditions 

(6.32c) is the minimal set of conditions needed for (6.32b) to be true for 

all (1 ,ij ,i2)eQpk. The set of parameters £. and the parameter 6 are 

defined by the following result.

Corollary (6.3): Let TpT^* 2 (R^x2),k>4, and let the corresponding

1 2 • •l-prime Plucker vectors Pj ,Pj collinear. The scaling parameters and
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defined by:

(i) 6^2 is given as the common ratio

2

1
a,,i]

2
a>,i2

1
aJ,i2

a! .
i,.i2
2a.
h’h

(6.33a)

(ii) Using the value defined by (6.33a), thenof 6^

q"a
2 / 1

6$ for ¥ i=2,3,...k (6.33b)

□
With the choice of 6,^^,iek as above, the matrices T£ and diag{S;^}T| have

the same column space (since their Grassmann vectors differ by a scalar)

2x2and thus Q may be defined as the coordinate transformation (Qe(E , 

the following:

Remark (6.9): The set of all Pliicker vectors P which correspond to all 

indices iek, P = P^ i^u... uP^, is a complete, but dependent set of

• • kx2 k*2 c rinvariants of T e (C^ (TeR^ under E^ e9uivalence. Any sub-

set P. of P, which corresponds to only one index re<k>, provides a complete 

and independent set of invariants.

equivalence

2 r6.5.3 A complete set of invariants for matrices of I under E - -------------------------------------------------------------------------------- -- .Q------------------ .Oft—

The task we have originally set was the investigation of the conditions 

^x2 x* k*2
under which two matrices T] >T2e<cn maY equivalent. For TpT^e^ ,

Proposition (6.11) and Remark (6.7) show that if k<3, then we always have 

that T^E^T^; if k>4, the Corollary (6.2) shows that the set of r-prime 

Plucker vectors P^_ is a complete and independent set of invariants for 

^^-equivalence of matrices of The general case of E^-equivalence

kx2of matrices of (E is considered here. We first note the following.
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Corollary (6.4); The set of r-prime Plucker vectors P^, re<k> fixed, 

defines an independent, but not complete set of invariants for matrices of 

x 2 r
, k>4, under E^-equivalence.

The above result is a mere consequence of the fact that a complete and 

independent set of invariants for matrices of (E^x2, k^4, under E^- 

equivalence, defines necessary conditions for E^-equivalence, but not 

sufficient. Our task, therefore, is to define here the extra conditions 

needed for the transformation Q with a real determinant to be also real 

2x2(Q eK ). Such a study yields extra conditions and thus an additional 

set of invariants for E^~equivalence. Our study is greatly simplified by 

adopting the following notation.

Definition (6.4);

Ci) Let C=v+jwe(C, v,welR. Then, a real matrix representation of

is defined by

-w
eR2x2 (6.34)

(ii) Let (Ex(E={e:e=((j+ju>,“cr’-ju)’) ,a,o'j UJj U)1 eR}. The operation 

C <R2x 2 is defined for ¥ e=(a+ju),-o’-ju)’)eCx(E by

CT -a’l
eK2x2 (6.35)

0)

will be referred to as 

e=(cr+ju),-cr’-ja)’)e(Ex(E defines 

operation [ • 1 on e^ is defined in the same way as for the ordered pair 

(eqn(6.35)).

real matrix representation of e.

t 1 x2a row vector e =CcF+ju),-cr’-ju)’ ]e<C ;

the Every

the

A

v

w V

(iii) Let T=C... ,e^,... 2, where e^=Co^+ja)^,-o^-ju)^3. The real

gatrix representation of T is defined by
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a), -co!
1 i

(6.36)

□
Within this notation, it may be readily verified that for V £=v+jwe(C and 

e’Ccr+jajj-o’-ju/)eCCx(C, then

C5-e]K " (6.37)

• r •Using the above property we may express E^-equivalence as follows: 

r 2x2
TjE^T^, iff there exist £.e(C-{0}, iek, and a Q elR , |Q|*0,  such that

Ct 21]r = diag{...,CCi]]R,...} (6.38)

Note that (6.38) is a real representation of E^-equivalence and thus 

provides an equivalent definition for E^-equivalence of matrices of (E^ 

This equivalent definition will be used in the following, for defining the 

extra conditions that guarantee a real Q.

kx2
Proposition (6.12): Let T^>T2e®n and let ?£=x£+jy£€®“{0} with |6|«1 be 

a solution of (6.26a). Necessary and sufficient condition for is

that either of the following conditions hold true:

Ci) g(CT2]K) = eg(diag([q]]R) e-±l (,6.39a>

or

(ii) g(CT2]R) =» eg(£ diagCC^]^) CTj]^), e=±l (6.39b).

where E=diag{E,...,E} and E=Cj]1R.

Proof

By Proposition (6.10), if ^.eC-{0}, iek, is a solution of C6.26al for

I 61*1,  then any other solution with | <51 = 1 is defined by ^!=j^., For

a real Q to exist either of the following conditions must hold true:
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[T2^= diag^.^HT^Q (6.40a)

or

[T2]^= diagCCjq^CT^Q (6.40b)

Note that [j^R^i^]R=E^pR and thus (6.40b) is equivalent to

diag(E,...,E)diag([5i]]R) [T^Q (6.40c)

Necessary and sufficient condition for (6.40a), or (6.40c) to have a

solution for a matrix Q is that

col-span]R{CT2]]R} = col-span^fdiag (E^]^) [Tj 1^} (6.40d)

or

col-span]R{CT2]1R} = col-span^Ediag (EECJ-^) ETj 3^} (6.40e)

If either (6.40d), or (6.40e), holds true, then either T2=diag{^^}TjQ, or 

T2=diag{j^^}TjQ. However, because the ^'s have been chosen with |61=1, 

then |Q|*±1=£.  Conditions (6.40d), or (6.40e), may then be translated in 

terms of the Grassmann vectors, by conditions (6.39a), or (6.39b), 

respectively.

By combining now Propositions (6.12), (6.9) and (6.10) we obtain the

x 2 i*
necessary and sufficient conditions for matrices of (C^ to be E 

equivalent.

kx2 1 2Proposition (6.13): Let Tj,T2€(En , k>4, and let be the r-prime

Plucker vectors of TpT2 respectively defined for a fixed re<k>. Necessary 

and sufficient conditions for T.E^T,, are:
1 eh 2

1 2(i) The sets P and P are collinear.r r

(ii) If is a solution of (6.26a), with 151=1, as defined by Corollary

(6.3), then at least one of the following two conditions hold true
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g([T2J]R) ■ e g(diag(C^£]-R) e=±l

or

(6.41a)

S<CT23R> " E g<dia8(E[?iVCT1 3K> > e=±I (6.41b)

where E=[jI and e«±l.
JR □

• • cNote that condition (i) guarantees the existence of the for E - 1 eh

the transformation Qequivalence, whereas conditions (ii) guarantee that

with k=3 nis real. For the case of matrices of we have the following

result.

Let I, ,I2e^x2 

a? and let '

1 1 ntal,3,a2,3'1 ’ 

111 - 1,2 l,2al,3a2,3’ ql,2“al,2/al,2’

for

let g(Tj)«[aj 2, 

2 2,1’1 
l,2al,3a2,3/aL-a\

Necessary and sufficient condition

andCorollary (6.5):

2 2 
g(T2)~l~ai 2,al 3,a2 3

1 , 2 ’ - ’ 1 , 2
ql,3 al,3/al,3’ q2,3 a2,3/a2,3‘

T1 ehT2 that either of the following conditions hold true:

2 i=aD! =a

(i) gOX^) - Xg([^diag{q2j3,^j >2}]R CTj ]*)  , X eR-fO} (6.42a)

or

(ii) g(CT23]R)=X’g(ECv5'diag{q2,3,qi ,3»qi ,2^]R CT1 ^jr ) ’ X' (6.42b)

where E=diag(E,E,E) and E=[j]]R.

the £.’s,

as they are given by (6.27a) and (6.27b), and by Proposition (6.12) (note

The proof of the above result follows by a mere substitution of

now that |5| is not assumed to be 1). Before we examine the cases k=l,2

we give an example to illustrate the case of k>4.

4x2Example (6.2); Let , where

1-j ’ 3+j 2

T! "
1 2+j

2-j 3
* T2

9-2j

14-4j

7-j

10—2 j

1 1+2l l+5j 4j

In order to check E^-equivalence, we compute first the Grassmann vectors,
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g(T1)«Ca^2,a]^3,a^4,a^3,a^4,a^4]t=[4j,2+6j,-2+4j,-2,-l+j, l+3j J11 

g(T2)=[a^2,a^3,a^4,a^3,a2^4,a3^4]t=C4+8j ,4+12j ,-6+2j ,-8+4j ,-4+2j ,-4+8j J11

There is only one prime quadruple , <£=(.1,2,3,4), one prime triangle 6<f>,

6<«{ (1,2), (1,3), (1,4), (2,3) , (2,4), (3,4) } and thus each of Tj ,T2 has one

Pl’ucker vector. These are

p’W)

‘ 1 1
al,2a3,4

1 1
“al,3a2,4

1 1
. aMa2,3

-12+4J

8+4j

4-8j

22(6<|>) =

’ 2 2
al,2a3,4

2 2
"al,3a2,4

2 2
. al,4a2,3

-80

40+40j

40-40j

2 1 cWe can readily see that g (64>) = (6+2j)g (<5<f>); thus T^E^^ and the set of 

ie4 and that a 6 eR-{0} exist. If we take 6=1, then by Corollary (.6.3)

we have that £j = l, £2=2-j, ^3=^’ ^4=1+j* To c^ec^ existence of a real 

Q we compute Cdiagispi^ CT^ and then the corresponding

Grassmann vectors. Thus,

3 2 ’ 1 1

1 0 1 -1

9 7 2 5

-2 -1 , Cdiaga.}!,]^ -1 0

14 10 4 6

-4 -2 -2 0

1 0 1 -1

5 4_ 1 3 _

and it may be readily verified that g([T2l^) = (1)g(Cdiag(C£}Tj1^) ; the

2x2 . . rlatter implies the existence of a Q elR with 6=|Q|=1 for which T|E ^T^

The corresponding Q is

and IQ | =6 = 1

□
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Proposition (6.13) gives the necessary and sufficient conditions for

Ic x 2 j*
Tj,T2e(En to be E^-equivalent. Note, however, that the set of conditions 

(ii) of the result depend upon the parameters the existence of which 

is guaranteed by part (i) of the theorem. Working out necessary and 

sufficient conditions which are independent from the solution parameters 

is equivalent to the problem of finding extra invariants for fry-

equivalence, which together with the Plucker vectors form an independent 

and complete set. Before we proceed to the definition of the extra 

invariants we note:

Remark (6.10): If the pair p^a+juj-o’-ja)’) represents a point Pe(C-lR then

-o'
detmK

U) -0)’

kx2A matrix Te(Cn for which the ordered pair of the elements of every row

represents a point in (D-1R, will be referred to as purely complex and*

entirely nonsingular matrix 

-kx2by (E . Note that matrices inJ n

and the set of such

kx2(C may have a n

in JR.

matrices will be denoted

row representing a point

The search for some extra invariants of matrices of Te(Ekx2 under Er • 
n eh

equivalence is initiated by considering the simple cases k=l,2.

kx 2
Proposition (6.14): Let T j»T 2 e Then T1E^T2 is always true in the

following cases:

1x2Tj.T^C*

T.,TO e!Rkx2, where k=l,2,3.
1 z n

2X2Tl-T2<

(i)

(ii)

(iii) 9

T

where

and apBpoipgj e 1R, a2,B2,a2,B2 e I

o
* 0
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Proof

The cases (i),(ii) have been already proved before.

r 2x2(iii) implies that eR,C2€® and Q eR such that

- CcijjBj], ^2Ea2,B2]Q = [a2»B2] (6.43a)

and by taking real representations we have

= CapBj] (6.43b)

By solving the second of (6.43b) and substituting into the first and then 

by rearranging the terms we have

CjCotj ,6j] «*!  -°r 
“i -“i

_1 = CapBj] ’°2 ~a2

m2

-1
X2 _y2

y2 X2

(6.43c)

'----------—— • L J

- [kj.ni]] - Ck2,m2l

or equivalently

Ckj ,nij ] = [k2,m2l k2X2+m2y2

m2x2-k2y2
(6.43d)

Note that (k^,mj),(k2»m2)*(0,0)  and that (6.43d) has a solution if and only 

2 2if k2+m2*0  <=> (k2,m2)*(0,0) ; thus, by assuming eR-{0}, arbitrary, we

can find ^2=x2+jy2 solving (.6.43d). The matrix Q is then given by

r i “ -1 -1 r f ”1a, -af ■x2 -y2- °2 -°2
=

.“i -“i. _y2 x2j w2 "w2
(6.43e)

□
Proposition (6.15): Let T^T^* 2, CT^1]R= i=l,2, and let

M = (6.44a)
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where the parameters in M are defined by

a.
1

c.
1

b.
1

d.
1

i-1,2 (6.44b)

T|E^T2» if and only if |M|=0.

Proof

x*  2x2T|EehT2 implies that ?^=x^+jy^e(C-{0}, i«l,2 and a Q elR , |Q|*0  such

that if Z.-CC.2td > i“l>2, then
1 1 IK

S*  - ZJ:!q , 1-1,2 (6.45a)

By solving the first of (6.45a) and substituting into the second we have

- Zjl’a:})-1 <-> A2Z] = Z2A] (6.45b)

If we define by q=Cxj,yj,-X2»y21t, then (6.45b) may be equivalently

expressed as

Mq = 0 (6.45c)

Clearly, a nonzero vector q exists if and only if |M|=0. Note that any 

vector qeNr(M) has the property that (x..,y. )*(0,0) , i=l,2. Indeed, assume 

that Xj^ypO, then (6.45c) yields

(6.45d) 
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ICp^,P^]I=O by pJ]P^=O then the conditions of Proposition (6.15) may be 

expressed by

P^DpJ - ’ 0 <W> P<?DP2 ’ P2DP? = 0 (6.46)

From the above results we can state the following remark.

Remark (6.11): There always exists a gePGL(l ,(E/1R) that maps:

(i) A set of one, two, or three real distinct points to any other set

of one, two, or three real distinct points of respectively.

(ii) A set made up from a real point and a pair of complex conjugate points 

to any other set made up from a real point and a pair of complex conjugate 

points of (Cut®}.

Note that two distinct complex points of the (C-plane may not always be 

mapped by a BePGL(l ,1/lR) to any two distinct points of the (C-plane. The 

condition under which such a mapping exists is defined by the rank 

deficiency of the matrix M.

Our attention is focussed next on the cases where k>3. The main idea is 

to substitute the expressions of the 5* Ts, as defined by Corollary (6.3), 

into the conditions (ii) of Theorem (6.4) and thus derive conditions for 

the existence of a real Q, which are independent of the £^’s. For the 

case of k=3, Corollary (6.5) provides such conditions; however, some 

further rearrangement is needed for the definition of new invariants.

The expression of the is given by Corollary (6.3). Note that the

solution parameters in (6.33a) and (6.33b) have been expressed in terms 

of and some indices ^^Q^k-l ’ SuCh a Parametrization of the

solution will be referred to as (1 ^ ,!,>)-parametrization of the E^- 

equivalence parameters. Clearly, the solution parameters may be 

parametrized in terms of any other re<k> and any (jpj2)eQ2 k-p thus 

leading to an equivalent (r,j,j2)”Parametr^zat^on* For the sake of 

simplicity in the following we shall use the (1,ij^2)“parametrization.
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Definition (6.5): Let Te(EkX2 
n or T e

the coordinates of g(T).

(i) We define as the (I,i^ ,ip-standardising matrix of T, the matrix

S1 i i “ C1 i i dia8{ai i /al i al i ’1/al 2’-"’,/a| k} 
’ 1’ 2 ’1’2 1’ 2 ’ 1 ’2 ’ ,k

(6.47a)

where (ip^^Pk and

(6.47b)

(6.47c)

kx2(ii) If Te(C , then we define as the (1 ,i. ,in)-(C-standard form n ------- 1 —Z-------------------------------

T . . = S . . T e (Ckx2, F . . = CT . . ] £ R2kx2
l,i|,i2 ,1p12 n ,11’12 ,11,12

(6.48)

kx2If T , then the (1 ,i^ ,i2)-]R-standard form of T is defined by the

kx2matrix T. . . elR given by (6.48).1,1j,i2 n

• • • lex 2 A
(iii) For a matrix Tel , the Grassmann vectors g(T, . . ) =g, .A. . 5 '’h’h S1’1i>12

and g(F, . . ) = g, . . are defined as the (1,i,,in)-C-canonical
l>1p12 1,1P12 2

Grassmann vector ((1,i},i2)-C-CGV) and (1 ,i^,ip-]R-canonical Grassmann 

kx2 of T respectively. Similarly, if T eR^ , thenvector ((1 ,ij ,i2)-]R-CGV) 

2<Tl £ i > "Si*i  i is
,iPi2 ’ l’x2 

vector ((1,i^,ip-]R-CGV)

defined as the (1,ipi^)-JR~canonical Grassmann

of T. □
Clearly, similar definitions may be given with respect to any triple

(r,i ,i9),re<k>,(i1,i9)eQ9 the corresponding g . . ,g . . will
1 1 L 1 r,ij,i2 r,iJ,i2

be referred to in short as (r,ij ,i2)-(C-CGV, (r,i*  ,ip-]R-CGV respectively. 

Note that T . . E°.T and T . . Er,T. The importance of the T, .
r,ij,i2 eh r,ij,i2 eh r l,ij,i2

F. . . matrices and of the corresponding g, . . ,g. . . for E , ,E ,I»1p12 1»i],i2 “1»x]>12 eh eh

equivalence respectively is discussed next.
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kx? 1 2
Theorem (6.4): Let T, ,Tne(E_ , k^3 and let g, . . ,g, . . be the

1 n l,lj,i2 l,ij,i2

corresponding (1, ij jip-C-CGV of respectively. Necessary and

sufficient condition for T,E1 eh 2 is that

1 2
81,11’12 (6.49)

Proof

Let T^ ^T2 and let be the set °f parameters expressed by Corollary

(6.3) in the (ljipi^) parametric form. By substituting the C^’s in

T2=diag{£3TjQ we have that

2
where is given by

1/«C]

where c-J .
1,1

By (6.50a)
l’V
and

>1,2

C2 . . T
l,i],i2 2

2
2 al ,2 
1’ 1

al,2

Q€<C2X2,

al,k

(6.33a) and thus

1 7
= ec. . . /c. . . , e=±l

»L1 ,x2 ,X1 ,x2

is the standardising parameter

(6.50b), it follows that

.1
1 r il’12

ci i i dia§t---------i—
,11’12 a . a .

,xl ,X2

a. 2 2 a, • a, .
1,1] 1,12

2a.
11’12

IQI =fielR (6.50a)

(6.50b)

of the

2
al,2

1
al,2

T. 
J

matrix.

2
al k

al,k

T2 “ dia8<5S,

e

•,

9 9 • • • 9

and thus

1 . . Q
i;i],i2^

I2 . =^T>
1,11’12 J'

(.6.50c)

By applying the Binet-Cauchy Theorem on (6.50c) it follows that

C2^T! i i
/6 1,11* 12

C6.50d)

fromthe necessity. To prove the sufficiency we start

2 1 
, Then, given that by construction g. . . ,g . . are

1’x2 --,^,-2 2^2*  2 12 
decomposable, (6.50d) implies that there exists a Q'^n with |(/|»1 such

and this proves

2 = 1 
^1,i.,i0 ,i.,i9

2
^1 >^2

h! i i iQi
o *,1|,12
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that T? . . -t ! . . Q’, or that T? . . EC,t ! . . . Given that
1,1,,i2 eh

T ECj; . . and T Ec ,T . . it follows that T.EC,T0.
eh l,ij,i2 eh l,!,,^ 1 eh 2

Corollary (6.6);

. k*2matrices of (E , n

The (1 ,i.,i9)-(E-CGV g. . . is a complete invariant for1 z i,ij,i2
ck^3, under E^-equi valence □

3x2Remark (6.12): For all matrices T€<E_ the (1,2,3)-CGV g, n o is given by ' 1 'F” " " ■ r - - 1 j Z J J
g| 2 3“01,l>l]t and thus all matrices of are E^-equivalent. This

provides an alternative proof for Proposition (6.11). For such class of 

matrices g, 2 3 *s not an essent^a^- invariant, since all elements of the

set possess this property.

Remark (6.13); The (1,i,, i2)-(E-CGV 

is an equivalent complete invariant

g . . , or any g . . vector,
r,1l,12

for E^-equi valence to that defined

by the set of r-prime Plucker vectors P

Theorem (6.5) applies also to the case of E^-equivalence of real matrices.

Thus, we have:

kx2 -1 ~2Corollary (6.7); Let T,,TO eJR_ , k>4, and let g, . . ,g, . . be the
1 n 1’11’12 ,11’12

(1,ij,i2)~IR-CGV of T,,T2 respectively. Necessary and sufficient condition 

for TlEehT2 is that

-2 -1
Sl.ij^ = £Sl,i (6.51)

where (6.51) holds with if and only if T.Er.To with a Q and
i eh. z n

such that |Q|>0,IQI<0 correspondingly.

Proof

By following similar arguments as in the proof of Theorem (6.4), we

obtain a modified form of eqn(6.50c) as

(6.52a)

By applying the Binet-Cauchy theorem we have that
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1 ~1
TsT 8i,i (6.25b)

Clearly, if <5>0 then (6.51) holds with and if 6<0 it holds with

The sufficiency follows by a mere reversion of the arguments as in

Theorem (6.4).

kx2
Remark (6.14): The (1 ,ij ,i2)-]R-CGV for matrices of ]Rn , k£4 is a complete 

invariant for E^^-equivalence modulo e, where e=+l,-l if and only if 

equivalence is defined with |Q|>0,IQI<0 respectively transformations.

The role of the (r,ij,ip-lR-CGV for E^-equivalence defined on matrices 

kx3 .
of (En is examined next. We may state the following:

kx 2 ~ 1 ~ 2Theorem (6.5): Let T,,Toe(En , k>3, and let g, . _. ,g, be thei z j  i,ij,i2 i,ipi2

(1,ij, ip-JR-CGV of T|»T2 respectively. Necessary and sufficient condition 

for TjEeftTz is that either of the following conditions hold true:

(i) 

or

(ii)

~1 (6.53a)

(6.53b)

where E=diag{E,...,E} and E=[j]^.

Proof

Assume

(6.4) we

TlEehT2- By using 

obtain eqn(6.50c),

similar arguments as in the proof of Theorem

i.e.

• •,11’12
Ji i Q, IQI-S— T

/6
(6.54a)

(i) If T.Er,T„ with |Q| >0, then 
i en z (6.54a) implies that

— f ! . . Q
/s I>11’12I,11’12

(6.54b)

where . =[T^ . . ] , i=l,2. By the Binet-Cauchy Theorem we have
l,ll»l2 I,lpl2 ]R

that
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1’

— f ! . . q ) = -I
(6.54c)

(ii) If TjE^hT2 with IQI<0, then ZT-jZ-6 and l/Zd—j/Z^T. Thus, (6.54b)

implies

— E F.1 . . Q (6.54d)

where E=diag{E,... ,E}, E’fj]^. By the Binet-Cauchy Theorem, it follows

that

1 ~1

To prove sufficiency

the decomposability of

assume that (6.54c) or (6.54e) hold true.

-2-1 -g. . . ,g . . and C9(E) we have that

Then, by

(6.54c) (6.54f)

(6.54e) (6.54g)

However, by translating (6.54f) and (.6.54g) into the complex form we have:

(6.54h)

(6.54k)

, 2
above cases imply that Tj . . and thus T,Er,Tn.

1 eh 2
□ 

kx2Corollary (6.8): The (1 ,i,,i„)-1R--CGV, g, . . , of Te(E , or any otheri z i,ij,i2 n

is a complete invariant modulo Iz2k\, or modulo 
Q 2 }

Both of the
j,i2 eh 1

(r,j, ,j,)-lR-CGV g . , ,
* * r,J|»J 2

-C2(E), for E^-equivalence. In particular:

(i) *1-2
2] i £ £ £ for 8ePGL(l ,(C/JR) with | Q | >0

(ii) g? . (E)g! . . for gePGL(l ,(C/IR) with | Q | <0

Remark (6.15): The set of r-prime Plucker vectors P , or equivalently the
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g . . for Er,-equivalence. Thus, for the characterisation of Er -
“r, 11x en

equivalence we need only one complete invariant, the g . . vector, for
r r,1l,12

some re<k> and (i|,i2)eQ2 fixed.

Note that the vectors g . . and g . . uniquely characterise
r,1l* X2 r,1l’x2

families of matrices {T . . } and {F . . },{EF . . } with ther,ij,i2 r,i1,i2 ' r,iri2

properties:

T’ . .
r’11’ X2

= T . . Q,
r’1l’12

IQI-1, V T’ . . € {T .
r,i1,i2

F . . = F . . Q, |Q|=1, V F’ . . € {F . . }
r’1l’12 r’Xl ,x2

F . . -EF . . Q, |Q|—1, VF’ . . € {EF . . }
r,ij,i2 r’1r12 r,i l’X2

(6.55)

(6.56)

The vector spaces span_{T . . } =T . . and span (F . . } = F . . ,
A C r’1]»12 * r,ij,i2

span—{EF . . } = F*  . . are invariant under E -,E -equivalence and
1R r»1p12 eh ’ eh

C X*are defined as the E^^-, and E^-equivalence characteristic spaces of T

respectively. The interpretation of the g . . ,g . . on the
r’11’x2 r’11’L2

corresponding (r,ij ,i2)-(C, -JR-standard forms leads to the following 

result, that concludes this section.

V X 2
Corollary (6.9): Let Tj,T2e(En , 

,1 r.2{T . .,F .r,ij,i2’ r,i

respectively.

k>3, and let {T1 . . ,F*  . . },
’ r,i1,i2’ r,i1,i2

. } be the (r,i.,i9)-(C, R-standard forms of T^T? 
j,i2 z
Then

(i)

(ii)

iff T1 . . ECT2 . . with
r,iri2 r

iff F . . E F . . withr,iI,i2 r r,i1,i2

with |Q|=-1 (right real equivalent).

TlEehT2’

TlEehT2’

|Q| = 1

|Q|-1

(right complex equivalent). 

or EF1 . . ErF2 . .
r,ij,i2 r r,ij,i2

□
6.6 A complete set of invariants of homogeneous binary polynomials under 

projective equivalence

The necessary and sufficient conditions for f (s,s),f(X,X)eR^{0) to be

equivalent, have been given by Theorem (6.2); in this result the notion 

of E^-equivalence is of crucial importance. The characterisation of the
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E^(T), , by a complete set of invariants provides the basis for

defining a complete set of invariants for Ep(f) and thus for Ep(F).

Theorem (6.1) may then be used for the derivation of a complete set of

invariants for the E^_g(F,G) equivalence class. In this section, the cases

Of Ep(f) and Ep(F) equivalence classes are considered here. The original

problem, the study

section. We first

of invariants of E^ g(F,G) is examined 

define the following:

in the next

Definition (6.6): Let f(s,s) eRjJe}, 8(f )«{B]R(f ); Bfl,(f ) } 

, v = #B^(f) (# denotes the number of elements of

and let

the corresponding

set). Let us also assume that 7T€<B_(f)>, irTe<B_(f)> andIK (l

T . = =ir,7r

that

(6.57)
CBj'cf)]

is the (tt ,it t )-basis matrix of f(s,s). We may define:

(i) T(f) =iT_ Vire<B^,(f)>, ¥ ir,e<Bw,(f)>} as the family of matrix
7T , IT IK (L '

representations of B(f), or of f(s,s). The ordered pair (p,v) will be 

referred to as the order of B(f), or of f(s,s).

(ii) If p+v>3, T^ ^jeTCf), re<y+v>, dj ’ then the

(r,i, ,i«)-]R-CGV of T ., g71’? . , is well defined and shall be referred
1 2 7T, it r, 1 j, i»2

to as the ,tt *)  — Cr,i, ip-IR-canonical-Grassmann vector C(ir,ir*)-(r,ij  ,i2)~

-1R-CGV) of f(s,s). The set of all such vectors

(6.58)

is well defined and shall be called the R-canonical Grassmann vector set

(K-CGVS) of f(s,s) □
7T TT 1 

Note that the set is completely defined by an element g ’.
, £ r,ij,i2

fact, g ’. . defines a family of (r,i.,i9)-standardised matrices
1 z

In
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of G^; this is

r > i- j»

(T^ f } which are right equivalent with transformations Q, having |Q|=1. 
r,il’i2

From any Te{T^ }, we may construct all other elements

why any . may be referred to as a generator of G£.
r’11’L2 *

* 4x2 4x2matrices of f(s,s) and they are matrices of 1R .If , then 

the property described by I CT j,T^ JI =0 is denoted by TjdT^O. With these 

definitions in mind, we may state the following result:

With the above definitions in mind, we may now state the conditions for

Ep-equivalence of elements of ]R^{0}. The simple cases are examined first.

Proposition (6.16): Let f (s,s) €^{0}, B(f)={B]R(f) ,8^, (f) }, J]R(f), JJ,(f) be 

the sets associated with f(s,s) and let (y,v) be the order of f(s,s). The 

sets JR(f), J^(f) and the order (p,v) form a complete set of invariants for 

Ep(f) in the following cases:

(i) (p,v) = (1,0), (p,v) = (2,0), (y,v) = (3,0)

(ii) (y,v) » (0,1), (y,v) = (1,1) n

The proof of the above result readily follows by Theorem (6.2) and

Proposition (6.14). For polynomials with (p,v)®(0,2), B(f)=Bg,(f) and

JCfJ-J^f); 

(p2,1)} and

thus, if B(C(f)={ (Yj ,61 ;pj) , (y 2,62;p2) ,pj<p2), (f)={ (pj, 1) ,

by e. = (Y.,«.). Ce^-Spif we denote and by

a
A - £^7'

b‘ ba
, A = EjE”1

d
(6.59)

c d c

then we may of f:following characteristic matrices

Pa

define the

a b a c a b a c

b -a b d _a b -a ng b d, P = , P = , P =
c d c -a c d c -a

_d -c _d -b_ d —c . d -b

theto as

(6.60)

The above matrices will be referred a-,g-,q-, ^-characteristic
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Proposition (6.17): Let fp^eR^f©}, (p,v)=(0,2) and let Jg, (f^)={(p , 1) , 
o q o

(p9,l)} and P . J? . ,P . ,P 7, i=l,2, be the corresponding complex list and 

characteristic matrices of f^. Necessary and sufficient conditions for 

fi^Pf2 are:

«> Jc(fl) = Jc<f2>-

(ii) (a) If pj <p£> then P® □ P° = 0.

(B) If p’]-P2» then either P®Dp“ = 0, or P®DP“ = 0.

The proof readily follows by Theorem (6.2) and Proposition (6.15). Our 

attention is focussed next on the general case, which is not covered by 

Propositions (6.16) and (6.17). A polynomial of R^{0} for which the order 

(p,v) is different from (1,0),(2,0),(3,0),(0,1),(1,1) and (0,2) will be 

referred to as a general order polynomial. For such elements of R^{0} ve 

have the following result:

Theorem (6.6): Let f(s,s) eR^{0} be a general order polynomial and let 

B(f)as{B^(f) ,B^(f) }, J(f )={J^(f), Jg,(f) } and be the sets associated with 

f(s,s). A complete set of invariants for the Ep(f)-equivalence class is 

defined by:

V£)’Vfk
(ii) Gf, or modulo -(E), where E=diag{E,...,E} and E=[j]^.

Proof

If fj,f2eRj{0} are two general order polynomials and f^Epf^, then by 

Theorem (6.2) we have that (hj ,Pj ) = (h2»v2) , J^(^)"J]R(f2) 1 2^ and

there exist ir. (B (f.)) , tt ! (B (f.) , i»l,2, such that T2 ,=diag{E.}T*  ,Q, 
X IK X X IL X " n , X n . 9 n _

2x2 X 11
where {0} and QeRR

r 12
By the last condition (E .-equivalence of T ,,T ,) and by Theoremeh IT | , TT j TT n , IT

(6.5) it follows that

iTpir! _ 7r,7rT
g 2. 2. = g . . or -C9(E)g 1. 1.
r,ij,i2 r,ij,i2 2

(6.61)
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Note that eqn(6.61) holds true for all (r,ij,i2); furthermore,

T1 fEr,T2 » implies that for V (<.,*{) we may find a suitable (‘n’9,ir9) 
1Tl»7rlen,n’2,7T2 * 2 Z

for which t ! ~,Er,T? thus, by (6.61), G =G or G =G~ (mod~Co(E)).
ir 1, J ah 7T £, it  2 f j f 2 f | f 2 2

This proves the necessity (invariance). To prove the sufficiency 

(completeness) assume J^(f} )=J]R(f 2) , Jffi(f} )MJtt(f2) and that Gf =Gf , or

G ' =G (mod-CL(E)). The last condition implies that there exists a one to 
ri t2 2

one correspondence between the elements of G ,G which is expressed by
ri *1

Choose an (r,ij,i2), and pairs (it  } ,tt  j) , (tt 2,7t 2) for which the

relations hold true. Then by Theorem (6.5) we have that

eqn(6.61)

(6.61) type 

T1 iE\t 2
iTpirj eh tt 2 , and by Theorem (6.2) the completeness is established 

’"2 □
Remark (6.16): If G ,Gf are two R-CGVS, g.eGf. , and either g=g. ,

tl r2 _1 2 2
or g9=s~C’ (E)g , then G_ =G or G =G (mod-C-(E)) respectively. Thus,

2 r2 1 2 rl_ 2
two sets Gf ,Gf are equal, or mod(-C’9(E)) equal, if and only if they have 

ri t2 2
a common, or mod(-C2(E)) common point correspondingly. □

In a manner similar to that described for the construction of G^, we may 

construct the set of all (iTjir^-Crji. ,i9)-C-CGVS, g71’? . , which shall be

For every T TeT(f), we may also construct the
IT, TT

«7T ,71 , n7T, 7T .. «7T, 7T » «7T, 7T
vectors, P , by P = 1 ’ wbere *£

vector set, where k=u+v. Then, the set

denoted

r-prime

i-prime

by Gf.

Pl’ucker

Plucker

set of all

is the

P* U Pir,7r', for V ue<B_(f)> , V 1r'e<B.(f)>
IT,it ’ JR a

(6.62)

will be called the Plucker-vector set of f(.s,s). For polynomials with real

roots we have the following result:

Corollary (6.10): Let f(s,s) be a general order polynomial with

real roots and let B(f)«B (f), J(f)=J]R(f), G^ and P^ be the sets 

associated with f(s,s). A complete set of invariants for Ep(f)-equivalence 

class is defined by:

Ci) JK(f).
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(ii) Gj. modulo ±1, or equivalently P^ modulo collinearity of the 

corresponding vectors.

The proof of the above result follows immediately by Theorem (6.2),

Corollary (6.7) and from the equivalence of the set of r-prime Pl’ucker 

vectors P , to the (r,i.,i0)-]R-CGV g . , established by Corollary (6.6).r 1 z r,ij,i2

Remark (6.17): If Ppp2 are two sets of Plucker vector sets, P™’^ eP^, 

P^’ft and P^,1T fP^’^ collinear, then PpP^ are collinear. Thus, PpP^ 

are equal modulo collinearity of the corresponding vectors, if and only if they 

have a common (modulo collinearity of the corresponding vectors)
_ n7T,7r’ —7T , 7T f

vector set P ’ =P * =P ’ .

We may illustrate the notion of Ep-equivalence on R^fO} by the following 

example.

Example (6.3): Let f(s,s),f(X,X) e]R^{9}, where

f(s,s) = (s-3s)2(s-2s)(2s-3s)(s-4s)

f(X,X) = (4X-11X)2(6X-16X)(15X-39X)(20X-56X)

We shall examine whether f(s,s)Epf(X,X). Given that both polynomials have 

real roots, the UFS of f(s,s) and f(X,X) are given by

B(f) -8_(f) = {(1,2;1),(2,3;1)(1,4;1);(1,3;2)}
K (6.63a)

8(f) = B]R(f) = { (6,16; 1) , (15,39; 1) , C20,56; 1) , (4,11 ;2) }

and thus

JR(f) = {(3,1),(1,2)} »JK(f) (6.63b)

Since the first of the two conditions of Corollary (6.10) is satisfied, we 

proceed to the checking of the second. Select the following permutations 

from 8(f) and B(f):
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7r(B(f)) = { (1,2; 1), (1,4; I) , (2,3; 1) ; (1,3;2) }
(6.63c)

ir’(B(f)) = { (6,16;1),(15,39;1),(20,56;I);(4,11 ;2)}

Then,

1 2“ 6 16'

t [ - [K(B(f))3 - 1 4 V -
* ~ V (B(f)) ] = 15 39

2 3 20 56

1 3 _ 4 11

(6.63d)

Let r=le<4>. Then there exists one quadruple <£—(1,2,3,4) based on 1 and 

so one prime triangle 6<|>1»{(1,2) , (1,3) , (1,4) , (2,3), (2,4) , (3,4)}. The 

corresponding Grassmann vectors for TpriJ are:

g(T’) = [2,-1,1,-5,-1,3]t, gfr"’) = (6.63e)

and thus the Pliicker vectors for r=l are

(6.63f)

Thus, since P^(<5<t>|)*̂2  W])» t^ie matrices T|,t !J are not E^-equivalent. 

Eqn(6.63f), however, suggests that there may exist a different permutation 

on 8(f) for which Er, may be established. Thus, let us take
en

ir"(B(f)) = {(6,15;1),(20,56;1),(15,39-1);(4,11;2)} (6.63g)

Then,

< = Cir"CB(f))] = and gCTj") = [16,-6,2,-60,-4,91s
(6.63h)

and thus
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(6.63k)

The above condition establishes the collinearity for the ordered pair
IT r TT**  a *** ^

(ir,7r") of permutations; thus Tj ^ej1T2 and f (s, s)Epf (X, X) . g

The characterisation of the Ep(f)-equivalence class by a complete set of 

invariants, provides also a solution to the general linear mapping 

problem. In fact, the UFS B(f) of an f(s) eR^{0} defines a general 

symmetric set points c, of where the list J(f) defines the

corresponding multiplicities of the distinct points of £. Because of this 

observation we have:

Remark (6.12): The general linear mapping problem is equivalent to the 

study of complete invariants of polynomials of under Ep-equivalence.

The necessary and sufficient conditions for f^Epf^, fj,f^ elR^{0}, are also 

necessary and sufficient conditions for the solution of the GLMP, since

every symmetric point set

The results obtained so

5 may be considered as the UFS of some f eR,{0}. a
□

far for Ep-equivalence of an f(s,s) elR^{0} are

extended next to the case of a set of polynomials. Of special interest are

sets of binary polynomials ordered by the divisibility property. The study

of Ep-equivalence on such sets allows

Section (6.3) with those of (6.5) and

the connection of the results of

thus yield a complete set of

invariants of matrix pencils under

V iep-1. The set of all Smith-type p-tuples F of 1Rj {0} will be called a 

J-Smith family and shall be denoted bySJRj{0}. For every F eSKj.{0} we can



265

define the set of elementary divisors of F by factorising over (C (R) every 

f^(s,s) of F; the set of e.d. of F over (E will be denoted by Pp, and it is 

clearly a symmetric set (e.d. appear in complex conjugate pairs).

Lemma (6.3); (Gant - 11 Let F eSKj{0} and let Pp be the set of 

over (C. The set Pp uniquely defines the elements of modulo

e.d. of

scaling by

F

nonzero constants. □
This standard result provides a representation for F by the set Pp. The

following result emphasises the importance of the set Pp.

Proposition (6.18): Let FpF^eSKjfO} and let Pp ,Pp be the 

an<^ on^ there exists an ordering ofe.d. sets.

of Pp ,Pp , 
rl r2

denoted

The proof of this

corresponding

the elements

by Pp ,Pp , such that for this ordering Pp EpPp . tj f2 r f2

proposition readily follows by Lemma (6.3) and

□

(6.6).Proposition Thus, Ep-equivalence on Smith-type tuples F may be 

reduced to an equivalent problem of Ep-equivalence on sets of e.d. over I. 

The notion of the ordering of pp sets is important for our study and shall 

be discussed next. Note that if F is not a Smith-type tuple, then Pp does 

not define uniquely the set F.

The symmetric set Pp may be written as Pp=(Pp ;Pp}, where Pp , Pp denote 

respectively the sets of real, complex e.d. in Pp. The sets p^,Pp and 

thus Pp may be ordered as it is explained next. Let us denote by 

I ={d?:dTcZZ ,ieo ,dT<...<dT } be an ordered set of integers and let
T 11 ~r 1 o T

- {(Y]'s-6j'S)k,(Y]'s-«j's)k,keIT,;jeVT,,Y]',5j'e<C,

(6.64)

(6.65)
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be the sets of all pairs of complex conjugate e.d., real e.d., whichhavethe

same set of degrees respectively (or the same Segrez characteristics

respectively). The index sets IT(ITt) may be ordered as follows:

For two sets 1^,1^ with 0^*0^,  we say that strictly precedes 1^, written 

if o.<an; if o_=on, then we say that I precedes written I <Tn, 
ofc p oc p ot p —06— p <x a

if-there exists an integer t (l£t£o =0-), for which d*?=d^, ... ,d°J =d^ .,
Clp II t” I t— 1

Thus, (3,4)<(1,2,3) and (1,3,4)<(1,3,5). This notion

(E 1Rof integers, implies an ordering for PpP^ , and thus
JR JR QJ JR

Pp be either P^ , or Pp, then we may order P^ as

8’
a ^0 .a ,8 r-*->Vr dt-i’dt<df 

of ordering for sets

for Pp. Thus, let

DK = {P(T
“1 “p Bl

,...,P(I )} (6.66)
wr

where a =...=o <cr =...=a <...<a
°I “p B1 Bq “1

,...,I <...<I . Such an ordering for P

=o and I <...<I u) ai a
r JR (£ P

...<I , ...,I <...<I^ . Such an ordering for P^ , P~ according to the
.q “1 “r

ordering of the corresponding index sets will
JR JJ JR

natural ordering. The set P^={Pp ;Pp} for which P^ and

B1

be referred to as

ordered as above will

is not complete since

be called naturally ordered. Note

have not been ordered

Pp have been

that this ordering
JR QJ

the elements of the constituent subsets P (I ),P (I .)
T T

yet. We may now extend Definition (6.1) to the case

q

) 
I

of Smith-type tuples.

IR (EDefinition (6.7): Let F eSRj{0} and let Pp={Pp ; P^} be the associated set 

of e.d. of F over I, which is assumed to be naturally ordered.

(E (ECi) For every P (I^^ePp we define the set B’d^,),

B’d.) - (OrfT,;IT,={df.....df }} (6.67)
T J J T T T 1

(E JR T>
as the representation of P (T^f). Similarly, for every P (I^ePp we 

define by

as the

(6.68)

representation of P (I
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(ii) A permutation irB(1^.),tt ’B* (1^f) of the elements of 8(1 ) ,8(1 t) 

respectively defines an ordering of the corresponding sets; the set of all 

possible permutations defined on 8(1^),B’(1^,) respectively will be denoted 

by <B(IT)>,<8f(IT,)>.

C 1R(iii) The naturally ordered sets defined from PpP^ by

Bb (F) = )} (6.69)
1 p’lr*

B-(F) - {B(I ),...,B(I );...;B(T ),...,B(I )} (6.70)In. 0C. CX (Ju« U)1 p 1 r

characterise the sets of real and complex conjugate e.d. of P^ and shall be 

called the complex, real unique factorisation sets of F respectively. The 

sets of integers characterising the possible sets of degrees and the 

corresponding multiplicities, of e.d. J (F) , J(F) , where
(l  JK

are defined as the complex list, real list of F respectively. The sets 

B(F) = {B]R(F) ; B^CF) } and J(F) = {(F) ; (F) } are defined as the unique 

factorisation set <UFS) and the list of F correspondingly.

Civ) Every permutation of the elements of 8(F) defined by

ir(B(F)) = {ir(B(I )),... ,ir(B(I ));ir'(B'(I ,)),... ,ir'(B'(I , )} (6.73)
“1 “r “1 “r*

where it (B(It ))€<B(Ti.)>,7t i (B1 (It ,))€<Bt  (I^T)> defines a complete natural

ordering of 8(F); the set of all such permutations will be denoted by <B(F)>

Cv) Let ir(B(F))={ ... ,tt (B(Tt )) . ,ir’CB'(1^,)),... }£<BCF)>, where
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ir(B(IT)) - ...........(cJ ,8*  jlp }e<B(IT)> (6.74)

T T

»’(8’(I ,)) = ((Yf,«* ’ ;I ,))e<B'(T ,)> (6.75)
<r 1 -r T

A matrix representation of ir(B(F)) may be defined by

rF

CB’r(IT)]

cb J'(F)]
,CBlr(IT)]

T
“1

T a
v 

T

aT,)>

r'
Y1

r'

<1

«T'V
CB,1t '(It ,)]

T

,[B,Tr'

(6.76)

7T m7T A The matrices Tr ,T_ r= F R,F

Ctt ,7T*)  — » (]R,7r)-,

will be referred to as a

((E,it *) -basis matrix of F respectively. □
From the above

equivalence of a

definition it is clear that the results presented for Ep- 

single polynomial may be naturally extended to the case of

Ep-equivalence defined on Smith-type tuples. In the following it will be 

assumed that F is naturally ordered.

Proposition (6.19): Let F, ,F„ eSJRT{0} and let B(F. )={Bm (F.) ; Bm(F.)}, 
1 Z J 1 IK 1 (L 1

J(F.)={JTO(F.) ; J_(F.)}, i»l,2, be the associated UFS and list of F..
1 IK 1 (L 1 1

Necessary and sufficient condition for ^jBpF2 are that the following 

conditions hold true:

Ci) J(F,)-J(F2) <-> Jk (F,) - Jk CF2) and J^CFp^CF,) .

(ii) There exist permutations •rr^(B(F£)) = ('n’^(B]RCF^)) , Tr|(Ba,CF^)))e<B(F£)>, 

i=l,2, such that for the corresponding (jr,. ,7rl)-basis matrices Tp1 *,
7T0,7r' IT ir! IT ,ir’ 1 1

V we TF. EehTF. • □

The proof of this result is similar to that given for Ep-equivalence 

defined onR^fO}. The importance of Proposition (6.19) is that it 

demonstrates the fact that all results derived for Ep-equivalence on 1R^{0} 

also carry out to the case of Ep-equivalence defined on the set SlRj{0}.
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Bg,(F)} and J(F)={J^(F) ;J^(F)} are defined in a more general way by

Definition (6.7), rather than Definition (6.1) used for 8(f) and J(f). The 

invariants of Ep(F) are the same with those of Ep(f) and thus the same 

definition and names will be used.

With the study of Ep-equivalence on SRj{0} completed, we may now proceed 

to the solution of the original problem, i.e. the study of complete 

invariants of the E^ g(F,G) orbit.

*

a

6.7 A complete set of invariants of matrix pencils under bilinear strict 
equivalence

The starting point in our attempt to characterise E^ g-equivalence of 

matrix pencils is Theorem (6.1); by this theorem the sets of c.m.i. and 

r.m.i., Ic(F,G),1^(F,G) of sF-sG are invariant; and the extra invariants 

needed to form a complete set are provided by the invariants of the set

F(F,G), of homogeneous invariant polynomials of sF-sG, under Ep-equivalence.

Mote that F(F,G) eS!Rj{0}, and thus the results of the previous section 

carry over naturally to the case of F(F,G). Before we state the main 

result of this section we introduce some notation.

For the set of homogeneous invariant polynomials F(F,G) of L(s,s)=sF-sG 

we shall denote by P(F,G) the symmetric set of e.d. over CC, and by

B(F,G)={B]R(F,G) ; B^(F,G)}, J(F,G)={JK(F,G);J(r(F,G)} the UFS and the list of

F(F,G) and thus of L(s,s). The set B(F,G) will be assumed to be naturally 

ordered and if tt B(F,G) = (7t B]R(F,G) , tt ’B^CFjG))e<B(F,G)>, then the (ir,ir’)- 

basis matrix will be designated by T^ and T(F,G) will denote the family 

of matrix representations of B(F,G) and thus of L(s,s). If p=#B (F,G) ,
JK

v «#Bq,(F,G), then (u,v) will be called the order of L(s,s). Following

Definition (6.6), we have that if y+v>3, then for V T^ ,eT(F,G),re<p+v>, 

(il’i2)e(Cu+v-l’ ir’i1’,i2wiU den°te the <r.ii.i2)-1R-CCT of Tir,ir’ and 

shall be called the (it ,irr)-(r,i} ,i2)-lR-canonical Grassmann vector of L(s,s);
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the set of all such vectors (eqn(6.58)), is designated by G(F,G) and we 

shall call it the IR-canonical Grassmann vector set of L(s,s). For every 

T ,eT(F,G) we shall denote by (F,G) (F,G) and by P*(F,G)  the
IT , 7T 77

set of (ir.ir’)-r-prime Plucker vectors (re<u+v>) of the set of all

r-prime Plucker vectors of T_ , and the Plucker vector set of T(F,G) and
Il J 71 T " - - I r • TB I - T

thus of L(s,s) (see eqn(6.62)). If (p,v)=(0,2), the a-, g-, a-, §- 

characteristic matrices of L(s,s) are defined as for the case of polynomials 

(eqn(6.59),(6.60)). Finally, L(s,s)el(9) will be called a general order 

pencil if (p,v)*{ (1,0),(2,0),(3,0),(0,1),(1,1),(0,2)}. We may now state 

the main result of this chapter.

Theorem (6.7): Let L(s,s)=sF-sGeL(0) be a general order matrix pencil and 

let B(F,G),J(F,G)={J]R(F,G) ; J(E(F,G)},G(F,G),Ic(F,G),Ir(F,G) be the sets 

associated with L(s,s). A complete set of invariants for the e h -b (f ’g ) 

equivalence class is defined by:

Ci) Ic(F,G),Ir(F,G).

(ii) J(F,G)={J]R(F,G) ; JC(F,G)}.

(iii) , G(F,G), or G(F,G) modulo -G (E) , where E=diag{E,...,E},E=Cj] .2 ]R n

The proof of this result readily follows from Theorems (6.1),(6.6) and

Proposition (6.19). E^ g-equivalence for a number of special type matrix 

pencils is treated by the following corollaries.

Corollary (6.11): Let L(s,s)=sF-sGel(0) and let the order (p,v) of L(s,s) 

take values from the set {(1,0),(2,0),(3,0),(0,1),(1,1)}. A complete set 

of invariants for the E^_g(F,G) orbit is defined by the sets: Ic(F,G),

Ir(F,G), and J(F,G)={J^(F,G) , Jq ,(F,G) }. □
Corollary (6.12): Let Lj(s,s)=sF1-sGj,L2(X,X)€l(0) be two pencils of 

(U,v)-(0,2). Let Jt(F. .Gp-f ,D, UT.. D),{P“,P?,P“,P?},IC(F. ,G.) 

Ir(F^,G.), i=1»2» be tbe corresponding lists, characteristic matrices 

order

and

and
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minimal indices sets respectively of the two pencils. Lj(s,s)E^ gL2(X,X), 

if and only if the following conditions hold true:

(i) Ic(F1,G1)-Ic(F2,G2),Ir(F1,G1)=Ir(F2,G2),Ja,(F1,G1)=Ja;(F2,G2).

(ii) (a) If I <, or <1 ,, then P^DP? = 0.
T1 T1 1 Z

(B) If I =1 , then either P?DP9 = 0, or P^DP9 = 0.
T1 T1 12 12 □

9

Corollary (6.13): Let L(s,s)=sF-sGel(0) and let (y,v)=(k,0),k^4. Let

Ic(F,G),Ir(F,G),J(F,G)=J]R(F,G) , P*(F,G),G(F,G)  be the sets associated with 

A
L(s,s). A complete set of invariants for the E^ g(F,G)-equivalence class 

is defined by:

Ci) Ic(F,G) ,Ir(F,G) ,JR(F,G).
£

Cii) G(F,G) modulo ±1, or equivalently P (F,G) modulo collinearity of the

corresponding vectors. n

These corollaries follow immediately by Theorem (6.1), Proposition (6.19) 

and the corresponding results for binary polynomials stated in the previous 

section. The properties of the invariant sets G(F,G), or P*(F,G),  have 

been studied in detail in Section (6.5), where E^-equivalence was 

discussed. The set G(F,G) is generated by a single element (in the sense 

discussed before) and thus the elements in G(F,G) are not independent 

invariants but dependent; however, the whole set G(F,G) (or P (F,G)) is

used in the above results, to avoid the use of permutations. Finally, we 

should note

there exist

that two sets G(Fj,Gj),G(F2,G2) are equal if and only if 

g(l)J. ’ eGCF.jGj and g(2) 2. 2. eG(F9,G9) such that

7r9,ir’ tt .,^ 7ri »7ri
§C2)q j 4 = g(Or £ i > or = -C2(E)g(l) 1 1

q,Jj,J2 r,ij,i2 x r,ij,i2
(6.77)

Similarly, two sets P (Fj ,Gj),P (F2,G2) are equal if and only if there 
IT ] , TT . * TTrt 7T1 *

exist P^ (FpGj)eP (Fj ,Gj ) and P^ (F2»G2)eP (F2,G2) such that 

IT

P r
(6.78)
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where ”//" stands for collinearity of the corresponding vector sets. The 

last two conditions express the property described by Remarks (6.16),(6.17) 

respectively as "equality of a pair of representative points".

Remark (6.19): If L(s,s)=sF-sG e!RmXn[s,s],m*n,  is a generic pencil (L(s,s) 

full rank and S (s,s) has no nontrivial elements, i.e. F(F,G)=0), then a 

complete set of invariants under E^ g-equivalence is defined by:

(i) Ic(F,G), if m<n.

(ii) Ir(F,G), if m>n.

for both types of equivalence the same set is a complete invariant. Thus,

if we keep the same pair of indeterminates (s,s), then E^ g(F,G)=E^(F,G).

For regular pencils the notions of E^ g and E^ equivalence are quite 

distinct, since there is no special case where the two notions may coincide.

=XF2-XG-2eL is an elaborate procedure, since finally the sets G(F^,G^}, or 
•k

P (F.,G.) have to be computed. Note that the rank p of a pencil and the 

set of indices J={d^:iegjd^deg f^(s,s) ,f^Cs,s)€ECF,G)} are invariants (F,G)} are invariants

steps:

(1) Find the ranks P {>P2 Cs,s) ,L2(A,X) . If P\*p2  we st°P, since

Lj (s,s)^_gL2(A,X) .

(ii) If pj=P2, ttie sets of deSrees ^]’^2 of F(F_.,G.), i=l,2. If
A

stop, since then Lj(s,s)f^_gL2(X,X).

Ciii) If comPute i=I,2« !f KFj ,G1)*J(F 2,G2) stop, since

*
then Lj(s,s)E^_gL2(X,X).

(iv) If J(Fj ,Gj )-J(F2,G2), compute ,G.}, i=l,2. If

I (F.,G.)*I  (FO,GO), or I (F. ,G )*1  (F?,G ) stop, since then
c I 1 czz r i 1 r z. l .
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Lj(s,s)F^_gL2(X,X).

(v) If ^C(F|>Gj)*̂ c (F2,G2) and (F|,Gj)=Ir(F2>G2) then compute the UFS 

J, x-1 ,Z.. The sets ^(PpG.) (F.,G.) charac-

and complex e.d. ^jr (F£»G£) respectively

homogeneous polynomials F^ (F. ,G. )eSRT {0},
JK 1 1 J

Fr ^1,G1)V1R^2’G2)’ or VF1 ,Gl^p^(D^F2’G2^ ’
A

8(F.,G.)={S]R(F.,G.);B{C(F.,G.)}, i-1,2.

terise the sets or real

and thus define sets of

F (F.,G.)€S»t  £0}. If

then stop, since ECF^G^^p (F2,G2) and thus Lj(s,s)^

(vi) If F^CFj ,G1)EpF;R(F2,G2) and F^,(F2,G2)Ep(F2,G2) , then proceed to the 

computation of GCFpG^), i-1,2, or the special cases tests for checking 

the E^equivalence of F(F^,G.), i-1,2.

The E^_g(F,G) equivalence class has been characterised by a complete set 

of invariants; this set of invariants is common to all pencils L_,L~e y y 

eE^_g(F,G), but there exist a number of other functions, defined on a 

pencil, which are not E^_g invariant and thus generally they take different 

desirable to find

values on the elements L^,L~ of the class. In a number of cases, it is 

a matrix pencil L^eE^ g with a prescribed set of charac- 

problem may be of interest in the study of numericalteristics; such a

analysis aspects, or system theoretic applications of the matrix pencil

theory. The following problem then arises:

Problem: Let L0=sF-sGeL(0), E^_g(F,G) the corresponding equivalence class, 

of E^_g(F,G) (invariant functions defined 

a set of functions defined on

R the set of complete invariants

on ¥ L’teE^_g(F,G)) and let K be 

V L’,eE^_g(F,G) for which KnR-0 . Let us further denote by KCF'jG1) the

set of values of K on the pencil L-^-XF'-XG*.  Find whether there exist 0 * ry
beB and h.cH, such that L^=(fl*b)  °Lg=XF-XG has a prescribed set of values

K(F,G)=A . This problem will be referred to as a K-characteristics Eu „ o ----- ------- —--------------------n-o

pencil assignment problem, and shall be denoted in short by K-E^_g-PA.

The nature of the particular K-E^ g-PA problem depends on the type of
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characteristic functions K we specify. We close this chapter by discussing 

a special type of K-E^ problem related to the stability of the e.d.

of the pencil.

Definition (6.8): Let f(s,s) eR^fO}. f(s,s) will be said to be stable if 

the polynomials f(s,l) and f(l,s) have no roots in the closed right-half 

(C-plane. A pencil Lq =s F-s G will be called stable if the set F(F,G) is 

stable.

A stable polynomial f(s,s) has no e.d. of the type s^,s^ and all of the 

finite nonzero roots are in the open right half (E-plane. The problem 

considered next may be stated as follows:

Stabilizability of e.d. problem (SEPP): Determine whether there exists 

L~=(XF-XG)g(F,G), such that Lg is stable. For this problem the set K 

is the F(F,G) and the prescribed property is the stability of the elements 

of F(F,G).

Before we proceed with the study of solvability of SEDP we define the

following subset of PGL(1,(E/R):

s a b X
PGL+(1,(C/R) = (B+: ,a,b,c,d>0, ad-cb*0 (6.79)}

s c d X

Projective transformations of the type 0+, defined as above, will be

called positive-real projective transformations and the transformations 

6+eB induced by a BcPGL+(1,1/R) will be referred with the same name. The 

subset of B containing all positive real transformations will be denoted 

by B+.
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Proposition (6.20): Let f(s,s)=(as-6s)\ g(s,s)=(rs^+pss+qs^)T be two 

irreducible over R binary polynomials.

(i) If f (s,s),g(s,s) are stable, then for V BePGL+ (1,(C/1R) the polynomials
A

8°f(s,s)=f(X,X),Bog(s,s)=g(X,X) are stable.

(ii) (a) If f(s,s) is unstable, then necessary and sufficient condition for
A

, B°f (s,s)=f (X,X) ,BePGL+(l ,(C/]R) to be stable is that

a/B > max{c/a,d/b} (6.80)

(b) If g(s,s) is unstable, then necessary and sufficient condition for
A

B°g(s,s)=g(X,X),6ePGL+(l,I/]R) to be stable is that

-p/r < 2ab/(ad+cb) + q/r.2cd/(ad+cb) (6.81)

Proof
A A

(i) The coefficients of f(X,X),g(X,X) are defined by

(6.82a)

(6.82b)

Clearly, if a,-g,r,p,q>0, then the resulting coefficients a,-g,r,p,q of 

f(^>^),g(X,X) are positive, if a,b,c,d>0, i.e. f(X,X),g(X,X) are stable.

(ii) (a) For f(X,X) to be stable aa-Bc>0 and ab-$d>0. Since £>0, and 

a,b>0, then, a/B>c/a and a/B>b/d and (6.80) follows. The sufficiency is 

established by a mere reversion of the arguments.

(b) Since g(s,s) is irreducible, A=p -4rq<0 for all gePGL(1 ,<E/]R); 

thus, if r>0, automatically q is also positive. For stabilization, we ' 

should have

p = 2rab+p(ad+bc)+2qcd>0



276

Since r,a,b,c,d>0, then the above condition yields (6.81). The sufficiency 

follows by reversing the steps. n

Remark (6.21): Every positive real transformation g stabilizes e.d. of 

the type s15 and s^.

The abcve result shows that positive real projective transformations
r

preserve stability of stable e.d. and under the conditions (6.80), (6.81) 

may be used to stabilize unstable e.d. Condition (6.81) is rather 

difficult to handle; a simpler condition is established by the following 

result.

Corollary (6.14): Let g(s,s) = (rs +pss+qs )T be an unstable binary 

quadratic(r,p> 0,p^0) . A transformation BePGL+(1 ,(C/1R) exists such that 

Bog(s,s)=g(X,X) is stable, if either of the following conditions hold true:

or

-p/r < 2ab/(ad+bc) (6.83a)

-p/q < 2cd/(ad+bc) (6.83b)
0

The sufficiency conditions presented by (6.83a), or (6.83b) readily

follow from condition (6.81). Proposition (6.20) and its corollary may be

used to establish the conditions for stabilizability of F(F,G) under a

positive real projective transformation. For the set F(F,G) of homogeneous
A

invariant polynomials of L =sF-sG, we shall denote by ,M the sets u £ q

linear, quadratic e.d. over K respectively, which exclude e.d. ofunstable

the type p Aq s ,s . If

k.
M_ = {(ot.s-8.s) 1,a.$.>0,i€ji,k. eZ}

£ x x x x x

M 
q

then the numbers defined from by



277

X . = min{a./3.lieu}
mm 11 * (6.84a)

(6.84b)

will be referred to as the instability indices of F(F,G). Using the

12instability indices X . ,p ,p we may state the following result for J min max max J °

stabilizability of Lo under positive real projective transformations.
u

1 2Theorem (6.8): Let (X . ,p ,p ) be the instability indices of --------------- ------ -  min max max 7

L0=sF-sG. There exists a positive real transformation 6eB+ such that 

6°Lq =XF-XG is stable, if there exist a,b,c,d>0 such that either of the 

following two conditions are satisfied:

Ci) X . >max{c/a,d/b) and p1 <2ab/(ad+cb),
mm max

or
2(ii) X . >max{c/a,d/b} and p <2ab/(ad+cb)mm max

Proof

By Proposition (6.20) and Remark (6.21) a positive real projective 

transformation preserves stability of stable e.d., stabilizes e.d. of the 

type sp,sq and stabilizes unstable e.d. of the type (as-Bs)k,(rs^+pss+qs)T,

if conditions (6.80), (6.83a) or (6.83b) hold true. If X . >max(c/a,d/b}, mm
all e.d. of the type (as-Bs)^ are stabilized. Similarly, by Corollary

1 2 2 a a 2 t(6.14), if p , or p <2ab/(ad+cb) then all e.d. (rs +pss+qs ) aremax max

stabilized. n

Corollary (6.15): There always exist a beB+ such that the pencil 

b°LQ=XF-XG€E^ g(F,G) is stable. The parameters (a,b,c,d) of a positive 

real projective transformation B that induces 6 are determined by

c/a+d/b < min{X . ,2/p1 }
mm max (6.85)

Proof

By condition (6.85) we have that
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c/a+d/b < X . and c/a+d/b < 2/p1 (6.86)
min max

However, max{c/a,d/b}<c/a+d/b<X . and thus the first of conditions of mm

Theorem (6.8) is satisfied. The second of conditions (6.86) is equivalent 

to the second of the conditions of Theorem (6.8) and this completes the 

proof. q

Corollary (6.15) shows that SEDP has always a solution and it also 

indicates how the parameters of a positive real projective transformation 

may be chosen. The family of PGL+(1,(C/K) has been chosen in this 

investigation because of its property to preserve stability of stable e.d. 

The importance of SEDP for linear systems is a topic discussed in a 

following section.

6.8 Conclusions

The notion of bilinear-strict equivalence of matrix pencils has been 

introduced and a complete set of invariants for the E^_g(F,G) orbit has 

been defined. This work extends the classical results of the Weierstrass- 

Kronecker theory of strict equivalence and poses a number of new questions 

for matrix pencil theory such as the study of different types of K-E^_g-PA 

problems and the search for a canonical form under E^_g-equivalence. Of 

particular importance, from the numerical viewpoint, is the search for 

LgeE^_g(F,G) which are "well conditioned" in some sense for computations. 

The study of SEDP provides a partial answer to this problem, since for the
A*

case of regular pencils L-=XF-XGeE^_g(F,G) may be found with |F|,|G|*0  

(no zero and infinite e.d.). The most important,from the numerical point 

of view, problem is of course the assignment of the condition number. This 

problem is one of the topics left for future research.

The ^-^-equivalence of matrix pencils provides the means for the 

classification of the system theoretic properties into two classes: those
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which are frequency-space transformation invariant, and those which are 

frequency transformation dependent. It is clear from the results of this 

section, that system properties associated with the sets I (F,G),I (F,G), c r

J(F,G) are frequency-space independent, whereas those depending on the 

nature of the roots of the e.d. are frequency dependent. The complete 

study of this "relativistic” classification of system properties will be 

presented in the following section. g-equivalence also provides us 

with the tools for defining suitable system duals, which may be used for 

the investigation of various system theoretic properties.

The definition of a canonical form for the equivalence class E^_g(F,G) 

and the search for a complete set of invariants under Eg-equivalence, are 

problems still open for future research. An important by-product of the 

work in this chapter is the solution of the general linear mapping problem 

and the study of the E^-equivalence. It seems that E^-equivalence,

appropriately generalized over rings, could be important in the study of 

problems such as the simultaneous stabilization TSaeSMur-lH.



CHAPTER 7:

Geometric and Dynamic aspects of the
Linear Generalised Autonomous
Differential Systems
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CHAPTER 7: GEOMETRIC AND DYNAMIC ASPECTS OF THE LINEAR GENERALISED 
AUTONOMOUS DIFFERENTIAL SYSTEMS

7.1 Introduction

The generalised autonomous differential system S(F,G): Fx=Gx, F,G eRmXn 

has emerged as the unifying description to which problems of the regular, 

ex'tended state space theory of linear systems may be reduced [Kar. & Hay. -1). 

The central problem of linear geometric theory [Won. -1], [Will. -1] of 

regular state space geometric theory is the dynamic and geometric character-

isation of the subspaces of the state space; the algebrization of the 

fundamental tools of regular state space geometric theory in terms of matrix 

pencils [Kar. -1], [Jaf.&Kar. -1] has demonstrated that the algebraic 

structure of the restriction pencil (expressed in terms of the strict 

equivalence invariants) is the key tool from which the geometric and dynamic 

aspects of regular state space theory may be deduced. The aim of this 

chapter is to extend the treatment given in [Kar. -1], [Jaf.&Kar. -1] for 

regular state space systems to the case of S(F,G); such a study provides the 

means for a unifying treatment of the geometric and dynamic properties of 

regular and extended state space theory. The algebraic and number theoretic 

properties of matrix pencils developed in Chapters (4) and (5) provide the 

basis for the study of the geometry of the subspaces of the domain of (F,G) 

as well as the foundations of an algorithm, based on the properties of PAPS, 

for the computation of the Kronecker canonical form. The notion of the 

invariant forced realization [Kar. & Hay. -1,2] is further developed and it 

is shown to be of crucial importance for the dynamic characterisation of 

the subspaces of the domain of (F,G). In fact, it is shown that problems 

defined on S(F,G) may be reduced to equivalent problems of the regular 

state space theory.

The chapter is structured as follows: In section (7.2) we introduce some 

notation and we give some results extending the theory of PAPS developed 
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for regular pencils to the general case of singular pencils. These results 

yield a procedure for the computation of the Kronecker canonical form which 

is based on two types of PAPS. Section (7.3) deals with the geometry of the 

subspaces of the pair (F,G). The notion of the restriction pencil (F,G)/U, 

of a given subspace U of the domain of (F,G) is introduced and the various 

subspaces V are classified in terms of the invariants of the pencil (F,G)/(/. 

Subsequently, the different types of subspaces are characterised in terms of 

geometric and number theoretic conditions and the notions of (F,G)-invariant, 

(G,F)-invariant, and (F,G)-completely invariant subspaces are introduced. 

The new notions introduced to this section are natural extensions of the 

standard geometric notions, of (A,B)-invariance, almost (A,B)-invariance, 

of controllability and almost controllability subspaces. In Section (.7.4) 

the notion of invariant forced realizations of S(F,G) [Kar. &Hay. -2] is 

discussed and some further results are derived; these results demonstrate 

that problems of characterisation of subspaces of extended state space 

systems may always be reduced to equivalent problems of regular state space 

theory. In Section (7.4) the family of solutions of S(F,G) for a given 

initial condition is derived and its properties are discussed. These 

results demonstrate that a general (non-square) differential system, 

although it does not define a dynamical system, is closely associated with 

a dynamical system. In the case where there is no uniqueness of solution, 

for a given initial condition, the family of solutions is parametrized in 

terms of external functions of an invariant forced realization. Finally, 

the various types of subspaces introduced in Section (7.3) are characterised 

dynamically and the notions of reachability, and system description 

redundancy for S(F,G) are defined.
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7.2 The Piecewise Arithmetic Progression Sequences (PAPS) of a 
general pencil and the Kronecker canonical form

Let sF-sG e!Rm n[s,s], rank , a . {sF-sG}=p^min(m,n) be a general pencil 
JK. (.s, sj

t^CF.G) the sets of c.m.i., r.m.i., zero-e.d., infinite-e.d. and a-e.d.,

of the pencil sF-sG respectively. Throughout this chapter we shall

adopt the following two equivalent descriptions for the above sets:

I (F,G) = {e, = ...=£ =0<e ,?£...< e }
c 1 g g+I p

OR = { (e. ,p .) , iejijO^e. <.. .<e ,p= £ p .} 
11 y i=l x

Ir(F,G) = = +

A U'
OR = {(^.,7ri),i€}i’,O<?1<...<^,,t= J ir..}

V (F,G) £ {sPi,0<P1<...<p }
To V

A °~
OR = {(0;p.,o.),i€v ,0<Pj<...<pv ,t q = I oi) 

o i=l

P/F^) - {s 1,0<q1<q2<...<qT }
00 \)

00
OR = { (»;q. ,5.) ,ievo,0<q]<.. .<q ,T,« £ $.}

00 £=1

A A d<P (F,G) = {(s-as) 1,ae(C-{0},0<d1<...<d }
a 1 Ta v

a
OR = {(a;d.,a.),i6Va,0<d1<...«iv .Ta=J <^1

(7.1a)

(7.1b)

(7.1c)

(7.Id)

(7.1e)

The second of the above descriptions will be referred to as the index set 

description of the corresponding invariant. For an aeC-K we shall denote 

by P *(F,G)  the complex conjugate set of Pa(F,G) and by P^(F,G) the inverse 
d.

set of P^CFjG), i.e. the set of e.d. (ots-s) , a=l/a obtained from Pa(F,G). 

The set of all distinct numbers $(F,G)={a£;a^e(Cu{oo},a^*aj  ,ieu} for which 

rank(cuF-G}<p will be referred to as the root range of sF-sG and every 

will be called a root representative. Clearly, <£>(F,G) is the set of 

distinct numbers (including infinity) which are associated with all possible 
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e.d. of sF-sG. The set #(F,G)-{(a.,t ),i€u}, where t is the algebraic
1 1

multiplicity of a.e$(F,G) in V (F,G) will be referred to as the root set of1 <x. —~~~~~~—1
(F,G). The set #(F,G) is clearly symmetric (i.e. if a^eC-lR and a^e$(F,G), 

then a^e<I>(F,G)) and the maximal subset of $(F,G) defined by £’(F,G)= 

={Va^e$(F,G):a.*a.}  will be called the half root range of (F,G). Finally, 

<P(F,G)>=uP (F,G) for all a.e4>(F,G) denotes the set of all e.d. of sF-sG.• ci. 11 
For the pair (F,G), or with the pencil sF-sG we shall denote by T^(F,G), 

Tfc(F,G) the k-th order right-, left-Toeplitz matrices of (F,G) (see eqns.’ 

(5.6),(5.7)) and by the right-, left-null spaces of T^(F,G),T^(F,G)

k <r>/ • kcorrespondingly; if 0^=dim and 0^=dim then by (F,G)={0^:k=-l,0,1,

2,...,0_j=0q =O} and C^(F,G)={0^:k=-l,0,I,2,...,0_j=0q =O} we shall denote 

the right-, left-(F,G) sequences of (F,G) respectively (see Chapter 5).

The sequences C (F,G),C0(F,G) are Piecewise Arithmetic Progression sequences 

(PAPS) and their properties are characterised by Corollary (5.5), i.e.

0 +0
°k ’ " 'T12 ' * ’ V 9o = 0 ’ Vk = -1,0,1,... (7.2)

The sequence C^(F,G) (C^(F,G)) will be called neutral, if for ¥k, 0^-0, and 

shall be called simple, if its only singular point is k=0; clearly, if 

C (F,G) (C (F,G)) is neutral, then M {sF-sG}={0} (W^{sF-sG}={0}) and if itr jc  r

simple, then sF-sG has only zero c.m.i. (zero r.m.i.). Because of the sign 

of the inequality (7.2), the sequences C (F,G) and C (F,G) will be referred r *>

to as Nonincreasing P.A.P.S. (NI.P.A.P.S.). For the sequence C^CFjG) 

CC£(f ,g )) we have the following properties.

Proposition (7.1): Let sF-sG be a general pencil and let ae(C. Then, the

following properties hold true:

Cr(F,G) = C^G.F) = Cr(F,G-txF) = Cr(F-aG,G) C7.3)
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Proof

By Theorem (5.2), it is clear that C^/FjG) is uniquely defined by Ic<F,G);

thus, to prove the result we have to show the equivalent condition, i.e.

I (F,G) = I (G,F) = I (F,G-aF) - I (F-aG,G) vJ G

To prove (7.4), it is sufficient to show that the corresponding 

projective transformation 0:

pairs are Eg-equivalent (see Proposition (6.4)). It is obvious 

(F,G)Eg(G,F). If we define the

(7.4)

ordered

that

6:
s "1 a' "x ’

A 
S ,0 1 $

(7.5a), aefl

then for the induced transformation beB we have

b°(F,G) = (F,G-aF) (7.5b)

and thus (F,G)Eo(F,G-aF). Note that the invariance of I (F,G) under o c

bilinear equivalence, is a general property under real, or complex 

projective transformations and this completes the proof.

The above result provides the means to extend the notion of Piecewise 

Arithmetic Progression sequences, characterising the root representatives 

of a regular pencil (and thus the Segre characteristics) to the case of 

singular pencils.

Definition (7.1): Let sF-sG 6JRmXn[s,s], rank^^g {sF-sG}=p<min{m,n}.

For Va, ae(E we define:

(i) For V k=l,2,... the matrices

G-aF

-F

0

G-aF

... 0

. . . 0

0

0
P^(F,G) - G-aF,...,Pk(F,G) = •

• • •
• _kmxkn ,, , x e(E (7.6a)

. . • •
0 0 • • • G-aF 0

0 0 . . . -F G-aF
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p’(G,F) = F-aG,...,P^(G,F) =

F-aG 0 • • • 0 0

-G F-aG • • • 0 0
• • • • •
• • • • •
• • e • •
0 0 • • • F-aG 0

0 o • • • -G F-aG

(7.6b)

as the k-th order a-(F,G)-Toeplitz matrices (k-a-(F,G)-T.M.) and k-th order 

a-(G,F)-Toeplitz matrices (k-a-(G,F)-T.M.) of the pencil respectively. For 

a=0, we set P^(G,F)=P^(F,G) and P^(F,G) shall be referred to as k-th order 

°°-(F,G)-Toeplitz matrices (k-°°-(F,G)-T.M. ) of the penci 1.

W?Pa(F’G))’Let Nk -N
r,a r

The sequences defined by

J^(F,G) = {n£ : n“}=n“=O, n£=dim k>1} (7.7a)

Ja (G,F) = {n^ : naj=n^=0, n^=dim <0^ a : k^l} (7.7b)

will be referred to as the right-a-(F,G)-, right-a-(G,F)-sequences of the 

pencil respectively. For a=0, we set J^(G,F)=J^(F,G)={n^} and J^(F,G) will 

be called the right-00-(F, G)-sequence of the pencil. In a similar manner we 

may define the left-q-(F,G)-, left-a-(G,F)-sequences j\f ,G) ,Ja (G,F) , as 

well as J (F,G) for the given pencil. .

Remark (7.1): If sF-sG is regular, then:

(i) For Va,a such that a,a/$(F,G), the sequences J^(F,G),Ja (G,F) are zero 

sequences (all their elements are zero).

(ii) For Va,a such that a,ae$(F,G), the sequences J^(F,G),Ja (G,F) are non-

trivial (they have at least one nonzero element); furthermore, 

Ja(F,G),J^(G,F) are Piecewise Arithmetic Progression Sequences at 

s=a,s=a respectively. .
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The sequences J^(F,G),J^(G,F) which are defined on a regular pencil sF-sG 

shall be denoted by J^(F,G),Ja (G,F) and the piecewise arithmetic progression 

property is expressed by the relationship

a a

2
(7.8)

Because of the sign of the inequality (7.8), J^(F,G),J^(G,F) will be 

referred to as Nondecreasing P.A.P.S. (ND.P.A.P.S.). The sequences J^(F,G), 

Ja (G,F) play an important role in the study of the geometry of S(F,G) 

systems and their properties are examined next.

Lemma (7.1): Let by

'\=dim N£,a>

Proof

Consider the pencils sF-sG =s(L -aL )-&L and sF.-sG^sL -s(L -cxL );
1 I e e e izeee

clearly, (Fj,Gj)Eg(L£,L£) and (F2»G2)Eg(Le,£e)• Since sL£-sL£ has as the 

only strict equivalence invariant the c.m.i. e, then by Remark (6.19) we 

also have that (Fj,Gj)E^(L£,L£) and (F2,G2)E^(L£,L£). The investigation 

of the values of n^,n^ is equivalent to a study of solutions of the matrix

equations 

F.x}=0, G.x}-F.x^...,

which because (F.,G.)E„(L ,L ) are equivalent to the set of equations (5.16).
1 1 f» E E

By Lemma (5.2), it is clear that for Vk the dimension of the solution space 
a  a aa

is k and thus n£=n£=k. The property mk=mk=0 follows from the linear 

independence of the rows of (FpG.) for i=1> 2* □

In the following we shall study the properties of the sequences J^(F,G), 

J^(G,F) ,J^(F,G) ,J^(G,F) . The root range $(F,G)={~,0,aieiE-{0},a.*ap  will be 

referred to the pencil sF-G, while <HG,F) = {0 ,“,5^=^1 ,cL*aJ  will be 
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referred to as the inverse root range, or as the root range of F-sG (the

dual pencil). The results will be presented for the right sequences of the 

pencil sF-G (i.e. Ja(F,G),Joo(F,G)), whereas the case of left sequences may 

be treated by invoking "transposed duality" and the case of F-sG by using

"elementary divisor type duality".

Proposition (7.2): Let sF-G e!RmXn[s], p=dim W {sF-G}, <j>(F,G) be 

k a ^ k
range of sF-G and let n=dim W , n=dim N a  be the associated 

k  r, a k  r, a

defined for some a,ae(Cu{«>}.
A

(a) For Ya,ae(Cu{<»}, such that (F,G) ,a/$(G,F), then n£=n^=pk.

(b) Let aeC,ae$(F,G) and let Pa(F,G)«{ (a;d.,a.) ,iev(x,O<dI<.. .<d^ ,
a a

t  = 7 cr.} be the e.d. set of sF-G associated with a. The dimensions n? 
a i=l X

satisfy the following properties:

the root

integers

(i) If d.^k<d.
1 Ti+1’ then

(ii) If k<dj

■
1

n? - pk + a.d.
K j=l J J

, then n^=pk+k I a..

V a 
k £ 

j=i+l J

(iii) If k>d 
v a

, then

-- ji! J
a v<xr^-pk+J^.d..

(c) Let ®e<I>(F,G) and

the infinite e.d. set

; ,t  = £ a.} be 
AO 00 1=1

and n^ satisfy the following

let PjF.GM (»;q.,a.) ,ievx>,O<q1<.. .<q

°° AOThexi,of sF-G.

+

properties:

(i) If q^k<<ii+i’ then

(ii) If

(iii) If

« ao .
"k = "k = pk + v AJ, qiai 

j-i
Va,

V oo
I s. 

j-i+l J

, oo Ao . V A then n, =n^=pk+k £ o.. 
j’1 J
Voo

, , °o Ao , V Ak>q^ , then nk=n^=pk+J. q^cy 
00 j = 1

k<qr

+ k

Proof
A

It is clear that the numbers n^n^ are invariant under strict equivalence
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A 
transformations applied on sF-G; thus, the properties of n^,n^ may be 

studied on any element of the orbit E^(F,G). Let (R,Q) be a pair of E^ 

transformations which reduce sF-G to

sF’-G1 = R(sF-G)Q = block-diag{sFc-Gc;sFr~Gr;sF-G} (7.9a)

where sF-G,sFc-Gc,sFr-Gr are regular-, right-, left-restrictions 

correspondingly of sF-G. By the block-diagonal decomposition of sF’-Gr it
Ir If

follows that the null spaces of P^CF1,G’),P^(G’,F’) may be expressed as 

direct sums of the corresponding null spaces of the matrices defined on

- - k k k k kthe subpencils sF -G ,sF -G ,sF-G; thus, if n ,n’ ,n ,n ,n" and r c c’ r r*  or a ’ c,a r,a a

nA,n^ , n^ £,nr are t^ie numbers defined for a and aeC on the

sF-G,sF1-G1,sFc-Gc,sF^-G^,sF-G correspondingly

pencils

then

form and

k n = n,k = nk + k n + n”k Vk C7.9b)a a c,a a

Ak A»k Ak Ak Ank Vk (7.9c)n& = nA = a nc,& + ns

Note that sFc-Gc,sF^-G^ may always be considered in the Kronecker 

thus by Lemma (7.1) it is readily shown that

k
nc,«

Ak A . k n a  = pk, nc,a r ’ r,a
nk a = 0 ¥k 
r,a C7.9d)

The properties of the

the result is readily

numbers n^k,n^k are described by Corollary (4.4) and 

established.

•f
Remark (7.2): If n^,n^

sF-G and sF-G, where sF-G is

and n”k,n^k are the numbers defined on the pencils 

a regular restriction of sF-G, then

k ,
na ‘ pk +

»«k na VaeE, Vk=l,2,... (7.10a)

nA = pk + 
a

A«»k 
ha  a

Vael, Vk=l,2,... (7.10b)

0

□
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The above remark allows the extension of the results derived for the

Piecewise Arithmetic Progression Sequences of a regular pair (F,G) at s=a,

to the case of singular pairs.

Proposition (7.3): The sequences J^(F,G) , Ja (G,F) defined for some 

ae$(F,G),ae$(G,F),a,ae(E on a general pencil sF-G are ND.P.A.P.S. and for

all k=l,2,... satisfy the properties:

. k 
n £ a

k-1 k+1n +na a
Ak-

Ak
1 Ak+1

2 a 2

In particular, we have that:

(7.11)

(i) Strict inequality holds if and only if k is the degree of an e.d. of 

sF-G,F-sG at s=a,s=a correspondingly.

(ii) Inequality holds if and only if k is not the degree of an e.d. of 

sF-G,F-sG at s=a,s=a correspondingly.

Proof

By noting that nct”n^ 1 =p+n”^-n^ ^,na and us^n^ Corollary (4.5)

the result follows. □
=nIf sF-G denotes any regular restriction of sF-G,Ip=»{n^:n_1=no=0,n^»pk,k>l}, 

then Remark (7.2) implies that

Jr(F,G) = I + Jr(F,G) Vael (7.12a)
a pa

Ja (G,F) = + Ja (G,F) VaelE (7.12b)

r - - r - -
Clearly, J (F,G),Ja (G,F) are neutral (all elements zero) if aZ<|>(F,G),

a a

a^(G,F); otherwise they are nontrivial and their properties (singularities 

and corresponding gaps) characterise the e.d. structure (Segre characteristic) 

of sF-G,F-sG at the corresponding root representative. To define the 

sequences J*(F,G) ,Ja (G,F) from the sequences Ja(F,G),Ja (G,F) correspondingly 

we do not have to work out a regular restriction of sF-G but merely the 
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number p which uniquely defines the sequence I . The number p=dim W^fsF-G} 

may be readily defined by the following results.

Proposition (7.4); Let sF-G be a general pencil, p=dim W^lsF-G) and 

C^(F,G) the corresponding sequence associated with the pencil. The number p 

may be defined by either of the following two methods:

(i) Let t  be an integer such that for Vk^r, 0^=(0^+j+0^_j)/2. Then 

P-Wr

Cii) Let ote(C be a number such that a/£(F,G), then p=dim Wr(G-aF}= 

=dim N^fF-aG}.

Proof

Part Ci) follows from Remark (5.7), whereas part (ii) follows by 

inspection of the Kronecker form.

Clearly by selecting a few random numbers and computing

minldim W^lG-a^F)} we may compute p. Then the sequences J*(F,G) ,J^(G,F) 

may be found by

Jr(F,G) = Jr(F,G) - I , Vocel (7.13a)
a a p

Ja (G,F) = J^(G,F)-Ip , VaeB (7.13b)

r — r — —If J^(F,G),Ja (G,F) are non-neutral, then the procedures described in

Chapter C4) may be used for the computation of the Segre characteristic 

for Yae<I>(F,G). A combination of the procedures described in Chapter (4) 

and Chapter (5) for the computation of the Weierstrass canonical form of 

a regular pencil and for the computation of the sets Tc(F,G),1^(F,G) of a 

singular pencil correspondingly readily yields a procedure for computing 

the Kronecker form of a pencil without resorting to the use of 

transformations. A summary of this procedure is given below.
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The Piecewise Arithmetic Progression Sequences Approach for the 
computation of the Kronecker canonical form

Let sF-G e!RmXn[s] be a general pencil. The Kronecker form of sF-G may

be computed without using strict equivalence transformations as follows:

Step (1): Compute the sequences C_(F,G),C„(F,G) associated with the■■ ■ ■ " r Jc

pencil and by use of the PAPSD of Chapter (5) compute the sets Ic(F,G), 

I (F,G), as well as the numbers p=dim N {sF-G} and t=dim W {sF-G}. Then 

the rank_^(s){sF-G}=p is defined by p=m-t=m-n+p if m<n and p=n-m+t=n-p 

if m>n.

Step (2): The root range $(F,G) is computed as follows:

(a) If dim Wr(F)>p, then °°£$(F,G); otherwise °°/$(F,G).

Cb) If dim Wr<G)>p, then Oe$(F,G); otherwise 0^$(F,G).

(c) Let sFP-Gp denote the pxp subpencils of sF-G, which correspond to an 

{a} p-set of columns and a (b) p-set of columns of sF-G. There exists at 

least one subpencil sFP-GP for which Cr(FP,GP) is neutral (and thus 

C^(FP GP) is also neutral); such subpencils will be referred to as p~regular 

subpencils. If sFP-GP is a p-regular subpencil find det(sFP-GP)-a(s) and 

let cr(FP,Gp) be the distinct roots of a(s). For ¥Beo(Fp,Gp) compute G-6F. 

If dim Wr(G-BF)>p, then ge$(F,G), otherwise ^S(F,G). The procedure 

yields the set $(F,G).

Step (3): For Vae$(F,G),aeC, compute the sequence J^CFjG) and by (7.13a) 

the sequence J^(F,G). Similarly for a=®e$(F,G) compute the sequence 

Jq (G,F) and thus by (7.13b) the sequence J^(G,F). From the sequences 

^(F,G), J^(G,F) compute the Segre" characteristics for aeC, or ot=°° by using 

either of the methods described in Chapter (4). The procedure yields the 

sets Pw(F,G) ,Pa(F,G) of the pencil which together with the sets Ic(F,G), 

^rCF,G) define the Kronecker form.

The sequences C (F,G),C0(F,G) and J^(F,G), for Vae$(F,G) uniquely
r x, a 
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characterise the strict equivalence orbit E^(F,G); this characterisation 

is summarised by the following result.

Theorem (7.1); Let sF-G eRmXn[s] be a general pencil and let #(F,G)= 

jCt^elEuI00}, iev} be the root range of sF-G. The set $(F,G) and the 

sequences Jr(F,G) ,¥ae#(F,G) ,C (F,G),C (F,G) form a complete set of 
01 IT

r

invariants for the strict equivalence class E^(F,G). □
By interpreting the strict equivalence invariants of E^(F,G) in terms of 

the corresponding sequences a unification of the different notions of 

invariants is achieved, since each one of them is characterised by the 

properties of a Piecewise Arithmetic Progression Sequence. The Kronecker 

form may then be interpreted as a canonical form describing the singular 

points and associated gaps of the corresponding PAPS.

7.3 The geometry of the subspaces of the domain of (F,G)

7.3.1 Introduction: Background notation and definitions

The algebraic, number theoretic and frequency-space relativistic 

properties of matrix pencils have a natural geometric interpretation; it 

is the aim of the present section to study these properties and to 

demonstrate that the geometric properties may be naturally derived as a 

byproduct of the underlying algebraic and number theoretic aspects. The 

effect of frequency-space transformations on the geometric properties will 

be examined in the following chapter. Central to our study is the 

classification of geometric properties of the subspaces of the domain of 

the pair (F,G).

Let U and W be vector spaces over a common field F (in our present study 

F«]R) and let L(ll;W) denote the set of all linear mappings from U into (V. 

The set L(l/;W) is a linear vector space under addition and scalar
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multiplication. If (£,g)€L(U;W)*L(U;W) , then the pencil of linear operators 

st$-sg defined on the pair (4,9) is a mapping of U into (V. For a definite 

choice of bases B^,B^ in these spaces the pencil of operators s4~sg 

corresponds to a pencil of rectangular matrices sF-sG (of dimension mxn, 

m=dim W, n=dim U); the representation is illustrated by the following 

commutative diagram

Figure (7.1)

where are the representation maps of with respect to the given

bases B^,B^. Thus sF-sG is a matrix representation of sfi-sg with respect 

to B^,B^ and under a change of bases in U,W, the new matrix representation 

of sfi-sg becomes R(sF-sG)Q where R,Q are square nonsingular matrices 

expressing the coordinate transformations in the domain and codomain of 

s^-sg. Clearly, strict equivalence of matrix pencils is equivalent to a 

study of the pencil of linear operators sfi-sg and the set of strict 

equivalence invariants characterise uniquely the pencil of operators. It 

is therefore expected that the geometric properties of the subspaces of 

U under the (4,g)-pair mapping to be intimately related to the set of strict 
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equivalence invariants which characterise s^-sg. In the following it will 

be assumed that l/=]Rn, W=JRm and thus sF-sG is the pencil of interest which 

is associated with the ordered pair (F,G) elRmXnx]RmXrl. If V is a subspace 

of ]Rn and (F(/,Gl/) denotes the ordered pair of the images of (/ under (F,G), 

then the fundamental geometric questions which have to be examined are 

those revolving around the relationships between the subspaces Fl/,Gl/ 

represented in Figure (7.2).

Figure (7.2)

The key tool in our study is the notion of the {/-restricted ordered pair, 

or alternatively of the (/-restricted matrix pencil. The notion of the (/- 

restricted ordered pair of maps is an extension of the standard notion 

defined on linear maps. Thus, let be a linear map, (/cl/ be a subspace

with insertion map n: V-Al. Let 8^,8^ be a basis for l/,(V respectively and 

let F and V be the matrix representations of and a correspondingly with 

respect to 8^,8^. The restriction of to V is the map ^/(/:(/-*ll/  defined 

by and the matrix representation of ^/(/ with respect to the bases

8^,8^ defined by

[6/1/] = [d] [V] = FV (7.14)

where by [•] denote the operation of matrix representation. This notion 
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may be readily extended to ordered pairs (F,G) (or (t$,g)) and thus to 

matrix pencils as follows:

Definition (7.2): Let (F,G) €RmXnxKmXn, (/c]Rn be a subspace of Rn and 

V a basis matrix of V (relative to the standard basis of ]Rn). The pair 

(FV,GV) will be called a (/-restricted ordered pair; the associated pencils 

sFV-GV,FV-sGV will be termed (F,G)-, (G,F)-I/ restriction pencils and shall 

be denoted by (F,G)/I/, (G,F)/(/ respectively. I

Note that for a given U, (FV,GV), or the pencil sFV-sGV is not uniquely 

defined since the definition involves a particular choice of basis matrix 

for (/; it is clear, however, that for a given (/ all restriction pencils are 

strict equivalent and thus they are characterised by the same set of strict 

equivalent invariants. It is due to this fact that the algebraic structure 

of U with respect to the pair (F,G) is independent of the particular choice 

of basis. Furthermore, we note that (F,G)/(Z and (G,F)/U are dual pencils 

(.elementary divisor type of duality) and thus the properties of (/ with 

respect to (F,G) may be studied either in terms of sFV-GV, or in terms of 

FV-sGV. The uniqueness of the characterisation of (/ with respect to (F,G), 

in terms of the strict equivalence of (F,G)/(/, or (G,F)/U has led to the 

algebraic characterisation of 1/ [Kar. 1]. Before we introduce this 

characterisation we give some useful notation.

The sets of invariants defined by eqns.(7.1) will be denoted by Ic(F,G), 

IrCF,G),Pq (F,G)j V^CFj G),Va(FfG), when they are referred to the (F,G) pair, 

or the pencil sF-G (s=l) and by T CG,F),I (G,F),P (G,F),P (G,F),Pa (G,F), 

when they are referred to the pair CG,F), or the pencil F-sG (s=l). 

Whenever there is no ambiguity about the pair (F,G), or (G,F), the types 

s s s of invariants of sF-G will be denoted in short by I ,1 ,P ,P ,V and those c r O °° (X
AAA .

of F-sG by I ,1 ,PS,PS,PS Ca=a” ). A set of the above type (i.e. T ,1 ,
7 c’ r’ 00 o’ a c. r’

be called Prime> contains only one element (i.e. one 
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c.m.i., or r.m.i., or one e.d. respectively). The root range of a pair 

(F,G) will be denoted in short by $, whenever there is no ambiguity about 

the pair; the inverse root range of (F,G), or the root range of (G,F)
A

shall be denoted by $. The root range <£, or the corresponding pair (F,G) 

shall be called "-proper, o-proper and shall be denoted by 

respectively, if correspondingly; if <J> is both "-proper and

O-proper, then it will be referred to as proper and shall be denoted by $ . 

Clearly, by the e.d. type of duality, if $ is o-proper, "-proper, proper, 

then $ is "-proper, o-proper, proper respectively. The root range will be 

called simple, if $ contains one real element (the point at is also 

treated this way), or a pair of complex conjugate elements. Finally, a 

set of r.m.i. with all its elements zero will be denoted by 1°.

Definition (7.3) [Kar. -1]: Let (F,G) e!RmXllx]RmXn, (/c]Rn be a subspace,

be the set of strict equivalence invaraints of (F,G)/V and let $ be the 

root range of (F,G)/U. The subspace (/ will be called:

(a) $-(F,G)-elementary divisor subspace (4>-(F,G)-e.d. s.) , if

s o,Va.€$ and possibly 1^,}. If $ is o-proper, “-proper, proper, then
i

1/ will be called respectively o-proper, “-proper, proper, 3-(F,G)-e.d.s. 

and shall be denoted by $ ,-(F,G)-e.d.s., $ ,-(F,G)-e.d.s., $ ,-(F,G)-e.d.s.o 00 p

correspondingly. If the set $ is simple, then the corresponding subspaces 

subspaces will be referred to as simple; if $={0}<ct,a e]R-{0}} or, 

{a,a*,a,a*€(C-{0}},  then the corresponding subspaces will be denoted by 

0-(F,G)-e.d.s., "-(F,G)-e.d.s., a-(F,G)-e.d.s ., (a,ot*)-(F,G)-e.d.s.  

respectively. If $ is simple and the corresponding set of e.d. is prime, 

then U will be called prime <j>-(F,G)-e.d.s.

(b) Ic~(F,G)-column minimal index subspace (Ic-(F,G)-c.m.i.s.) if

I^«{I^ and possibly 1°}. If Prime an^ ^c=^e^> then (/ will be called

prime and shall be denoted by e-(F,G)-c.m.i.s.
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(c) Ir-(F,G)-row minimal index subspace (T^-(F,G) -c .m. i. s.) , if I^={ 1^ J• 

If I contains at least one nonzero element, then it will be calledr
nonreduced, otherwise (1^=1°) it will be referred to as reduced.

By the e.d. type duality we have the following obvious result.

Proposition (7.5): Let (F,G) eRmXnx]RmXn, (/ c]Rn be a subspace (F,G)/U, 

((?,F)/U be the associated restriction pencils and let be the 

corresponding root ranges of the two pencils. The pencils (F,G)/(/, (G,F)/U 

are dual, $ is the inverse root range of $ and the following properties

hold true:

Ci) U is %’■-(F,G)-e.d.s., iff it is $oo,-CG,F)~e.d.s.

(ii) 1/ is $ ,- co -(F,G)-e.d.s., iff it is $o,-(G,F)-e.d.s.

Ciii) 1/ is V-(F,G)-e.d.s., iff it is $p,-(G,F)-e.d.s.

Civ) 1/ is V-(F,G)-c.m.i.s., iff it is Ic,-CG,F)-c.m.i.s.

Cv) 1/ is V-CF,G)-r.m.i.s., iff it is Ic,-(G,F)-r.m.i.s.

Remark (7.3): If U is simple #-(F,G)-e.d.s. and the corresponding e.d. set 

is {pS},{pS},{ps,a ejR_{o}}, or, {P^,P^,ot,a*e(E-{0} }, then (/ is also simple 
AAA- A A .

$-(G,F)-e.d.s. with an e.d. set {PS},{PS},{t?A,a=a }, or, {PA,t?L,a=a ,
00 o a a a

a*=a*  1} respectively.

Any subspace U c]Rn is characterised by the set 1^ which is associated 

with (F,G)/|/. The block diagonal decomposition of the Kronecker canonical 

form of (F,G)/|/, clearly suggests that V may be decomposed into a direct 

sum of prime o-(F,G)-e.d.s., °°-(F,G)“e.d.s., a-(F,G)-e.d.s., ccelR-fO}, 

Ccx,a*)-(F,G)-e.d.s. , ot,a*e(C-{O} , e-(F,G)-c.m.i.s. and nonreduced £-(F,G)- 

r.m.i.s. Subspaces of the above type will be referred to in short as 

prime invariant subspaces of the pair (F,G) and their study is of crucial 

importance in our attempt to classify the subspaces of the domain of (F,G).
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7.3.2 The structure of simple invariant subspaces of (F,G)

Our aim in this section is to derive a set of geometric and number 

theoretic conditions which characterise the prime (simple) invariant sub-

spaces of (F,G). The results derived here provide the means for the 

classification of the subspaces V of the domain of (F,G).

Theorem (7.2): Let (F,G) eEmXnxKmXl1, 1/<=]Rn be a subspace and let 

dim|/=d. Necessary and sufficient conditions for 1/ to be a prime a-(F,G)- 

e.d.s., aelR-{0} and thus a prime a-(G,F)-e.d.s., a=a 1 are:

Ci) M (F)n(/=0 and M (G)nlM).r r

Cii) There exist bases M{x.,i(-d}, B^fxpied} and a eR-{0} such that

Gx. = aFx. + ied, x q =0 (7.15a)

—A A_A _A . , A _ A A—1 ,_ . \
Fx. = aGx. + Gx. ,, led, x =0, a=a C7.15b)

Proof

If V is a basis matrix for 17, then the pair (FV,GV) is characterised by 

an e.d. Cs-ot)d and possibly 1°. By inspection of the Kronecker form it 

follows that N^CFV)-N^CGV)=O and thus Wr(F)n(/=0 and Wr(G)n|/=0. By 

Proposition (4.1), the existence of the bases {x.,ied} and {x.,ied} for 

which conditions (7.15a),(7.15b) are satisfied is established; this proves 

the necessity. The sufficiency is established as follows: Conditions Ci) 

imply that for every basis matrix V of U, (FV)=Nr(GV)=0 and thus the 

pencil (F,G)/(Z has no c.m.i. and no zero, infinite e.d. By Proposition 

C4.2) the existence of the basis {x^,ied},(x^ied) satisfying the chain 

conditions (7.15a), Q7.15b) respectively imply the existence of an e.d. 

Cs-a)d for CF,G)/V, or Cs-a>d for CG,F)/(/. By inspection of the dimensions 

of CF,G)/V, it follows that if there are r.m.i., then all of them must be 

zero. i-i
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Prime (a,a*)-(F,G)-e.d.s.  may be characterised by a similar result as it 

is stated below. Note, that since a=a+juj,a*=cr-ja)€(E,  such subspaces may 

also be denoted as (a,o))-(F,G)-e.d. s.

Corollary (7.1): Let (F,G) eRmXnx]RniXn, l'cKn be a subspace and let 

diml/=2d. Necessary and sufficient conditions for 1/ to be a prime

(a,m)-(F,G)-e.d.s. and thus a (o,m)-(G,F)-e.d.s., where o+jw=(cr+ju)) 1 are:

(i)

(ii)

Nr(F)nl/=0 and Wr(G)n(/=0.

There exist bases B ={(a.,b.),ied}, Ba a ={(a.,6.),ied} and 
CJ j 0) “1 ""1 0^(1) “"1 ““1

-1 A .A
=o+jo) such thata=o+ju)e(E-]R, a=a

C Ga.
-1

Ffcrsu-cob £ } ^i-!’ a =0-o -

Gb. v -i Ffaia.+ab^}
(7.16a)

b =0 -o _

+

+

„fAA AA ,
Gtcra^-cob^}

a
a =0 -o -

+ G2i-1’

r A A AA ,
G{u)a.+crb. }-1 -1

G^i-1’
(7.16b)

+ 6 =0
—o -

□
The proof of the above Corollary follows along similar lines to those of

Theorem (7.2), the only difference is that the real Kronecker canonical

form is used for the establishment of the bases in part (ii). By slight

modification of the conditions of Theorem (7.2) we have the following

Corollaries.

Corollary (7.2): Let (F,G) eK^xJR^11, (/<=]Rn be a subspace and let 

dimU=d. Necessary and sufficient conditions for 1/ to be a prime o-(F,G)- 

e.d.s. and thus a prime °°-(G,F)-e.d.s. are:

(i) M (G)nl/*O  and M (F)n(/=O.r r
Cii) There exists a basis Bo={x?,i€d} such that

Gx? = Fx? ., ied, x°=0-1 -1-1’ ~ —o - (7.17)
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Proof

From the proof of Theorem (7.2) we have that Wr(F)nl/=0 excludes the 

existence of c.m.i. for (FV,GV) pair, as well as the existence of infinite 

e.d. By setting a=0 into (7.15a) and using Proposition (4.2), the result 

follows. r

<
Corollary (7.3): Let (F,G) eKmXnx]RmXn, l/eEn be a subspace and let 

dim(/=d. Necessary and sufficient conditions for 1/ to be a prime 

°°-(F,G)-e.d. s. and thus a prime o-(G,F)-e.d.s. are: 

Ci) M (F)n(/*0  and M (G)nl/=0.r r
CO

Cii) There exists a basis 8 ={x.,icd} such that oo — t  ’ ««w

Fx. = Gx. ., ied, x =0 (7.18)-1 -1-1 —o - □
The bases 8 ,(Ba ),B (Ba a ) B ,8 defined in the above resultsor a ’ o,u) o,o) ’o’ 00

characterise the various types of prime (F,G) elementary divisor subspaces 

and shall be referred to as characteristic bases. The above results 

clearly depend on the notion of a characteristic basis and in the following 

our attention is focussed on "basis free" characterisation of the prime, 

or simple, CF,G)-e.d.s.; some useful definitions and properties of special 

type pencils are considered first.

Definition (7.4): Let CF,G) e]RmXnx]RmXri. The pair (F,G) will be called 

right nonsingular, (left nonsingular) if C^CF.G), CC^CF,G)) is neutral.

If (F,G) is right (left) nonsingular and C CF,G) (C (F,G)) is either 

neutral, or simple, then CF,G) will becalled extended right regular 

Cextended left regular).

Clearly, if (F,G) is right nonsingular, then sF-G has no c.m.i. and if 

(F,G) is extended right regular, then it has no c.m.i. and no nonzero 

r.m.i.
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Remark (7.4): If sF-G e!RmXn[s] is an extended right regular pencil, then 

m>n and there exists an ReRmXni, |R|*0,  such that

R(sF-G)
0

sF-G

where sF-G is a regular restriction of sF-G. □

sF-G be a regular restriction. Then, for Va,ae(C we have that

Proposition (7.6): Let sF-G e!RmXn[s] be a right nonsingular pencil and let

J^(F,G) - J^(F,G) and j£(G,F) = j£(G,F)

Furthermore, if (F,G) is extended right regular and then also for Vk

Nr(P^(F,G)) = NrCP^(F,G)), N.(P^(G,F)) = N.(p£(G,F))

The latter result readily follows from the definitions, eqns(7.12) and 

Remark (7.4). Proposition (7.6) implies that all definitions, properties 

of right null spaces of Pa(F,G),P^(G,F) and structure of basis matrices for 

these null spaces derived in Chapter C4) for regular pencils also carry 

over to the case of right nonsingular pencils. Thus, notions such as the 

index of annihilation t  , the k-th generalised null space and of the 

sequences J^CFjG), defined for a regular pair (F,G) at s=a may also be used 

in exactly the same way for the case of right nonsingular pencils.

For a given pair (F,G) €]RmXnx]RmAn, any subspace c]Rn is characterised 

by the invariants of CF,G)/V. Theorem (7.1) implies that the sequences 

Jr(FV,GV), J^(GV,FV), Va,Se<C as well as C (FV,GV), C (FV,GV), where V is a 
oi oi r jg

basis of V, are independent from the particular choice of the basis V and 

depend only on thus, these sequences will be denoted by Ja(F,G;U), 

JXCG,F;|/),C (F,G;|/),C (F,G;l/) and the root range by S(F,G; Note that 
0C 1? Ar

if V is $-(F,G)-e.d.s., or ,aj,e$(F,G; U) and possibly T^}, then 
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(F,G)/U is extended right regular, or right nonsingular respectively and the 

notions of the k-th generalised null space of (F,G)/U at s=a (Definition 

(4.1)) and thus of the maximal generalised null space of (F,G)/V at s=a are 

well defined; in such cases, the dimension of the maximal generalised null 

space of (F,G)/U is independent of the particular choice of (/, it will be 

denoted by d^FjG;!/), and shall be called the a-(F,G)-order of (/. A sub-

space V for which (F,G)/l/ is right nonsingular will be referred to as an 

extended-(F,G)-right regular subspace (e-(F,G)-r.r.s.).

Proposition (7.7): Let (F,G) eKmXnx]Rmxn, and (/c]Rn be a subspace.

(a) The subspace 1/ is e-(F,G)-r.r.s. if and only if the sequence

C (F,G;U) is neutral.r

(b) The subspace (/ is <l>-(F,G)-e.d.s. if and only if Cr(F,G;U) is neutral 

and C^(F,G;U) is either neutral, or simple.

(c) A sufficient condition for 1/ to be e-(F,G)-r.r.s. is that either 

Wr(F)nl/=0 and/or N^(G)nl/=0.

The proof is rather obvious and it is omitted. For simple #-(F,G)-e.d.s. 

we have the following result.

Theorem (7.3): Let (F,G) e!RmXnx]RmXn, (/ cRn be a subspace, £(F,G;V)*0  

be the root range of (/ and let diml/=d.

(a) U is a simple a-(F,G)-e.d.s., ae<E-{0}, if and only if ae$(F,G;U) and

(i) Wr(F)n(/=0 and ^(G)nl/=0.

(ii) If aelR, then da(F,G;U)=d. If ael-lR, then d is even and

da(F,G;(/)=d/2.

Cb)

(c)

(/ is a simple °°-(F,G)-e.d.s., if and only if

(i)(i) Wr(F)n(/*0  and N,(G)n(/=0.

(ii) oe#(G,F;l/) and dQ(G,F;U)=d.

(/ is a simple o-(F,G)-e.d.s., if and only if
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(i) Wr(F)nU=0 and N^(G)n(/*0.

(ii) oe$(F,G;(/) and dQ(F,G;U)=d.

Proof

(a) By Proposition (7.7), and conditions (i) it follows that U is 

e-(F,G)-r.r.s. and by Theorem (7.2) has no zero and infinite e.d. The 

pencil (F,G)/(/ is extended right nonsingular and thus since ae$(G,F;U), 

J^(F,G;V) is not neutral. If Ia(U)={(dpopiegj is the index set of 

(F,G)/(/ at s=a, then da(F,G; l/)=Ed^o^=d implies that (F,G)/U has only finite 

e.d. at s=a and possibly zero r.m.i. and thus sufficiency is established. 

The necessity of part (a) is obvious. The proof of the other parts is 

similar. ,

The above result provides a basis free characterisation of simple 

$-(F,G)-e.d.s.; such a characterisation clearly depends on the properties 

of the J^(F,G;U) sequences, which in turn define da(F,G;(/).

Corollary (7.4): If \J is an e-(F,G)-r.r.s., ae$(F,G;(Z), Ia(F,G;(/) = 

={(d.,o.),iep,d.<...<d }is the index set of (F,G)/V at s=a, and dimU=d,11*-!  p
P

d (F,G;U)= 7 o.d..
cr ’ 9 >.ii

1=1

(i) If otelRuf00}, then da(F,G;(/)<d and equality holds, if and only if (/ is 

a simple a-(F,G)-e.d.s.

(ii) If aefli-lR, then da(F,G; l/)<d/2 and equality holds, if and only if (/ is 

a simple (cx,a*)-(F,G)-e.d.s.

For the case of e-(F,G)-r.r.s. U, it is clear that Definition (4.4) and 

Theorem (4.5) also apply for (F,G)/U. In fact, if V is any basis matrix 

of I/, and Ia(F,G; V)«{ (dptjp ,i€gj is the index set of (FV,GV) at s=a 

(aeluf®}), then the notion of a complete prime set of chains S (FV,GV)= 
d d d d a

.......... ■sa<di>Ya1):---;Sa(dp.YIP)...........Sa(dp^aP) ’ where

1 p
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V •..,v j is a normal basis of generators of 
P d.

Every d^-th order prime chain Sa(d^,v^1)i 

d d d
B (FV,GV)={v ' ...,v p,.

1 "1
(FV,GV) at s=a, is well defined, 

d. d. d. d.
*^-k d : -k l^k satisfies conditions (7.15a) or (7.15b) if

ae(E-{0}, conditions (7.17) if a=0
d.

every chain S (d.jV,1) of (FV,GV)
d. d. a 1 -«•

-

and conditions (7.18) if a=°°. Note that 

defines a chain of vectors in (/, if we set 
d.

j, jecL; these chains of vectors in (/ will be denoted by S^(x^ ; U),

the set of such chains by E (F,G;U) and the corresponding set of generators 
“ d.

by B (F,G;U). The sets B (F,G;U), S (x. x;l0 and E (F,G;(/) are not uniquely 
Cl 01 01 01

defined, even for a given choice of basis matrix V and shall be referred to

as an a-normal basis of generators in (/, an (ot,d^)-prime chain in V and an 

ot-complete prime set of chains in (/ of (F,G) respectively. For a given 

choice of V basis matrix, the ’’Nested basis matrix approach”, described in 

the notion of maximal generalised nullspace at s=a. Thus, if V is a basis 

matrix, the notion of the maximal generalised nullspace of (FV,GV) at s=a 

is well defined, in a similar way to that of the regular case. Such a sub-

space, clearly depends on the choice of V and shall be denoted by M^(V); if 

Xy is a basis matrix of Ma(V), then Na(V)=sp{VXy} is a subspace of (/ and 

shall be called an (a,V)-maximal generalised nullspace in 1/ of (F,G) at s=a 

and its properties are discussed below.

Proposition (7.8): Let 1/ be an e-(F,G)-r.r.s., diml/=d, $(F,G;l/) be the 

root range, Ia(F,G; (/)={ (d. ,0^) ,ieg,} be the index set of 1/ at s=a and let
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V,V' be two basis matrices of (/. The following properties hold true:

(i) For any ae$(F,G;U), then any set Ea(F,G;U) and thus any set of sub-

linear ly independent.

(ii)

spaces La(F,G;U) is
d.

Let ae$(F,G;U), L (F,G;I/) = {V ,i€£,k€a.} be an a-complete prime set 

of subspaces derived for a given V and let ‘^(V) be the corresponding 

(a,V)-maximal generalised nullspace in (/. Then,

Ciii)

. d. d, d d
N (v) = V, s...eV p

a 1 o, 1 cr
1 P

and dim W (V)=d (F,G;U) = 7 o.d..
a a ’ * 1 1

* * 1=1
Let Wa(V),Wa(V’) be the maximal generalised nullspaces that

* * 
different basis matrices V,Vf. Then Wa(V)=Wa(Vl).correspond to two

(7.19)

Proof

Part (i) and Part (ii) are straightforward consequences of Theorem (4.5).

Let N^N'k be two nested basis matrices of M (P^(FV,GV)}, A/ {P^(FV’ ,GVf)} 
a ot r a ’ ’ r a

jx j

respectively and let V=V’Q,Q€(C ,101*0;  it may be readily verified that
V lr

N =diag{Q,...,Q}N . If t  is the index of annihilation of (FV,GV) and thus 
a '-----1' a

k
of (FV’,GV’) at s=a then

x; - [XjX;T] =Q[xJ,...,x^] = qx t

where Xt ,X*  are the last blocks of the naturally partitioned matrices 

NT,N,T. Then
a’ a

N*(V)  - sp{VXT} = sp{V'QQ"‘x^} - sp{v’x’} = N*(V')

This result demonstrates that W*(V)  is uniquely defined, and it is 

independent of the particular choice of V used for its definition; this 

subspace will be denoted by N*(V)  and from now on shall be referred to as 

the a-maximal-(F,G)-generalised nullspace in U. The above definitions and 

result clearly apply to the case of $-(F,G)-e.d.s.; for the case of simple 
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$-(F,G)-e.d.s. we may combine the characterisations provided by Theorem (7.3) 

and Proposition (7.8) to derive alternative criteria for such subspaces. In 

the following, if Wc(En is a d-dimensional subspace, then by Re span (V we 

shall denote the subspace of JRn which is spanned by the real and imaginary 

parts of the vectors in W; clearly dim JRe spanW=2d.

Corollary (7.5): Let (F,G) €3RmXnx]RmXn, l/<Rn be a subspace and let dim(/=d. 

Then,

(a) 1/ is a simple a-(F,G)-e.d.s., aeIR-{0}, if and only if

(i) Mr(F)nU=0 and Nr(G)n(/=0.

(ii) ((/)=(/.

(b) (/ is a simple (a,a*)-(F,G)-e.d.s. , ae(E-lR, if and only if

(i) N (F)n(/-0 and Mr(G)n(/-0.

(ii) JRe span ((/) = (/.

(c) 1/ is a simple o-(F,G)-e.d.s., if and only if

(i) N (F)nV=0 and N (G)nV*0.r r
(ii) M*(V)=V.

o

(d) (/ is a simple °°-(F,G)-e.d.s., if and only if

Ci) W (F)n(/=0 and W (G)n(/=0.r r
Cii) !/*((/)=(/.  D

The above result is a straightforward consequence of Theorem (7.3), 

Proposition (7.8) and the definitions. An alternative characterisation of 

simple #-(F,G)-e.d.s. may be obtained by combining Corollary (7.5) and the 

decomposition result established by eqn.(7.19) of Proposition (7.8).

Corollary (7,6): Let (F,G) €]RmXnx]RmXl1, 1/ cRn be a subspace and let diml/=d.

(a) 1/ is a simple a-(F,G)-e.d.s., or (a,a*)-(F,G)-e.d.s ., aeE-{0}, if and

only if

(i) Wr(F)n(/=0 and N.(G)nlM).
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d .
(ii) If La(F,G;l/)=((/a £ jiep^jkeo^ is an a-complete prime set of 

subspaces in (/, then

d
V =Re span V “’x® (7.20a)

°* iep ,kea
or a,i

(b) 1/ is a simple o-(F,G)-e.d.s., if and only if

(i) Mr(F)n(/=0 and A/r(G)nU*O.
r do i

(ii) If Lq (F,G;I/)={(/q £ ,iepo,kecro 3 is a o-complete prime set of 

subspaces in (/, then

d .
(/ = V °’1 © (7.20b)

°’ iep ,kep
I/O —0,1

(c) V is a simple °°-(F,G)-e.d.s., if and only if

(i) Nr(F)n(/*O  and N^(G)al/=O.

d .oo i
(ii) If L (F,G; )={U * ,iep ,kea .} is an “-complete prime set of

O 00, K. -w°°, 1

subspaces in (/, then

e
iep ,kecr .

-°°,i

(7.20c)

□
Remark (7.5): Let l/J be an (a,d)-prime subspace in (/ of (F,G). If 

aelRuf00}, then (/^ is a prime ot-(F,G)-e.d.s. and dim l/^ = d. If ae(C-{0}, 

then Re span l/J is a prime (a,a*)-(F,G)-e.d.s.  and dim Re span (/^ = 2d. 

Furthermore we have:

(i) If ae]R-{0}, there exist (a,d)-, and (a,d)-prime chains of vectors 

^^(Xj; U)={x^; ied}, Sa (xj  ; (/)={x.-; ied}, a=a 1 and Xj-X|, which define 

bases for l/J and satisfy conditions (7.15a) , (7.15b) respectively.

(ii) If a=o+jo)e(C-R, there exist (a,d)- and (a,d)-prime chains of vectors 

S^Cxj; U)={x^=a^+jbj.,ied}, Sa (x ^;U)={x^=a^+jfi^,ied}, ct=o+ju)=a 1 and 

Xj=Xp such that {(a.,b.),ied}, { (a^,^) ,ied} define bases for

IRe span 1/^ and satisfy conditions (7.16a), (7.16b) correspondingly.
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(iii)

(iv)

If a=0, there exists a (o,d)-prime chain of vectors Sq (Xj ; U)={xj,; 

ied), which defines a basis for and satisfies conditions (7.17)

If ot=<», there exists an (°°,d)-prime chain of vectors S (x ;(/)={x.;
0° — J — 1

ied}, which defines a basis for
00

and satisfies conditions (7.18). □
By Corollary (7.6) and the above Remark it is clear that the notion of

the characteristic basis for a simple a-, or (ot,a*)-(F,G)-e.d.s.  is well

defined; such a basis is defined as the direct sum of the characteristic

bases associated with the (a,d)-prime subspaces of the given a-, or (a,a*)-

Next, the case of Ic~(F,G)-c.m.i.s. and Ir-(F,G)-r.m.i.s. is examined. 

We first note that the definitions and results stated for the sequence 

Cr(F,G), the right index of (F,G), a^, and the maximal right annihilating 

space of (F,G), which were stated in Chapter (5) also apply to the case of

the restriction pencil (F,G)/U. Thus let Cr(F,G;U) be the sequence

associated with (F,G)/U, (V) the right index of (F,G)/(/, V a basis matrix
— Jc

of V and let 1R (V) be the maximal right annihilating space of (FV,GV). If

Ry is a basis matrix of R (V), then the subspace Ry=sp(VRy) will be called 

a V-maximal right annihilating space of (F_,G) in U. Clearly, Cr(F,G;U) and

* . .
cr^(U) are uniquely determined by U; the uniqueness of Ry is defined by the 

following result.

Proposition (7.9): Let (F,G) 6RmXnx]RniXn, 1/ <=]Rn be a subspace and let V be 

a basis matrix of (/. If Ry is the V-maximal right annihilating space of
£

(F,G) in (/, then Ry is uniquely defined and it is independent from the 

particular choice of the basis matrix V.

Proof

Let a be the right index of (F,G)/U and let be a basis matrix of
U -* w

W {T (FV,GV)}. By Corollary (5.8), W(N )=R (V) (N is naturallyr % %
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partitioned) and Tg (FV,GV)Ng =0. If V=V’Q, where Q eRdxd, |Q|*0,  d=dim U, 
P °P

then the last condition implies that Tg (FV*,GV*)diag{ Q,,,.,Q}Ng =0.
P % y

Clearly, then N’ =diag{Q,.,.,Q}N^. is a basis matrix for W {T (FV’,GV*)  
cl . '----- <«■......  ot| r <j
y* ay P P

and thus W(Ng )=R (V’). From the definition of W(N^) subspace (see

Chapter (5)), it is readily shown that if IL ,1L , are basis matrices for

R’(V),R (V*)  respectively, then and thus

= sp{VRy} = spfV'QQ-’Ry,} - sp{V'-Ry,} = R^,

□
This result demonstrates that R^ is uniquely defined by V and it is 

independent from the particular choice of basis matrix V used for its 

definition; this subspace will be denoted by R (U) and from now on shall 

be referred to as the maximal right annihilating space of (F,G) in (/. 

Corollary (5.8) describes the properties of R ((/) and establishes a 

procedure for its computation in terms of the properties of the naturally 

partitioned basis matrices N of W {T (FV,GV)}. The characterisation of
P r %

Ic~(F,G)-c.m.i.s. is given by the following result.

Theorem (7.4): Let (F,G) eRmXnx]RmXn, |7 c]Rn be a subspace, dim|/=d, 

Kr(F,G; U)={ (a. ,pp ,ieji} be the right set of singularity of (F,G)/U and let 

R (I/) be the maximal right annihilating space of (F,G) in (/. (/ is an

Ic“(F,G)-c.m.i.s., if and only if one of the following equivalent 

conditions hold true: 

(i) 

(ii)

(iii)

(iv)

There exists a basis matrix V= [Xj, ... ,x^] of (/ such that

(7.21)

The subspace 1/ may be written as

(7.22)
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where dim R~*  =o. ¥jep. and every R^ is a prime (o^-l)-(F,G)-c.m.i.s.
°i 1 1 i 1 □

This result is readily established by Proposition (7.9) and the results 

given in Chapter (5) for right singular pencils; in particular the subspaces 

R^ are defined by Corollary (5.8). The number cr(F,G;U) is defined for 

every subspace (/ and every pair (F,G), it is an invariant of 1/ with respect 

to (F,G) and shall be called the right-(F,G)--order of (/; cr(F,G;U) is 

readily computed from the sequence Cr(F,G;(/), or the set K^(F,G; ^) . In a 

similar manner we may introduce the sequence C^(F,G;U), the left set of 

singularity K (F,G;(/)={(cr!,p’.),ieji’} of (F,G)/U and the number c (F,G;V) =
y’ 1 1 1 1

~ 7. (n!-l)pl; the number c„(F,G;V) will be called the left-(F,G)-order of V. 
• . 1 1 Ju1=1

The number c^(F,G;(Z) may be computed from K^(F,G;(/) in a similar manner to 

that given in Chapter (5). We close this section by giving a result 

characterising Ir-(F,G)-r.m.i.s.

Theorem (7.5): 'Let (F,G) nx]RmXn, l/cJRn be a subspace, dim(/=d, 

K^(F,G; !/)={ (cr! ,p I) jiejd1} be the left set of singularity of (F,G)/I/ and let 

c (F,G;U) be the left-(F,G)-order of (/. V is an I -(F,G)-r.m.i.s. if and
Az IT

only if one of the following equivalent conditions hold true:

(i) c£(F,G;l/)=d.

(ii) Wr(F)nU=0, Mr(G)n(/=0 and there is no proper subspace U1 of 1/ for 

which either Gl/’cFl/’ and/or Fl/’cGU’.

Ciii) The set Iy={ (cr!-l,pp , iejp }.

Proof

Part (i) follows by inspection of the Kronecker form of (F,G)/l/ and from 

the definition of c^(F,G;U). The conditions Wr(F)n(/=0 and Wr(G)nU=0 

exclude the presence of c.m.i., o-e.d. and °°-e.d. from 1^; thus, if those 

two conditions are satisfied, then contains possibly finite nonzero e.d. 

and r.m.i. If there is a finite nonzero e.d., then by Theorem (7.2) and
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Corollary (7.1), there exists a proper subspace V’ of V for which GV’cf V*  

and thus contradicts the other assumption. The sufficiency of part (ii) 

is obvious. Part (iii) is readily established from the definitions.
□

The characterisations provided in this section provide the means for the 

introduction of some more general notions of invariant subspaces of the 

domain of (F,G), which will be considered next.

7.3.3. Classification of the subspaces of the domain of (F,G)

The properties of the characteristic bases associated with #-(F,G)-e.d.s. 

and the existence of the special bases characterising Ic-(F,G)-c.m.i.s. 

(Theorem (7.4) parts (iii) and (iv)) potivate the following definition for 

subspaces of the domain of (F,G).

Definition (7.5): Let (F,G) elRmxnxJRmxn, V c]Rn be a subspace and let

- dim V =d.

Ci) V will be called a (G,F)-invariant subspace (CG,F)-i.s.) if

GV c FV C7.23a)

or equivalently, for any basis matrix V of V, there exists an

— -»»dxd A elR such that

GV = FVA (7.23b)

(ii) V will be called an (F,G)-invariant subspace ((F,G)-i.s.) if

FV c GV (7.24a)

or equivalently, for any basis matrix V of V, there exists an

AeRdxd such that

FV = GVA (7.24b)
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(iii) 1/ will be called a complete-(F,G)-invariant subspace (c-(F,G)-i.s.)

if

FU = G(/ (7.25a)

or equivalently for any basis matrix V of 1/ there exists a pair of

. d*d
. matrices A,A eK such that

GV = FVA and FV = GVA (7.25b)

□

The matrices A,A will be referred to as the V-(G,F)-, V-(F,G)-restrictions 

of the (G,F)-i.s., (F,G)-i.s. respectively and shall be denoted by 

CG,F;(/)/V, (F,G;(/)/V correspondingly. The set of eigenvalues of A,A will 

be denoted by cr(G,F;V), o(F,G;V) respectively and shall be referred to as 

the V-CG,F)-, V-(F,G)-spectrum of the CG,F)-i.s., (F,G)-i.s. correspondingly.

Using the notions of (G,F)-, (F,G)-invariance and complete (F,G)- 

invariance introduced above we may give the following geometric 

characterisations of the subspaces defined algebraically in Section (7.3.1).

Theorem (7.6): Let (F,G) e!RmXnx]RmXn, 1/ cRn be a subspace and let diml/=d.

(a) (/ is an "-proper, $oo,-CF,G)-e.d.s., if and only if

Ci) MrCF)nl/=O.

Cii) Gl/cFV.

Cb) 1/ is an o-proper,4> Q,-(F,G)-e.d.s., if and only if

Ci) Mr(G)nl/=0.

Cii) Fl/SGV.

Cc) V is a proper, $p-CF,G)-e.d.s., if and only if

Ci) M CF)n(/=O and N CG)n(/=0. r r

Cii) FV»GV.
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Proof

(a) The necessity of the conditions (i) and (ii) follows by inspection of 

the Kronecker form of (F,G)/U, Theorem (7.2) and Corollaries (7.1) and (7.2). 

The sufficiency may be argued as follows: condition (i) excludes the 

existence of °°-e.d. and c.m.i. in 1^; thus, the pencil (F,G)/U is right 

nonsingular and (/ is e-(F,G)-r.r.s. By condition (ii) we have that GV=FVA 

and thus if A=QJQ 1 is the Jordan decomposition of A, then GVQ=FVQJ and the 

vectors of V =VQ define a characteristic basis for (/. Because (F,G)/U is c

right nonsingular, Proposition (4.3) applies for every ae$(F,G;(/) and ly 

contains finite e.d., the degrees of which are defined by the dimensions of 

the Jordan blocks in J. Clearly, the sum of the degrees of all e.d. is 

equal to d, the dimension of U and by inspection of the Kronecker form it 

follows that has no nonzero r.m.i. The proofs of parts (b) and (c) 

follow along similar lines. q

It is evident from the above result that <>oo,-(F,G)-e.d.s., #o,-(F,G)-e.d.s. 

and $ ,-(F,G)-e.d. s. are special cases of (G,F)-i.s., (F,G)-i.s. and
P

complete-(F,G)-i.s. respectively; the important characteristic for such sub-

spaces is the uniqueness of the spectrum which is discussed next.

Corollary (7.7): Let (F,G) 6]RmXnx]RmXn, V c]Rn be a subspace and let V be a 

basis matrix of U. Then,

(a) If y is a $oo,-(F,G)-e.d.s., then for any V, cr(G,F;V) is uniquely 

defined.

(b) If y is a $o,-(F,G)-e.d.s., then for any V, o(F,G;V) is uniquely 

defined.

Cc) If y is a $p,-(F,G)-e.d.s., then for any V of the spectra a(_G,F;V) 

and a(F,G;V) are uniquely defined. Furthermore, if A=(G,F;U)/V, 

A=(F,G;(/)/V, then A=A_I and o(G,F;V) is the inverse of o(G,F;V).
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Proof

(a) If (/ is -(F,G)-e.d.s. and V,V*  are two basis matrices, then GV=FVA, 

GV’=FV’A’. If V’=VQ,Qe]Rd d,IQ|*0, d=dim U, then from the last three

— — -i — —’ -1
relationships we have that GV=FVA=FVQA’Q and thus FV(A-QA Q )=0. Since

Mr(F)n(/=O it follows that Wr(FV)=0 and thus the last condition implies 

A=QA !q the similarity of A,A1 proves the result. Parts (b) and (c) are 

proved along similar lines. I

Because of the above property the subspaces of the ^-(FjO-i.s., 

$o>’CF,G)-i.s., #p,-(F,G)-i.s. type will be referred to as fixed spectrum 

invariant subspaces. Some interesting classes of assignable spectrum and 

partly fixed spectrum invariant subspaces will be introduced in the 

following. We first give some alternative characterisations of simple 

o~(F,G)-e.d.s., and °°-(F,G)-e.d.s.

Corollary (7.8): Let (F,G) eRmXnx]RmXn and let U be a subspace of lRn.

(a) 1/ is a simple o-(F,G)-e.d.s., if and only if

Ci) Wr(F)n(/«0 and Gl/gFU.

(ii) There is no proper subspace (/*<=(/  for which F(/’=GUT.

(b) (/ is a simple °°-(F,G)-e.d.s., if and only if

Ci) WrCG)nl/=O and Fl/cGU.

Cii) There is no proper subspace for which Fl/’=Gl/’.

Proof

(a) By conditions Ci), U is a $*,-(£,0-1.5.  and thus is characterised 

by finite e.d. and possibly zero r.m.i. If there exist nonzero finite e.d, 

in 1^, then by the direct sum decomposition of 1/ implied by the Kronecker 

canonical form and Theorem (7.6), there exists a proper subspace (7*cV  for 

which Fl/’-Gl/1 and this contradicts assumption Cii); this proves the 

sufficiency. The necessity is obvious. Part (b) of the proof follows 
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along similar lines. □
The notions of (F,G)-, (G,F)-invariance are also involved in the 

characterisation of Ic-(F,G)-c.m.i.s. as it is shown below.

Proposition (7.10): Let (F,G) €]RmXnx]RmXn and let 1/c]Rn be a subspace with

dimU»d. (/ is an Ic-(F,G)-c.m.i.s., if and only if

(i) Gl/=FV.

(ii) There exists a basis matrix V of (/ such that (G,F;(/)/V is a lower c c

Proof

d-nillpotent and (F,G;U)/V an upper d-nillpotent c

By Theorem (7.4), part (iii),

such that conditions (7.21) are

there exists a basis matrix Vc»[xj,x2,...,xd]

eqns.(7.21) implysatisfied; clearly,

GV c = FV A c o and FVc = GV A c-o
(7.26a)

where

.. 0

... 0

. •
• •

• •
... 1

6Rdxd (7.26b)A o

0 0 0 0 1 0 0 0

1

0

0

0

1

0

. 0 0

0

0

5 A —o

0

0

0

0 0 0

0 0 0 1

0 0 0 0

Conditions (7.26a) imply that FU=GV and the matrices Aq ,Aq are clearly-o

d-nillpotent. The sufficiency is established by a mere reversion of the 

arguments. □
Next we examine the characterisation of (F,G)-i.s., (G,F)-i.s. and 

proper-(F,G)-i.s. in terms of the invariants of the restriction pencil. 

We first give the following result.



316

Proposition (7.11); Let (F,G) eRm nx]Rm n and let U eR.n be a subspace.

(a) If V is an Ir~(F,G)-r.m.i.s. t^ien the176 exist vectors v,v’el/

such that Gv/F U and Fv’/G(/.

(b) If V is a simple «>-(F,G)-e.d.s., then F(/cGl/; that is there exist 

vectors ve(/ such that Gv/FU.

(c) If 1/ is a simple o-(F,G)-e.d.s., then G(/<=FU; that is there exist 

vectors ve(/ such that Fv/GU.

Proof

(a) There always exists a basis matrix of U and anR£RmXm, |R(*0  

such that (RFVk,RGVk)=(FVfe,GVfc) is the Kronecker form. For the sake of 

simplicity let us assume that

(Wk,CTk) =

’ 0 0 0 ’ 0 0 0

1 0
1
1 01 0 0 i 0

0 1 : o 5 1 0 1 o

0 0
1
i
1 0
1

0 1
1
1 0
1

0 0
1
I' 0 0

1
1 01

_ 0 0 ' 0 . _ 0 0
1 > J

(7.27a)

Choose a vector v=Vte.cU, where e. is the first standard basis vector of JR . - k-1 ’ -1

By inspection of (7.27a), it is clear that the vector FV^ej/sp(GV^}; given

that the columns of GV^ are linearly independent, the last condition

implies that [FV^e^GV^] has full rank and thus also the matrix

R_1[FVke],CT] = [FV^.CTJ (7.27b)

has full rank. Condition (7.27b) implies that FV^e^GU. Similarly, it can 

be proved that GV^e2^sp(FV^} and thus GV^e^/FU. The proof of parts (b) 

and (c) follows along similar lines. r 
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Theorem (7.7): Let (F,G) n*lR m n, U <=JRn be a subspace and let 1^ be 

the set of strict equivalence invariants of (F,G)/U.

(a) If U is (G,F)-i.s., then the possible sets of invariants in are:

1

(b) If 1/ is (F,G)-i.s., then the possible sets of invariants in 1^ are:

i

(c) If 1/ is a complete-(F,G)-i.s., then the possible sets of invariants

in are:
i

Proof

Let us assume that (F,G)/(/ has in Ty every possible type of strict 

equivalence invariant. There always exists an R eRmXm, |R|*0  and a special 

basis matrix of U such that (RFV^,RGV^)=(FV^,GV^) is in Kronecker form. 

The Kronecker form implies a partitioning for as V]c3B[V^,V£,Voo,Vo,Va], 

where V,V ,V ,V ,V are the submatrices corresponding to the Kronecker 

blocks associated with r.m.i., c.m.i., °°--e.d., o-e.d. and finite nonzero 

e.d. respectively; this partitioning also implies a direct sum decomposion 

for |/ as

1/ = 1/ ©U ©(/ ©(/ (7.28a)
£ E O 00 «

where |/..=sp{V,} and i is any index from the set {£, £,o,°°,a}=A. An obvious 

implication of the Kronecker canonical decomposition of (FV^GV^) is that 

if for some ieA and some a,a’ elR^, d=dim V, FV^a/G(/^ and GV^aT/FV\ , then 

PV.a^GU and FV.a’/F(/, correspondingly. If we now denote by (GV, ) and
1 1~ K

sets linearly independent columns of GV^ and FV^ respectively (in 

this case the nonzero columns of GV^ and FV^), then we have the 

relationships
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FV.a i GV <=>
1-

GV.a’ i FV <=>
1-

By multiplying the right hand

[FV.a,(GVk)J full rank (7.28b)

[GV.af,(FVk)] full rank (7.28c)

side matrices on the left by R 1 we have that

[FV.a,(GVk)J , [GV^a1, (FVR)] full rank (7.28c)

This analysis leads to the following conclusions:

(i) If for some ieA and some veV^, Fv^GVp then also Fv/GV.

(ii) If for some ieA and some v’eV^, Gv^FV^, then also Gv/FV.

Using the above two conclusions we may proceed with the proof of the result.

Thus,

(a) Assume that V is (G,F)-i.s., all types of strict equivalence

invariants are present and that V is decomposed as in (7.28a). If there 

exist nonzero r.m.i. in 1^, then by Proposition (7.11) there exists a 

vector veV such that Gv^FV ; by the second of the above conclusions it
— s * Q 

follows that Gv/FV^ also implies Gv/FV and this clearly violates the

(G,F)-invariance property of V. Thus, has nonzero r.m.i. Similarly, 

using Proposition (7.11) (part (b)) and the second conclusion, it may be 

proved that ly has no infinite e.d. The proofs of parts (b) and (c) 

follows along similar lines.

From the proof of Theorem (7.7) we have a decomposition result for a 

general subspace V c]Rn with respect to the pair (F,G). For a given subspace

we shall denote by Ic(V) ,Tr(V) ,PQ(V) jP^V) ,Pa(V) ,ae(C-{0} the sets of 

c.m.i., r.m.i., zero-e.d., ®-e.d., all finite nonzero e.d. of (F,G)/V 

respectively. The general decomposition result may be stated as follows 

[Kar. -1].
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Proposition (7.12): Let (F,G) €RmXnx]Rmxn, (/c ]Rn be a subspace and let 

;Ir(U) jP^V) ;Pq (U) ;Pa((/) }. The subspace 1/ may be expressed as

1/ = V ®(/ ®V ®(/ ©(/ (7.29a)e 5 ® o a

where for every of the subspaces in the decomposition we have the following 

properties:

= {Ic(U);Ir}’ TV = {IrW}
e 5 (7.29b)

h T(/ ■
« o a □

From Theorem (7.7) and the decomposition result stated above we have the 

following decomposition of the (F,G)-i.s., (G,F)-i.s., and complete- 

(F , G) “1. s.

Corollary (7.9): Let (F,G) nx]Rm n, l/c]Rn be a subspace and let 

I^={Ic(U) ; I^((/) jP^CI/) ;Pq ((/) jP^CU) } be the set of strict equivalence 

invariants of (F,G)/V.

(a) If Gl/cFl/, then T^={I((/);P°((/) >PaCV) ;I°} an<^ V may be decomposed as

(/ = (/ ®(Z ®U (7.30)e o a

where are subspaces characterised by the (7.29b) properties.

(b) If F(/cGU, then Z((/) ;Pqo ((/) ;P^((/) ; and (/ may be decomposed as

U = y ®U ®U (7.31)e oo a x

where are subspaces characterised by the (7.29b) properties.

(c) If G(/=F(/, then I^={Ic((/) ;Pa(V); 1°} and 1/ may be decomposed as

y = Ue®(/a (7.32)

where 1/ , U e’ a are subspaces characterised by the (7.29b) properties. □
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The decomposition result given above provides the means for the 

characterisation of the invariant subspaces in terms of the associated 

spectra. Note that in the following the spectrum will be considered as the 

set of roots of the polynomials det{XI-(G,F; I/)/V}, if (/ is (G,F)-invariant 

and det{XI-CF,G; I/)/V} if U is (F,G)-invariant.

Proposition (7.13): Let (F,G) €RmXnx]Rmxn, {/ cRn be a subspace and let 

dim(/=d. (/ is an Ic-(F,G)-c.m.i.s. if and only if the following conditions 

hold true:

(i) G(/=Fl/.

(ii) If A is a symmetric set of d-complex numbers, then there exists a 

basis matrix of 1/ such that o(G,F;V^)=A.

Proof

If U is Ic-(F,G)-c.m.i.s., then by Proposition (7.10) G(/=FV. Furthermore, 

there exists a polynomial vector xCs) = [x^,x^__},... ,X£,X| ]e^Cs)=X^e^(s) , 

where X, is a basis matrix of U such thatd
(sF-G}Xded(s) = 0 for Vscdl (7.33a)

Assume first that A^fX^jied} is distinct symmetric set. Then

EjCA)=[edCX1),...,edCXd)] has full rank (Vomdermode matrix) and thus 

XdEd^A) has also full rank; furthermore, we have that

CX.F-G)X,e,Q.) = 0, VX.eA1 d-d 1 - 1 (7.33b)

and this proves the necessity in the case of distinct spectrum.

Note that in the case where A is not distinct, we may define a modified

matrix Ed(A), where now 
-4 £d(s)

for repeated frequencies, we may define vectors

k=0,1,...where v is the multiplicity of X^.
ds s=X-j_ t

Once more the corresponding matrix Ed(A) has full rank and the result 

readily follows.
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The sufficiency may be argued as follows. By condition F(/=GU and

Corollary (7.9), thus if we choose a basis matrix for V as

V=[V ,V 1 where V ,V are basis matrices for (/ , 1/ respectively, then
1 e*  or e’ a e’ a r

GV = FV A (7.34a)£ c

and because both and U*  are (G,F)-invariant we have that

A = diag{A ,A } (7.34b)e a

and thus o(G,F;V)={a(A£),a(Aa)}. By Corollary (7.7), c(A^) is fixed and 

thus if *̂0  the d-A spectrum cannot be assigned. Clearly, this 

contradicts assumption (ii) and the result is established. r

Corollary (7.10): Let (F,G) elRmXn, Uc lRn be a subspace, diml/=d, R ((/) be 

the maximal right annihilating space of (F,G) in 1/ and let cr(F,G;l/)=y be 

the corresponding order.

(a) V is a (G,F)-i.s., if and only if there exists a direct sum 

decomposition

(/ = R*(V)®(/ f (7.34)

where |/f is (G,F)-i.s. and o(G,F;Vf)=Af is a (d-p)-fixed spectrum

for any basis matrix of

(h) |/ is an (F,G)-i.s., if and only if there exists a direct sum

decomposition

U = R*(|/)®|/ ’

» r ’ .
where is an (F,G)-i.s., and cr(F,G;Vf)=Af is a (d-p)-fixed spectrum

» .. ’
for any basis matrix of v^.

The proof is rather obvious and it is omitted. The determination of 

maximal dimension (G,F)-, (F,G)-invariant subspaces in a given subspace
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V of Rn is considered next. The case where U=]Rn is examined first and the 

results will be specialised next to the case of a general U. We first 

define:

Definition (7.6): Let (F,G) €KmXnx]RmXn. We may define the following two 

sequences of subspaces of JRn:

P(G,F) = {T°=lRn, Tk+1-G_l(FTk),ksO} (7.35)

P(F,G) = {J°=JRn, Jk+1=F_l(Gjk),k>0} (7.36)

Note that in the (7.35),(7.36) sequences, G and F are considered as maps 

and thus if ft/c ]Rm is a subspace, then

G”1^ = {xe]Rn: Gxeft/} (7.37)

□
The sequences P(G,F),P(F,G) will be called (G,F)-, (F,G)-invariance 

generating sequences respectively and the terms used will be clarified by 

the study of their properties. Note that P(G,F) is a specialised form of 

a sequence of subspaces introduced recently by Bernhard [Ber. -1] and

Aplevich [Apl. -1], whereas P(F,G) is the ’’dual" (swapping of the F,G maps) 

of the P(G,F); thus, the properties of P(F,G),P(G,F) readily follow from 

the results in [Apl. -1] (Theorems (11) and (.12)). We may summarise those 

results in our present framework as follows:

Theorem (7.8): Let (F,G) €RmXnx]RmXn and P(G,F) and P(F,G) be the

sequences of subspaces of IRn defined by (7.35) and (7.36).

(a) The sequence P(G,F)

in at most n steps.

is non-increasing and converges to 

T*  is the maximal (G,F)-invariant

*
an element T

(b) The sequence P(F,G)

m at most n steps.

is non-increasing and converges to 

J*  is the maximal (F,G)-invariant

subspace in IRn. 

an element J*

subspace in ]Rn.

□
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nprocedure for the computation of the subspaces T and J of JRn. T

This result establishes the existence, the uniqueness and an iterative 

■V

will be referred to as the maximal (G,F)-,(F,G)-invariant subspaces 

pair (F,G) respectively. The link of T ,J with the subspaces of a 

decomposition of ]Rn defined by Proposition (7.12) is examined next.

of the

Kronecker

We

first note that if I(F,G)={I (F,G);I (F ,G) ;V (F,G);P (F,G) ,ae(C-{0} ;V (F,G)} 1? C O (X

are the strict equivalence invariants of the pencil sF- G, then a

decomposition of ]Rn defined by Proposition (7.12) by setting V=lRn

00
(7.38a)

where for the subspaces involved we have the properties

= {Ir(F,G);I°},
t e (7.38b)

- (P.CF.G);!®}, • {Po(F,G);I°}, = (t>o(F,G);I°)
00 o a

will be referred to as a Kronecker decomposition of U with respect to (F,G)

((F,G)-k.d.). If a general subspace 1/ of JRn is considered, then the above

decomposition, defined by the Kronecker form of (F,G)/U will be also

referred to as (F,G)-k.d. of I/.

{Ic(F,G);I°}

Corollary (7.11): Let (F,G) €]RmXnx]RmXn, I(F,G) the set of invariants of

sF-G and let

Rn |/ ®(/ ®U ®U ®U5 e o a 00 (7.39a)

n t -*  .of JR . If T is the maximal (G,F)-invariant 
*

the maximal right

be a Kronecker decomposition

subspace, J the maximal (F,G)-invariant subspace and R 

annihilating space, then we have the following:

(i) (7.39b)

(ii) T*  = (/ •(/ e|/
£ 0 01 (7.39c)
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(iii) J*  » V ®V ®V (7.39d)
e « a

£ £ £
(iv) The subspace defined by W *T  nJ is the maximal complete (F,G)- 

invariant subspace in 3Rn and may be expressed as

W*  - T*nJ*  = V ®V
e a (7.39e)

Proof

in Chapter (5). Let 7’-^®^®^.
*

basis matrix T for 7 of the type

been established(i) has already 

and assyme that T <=7* . 

T=[T*,$]  where T’ is a

★
property of T1 and T we have that

Part

We may choose a

basis matrix for 7’. By the (G,F)-invariance

(7.40)

Since this is nonzero, the eigenvalues of A? are either fixed or assignable 

(appropriate choice of £); it is readily shown however that both cases

contradict the assumption about the invariants of sF-G, implicit in the 

(7.39a) decomposition. Thus, 7’=7*.  The proof of the other parts is

similar.

The subspace (V*  defined above will be referred to as

(F,G)-invariant subspace of the pair (F,G). Given that

uniquely defined the subspace (/*  maY be computed in the

the maximal complete
■it it

R =(/ and (V are 
e

following way:

Computation of l/a: Construct
*

R is a basis matrix of R -V .e

*
a basis matrix W for W as: W=[R,P] where

Then,

G[R,P] = F[R,P] (7.41a)

G[T',$] = F[T’,$]

□
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Then a(A2)=a(G,F; I/*)  and a basis matrix for may- be constructed as

follows: Let Q be real similarity transformation such that

A 1 AAi ; Ai2
= Q

■a . 0 ■

1 Q-‘
, Q =

Q11 1 Q12
i

i _
0 1 A L I 2 J 0

N
J

1_
__

__
__

_

. ° ! Q22

(7.41b)

By (7.41a) and (7.41b) it follows that, if W’=WQ=[RQjj,RQj2+PQ2J]=[Rf,V], 

then 

A 1 0 
1 fG[R',V] = F[R’,V] (7.41c)

f

and V=RQj2+PQ2j a ^as^s matrix for a subspace.

The computation of the subspaces ,1^ independently from the Kronecker

form reduction is examined next. We first note that there are certain 

similarities between the subspaces (^o>^£) and (U*,^);  in fact by 

comparing conditions (7.17) and (7.21) first and then (7.18) and (7.21) 

it is clear that there exist common elements between the properties of the 

basis vectors of (V , V ) pair and of the (U ,(/ ) pair. This observation
O £ 00 £

the following definition of sequences of subspaces of ]Rn.

Definition (7.7): Let (F,G) £]RmXn xRmXn, We may define the following two 

sequences of subspaces of !Rn:

Q(F,G) ‘ {K°=0,K k+1=F_1(GKk),kaO) (7.42)

2(G,F) = (L°=0, Lk+1=G"1(FLk),k>0} (7.43)

where again in (7.42) and (7.43) sequences, G and F are considered as maps 

and thus the symbols involved are interpreted as in (7.37).

The sequence Q(F,G) has also been discussed in [Ber.-l] and [Apl.-l]; 

Q(G,F) is the dual sequence defined on the pair (G,F). The properties of 

Q.(F,G) have been studied in [Apl.-l]; these properties are summarised below. 
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Theorem (7.9): Let (F,G) elRmXn x]Rm><n and Q(F,G) and £(G,F) be the 

sequences of subspaces of IRn defined by (7.42) and (7.43).

(a) The sequence 2.(F,G) is nondecreasing and converges to a subspace K 

in at most n steps.

(b) The sequence 2.(G,F) is nondecreasing and converges to a subspace L

. in at most n steps.

* ± * 1Corollary (7.12): Let (K ) ,(L ) be the orthogonal complements of the
it k

subspaces K ,L respectively of the pair (F,G)

&
(a) K has the following properties:

* *
(i) FK c GK
(ii) N^(F)n(K )1=0, or in other words: F has full column rank on K 1, 

and K is the largest subspace satisfying (7.42).

*(b) L has the following properties:
* *

(i) GL c FL
1 JL

(ii) N^(G)n(L ) =0, or in other words: G has full column rank on L , 

and L is the largest subspace satisfying (7.43). □
Parts (a) of Theorem (7.9) and Corollary (7.12) have been established 

in [Apl.-l], whereas parts (b) are the corresponding dual statements on 

the pair (G,F). The relationship of the subspaces K and L to the 

Kronecker decomposition of IRn is established by the following result.

Corollary (7.13): Let (F,G) elR™ n xjRm n, I(F,G) the set of invariants 

of sF-G, R the maximal right annihilating space of (F,G) and let K ,L 

be the maximal subspaces of the sequences 2.(F,G) ,Q(G,F) respectively. If

IRn = (/ ©(/ el/ el/ el/ (7.44a)
5 e o a 00

is a Kronecker decomposition ofJRn, then we have the following properties:
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(i) K = e <» (7.44b)

(ii)
*

L = UelZE 0 (7.44c)

(iii)
*

R
* , *= (/ = K nL 

e (7.44d)

□
Part (i) of the Corollary has been recently established by Loiseau 

[Loi.-l]; by using duality arguments on the pair (G,F), part (ii) follows. 

Part (ii) is an obvious consequence of (i) and (ii). The (F,G)-invariance 

of K and the (G,F)-invariance of L suggest that the procedure suggested 

for the computation of V*  may also be applied (after appropriate 

modification) for the computation of and In fact, for the case of

construct a basis matrix K for K as K=[R,M], where R is a basis matrix
•k

for K and then use (F,G)-invariance and repeat the procedure as for (/*.  

The procedure for computing U is dual.o
L/*

The subspace K will be referred to as the maximal almost-(F,G)-right-

annihilating space of (F,G) (m.a.-(F,G)-r.a.s.) and L as the maximal 

almost-(G,F)-right annihilating space of (F,G) (m.a.-(G,F)-r.a.s.). 

These definitions are motivated by the similarities between the condition 

((7.18), (7.21)) describing (1^,(7^) and thus K , and the conditions 

((7.17),(7.21)) describing (Uq , Up and thus L . The importance of such 

subspaces will be further clarified in the following sections. The 

analysis so far reveals the following properties of the subspaces of the 

Kronecker decomposition of ]Rn:

Remark (7.6): The maximal subspaces of TRn which are defined on the pair

(F,G), R* ,T* . *
,L are uniquely defined and they are related as

follows:

(i)
* * * *

T = L eUa and J = K e(Za (7.45)

(ii)
* * * * * * *

R = T nK = J nL = K nL (7.46)



328

Furthermore, the e.d. subspaces Vo are not uniquely defined.
□

By combining Remark (7.6) and the spectrum characterisation of the 

subspaces we have:

mxn mxn * *Proposition (7.14): Let (F,G) eJR XR and let K ,L be the maximal 

subspaces of the sequences 2.(F,G) ,Q.(G,F) respectively.

(i) K is the maximal (F,G)-invariant subspace of ]Rn for which for some 

appropriate basis matrix K, a(F,G;K)={0,...,0).

(ii) L is the maximal (G,F)-invariant subspace of ]Rn for which for some 

appropriate basis matrix K, o(G,F;L)={0,...,0}.

The results established for the sequences P(F,G) ,P(G,F) ,2.(F,G) ,Q.(G,F) 

of ]R and the corresponding maximal elements J ,T ,K ,L may be readily 

extended to the case of sequences of subspaces and corresponding maximal 

elements contained in a subspace V of lRn. The essential tool for such 

an extension is clearly the U-restricted ordered pair of maps ([f/V]

or equivalently the pair of matrices (FV,GV), where V is a basis 

matrix of (/. If dimV=d, then the sequences P(FV,GV) ,P(GV,FV) ,£(FV,GV) , 

Q.(GV,FV) are subspaces of clearly then every such subspace M with 

a basis matrix M defines a subspace M=sp<VM}c(/. In the following the 

above sequences will be denoted by P^(F,G),Py(G,F),Q^(F,G),Q^(G,F) and
jk * ★ *

the corresponding maximal elements by J ((/) ,T (V),K W,L (V). All 

results stated for !Rn, also hold true for the general V.

We close this section by introducing some general families of invariant 

subspaces other than those of the (G,F)-, and/or (F,G)-invariant type. 

The following definitions also extend the key notion of spectrum. In 

the following, if 4 is a symmetric set of (E (which might denote the 

spectrum of an invariant subspace), then 4 denotes the inverse set; the 

inverse set 4 is defined in a similar manner to that of the inverse root 
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range and its values in general are from (Eu{«»}-{0}.

Definition (7.8): Let (F,G) elRmXn xRmXn and let \J cKn be a subspace.

We may define the following:

(i) (/will be called a (IV, U)-partitioned invariant subspace

((lV,l/)-p.i.s.), if there exists a pair of subspaces (IV,U) such

• that

U = (V$U where GWcFW and FUsg U (7.47)

(ii) Let us assume that 1/ is a ((V,U)-p.i.s. If GUfFU, then U will be 

called an extended-(G,F)-invariant subspace (e-(G,F)-i.s.), and 

if FCV^GIV, then (/ will be called an extended-(F,G)-invariant sub-

space (e-(F,G)-i.s.). If V is both e-(G,F)-i.s. and e-(F,G)-i.s. 

(i.e. GU^FU and F(V^G(V), then it will be called an extended complete- 

(F,G)-invariant subspace (e.c.-(F,G)-i.s.).

(iii) Let 1/ be a (W,U)-p.i.s. and let W,U,V=[W,U] be basis matrices for 

(V,U,I/ respectively. Let us also denote by cr(G,F;W) ,o(F,G;U) and 

a(G,F;W) ,a(F,G;U) the W-,U-spectra of (V,l/ correspondingly. Then,

a[(G,F);W(W),U(U)] - g (G,F;W)u 5(F,G;U) (7.48)

is defined as the ((V(W) ,U(U) )-(G,F)-spectrum of (7 and

cr[(F,G) ;W(W) ,U(U)] - a(G,F;W)ua(F,G;U) (7.49)

is defined as the ((U(U) ,U(U))-(F ,G)-spectrum of (/.

Note that in the above definitions, either (V and/or U may be the zero 

subspace; in this case we define as the spectrum of 0, o(0), and the 

inverse spectrum, o(0), to be the empty set 0. In either of the (7.48), 

or (7.49) we shall adopt the following meaning for U: 0u£=£. The 

families of (G,F)-i.s., (F,G)-i.s. are clearly contained in the general 
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family of (QJ,U)-p.i.s. and thus the definition of spectrum given above is 

a natural extension of the definitions given before. Using Theorem (7.7) 

and Corollary (7.9) we may classify the (W,U)-p.i.s. family by the 

following results.

Remark (7.7): If U is a (W,U)-p.i.s. with respect to the pair (F,G), then 

the possible sets of strict equivalence invariants of (F,G)/V are:

ri/ “ (7-50a)

Furthermore, U may be decomposed as

1/ = V eU e(/ (7.50b)c 00 o a

where , l/Q, are t^ie subspaces defined by Proposition (7.12).

Corollary (7.14): Let (F,G) eJRmXn x]RmXn, 1/c]Rn be a subspace and let 

Iy={Ic((/) ; I^_(U) ;P00(Vr) »^a(*/)  denote the set of possible strict

equivalence invariants of (F,G)/U.

(a) 1/ is an e-(G,F)-i.s., if and only if always contains a set

t? (I/) and 1/ has a decomposition
00

1/ - W®1/ (7.51)
00

where W is (G,F)-i.s., *̂0  and ly ={1^ (U) ; 1°}.
00

(b) (/ is an e-(F,G)-i.s., if and only if always contains a set

V ((/) and 1/ has a decomposition
o

V = Vq *U  (7.52)

where U is (F,G)-i.s., l/Q*0  and ly =t^o(V);Ir).

(v) (/ is an e.c.-(F,G)-i.s., if and only if ly always contains sets

and has a decomposition

(7=1/ ®T®(/o 00 (7.53)
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□
Note that in the above result the subspaces W,U,T are not necessarily 

different from the zero subspace; thus, we may state the following remark.

Remark (7.8): For the families of (G,F)-i.s. and/or (F,G)-i.s. we have 

the following properties:

(a) If U is (G,F)-i.s., then V is an e-(F,G)-i.s., if and only if 

contains a set VQ(V)•

(b) If (/ is (F,G)-i.s., then 1/ is an e-(G,F)-i.s., if and only if 

contains a set V ((/) .CO

The distinguishing feature of the families of e-(G,F)-i.s., e-(F,G)-i.s.,

and e.c.-(F,G)-i.s. is that the spectrum contains infinite frequencies; 

this is clarified by the following remark.

Remark (7.9): Let (/ be a (W,U)-p.i.s.

(a) If V is an e-(G,F)-i.s., then for any choice of a basis matrix V 

of (/, the (W(W) ,U(U) )-(G,F)-spectrum of (/ always contains infinite 

frequencies.

(b) If (/ is an e-(F,G)-i.s., then for any choice of a basis matrix V 

of (/, the (W(W),U(U))-(F,G)-spectrum of (/ always contains infinite 

frequencies.

(c) If (/ is an e.c.-(F,G)-i.s., then for any choice of a basis matrix V 

of U, the (W(W),U(U))-(G,F)-spectrum and the (W(W) ,U(U))-(F,G)- 

spectrum always contains infinite frequencies.

The number of infinite frequencies in the above spectra is defined by 

the dimensions of the subspaces V , (/ and (V ,(/ ) in the decompositions oo O O 00

(7.51), (7.52) and (7.53) respectively.
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The presence of infinite frequencies in the spectra of e-(G,F)-i.s., 

e-(F,G)-i.s. and e.c.-(F,G)-i.s. may be further clarified by studying the 

asymptotic properties of appropriate (G,F)-, (F,G)-invariant subspaces. 

These results are based on the work of Jaffe and Karcanias [Jaf. & Kar.-l] 

on asymptotic transmission subspaces of linear systems; the key tool for 

the development of the asymptotic characterisation of e-(F,G)-i.s. and/or 

e-(G,F)-i.s. is the notion of a ’’canonical regular triple’’ which may be 

associated with any triple (F,G;U), where (/c]Rn; this new notion will be 

developed in the following section and allows the reduction of many 

problems of analysis referred to the triple (F,G;U) to standard problems 

of regular state space theory, which may be discussed on special type 

triples (F’jG’j U*)  [Jaf. & Kar.-1].

7.4 Canonical regular invariant realizations of (F,G;U) triples

The algebraic, geometric and dynamic aspects of regular state space 

theory have been studied in terms of the matrix pencil theory [Kar.-l], 

[Jaf.& Kar.-l], [Kar.&MacB.-1] etc,; the particular characteristic of 

regular state space theory is that the pencil sF-G is entirely right 

singular, if the system is controllable [Kar.-2] and it is characterised 

by finite e.d. and c.m.i., if the system is uncontrollable [Kar. &MacB.-l]. 

The problem considered in this section is the investigation of the links 

between the properties of the general triple (F,G;I/), where sF-Ge]Rm n[s] 

is a general pencil, U <=]Rn is a subspace with dimU=d and the standard 

theory of regular state space systems described by the triple of maps 

S(A,B,C) describing a linear system. The results discussed in this 

section provide the basis for the study of dynamic aspects of autonomous 

generalized differential systems presented in the final section of this 

chapter. We first define:
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Definition (7.9): Let (F,G;U) be a triple, where (F,G) elR™ n x]RmXn) 

l/c]Rn be a subspace and diml/=d.

(i) A triple (F,G;U), where (F,G) e]RmXn x]RmXn, V c]Rn is a subspace with 

dimU=d, will be called a regular invariant realization (r.i.r.) of 

the triple (F,G;U), if sF-G is characterised by c.m.i. and possibly 

finite e.d. and the restriction pencils (F,G)/U, (F,G)/V are strict 

equivalent. If (F,G;(/) is a r.i.r. and sF-G is entirely right 

singular, then it will be called a proper regular invariant 

realization (p.r.i.r.); finally, if (F,G;U) is a r.i.r. and n is 

minimal, then it will be called a minimal regular invariant 

realization (m.r.i.r.).

(ii) Let S(A,B) ={x=Ax+Bu,A eIRn n,B eJRnX\£<n, rankB=£} be a linear 

system, X =lRn be the state space of S(A,B), V e!Rn be a subspace 

with dim V =d and let sN-NA eJR^n n[s] be the restricted input-

state pencil of S(A,B). The pair of the system S(A,B) and the 

subspace (/, (S(A,B),U), will be called a regular forced invariant 

realization (r.f.i.r.) of (F,G;U) and shall be denoted by

(A,B,U), if (N,NA;U) is a r.i.r. of (F,G;U). If (N,NA;(/) is 

p.r.i.r., or m.r.i.r., then S. (A,B,U) will be called respectively 

a proper regular forced invariant realization (p.r.f.i.r.), or 

minimal regular forced invariant realization (m.r.f.i.r.) 

respectively of (F,G;U).

/V
The existence of regular invariant realizations (F,G;U) and regular 

forced invariant realizations S. (A,B,U) is examined next; we first x • r •

state the following result, which is used in our present study.

Lemma (7.2): Let S(A,B,C)={x=Ax+Bu,y=Cx,A dRnXn,B eKnXS',CelRII1Xn,Jl,m<n, 

rankB=£, rank C=m} be a linear system, P(s) be the Rosenbrock's system 

matrix pencil, Z(s)=sNM-NAM be the zero pencil and E^(A,B,C) be the



334

Kronecker orbit of S(A,B,C).

(i) If E(Z(s)) is the zet of zero pencils which correspond to systems 

S(A',B*,C') €Ek (A,B,C), then E(Z(s)) is a strict equivalence class.

(ii) If (s-Xp ,i€£;s 1,ie]J,q^^2; e^>0,iep;n^>0,i€<t} is the set of 

strict equivalence invariants of P(s), then the corresponding set 

of strict equivalence invaraints of E(Z(s)) is

Ti Aq'
fz = {(s-X^ 1,ie£;s

n!-n.-l,ie£} (7.54)

where in those q! for which q!=0 are omitted. n

The above result has been established in [Kar. & MacB1] and describes 

the "plus two” property for the i.e.d. and the "plus one" property for 

the c.m.i. and r.m.i. of the pencils P(s) and Z(s) associated with 

S(A,B,C); a proof of this result is given in[Kar.&Hay.,2 ] . Before we 

proceed with the study of r.i.r. of an (F,G;(/) triple we note that if 

U=JRn, the domain of (F,G), then the r.i.r. of (F,G;Kn) will be simply 

referred to as r.i.r. of the pair (F,G). Using Lemma (7.2) we may state 

the following result.

Theorem (7.10): Let (F,G) e]RmXn x>m n, sF-G the associated pencil, 

I(F,G)={(s-Xp ,i€£;s 1,ie)j;e^,i€£;n^,iet} the set of strict 

equivalence invariants of sF-G and let n = £ t  •, n = q., n = . and
t 1 i=l “ i=l 1 e i=l X

n « V q..
q i-11

(i) There exists a Kronecker orbit E^(A,B,C) of S(A,B,C) systems with 

an associated strict equivalence class of zero pencils E(Z(s)) 

for which sF-GeE(Z(s)).

(ii) If S(A,B,C)€E^(A,B,C) and P(s) is the system matrix pencil of 

S(A,B,C), then the set of strict equivalence invariants of P(s)
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is given by

T.i A^i — —
¥p « {(s-Xp ,i€£;s ,ieji,qi=qi+2;ei=e. + l ,ieg;

(7.55)

(iii) If nf=nf, n^nj-y, n£=n£+p, n^n

. T„nxn _ mnx£ mxn ,A eJR , B elR , C eR , where

is the minimal dimension of

S(A,B,C) systems for which parts (i) and (ii) hold true □
The proof of the above result follows immediately from Lemma (5.2) by 

a mere reversion of the steps of the proof given in Appendix (I). The 

existence and construction of r.i.r. of a pair (F,G) and of triples 

CF,G;(/) may now be examined using the results provided by Theorem (7.10). 

The orbit E^(A,B,C) established by the previous result will be called the 

natural Kronecker orbit (n.k.o.) of the pair (F,G). The orbit E^(A,B,C) 

of (F,G) is characterised by a canonical element, the Kronecker canonical 

form, [Th.-l],[Mor.-1],[Kar. &MacB.-l], and it is defined next.

The natural Kronecker orbit E^(A,B,C) of the pair

triple, (A^jB^jCp, the Kronecker

Corollary (7.15):

(F,G) is characterised by a canonical

canonical form, which is defined by

0

0

B 
00

0 _

n xn
A =diag{H(n.),iet} eR n

n 1 ~

n xn
elR °°

nexP
B =block-diag{w(£.) ,ie£} eR ,

txn
C^=block-diag{vtCr]£) ,i^t} eR

AK=diag{Ae,An,Aa>,Af}, CR=

n xn
A£=diag{H(Ei) ,i€g} eR £ £,

c
00

B
E

0

0

0

(7.56a)

°°, Af=diag{J(Xi,Ti) ,ie£}

Boo=block-diag{w(q^) ,ie^}
n«Xp (7.56b) 

eR

t ~ pxnoo
C^block-diagfv (q^ ,iejj} e]R

0

0

c 
n

o

0 0

0
J

n
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where J(X,t ) is a txt  Jordan block that corresponds to s=X, H(f)=J(0,f) 

and w(k)=[0,...,0,1]t, vt(k’) = [ 1,0,... ,0], where w(k) tRk><1 and

Remark (7.10): Let (A^jB^jC^) be the Kronecker form of the natural

Er(A,B,C) may be expressed as

□

a  » t {ak +b k l +kc k )t “1, b = t -1b k r , C = GCr T (7.57)

where T eRnXn, ReR^X\ G e!RmXm, |t | , |r | , |g |*0,  otherwise arbitrary, and

, ,,£xn __ -nxm .L eJR , K eR arbitrary. □
The number n=n_+n +n +n defined in Theorem (7.10) will be called the f ® e n

Kronecker order of the pair (F,G).

Corollary (7.16): Let (F,G) elR^11 xJRmXn, sF-G the associated pencil and 

let I(F,G) have the general form.of Theorem (7.10). For any S(A,B,C)e 

eE^(A,B,C) we have that:

(i) If N is a left annihilator of B and (M/r(C), then the triple

(N,NA;U) is a m.r.i.r. of (F,G) and S. (A,B,|/) is a m.r.f.i.r. 1 • r.

of (F,G).

(ii) There exist elements S(A’,B’,C’)€E^(A,B,C) with (A’,B’)

controllable pairs such that the corresponding triples

(N*,N ’A* ;(/*)  define proper minimal regular invariant relaizations

(p.m.r.i.r.) of (F,G) and S. (A*  ,B’ ;(7f) proper minimal regular 
X • IT •

forced invariant realizations (p.m.r.f.i.r.) of (F,G). □
The second part of the above result follows from the fact that the use 

of output injection (matrix K in (7.57)) affects the controllability 

properties of (A+KC,B) pair ([Kar. &MacB.-1]). An interesting special 

case arises when the pencil sF-G has no r.m.i. and no i.e.d.; then the 
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orbit E^(A,B,C) is characterised by the property that C=0 and thus 

U=]Rn. A pencil characterised by c.m.i. and possibly f.e.d. will be 

referred to as a prime pencil and the associate pair will also be called 

prime. For such pencils we have the following simplified result.

Corollary (7.17): Let (F,G) elRmXn xKm n be a prime pair and let 

T(F,G)»{(s -X.) 1,i€£;e.,i€g}.

(i) There exists a Kronecker orbit E^(A,B) of S(A,B) systems with an 

associated strict equivalence class of restricted input-state 

pencils E(S.(s)) for which sF-GeECS^Cs)).

(ii) If S(A,B)eE^(A,B) and C(s)=[sl-A,-B] is the input-state pencil, 

then the set of strict equivalence invariants of C(s) is given by

¥c = {(s-X.)T,ie£;ei=ei+l,ieg} (7.58)

(iii) If nf= £ T*»  n = E.+p, n=nF+n , £=p, then for every
1=1 nxn nx£ ~

S(A,B)eE^(A,B), AelR , B eR and n is the minimal dimension 

of S(A,B) systems for which parts (i) and (ii) hold true.

(iv) Let S(A,B)eE^(A,B) and N be a left annihilator of B. The triple 

(N,NA;JRn) is a m.r.i.r. of the prime pair (F,G) and S. (A,B;]Rn)
1 • r •

is a m.r.f.i.r. of (F,G).

The Kronecker orbit E^(A,B), derived under input, state coordinate 

transformations and state feedback, is known as the Brunovsky orbit of 

the pair (A,B); E^(A,B) will thus be called the natural Brunovsky orbit 

(n.B.o.) of the prime pair (F,G). The orbit E^(A,B) of (F,G) is 

characterised by a canonical element, the generalised Brunovsky 

canonical form [Kar. &MacB.-l] which is defined next.

Remark (7.11): The natural Brunovsky orbit E^(A,B) of the prime pair
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Brunovsky canonical form, which is defined by

AR = diag{A£,Af}, BR =
B e

0
(7.59)

where are defined by I(F,G) as shown by Corollary (7.15).

Note that the n.B.o. is also parametrised as in Remark (7.10) if we 

set K=0, CK=0, G=0. The results given above for the r.i.r. of (F,G;]Rn), 

or (F,G), may be readily extended to the more general case of r.i.r. of 

(F,G;I/), U eRn, as shown by the following result.

Proposition (7.15): Let (F,G) €]RmXn xRmXn and let (N,NA;P) be a m.r.i.r. 

of (F,G;lRn), or (F,G). For every subspace U elRn, dimV=d, there exists 

a subspace 1/’<=P, dim I/1 =d, such that the triple (N,NA;I/*)  is a m.r.i.r.

of (F,G;U). □
The above results establish the existence of m.r.i.r., as well as 

m.r.f.i.r., and provide the means for their construction. Clearly, for 

a given pair (F,G), or a triple (F,G;U), such realizations are not 

uniquely defined; in fact an orbit of m.r.i.r. is defined for every 

given pair (F,G), or a triple (F,G;U). Nonminimal r.i.r. may be readily 

defined by an appropriate augmentation of the blocks in the triple 

(A,B,C) which corresponds to a m.r.f.i.r. of (F,G). For the case of 

prime pencils the Kronecker order of (F,G) will be referred to as the 

Brunovsky order of the prime pair. For the case of entirely right 

singular pencils we have:

Remark (7.12): Let (F,G) e!RmXn xJRm n be an entirely right singular pair 

(sF-G is entirely right singular). The n.B.o. of (F,G), E^(A,B), is 

made up from controllable pairs (A,B). Furthermore, E^(A,B) is 

characterised by a canonical element, the Brunovsky canonical form which 
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is defined by (A^B^), where A^=A£, BR=B£ and A£,B£ are defined by I(F,G) 

as shown by Corollary (7.15).

The essence of the m.r.i.r. of a triple (F,G;(/) is that it reduces the 

study of properties of (/ with respect to (F,G) (expressed by the 

algebraic, geometric structure of (F,G)/l/) to an equivalent problem 

defined on a minimal triple (N,NA;U) for which the pair (N,NA) is prime, 

or entirely right singular. The Kronecker order of a m.r.i.r. is defined 

by the set of strict equivalence invariants I(F,G) of (F,G) as shown by 

Theorem (7.10). Note that if (F,G) €RmXn x]Rmxn, n>n and equality holds 

if and only if (F,G) is prime. Finally, note that using the notion of a 

m.r.i.r. we may provide an asymptotic characterisation for e-(F,G)-i.e., 

e-(G,F)-i.s. and e.c.-(F,G)-i.s. In fact, if V is a simple («}-(F,G)- 

e.d.s., then we may always construct a m.r.i.r., (N,NA;(/), of (F,G;(7), where 

(N,NA) is entirely right singular. Given that sN-NA may be considered as 

the restricted input state pencil of a controllable pair (A,B), then V is 

an infinite e.d. subspace of the system S(A,B) and the asymptotic results 

of Jaffe and Karcanias, 1981, [Jaf. & Kar.-1] apply for the characterisation 

of 1/ and thus of U. We should point out however that the basis tools used 

in this characterisation, i.e. the sequences of generalised B-spaces {(/ }s 
with B-value s, are subspaces of ]Rn and not of JRn. The notion of r.i.r. 

and r.f.i.r. of a triple (F,G;U) plays an important role in the study of 

the solution space of autonomous generalised differential systems S(F,G) 

as will be shown next.

7.5 The solutions of the differential system S(F,G) and the dynamics 
of the fundamental invariant subspaces

7.5.1 Introduction

The aim of this section is the study of properties of the solution

space of the differential systems
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S(F,G): Fx(t)«Gx(t)<->(pF-G)x(t)=0 (7.60a)

£(F,G): Fx(t)=Gx(t)<=>(F-pG)x(t)=0 (7.60b)

associated with the pair (F,G) €JRmXn xKmXn. Note that p=d/dt is the 

derivative operator and x(*),x(*):  &+->!Rn, are called respectively the 

generalised state (g.s.), dual generalised state (d.g.s.) of the pair 

(F,G); the space Kn will be referred to as the state domain of the pair 

(F,G). The differential systems S(F,G),^(F,G) are assumed to be excited 

by arbitrary initial conditions x(0 ),x(0 ) elRn. The assumption of 

arbitrariness of initial conditions is essential to our analysis, since 

by making it we may also treat the important case of inconsistent initial 

conditions [Verg.-l],[Cam.-l]. An implicit assumption in the study of 

solutions of general differential systems describing dynamical systems is 

that ’’the dynamical systems have existed for a period prior to t=0 also”. 

Under this condition the initial values at t=0 , which determine the 

system solution, are themselves constrained to satisfy the system 

[Ros.-l]. The resulting constraints then guarantee that no impulsive 

behaviour occurs at t=0, since in effect any impulses are moved back in 

time to the instant of formation of the system. By considering 

unconstraint initial values, we may treat the case of systems formed at 

t=0, for which the initial values at t=0 satisfy the differential 

equations of a different dynamical system (see the behaviour of electric 

networks at "short-circuit" conditions etc. [Verg.-l]).

Differential systems of the type

D(p)^Ct) = N(p)u(t) t>0 (7.61)

where D(p) e!R[p]VX\ N(p) elRXJX£, D(p) nonsingular, have been studied by 

Vergese [Verg.-l] and Callier & Desoer [(h 1. & Des.-l ] etc. The emphasis 

in [Cal. &Des.-l] is on consistent initial conditions, whereas in 

[Verg.-l] both consistent and inconsistent initial conditions are
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examined. Differential systems of the type

Ax(t)+Bx(t) « f(t) t^O (7.62)

where A,BelRVXV, f(t) input vector, have been studied by Campbell [Cam.-l], 

Vergese [Verg.-l], Wilkinson [Wil.-2] etc.; in [Cam.-I] and [Verg.-l] the 

case of both consistent and inconsistent initial conditions is considered. 

The differential systems S(F,G) ,<§(F,G) arise in the study of linear systems 

and in a sense are more general than those defined in (7.61) and (7.62), 

since the pencil sF-sG is allowed to be singular. It will be shown that in 

general systems of the S(F,G) type do not define dynamical systems, but 

they are related to dynamical systems in a specific way. The distinguishing 

feature of <S(F,G) differential systems, when they are compared to those 

described by (7.61),(7.62), are the nonuniqueness of the solutions and the 

redundancy in the description of the state vector; the behaviour to 

consistent and inconsistent initial conditions is common to those described 

by (7.61),(7.62).

The type of solution of the differential system S(F,G) C§(F,G)) depends

on the type of functions over which the differential system is studied.

00

In the following we shall consider the class of C (infinitely

differentiable functions) and the class D’ of Bohl distributions. Note D

that the class of time functions, whose Laplace transform is a strictly
00

proper rational vector, is precisely the class of C -functions on t>0,
m k

that are sums of exponential polynomials in t of the type £ (a, tK)exp(Xt), 
distribution k=0 k

Vt>0 . By definition, a BohlYu"may be expressed as u=u.
k (..

u. = 7 a.<5^(t) and u 
imp 1 reg

its Laplace transform is a

imp
00 a 

is a C -function; thus ueDg, if

+u , where reg’

and only if

rational function. Clearly, D’D contains as a

co a
subset the C class, which in this context are referred to as regular

Bohl distributions, or Bohl functions; note that ueD^ is called impulsive

• 00
if u =0. The importance of the extension of the class C to the reg r
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distributions to the D’ distributions is that it allows the handling of D

the difficult situations associated with nonconsistent initial conditions.

Finally note that the class of scalar Bohl distributions Dg forms a 

field with convolution as multiplication.

In the following we shall consider the differential system

S(F,G): Fx(t)=Gx(t), (F,G) e]RmXn xKmXn (7.63)

and the results may be readily translated for the £(F,G), by using the 

properties of the e.d. type of duality.

Definition (7.10): Let (F,G) e]RmXn xKmXn, tQ elR and c elRn.

(i) The vector c is said to be a consistent initial vector (c.i.v.) 

of S(F,G) at t , if (7.63) possesses at least one solution from
00

the space of C -functions, or the space of D’-distributions, with D
oo

x(t )=c. If the solution is from C ,D*  spaces, then c will be
— o — b —

OO
referred to more specifically as C -consistent initial vector

00
(C -c.i.v.), D’-consistent initial vector (D’-c.i.v.)—$------------------------------------ ----------------------------

respectively. The vector c will be called an inconsistent initial 

vector (i.i.v.) of S(F,G), if (7.63) has no solution from the 

space of D’-distributions, when x(t )=c. The space of i.i.v.
D ” O

will be denoted by C*  and shall be referred to as the redundancy 

space of S(F,G). The space of c.i.v. will be denoted by C and 

shall be referred to as the initial space of S(F,G).

(ii) A vector set ceC will be called regular, if the initial value

problem (7.63) with x(tQ)=c has a unique solution; otherwise, 

i.e. the solution is not uniquely defined, it will be called 

nonregular. The subsets of C of regular, nonregular c.i.v. will 

be denoted by r respectively.
£

(iii) The differential system S(F,G) will be called regular if C =0 and
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every c.i.v. c is regular, or equivalently, when C=Cr=]Rn ; 

otherwise, i.e. C *0,  or C =0 and *0,  the differential

system S(F,G) will be called singular.

The above definition extends the notion of consistent initial condition 

defined by Campbell [Cam.-2], since the notion of consistency is extended 

to the case where a solution exists in the space of Dg distributions. 

In the literature, [Verg.-l],[Cam.-l,2], the term "inconsistent initial 

condition" is used for S(F,G) systems, described by regular pencils, for

• 00which the initial value problem has no solution from the C space

(although a solution from the Dg space exists). Here, the term 

"inconsistent initial vector" is reserved for the general case, where 

the initial value problem has no solution even from larger space of 

D’ distributions. The terms "regular", "singular", used for the
D

differential system S(F,G) will be shown to be in exact correspondence

to the characterisation of S(F,G) based on the nature (regular,singular) 

of the associated matrix pencil.

We define as a normal state trajectory (n.s.t.) of S(F,G) any Co-

solution x(«): (0”,«)->lRn of (pF-G)x(t)=0, t>0; hence by definition 

x(0~)=x(0+). Similarly, we define as a distributional state trajectory 

(d.s.t.) of S(F,G) any Dg-solution x(*):  (0 ,°°) ->JRn of (pF-G)x(t)=0, t>0. 

In general, for the latter case, x(0-)*x(0 +). By an impulsive state 

trajectory (i.s.t.) we mean a d.s.t., x(t)eDgn, which is expressed as 
k

x(t)= % x.6X(t), x. e!Rn. The set of solutions of S(F,G) which
i-0_1 -1

correspond to all £€<Sr will be denoted by X*.  and will be called the

c dregular solution space of S(F,G). Let us denote by Cr,Cr the subsets of 

Cr which yield C°°,Dg but not C°° solutions respectively, and by X^,X^ the 

subsets of Xr which correspond to C^,C^ respectively. X^,X^ will be 

called the C°°-regular solution space, Dg-regular solution space
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correspondingly and Xr=X%X^. The set of solutions of S(F,G), which 

correspond to all ceC will be denoted by X and will be called 

the nonregular solution space of S(F,G). The set of solutions which 

correspond to all ceC will be called the solution space of S(F,G) and 

shall be denoted by X; clearly, X=X uX Note that X may haver n. r. n • r •
00 

elements from the D’ space and/or from the C space.15

In this section we shall concentrate on the study of the X solution 

space and theC initial space, which generates X. Of special interest is 

the characterisation of the corresponding subsets of X,C defined before. 

Such a study is intimately related to the nature of the set I(F,G) of 

strict equivalence invariants of the pencil sF-G associated with S(F,G). 

It will be shown that each distinct type of invariant characterises a 

distinct dynamic property of S(F,G) and leads to a characterisation of 

the subsets of X,C. The results derived, provide the means for the 

dynamic characterisation of the various types of invariant subspaces of 

the domain of (F,G). In the following, unless it is specifically 

mentioned, it will be assumed that I(F,G)={Ic(F,G);Ir(F,G);Pq (F,G);

V (F,G);P (F,G)} where the individual types of invariants have the oo a

general expression given in (7.1); a differential system with such a 

structure of invariants will be referred to as a general differential

7.5.2 The differential system S(F,G) and strict equivalence 
transformations

We start off by examining the effects of strict equivalence

* . . 
transformations on the spaces X, C and C . We examine first the nature

of X and then the effect of left, right, left-right strict equivalence
£

transformations on the spaces X,C of the differential system S(F,G).
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Proposition (7.16): The solution space X of a general S(F,G) 

differential system is an R-vector space. j-

The proof of this result is rather obvious. In fact, if X](t),X£(t) 

are solutions of (7.63), then by observing that the real matrices and 

the differential operator are linear it follows that a^Xj(t)+a2x2(t)eX, 

Note, that the above arguments hold true for any Xj(t),X£(t) 

stimulated by any initial conditions in C.

Proposition (7.17): Let (F,G),(F*, G’) eRmXn x]Rmxn, R eRmXm, | R | *0,  and 

let F'=RF, G’=RG. Consider the differential systems

(pF-G)x(t)=0, t>0, (pF’-G’)x’(t)-0, t>0 (7.64)

with solution spaces X,XT and redundancy spaces C ,C respectively. 

Then, X=X’ and C =C .

Once more the proof is rather straightforward and it is omitted. For 

the case of right strict equivalence we have.

Proposition (7.18): Let (F,G), (F,G) e!RmXn x]Rmxn, QeRnxn, |Q|xO and let 

F=FQ, G=GQ. Consider the differential systems

(7.65)

with solution spaces X,X and redundancy spaces C ,C respectively. The 

maps f: X-+X: x(t)eX->f(x(t))=Qx(t)=x(t)eX and f*:  C-*-C  : ceC ->f (c)=Qc=ceC 

are linear bijections (isomorphisms) from X onto X and C onto C

correspondingly. □
The proof is obvious and it is omitted. By combining the last two

propositions we have.
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Theorem (7.11): Let (F,G), (F” ,G") € IR^xIR^** 1, Reffi™, Qel™, |r |,|q |#0 

and let F"=RFQ, G"=RGQ. Consider the differential systems

(pF-G)x(t)»0, t^O (pF"-G”)x"(t)=0, t>0 (7.66)

with solution spaces X, X" and redundancy spaces C*»  C* ” respectively. The 

maps'f: X"-»X: x"(t) eX" +f(x"(t)) & Qx"(t) = x(t)e X and f*:C*"+C*:  c" 6 C*"*  

f(c") = Qc"= £ e C*  are linear bijections (isomorphisms) from X" onto X and 

C* ” onto C*  correspondingly.

□

Theorem (7.11) implies that if x"(t) is a solution of S(F“,G"), then 

Qx”(t)=x(t) is a solution of S(F,G) and vice versa. Thus, strict equivalence 

transformations may be used for simplifying the description of S(F,G) and then 

studying the properties of the solution space on a simpler description. In 

the following the Kronecker canonical form, (F^,G^), of the pair (F,G) will 

be used and the results will be finally translated back to the original des-

cription. Thus, let (R,Q) , R € IR111X111, QeJRnxn, |r | ,|q |^0 such that

(R,Q)
(F,G) T V---±(RFQ,RGQ) = (F. ,G, ) (7.67a)

(K-l,Q-l) k k

Fk = block-diag. (F^;F£;Ff jFj-, Gk = block-diag.{G^;G£;GfjG^} (7.67b) 

The pairs (F ,G ), (F ,G ), (Ff ,G-), (F ,G ) are associated with the canoni- 

cal blocks of the Kronecker form characterising the sets of r.m.i., c.m.i., 

f.e.d., i.e.d. respectively. Clearly, the pair (R,Q) is not uniquely defined. 

The reduction to Kronecker canonical form of (F,G) implies the following re-

duction on S(F,G)

(R,Q)

S(F,G): Fx=Gx--------------- > S(Fk’Gk): FRx’ = Gkx’, x=Qx’ (7.67c)
(R-1,Q-1)
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The g.s. x’Ct) S(Fk,Gk) wi^ ca^ed the Kronecker generalised state.

The spaces X^, C*,  associated with S(F^,G^) will be referred to as the

Kronecker solution space, Kronecker redundancy space, Kronecker initial space 

respectively of the differential system S(F,G) and they characrerise the strict 

equivalence orbit of S(F,G) systems and not the invividual S(F,G).

The precise relationship of Xk> C*,  Ck to the spaces X, C*,  C of S(F,G) is 

defined by the isomorphism introduced by the matrix Q. If we now partition 

x’(t) according to the partitioning of (Fk,Gk) i.e.

x*  (t) = [x^(t)t;x£(t)t;xf(t)t;x<jo(t)t]t, then S(Fk,Gk) is equivalent to the fol-

lowing set of subsystems

S(Fk,Gk) :Fx' (t)=Gx* (t) <=>

S(F ,G ):F x (t)=G x (t) ? c eV cs (7.68)

S(F ,G ):F x (t)=G x (t) 
e e e~E e—e

(7.69)

S(Ff,Gf):Ffxf(t)=Gfxf(t) (7.70)

S(F ,G ):F x (t)=G x (t) (7.71)
OCT-OO00 00 OCT"-00

By studying the properties of the subsystems S(F^,G^), S(F^,G^), S(F^,G^),

S(F ,G ) the results may be transferred to S(F. ,G. ) and thus finally to the oo oo K K

original description S(F,G). In the following we shall examine the case of 

pencils characterised by only one type of invariants and possibly zero r.m.i.; 

the results are then used to provide a dynamic characterisation of the sub-

spaces V of the domain of a general pair (F,G) for which (F,G)/V is characte-

rised by only one type of invariants. The basis for the dynamic characterisa-

tion of subspaces is the nature of the solutions of the general system S(F,G) 

which are restricted in the given subspace (/ for initial conditions taken from 

(/; such solutions are defined by the solutions of the (/-restricted differen-

tial system S(FV,GV). Finally, the solution space properties of a general sy-

stem S(F,G) are examined and the dynamic properties of the various types of 

invariant subspaces is given.
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7. 5. 3.  E ntir el y  l eft si n g ul ar diff er e nti al  s yst e ms

L et  ( F, G) e I R ^ Hx I R 1 0 X 1 1 a n d S( F, G)  b e t h e ass o ci at e d diff er e nti al  s yst e m.

S( F, G)  will  b e  c all e d e ntir el y l eft si n g ul ar ( e.l.s.) if ( F, G), or  t h e ass o -

ci at e d  p e n cil  s F- G is e ntir el y l eft si n g ul ar. F or  e.l.s. p airs ( F, G), I( F, G) =

( F ,̂ G ^). T h us, ( 7. 6 7 c) m a y  b e  writt e n  as

( R, Q)

S( F, G): F x = G x 5 = ± 1 S( F c G ? : F? V G A ’
( R , Q‘b

( 7. 7 2 a)

w h er e

a n d

o , 
g » n

° g > n

iii

+ 
1

*b0 
| 

1 
1

1 
hJ

1 
1

0 * -
% i 0  
c g' +i ;

»

_ _ _

1 1 1 1 1 1 1 1

✓
 

/
lz 1 1 1 1

0
: %

0

< 7. 7 2 b)

^ + 1) X S ( 7. 7 2 c)e  i Rtt + 1) x 5

F or  a g e n er al  diff er e nti al  s yst e m h a vi n g  a n e.l.s. p art  w e  h a v e t h e f oll o w-

i n g r es ult [ K ar. &  H a y.  - 2].

Pr o p ositi o n  ( 7. 1 9): L et  ( F, G) e  I R ^ ^I R1 0 X 1 1 , S( F, G)  b e t h e ass o ci at e d diff er e nti al  

t
s yst e m a n d  l et n  =  E C  b e t h e n u m b er ass o ci at e d  wit h  t h e s et of  r. m.i., I ( F, G)

r i- 1 1  r

of ( F, G)

(i) T h e  s yst e m S( F, G)  is e.l.s. if a n d o nl y  if n = n r « T h e n,  m = n r+t  (t = n u m b er 

of  r. m.i.).

(ii) If n r= n,  i. e. S( F, G)  is e.l.s., t h e n t h e o nl y  s ol uti o n of  S( F, G) ( o v er 

t h e distri b uti o ns  s p a c e) is x(t) = O, t > 0.
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(iii) If 0<n^<n, i.e. S(F,G) is a general differential system, then there is 

a number n^ of independent linear relations among the coordinates of the 

generalised state vector 2<(t) of S(F,G).

Proof

(i) The first part follows by inspection of the Kronecker form

(ii) By (7.72)

have:

and if xr=[x^ • » then for the non zero
C V+l ”^t

blocks we

(iii)

L x

Because of

- L 2^ ,

the (7.72c)

(7.73a)

that the only solution

structure of (L ,L ) blocks, it is

of (7.73a) for V j=g’+l,...,t is the

readily shown

zero solu-

tion. Since x^=0^ and Q

If 0<nr<n, then S(F,G)

invertible we have that 2c(t)=£, t£0.

is a general differential system. Let (R,Q) be

j=g'+l,...,t

a pair of strict equivalence transformations thae reduces (F,G) to the

Kronecker form (Fk»G]P’ We maY write (Fk»G^)=(block diag.{F^,F}, 

block diag.{G^,G}), where (F,G) corresponds to all other invariants 

from r.m.i. By partitioning x, accordingly, i.e. x =fx^, x*] 6, S(FV,GJ
K K. Q K K

apart

is reduced to the following two subsystems:

and Fx = Gx (7.73b)

By part (ii) x(t)=0, t>0 is the only solution of S(F ,G_) and thus

A -1
Q=Q

from which

Qxx = 0 Q^IR11^11 and x = Q£x (7.73c)

the first of the above conditions expresses the existence of n^ linear

relationships (Q^ has full rank) among the coordinates of x.

□
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From the above result it follows that if S(F,G) is e.l.s. the C={0} and 

the redundancy space C*=IR n-{0}. For a general differential system with nr>0 

the above result demonstrates that the coordinates of generalised state vec-

tor are not independent, but they satisfy n^ linear relations. The index n^ 

has been previously defined as the left-(F,G)-order of IRn, C^(F,G;]Rn); be-

cause it expresses a number of independent relationships amongst the coordi-

nates of x(t) it will be also referred to as the reduncancy index of S(F,G). 

If n^=0 (i.e. (F,G) has only zero r.m.i.) depence relationships of the type 

described above do not exist amongst the coordinates of x(t). The investiga-

tion of whether there exist other depence relationships, which of course is 

connected with the nature of the C*  space, cannot be answered unless we exa-

mine the solvability of the other subsystems (7.69), (7.70), (7.71); however 

we may state the following remark.

Remark (7.13): The redundancy space C*  of a general differential system S(F,G) 

is a nonempty set if the left-(F,G)-order of JRn, C^(F,G; ]Rn)>0. Furthermore, 

if the domain IRn is expressed as in (7.38a) i.e.

]Rn = v $ V ev eV ev (7.74)

where ={I (F,G);I°}, then every c € V , C^0_, is also a vector in the C*  
r r Q

space of S(F,G) .

□
The above results enable us to give the following important dynamic proper-

ty of the subspaces of the domain of a general pair (F,G).

Preposition (7.20): Let (F,G) € 111X11, Vc3Rn be a subspace and let

dimV=d. If the left-(F,G)-order of V, C^(F,G;V)>0, then there exist initial 

vectors x(0) eV such that trajectories of S(F,G) starting from x(0), leave 

the subspace V.
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Proof

To show that for some x(0) 6 U there exist trajectories that leave 1/ we ha-

ve to show that the restricted differential system S(FV,GV), V is a basis ma-

trix of U, has no solution for some initial vectors v(0); equivalently, we 

have'to show that the C*  of (FV,GV) is nonempty. By Remark (7.13) and C^(F,G;(/)>Q 

the result is established. □
7.5.4. Entirely right singular differential systems

Let (F,G) e IR^HxIR111X11 and S(F,G) be the associated differential system.

S(F,G) will be called entirely right singular (e.r.s.) if (F,G), or the asso-

ciated pensil sF-G is entirely right singular. An extension of the notion of 

e.r.s. differential systems may be introduced by allowing in I(F,G) also a 

set of zero r.m.i.; differential systems of this type will be referred to 

as extended entirely right singular (e.e.r.s.).

Remark (7.14): Let 5(F,G) :Fx(t) =Gx(t) be an e.e.r.s^ differential system. There

always exist transformations R e JRmxm, Rl^O, such that

S(F,G)

(R,I)

T------- > S(F’,Gf) (7.75)

where S(F,G):Fx(t):Gx(t) is e.r.s. Clearly, if X, X are the solution spaces 

of S(F,G), S(F,G) respectively, then X=X.

□
From the above remark it is clear that the study of e.e.r.s. is identical 

to the study of equivalent e.r.s. systems and this in the following we shall 

consider the case of e.r.s. systems. For e.r.s. pairs (F,G), I(F,G)=IC(F,G)= 

{£=...=£ =0<£ ,,—...—£ } and thus the Kronecker form (F. ,G. )-(F ,G ). Thus
1 g g+1 p K. K. £ £

(7.67c) may be written as
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S(F,G):Fx(t)=Gx(t) < — S<Fe-Ge> =Fexe(t)=Gexe(t)
(R-1,Q-1)

(7.76a)

where

*

f 
»
1 
f

l  ; o
g+i;

F£ - o ;■
m,g » —

t 
t 0 |LO
t 
f
i 1

e jRex<e+1)

For an e.r.s. differential

& Hay. -2].

A emex(e+l)

system we may state the following result

(7.76b)

(7.76c)

[Kar.

Proposition (*7.21) ; Let (F,G) e IR131*1^ JR111X11 be an e.r.s. pair, S(F,G) be the 

associated differential system and let I(F,G)=Ir(F,G)={ei, iep}.

(i) For all x(0 )e IRn, there exists a family of solutions £(x(0 )) of

S(F,G) which is nontrivial (contains at least one non zero elelment).

(ii) There are p independent linear combinations of the coordinates of the 

g.s.v. x(b) which may be arbitrarily assigned for ¥ x(0 ) e IRn.

Proof

We seek solutions over the space of generalised functions which have Lapla-

ce transforms. We start from the canonical description (7.76); by taking La-

place transforms [Doe. -1] with x (0 ) (the transformed to the new frame ini- 

tial condition) we have

(sF -G )x (s) = F x (0")
e £ ~€ £-£

where x (s) = £{x (t)}. If we now write

(7,77a)
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s -1 0 ... 0

0 s -1 ... 0

sL -L
£ £

0 0 0 s

I 
1 
I 
f 
« 
I 
t 
I 
» 
» 
t 
f 
» 
I

i

0

0

= [Te(s), (7.77b)

and partition jL(s) as

£ <s) 4 (s)t]t
p

V1 ’

(7.77c)

x^ (s) =[x|(s),...,x^ (s), x^, +1(s)]t=[x^.t(t); (s)]L, j=g+l,...,p

j j j j 3+1
(7.77a) yields the equivalent system of equations

then

(7.78a)0 *x (0 ) 
m,g - g

■T_ (s)i 0

es+i :!
xl (s)

g+1

1 1 1 °?- 1 f— o
1

*I+1 +l(s) 
eg+l

\ T
•

J T
•

t
V
1

1
\

V 
f

1 
t

f 1
L

%
%

f 
f
»

o ;t (s )
L : p _

xl (s)
^P

0

: p

Xe>(S)

+

(7.78b)

where x (0 ) is the part of x (0 ) that corresponds to the non zero 
“£

that excludes the zero block. Clearly, for all

blocks

of F ; F is 
£ £

x (0 ) and all admissible functions (7.78a) is trivially satisfied. Since
o

diag{T (s), j=g+l,...,p} has full rank over ]R(s), a family of solutions

of (7.78b) exists over the space of admissible functions for arbitrary x (0 ) 
£

and arbitrary choice of (s),...,x^ .(s)} (from the space of admissible
£g+l "^P

functions). By transforming the result buck to the original frame (S(F,G) sy-

the part of F
£

stem) the result is established. □
The above result establishes the existence of a family of solutions E(x(0 )) 

for V x(0 ) e IRn if S(F,G) is e.r.s., or e.e.r.s. The monuniqueness of the
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solution, clearly implies that the differential system S(F,G) does not defi-

ne a dynamical system; however, it is related to forced dynamical systems. 

This relationship will be investigated next, and the elements of the E(x/0 )) 

family will be parametrised in terms of external inputs of an equivalent sy-

stem. Of crucial importance in this investigation is the notion of m.r.f.i.r. 

of the pair (F,G) or of the triple (F,G;3Rn). It is worth pointing out that 

the family of solutions E(x(0 )) is defined over the space d £, where DL is 

the space of distributions with a Laplace transform [Doe. -1]; this family 

will be denoted by £^(x(0 )), in short. A subset of are the Bohl distri-

butions D’ (distributions with a rational Laplace transform); the subset ofB
E (x(0 )), defined over D* n will be denoted by E_(x(0 )). For the study of 

D B D

holdability properties of trajectories in a subspace, it will be shown that 

the E (x(0 )) family is sufficient for our investigation.

Remark (7.15): For every x(0 ) e ]Rn, the families E_(x(0 )), E„(x(0 )) ofD D
the e.r.s. differential system S(F,G) are ]R-vector spaces.

□
By Corollary (7.16) we have:

Proposition (7.22): Let (F,G) e IR^^IR111X11 be an e.r.s. pair, I(F,G)=lr(F,G) = 

iep} and let E^(A,B) be the n.B.o. of (F,G).

(i) The E^(A,B) orbit is controllable and it is characterised by the set

{<7^:<7^“e^+l, i€p} of controllability indices.

(ii) Let S(A,B)e E^(A,B) where

S(A,B): x(t) = Ax(t)+Bu(t), x€lRn, ue!Rp (7.79a)

sN-NA e lRraxn[s] be the corresponding restricted input-state pencil and let 

sF-G=R(sN-NA)Q, RC]R111X111, Qe]Rnxn, |R| , |Q|#0.

A B ~If E^’ (x(0“) is the family of solutions of S(A,B), that correspond to 

hte given x(0 ) and all u(t) eDP and En(x(0 )) the family of solutions ofL U
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S(F,G) which correspond to x(0 )=Qx(0 ), then EA,B(x(0 )) and ED(x(0 )) are 

isomorphic. Furthermore, the family E^CxCO )) is given by

x(t) = Q{eAtx(0“) + J* teA(t‘T)Bu(T)dT} VG(t)£D?> (7.79b)
o~ L

Part (i) follows from Corollary (7.16). For any S(A,B) eE^(A,B) we have 

that

S (A, B): x=Ax+Bu<=> Nx=NAx, u=B+(x-Ax) (7.80)

where N,B+are left annihilators, inverse of B. Furthermore, the pencil sN-NA 

and sF-G are strict equivalent and thus, their solution spaces are isomorphic 

i.e. every solution of S(F,G) defines a solutionof S(N,NA)and vice versa. The diffe-

rentiability, in the distributional sense of the elements of E^(x(0 )) is 

essential for the definition of u_(t) in the equivalence defined by (7.80).

□'
The above result demonstrates that the solution space X of the e.r.s. sy-

stem S(F,G) is isomorphic to the solution space of a proper m.r.f.r. descri-

bed by the S(A,B): x=Ax+Bu forced linear system with (A,B) controllable; thus 

we may state

Remark (7.16): The properties of the solution space £^(x(0 ) of an e.r.s. 

differential system S(F,G) are completely described by the properties of the 

solution space of a controllable forced linear system S(A,B) which corresponds 

to a given initial condition x(0 ) and any control input ti(t) eD^. Further-
Li

more, every solution .x(t) €E_(x(0 )) may be parametrised by a u(t) e 0^ de- 
L/ L

fined by

u(t) = B+{x(t)-Ax(t)} (7.81)

□
From the above results, it is obvious that the controllability properties 

°f the standard linear theory may be transferred to the case of autonomous
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differential systems. This topic will be examined next. Before we proceed, 

it is worth pointing out that the E (x(0 )) family of solutions contains as
D

00
a subset those solutions which are defined from the space of C functions 

(functions with a strictly proper rational Laplace transform). This subfami-

ly will be denoted by Ec(x(O )).

Proposition (7.23): Let (F,G) G 1R111X11 be an e.r.s. pair, S(F,G) the associated 

differential system; £p c^ e 3Rn and let Eg(c^), Ec(Cj) be the families of 

solutions of S(F,G) which correspond to x(0 )=£p

(i) For V (c.,c_) pair, there exists a distributional trajectory x(t)GE1J(c1)
1 Z D —1

such that x (0+)=£2*

(ii) For ¥ (Cp^) Pair» there exists a normal state trajectory x(t)eEc(£^)

such that x(to)“C2 f°r soma to£0. _

This result follows immediately be Remark (7.16) and the standard results 

on reachability of linear systems (see [Won. -l],[Kai. -1]). Part (i) expres-

ses the property that any two points in the space IRn may be connected by a 

distributional trajectory in "zero time” [Kar. & Kour. -2],[Kai. -1], while 

part (ii) expresses the standard notion of reachability [Kai. -1]. The above 

property motivates the following definition.

Definition (7.11): Let (F,G) G IR^^IR111X11 be a general pair, S(F,G) the as-

sociated differential system, and C the initial space of S(F,G). For a c^eC, 

we shall denote by Efi(£p, E^(£p the families Dg-distributional, C°°-trajec- 

tories of S(F,G) which are excited by x(0 )=£p We define:

(i) A pair (CpC^eCxIR will be said to be D^-reachable, C -reachable, 

if there exists x(t)eEg(c1), x’(t)eEc(c1) respectively and to^0 such 

that (x(0’)=£p x(tg)=c2) , (x’(0 )=£p corresP°ndinS1y’
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n 00(ii) The set of vectors c€lR for which (0,c) is D’-reachable, C -reachable — D

will be denoted by R^, respectively; R_, R_ will be called the D’- D L D c —D—

reachable set, C -reachable set of S(F,G). The set Rj, R* which are 
— 1 ".... . ' D C

of R_, R_ respectively with respect to IRn will be refer- 
D U

D’-nonreachable-,—- - -

complementary

red to as the
00

C -nonreachable-set of S(F,G) correspon-

dingly.

(iii) If every pair
oo

D’-reachable, C -reachable then the

system (F,G)

eCxIRn is

will be called D’-reachable, C -reachable respectively.—D——————  ■ -  _
00

Because of the linearity we may state the following:

Remark (7.17): S(F,G) is Dj,-reachable, C -reachable if every pair (0,c), ceIRn 
——.... —... ■

00
is D’-reachable, C -reachable respectively.

B □

Clearly, this remark simplifies the study of reachability. For the sets

R_, R_, linearity implies the following property.
D C

Remark (7.18): The sets R„, R^ of a general system S(F,G) are 1R-linear vec- ■ - - - B c
00

tor spaces. Furthermore, S(F,G) is D’-reachable, C -reachable if and only if D
R =IRn, R =IRn respectively.

B C

By Proposition (7.23) and Remark (7.14) we have:

Remark (7.19): If S(F,G) ia an e.e.r.s. differential system, then it is D^-
00

reachable and C -reachable.

The converse of the latter result will be studied in the last section. Our 

attention is focused next on subspaces of the domain of a general pair (F,G). 

Motivated by the standard results of the geometric theory [Won. -1], [Bas. & 

Mar. -1], [Will. -1] we give the following definition for S(F,G) systems.

Definition (7.12): Let (F,G) elR^^IR111X11 be a general pair, S(F,G) the asso-

ciated differential system, E_(c), E„(c) the D’-distributional-, C°°-familiesB — C “ B
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of trajectories for a x(0 )=c.€JRn and let Ve]R be a subspace.

00 00
(i) The subspace \J will be called a C -holding subspace (C -h.s.), if for

V x(0 )*ce(/,  jx(t)eEc(c) such that x(t)e(/ , V te3R • 

(ii) The subspace V will be called a D^-distributionally holding subspace

' (Dl-h.s.), if for ¥ x(0_)=ce(/ , 3 x(t)e£_(c) such that x(t)el/, V teIR+. 
B b

CO 00
(iii) The subspace V will be called a C -reachability subspace (C -r.s.), if

(iv) The subspace V will be called a D^-distributionally reachability sub-

space (Dg-r.s.), if for ¥ 3^° and x(t)eZB(c1), such that

x(0 )=c1» x(tj)=£2 and x(t)e(/, ¥ te!R+.

□
We will denote by W_(F,G), W_(F,G), K_(F,G), K (F,G) the families of all G C d

C -h.s., D’-h.s., C -r.s., D*-r.s.,  respectively defined on a pair (F,G). From
D D

the definition, the following properties may be readily verified.

Remark (7.20): The families of subspaces H„, K„, defined on a general G B C B

differential system S(F,G) satisfy the properties.

□
co

To show the above properties take c_2=— in the definition of C -r.s., D&- 

r.s. The families of subspaces defined above are extensions os the standard 

notions of the geometric theory to the case of S(F,G) differential systems. The 

links between the standard dynamic notions and those defined here, will be 

explored in the last section by using the notion of m.r.f.i.r. of (F,G;U)» 

The properties of subspaces mentioned above may be checked by investigating 

the properties of solution space of differential systems associated with (/.

Definition (7.13) : Let (F,G)€lRniXnxIR111X11 be a general pair, S(F,G) :Fx(t) = 

Gx(t), be the associated differential system, l/cIRn be a subspace and Va
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basis matrix of V. We define

S(FV,GV):FVy(t)=GVv(t), x(t)=Vv(t) (7.82)

as the (/-restricted differential system of S(F,G). The initial, redundancy 

space of S(FV,GV) shall be denoted by C^, respectively. The subset of
* 00 

consisting of all oeC^ for which there exists at least one C -trajectory will 

be denoted by C^. Clearly, if dimU=d, then Cy, Cj, are subsets of ]Rd. All 

other definitions given for S(F,G) carry over in a natural way the case of

S(FV,GV). □
By definitions (7.12), (7.13) and Proposition (7.20) we have:

Proposition (7.24): Let (F,G)elRmXnxIR111X11 be a general pair, l/cIRn be a sub-

space, dim(/=d, C^(F,G;(/) the left-(F,G)-order of (/ and let S(FV,GV) be the 

(/-restricted differential system of S(F,G).

(i) Necessary and sufficient conditions for 1/ to be <a D^-h.s., is that i

(ii) Necessary and sufficient condition for (/ to be
00

a C -h.s. , is that C=.

(iii) Necessary and sufficient condition for V to be
00

a C -r.s. are thar

and S(FV,GV) is C°°-reachable.

(iv) Necessary and sufficient conditions for V to be a D^-r.s. are that V®'

and S(FV,GV) is Dl-reachable. D
00 00

(v) Necessary condition for U to be C -r.s., D'-h.s., C -r.s., or D'-r.s.
D D

is that Cp(F,G;l/)=O.z □
This result will be extensively used throughout the rest of this chapter.

We close this section by investigating the properties of I -(F,G)-c.m.i.s. in 
c

the context of the above definitions.

^Theorem (7.12): Let (F,G) elR^^x®111X11 be a general pair and let UclRn be a 

subspace. If (/ is an Ic~(F,G)-c.m.i.s. then,

(i) (/ is a C -h.s., as well as a Dl-h.s.
D
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(ii) (/ is a C°°-r.s., as well as a Dl-r.s.
B □

The proof of the result follows from the fact that S(FV,GV) is an e.e.r.s.

differential system; then by Remark (7.14), Propositions (7.23) and (7.24)
CO

and Definition (7.13) the results follows. The families of C -, D^-solutions 

defined for V jc(O )=c€U will be denoted by E^(x(0 )), Sg(x(0 )) and they may 

be parametrised as it is indicated by Proposition (7.22) and Remark (7.16).

7.5.5. Regular differential systems

Let (F,G)€lRmXnxIR111X11 and S(F,G) be the associated differential system.

S (F, G) will be called extended entirely right regular (e.e.r.r.), if (F,G), 

or the associated pensil sF-G is right nonsingular and the left-(F,G)-order 

of IRn C£(F,G; IRn)=0. Clearly, S(F,G) is e.e.r.r. if sF-G is characterised 

by e.d. and possible zero r.m.i.; for e.e.r.r. systems we have that m^n. If 

m=n and S(F,G) is e.e.r.r., then it will be called entirely regular (e.r.) 

For e.r. differential systems we have that sF-G is a regular pencil.

Remark (7.21): Let S(F,G) be an e.e.r.r. differential system. There always 

exist transformations RelR1112011, |r |/0, such that

(R,I) 0 0
S(F.G) :Fx(t)=Gx(t) ----------- ►S(F’.G’). — x(t) = —

(R_1,I) _F_ _G_

(7.83)

where S(F,G):Fx(t)°Gx(t) is e.r. Clearly, if X, X are the solution spaces of 

S(F,G), S(F,G) respectively, then X=X.
□

From the above remark it follows that the study of e.e.r.r. systems is 

identical to that of e.r. systems and thus, in the following we shall con-

centrate on e.r. S(F,G) systems. Let (F,G) eIRnxnx]Rnxn, (F,G) regular, 

VF,G)4{sqi, iey} the set of i.e.d., Pf(F,G)^{(s-Xi)di, ier} the set of all

P T~
finite e.d. of (F,G); we shall denote by 0 = E q. and 0 = E d. and thus

00 i=l 1 f i=l 1
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©^“n-O^. There exists pairs (R,Q) of strict equivalence transformations (real, 

or complex) that reduce (F,G) to the Weierstrass form (real, or complex)(F ,G ) w w 

and thus

(R.Q)
S(F,G):Fx(t)=Gx(t) ► S(F ,GJ:F x (t)=G x (t) (7.84a)— — ■*  w w w—w w—w

(R-^Q-1)

where

F^diagfH^; l0^} , Vdia8{Ie ; cf} (7.84b)

H =diag{H , iep}eIR®°oXd", H„ the q.xq. standard nilpotent block and C,el^ 
~ qi 1 1 f

is the Jordan form, or real canonical form associated with the set P^(F,G).

By partitioning the state vector x according to the (7.84b) partitioning, i.e. —w
xw=[x^; (7.84a) is reduced to the following system of differential sy-

stems

(7.85a)

(7.85b)

The numbers 0 , 0 defined above, characterise the dimensions of the sub- 00 £

systems in (7.85a), (7.85b) and shall be referred to as the infinite order, 

finite order of the e.r. S(F,G), as well as of any e.e.r.r. system. For a 

regular initial space we have defined the subsets C^, which correspond

oo 00
to C -regular solutions, D’-regular but not C -solutions respectively. The

6
subset of which yield purely impulsive solutions will be denoted by C

r r
and the corresponding solution space will be denoted by X°; X° will be re- 

ferred to as the purely impulsive regular solution space. Clearly, CcCcC

dand X^cX^cX^. For an e.r. (F,G) system we have:

Theorem (7.13); Let (F,G) eIRnxnxlRnxn be an e.r. pair, 0 , 0 be the infinite, 
00 £

finite order of (F,G), S(F,G) the associated differential system and let C, 

X be the initial space, solution space of S(F,G) respectively.
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(i) ¥ _ce]Rn is a consistent, regular initial vector and thus C=Cr=3Rn and

(ii)

(iii)

X=X .
r

(S c (5The subsets C°, C° are ]R-linear vector spaces, dimC =6,., dimC-6 and
r r r f r 00

Cd-Kn-Cc.
r r

X=X^ is an JR-linear vector space and dimX=n. Furthermore the subsets 

Xc, Xs
r* r of

number of

c 6X^ are ]R-linear vector spaces; dimXr=0^, dimX (p=

i.e.d.), X=X^GX and dimX=n-p.

Proof

(i) Solving S(F,G) :Fx(t)=Gx(t) by the Laplace transform method, for arbitrary

initial values of x.(t) at t=0 [Doe. -l],[Kai. -1] we get the equation:

(sF-G)x(s)=Fx(0 ) (7.86a)

where jc(s)=L_{x(t)} is the Laplace transform from 0 of x(t). Since (sF-G)

is regular (invertible over IR(s)) we have that

x(s)=(sF-G) ^Fx(0 ) (7.86b)

Equation (7.86b) gives the solution 2£(t)3SL_^{x(s)} of S(F,G) for all 

x(0 )e]Rn. Clearly, for ¥ jx(O )=celRn a solution exists and it is uni-

quely defined; furthermore, since (sF-G) ^Fe]Rnxn(s), x(t)eD’n (belongs 

the space of Bohl distributions). Thus, C=Cr=IRn and X is regular, i.e.

X=X . r

(ii) Let (R,Q) be a pair such that (F,G)=(RF Q, RG Q), &=R_1, Q=Q_1 and 

x (*) =Q2Sw (’) • Then,

«(s)=Q{(sFw-Gw)’1Fw}xw(0-), x(0")=Qxw(0") (7.86c)

Using (7.84b), the above expression yields

x(s)»Q

‘Ve >’1h-
00

(7.86d)

0

0 <slef-cf)_1 V°)
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x (O’) may now be considered as an arbitrary initial vector of IRn (since 
—w
x(O’)=Q2Sw(O’), QeJRnxn, |Q|^0). By partitioning )=£ as £=[c^, £^]

and Q=EQ , QJ according to the (7.84b) partitioning, eqn. (7.86) yields 
00 jQ

i(s)=Qoo(SH0o-I9 )_1H<Kea>+Qf(SI0 -C£)_1cf (7.87)
CO f

' Note that (sH^-Ig )’1HooeIR0ooXeoo[s] polynomial, since sH^-Ig is IR[s]-

00 _i efxof
unimodular and (sIQ -C_) elR r (s) strictly proper. Thus for ¥ x(0 )e

f - n
sp(Q£}, x(s)e]Rn(s) strictly proper and for ¥ jx(O )esp{Qoo}, x(s)eR [s] 

polynomial; furthermore, if x(0 ) has non zero projection on both spfQ^}, 

sp{Qf} subspaces, the x(s)e]Rn(s) is a general rational vector with 

non zero polynomial and non zero strictly proper part. Clearly C^=sp{Q^}

6and C^spfQ^} are IR-vector spaces and since Q^, have full rank we 

have that dimC^=rank(Qoo) = 6oo, dimC^=rank(Q^) = 9^. For all £€lRn such that 

£ £sp{Qf} the solution has always an impulsive part and thus C^=]Rn-C^.

6
(iii) Equation (7.87) clearly demonstrates that X^, and X^ are IR-linear 

vector spaces. If we define ?(s)=[$^(s), ^(s)], where

Tf(s)=Q (Sl0 -C )_1elRnx0f(s), $oo(s)=Qai(sHco-I0 )_1HooeffinX0“[s] (7.88) 

f 00
then, rankjR^^f (s)=0f, and it is readily shown that rank^ (Sj$oo(s)ss

0 -u. Every column in ^£(s), $ (s) defines a C°°-solution, purely impul-oo I co
sive solution respectively. Every C°°-solution may be uniquely expressed 

in terms of the solutions defined by the columns of $^(s) and every pu-

rely impulsive solution may be uniquely expressed in terms of the solu-

tions corresponding to the non zero columns of $ (s). Thus the columns 
00

of $_(s) and the non zero columns in $ (s) are the Laplace transformsI 00

Q T c
of solutions which form basis sets for Xr> X° respectively. Thus, dimXr=

0 , dimX^=6 -p and clearly (from (7.87)), X =XC®X^. Obviously, dimX -n-p. 
f r oo r r r r

□
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From the analysis of Chapter (4) (see Corollary (4.9)) we have that the ma-

trix Q which is used in the reduction of (F,G) to the Weierstrass form (complex) 

may be expressed as

Q = [Q ,Q ,...,Q »•••>Q ] (7.89a)
x LXoo’xa1 ai p

where the columns of form a complete prime set of chains of (F,G) at 

s^^eR , (R »{«>,a^,... ,q^} is the root range of (F,G)).

Let Q =[...;x^ >•••]• every pair of complex conjugate (a.,at) values,
i i _ _ 1 1

we may substitute the pair of block (Q , Q *)  in (7.89a) by a single real
i i

block

Qa = [...;Re(x£ );Im(x£ (7.89b)

i i i

The matrix defined by

1 i V
(7.89c)

where Qq =Qa
j j

if a^elRUf00) may then

real spectral form. We shall denote

be used for the reduction of (F,G) to the

of (F,G) at

by Mt the maximal generalised null space 
p

s=£e]R, £€3RU{°°}. For a pair of complex conjugate q,q*elR  we de-

fine as the (a,a*)  maximal generalised null space of (F,G) the space M*

defined by

Ma,a*  “ sPK{Re<2£)> v (7.89d)

Clearly, (as defined by (7.89b)) is a characteristic basis matrix of

M*  with respect to the real spectral form. Similarly Q_=Q_. (as defined a,a*  p p

in (7.89a)) is a characteristic basis matrix with respect to the real spectral

form if BelRUf00}. The basis matrixes Qo, BelRlK00}, Q , qe(D-]R , defined above p a

will be referred to as £-, (q,q*)-real  spectral characteristic basis matrix

of the subspaces M*,  M*  * 
p q,q*

respectively. The matrix Q in (7.89c) may be ex-

pressed as
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Q - [Qw,QfJ, Qf - [•••>Qct »•••]> a. e3R-{°°} 
i

and IRn may be written in a direct sum

- M*  eM*  
CO f

(7.90a)

form as

(7.90b)

*

3
4> * *

where MJ is the direct sum of all Mo, M . spaces defined for |3eR,t p ct,oix

aeR,ae(C-IR. M*,  M*  will be called the maximal generalised null space of (F,G) 

at {°°}, <C-{cq } respectively; Q^, are characteristic real spectral basis ma-

trices of M*,  MJ correspondingly. The index of annihilation of (F,G) at s=°° 

(maximal order of i.e.d. of (F,G)) shall be denoted by q^.

ftelR-f00} and

Corollary (7.18): Let (F,G)eIRnXnxIRnXn be an e.r. pair, M*,  M*  the maximal 

generalised null spaces of (F,G) at {<»}, and let Q^, be characteri-

stic real spectral basis matrices for M*,  MJ correspondingly. Then,

(i) C^=M*  and Cc=M*
r co r f

(ii) Define the matrices ff (t) .fjt) ,¥(t) - [¥f (t) tiO-, by

¥ (t)-Q e^, f'00(t)=Q00‘1? 26(i)(t)4+1

1-0
(a) H'f(t) is a basis matrix for X£. The non zero vectors in Y^Ct), ^(t) 

define basis vectors sets for X , X respectively.

(7.91)

(b) If x(0 )=xoe!Rn, the general D*-solution  of S(F,G) may be written as 
D

x(t,xo) = 'Pf(t)Qfx(0 )-'i/oo(t)Qoox(0~)

A A

where Q_, Q are’ co 9_xn, 9 xn matrices defined by f co J

Q = [Qf.Q.]’1
r— A - 
A

A

(7.92a)

(7.92b)

.□
The analysis of the e.r. differential system and the study of its solutions 

has also appeared in the literature in many different forms, Campbell [Camp. 

~1,2] has examined the problems using the Drazin inverses and the solution 
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for the homogeneous case is similar to that given here (eqn. (7.92)). A ju-

stification for the solution of S(F,G) was given by Cobb [Cob. -1]. Cobb’s 

reasoning is important since it explains the distributional solution as the 

limit of solutions of systems with Finvertible. We consider here the simpler 

system (unforced) and of the type*

SCH,, I ): Hi(t) - x(t), V»nxn (7.93a)
a>

For any x(0 )=xoeIRn, the formal solution of (7.93a) is

9o°~2 z.k  j  .,
x(t,xo) 38 - % ?(t)H c (7.93b)

i=0

Following Cobb we define:

Definition (7.14): The distributional vector x(t) is a limiting solution of

H^x^-x with initial condition Xq , if there exist sequences {H.}cjIRnxn, {xn. }clRn, 
3 3

with H. invertible, such that H.->H , xo .->xq  and the solution of H.x.=x.,3 J 00 -°3 3“3 “3

(0 )=Xoj converges to jc .

Theorem (7.14)[Cob. —1]: For every Xo£IRn, there exists a limiting solution

of H^x=j< with initial condition The limiting solution is unique and it

is x(t,xo) in (7.93b). □
Francic [Fra. -1] has also examined the problem and he gives sufficient 

conditions for convergence in a distributional sence. We should point out that 

the work of Willems [Will. -1], Trentelman [Tren. -1] on distributionally con-

trolled invariant subspaces (almost controlled invariant subspaces) and di-

stributionally controllability subspaces (almost controllability subspaces) 

is intimately related to the present study; in fact the work of Karvanias 

[Kar. -1], Jaffe and Karcanias [Juf. & Kar. -1] has established the links be-

tween Willems characterisation and the matrix pencil characterisation of gene-

ralised invariant subspaces. It is through this equivalence and the notion 
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of invariant forced realisation that the dynamic (distributional) characteri-

sation in [Will. -1], [Tren. -1] may be transferred to our present study. 

Next, we give some results related to the dynamic characterisation of sub-

spaces .

Remark (7.22): Let (F,G) elR^^IR111X11 be a general pair, l/c]Rn, be a subspace 

dim(/=d and let (N,NA;U), S (A,B;P) be a p.m.r.i.r., p.m.r.f.i.r. of (F,G;(/)
i  • r.

respectively. The solution space of S(FV,GV) is equivalent to the solution 

space of S (A,B) in V, i.e. every solution of S. (A,B) in V yields a1.r. i.r.

solution of S(FV,GV) and vice versa.

This remark shows that the results in [Will. -l],[Tren. -1] may be inter-

preted to equivalent results on S(F,G) systems, as long as the restricted 

differential systems S(FV,GV), S(NV,NAV) are strict equivalent.

Theorem (7.15): Let (F,G)£]RniXnx]R111X11 be a general pair, Uc]Rn be a subspace 

and let be the root range of (F,G)/U.

(i) If U is a #-(F,G)-e.d.s., then it is a D’-h.s.B
(ii) If U is a ^-(FjO-e.d.s., (<»-proper, or f.e.d), then it is also a

co
C -h.s.

(iii) If V is a simple {<»}-(F,G)-e.d.s., then it is a D’-h.s. and a D’-r.s.B B □
Part (i) and (ii) follow immediately from Corollary (7.18). Note that if

1/ is a simple {«>}-(F,G)-e.d.s., then in a p.m.r.f.i.r. S. (A,B;U), the sub-
1 • r •

space V is a sliding subspace [Juf. & Kar. -1]. A rigorous proof for the di-

stributional reachability property of sliding subspaces is given in [Tren. -1]. 

By combining part (iii) of Theorem (7.15) and Theorem (7.12) we have:

Corollary (7.19): Let (F,G)e111X11 be a general pair, (/C]Rn be a subspa-

ce. If (F,G)/(/ is characterised by c.m.i., i.e.d. and possibly zero r.m.i., 

then U is a D*-h.s.  and also a D’-r.s.B B
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We close this section by noting that the general solution x(t,xo) in (7.92a) 

is for t>0+ a C°°-trajectory which is contained in M*,  for all xoe!Rn. Thus, 

we may state:

Remark (7.23): Let (F,G)eIRnXnx]Rnxn be an e.r. pair. For V initial vector

Xoe]R? the general trajectory x(t,Xo) is for v t^0+ a C°°-trajectory which is

contained in M*  space of (F,G). The space M*  has thus a strong attractivity

property for all trajectories initiated by V Xq CIR11.

□
7.5.6. Dynamic characterisation of the generalised invariant subspaces of a 

general pair (F,G)

In the study of the geometry of subspaces of the domain of a general pair 

(F,G)elRniXnxIRniXn, a number of important notions of invariance have been in-

troduced i.e. the notions of (G,F)-i.s., (F,G)-i.s., c-(F,G)-i.s., (W,U)-p.i.s.,

e-(F,G)-i.s., e-(G,F)-i.s., c.e.-(G,F)-i.s. and right-(F,G)-annihilating spa-

ces. These subspaces have been characterised in terms of the set of strict equi-

valence invariants of (F,G)/U and thus in terms of decompositions of the type 

(7.38a); such decompositions, together with the results of the previous sec-

tion yield the following dynamic characterisation of the various types of ge-

neralised invariant subspaces.

Theorem (7.16): Let (F,G) elR^^IR111X11 be a general pair, (/cIRn a subspace and 

S(F,G), S(F,G) be the differential systems associated with (F,G). Then,

(i) If IZ is a (G,F)-i.s., then for S(F,G) is a C°°-h.s., and for S(F,G) a 

Dfi-h-s.

(ii) If V is a (F,G)-i.s., then for S(F,G) is a D’-h.s. and for S(F,G) aD00
C -h.s.

(iii) If 1/ is a c-(F,G)-i.s., then for both S(F,G), S(F,G) it is a C -h.s.

(iv) If 1/ is a (W,U)-p.i.s. , then for both S(F,G), S(F,G) it is a D’-h.s.15
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The proof of the above result follows from the decomposition properties of 

the subspaces involved, in terms of the fundamental subspaces of the type VQ, 

V , V , V , from the duality of the pencils (F,G)/V, (G,F)/(/ and from the 01 oo £

characterisation of the elementary subspaces V , V ,(/,(/ in terms of the

solutions restricted to them. Similar arguments may be used to provide a dy- •f

namic characterisation of the maximal subspaces R*,  K*,  L*,  J*,  T*,W*  defined

before. We summarise as follows:

Theorem (7.17): Let (F,G)e3RmXnxIR111X11 be a general pair, I(F,G) the set of

strict equivalence invariance and let

IRn = 1/ e V e V e V & V (7.94)
£ £ o a °°

be a decomposition of IRn implied by the set I(F,G).

00
(i) The maximal right annihilating space R*=V  is the maximal C -r.s. for£

both systems S(F,G), S(F,G).

(ii) The maximal (G,F)-invatiant subspace T*=V  eV is the maximal C°°-h.s.£ O Ot
for S(F,G).

(iii) The maximal (F,G)-invariant subspace J*,  J*=V  eV eV is the maximal£ 00 (X
C°°-h.s. for S(F,G).

(iv) The maximal almost (F,G)-right annihilating space K* , K*=V  eV , is£ 00
the maximal D*-r.s.  of S(F,G).B

(v) The maximal almost (G,F)-right annihilating space L* , L*=V  eV , is£ 0
the maximal D’-r.s. of S(F,G).B

(vi) The maximal complete (F,G)-invariant subspace W* , W*=V  eV , is the ma-
£ a

ximal C -h.s. for both systems S(F,G), S(F,G).

(vii) The subspace 2*=T*+J*  is the maximal (W,U)-p.i.s.; Q*  is also the ma-

ximal D’-h.s. for both systems S(F,G), S(F,G) and may be expressed as B

£*=v  eV ev ev .00 £ (X 0 .
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The proof is readily established from the previous results. We may now use 

Theorem (7.17) to characterise the properties of the spaces C, C*  associated 

with a differential system S(F,G).

Corollary (7.20): Let (F,G) elR^^lR1^11, S(F,G), S(F,G) be the associated

• 
differential systems and let C, C and C*»  C*  be the initial spaces and redun- 

dancy spaces of S(F,G), S(F,G) respectively. Then,

(i) C=C=Q*

(ii) C*=C*=IR n-Q*

00
(iii) T*cC  is the maximal space of C -c.i.v. for S(F,G) and J*cC*  is the ma-

00
ximal space of C -c.i.v. for S(F,G).

/X

The properties of the S(F,G), S(F,G) defined by the terms regular, singular 
0°

C -reachable, D’-reachable may now be characterised in terms of the set of
D

invariants of (F,G), or equivalently in terms of maximal invariant subspaces 

as:

Corollary (7.21): Let (F,G) elR^^IR10X11, S(F,G), S(F,G) be the associated sy-

stems, I(F,G)={I ;I ;V fV ,V } the set of strict equivalence invariants of r c o a «

sF-sG. Then,

(i) S(F,G), S(F,G) are regular, iff either of the following equivalent con-

ditions hold true.

(a) I =1° (a set of zero r.m.i., or 0) and I =0.
r r c

(b) Q*=lR n and R*={0}.

(ii) S(F,G), S(F,G) are C -reachable, iff either of the following equiva-

lent conditions hold true.

(a) I =1° and V -6, V =6, V =0.
r r o a ’ »

(b) R*=IR n
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(iii) S(F,G) is D’-reachable, iff either of the following equivalent conditions 

hold true.

(a) Ir=I°, PQ-0, Pa=0

(b) K*=lR n

(iv) * S(F,G) is D’-reachable , iff either of the following equivalent conditions

hold true.

(a) I -1°, V =0, V
r r a 00

(b)

The expression i.e. i-n the above result means that the set I(F,G) has

no V subset in it.a

7.6. Conclusions

The aim of this chapter was to provide a treatment of the subspaces of the 

domain of a general pair (F,G) from the geometric, algebraic and dynamic view-

point. The basis for this work has been the characterisation of subspaces V 

in terms of the strict equivalence invariants of (F,G)/U restriction pencil.

The motivation for this study has been the desire to detach the well developed 

geometric theory of regular state space systems [Won. -lJ,[Will. -1] e.t.c. 

from the specific content of regular state space systems and thus make it ap-

plicable to more general descriptions, such as the family of extended state 

space systems.

The notion of regular invariant realisations allows the translation of the 

results derived for S(F,G) systems, back to the framework of regular state 

space theory. In fact the notions of (F,G) is right annihilating spaces, are 

equivalent to the standard notions of (A,B)-invariant subspaces, controlla-

bility subspaces respectively.
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The notion of (W,U)-p.i.s. corresponds to the standard notion of almost 

(A,B)-invariant subspace, while the almost (F,G)-right annihilating spaces 

correspond to the almost controllability subspace notion.

The treatment given here is by no means complete; although the ’’almost con-

trolled invariance" and "almost reachability" properties with smooth trajecto-

ries may be transferred as a characterisation on the p.m.r.i.r. (N,NA;U), 

which corresponds to a triple (F,G;U), the trajectories do not belong to the 

domain of (F,G). It is an open question whether such important norions may be 

transferred on a general S(F,G) description. It seems that they are related 

to the specific property that (F,G) is entirely right singular.

The extension of the piecewise arithmetic progression sequences to the case 

of singular pair (F,G) provides the means for the computation of the Kronecker 

form by inspection. It is believed that the results of chapter (4) and (5) 

may provide a systematic procedure for the computation of K* » J-*  along similar 

lines to those given for R*.



CHAPTER 8:

*
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CHAPTER 8: TOPOLOGICAL AND RELATIVISTIC ASPECTS OF MATRIX PENCILS AND S(F,G) 
SYSTEMS

8.1 Introduction

In the previous chapters a detailed exposition of the algebraic, geometric 

and dynamic aspects of the subspaces of the domain of a pair (F,G), or of 

the associated differential system S(F,G) has been given. An implicit as-

sumption in this study has been that the pair (F,G) is fixed. However, an- 

certainty in the parameters of (F,G) is always inherent, whenever (F,G) 

emerges as the pair describing the differential equations of linear systems 

problem, or whenever it is the result of some previous stage of compuatations. 

Thus, the need for the study of perturbation properties of the pair (F,G) 

is of considerable importance and deserves special attention.

A vast amount of literature exists on the perturbation theory of the ge-

neralised eigenvalue-eigenvector problem (see for instance [Wilk. -1], 

[Ste.-1,2] etc.). Most of these results deal with the perturbation proper-

ties of the root range $ of (F,G); this area of research is still open in 

the direction of obtaining stronger bounds and extending the existing re-

sults to singular pairs. The robustness problem of the complete set of in-

variants of (F,G), as well as the study of perturbation properties of the 

generalised invariant subspaces is also open. On the perturbation aspects 

of generalised invariant subspaces very few results are known with the 

noticable exception of the work of Stewart[Ste. -1,2] and Van Dooren [Van 

Do. -3] on deflating subspaces. The study of the generic properties of 

the pair (F,G) is also open; the results in this area are few with the 

exception on those dealing with the generic values of the root range $ 

[Hir. & Sm. -1] and those given in [Won. -1] on the generic values of 

c.m.i., r.m.i. on entirely right, left singular pairs.
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The study of properties of a general pair (F*,G ’) in a ball centered at 

some nominal pair (F,G), is the subject of the perturbation theory. A simi-

lar in the formulation, but of entirely different nature problem, is the 

study of properties (that stem from the set of strict equivalence invariants) 

of a regular pair (F,G) in the bilinear orbit Eg(F,G) of a given pair (F,G). 

Given that the strict equivalence invariants are "space invariants" (inva-

riant under coordinate transformations in the domain and codomain of (F,G) 

and bilinear transformations express transformations in the frequency do-

main (coordinate transformations on the Riemann sphere), this study may be 

termed as "space-frequency relativistic". This study is of theoretical im-

portance, since it provides a classification of the geometric and dynamic 

aspects of (F,G) to those which are "space-frequency invariant", and those 

which are "relativistic" i.e. deppend on the frequency coordinate frame. 

Apart from its theoretical importance, from the conceptual viewpoint, this 

study provides the means for the constraction of "convenient dual problems" 

in linear systems, and as it has been discussed in Chapter (6) may also 

yield "convenient descriptions" from the computational viewpoint (see pro-

blem of assignment of condition number).

The chapter is divided into two parts. The first deals with the topologi-

cal aspects and the second with the "relativistic". The topological results 

are of a preliminary nature and aims at two directions: first to provide a 

unifying framework for the study of perturbation aspects by introducing dif-

ferent metric topologies on the pairs (F,G) and second to establish the 

links between the new metrics and the already known results. The angle me-

tric is connected with the work of Sun Ji-guang [Sun J.g. -1], and the de-

flating subspaces of Stewart are shown to be equivalent to the notion of 

e.d. subspace examined previously. The second part of the chapter deals 

with the classification of the geometric notions of invariant subspaces of 
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(F,G), as well as the classification of their dynamic counterparts. The re-

sults in this latter part are based on the theory of equivalence deve-

loped in Chapter (6).

8.2 Classification of pairs, Characteristic spaces

We start off by giving some useful definitions and notation. We shall de-

, , -r^nixn _mxnnote by 1 = IR x 1Rm,n

Definition (8.1): For a given pair L=(F,G)el we define: m y n
L: [L]f = [FJ-G] emmx2n

L: [L]s

(i) A flat matrix representation of

(ii) A sharp matrix representation of _2mxn e 1R

CS.1)

(8.2)

□
Definition (8.2): Let L= (F,G) eL , — ~ m,n then L will be called nondegenerate

r-rank

L-rank

[L]f = m, if m<n

[l ]_ = n, if
s

(8.3)

□
Remark (8.1): Degeneracy, in the case of flat description implied zero row

minimal indices, whereas in the case of sharp description implies zero co-

lumn minimal indices.

Remark (8.2): If m = n, then nondegeneracy implies that L is a regular pair.

By using these definitions we can express the notion of strict equivalence 

as follows:

Definition (8.3): Let L,L’ elm, n

(a) L,L*  will be called strict equivalent (LEf/L’), iff 3Q e !RnXn, R € JR103™,

|P|,|Q| ± 0, such that:

(8.4)
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or equivalently

(ii) [L]SQ (8.5)

(b) L,L*  will be called left
£

strict equivalent, LE^L’, iff

(8.6)

R 0

0 R

and shall be called right strict equivalent, LE^L', iff

For

4<d

X^(L)

[l ']s - [L]SQ, q  e iRnxn, |q | / 0

the pair L = (F,G)

rowspan1R[L]f 

rowspan^CLjg

el we can define four vector spaces m,n

X^(L) = colspan]R[L]f ,

Xg(L) = colspan1R[L]s

(8.7)

0
as follows:

(8.8)

is clear, that:

¥ L,L' etm>n: LE^L' xJ(L) = xJ(L’) and x£(L) = X^(L')

which means that 4(l ) are invariant for Ej^-equivalence,

C C JiXf(L), Xg(L) are not always invariant for E^-equivalence. 

xS(L) = xS(L') and X°(L) = XC(L') which 
r r s s

under EjJ-equivalence, but 

under E^-equivalence.

Then it

but

Also, ¥ L,Lr e L : LE^L' 
m,n n

C C.means that X^(L), X (L) are 
X S

XJ(L), X*(L) are not always 
x S

invariant

invariant

also

A

A
9

9

□
Next we shall give a classification of the pairs, according to their

dimensions, and we shall examine the invariants properties of the four 

vector spaces which are defined on each pair of the corresponding class.

Let L= (F,G) eL . The following classification is a simple consequen- m,n

ce of the definitions and observations, so far.

Table (8.1) demonstrates the type of subspace, with invariant properties, 

we have to chose according to the dimensionality (relationship between m 

and n) of the particular family of pairs L.
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Definition (8.4): For a non-degenerate pair L= (F, G) eL_ we define the m, n

normal-characteristic space, Xn <L), as follows:

(i) ^(L) - x£(L), if

(ii) Xjj (L) - Xg(L), if m>n,

which

which

is

is

£ 
invariant

E^-invariant □
is that for regular pairs L=(F,G) ei , we n j nA straight consequence of (i) 

have that X^(L)=X^(L). Furthermore, note that:

X^(L) =rowspan[L]f = colspan[L]f, and Xg(L) =colspan[L]g =rowspan[l ]^ , (8.9)

Let L = (F, G) € L , m<n non degenerate pair, then rank[L]f=m and 
in, xi

X^L) = X^(L) =rowspan[L]f and thus dim ^(L) =m. Therefore, we can identify

2n £X^L) with a point of the Grassmann Manifold G (m,]R n). Note that if L^E^L,

then represents the same point on G(m,]R ) as X^(L) . □
Let n be the set of regular pairs. ¥ L = (F, G) € 1^ n tbe equivalent 

class e £(L) = {L, e : [L.] =r [l L, RelRnXn, |r | / 0} can be considered 
n i n,n it t

2as representing a point on G(n,3R a); this point may be identified with a

2nXjjdp, L|SE^(L). Note that each point of G(m,]R n) does not represent a 

pair, but a left-equivalent calss of pairs. We shall denote by E^ the set

of all distinct generalised eigenvalues (finite and infinite) of the pair 

L e and by E^ the set of normalized generalised eigenvectors (Jordan

vectors included) defined ¥ X €E^.

Let 0 - {(E^,E«): ¥ Lei* 1 }, we define the function,
1 z n,n

f: I? „ ---- ► Q: L-f(L) = (S^zh e<£ (8.10)
n,n 1 z

It is obvious that f ^({(E^E^)}) = E^j(L), which means that f is E^j-invariant, 

thus from the eigenvalue-eigenvector point of view, it is reasonable to

£identify the hole class E^(L) as a point of the Grassmann manifold. The 

study of Topological properties of ordered regular pairs is intimaterly 

related with the generalised eigenvalue problem. The analysis above demon-
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strates that such properties may be studied on the appropriate Grasmann ma-

nifold. We may introduce a metric topology on the manifold in different ways.

One such new metric is discussed next.

8.3 The angle metric

In the following we shall consider Grassmann manifolds which may be asso-

ciated with elements of- L . In the case where m<n, the manifold G(m,]R2n) 
m n

is considered, whereas in the case of m^n the manifold G(n,]R^m) is the sub-

ject of examination. The metric defined in this section on the above mani-

folds, clearly

mann manifolds

covers the regular case. The relationship of the two Grass-

with pairs of L is clarified by the following remark. m,n

Remark (8.3): (i) Let UeG(mJI^n). There exists an Ejfj-equivalence class

from L (m<n), represented by an L=(F,G) eL nondegenerate, such that m,n m,n
U = rowspan[l ]. (ii) Let (/e G(n, IR m) . There exists an E^-equivalence

class from L___ (m>n), represented by an L=(F,G) el nondegenerate,m,n ' m,n

such that V = colspan[L] .
s □

2 2 ”1”Definition (8.5): A real valued function: d(•,•): G (m,IR n)+IRo, (m<n) is 

called an orthogonal invariant metric (O.I.M.). If ¥ Uj,e G(m,IRZn) (we 

may assume that ^2=XN(L2)’ V3=XN(L3)’ Li6 Lm,n’ i = 1’2’3 and

non degenerate) it satisfies the following properties:

d(XN(L1),XN(L2)) =0 iff Lx E^L2 

d(XN(L1),XN(L2))=d(XN(L2),XN(L1)) 

d(XN(Ll)’^(L2))-d(XN(Ll)’XN(L3))+d<XN(L3)>XN<L2)) 

<i(colspan |_[Lj ]^uJ , colspan jjl<2]jUJ ) = d(colspan[L^]^, colspanCl^Jf )

U G JR™3011 is an orthogonal matrix.

(i)

(ii)

(iii)

(iv)

where □
2m Similarly we can define an orthogonal invariant metric on G(n,IRZ ). First

we summarise some already known metrics for G(m,JR n), m<n, and then we in-
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troduce a new metric, the angle metric. Finally the relationship between the 

new metric and the previously defined ones are examined.

Theorem (8.1): [Sun J.G. -1]. For any two points €G(m,]R^n),

(/j = X^(L^) » colspanEl^lf, = colspanEl^lf we define

X1“([L1]f[L1]f)_1/2-[L1]t, X2-([L2]^[L2]f)‘1/2-[L2]f, then

£(^1(l/2) - arccosfdet XjX^xJ]1'2 

such that

(8.11)

and

“ sin (8.12)

are O.I.M. on GfajIR^11) □
These metrics have been used by Ji-G-Sun on his work on perturbation analy-

sis for the generalised eigenvalue-eigenvector problem. The above metrics

have

mann

also been related [Sun. J.g. -1,2] to the other metrics on the Grass-

manifold (e.g. ’’gap" between subspaces, sin6(X,Y)). Let’s denote by

= {L = (F, G) €1 , m<n, L nondegenerate} and by 1 /EJ the quotientm,n “*m,n  n,L-*m,n
o

E^-orbit we have seen that there is an one to one map <p defined by:

<p(E^(L)) “^(L) =4(L) °l/LeG(m’]R2n) (8,13) 

2nwithy every m-dimensional subspace of IR we may always associate an 

one-dimensional subspace of the vector space Am(lR2n) [Mar. -1], or in other 

words a point on the Grassmann variety Q(m,2n) of the projective space IPV(1R), 

V(2")-1.

These one-dimensional subspaces of Am(]R^n) consist of decomposable multi-

vectors, they are called Grassmann representatives of the corresponding sub-

space (/^ and they are denoted by £(UL) It is known that if eAm(JR^n)'

are two Grassmann representatives of U then, V = Xjc, where XeR-{0}.

D
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Definition (8.6): Let L = (F, G) € L and V, eG(m,]R n) be the linear sub- 
--------------------- 1 -*m,n  L
space of IR^n which corresponds to the equivalent class EjJ(L) . If X. e Am(JR^n) 

is a Grassmann representative of and x = [x q ,x ^,...xvJt, v=(^J1)-l, then 

we define as the normal Grassmann representative of the decomposable multi- 

vectpr x which is given by:

sign(xy)

sign(xj) 
|*l 2

if Xy/0

(8.14)

if xv = 0, x± is the first non zero component of x 

where sign(xi)
if x^>0

if X£<0 □
Proposition (8.1): The normal Grassmann representative x of a subspace 

ULeG(m,IR ) is unique and ||x|| £ = 1. (||’ll 2 denotes the Euclidean norm).

Proof

ni 211
Let x’eA (1R ) be another Grassmann representative of Then clearly

= Xx, XeIR-{0} and x/ (the normal Gr. representative of 2c’) is given by: x’
r 

sign(xv) 
T*TT • X1, if Xy = Xxv 0

x1

' —' ’ *v  “ Xxv “ 0 and x^ = Xx^ is the first non zero component of x'

Agi3°Asign(Xy) . x> lf

|x|-|IJ2 "

x if x„=0 andxj the first non zero component of x.
1*1  IIJ2 "

(because —= 1),A
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So x is a unique representative of the class of all Grassmann representati-

ves of the subspace (/^. The property Hx]^ “ 1 is obvious. p

Definition (8.7): Let £ G(m,]R^n) , then we" can define an angle

between them as follows:
9

* arccos |<x1,x2>| (8.15)

where Xp Xg are the normal Grassmann representatives of (/L^, respecti-

vely and <•,•> denotes inner product. p

Proposition (8.2): The angle defined above is an orthogonal invariant me-

tric on the Grassmann manifold GfajlR^11).

Proof

Properties (i), (ii) follow readily, property (iii) follows from the cor-

responding inequality for angles between vectors, which is a consequence 

of the A-inequality on the unit sphere.

To prove (iv), let = colspan[Li]|, i = l,2 and U an mxm non singular 

matrix with |u|=X. Then (^([L^U) = ^([^J *)  |u| - X-^([u] *),  i-1,2, 

which means that ^([Lj Jj U, [l 2]£u ) = * , [l 2]|), if we suppose that U

is orthogonal then clearly it is an orthogonal invariant metric.

This metric angle on G(m,lR n) is related to the standard metrics (8.11), 

(8.12) as it is shown below.

Proposition (8.3): ¥ , 1/^? e G(m, IR^n) we have

<a> KUL.,I/L9) - I (UL (/L )
12 12 (8.16)

(b) sin{«((/L ,UL )} - d£(UL ,l/L )
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Proof

By using the Binet-Cauchy theorem [Mar. & Min. -1], we have that 

dettX^XjXj] - Cm[X1X‘x2xJ] - Cm(Xx) C^) Cm(X2) C/xJ) = 

= C (X.)-C^(X0) C (Xo)-Ct(X.). From theorem (8.1) we also have, 
mi m l m z mi

Cm(xi) = tCm([Li]f)Cm([Li^f^ * Cm^Li-'f) = ||&(ULi)|| 2 = e *i»  e = ±X» i = 1’2 

Thus, 

detfXj^X^xJ] =» 2—1 = {<x1,x2>}2, given that

(det[xiX2X2Xil)1/2 - |<X1,X2>|, then

(i) arccos (det[XjX2X2Xj])= arccos l<Xj,x2>|, or

(ii) sin{<(VL1,l/L2)} = sinldij.Vjj) = dA(

Remark (8.4): When m = n this angle metric is suitable for the perturbation 

analysis for the generalised eigenvalue-eigenvector problem.

8.4 The chordal distance and perturbation results

In the study of sensitivity of eigenvalues a standard metric (expressing 

distance between eigenvalues (finite and infinite)) is used, that is the 

chordal-distance, between points of the Riemann sphere. Because of its im-

portance in the perturbation theory, a proper treatment of this distance 

is given first and some new properties are established. Using the chordal 

distance and some ideas from the work of Stewart [Ste. -1] a new perturba-

tion result for a singe eigenvalue of a regular pair is derived.

The formula expressing the coordinates of the point A(z) of the Riemann 

sphere, in terms of the coordinates of the point z of the plane is exami-

ned first.
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Proposition (8.4); The point z =X+jy under stereographic projection cor-

2 2 2responds to the point A(z), of the sphere £ +p +(£-1/2) =1/4, with coordi-

nates, £ = 1/2* X 'z I/1+| z | 2, p = l/2* y'Z I/l+|z | 2, £='Z' /l+|z|2

Proof

Since the projection of the point A lies on the line OZ then, £ = Xx, 

p = Xy, where X is some real constant. We shall find in terms of |z|. 

Let’s consider the cross section of the sphere cut by the plane passing 

through the points, 0, P and Z (Fig. 8.1).

Figure (8.1)

The right triangles OPZ and OAZ are similar, the altitude of the triangle 

OAZ is equal to £ and its hypotenuse is |z|. The segment 0A is a leg of 

the triangle OAZ and the altitute of the triangle OPZ.

From the similarity of the triangles OPZ and OAZ we have

5/6a  = 6a /OP, C/OZ=OA/PZ, OZ = |z 1, 0P = l, PZ = /1+|z |2 (8.17)

from which we find £ = | z | 2/l+| z | 2.

With the aid of the equation of the sphere it is easy to determine the va-

lue of X=1/2* Iz|/1+|z|2 and after that that C and p.

n
Remark (8.5): We denote the distance between the points A(s) and A(s’) 

by K(s,s’). With the aid of the formula of the previous proposition we can 

easily show that:



The quantity K(s,s’) is called the chordal distance between the points s 

and s’. In order to define a distance, which is suitable without making any 

distinction between finite and infinite eigenvalues, we shall identify the 

eigenvalue s=a/|3 with the point in the projective complex line defined by:

[a,B] = ((a,B) + (0,0) : a/B = s} (8.19)

Also we define on the projective complex line the metric K defined by: 

¥ s=a/B, s’-a’/B' => K([a,B],[a',B'])-K(a/B,a'/B’) •

= |aB'~a' B|A|a|2+|B[2 • ’ja’|2+|B'|z (8.20)

So the number K([a, ft], [a’, (31 ]) is the chordal distance between the points 

s=a/ft, s’ =a’/ft’ when they are projected in the usual way onto the Riemann 

sphere. q

Proposition (8.5): For any two points s,s’ e I U {°°} we have that

K(s,s’) = K(l/s,l/s’).

Proof

Let s=a/6, s’ =a’/ft’ then:

K(s,s’) = K([a,ft],[ot’,ft’]) = |otB•-ot»61/^|oi12-+-1 012 • ^|a» |2+| |2 (8.21)

K(l/s,l/s')-K([B,a],[B',a']) = |Ba'-aBl/Z|B| 2+|a| 2 ■ Z|B '| 2+|a'| 2 <8-22)

So from (8.21), (8.22) we have K(s,s’) =K(l/s,l/s’) q

Proposition (8.6): K is invariant under orthogonal bilinear transformation.

Proof

We have to prove that, if
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then K([a,B],[a’,B'J) - K([S,B],[S’,B'l).

From (8.23) we have:a - cci-dB, B = da+cB, a' = ca'-dB'» B' “da'+cfi', so

K([a,B],[a',B'])-

-l(cS-dB)(dfi'+cB')-(ca'-dB’)(da+cfi)|/,/|ca-dB|2+|dfi+cB|2-,/|ca,-dB' |2+|d&’+c§' |2 (8.

The numerator of (8.24) after some simplifications can be written as

(8.25)

Also, it is known that ¥ ZpZ^t =s> | Z x ±Z£ 12= | Z x 124-1 Z£ 12±2Re (Z XZ2 ) (8.26)

» I2 I A • I 2

c2|a|2+d2|B|2-2Re(cdaB)+d2|S|2+c2|B|2+2Re(dcaB) = |d|2+|B|2. 

| a' 12+1 fi' |2, thus

K([a,fi],[a',B’]) =K([a,B], [S’ ,§']). n
Next we derive a result for the sensitivity of a single eigenvalue of a 

regular pair (F,g ). This result is based on the work by Stewart [Ste. -1] 

and provides a strong perturbation bound for the eigenvalues.

Let F,GeIRnXI1 such that the pencil sF-G is regular. Let sQ be a single 

eigenvalue (multiplicity one) with Xq and yj normalised (llxjj £ = llz^ll 2 ~ 

right and left eigenvectors correspondingly, then (s o F-G)2Cq  = 0 and 

^(s q F-G) =0. Also so(y^F2co) ^Gx^ and if we put =ot» =8 the

Point sQ =a/$ can identified with the point [a,8] of the projective line.

Proposition (8.7) [Ste, ~1]: Let the regular pair (F,G) el/1 . Let s =a/8
—-------------------------------------- n,n o

be a single eigenvalue for the pair (F,G) with x^, normalised right and 

left eigenvectors correspondingly. For sufficiently small G’,F*  € IRnxn 

there is an eigenvalue s^ for the pair (F+F*  ,-(G-l-G)) that can be identified 

with the point [a+y^F’x^, B+y^G’x^] of the projective line, except for terms 

of order ||F’||2, ||g '||2. □
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Remark (8.6): According to this result, the sensitivity of s q to perturba-

tions in G and F will be measured in terms of the chordal distance by:

d(so>so) = B^G’xJ) =
I __________________ (8.27)

= |o^G,2=0-B^F'x0|//|a|2+|B|2 •^a+^F'xJ^B+^G’xJ2

By using the previous definitions, remarks and propositions we can state 

the following proposition.

Proposition (8.8): Let the regular pair (F,G) e Let s q -a/0 be a

single eigenvalue for the pair (F,G) with x^, y^ normalized right and left 

eigenvectors correspondingly. Then for sufficiently small F'jG' e IRnXn is 

an eigenvalue s'Q for the pair (F+F*  ,-(G+G* )) such that

d(sQ,s^) AsinQ + Bcos0/v-E, where 0 = tan |a/01 , A = B 38 ly^F’x^ I > 

v = ^1 aj 2+| 012 and E = v 'B2+A2.

Proof

From (8.27) we can take, 

d(so,s;)<|a|-|^G'xo|+|B|-|^F'xo|//|a|2 |fi|2 • /|a+^F'xo|i+| B+x^G'xJ2 (8.28) 

If we put 8 - tan-1 |a/B|, V = /|a|2+|B|2, A = I^G'xJ , B- lyVx, |, 

and E = ^B^+A2, then we can easily seen that sin0 = |ct|/v, cos0 = |0|/v and 

(8.28) becomes

d (s q ,s^)^vsin0A+vcos0B/\>• /1a+B | ^+1 0+A12=Asin0+Bcos0//1a+B -l-|~0+A|2 (8.29)

By using the inequality,

^"[a+B12+1 0+A|2 = /|a|2+| 0|2 - ^B^A2, (A,B^0) (8.30) 

(8.29) gives:

d(sQ,s^) £ Asin© +Bcos0/v-E (8.31)

□
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Remark (8.7): This last inequality in the framework of numerical analysis, 

says that 1/v is a condition number for the eigenvalue sQ. rr

Remark (8.8): In the case 9 = 0, then sin9 = 0 and a=0 or equivalentrly 

s q  = 0. Thus the matrix G is singular; the disappearance of the term AsinO 

in (8:31) says that perturbations in F cannot affect the singularity of G.

8.5 Relationships between $-(F,G)-e.d.s., deflating subspaces and perturba-
tion results for entirely right regular pairs (F,G)

vector problem defined on an entirely regular pair

In the study of perturbation theory of the generalised eigenvalue-eigen-

(F,G) eC a key notion 
n,n

introduced by Stewarthas emerged, the notion of the deflating subspace

[Ste. -2]. The aim of this section is to establish the links between the

invariant subspaces, introduced in the previous chapters and the notion of 

deflating subspaces. By doing that, the perturbation results established 

by Stewart for this case may be transferred to the invariant subspaces which 

have been defined in chapter (7).

Definition (8.7) [Ste. -2]: Let (F,G) e L_ _ and U be a d-dimensional sub- - n j n

space of JRn. 1/ is a deflating subspace for (F,G) iff dim(F(/+Gl/)= dim(/ = d.

□
Before we examine the exact relationship of a deflating subspace and the

invariant subspaces defined before we state the following result.

Proposition (8.9): Let (F.G) e L*  and Vc IRn be a d-dimensional subspace. 
’ n,n

The restriction pencil (F,G)/(/ has no c.m.i. in its set Iy of strict equi-

valence invariants.

Proof

Let (sF-G)V, V a basis matrix of (/, and let W^fsFV-GV} / {0}. Then, 

3v(s) eIRn[s], v(s) ^0, such that (sF-G)V v(s) =£. Define x(s) =Vv(s);
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since V has full rank and v(s) 0^, then (sF-G) x(s) ~ P. and thus sF-G is 

singular, Q.E.D. g

From the above result, it is clear that ly may contain f.e.d., i.e.d. and 

r.m.i. This observation will be used next.

r

R nTheorem (8.2): Let (F,G) el and let V C JR be a d-dimensional subspace.— ............... t n,n

1/ is a deflating subspace iff (/ is a $-(F,G)-e.d.s. (i.e. ly is characteri-

sed by e.d. and possibly zero r.m.i.).

Proof
r

First note that dim(F(/+G(/) = rank^ [FVjGV], where V is any basis matrix of 

U. Clearly, if ReJRnxn, |r | ^0, then rank^ [RFV,RGV] = rank^ [FV,GV]. We 

can always choose a special basis V and an R such that (RFV,RGV) is in the 

Kronecker form.

By proposition (8.9), the possible set of invariants are e.d. and r.m.i.

The typical blocks in (RFV,RGV) are:

"fit '

Because of the block diagonal structure in (8.32) the independent columns 

in [RFV,RGV] may be found block by block. Thus, by inspection:
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i ; o*
(i) has £+1 independent columns for ¥ € IN.

(W
t
* 
» has t  independent columns for act, t  e IN.

(iii) has q independent columns for ¥ q e IN.

and the rank of [RFV,RGV] =rank[FV,GV] is equal to dim(F(/+Gl/), where

t p  y
dim(FU+F(/) - £ (C+l)+ Z T.+ E q.

i-1 i«l i=l

However,

t p y
d = dimU = E £.+ E T.+ E q

i=l i-1 1 1=1 1

By (8.33) and (8.34) we have that

dim(Fl/+G(/) = diml/ = d

(8.33)

(8.34)

(8.35)

and equality holds if and only if there are no non zero r.m.i. in (zero 

r.m.i. do not affect the above inequality).

Now if V is deflating, then for dim(Fl/+G(/) =d all r.m.i. must be zero and 

thus V is a $-(F,G)-e.d.s. Conversely, if 1/ is £-(F,G)-e.d.s., then all 

are zero and (8.35) holds with equality, i.e. 1/ is deflating subspace. n
Remark (8.9); Let (F,G) e L*'  and V CIRn be a d-?dimensional subspace. Then 

n,n

dim(Fl/+Gl/) £ diml/ = d (8.36)

equality holds true iff 1/ is a $-(F,G)-e.d. s. □
The above remark demonstrates that in the definition of deflating subspa-

ces given by Stewart the equality sign should be used instead of since 

there is no subspace of lRn for which strict inequality of the ”<" holds

true.
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Given that deflating subspaces of an e.r. pair (F,G) may be also expressed 

for $>-(F,G)-e.d.s. Thus, following the results of Stewarts [Ste. -2] we may 

state:

Proposition (8.10): Let 1/ be a <J>-(F,G)-e.d.s. Then there are orthogonal

matrices K and L such that the first d columns of L span V and

KCGL
G11 G12

G22
. KCFL

F11 F12

F22

where G^ and F^ are dxd matrices.

,0 0

Proof

Let L = [Li;:L2],

U and L2 e 1R1

where L^ e !Rnxd with

,nx(n-d)

orthonormal columns such that 

colspanL|=(/ and L2 € 1RUJSAU UJ such tat L=[L^jL2J be orthogonal. Also, let 

1<2 dRnX(n have orthonormal columns lying in the orthogonal complement 

of FI/+GU ((F(/+G(/)“S and € IRnX^ be choosen such that K= is ortho-

gonal.

Since colspan = U colspan(GLj) £GV£f U+GU and because i® lying in 

the orthogonal complement of FU+GV we have 

same arguments we have that KjjCFLj) =0.

that K|(GLp=0. Following the

So,

andt
g El Jlj ] Kj GLx k Jgl 2 G11 G12

K2 _K2GL1 K2GL2 0 G22

F11 F12
t , 'Fll F12 ” G11 G12 "

, thus K (sF-G)L = s —

_° F22_ 0 F22 _ 0 G22

□
Also if X€O(F|j,G^1) with corresponding eigenvector^, then Xeo(F,G) 

with corresponding eigenvector L1 z_e U. □
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Next we shall define an operator which plays an important role in deriving 

the error bounds in the perturbation analysis discussed next.

Definition (8.8)([Ste. -2], [Kato. -1]): Let GpFjClR*'* 5' and G2,F26lRinxm 

are fixed matrices. For any X = [P}Q] e IR1^2^, PjQelR^^ we define the ope- 
i

rator T on as follows:

T: 3Rmx2)^ IRmx2^: V X- [PjQ] 6 !Rmx2S'->-T(X) = [PG,-G,Q ;PF.-F,Q] e B."®24 (8.37)

2 ' □
Lemma (8.1): The operator T is linear.

Proof

Let Xj - [pi;q 1], X2”[P2!Q2]elRI,,x22,X eB, then

»
XXX+X2 - [XP1+P2;>Q1+Q2J and TCXXj +Xj ) =

- [(XP1+P2)G1-G2(XQ1+Q2)j(XP1+P2)F1-F2(XQ1-K!2)] =

- [X(p1g 1-g 2q 1)+p2g 1-g 2q 2!X(p1f 1-f 2q i)+p2f 1-f 2q 2] =

= X[P1G1-G2Qi;P1F1-F2Q1] + [P2G1-G2Q2;p2F1-F2Q2]-XT(X1)+T(X2), so  T is 

linear. q

Lemma (8.2) [Ste. -2]: The operator T is non singular if and only if:

a(F1,G1)fi a(F2,G2) = 0 (8.38)

(The spectrum above is defined on the associated pencils sF^-Gp sF^-G^ in 

the usual maner).

Remark (8.10): T is non singular is equivalent that,

V [r Js ] = YeIRmx2£ 3 X = [pJq ] e IRmx2£ such that:» »
T(X) = Y <=o (PG,-GOQ = R and PF,-Fq Q = S) (8.39)12 12 □.

Later on we shall need estimates of the size of the solutions of (8.40).

mx2
In order to do this we define two norms on 1R as follows:
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Definition (8.9) [Ste. -2]: ¥ R = [p[q ] e where PjOelR^' we define

||r ||’2 = max{||p||2>||q ||2) and ||r ||'f  = max{||P||F»||Q||?} (8.40)

We can easily seen that ||r ||2,||r ||f  are norms on

As we have seen before the operator T is determined by the fixed matrices<
FpGl> F2»G2*  Let

dlf(F,,G.;F,,G,) = inf T(X)||' (8.41)
1122 11x11;=! F

Then dif (FpGpF^Gp = 0 iff T non singular, that is, if and only if 

aCFpGp n<7(F2,G2) =0 [Ste. -2].

Also if T is non singular and T(X) = Y, then

ll<F < ||YH’F/4if(F1,G1;F2,G2) (8.42)□
The topic examined next is the study of perturbation properties of

<£>-(F,G)-e.d.s., when there is uncertainty in the parameters of the pair

(F,G). The following analysis is based on the work of Stewart for delfating

subspaces.

Let L=[l ^Jl 2J and K=[KpK2] be orthogonal matrices with LpKjGlR 

Then if F21=K^FLx=0 and G21 « k JjGLj = 0, the columns of Lx span an £-(F,G)-

e.d.s. for sF-G. If F21 and are small but not exactly zero, it is rea- 
!

sonable to ask whether there exist orthogonal matrices K’ = [KpK2] and 

f t tL’ = [l ||L2] near K and L respectively, such that K2 FL| = GL| =0.
t t » *

We select K’ = eStfXpK^) and L’ = [L|Jl £] 6S([l 11l 2J) in the form

where P,QelR^x\ It is easy shown that K’,L’ are orthogonal.

K{ - (K1+K2P)(I+PtP)_1/2, Kl = (K^-K^P* 1) (I+Ppt)”1/2
2 2 (8.43)

= a.1+L2Q)(I-K}tQ)_1/2, L2 = (L2"LlQt)(I^Qt)’1/2

K^FLj * K^GLj » 0 leads to the following system.

By setting G _ - K^GLj , F^. = K^FLj  , ¥ i,j=l,2, then conditions



394

{PGirG22Q = G2rPGi2Q’ ppirF22Q=p2rpp2iQ} (8-44)

I I
If we define as before T([pJq ]) = fpGn_G22^’PFll“F22^^ the system (8.44) 

becomes:

T([P;Q1) = £G2rPG12Q;F21‘PF12QJ <8.45)

Thus the problem of perturbing K,L into the (deflating) matrices (K*,L*)  

is reduced to the following equivalent problem, determine under what condi-

tions the non linear equation (8.45) has a solution. Such conditions are 

given next.

» i

Proposition (8.11) [Stew. -2]: Let K= , L = [L *»L 9] be orthogonal

matrices with K. ,L. e IR . Let also G..,F.. be defined as before. Let us 
1’ 1 ij

also define

Y = l|fG2i;F21]||F’ n" l|[G12iF12^ 2’ 5=dif(FU’Gll;F22’G22) (8*46)

If = y/(f>2<l/4, then there are orthogonal matrices P,QelR^n 

satisfying || [P»Q]||« y/6*  (1+k) = y/6‘ (l+v/l-4k|y{-2kj+»/l-4kj)<2Y/6, such that 

colspan(L^H^Q) is a deflating and thus a $-(F,G)-e.d.s. for the regular 

pencil sF-G. q

P v S? • mxm
Proposition (8.12): If FpGpEpE! e IR , F2>G2>E2>E2 6 K > then

dif (G|+Ej, Fj+E};G2+Ej  , F^Ep >dif (Gj ,F ;G2, Fp-max{|| Ejl 2+|| EjH 2;|| E’|| E ’|| 2}.

Proof

By definition, dif (Gj+EpF^EpG^E^F^Ep =

= inf||[p(G1+E1)-(G2+E2)Q,P(F1+Ep-(F2+EpQ]||^.

II[p;q ]||;-i

f
Let the infimum be obtained for X= [P’q ], then ||p||f »||q ||f  = 1*  
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Hence dif (Gj+Ej  .Fj+EpG^Ej.Fj+Ep -|| [p(G1+E1)-(G2+E2)Q,P(F1+E{)-(F2+EpQ]||^, = 

= max{||P(G1+E1)-(G2+E2)Q||F,||P(F1+E{)-(F2+EpQ||F} >

> maX{||PG1-G2Q||FH|E1l|2H|E2l|2,||PF1-F2Q||FH|E{||2H|E^2} >

£ »ax{||PG1-G2Q||F,||PF1-F2Q||F} - maxfll Ejl2H|e 2H2,||Ej||E£||2} i

i dtf (Gj.FpG.j.Fp -maX{||E1||2-H|E2||2;||E{||24]|E^2}. g

The question that arises is to investigate whether there exists a V’

£-(F*,G ’)-e.d.s. of the perturbed pair (F*  ,GT) = (F+EpG+Ej) which is close 

to I/. Of course the essential question is how close such a subspace may be 

found with respect to the given perturbation (EpE|). The answer to this is 

given next.

» i
Theorem (8.3); Let K=[KpK2], L= [LpL2] be orthogonal matrices with

KpL^ e ]Rnx^, G^j = k Jg Lj  , F„ = v i>j = 1,2 and suppose that G^j = F2X = 0.

(in that case (/= colspan is an £-(F,G)-e.d.s. of the pair (F,G)). Assume 

that Ex,E|€]Rnxn and E^ = K*E|Lj,  E_ = K^L^ V i,j = 1,2, 

£ij =max^lEijilF>llEijllF*̂

t ’ t ’Let us also assume that Y = e2l’ n = ^G12’F12^2+ei2’ = dif ^Gll,F11 ;G22,F22^ ”

2 (n-£)x£”ell’e12*  YB/<5 <1/4 then, there are matrices P,QelR satysfying

||[PjQ]||p 2y/6 such that colspan (Lj+L2Q) is a #-(F,G)-e.d.s. for 

s(F+E1)-(G+E|).

Proof

We will give the proof by using the previous proposition to the

stated on s(F+Ex)-(G+E|) . If we now denote by (LpF^ it has been 

by G^, F_ in the proposition (8.11), then

Gij " 4(G+El)Lj ” KiGLj +KiElLj ’ Glj +Eij -|

- i,j =1.2

problem

denoted

(8.47)
Fy “K^F+EpL -k Jf L +4ElLj =Fij +Eij -
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;Gdif(G11’F11;G22’F22) ”£11 ”e12*

If we set now:

Y “ e21 ’ “ III-G12 J F12^ll 2 £12 ’ d = ^Gll ,F11 ’G22,F22^ " ell *”^12’

- ~ ~ ~ ~2 2then we have (y=Y> rj_<.r|» <5-><$) =>yti /6 <yr]/6 , so if we suppose now that
2 ~ ~ ~2YT|/6 <1/4 then Y*n/<S  <1/4 and the theorem (8.3) is valid for the pencil 

s(F+Ep-(G+E|); that means that there are matrices P,Q e IR^n such that

the subspace l/f = colspan (Lj+I^Q) is a $-(F,G)-e.d.s. for s(F+E1)-(G+Ej), 

which of course is a subspace close to the £-(F,G)-e.d.s. V =colspan L^. 

The closeness can be measured by the gap ((/,(/’) = gap (colspan L^,colspan 

(l x +l 2q )). p

A hint about the possibility of establishing the above result in the case 

of deflating subspaces was given in [Ste. -2], but no proof was given. The 

notion of deflating subspaces has been recently extended for general pairs 

(F,G) by [Van Dor. -3]. The link of this generalised notion of deflating 

subspaces to the invariant subspaces notions defined in Chapter (7) is 

still question and it is left to future research.
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8.6 The space Lm>n as topological vector space (T.V.S.)

The formal analysis of the perturbation properties of matrix pencils, im-

plies the need for the definition of topologies on the set of ordered pairs 

(F,G). Of course the main question when searching for topologies is to exa-

mine which of them is the most suitable for the study of the particular pro-

perty of the pair (F,G) we would like to examine. Another important factor

in determining the suitability of a topology is whether it is related to 

a natural way to the modelling of the "uncertainty” in the set which is 

under study. This section serves as an introduction to the study of pro-

perties of pairs (F,G) under uncertainty in the parameters of (F,G). We in-

troduce two metric topologies, which are related in a rather natural manner

to the modelling of uncertainty on (F,G); in fact it is shown, that the set

of pairs & under these two metrics becomes a topological vector space

(T.V.S.).

Let L = {L: L=(F,G), F,G e . Under the standard operations ofm,n

addition of pairs i.e. Lj+L2 = (FpGp+(F£^2) = (F^Hd^Gi-H^) an^ scalar

multiplication i.e. XL = X(F,G) = (XF,XG), XelR, L becomes an IR-vector m,n

space. It is readily shown that

dimensional vector space.

L under those operations is a finite m,n r

Definition (3.10): On the set L we define the functions:---------------------im,n
(1) d: L *L —• JR+: ((F,G), (F’.G1)) -> d((F,G), (F*  ,G’)) - 

m,n m,n o

- Hf -f 'IHIg-g 'II
(ii) d*:  L XL — ((F,G),(F’,G')) —> d*((F,G) ,(F’,G')) =

m,n m,n °

- max{ ||F-F'|| ,|| G-G'|| }

where || ’|| is any matrix norm.

Proposition (8.13); The functions d,d*  defined on Lm q are metrics.
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Proof

We shall prove the result for d, whereas the proof for d*  is similar.

In fact, d is a metric on 1 because:m,n

(i) ¥ (F,G),(F',G') el obviously d((F,G),(F’,G’))^0 andm,n

d((F,G),(F’,G’))=O«>||F-F,||-H|G-G,|| = 0«=>F»F’ and G = Gf <==> 
r

<S=S> (F.G) - (F',G')

(11) ¥ (F,G),(F',G') el we have d((F,G),(F',G’)) =||f -F'|H|G-G’|| =in j ii
- ||f '-f |H|G'-<4| = d((F',G'),(F,G)).

(iii) ¥ (F,G),(F',G'),(F",G") eL we have that d((F,G),(F1,G')) =m, n

= ||f -f 'IHIg -g '|| =|| (f -f ")-(f ’-f ")|H| (g -g ")-(g '-g ")|| i

i IIF-F"||+|| F’-F"|H|G-G"||-HIG’-G"|| = d( (F,G) , (F" ,G"))+d((F' ,G' ) , (F",G")) .

So (1 ;d) and (1 ;d*)  are metric spaces.m,n m,n □
By using these metrics, the neighborhoods S^((F,G),e), ((F,G),e)

¥ (F,G)el defined by S((F,G),e) = {(F',G')eL : d( (F’,G'), (F,G))<e},m,n a m,n

S,*((F,G),e)  = {(F’,G’)el : d*((F ’,G’) , (F,G)) <£} form a basis for the
q x  m,n

metric topology on the set 1m,n

Definition (8.11): A sequence L = (F^,G_) e (L_ ;d), n e IN is said to----------------------------- — n n n m, n

converge in (L ;d) iff there exist L = (F,G) e (L ;d) such that, ¥ £>oAn eJN: 
m,n m,n u

¥ n=n => (F ,G ) eS, ((F,G),£) (or equivalently: d(L ,L)-H) as n-*30) . We then o n n d n

write lim(F ,G ) - (F,G)
n-w n n n

Remark (8.11): It is readily shown that lim(Fn,Gn) = (F,G) iff 
n-x»

= F

and limG =G. 
n-x» n n

Proposition (8.14); If (F^) (F,G) and (F^,G^) -> (F»,GT),

metric space dmn;d), d((Fn>Gn>’(Fn,GA)) * d((F»G)’(F'•

limF n n-x»

then in the
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Proof

Let us assume that L = n

So we have to prove that:

For every x,y,z,u elm,n
|d(x»y)-d(z,u)| = d(x,z)+d(y,u).

(Fn,Gn), Mn=(F^,G^), L=(F,G), M=(F',G'), ne».

If L ->-L, M -*M  then d(L ,M ) +d(L,M). n n n n

by using the triangle inequality we can see that

Thus by setting x = Ln» y=Mn> z=L, u = M we have

|d(L ,M )-d(L,M) | = d(L ,L)+d(M ,M). From the assumptions L ->L and M ->M 
n n n n n n

it follows that d(Ln,L)-K) and d(Mn>M)-H) and thus d(Ln,Mn)-d(L,M)+O <^=£>

<^>d(Ln,Mn)-d(L,M). p

Remark (8.12): We can derive the same results by using the metric d*  on

L instead of d. m,n

Remark (8.13): From the obvious fact that max{||F-Ff|| ,||G-G'|| } £||F-Ff||+||G-G’||

we have that d*((F,G) ,(F1,Gf)) =d((F,G),(F’,G’)) V (F,G),(F’,G’) eL ; 
m,n

that means that the metric topology induced by d*  on L is stronger than 
m,n

the metric topology induced by d. r-r

Remark (8.14): We can easily seen that the functions,

+: Lm,nXLm,n~^ Lm,n: «F1’G1> ’ <F2’G2» <^2>W

® 3Vn-* Lm,n: <X’<F>G» <^G>
♦

are continuous for the topologies induced by d,d*  respectively on

Thus, (1 ;d), (L ;d*)  are topological vector spaces (T.V.S.).

8.7 The "space-frequency relativistic" properties of S(F,G) and duality

In Chapter (6) the notion of Bilinear strict 

Lm n has been introduced and a complete set of 

matrix pencils under this equivalence has been

equivalence E^_g on the set

invariants of homogeneous

defined. The motivation

behind this study has been our desire to provide the theory that can high-

□
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light the further aspects of duality existing between the differential sy-
A

stems S(F,G) and S(F,G) which are related in terms of a rather simple bi-

linear transformation [Kar. & Hay. -1]. In this final section, our effort 

is focused on the classification of subspaces of the domain of (F,G), as 

well,as of the dynamic properties of S(F,G) in terms of their invariance, or 

dependence on E^_g transformations. Such a classification may be referred 

to as a ’’space-frequency relativistic” classification, since E^_g trans-

formations express coordinate transformations in the domain and codomain of 

(F,G) and coordinate transformations of the points of the Riemann sphere. 

The results presented here provide the means for defining ’’convenient" dual 

formulations of problems of linear system theory; the term convenient may 

be referred to the computational, or the conceptual aspects of the consi- 

dered problem. The duality aspects between the S(F,G) and S(F,G) differential 

systems have been already extensively discussed in the previous chapters;

the general case of bilinear transformations is examined next.

Definition (8.12): LetL=s(F,G). L’ = (F’ .G’) e L_ _ andS(F,G): Fx=Gx,m, n

S(F’,G’): Fx’ =Gx’ be the corresponding systems. S(F,G), S(F*,G ’) will be 

called Eft_g-dual, Eft-dual, if LE^_gL’, LE^L’ respectively.

All pairs in L have as a common domain the space ]Rn. The problem con- 
m,n

sidered next is the study of the nature of a given subspace V c ]Rn with 

respect to different pairs (F,G) of a bilinear orbit Eg(F,G). By L^=(F,G)/U, 

L = (F,G) el we shall denote in short the homogeneous restriction pencil.m,n

Furthermore, by H we shall denote the strict equivalence group defined
m, n

on Lm,n

Proposition (8.15): LetL=(F,G), 38 <F'G’) € Lm,n, (/c ]Rn be a subspace

and let diml/ = d. If for some b eB, L1 = boL, then there exist heH , suchm,a

that « h*b°Ly.
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Proof

If L^L’ » (F’,G’), where F’ =aFV-cGV, G1 = dGV-bFV, then L(/+Ly =

= X(aFV-cGV)-p(dGV-bFV) =XF’V-pG’V=Ly. Given that V is not uniquely defined, 

the result follows. rr

Remark (8.15); Proposition (8.15) also holds true, if we consider the more

general case of E^_g equivalence where is the 

subgroup of H (i.e.r m,n transformations defined by

left

pair

strict equivalence

For a given subspace in general there is no re-

lationship between the

V of the domain of L m,n 

strict equivalence invariants of L^,Lj, for general

However, ifL,L» eL m,n

shows that L(/^fj_gLp and

LEgL’, or more generally LE^.gL* , the last result 

thus certain relationships hold true between the

E^-invariants of L^,Ly These relationships are defined by the properties

of E^-invariants under Eg-transformations and according to the nature of

(R,In)). □

Ly, the geometric and dynamic properties of V with respect to different 

pairs LeEg(F,G), the Eg-orbit of a given pair, may remain invariant, or 

vary. The real, complex list and root range of a subspace V c IRn with re-

spect to a pair L = (F,G), are defined on Ly= (F,G)/V and shall be denoted 

by J1r (L(P ’ respectively. In the following the properties of 

the different types of invariant subspaces under Eg-equivalence are exami-

ned, identical results may be given for the E^—g-equivalence case.

Proposition (8.16): Let L=(F,G)el_ , (/e IRn be a subspace and let ------s-------------------------- m,n

c^(F,G;(Z) be the corresponding left (F,G) order of I/.

(i) c £(F,G;(/) is invariant for ¥ L’= (F’,G’;(/) eEg(F,G).

(ii) If V is a (W,U)-p.i.s. with respect to (F,G) then it is also a

((V,ll)-p.i.s. with respect any (Ff ,Gr) € Eg(F,G) .
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Proof

c^(F,G;U) is devined by the set of r.m.i. and thus it is invariant under 

Eg-equivalence, which proves (i). The subspace U is a (W,U)-p.i.s., iff 

c^(F,G;U) =0. By part (i) the result follows. r-r

The property of 1/ to be a (W,l/)-p.i.s. is invariant under Eg-equivalence 

and thus it is a property of the orbit Eg(F,G) and not only of the particu-

lar LeEg(F,G). The family of all possible (W,l/)-p.i.s. defined on (F,G) 

shall be denoted by Z . . The above result also implies that for specific
p. i.

subfamilies of Z . , their more specific characterising property alwaysp. 1.

varies within the set of properties characterising subfamilies of Z . underp • 1 •

Eg-equivalence. The Eg-invariance property of more specific subfamilies of

Z . is considered next, p.i.

Theorem (8.4): Let L=(F,G)et_ .,UclRn be a c.-(F,G)-i.s. and let 
’ in j n

J (L..) be the corresponding real list. Necessary and sufficient condition 
IR I/

for (/ to be a c.-(F’,Gr)-i.s. for V (F',G’) eEg(F,G), is that J^CL^) = 0.

Proof

Since V is a c.-(F,G)-i.s., then it may be decomposed as (/= (/ e 1/ where

IR I (Emay be expressed as V* = $(/*;  V*  , are finite non zero e.d.s.

which correspond to real, complex e.d. respectively.

If J-^CLy)= 0, then the invariance of c.m.i. implies that will be a 

c.m.i. subspace for every (F’,Gf) eEg(F,G). Similarly, because a pair of 

complex conjugate e.d. is always mapped under any bgB to a pair of complex 

conjugate e.d., it follows that under any b g B becomes also a

subspace which is c.-(F,G)-i.s.. Therefore, if J^CL^)= 0, then V is c.- 

(F,G)-i.s. for V LeEg(F,G). The necessity is proved by contradiction.

]R
Assume that J^CLy) 0- Then there exist a real non zero e.d.s. in V*  ’
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IRsay , associated with a frequency AelR-{0}. We can always define a beB 

such that A may be mapped either at zero, or infinity; Under such transfor-

IR
mations will behave either as a zero e.d.s., or as an infinite e.d.s.

Clearly, for some appropriate beB the c.-(F,G)-i.s. property is viola- 

ted- □

A c.-(F,G)-i.s. 1/ with J^(Ly) will be referred to as a strong complete- 

-(F,G)-Invariant subspace (s.c.-(F,G)-i.s.) and the family of all such sub-

spaces defined on (F,G) will be denoted by / . The property of a subspaces • c •

to be a c.-(F,G)-i.s. is clearly invariant for subspaces of the Y under s • c •

Eg-equivalence. Two important subfamilies of Yg c are: the family P^ ? of 

all I -(F,G)-c.m.i.s. and the family F . of #-(F,G)-e.d.s. with J (L„)= 0; 

a subspace Y e F^ will be called a strong-$-(F,G)-e.d.s. (s.-$-(F,G)-e.d.s.). 

From Theorem (8.4) we have:

Corollary (8.1): Let L=(F,G)el and let Y c lRn be a subspace.
-------  m,n

(i) If V is an Ic“(F,G)-c.i.s., then for V (F’,GT) eEg(F,G) Y is also an 

^-(F^G^-c.i.s.

(ii) If Y is a s.-#-(F,G)-e.d.s. with list J^(L^), then for ¥ (F’,GT) e

Eg(F,G) Y is also a s.-<J>'-(F,G)-e.d.s. with list J^Ly) =Jg,(Ly).^

Note that under Eg-equivalence the lists J^(L^) , Jj,(L^) are invariant, 

but not the root range.

Corollary (8,2): Let (F,G) €Lm n> Eg(F,G) its Eg-orbit and let Y cJRn be 

a subspace. If Y is e.-(G,F)-i.s., or e.-(F,G)-i.s., or e.c.-(F,G)-i.s., 

then 3 (F’,GT) eEg(F,G) such that Y is a c.-(F’,Gf)-i.s.

The proof of the above result follows along similar lines to that of

Theorem (8.4). From the above two corollaries we may give a classification 

of the dynamic properties of a subspace Y under Eg-equivalence transforma-

tions.
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Corollary (8.3): Let (F,G)e L , E«(F,G) its ER-orbit and let l/C]Rn be 
in 9 ii o o

a subspace.

(i) If 1/ is a C°°-r.s. with respect to (F,G), then for ¥ (F’,G*)  € Eg(F,G)

V is a C -r.s.

(ii) ' If V is a D^-h.s. with respect to (F,G), then for ¥ (F’,G’)eEg(F,G)

U is a Dg-h.s.. There exist, however, (F',G’)Eg(F,G) such that

is C -h.s. with respect to (F”,G”).

(iii) If V is a Dg-r.s. with respect to (F,G), there exist (F',G*)  eEg(F,G) 

such that V is not a Dg-r.s. with respect to (F*,G r).

From the above result it follows that the C°°-reachability and Dg-holdabi- 

lity are ’’strong” properties since they hold true with respect to any pair 

in fg(F,G) and any general subspace 1/ having the above properties. Contrary 

to that, the C°°-holdability and Dg-reachability are "weak" properties since 

for a general subspace V either of the above properties may depend on the 

particular (Ff,G’) €Eg(F,G).

8.8 Conclusions

The topological results given in this chapter, are of a preliminary na-

ture. In fact, they connect some of the known results on the perturbation 

theory of the generalised-eigenvalue eigenvector problem with the geometric 

concepts which have been developed in the previous section. The means by 

which these links have been achieved is via the new metrics which have been 

defined. The importance of these new metrics in the study of properties of 

pencils under uncertainty has yet to be proved; however, the links with the 

standard theory, their "easy" from the computational viewpoint nature and 

their intuitively simple forms, as means to measure uncertainty are encou-

raging indicators.
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The application of the Bilinear Strict equivalence theory for the classi-

fication of the geometric and dynamic properties of the various types of in-

variant subspaces, under Eg-equivalence, provide a ’’relativistic” classifi-
0°

cation of these properties. Thus, the notions of C -reachability and Dg-hol- 

dability have emerged as ’’strong” properties, whereas those of Dg-reachabi-
OO

lity and C -holdability as ’’weak”. The results on Eg-equivalence may be used 

for the definition of convenient dual systems in the standard, or extended 

state space theory. In the standard linear system thoery, the above "rela-

tivistic” classification implies that controllability, observability, and 

almost (A,B)-invariance are "strong” properties, whereas those of almost 

controllability and (A,B)-invariance are "weak"; furthermore it is worth 

pointing out that in this context, the property of stability is also weak, 

since it depends on the particular transformation b eB.



CHAPTER 9:

Conclusions



405

CHAPTER 9; CONCLUSION, FUTURE RESEARCH

The main objective of the thesis was to develope further a number of im-

portant aspects of matrix pencil theory which are relevance to linear systems 

thoery. By creating an enriched matrix pencil theory it is believed that a 

unifying, matrix pencil based approach to the study of regular and extended 

state space systems may be established. The results in this thesis aim at 

this direction. In fact, they establish a complete number theoretic treatment 

of the S.E.invariants, develope further the geometric theory of matrix pen-

cils and the dynamic theory of S(F,G) systems, produce a framework for the 

study of stability of invariants (robustness) and develope a theory of inva-

riants under B.S.E. transformations.

The essence of the number theoretic characterisation of the S.E. invariants 

is that it is based on the study of Piecewise Arithmetic Progression type 

sequences defined on an ordered pair (F,G), without using the underlying al-

gebraic notions. Given that all types of invariants are characterised in a 

similar manner, the approach is unifying. For the computation of the sequen-

ces it is assumed that the root range of (F,G) is known; a singular value 

decomposition may then be used to compute the ranks of appropriate sequences 

of matrices, and from those ranks the sequences. The analysis of disconti-

nuity properties may be carried out by Ferrer’s type diagrams. These results 

lead to a method for computing the Kronecher form without using special type 

transformations. The only inherent computational difficulty of the method 

is defining the root range of (F,G).

The study of geometry of matrix pencils presented here has two interela-

ted parts. The first deals with the geometry of the different types of 

strict equivalence invariants and it is manifested by the structure of ge-

neralised null spaces (the case of e.d.) an annihilating spaces (case of 

c.m.i., r.m.i.). This part is intimately connected with the P.A.P.S. theory 
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and defines the structure of bases of the elementary invariant subspaces 

(i.e. those characterised by one type of S.E, invariants). The properties 

of the special basis matrices indicate the nature of the abstract subspace 

algorithms developed in geometric theory; in fact, it is believed, that it 

is possible to develope these abstract algorithms using the properties of 

the basis matrices itself. An additional gain out of this study is the un-

derstanding of the module structure of the right and left null spaces of a 

pencil; these result culminate in a purely geometric construction of the mi-

nimal bases. It is believed that the minimal bases results, derived on matrix 

pencils may be extended to the case of a general polynomial matrix, thus pro-

viding a geometric theory of minimal bases with obvious computational advan-

tages.

The second part of the geometry study revolves around the restriction pen-

cil of a given subspace. The notions of (F,G)-, (G,F)-, complete (F,Gain-

variant subspaces, extended (F,G)-, (G,F)-, complete (F,G)-invariant sub-

spaces and (F,G)-right annihilating spaces generalise the standard notions 

of invariant subspaces of the geometric theory, since first they extend 

them to the case of a general pair (F,G) (in the standard geometric theory 

(F,G) is entirely right singular) and second because they also imply the 

duals of the standard geometric theory invariant subspaces. The advantage 

of the new notions is due to the generality of the pair, their close links 

with the number theoretic and computational aspects of (F,G), as well as 

with the underlying algebra. The asymptotic properties of infinite spectrum 

invariant subspaces may be established by using the notion of invariant re-

gular realizations (F,G;(/) of the triple (F,G; (/); this approach enlarges 

the domain and the sequences of subspaces are from the domain of (F,G). It 

is questionable whether an asymptotic characterisation of infinite spectrum 

subspaces may be achieved with sequences from the domain of (F,G).
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The theory of invariant regular realizations of a triple (F,G;U) may be 

extended to the case where the realization (F,G;P) has (F,G) not entirely 

right singular; in fact, (F,G) may be characterised by c.m.i. and i.e.d. 

Such an invariant theory allows the bridging of the general theory, presen-

ted on (F,G), with extended state space linear systems thory. There are how-

ever, a number of problems which have to be resolved here; especially those 

related to the interpretation of S.E. transformations with meaningful notions 

of feedback.

The dynamic propertis of S(F,G), i.e. the properties of the solution spa-

ce, have demonstrated that the S.E. invariants are essential in the charac-

terisation of the redundancy space, the initial space and solution space of 

the differential system. They have emphasised that system theoretic proper-

ties such as controllability, almost controllability have a deeper meaning, 

since they are also valid for S(F,G) representations; in fact, for the lat-
00

ter case they take the form of C -, distributional reachability. The diffe-

rent families of invariant subspaces have been classified according to the 

properties of C°°-, distributional holdability and C°°-, distributional rea-

chability; these properties are the counterparts of (A,B)-invariance, al-

most (A,B)-invariance and controllability, almost controllability. As with 

the asymptotic characterisation of infinite spectrum invariant subspaces, 

it is really questionable, whether distributional holdability, reachabili-

ty may be interpreted as almost C°°-holdability, reachability properties 

(in the sense defined by Willems in standard geometric theory) with trajec-

tories in the domain of (F,G). Using the regular invariant realization, 

however, the almost C°°-holdability, reachability property may be establi-

shed for the subspace V of the realization (F,G;U) of the triple (F,G;V). 

Investigating the asymptotic characterisation of infinite spectrum invariant 

subspaces and the almost C°°-holdability, reachability properties of distri- 
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tonally holding, reachability subspaces of (F,G), on (F,G) itself without 

expanding the domain with an invariant regular realization, is a problem 

that deserves further investigation.

The importance of the perturbation properties of S.E. invariants and in-

variant subspaces of a pair (F,G) needs hardly to be emphasized. The link 

of the metric topologies defined in Chapter (8) with standard results of 

the perturbation theory of the generalised eigenvalue eigenvector problem 

is encouraging; the richness of the theory of topological vector spaces pro-

vides a fruther encouragement for trying to develope the robustness aspects 

of the invariants of (F,G) along these lines. The type of results we are 

interested in, are a general theory of robustness of invariant subspaces 

(along lines similar to those given for the deflating subspaces of a regu-

lar pair) and a systematic study of the generic properties of a pair (F,G). 

It is believed that the general notion of deflating subspaces of a general 

pair (F,G) [Van Do. -3] is related to a specific way to the invariant sub-

spaces discussed in this thesis. The exact determination of this characte-

risation is one of the first priorities in a future research.

The theory of invariants of matrix pencils under B.S.E. transformations 

provides the means for the ’’space-frequency” relativistic classification 

of geometric and dynamic properties of (F,G). Applying the theory to the 

case of constructing convenient dual problems in linear systems is consi-

dered as an important area for future research. The question of defining 

a canonical form for B.S.E., seems to be a rather hard one; it is a theore-

tical one and it is connected with the construction of canonical dual pro-

blem, i.e. selection of appropriate ’’space-frequency" setting, which de-

monstrates the invariant structure of (F,G) and thus of the associated 

problem. Specialising the various types of B.S.E. invariants to the set 

of ordered pairs (F,G) (a necessary step in the definition of canonical 
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blocks) is rather difficult, because of the hard nature of B.S.E. invariants. 

However, it is still an interesting area that deserves further consideration. 

The work of Kublanovskaya [Kubl. -1] on the conditioning of the generalised 

eigenvalue-eigenvector problem with simple bilinear transformations suggests 

that B.S.E. is of immense importance from the numerical analysis viewpoint.
«r

Defining an "optimal” bilinear transformation, that will create the best 

conditioning for computations is of crucial importance and it is one of the 

problems we consider for future research. The condition number of (F,G) 

does not belong to the set of B.S.E. invariants and thus its assignment in 

an optimal way may be possible.

Presenting the theory of S.E. on the pair (F,G) in terms of the number 

theoretic properties of sequences is a more natural way for extending the 

theory to cases where the elements of F,G are not from IR or OC, but for more 

general fields, or possibly rings. Such a theory does not exist at the mo-

ment. Developing a theory of strict equivalence for more general case pair 

(F,G) is a prerequisite for expanding the matrix pencil theory to linear 

time varying systems and singularly perturbed systems. The underlying moti-

vation behind such an approach, is that the ordered pair operator description 

is a natural representation of first order linear differential equations, 

thus, time varying and singularly perturbed linear systems may be treated 

with a generalised matrix pencil theory, if such a theory is available.
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