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{u) local air mass velocity vector, (in/sec)

VBM vibration bending moment at the root of the
cantilever beam, (Ibf-in)

Vhelicopter flight speed, (knots)

relative velocity vector at the blade section 
w.r.t. fixed axes, (in/sec)

v instantaneous local (relative) airspeed, (in/sec)

vx’vy’vz relative local air velocity components (in/sec)

W helicopter weight (lb)

W^(H) basic objective function (blade mass or cantilever
mass), (lb)

-11-
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modified cantilever beam, (c/s)
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a(x) blade section incidence
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B(x) sectional flapping angle
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slope of the mass distribution within the 
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0(x) local blade section pitch, (equation 25) 
or cross-section rotation

9s local blade section pitch at the feathering 
bearing

- 12 -
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SUMMARY

Vibration is a continuing problem in helicopters. It 

can be particularly severe for the modern type of rotor head 

(hingeless rotor blade helicopters) in which the flap and lag 

hinges are replaced by flexible elements, unless a considerable 

effort is made at the design stage to keep it within reasonable 

limits. This type of helicopter is usually characterised by 

a relatively high peak to peak value of the hub non-rotating 

co-ordinate moments transmitted to the fuselage, e.g. on the 

pre-production Lynx helicopter. Part of the design process 

consists of manipulating the rotor (which is the major source 

of this vibration), by means of altering the blade structural 

and mass configuration, in order to minimise the overall 

vibration transmitted to the fuselage. Many of these 

adjustments are generally made on the basis of experience and 

intuition.

In this research project, the structural optimization 

technique is used to formalise the process with the desire to 

find the optimum configurations of the rotor blades (mass, 

flatwise stiffness and built-in twist distributions along the 

blade), in forward flight conditions, such that the oscillatory 

rolling and pitching moment is minimised. This problem is 

one of a general class which involves optimization by so-called 

"blade dynamic tailoring". It is a linear programming problem 

and the sequential unconstrained minimization technique (SUMT) 
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which uses an algorithm based on the steepest descent method 

is utilised.

The results follow an orderly sequence leading to a 

substantial reduction in the oscillatory rolling and pitching 

moments peak values (up to 48.5% and 28.8% respectively) with 

small changes in the blade configuration. Therefore, optimum 

design of rotor blades provides substantial benefits with 

small penalties, so it is suggested that use of structural 

optimization as a design tool by industry could lead to 

improved rotors.
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1. INTRODUCTION

The high vibration level in the helicopters which is an 

inherent characteriStic is becoming an increasingly important 

design consideration because of stringent requirements for 

crew/passenger comfort and also for increased reliability of 

structural components and on-board electronic equipment. On 

some military helicopters there is a need for a stable platform 

for firing weapons and target acquisition. The major source 

of this vibration, the main effects of which are evident in 

the fuselage, is the rotor. The main rotor vibration is at 

fundamentally N^ per rev. (where N^ is the number of rotor blades) 

and is due to the aeroelastic response of the rotor blades. The 

role of this vibration and the importance of its control in 

helicopters are clearly emphasised in the literature survey in 

Section 2.

One of the foremost considerations in the design of 

helicopter rotors is the reduction of oscillatory hub loads 

together with the fuselage vibration caused by these loads 

through judicious blade design.

The unprecedented developments in computational capability 

over the last decade have fostered equally impressive developments 

in structural optimization schemes in all disciplines of 

engineering. Of particular importance is the emergence of the 

finite element method for the solution of continuum problems. 

It provided the necessary motivation for the perfection of 
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matrix manipulation techniques, linear and non-linear equation 

solution methods, and for eigenproblem analysis and numerical 

integration schemes. The introduction of optimization schemes 

into the design of complex structures (e.g. helicopters) then 

followed quite naturally. It provides a means of not only 

saving weight and cost but also of allowing sensitivity studies 

to be made which can lead to improved structural integrity.

The motivation of the present research is aimed at using 

recent advances in the field of structural optimization to 

develop a rational design procedure for the rotor blades. 

In this design procedure, the blade mass, flatwise stiffness 

and built-in twist distributions are to be dynamically tailored 

such that an objective function based on the oscillatory rolling 

and pitching moments is minimised. The mass per unit length, 

flatwise stiffness and built-in twist at 19 spanwise stations 

along the blade are used as design variables. Upper and lower 

bounds on these design variables are prescribed to prevent them 

from reachinq impractical values. An arbitrary initial design 

variable (base-line design) of the blade under consideration is 

selected to start the optimization process.

An analytical model for prediction of the rotor aeroelastic 

performance in trimmed forward flight conditions has been 

developed using a modal approach. The blade is represented 

aerodynamically by a blade element model, the rotor wake being 

simulated first by a Glauert downwash distribution (uniform 

inflow) and then by a series of vortex rings (non-uniform inflow), 
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using up to 12 rings and 2 filaments which are situated at 

the root and tip blade section. Only flapping deflection 

was considered and the finite element method has been used 

to estimate the dynamic characteristics for both rotating 

and non-rotating blades, 4-degrees of freedom elements (in 

which the mass per unit length and flatwise stiffness vary 

linearly with distance along the beam element) being used. 

Blade displacements are expressed as a summation of rotating 

orthogonal flatwise modes (four modes) and the modal co-ordinates 

are calculated numerically using the azimuthal convolution 

integral. Finally, the flapping root bending moment as well 

as the resultant non-rotating co-ordinate moments (objective 

function), based on the engineers theory of bending, were also 

computed.

The problem is then cast as a non-linear programming 

problem and a sequential unconstrained minimisation technique 

incorporating an algorithm based on the steepest descent 

technique is used. The problem has been formulated so that 

a straight forward optimization takes place with respect to 

change of the design variable from an arbitrary initial blade 

configuration.

Due to the unacceptably long computation times for each 

change of such huge number of design variables, the major 

computational effort being in the evaluation of the objective 

function, a preliminary exercise was firstly carried out to 

demonstrate the feasibility of the optimization procedure.
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The solutions of the optimum configurations of a cantilever 

beam, excited by an oscillatory force of constant amplitude 

at its tip, for minimum oscillatory root bending moment have 

been obtained. These solutions are worked out in detail 

with the excitation frequency rather less than, and also 

rather greater than both first and second natural frequencies. 

In addition, a laboratory experimental investigation has been 

carried out on a simple non-rotating cantilever beam model 

and doubts about assumptions made in mathematical modelling 

resolved.

The understanding gained from the optimization results 

of the optimum configurations of the above cantilever beam, 

led to the development of a more refined optimization procedure 

for the rotor blade tailoring configurations. In this 

procedure the optimum modified mass flatwise stiffness and 

built-in twist distributions along the blade, for minimum 

oscillatory rolling and pitching moments, are obtained. The 

numerical optimization results are discussed and the appropriate 

conclusions are also drawn.
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1. REVIEW OF LITERATURE

The literature pertaining to helicopter vibration problems 

is reviewed in the following sections as well as the vibration 

control methods. Applicabilities of these control methods are 

also emphasised.

2.1. Vibration of Helicopters

One characteristic of helicopters is that they are subject 

to severe vibration. Such undesirable excessive vibration can 

cause structural fatigue of helicopter components, damage to 

armaments and equipment on board the helicopter, passenger 

discomfort and control difficulties of the crew.

From the point of view of dynamics, the helicopter is often 

treated as consisting of two coupled systems: the rotor and the 

fuselage. The major source of vibration, the main effects of 

which are evident in the fuselage, is the rotor. The tail rotor 

and gearbox also contribute smaller, but often quite important, 

excitations. The vibration of any part of the fuselage depends 

not only on these excitations but on the elastic response of the 

fuselage. The role of vibration in helicopter dynamics has 

recently been summarised [1,21:

The high vibration levels in a helicopter are due to loads 

generated by the rotor which in turn depend on the airloads 

generated by the blades as well as the dynamic characteristics 

of the whole rotor system. Continuous rotation of the rotor 
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creates a periodic asymmetry of the geometric configuration of 

the helicopter. On the other hand, the primary source of this 

vibration is the non-uniform flow passing through the rotor 

causing oscillatory loads on the rotor blades. These air loads 

produce time varying forces and moments at the rotating hub 

which are periodic in nature. Subsequently these forces and 

moments are transmitted from the rotating hub system to the fixed 

fuselage system, where they act as exciting forces and moments 

on the fuselage with various integer multiples of rotor speed (Q). 

Thus the helicopter vibration is characterised by harmonic 

excitation in the fixed system.

Unfortunately, the airframe is a highly complex structure 

and calculation of mode shapes and natural frequencies, for 

example, is extremely difficult. Nevertheless, it is most 

important that the acceptable vibration characteristics are 

achieved at the design stage to avoid the costly and lengthy 

business of having to alleviate excessive vibration by modifying 

production aircraft. However, alleviation of such excessive 

vibration may require structural modification of the airframe 

and/or the fitting of some form of vibration control as follows:

2.2. Respective Vibration Control Methods

The stringent vibration requirements of modern helicopters 

necessitates special methods and devices to control and reduce 

vibration to an acceptable level. These stringent requirements 

have led to extensive research and development programs, by
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helicopter manufacturers, aimed at substantial reduction of 

excessive vibration. The various vibration control methods 

used in helicopters fall broadly into the following categories 

[3, 4, 5 ]:

2.2.1. Vibration Isolation•.

On most helicopters the main qearbox taking the drive from 

the engine or engines to the rotor is normally mounted directly 

beneath the rotor. The possibility of usinq the rotor/transmission 

unit for alleviating fuselage vibration has been explored in many 

designs as follows:

(i) Passive Isolators:

On a conventional helicopter the fuselage is usually isolated 

from the rotor/transmission unit by means of flexible mounting 

isolator system. This isolator system requires that the 

natural frequency of the system be below the isolated frequency 

for obtaining minimum transmissibility of the force into the 

fuselage. For common rotor generated frequencies relatively low 

stiffness ("soft" springs) must therefore be used. Drawbacks of 

this isolator system are that continuous mechanical control across 

the interface is difficult and then the maneouvering response will 

be lost. Furthermore, this isolator is often designed to suit a 

particular helicopter model and to achieve only partial alleviation 

of transmitted vibration. While this method has proved its 

effectiveness for two bladed teetering rotors, it has enjoyed only 

limited success in the case of multi-blade rotor systems. These 
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days, the simple flexible mounting is no longer used, but has 

been replaced by the direct isolation system.

One particular method of isolation uses the nodalisation 

concept. The basic principle of this method is that a flexible 

beam (which may carry a mass at its midpoint) has two nodes 

when vibrating in the fundamental free-free lateral normal mode. 

If the beam is supported at these nodes, no vibration is transmitted 

from the beam to the supports. Thus, a beam mounting arrangement 

(between the gearbox and the airframe) is designed from the node 

points of the beam system when it responds to rotor hub forcing.

Shipman [61 describes the development and application of 

such a nodalisation concept to helicopters.

Kidd et al [7] reported on the occurrence of in-flight nodal 

points in the fuselage and showed the added benefit of placing 

one of these nodal points in the cabin area. This method falls 

short of producing a ±0.05 g ride throughout the cabin over the 

entire flight envelope.

Another patented device is the "Dynamic Anti-resonance Vibration 

Isolator" or DAVI invented by Flannelly [81 . This device, which 

counteracts spring forces with inertia forces possesses low 

frequency isolation with low static deflection, was developed 

to isolate the rotor system and also crew seats. It is claimed 

to obviate the obvious disadvantage of the conventional soft 

mounting isolator, i.e. the effects of variability of the sprung 

mass and excessive quasi-steady deflections. The rotor/transmission 

unit in this case is mounted on the fuselage using such isolators.
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These isolators consist of spring elements to which pendulums 

are attached as illustrated in Figure (l.a). At the tuned 

or anti-resonance frequency the inertia forces from the inertia 

bar cancel forces from the spring and produce nearly 100% 

isolation. The main advantage of the DAVI is that the suspension 

is still rather than stiff. The transmitted force in the absence 

of damping is approximately equal to zero at a frequency somewhat 

higher than the natural frequency. When damping is present the 

transmitted force is small and finite. DAVI devices could be 

fitted as part of the gearbox-engine rotor head suspension system.

The application of anti-resonance theory has been developed 

by Bartlett and Flannelly [91. They presented a solution of 

an anti-resonance eigenvalue problem in which the anti-resonance 

can be determined by matrix iteration. They also studied the 

anti-resonance nodes introduced by dynamic absorbers and anti- 

cesonance isolators.

Rita et al [101 describe and illustrate some of the basic 

concepts, analysis and ground tests to demonstrate the feasibility 

of DAVI isolation system. The fuselage was isolated from the 

in-plane force of the main rotor. A substantial reduction in 

vertical 2/rev vibration load was achieved. They concluded that 

the DAVI isolation system could be designed for about 1.5 per cent 

of the gross weight of the helicopter.

Desjardins and Hooper [11] describe a system based on DAVI 

units called IRIS (Improved Rotor Isolation System) with a spring 

mass beyond the linkage as shown in Figure (l.b). The spring
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mass allows force isolation at two distinct frequencies. This 

is because the device has two main degrees of freedom. 

Deliberately introduced damping was not beneficial. This IRIS 

has been used for 4-blade hingeless rotor helicopters. Vibration 

levels were kept below 0.05 g for most flight conditions. They 

also designed, built and flew an experimental improved IRIS for 

a 4-blade helicopter [12] which proved its effectiveness over 

a wide range of flight conditions. The weight was 1.3 per cent 

of the design gross helicopter weight.

Research and development has been done by Jones [13] on 

unidirectional DAVIs that provide isolation in one direction only, 

two-dimensional DAVIs with dual pendulums with two anti-resonance 

frequencies and a three-dimensional DAVI that provides isolation 

in all three directions of motion. However, the full isolation 

of the rotor requires isolation in all axes, and this makes the 

system rather complicated. Furthermore, for maintenance and 

reliability the many additional bearings seem to be problematic.

The LIVE (Liquid Inertia Vibration Eliminator) developed by 

Halwes [14] and the hydraulic anti-resonance isolator evolved by 

Braun [15] are new types of isolators. They are based on the 

same principle as DAVI but both systems use 'hydraulic pendulums'. 

The helicopter fuselage was separated dynamically from the rotor/ 

transmission unit by use of uniaxial anti-resonance force isolators. 

The single isolator is essentially formed by the parallel 

arrangement of a spring and passive generator as shown in Figure 2, 

for a certain excitation frequency (anti-resonance frequency) the 
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spring force and the hydraulic force generator which produced 

by the relative movement between fuselage and rotor-transmission 

unit are opposite and equal at the fuselage side attachment 

of the isolator element.

Passive isolators are now at the stage of development that 

they are often used for helicopters, they add mechanical 

complexity to the helicopter and get even more complex if more 

than one frequency has to be isolated.

(ii) Active Isolators:

The progress of the overall understanding, of modern 

control, of electronics and of modern servohydraulics enables 

an efficient active isolation system to be realised. These 

active isolators can be used as a force isolator; this means 

in comparison to passive systems that the pendulum is replaced 

by an electrohydraulic actuator in which its dynamic characteristics 

are provided by the active closed loop control system.

An active isolation system described by Kidd et al [7] is 

a SAVSS (Servo-Active Vibration Suppression System). This SAVSS 

employs an actuator to oscillate a mass which produces a reaction 

on the fuselage. This force acts at a chosen harmonic frequency 

of the rotor to reshape the fuselage mode produced by rotor forces 

at the same harmonic. The presented results indicated that a 

significant reduction in 2/rev vibration levels was achieved for 

pilot and co-pilot stations.

Hardenberg and Saltanis [16] have investigated an active 

transmission isolation system. This isolation system was used 
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to isolate the vertical and in-plane rotor head vibratory forces 

from a helicopter fuselage without introducing deflection. This 

was achieved by using a hydropneumatic, servo-centred isolation 

system installed at the transmission-airframe interface. Shake 

tests showed that an overall reduction of approximately 70 per cent 

in the fuselage response to main rotor 6/rev excitation was 

achieved.

Kuczynski and Madden [17] have described a system in which 

low and high frequency loads are reacted actively and passively 

respectively. The primary elements in the isolation system 

are hydropneumatic servo-control led actuators. A schematic 

representation of the unit is shown in Figure 3. The unit is 

basically a hydraulic piston reacting against captured air 

chambers with a relatively low gain mechanical displacement 

feedback servo valve. The captured air bulk modulus provides 

a spring restoring force with piston displacement. Also when 

the piston displaces, the servo valve feeds hydraulic fluid into 

the piston chamber in the direction of motion, compressing the 

air and creating a restoring force on the piston 90° out of 

phase with piston displacement. The net result is that for 

static or transient loads on the isolator, the displacement 

servo feature keeps the unit centred in midstroke, whilst for 

high frequency motion the units act as soft air springs, as 

insufficient fluid flow through the servo occurs to create 

appreciable forces. This means that its basic principle is 

passive isolation but with active trim. Shakedown flight test 
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results which were carried out on a S-61 rotor indicated that 

a considerable reduction in vibration levels has been achieved.

These active isolation systems may be used to isolate 

at more than one frequency but at the expense of fluid power 

and mechanical complexity. However, they have not yet achieved 

general acceptance in the helicopter industry.

2.2.2. Rotor-Borne Vibration Absorbers:

Centrifugal pendulum absorbers mounted on rotor blades 

have already been in use for a long time. These devices can 

be used to reduce the response of particular flapping or in-plane 

modes of rotor blades with the object of reducing root shear or 

root bending moment. However, the absorber assembly rotates 

with the rotor. It has a mass mounted as a pendulum and 

restoring force for the pendulum mass is provided by centrifugal 

force. The system is most effective if it is tuned, i.e. its 

natural frequency equals the excitation frequency to be absorbed. 

Consider the simple system shown in Figure (4.a) in which the 

pendulum swings in the plane of rotation. The natural frequency 

is ft/R/r; it is linearly related to the speed of rotation (Q). 

The advantage of the system is that the absorber, after it has 

been tuned to a given frequency, remains in tune regardless of 

the rotor speed. So the absorber is effective at high frequency 

only if the ratio r/R is small. Thus, there is a practical 

difficulty in applying a simple pendulum for cancelling higher 

orders of vibration, because the small length of pendulum required
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(b) Bifilar Absorber

Figure 4 Pendulum Absorber
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cannot physically coexist with large enough mass to be effective. 

Nevertheless, at high frequencies the bifilar absorber, invented 

by Chilton [18] and successfully produced in practice for 

cancelling the torsional excitations in reciprocating aircraft 

engines, has been extended to helicopter applications by Paul [19]. 

The bifilar absorber is shown in Figure (4.b). Its pendulum mass 

is normally a U-shape mass, fitting loosely around an arm 

projecting from the centre of rotation. The arm has two circular 

holes of the same diameter dj. This arm and the pendulum mass

are joined by two tuning pins of diameter d2 smaller than the 

diameter of the holes. In a centrifugal field, the mass is 

constrained to swing in a circular arc of radius (di - d2). 

Thus, it is possible to make the pendular radius very small 

without limiting the weight or size of the pendulum mass.

Taylor and Tear l20] have reported the analytical and 

experimental results of the blade mounted pendulum absorbers 

to reduce 4/rev vibration on a 4-bladed tandem-rotor helicopter. 

Both experimental and analytical results showed a significant 

reduction in 4/rev vibration with optimum pendulum tuning.

Wachs [21] studied the relation of quantitative reduction 

of vibration achieved throughout the aircraft with quantitative 

increased reliability and reduced maintenance resulting from 

the application of bifilar absorber. He suggested that a happy 

meeting ground exists between two approaches: making components 

more tolerant of vibration and making the whole helicopter less 

of a vibrating machine by installing a bifilar vibration absorber.
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Mouzakis [22] has investigated theoretically a new pendulum-

type absorber called the "monofilar" as shown in Figure (4.c). 

It is a rotor head absorber which has the ability, unlike the 

more familiar bifilar, to reduce vibration simultaneously at two 

frequencies using a single active mass. This is because the 

monofilar dynamic mass can rotate as well as translate, giving 

two main degrees of freedom, i.e. two natural frequencies. He 

concluded that the monofilar design offers potential benefits 

relative to bifilar absorbers in terms of simplicity, reductions 

in weight, parts count, maintenance and production costs. 

Furthermore, it is possible to achieve reduction in hub forces 

of the same order as those achievable with two bifilar absorbers.

A problem with these above types of pendulum absorbers is 

that a large portion of the installed weight is ineffective. 

Furthermore, operation relies upon sliding or rolling of metal 

surfaces which is practically unacceptable where maintainability 

and reliability are of paramount consideration. On the other 

hand each troublesome mode needs a separate absorber, and this 

would make a complete, combined system, too complex and expensive. 

Perhaps, this is the reason why the blade pendulum absorbers are 

not used in a broader application.

Thus, an interesting new centrifugal pendulum absorber which 

has been investigated analytically and experimentally by 

Viswanathan and McClure [23] is the Mercury Pendulum Absorber (MPA). 

This employs mercury as the tuning weight that works inside a 

totally sealed cylindrical container. The MPA concept is that 
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the motion of mercury resembles that of a simple pendulum mass 

when the rotating hub is subjected to an oscillatory motion as 

illustrated schematically in Figure 5. Also, the MPA has an 

additional advantage in that it has no surfaces undergoing any 

wear. But the disadvantage is that should the mercury ever 

leak out, it could corrode aircraft parts and hence the 

installation should redundantly ensure against the possibility 

of any mercury leakage. The authors presented a mathematical 

model to analyse the rotor response, MPA response and the fuselage 

vibration while the helicopter is in the transitional flight 

from forward to hover. They also concluded that the cabin 

vibration level has been reduced by about 60% and more flights 

should be anticipated to complete the search for optimum tuning.

Another interesting new absorber, is, in effect, a spring 

mass mounted on the rotor head that operates in a plane parallel 

to the rotor; it is shown in Figure 6. This absorber which 

was developed by White [24] is a fixed-frequency rotor hub 

vibration absorber. The operational characteristics are very 

similar to the bifilar pendulum, but, of course, it is not self 

tuning. It is claimed to obviate the obvious disadvantages of 

bifilar absorbers, i.e. overcoming any potential reliability and 

maintenance problems. An ingenious design of spirally-wrapped 

fibre composite springs allows sufficient displacement amplitude 

but does not endanger fatigue life. The distance of the absorber 

from the centre of mass of the helicopter allows it effectively 

to counteract the vibratory moment resultants induced at the rotor
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head by aerodynamic loads. White concluded that this absorber 

is most effective when used with a rotor system. It has proved 

to be effective (absorbing capability around 200 Ibf shear force) 

throughout the flight envelope of a Lynx helicopter.

2.2.3. Fuselage-Borne Vibration Absorbers and Nodal Isolation:

The methods of vibration control in the fuselage are 

essentially aimed at reducing vibration levels in a local area. 

This local area, for instance, could be either the pilot's seat, 

the instrument panel or the passenger floor in the case of 

commercial helicopters. Classical vibration absorbers and nodal 

isolation may adequately serve this purpose.

Because the angular speed of the helicopter rotor is almost 

constant at normal operating conditions, tuned vibration absorbers 

that are fixed in the fuselage are feasible. The fairly simple 

approach is to mount a spring-mass absorber at, or near, a point 

of excessive amplitude of vibration. A convenient mass that has 

other uses, such as a battery, is sometimes employed [3]. The 

main disadvantage is that it is most effective only at one particular 

rotor speed, and that it loses efficiency rapidly if the conditions 

cease being optimum. O'Leary 125], however, has made use of a 

variable tuning absorber which circumvents this problem.

Desjardins and Sankewitsch [26] developed an integrated floor/ 

fuel isolation system for the Boeing Commercial Chinook. The 

passenger floor was isolated from the airframe on a series of 

passive nodal isolation units. In addition, the fuel tanks 
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were isolated so that their dynamic mass was effectively nulled 

at all fuel levels. Analysis, component tests and an aircraft 

shake test were conducted to prove the isolation system. The 

aircraft flight tests demonstrated that the floor isolation 

lowers the airframe vibration levels to an average of 0.05 g 

on the passenger floor. Furthermore, the effectiveness of the 

fuel isolation system was also confirmed by the shake test.

2.2.4. Higher Harmonic Blade Pitch Control:

Higher Harmonic Control (HHC) is a promising active control 

method of reducing helicopter vibration by controlling its primary 

source, the exciting airloads on the rotor blades. These airloads 

are periodic at frequencies equal to the fundamental and higher 

harmonics of rotor rotational speed. They cause both rigid and 

flexible blade motion, also at harmonics of rotor rotational 

speed. The overall result is harmonic blade root loads with both 

aerodynamic and inertia components. Some of these harmonic loads 

are phased amongst the various rotor blades such that they cancel 

when added together at the hub. Others, however, reinforce each 

other at the hub and are transmitted to the fuselage. Therefore 

one may suggest that it is possible to influence and minimise them 

through various orders of harmonic blade pitch control. However, 

recent advances in automatic control system design with the 

availability of high frequency actuators have facilitated the 

application of this concept to practical rotor systems. Using 

small amounts of swashplate motion at higher harmonic frequencies 
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of blade cyclic pitch once every rotor revolution. Theoretical 

results were presented for a non-linear 4-bladed single rotor 

helicopter simulation which demonstrated the effectiveness of 

the active control system, and 4/rev fuselage vibration reductions 

of the order of 80-90 per cent were achieved. The rotor performance 

penalty (torque increases) associated with this level of vibration 

reduction was about 1-3 per cent but more studies are needed to 

determine the impact of active control on performance.

Hammond [31] presented the results of a wind tunnel test 

using a dynamically-scaled helicopter rotor model to evaluate the 

use of HHC for reducing helicopter vibration levels. Significant 

reductions in the rotor vibratory vertical force and vibratory 

pitching moment were achieved over a wide range of advance ratios 

tested. But simultaneous reduction of vibratory rolling moment 

was not achieved at all advance ratios. Hammond left the reason 

for these results as an open issue.

However, use of an active control system to alleviate helicopter 

vibration implies an additional weight penalty due to introduction 

of apparently redundant and relatively complex control systems. 

Furthermore, the design and manufacture of such control systems 

will be added to the overall cost.

2.2.5. Structural Modification:

The respective methods and devices for the helicopter vibration 

control, may be ingenious though all suffer a significant weight 

penalty. These methods and devices do not, and cannot, suppress 
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or remove all fuselage vibration, and it is accepted that this 

will always be present to some extent. On the other hand, the 

unprecedented development in computational capability in the 

last decade has fostered equally impressive development in 

structural optimization schemes in all disciplines of engineering.

The design of complex structures to satisfy dynamic response 

restrictions is hampered by the inherent difficulty and 

computational cost of dynamic analysis. These limitations impose 

a ceiling on the number of trial designs which can be analysed. 

Furthermore, from analysis alone it is not usually clear how a 

design should be modified if it is desired to improve or maintain 

its dynamic properties. However, structural optimization provides 

a means of not only saving weight and cost but also allows 

sensitivity studies to be made which can improve structural 

integrity.

Research in structural optimization follows one of the 

several approaches which have recently been classified [32,33] 

as follows:

(a) One approach is to invoke the "Variational Calculus method" 

and to find a function or a number of functions which will 

extremize the objective function subject to the constraints.

This approach is referred to as the continuous model. Unfortunately, 

only relatively simple problems can be solved by this approach, 

since the-calculation of variations becomes intractable when complex 

engineering structures are considered.
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(b) Another approach is to cast the problem in a "mathematical 

programming form" and to directly search for a set of discrete 

variables which will extremize the objective function subject 

to several equality and inequality constraints. This approach 

is referred to as the discrete model. Fortunately, several 

improvements developed over the last few years appear to have 

significantly extended the capability of the mathematical 

programming approach, and, as a result, it is a more practical 

approach.

(c) In yet another approach, a criterion related to the behaviour 

of the structure is derived such that, when the structure is sized 

to satisfy this criterion the objective function automatically 

attains an optimum. This approach is usually denoted in the 

literature of structure synthesis as the optimality criteria 

method.

A great deal has been written on structural optimization 

under dynamic constraints in recent years as the recent comprehensive 

survey by Rangacharyulu and Done [34] indicates. A portion of 

the research work that has been done is concerned with the general 

methods of structural optimization using continuous and discrete 

models for free vibration problems, forced vibration problems and 

non-conservative problems.

The need to reduce structure weight without compromising 

structural integrity is all important in aerospace applications 

and much of the motivation behind the development of structural 

optimization methods has been due to this factor. Minimum weight 
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design subject to a specified natural frequency was considered 

by Turner [35], using Lagrange multipliers to introduce the 

free vibration equations as constraints. The problem considered 

was that of axial vibration of a cantilever rod carrying an end 

mass. The numerical solution was given for the case of a 

continuously varying cross-section rod as well as for the case 

of a stepped rod with three prismatic segments. The procedure 

consisted essentially of starting with a given mass distribution 

and hence with a given natural frequency and then obtaining a 

series of corrections to the mass distribution until minimum 

mass was achieved.

Rubin [36] presented an analytical procedure of a minimum 

weight design for a frequency constrained problem. This 

optimization procedure follows two alternating cycles. Separate 

gradient equations were used first to obtain the correct structural 

frequency (called the frequency modification mode). Then, with 

the frequency held constant, the weight is minimised, (called the 

weight minimisation mode), using a steepest descent algorithm. 

Occasional correction steps using the frequency modification mode 

are needed to maintain the desired frequency change. The finite 

element method was used in deriving the equations of motion of 

the modelled structure. In the finite element model only one 

parameter was allowed to vary in each element. Furthermore, this 

parameter must occur as a linear factor in the element matrices. 

Numerical results were presented to demonstrate the feasibility 

of the dynamic optimization procedure.
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Fox and Kapoor [37] studied the minimum weight design 

problem with constraints on dynamic response and frequency 

characteristics of a structure due to shock loading. The 

resulting optimization problem, posed as a mathematical 

programming problem, was solved using the feasible direction 

methods. They used the finite element method with standard 

beam type elements to analyise the general planar-truss frame 

structure. The eigenvalue problem was solved by minimizing 

the Rayleigh quotient in a sequence of subspaces for as many 

eigenvectors and eigenvalue as desired. This method is 

particularly advantageous in a design process. As the design 

is evolved the natural frequency may change drastically but 

mode shapes for previous designs are good candidates for the 

starting point of a new design. The presented results 

indicated that a considerable reduction in the computing time 

had been achieved.

The problem of maximising the lowest eigenvalue, with a 

constraint on the total mass has been investigated by Taylor [38] . 

The equations of motion are written in terms of kinetic and 

potential energies. A variational method was used to obtain 

the minimum mass distribution of an axially vibrating rod. This 

problem was also solved by Zarghamee [39] using the non-linear 

mathematical programming technique. The procedure is based on 

gradient equations which express the rate of change of frequency 

with respect to the design parameters. Numerical results of the 

optimized cantilever truss were given to demonstrate the method
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of solution.

McCart et al [40] have investigated a method for the 

minimum weight design problem of structures subject to 

constraints on strength and specified natural frequencies. 

A steepest descent boundary value method was used to obtain 

the solution of a portal-frame structure. In this method 

an initial estimate is made for the material distribution 

(mass distribution) along the members of the structure. A 

small change in the material distribution is then determined 

which reduces the given objective function and also satisfies 

the constraints. This small change in material distribution 

is taken as an improved estimate of the optimal structure. 

The process is repeated until there is no change in the 

objective function due to successive iteration.

Elwany and Barr [41] have recently studied some optimization 

problems in flexural vibration of beams. This study is an 

extension of their earlier work [42,43] on the optimization 

problem relating to torsional vibration of beams. The problem 

was stated in variational form with a view to show the duality 

of the two problems of maximising the natural frequency for a 

given weight, and minimising the weight for a given frequency.

Joseph and Lucien [44] dealt with the minimum weight optimum 

design of planar frames including an optional mode frequency 

constraint used to prevent system buckling. The influence of 

member axial force on frame stiffness was taken into consideration. 

The mathematical programming problem was solved numerically using 
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the sequential unconstrained minimisation technique. An 

interior extended penalty formulation using the Davidon- 

Fletcher-Powell minimisation algorithm was implemented and 

numerical results were given.

Niordson [45] used a variational method to find the best 

possible tapering of a simply supported beam of fixed volume 

to achieve the highest possible value of natural frequency 

in the fundamental mode of lateral vibration. The resulting 

non-linear eigenvalue problem consisted of homogeneous fourth 

order non-linear differential equations with boundary conditions 

and was solved numerically.

Text books [46, 47] provide lucid expositions of various 

algorithms in which the structural design is treated as a 

problem of mathematical extremization of an objective function 

in an "n" dimensional design variable space, behavioural 

functions constraining the search for the extremum, this being 

carried out by methods of linear and non-linear programming 

techniques. Some examples of mathematical programming methods 

are the gradient projection, steepest descent, feasible directions 

and various unconstrained minimisation techniques in conjunction 

with so called penalty functions to account for constraints.

Moe [48] presented a survey of mathematical programming 

methods with special emphasis on penalty function techniques.

Done [49] studied the possibility of adjusting the 

mathematical model of a system in order to achieve the coincidence 

between the computed natural frequencies and those measured 
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experimentally. This was achieved by using an optimization 

technique in which the system parameter deviation providing 

the basic objective function and the dynamic property 

requirements (natural frequency changes) providing the 

constraints. These constraints were added to the basic 

objective function, using Lagrange multipliers, to give the 

overall objective function. This type of problem may be 

classified under "system identification". A laboratory 

turbine-rotor was modelled mathematically using Timoshenko 

beam elements and the six lowest natural frequencies in bending 

were considered. The rates of change of natural frequency 

(frequency sensitivities or gradients) with the various stiffness 

properties were presented. The problem was manipulated; 

firstly, using Young's modulus and modulus of rigidity as 

design variables. Changes of the moduli from standard values 

represented overall stiffness deficiencies in the mathematical 

model. In this case, a best fit to the lowest six natural 

frequencies was made. Secondly, "stiffness" diameters were 

used as design variables, thereby allowing for deficiencies in 

the mathematical model near the discontinuous changes of section. 

The overall measure of the difference between the actual and the 

stiffness diameter was minimised using the gradient projection 

method. The computed lowest six natural frequencies were 

matched exactly with those measured experimentally.

Kim et al [50] have developed non-linear perturbation method 

for dynamic model redesign. The modal analysis method is often 
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applied for the complex structures with general purpose finite 

element codes. It is a generalisation of the mathematical 

treatment presented by Stetson [51,52] and is based on a 

perturbation of the eigensystem, and all non-linear terms, to 

achieve large changes in the natural frequencies and mode shapes. 

A penalty function was implemented in which the penalty parameter 

was chosen to equally emphasise minimum weight (or least change) 

and minimum error in nodal energy. The resulting optimization 

(perturbation) problem, posed as a non-linear mathematical 

programming, was solved using- the conjugate gradient method. 

To demonstrate this method of analysis, the authors considered 

the flexural vibration of a rectangular uniform cantilever beam 

(shear deformation and axial displacement were not included). 

The method has been discussed and numerical results were given 

for one mode only.

During the development stage of the helicopter there occur 

many possibilities for reducing the vibrational response of 

important parts of the helicopter. One possible method is to 

adjust, modify or initially design the elastic elements of the 

structure appropriately. For instance, the rotor blades may 

be structurally "tailored" in order to minimise the oscillatory 

input to the fuselage from the rotor head, and likewise the 

fuselage itself may be designed in such a way as to minimise 

response in local areas (e.g. crew and passenger areas). 

Optimization routines tend to use a great deal of computer time 

when many variables are involved. Thus, it is necessary to 
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establish the sensitivity of the predicted response to structural 

changes in order to select the relatively few sensitive structural 

parameters out of the overall set.

One way of doing this is to compute the rate of change of 

response at particular point on the structure under consideration 

with changes in all the variable parameters. The larger of 

these "gradients” would indicate those parameters which have the 

greater effectiveness [53]. A drawback with this is that only 

small perturbations are considered. Thus some "sensitive" 

parameters or elements would be missed.

Another way of sorting out the best structural elements or 

parameters in controlling vibration is the strain energy density 

approach which has been developed by Sciarra [54]. This approach 

was used for defining which structural elements in the fuselage- 

should be modified in order to achieve the desired results. 

Modal strain energy is calculated for each structural element 

using the mode shape for the natural frequency to be modified. 

It is assumed that elements with highest strain energy density 

are the best candidates for modification (kinetic energy is not 

considered). These elements are changed so that natural frequencies 

of the fuselage are moved away from the excitation frequency of 

the main rotor, thereby reducing dynamic amplification. It is 

also assumed that such change will have beneficial effect over all 

response. Examination of a twin-rotor helicopter has provided 

confirmation.
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The response of a vibrating structure as a function of 

structural parameters has been described by Done and Hughes [55]. 

They used the Vincent circle approach [56] to identify the best 

parameters to use for the optimization. This approach is based 

on the fact that if a linear structure is excited by a sinusoidal 

force at a constant frequency, then if either the mass at a 

point or stiffness between two points (as represented by spring) 

is varied, the response in the complex plane traces out a 

circular locus. The larger size circle indicates that the 

associated parameter has a greater effect on the response than 

a parameter producing a small circle. Accordingly, a simple 

yardstick based on circle diameter may be used for deciding on 

the best parameters. Done, et al [57] and Walker [58] have 

performed some simple experimental verification of the Vincent 

Circle approach method.

Based on this study, Done and Hughes [59] provided a simple 

structure modification by inserting a linear spring between two 

points on the Lynx helicopter fuselage model. The relative 

effectiveness of changing the elemental stiffness was studied 

using various criteria as illustrated in Figure 7. This analysis 

was applied to the problem of determining which part of the 

helicopter fuselage structure is most effective in reducing the 

rotor induced vibrational response in the region of pilot's seat.

The application of a mathematical optimization process to 

helicopter vibration control by structural modification has been 

reported by Done and Rangacharyulu [60]. A non-linear programming
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problem and a sequential unconstrained minimisation technique 

incorporating an algorithm based on the methods of Davidon, 

Fletcher and Powell was used to determine the precise values 

of the optimization parameters (stiffness parameters), thereby 

reducing the number of available design variables to tractable 

size. The stiffness parameters were used in controlling the 

response in the crew area. Realistic bounds on the elemental 

stiffness values were imposed. The major drawback of this 

solution was the absence of a relationship between element mass 

and element stiffness.

A comparative study of the two. structural optimization 

techniques (the Vincent circle approach and the forced response 

strain energy density approach) has been discussed by Hanson 

and Calapodas[61]. They concluded that the second approach is 

more favourable for structures with a large number of degrees 

of freedom.

Sobey [62] has established a criterion for selecting 

parameters based on the circular response property. This 

criterion is required for determing the importance of each 

structure element in assessing those elements of the structure 

which are most effective in reducing helicopter vibration 

response. The main advantage of using such a criterion is that 

once the receptance matrix for the structure is obtained, any 

geometric property relating to circular loci can be relatively 

easily computed. Sobey also conducted an exercise in which 

mass was varied simultaneously with stiffness. He concluded 
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that for realistic values of mass and stiffness the effects of 

mass addition are small enough to be ignored.

For the purposes of testing out a particular parameter 

selection process combined with an optimization procedure, Done 

[63] employed a mathematical model of the helicopter fuselage. 

The selected stiffness parameters (as design variables) were 

used in controlling the response in the crew and passenger area. 

The penalty function method was implemented and numerical results 

were given. Done concluded that the optimization technique can 

be used to obtain values of structural parameters such that the 

response over a part of a helicopter is greatly reduced. 

Furthermore, only a relatively few variables need to be adjusted 

to achieve a satisfactory result in terms of response. This 

highlights the importance of the initial selection process, and 

suggests that these methods of parameter selection would be 

worthwhile.

An efficient numerical method based on local modification 

of the fuselage was applied to problem of helicopter alleviation 

has been investigated by Wang, et al [64]. The frequency response 

of a vibrating structure as a function of its structural properties 

which is a generalisation of the approach by Done, et al [55, 57] 

was presented. The sensitivity analysis has been used to 

determine which structural element changes are responsible for 

vibration reduction. The entire helicopter (the rotor, the 

rotor-fuselage interface and the fuselage) was analysed once using 

a finite element idealization. The rotor was made up of ten 
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identical beam elements. Each beam element had four degrees 

of freedom. The interface between the rotor and the fuselage 

was modelled as a stiff linear spring. Ten beam elements of 

varying mass and stiffness made up the fuselage. When structural 

parameters (mass and stiffness) were changed, minimum response 

was obtained by solving linear algebraic systems. The usefulness 

of this method was demonstrated by the given numerical results.

King [65] derives a simple algorithm to estimate the changes 

in the normal modes and natural frequencies of a dynamical system 

when the system is modified by the addition of mass, stiffness 

or mass-spring absorber. The effect of fitting a dynamic 

absorber to the main rotor head of the helicopter was also 

estimated. Flight test results have demonstrated the usefulness 

of the algorithm in estimating the efficacy of vibration reduction 

techniques.

In the early stages of the development of the helicopter, 

it was believed that helicopter vibrations could be reduced by 

the correct choice of rotor blade mass and stiffness distributions. 

Hirsch et al [66] have described earlier the development of the 

XH-17 helicopter in which 300 lb weight was added to each blade 

in order to change the spanwise and chordwise mass distribution 

and thereby reduce vibrations. The cyclic stresses were reduced 

35 to 45 per cent in all flight regimes tested. This was 

accomplished by adding the concentrated weight to the blade 

leading edge outboard of the second mode nodal point. They 

tentatively concluded that the blade was operating near resonance 
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with the third harmonic forcing function, and that its "effective 

damping" was greatly reduced by the blade twist. This adverse 

effect of the twist was a major factor contributing to the large 

3/rev stresses. This was based on the belief that the aerodynamic 

load due to the increment of the twist caused by added weight 

would lag the bending displacement and hence damp the bending 

motion. The authors showed that the additional weight would 

increase the second mode bending natural frequency from 3.11/rev 

to 3.13/rev.

Recent studies [67 - 70] are aimed at modifying the blade 

properties (mass and stiffness distributions) to reduce vibration 

levels in forward flight. Taylor [67] has treated the vibration 

reduction problem of an articulated rotor blade by modifying the 

mass distribution, and to a lesser extent the stiffness 

distribution of the blade, using a so called "modal shaping 

parameter". It is hypothesised that changing the mode shape 

such that it is orthogonal to the forcing function is a way to 

lower vibration. In this analytical design method, Taylor 

represented the 4/rev airloading distribution by a cubic polynomial 

weighted by a tip loss factor starting at 95 per cent radius. 

The sensitivity of the modal shaping parameter to blade design 

variables was investigated by making variations in blade flatwise 

stiffness and mass from the baseline design. From this parametric 

study, Taylor concluded that blade mass distribution rather than 

total blade mass or flatwise stiffness, is the prime variables 

controlling the modal shaping parameter. The second flatwise 
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mode is the prime vibration contributor for the baseline 

4-bladed rotor. Significant vibration reductions (70 per cent 

reduction in 4/rev vertical root shear) were achieved when 

4 per cent blade mass was added at the tip of a S-76 blade.

Blackwell [68] considered the addition of mass to the

UH-60A blade of a 4-bladed articulated rotor. Using the 

CH-53A airload distribution, the effects on vibratory hub loads 

of changes in spanwise mass distribution were examined. Modal 

analysis was performed to identify regions of the blade in 

which added mass would be beneficial and to assist in understanding 

the basic mechanism involved. This analysis was run at two 

flight conditions. However, the analysis predicted that mass 

added at midspan of the blade reduced the vibratory root shears 

(of the order of 10 - 35 per cent) which were not as large as 

those projected by Taylor [67]. Blackwell concluded that the 

best mass distribution depends upon other properties of the blade 

and fliqht conditions. It is premature to speculate on what 

types of mass distribution will be appropriate for a given high 

speed rotor blade, but he suggests that it is a parameter which 

may afford significant vibration benefits. Blackwell also 

explored the effects on the UH-60A rotor vibratory hub loads to 

change in blade twist and blade bending stiffness. The presented 

results show a very small effect of twist on vibratory loads. 

So he suggests that high twist blades (which are desirable for 

good hover performance) are not detrimental to vibration. He 

also concluded that the reductions in root shears achieved by
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detuning blade modes from (N^-l), and (N^+l) per rev (where 

Nb is the number of blades) were not as large as the changes 

predicted for changes in mass distribution.

Bennet [69] presents a simple approach to rotor blade 

design in which vertical hub shears due to flapping only were 

minimised, using mathematical programming techniques. The 

vertical shear forces which are functions of the blade spanwise 

mass and stiffness distributions were calculated using a 

classical modal approach (the effect of blade dynamics on the 

airloads was neglected). For the optimal design techniques 

the blade was divided into 15 radial segments with design 

variables being the mass and out-of-plane stiffness at each 

segment. After 130 iterations the resultant optimum mass 

and stiffness distributions were obtained which reduced the 

vertical hub shears by about 50 per cent. Bennet also studied 

the optimum rotor blade geometric pitch distribution such that 

it will generate a specified thrust with minimum hovering power. 

He suggests that applying the non-linear programming algorithms 

to conventional helicopter engineering analysis will improve the 

detail design process.

Another modern structural optimization technique applied to 

the vibration reduction of helicopter rotor blades in forward 

flight has been investigated by Friedmann and Shanthakumaran [70]. 

In this optimization problem, the objective function minimised 

the oscillatory vertical hub shears or the hub rolling moments 

at one particular advance ratio. The aeroelastic stability 
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margins in hover together with blade fundamental frequency 

placement were used as constraints. The aeroelastic stability 

and response analysis based on a fully coupled flap-lag-torsional 

analysis for the hingeless rotor blade was utilised. Two 

uncoupled modes were used to represent each of the elastic 

degrees of freedom. Furthermore, the structural part of the 

blade cross-section was represented by a thin walled, single 

cell, rectangular box section. The dimensions of this box 

(breadth, height and thickness of each side) at each span 

station of the blade were treated as a design variable. The 

non-structural masses at three outboard segments were considered 

as additional design variables. The sequence of unconstrained 

minimisation techniques based on extended interior penalty 

function formulation was used for the optimization algorithm. 

The optimization results for the hingeless rotor indicated 

conclusively that non-structural mass located in the outboard 

one third portion of the blade and distributed along the elastic 

axis provides a good practical means for vibration reduction. 

This reduction of the order of 15 - 40 per cent was achieved by 

a relatively small modification of the original design. The 

authors also concluded that the use of structural optimization 

techniques can yield substantial practical benefits in the blade 

design process which can be easily implemented by helicopter 

companies.
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2.2.6. Remarks Concerning Literature Survey:

As indicated by the previous literature review, no 

substantial research on designing rotor blades for minimum 

vibration levels exists. The major portion of the current 

research effort to reduce successive helicopter vibration 

levels has been directed towards the use of various control 

devices. These control devices may be ingenious though all 

suffer a significant weight penalty. Furthermore, the design 

and manufacture of such control systems will be added to the 

overall cost.

The current state of expertise in helicopter technology 

today is that the rotor blades could be structurally ’’tailored" 

in order to minimise the oscillatory input to the fuselage from 

the rotor head. There are several reasons for this possibility 

as follows. Firstly, helicopter rotor blades for both main 

rotors and tail rotors are now being fabricated from composite 

material [71]. This implies that the designer can choose, with 

certain restrictions, the optimum El-distribution. Furthermore, 

the lightness of the composite material for the main rotor blades 

usually necessitates the addition of weight to give sufficient 

autorotational blade inertia. Thus, there is a considerable 

amount of flexibility as to how this weight may be distributed. 

Secondly, the methods of structural optimization and parameter 

identification which are reviewed in the last section are now 

refined to the point where they can be efficiently applied to 

the blade structure. However, the aim of the present study is 
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to utilise recent advances of these structural optimization 

methods to develop a rational design procedure for the rotor 

blades. In this design procedure, the mass and stiffness 

distributions are to be tailored in such a way so that the 

oscillatory inputs from the rotor head to the fuselage 

(pitching and rolling moments) are minimised. Clearly, this 

method does not require any expenditure for hardware design 

and installation, such as required by the previous control 

devices. '
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3. THE ROTOR BLADE FINITE ELEMENT FLAPPING MODEL

The blade is assumed to be rigid chordwise so that its 

motion is represented by the bending and rotation of a slender 

beam. To prevent the coupling between bending and torisonal 

vibration it can be assumed that the mass centre and shear 

centre coincide. Therefore the deformation is limited to 

bending only in the direction of the principal axes of the 

cross-section. The transverse shear and rotatory inertia 

have been neglected.

3.1. Non-Rotating Blade

The hingeless rotor is considered as a cantilever beam 

rigidly attached to the hub. A finite beam element sub-

division is shown in Figure 8 and the beam element considered 

is shown in Figure 9. It has two structural nodes, each 

possessing two degrees of freedom, and the nodal variables 

are the transverse displacement v(x) and the cross-section 

rotation 0(x).

3.1.1. Element stiffness and Mass Matrices:

The derivation of the element stiffness and mass matrices 

are based on the beam element properties (mass and flatwise 

stiffness distribution) and it is assumed to vary linearly 

with distance along the axis of the beam element. The 

transverse displacement may be represented approximately by



Figure 8 Finite Element Model

v(x)

Figure 9 Forces and Displacements at the Extremities of the 

Beam Element.
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a cubic polynomial, that is:

n=3
v(x) = E An x

n=0

or

[v] = [b] {A}

where the vector {A} lists the unknown constants Aq ........A3.

The cross section rotation is approximately equal to the 

slope 3v(x)/3x of the transverse displacement, i.e.:

[e] = [Y] {A} (2)

The extremity displacements of i th element are now 

obtained by substituting the co-ordinate of the extremities 

in equation (1):

{6} = [c] {A} (3)

where {6} is vector of nodal displacements,

with subscripts L and R referring to the ends x = 0 and x =

and

[C] = 1 0 0 0

0 1 0 0

1
1 1 1

0 1 2£.
1 3i| (4)
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whose inverse is:

[of1 = 1-
£.3

*1 0 0 0

1 0 ‘i 0 0

-3^1 -2J>? 3%-

2 -2 1 (5)

By definition, and from equation (1), the strain 

d2v(x)/dx2 can be written as:

{e} = [0 0 2 6x] {A}

Introducing [H] ~ [0 0 2 6x]

then equation (3) is given by:

{e) = [B.J <6}

where

[B.] = [H][c] (6)

i) Element Stiffness Matrix:

In standard formulation of plain stress or strain the

i th element stiffness matrix is given by [72] as:

[kJ = f [BJT [DJ [BJ d (vol) (7)
1 vol 1 11

where [D^] is the elasticity matrix which relates the 

stress to the strain.
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For an element in which the flatwise stiffness s^(x) 

varies linearly with distance along the beam one may write:

S5(x) = sj1* + x (8)

where

Since the strain within a beam in bending is defined 

through its curvature, the elasticity matrix yields:

[^J = s.(x) (9)

Substituting the matrices of equations (6) and (9) into 

equation (7), it can be verified by matrix multiplication that

the bending stiffness of the i th element is given by:

■ kll
Symm.

k21 k22

k31 k32 k33

k41 k42 k43 k44 (10)

where

kll = (12 sL + 6a-

k21 = (6 + 2oki£P£i

k31 = -(12 sj1’ +6V.) 

- 74 -



k41 = (6 sL(l) + 4a.S.i)jl. 

k22 = (4 sL(l) +

k32 =*^6 sl/ ) + 2“i4P4i 

k42 = (2 sL( ’ + a^A^)A? 

k33= d2sL(i) +6a.S.) 

k43 =’<6 SL(1) + 4aiS’)Ai 

k44 “ <4 s l (1) +

ii) Element Mass Matrix:

For an element subjected to a distributed force, the 

virtual work done by this force is equal to that done by 

an equivalent external nodal force vector {pg} in moving 

through a nodal displacement {A6}. Consequently {pe> 

is given by [72] as:

in which

[mJ = [c_1]T Jb]T m.(x)[b] dxfc’1]
1 0 1

(11)

The mass distribution (x) varies linearly with distance 

along the beam element, therefore:

n^fx) « x (12)

where

------ IT-------
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Substituting the matrix [b] of equation (1) and equation 

(12) into equation (11) and carrying out the indicated matrix 

multiplication, the i th element mass matrix can be written as:

[mi1 40320

(13)

mn

m21 m22
Symm.

m31 m32 m33

m41 m42 m43 m44

where

= (14976mL(i) + 3456^.)^ 

m21 = (2112mL(1) + 672Y.£.U? 

m31 = (5184mL(i) + 2592Y. 

m4] =-(1248mL(i > + 576^.^. )£? 

m22 = (384mL(1) + 144Y. z.) 

m32 = (1248mL(1) + 672y.£.)£? 

m42 =-(288mL(1) + 144^ )A| 

m33 = (14976mL^) + 11520Y. £.) 

m43 =-(2112mL(1' + 1440^ ) Z?

m44 = (384mL(1) + 240Y.£.)n’
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3.2. Rotating Rotor Blade

The rotor blade is now considered as a cantilever beam 

mounted on the periphery of a rotating hub of radius rQ as 

shown in Figure 10. For a beam undergoing lateral vibration, 

v(x) is the deflection in the vertical direction of an 

arbitrary point at a distance x from the hub, on the middle 

plane of the beam. The hub is assumed to be rigid.

Under the effect of rotational speed (Q) the blade is 

stiffened due to additional stresses created by centrifugal 

forces.

3.2.1. Centrifugal Forces Acting on the Blade

Consider the finite element as shown in Figure 11. The 

centrifugal force acting on any section at distance x from 

the left end of i th element is given by [73] as:

£i
= f S^fx)^ + p.Jli + x)dx

X

L
+ f fl2m.(x')(rQ + x*)dx' (14)

(P/D^

where
K=i-1

p. = ( E £,,)/£., is the ratio of total length
1 K=1 K 1

of all elements (before, and not including, the i th element

under consideration), to the i th element length.

In the above equation, the first term represents the

centrifugal force associated with the portion of the element
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Figure 10 Rotating Radial Beam.

Figure 11 Schematic Representation of the Finite 
Element Location.
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on the right-hand side of the section and the second term is 

the force associated with the portion of the beam on the 

right-hand side of the element.

Equation (12) may now be used for integrating equation 

(14):

F(i)
X

^[-a^Jl.x -|b.*x2 (15)

where

Ci

P=Ne
+ £ [a * +^b * + - y £ ]l2

p—-j+l P 2 p 3 ’p p p

in which

and

bi* =

ei*

hi

mJ1) +

= h. + p.

= Total No.of the blade elements.

3.2.2. Centrifugal Element Stiffness Matrix

For the slender beam the centrifugal stiffness of the

i th element can be written as [73] :

[GJ = [c_1]T f [Y]T F
1 0

T rx{i)[Y]dx[c’1] (16)

=
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Substituting equation (2) and (15) into the above

equation and carrying out the indicated matrix multiplication

yields:

[GiJ
a2z.
= 12600 11

G21 G22

G31 G32 G33

G41 G42 G43 G44

(17)

where

G11 = (-7560a,.* -2160b.* -9007,.£. + 15120c,.*)

G21 = (~1260a1* -450b,.* -2107,.*,. + 1260c.*)£.

G31 = (7560a.* + 2160^* +900Yi£i -15120ci*)

G41 = (180b.* + 150yi£i + 1260ci*)£.

G22 = (-420a5* -120^* -55yi£i + 1680^*)*?

G32 = (1260ai* +450b.j* +2107^. -1260c.*)*,-

G42 = (210ai* + 90b,.* +55yi£i - 420c,. *)£?

G33 = (-7560a.* -2160^* -900y.Jl. +15120c1*)

G43 = (-180b.* -150yi£i -1260c.*)Jl,.

G44 = (-1260ai* -540bi* - 325y.£. + 1680c1*)Jb?

in which
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3.3. Assembly of the Overall Mass and Stiffness Matrices

Having calculated the mass and stiffness (structural plus 

centrifugal) matrices of the individual elements into which 

the blade is subdivided, the next step is to assemble these 

to form the overall mass and stiffness matrices for the entire 

discretized rotor blade.

The overall matrices can be automatically assembled using 

the computer, according to the sequence of the structural node 

numbering on the blade, making use of the fact that the nodal 

displacements must be compatible and the external forces applied 

at the nodes must be equal to the reactions set up at the 

extremities attached to those nodes.

In general it is easily verified that, if the discretized 

structure has a total of n nodes and m degrees of freedom per 

node, it will have a symmetric overall assembly matrix of order 

(nm * nm).

Obviously, to prevent the rigid body motion the boundary 

conditions for the hingeless rotor (as a cantilever beam) under 

consideration must be applied, i.e.:

(6J = 0 (18)

So one may exclude, from the overall assembly matrices, 

the rows and columns which refer to zero prescribed displacement, 

equation (18), to obtain the non-singular overall assembly 

mass and stiffness matrices denoted by [M] and [K] respectively.
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A simple, effective and general method that is easily 

programmed for the computer was written; the "WHBEVS" 

subroutines listed in Appendix (9) are used, for this purpose.

3.4. Eigenvalues and Eigenvectors of the Rotor Blade

Consider an undamped freely vibrating, linear system 

given by the homogeneous equations:

[M] {6} + [K]{6} = 0 (19)

where {6} is the geometric displacement vector (translational 

and angular) of the rotor structural nodes. Solving equation 

(19) leads to the eigenvalues w *, w*2........ and eigenvectors

u<2’}........

where w . and are the j th natural frequency andI 'J
the corresponding modal shape respectively. These are 

expressed in the form of a modal matrix [<J>]:

U>] = [U(l)} (20)

and frequency matrix [w^2];

[w^J = diag [w*1# w^,..........] (21)

The frequency matrix and corresponding modal matrix are 

calculated by means of a computer program (Appendix (9)) using 

standard NAG library routines. The routines F01ABF and F02ABF 

are used for this purpose.
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3.5. Mode Shape Function

Rearranging the j th blade mode shape to have

the j th mode shape for the i th element of the blade, say, 

then for the element no.l the j th mode shape is:

{<t> = [v 0 v e ]T
1 112 2

Similarly, for elements nos. 2, 3, ........

U = [v e v 0 ]T
2 2 2 3 3

and

= [v e v 0 ]T , ........
3 3 3 4 4

Now, one may write the calculated instead of

{6} of equation (3), i.e.:

[c]{A.(j)} = (22)

The above equations are now solved for {a/^} to obtain 

the unknown constants (Aq - A3) of the i th element and j th 

mode.

Then, substituting these values into equation (1), the 

mode shape function at any distance x of the i th element and 

j th mode can be determined as:

f(i)(x) = {1 x x2 X3} {A.(jh (23)
Bj 1
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A block diagram for the calculation sequences is shown 

in Figure 12 and a subroutine (GAUSEL) is written in 

Appendix (9) in order to compute the mode shape function 

of the above equation.
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Figure 12 A Block Diagram for Calculating the Mode Shape Function.
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4. FLAPPING MATHEMATICAL MODEL OF THE HELICOPTER ROTOR BLADE 

4.1. General Expressions

The system under consideration is taken to be a mathematical 

model of a rotor blade. It is assumed that the blade has 

flexibility only in the flapwise directions and is infinitely 

stiff in the chordwise and torsional directions. It is allowed 

to have 4-degrees of freedom of flapping only, each associated 

with a generalised co-ordinate q^ and a corresponding mode shape 

Vx)'

In order to generate reasonably comprehensive aeroelastic 

equations of motion for a helicopter rotor, several axes of 

reference are usually required. Figure 13 shows a ‘semi-rigid1 

rotor blade in its deflected state on which is indicated sets 

of axes which enable the transformation from {r}= (X3, Y3, Z3) 

to {R} =(X, Y, Z). The blade is considered initially coned 

and pre-twisted with an offset axis and applied angle of pitch. 

The elastic deflections are flap of the blade axis and pitch 

or twist about the local blade axis. Deformation of the cross 

section is excluded. The total flap fo(x) is given by the p
deflection due to the coning angle and the flap modes, i.e.:

fg(x) = Bq x + E fgi(x) Aj (24>

The local blade section pitch e(x) is given by a 

combination of applied pitch plus built-in twist 6Q(x) and 

cyclically applied pitch; thus:
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z

{r} = {X3 , Y3 , Z^-blade coordinates

Figure 13 Sets of Axes

Figure 14 Aerodynamic Force Components.
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0(x) - %(x) “ Ae cos at - As sin fit (25)

where A and A provide the cyclic pitch contributions.

The overall transformation from {r} to {R} is obtained 

by successive transformations between sets of axes and can 

be written as [74] :

[R] = [A] {r} + [B] (26)

where

[A] = [T 1[T ][T ]
0 2 4

(27)

[B] = [To]{c] (28)

in which

<C}
x

X - Jg / B(x)2dx
o

Y o

Zo
+

cos fit - sin fit 0

sin fit cos fit 0

(29)

0 0 1 (30)

[T ]
2

cosB(x) -sinB(x)

sinB(x) cosB(x) (31)

0

0 1 0

0

[T ]
4

0 01

0 cose(x) -sine(x)

0 ’ sine(x) cose(x) (32)
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(33)= 30 + Z q.

and Z define the amount of offset of the blade axes, o o

4.2. Derivation of Equations

The position vector {R} expresses the position of a point 

in the system with reference to fixed axes. It is a function 

of position vector {r} of the material point with reference to 

axes suitable for describing the given modes, the generalised 

co-ordinate vector {q} corresponding to the modes and the time 

t. The external instantaneous force per unit area (i.e. 

aerodynamic pressure in the present case) {F} is a vector with 

reference to fixed axes. It is a function of {r}, {q}, {q} 

and t. Lagrange's equations provide:

d_ * 3 T \ 3 T . 3 u _ «
dt " 3qi 3q^. " V

where

T = V{R}.{R}dm

(34)

(35)

is the kinetic energy and the integral is over all elemental 

mass dm comprising the system.

Qi = /{F}- tq~ds (36)

is the aerodynamic generalised force and is given by the 

integral over the surface, s, of the system.

u is the potential energy. Structural damping is neglected.
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4.2.1. Respective Contributions to the Equation of Motion

The coefficient matrices of the equations of motion contain 

contributions deriving from the mass and stiffness distributions, 

and from the aerodynamic force distribution. The evaluation 

of the separate contributions is described in the following 

sections. Since the data relating to the blade mass, stiffness 

and aerodynamic properties are not analytical, it follows that 

the final evaluation which involves a spanwise integration must 

be performed numerically. However, unlike a totally computational 

approach [74, 75], the simplification of the blade mode deflection 

to pure flapping has permitted a certain amount of analytical 

treatment, e.g. as in equation (68) below.

(a) Mass Contributions:

The kinetic energy contribution, equation (34) can be shown

as:

1 (37)

Applying the Taylor series expansion and substituting for

the operator by:

gives:

l»nW+ W + W + (W (38)
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where

[pml, [Qml» anc* {smp are the mass, gyrodynamic,

centrifugal stiffness matrices and contributions to steady

state respectively. They are found to be [74]:

rn i - fr/3 {R}\ . /9 {R}\ ■][pm] ’ (3??)] dm

J

(39)

(40)[V ’ 2/1 dm

Inspection of equations (39) to (42) shows that the 

integral of the elemental mass dm-times the dot product of 

two vectors has a particular differential of {R}. If the 

cyclic pitch is not applied (i.e. fixed blade pitch) [T ] 

is the only time varying component in matrices [A] and [B] 

of equations (27) and (28).

So 3{R}/3t and 32{R}/3t2 can be written as:

3{R} , 9[ToJ fr1
3t 3t~ {c}

^[SJ{c} (43)

and

lie} (44)
at2
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where

0

0

1

0

0

1

(45)

(46)

Now, the mass point in the blade under investigation 

is taken to be concentrated at the origin of the blade axes; 

thus, position vector {r} is zero, and all contributions to 

{R} and its differentials involving [A] disappear. Thus, 

one may consider only the [B] part of equation (26), i.e.:

9 {R} _ r-r i 9 Ic}
9q. "l,OJ9qi (47)

From equation (44) and equation (47)

(48)

Ignoring the blade offsets Yq , Zq and neglecting the

second order quantities, the differentials 9{c}/3q_. and

92{c}/9q.9q. can
J

be written as:

9{c} = x 9f8.(x) 
^(X) 0, f6i(x) ]T (49)
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and

32{c} _ r/ *r 9fgi 
aq.aqj ■ ' ax ax 1 (50)

i) Inertia Matrix [pm]:

Substituting equation (47) into equation (39) leads to

The inertia matrix can be obtained by using equation (49) 

and carrying out the indicated matrix multiplication for the 

above equation.

L
[PmJ = f m(x) fei(x)fgj(x) dx (51)

ii) Gyrodynamic Matrix [QmJ•

Using equations (43) and (47) and performing the scalar

product given by equation (40), the gyrodynamic matrix can be

written as:

J

Substituting equations (30), (45) and (49) into the above

equation and neglecting the second order quantities yields:

[Qm] = 0 (52)
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This simply confirms that in deflections involving only 

pure flapping modes, there are no Coriolis couplings.

iii) Centrifugal Stiffness Matrix [f^]:

Introduction of equations (46) to (50) in the centrifugal

stiffness equation (41) leads to:

Neglecting the second order in q^, the centrifugal stiffness

matrix becomes:

dx)dx (53)

iv) Steady State Mass Contribution {S . mi

The steady state terms may be taken as the steady displacement

case or the pre-cone rotating configuration, i.e. q^ =0.

Substituting equations (44) and (47) into equation (42) the

steady state contribution becomes:

{Smi} ' Jl£i}T[‘UTIs Hc}m(x) dx 
mi Q aq^ o 2

Applying qi = 0 to equations (29) and (49) and substituting

into the above equation. Neglecting the second order terms in

30, the steady state term in the i th equation due to mass can
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be written as:

L
{Smi} = a2fmM x eofBi(x) dx (54)

0

(b) Structural Stiffness Contributions:

Usually in helicopter dynamic analyses, it is a relatively 

simple matter to form an expression for the strain energy u in 

terms of the generalised co-ordinates qi.

It is assumed that the blade properties are provided as 

spanwise distributions of bending flexibility (El (x)) in
J J

flatwise direction whilst the blade is infinitely stiff in the 

edgewise and torsional senses.

For a symmetric blade section the principal axes are 

aligned with the flat and edgewise blade axes, but the flap 

and lagwise directions are not normally coincident, so it is 

necessary to resolve the modal contributions through the local 

blade pitch angle in order to build up the strain energy terms. 

This leads to difficulties, which are explained and resolved 

in Appendix (1). As a result the bending strain energy in 

terms of the given mode shapes may be written in the much 

simplified form:

L
u = \ f El (x) f" (x)2dx (55)

o yy Bi

The structural stiffness contribution to the equations of 

motion is given by [74]:
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a 2u 
aq^qj

(56)

So the differentiations necessary are with respect to 

the mode shapes themselves, and it follows that:

L
[R,] = [/EIvv(x)f".(x)f".(x) dx] (57)

b  q Xj p1 pj

(c) Aerodynamic Contributions:

Equation (36) is an expression for the generalised force 

in terms of the dot product of two vectors. One is a certain 

differential of {R} and the other is a pressure vector {F} with 

reference to fixed axes. The pressure components with respect 

to local blade axes are shown in Figure 14. The required 

transformation between {F} and {p} is made through the matrix 

[A] of equation (26), i.e.:

{F} = [A] {p}

Therefore, equation (36) becomes:

Qi =[/{p}T [A]T (|^1} ds] (58)

The taper on the blade is usually very small, so the 

component p of the pressure vector is assumed zero. Thus
A

the above equation can be written as:

Qi =[/Dy01/pydydx + 7Dz01/pzdydx] (59)
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where the integrals are over the lifting surface and 

the {Dpi} coefficients are given by:

{D01} = [A]T
dqi

The aerodynamic force would normally be provided as a 

lift, drag and moment on a (non-deformable) aerofoil section 

as shown in Figure 15. For the sake of simplicity, the lift 

may be assumed to act at the reference axis and the drag may 

be neglected. The dy integrals (over the chord) are identified 

as:

Tpzdy = L(x) cos a(x)

J"Pydy = L(x) sin a(x)

Zp^dy = 0 (61)

where

a(x) is the section incidence

and L(x) is the section instantaneous aerodynamic lift.
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Figure 16 Blades Root Moment Decomposition.

- 98 -



Substituting the equations (60) and (61) into equation 

(59), the elemental generalised aerodynamic force can be 

obtained:

L
{Qp = {f F£(x)fB.(x) dx} (62)

where

F£(x ) = L(x)cos 6(x)cos(a (x)-e(x)) (62a)

4.3. Use of Strip Theory

It is convenient to apply strip theory in obtaining the 

sectional lift per unit length [1]:

L(x) = ^2pV2C£Ca(x) (63)

Thus, the evaluation of the lifting force requires, amongst 

other things, knowledge of the lift slope, C , instantaneous 

incidence angle, a(x), and the instantaneous local (relative) 

airspeed, v. The latter two are given in terms of components 

(vy»vz) °F relative air velocity with respect to. local blade 

section axes, i.e.:

a(x) = tan"1 (-vz/vy)

v2 = v^2 + v^2 (64)
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4.3.1. Relative Air Velocity Components

The absolute section velocity components, at the origin

of the section co-ordinates, with reference to fixed axes

can be written as:

{R} =^.f[A]{r}+ IB]]

For the point of interest, i.e. {r} = 0

E 
i

Substituting equation (28) in the above equation, gives:

at {R} = d0]{c} + ElqpiT^ll^l}

Using equation (49) and neglecting the higher order terms

leads to:

-Q x sin Qt

Q x cos Qt

? Vx) (65)

The local air mass velocity vector {u} can be written as:

{uJ = [ Vf 0 -u]T (66)

where Vf is the helicopter flight speed and

u is the induced velocity down through the rotor.
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Then, the total relative velocity {Vf} at the blade 

section with respect to fixed axes is:

{Vrl = {u} -{R}

Substituting equations (65) and (66) into the above equation

yields:

Vf + Q x sin Qt

-fix cos Qt

- u - £ q.f6.(x) (67)

The total relative velocity with reference to blade axes 

is denoted by the vector { v}. Then, the required transformation 

between {v} and {VrJ is made through the matrix [A], i.e.:

{V} = [A]T {Vr}

Performing the matrix multiplication of equation (27) and 

substituting the result and equation (67) into the above equation 

provides the relative air velocity components as:

V X
= cos Qt cos B(x) - Uf sin 3(x)

V
y

-v (x) cos 6(x) - v (x) sin 0(x) 1 2
V z v,(x) sin 6(x) - v2(x) cos 0(x)

(68)
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where

v (x) = Vx sin fit + fix
1 ■

v (x) = V cos fit sin $(x) + lu  cos  $(x )
2 T t

Uf = u + fVBi(x)

e(x) = 0t(x) + 6- Aq cos fit - As sin fit

in which 0, A and A can be obtained by solving the trim 

case.

Finally, to summarise, knowledge of vx’ vy and

enables v and a(x) to be formed using equation (64), and 

hence L(x) in equation (63), and subsequently the vector 

of generalised aerodynamic forces in equation (62).

4.4. The Trim Calculations

The trimmed flight condition of the helicopter is 

determined when the control setting is such as to achieve 

equilibrium of the net forces and moments acting on the 

helicopter.

Owing to the complexity of the trim case [77] the 

problem will be examined through quantitative calculations 

based on a specific rotor system and simplifying assumptions. 

These assumptions are as follows [78]:

1. The helicopter is in straight and level steady flight.

2. The rotor hub and helicopter centre of gravity 

coincide, i.e. the whole aircraft is represented by 
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a point mass coinciding with the hub.

3. The average pitch and roll moments are zero 

(averaged over one revolution).

4. The effect of lead-lag degree of freedom on 

the trim state of the rotor is neglected.

5. Tail, fuselage moments and side force components
I

are neglected.

6. Various forces used are considered to be average 

forces over one revolution.

7. The total geometric pitch angle is assumed to be 

given by equation (25).

Consequently, there are two types of trim calculation 

which are commonly used [78]. The first type simulates the 

actual forward flight conditions; the weight of the helicopter 

is approximately equal to the total thrust and vertical and 

horizontal force equilibrium is maintained. In addition, 

zero pitching and rolling moments on the rotor are maintained. 

The second type simulates conditions under which a rotor would 

be tested in the wind tunnel. Horizontal and vertical force 

equilibrium is not required because the rotor is mounted on a 

supporting structure. Only the requirement of zero pitching 

and rolling moments on the rotor is imposed.

In calculating the trim state of the rotor, inplane forces 

and the fuselage drag have been neglected. The requirements 

of equilibrium for trim may be given simply as follows:
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= W (69)

The average total lift of the rotor must equal the 

helicopter weight over one revolution, i.e.:

Ltot)av

and the average rolling and pitching moments must equal zero;

Mx)av “ 0

My)av = 0 (70)
J .

In order to calculate the expressions for the total lift, 

Ltot’ rollin9 moment Mx and pitching moment My one may write:

L
L/il'j) = f L(x) dx, j - 1.....N^ (71)

and
L

Mbi^i) = L<x> dx j = 1.••••«. (72)
J 0 V

where

L.(ipj) and are the 1 th blade total lift

and root bending moment respectively.

The integration on the right hand side of the above two 

equations can be obtained numerically based on the blade 

stations (x^, k = l,2,...Nd). These values will be calculated 

at discrete azimuth angles ip., into which the cycle is divided;J
that is:

= 2ir(j-l)/N^ j = 1,2,....!^
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I
(73)

The total lift for 4-blade rotor can be written as:

+ L (ip.+ ir) + L (i|». + —-)
3 J 4 J 2

j = 1’2........

then, the average total lift over one revolution is:

L - J-N£ L
tot)av N, 

ip
j=l tot(,"j) (74)

Pitching and rolling moments are obtained by a simple 

vector decomposition of the root moment for each blade as 

shown in Figure 16, i.e.:

My(^) = (-Mb, + MbP cos + (’Mb2 + MbJ sin

j = 1 »2»••(75)

and

= (Mb, - V sin + <Mb2 - MbJ cos *j

j • 1,2,....^ (76)

For trim purposes, the average value of these quantities,

per revolution, are as follows:

My)av F j=l y J
(77)

and 1 N<P 
F E WHx)av - (78)
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4.4.1. The Method of Solution:

The trim state can be evaluated iteratively to simulate 

the actual forward flight conditions. The initial data 

required is the blade geometry, aerodynamic constants (p, C ) 

and the operating flight condition. A block diagram of 

iteration process is shown in Figure 17.

As a first approximation the induced velocity down through 

the rotor is assumed to be uniform. It can be calculated 

using the trapezoidal Glauert formula [1]:

xku = uQ [1 + § -^ cos ip] (79)

where

W
uo = 2^

is the induced velocity at the rotor centre and Af is 

rotor area.

§ is a factor chosen to be slightly greater than unity 

(in the present case a typical value taken for § is 1.2).

Starting with an initial small value of collective pitch 

0, longitudinal cyclic pitch A£ and lateral cyclic pitch A$, 

the aerodynamic force is assumed to be independent of q^ and 

(qi’9i = 0)’ re^at1ve air velocity components can be

computed at each blade station, equation (68). Consequently, 

the sectional blade lift is calculated from equation (63). 

Then, the total i th blade lift and moment at the j th discrete 

azimuth angle can be calculated by the respective integration
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Figure 17 Block Diagram of Trim Iterations and Forming the Aerodynamic Contributions.
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along the blade span. The average quantities LtOt)aV’ Mx)av 

and My)av can be computed using equations (74), (77) and 

(78) respectively.

By changing the collective pitch (A ,A being held 

constant), the average total lift is recalculated for each 

change, until convergence is achieved, i.e. = W

within the restricted limits (- 0.001 W). The simplest way 

to converge the average pitching and rolling moments, (Myjav 

and M ~ 0 within the limit of - 10 lbf-in), is to varyx j a v
Ac and A$ in turn as shown in Figure 17. For each change of 

A or A the average total lift is recalculated, and, if it 

it found to be insufficiently close to the helicopter weight 

(within - 0.001 W), then further iteration processes are 

required until convergence is achieved.

Subsequently, the non-uniform wake geometry is determined 

from the solution of the flapping equation of motion. Therefore,

using now the computed trim parameters to recalculate ajk and

Vjk ^ey >1 ln block diagram, Figure 17), the elemental 

aerodynamic generalised force, at the j th point around the 

rotor azimuth, can be obtained using equation (62). The 

generalised co-ordinate in the i th mode, q^, and its time 

derivative, q^, are then computed, by solving the governing 

flapping equation of motion (this equation and its solution are 

given in the next Section). The equivalent coning and first 

harmonic lateral and longitudinal flapping angles, which are 

denoted by 8 *, Bc and S respectively, can be obtained by 
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representing q^ in a Fourier series as given in Appendix (3). 

These values will be used with the previous initial data to 

perform the non-uniform induced inflow.

Now, the rotor wake is simulated by a series of vortex 

rings [81, 82] and the induced velocity is calculated by means 

of a computer program using the RAE (Farnborough) vortex ring 

model. In this model the wake is represented by a half ring 

originating at the reference blade and typically 12 complete 

vortex rings extending downstream. Only two systems of rings 

were used, representing the root and tip vortices. The 

routines VORTEXRM (Appendix (9)) are used for this purpose.

The aerodynamic force is now taken to be dependent on q^ 

and q_.. Then, the obtained trim parameters (uniform wake) are 

now used, as a first approximation, to compute the final trim 

parameters. The iteration processes are repeated as before, 

with computing the pitching and rolling moments due to flapping 

displacement (equations (92) and (93) in Section 5) and their 

average values (M^* and Mfx*), until M^* and M^x* converge to 

constant values. Physically, this is equivalent to assuming 

no aerodynamic moments from the fuselage and tail.
4

A written program (HTRIMC) which is given in the Appendix 

(9) is used to solve the previous trim state.

It should be noted that approximation to the steady and 

first harmonic flapping motions are determined from the above 

process and used in the non-uniform wake geometry calculations.
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Quantities such as the desired lift as used in the preliminary 

calculations, e.g. for trim, may not be the same as the 

computed lift from this program. This is a result of blade 

motion effects due to flexibilities and the non-uniform wake 

induced velocities.

4.5. The Flapping Equation of Motion Formulation:

Having calculated the contributions of aerodynamic force 

{Q_l} to the i th equations of motion, at j points around the 

rotor azimuth, as shown in the block diagram in Figure 17, the 

second step is to build up the flapping motion by summing the 

individual respective contributions of kinetic energy (mass) 

and elastic potentials (structure stiffness). The required 

integrations are performed numerically, (analytical expressions 

are also given in the Appendix (2)), using standard NAG-library 

routines (DO1GAF). The input data, i.e. mass and stiffness 

distributions, are given and the mode shapes are calculated, 

at chosen spanwise (integration point) stations.

A written computer program ALLMATS is given in the Appendix 

(9) and is used to perform the respective contributions to the 

equations of motion.

Consequently, the flapping equation of motion for the i th 

blade flatwise mode becomes:

IPmHqP + [*m + W = (Q, -Sml.} (80)
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Solving the characteristic equation (left-hand side) of 

the above equation leads to the natural frequency matrix [w|] 

and the corresponding modal matrix [<!>*]. The resultant 

natural frequencies are used to establish confidence in the 

numerical methods by comparing these values with those obtained 

by the previous finite element model of the rotating blade. 

On the other hand, the resultant modal matrix [(f)*] is used as 

a transformation to uncouple the equation (80). This linear 

transformation is given by [83] as:

{qp = [0*1 {np (81)

Substituting the above equation into equation (80) and 

premultiplying by [<f>*]T leads to a set of uncoupled equations 

for the i th mode, i.e.:

{tip + [w?]lnp = {Gp (82)

where

<G.} = [0*]T {Qi}/[Mi ] (83)

in which

[ M. ] = [**]T[pmJ [<(.*] (83-a)

To avoid the singularity of resonant response at the 

harmonics near the natural frequency, it is necessary to 

include the damping terms on the left-hand side of equation 

(82). Thus the term {2qw..rip is added to both sides, giving:
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(84)(riJ + + [w?]^-} = F.^j)

where

Fj(’l'j) = (G.) + {2^.win.} (85)

is a function of , r^- and t. This function being evaluated 

at j points around the rotor azimuth.

£.j is the damping ratio for i th mode.

For good convergence the damping ratio used should be 

close to the actual damping of particular degrees of freedom, 

including structural, mechanical and aerodynamic damping 

sources. In fact, since the actual damping in the forcing 

function {Gp will often be time-varying and even non-linear, 

the viscous damping ratio has to be an approximation. It 

should be stressed that the sole function of this damping 

term is to avoid divergence of the solution; the value 5. 

has no influence on the final converged solution. Thus, 

the damping ratio up to 35% may be used for the fundamental 

flap mode of the blade [1].

4.5.1. Integration of the Equation of Motion:

The solution of equation (84), assuming periodicity of 

both forcing function F.(t) and response, is obtained numerically 

using the convolution integral. The generalised co-ordinate 

T).(t) and its first derivative (t), for zero initial conditions 

(H-j (o) = 0 and ^(o) = 0), are given explicitly [84] as:
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di o

t
^(t) =~£jwn-j1ii(t)+ /F^ije COS V^-j (t-T)dT

(87)

where

o

The iterative solution proceeds as shown in the block 

diagram Figure 18. The aerodynamic contribution {Q.} is 

calculated at j points around the azimuth for the case in 

which the aerodynamic force is assumed independent of q^ and 

q. (q. and q. = 0). The assumed damping term (2qwn,.r|.) is

introduced in the left-hand side of equation (84) to avoid the 

divergence of the solution near resonance and to achieve the 

steady state motion after only a few revolutions of the rotor 

calculated using equations (86) and (87). This calculation 

proceeds around the azimuth with increasing time (or ip) until 

the steady-state response is achieved.

In the last revolution of the rotor blade, the steady state 

motion (n^(t))and ri^(t) is used as a first approximation to 

generate the assumed damping term (F^ = 2£-w -fi-) and to evaluate 

q.j and q^ using equation (81). Now, the aerodynamic force is 

considered to be dependent on q^ and q. and its contribution 

{Q.Jmay be recalculated using the current estimates of q^ and q^.
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Figure 18 Block Diagram of the Iteration Process to Solve the Flapping Equation of Motion
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Consequently, the forcing function (t) is evaluated and the 

calculation process is repeated until convergence is achieved.

Thus, the steady-state flapping response of the rotor 

blade, equation (24), can be calculated. A written computer 

program (QANAQDOT) which is given in the Appendix (9), is used 

for this purpose.

- 115 -



5. HUB VIBRATION FLAPWISE BENDING MOMENT CALCULATIONS

5.1. Rotating Hub Flapwise Bending Moment

In order to calculate the hub vibration bending moments 

it is necessary to derive values for the modal curvatures. 

This method (mode deflection) is considered to be simpler 

numerically and more convenient than a force integration 

technique [85]. The relative merits of the two different 

methods are discussed by Bielawa [86].

According to the elementary theory [87] which is based 

on the assumption that the cross-sectional dimensions are 

small compared with the length of the beam and that the 

transverse sections of beam, originally plane, remain plane 

and normal to the longitudinal fibres of the beam after bending, 

the usual relationship between the bending moment M^(x) and 

the curvature d2fQ(x)/dx2is given by:

(88)

Having calculated the periodic generalised co-ordinate

q.(t) and the i th mode shape fo.(x) the modal curvature I — pi
d2f (x)/dx2 can be obtained by twice differentiating the 

p

flapping response fQ(x) equation (24), i.e.:

d%(x)
---- “ ^oi(x) q,-(t) (89)
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Substituting the above equation into equation (88) the 

flapwise bending moment at the root of the blade can be 

written as:

Mf = EI)q E f^.(0) q.(t) (90)

Accordingly, the j th rotating hub moment mode contribution 

at the root of the blade is given by:

Mf(j) = EI)q f^fO) Qj(t) (91)

5.2. Non-Rotating Hub Flapwise Bending Moment

The problem of helicopter vibration reduction in forward 

flight is often formalised either by minimising the oscillatory 

hub shears, or hub moments, or the blade root stresses due to 

oscillatory loads, or some combination of these. In the 

present study, only the hub rolling and pitching moments are 

considered for minimisation to achieve the vibration reduction. 

These moments are obtained by resolving the rotating flapwise 

bending moment in the hub fixed non-rotating co-ordinate system 

and summing over all four blades of the rotor in exactly the 

same manner as mentioned in Section (4.4.).

By writing instead of Mb in equations (75) and (76) 

the pitching and rolling moments, respectively, can be written 

as:

= (Mf3 " MfJcos ipj + (Mf^ - MfJ sin 

3=1,2,..^ (92)
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= (Mf! - Mf3’ Sin + (Mf2 ’ MfP C0S 

J = 1,2........ Np (93)

Now, the periodic moments which are transmitted through 

the hub to the aircraft, act as excitation moments on the 

fuselage. These moments are at the frequencies of N^Q,

2N^Q  ......... determined by the number of blades and the

rotational frequency Q of the rotor (the harmonic contents 

of these moments are derived in Appendix (4)). Basically, 

the rotor hub acts as a filter which only transmits oscillatory 

moments with harmonics per revolution of N^, 2N^,.......... to

the fuselage. This result is based on the assumption that 

all the blades are identical and have the same periodic motion.
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6. THE OPTIMIZATION PROBLEM FORMULATION

In terms of mathematical programming, the blade tailoring 

problem is in effect the minimisation of the pitching and rolling 

moments (objective function) by means of changing the mass and 

stiffness distributions of the blade (design variables). This 

helicopter vibration reduction problem, expressed as a general 

class of structural synthesis problems, may be stated in the 

following form: given the pre-assigned properties and the 

helicopter performance parameters, find the vector of design 

variables H such that:

9j (H) >0, j=l,..........J

h/L) < H. « H(u), i = 1,........ Nd

and

J(H) + min

where

g.(H) is the j th constraint function,
J ***

H. is the i th design variable and 

subscripts L and u denote lower and upper bounds respectively, 

and

J(H) is the objective function in terms of the 

design variables.
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The blade tailoring problem is illustrated in the closed

loop block diagram, Figure 19. However, it is required to 

minimise an objective function based on the pitching and 

rolling moments driven by the aerodynamic forces of the rotor 

blade. These forces are dependent on the blade response, 

both these being calculated, in trimmed flight, as described 

in Section (4). The mass per unit length and the flexural 

stiffness (El) at each structural blade node are used as 

design variables. Restrictions on these design variables 

are enforced during the optimization process to prevent them 

from reaching impractical values. Thus, constraints in the 

form of upper and lower bounds are used. The lower bounds 

are taken as the baseline design of the blade. The upper 

bounds are meant to constrain the values of the design variables 

within 10% of the blade baseline design. Then the two basic 

objective functions considered are:

MoW
(94)

M0(H)

oscillatory pitching and rolling moments respectively. The 

relation between the objective function and the aeroelastic 

analysis is presented in equations (92) and (93) (Section 5).

Obviously, an increase in the blade nodal design variables 

normally implies an increase in blade weight and ideally one 

may seek the solution which provides the least weight penalty.
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Figure 19 Blade Tailoring Problem Closed Loop Block Diagram.

Figure 20 Diagrammatic View of Minimization ; Based on

Steepest Descent Technique.
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Then the problem can be recast as a constrained problem, that 

is to minimise the blade weight, W^(H), subjected to constraint:

M (H) -> min o

Alternatively, one may minimise an objective function 

which is defined as a function of a design variable vector H:

W (H) = f(H ,H .............) (95)
o ~ 12

subject to constraint condition:

Mq (H) ■* min (96)

and

Hi(L) « Hi H.(u) , i = 1,........Nd (97)

The above inequality constrained minimisation problem can 

be transformed into a sequence of unconstrained minimisation 

tasks by using an extended interior penalty function. This 

indirect method has several advantageous features [88]: it 

is reliable and it facilitates the use of efficient unconstrained 

minimisation algorithms to solve the inequality problem. 

Moreover, in structural optimization, the method exhibits the 

desired property, from a practical viewpoint, of generating 

a sequence of feasible designs that tend to "funnel down the 

middle" of the feasible region when starting from a feasible 

interior point. This keeps the optimum design path away from 

the constraints, thus causing even a sub-optimal solution to 

be a feasible solution.
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Therefore, the optimization algorithm which is used 

sequentially in the present problem is based on the modified 

objective function defined by:

°bj(H) = Wb(H) + YMo (H) (98)

where

Wb(H) is the basic objective function, 

yMQ(H) is the penalty function, and 

Y is the penalty parameter.

The parameter y represents the relative weighting between 

minimisation of the objective function Wb(H) and satisfaction 

of the constraints M (H) •* min.o ~
Starting with an initial small value y (i.e. y = 0) and 

initial design variable vector H , the objective function O^j(H) 

is minimised (using an algorithm based on steepest technique 
as given below) to produce a new design variable H^; with 

this taken as the new initial design variable vector the 

process is repeated sequentially with an increased y until 

convergence is achieved.

The sequentially increasing values of y ensure the minimum 

possible Mq (H) while the blade weight is increased, that is:

for y * 0» Then Obj(H) = Wbmin

for y  then Wbmw< 0bj(H)« Wbmax
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Hence, there will be a variety of solutions according 

to the different values of y. As a result of this, the 

penalty parameter y can be taken to represent the "trade-off" 

between the weight penalty and minimum fixed axes moments. 

Thus, at a given advance ratio, and for different values of 

y , optimization tables (or curves) for the rotor blade can 

be drawn up which contain:
min

Wb(H) - W.(H)
weight penalty (% Mass Inc) = —-—— x 100 (99)

Wb(H)

Percentage bending moment decrement (% BM deer)
'at y=0

0

x 100 (100)

6.1. Theoretical Background of Steepest Descent Technique

The practical aspects of steepest descent technique are 

now discussed. It does not require calculation of second 

derivatives, but involves only direct calculation of the 

objective function and its first derivatives. The overall 

computational efficiency of this technique is generally high 

compared with that of other techniques, and convergence to 

a solution in relatively fewer steps can be expected [89, 90]. 

The descent technique involves iterations which consist 

essentially of three parts. First, a direction of descent 

is found, then a descent steplength is estimated and finally 

the descent step is performed as follows:
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6.2. Explanation of the Method

It will be convenient to think of the design variable 

vector H as a point in Euclidean space and e^ as a set of 

direction numbers emanating from H. However, one may 

start at a point and determine the direction in which 

the objective function 0&.(H), decreases most rapidly.

This direction is given by [89] as:

e = - VObj(H) (101)

in which VO^-(H) is a 

to a level surface (H) = 

the direction derivative of

vector whose direction is normal 

constant, and whose magnitude is 

Obj(H) in the direction of this 

normal. It can be written as:

VObj(H)
30bj(HJ e

3Hi i
+

30bj(H)
3H

2

e +....
2

where e^ is the unit vector of i th direction.

So, the direction of steepest descent technique will take the

form:

= (30bj<“>
ei 3H.

90. -(H) 2 
(—PJ.

i = 1, Nd (102)

where e^ are the components of a unit vector e, i. e.:

e = {e
T

} (103)e ,
2

9
1
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The gradients of Obj(H) can be obtained numerically by 

evaluating 0^.(H) at two neighbouring points and using, for 

example:

AH
90bjW 0bj(H/4H,H2.....)-0bj(Hi.H2,....) 

3H
1

(aL|2\9 0 .(H)
Here, AH must be small enough so that ------——

in the Taylor series, can be neglected.
90bi(H)

The gradients —..~ ■ can be calculated for i

and hence the direction of steepest descent can be

SH2

= 1,2,...

obtained

5 •

at any current design point.

Now the objective function O^H + xe), has

=0, in which x is the estimatedderivative at X

negative

steplength.

a

It is therefore possible to find x> 0 such that:

°bjw (104)<

with such a value of X, one can take:

H(>) =H(o) Xe (105)+

as a new starting point and repeat the operation 

sequence of points

to obtain a

, as shown in Figure 20,

such that:

obj(H(k+1)) < obj(H(k)) (106)

under suitable restrictions (bounds) the sequence will attain
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or converge to a stationary value of O^-fH).

The determination of steplength X can be accomplished 

by trials [47]. If the first trial fails to satisfy equation 

(104), the chosen value of A is too large; the steplength 

is reduced by a half for second trial, and so on as shown 

in the block diagram of the optimization iteration process, 

Figure 21.

6.3. Preliminary Exercise to Demonstrate the
Optimization Procedure

Due to the length and complexity of the dynamic analysis, 

and the corresponding sensitivity analysis, of the blade 

tailoring problem, a preliminary exercise was firstly carried 

out to demonstrate the feasibility of the above optimization 

procedure. The vibrating bending moment at the root of a 

cantilever beam (rotating and non-rotating) subjected to an 

oscillatory force at its tip, was minimised, the design variables 

being beam depths at certain spanwise positions. In addition, 

a laboratory experimental investigation was carried out on a 

simple non-rotating cantilever beam model to resolve any doubts 

about assumptions made in mathematical modelling. Both the 

mathematical and experimental model are described as follows:

6.3.1. Optimum Cantilever Configuration for Minimum
Oscillatory Bending Moment

Evidently, the optimization procedures that have been 

described in Section (6) can be applied to both rotating and
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Figure 21 Block Diagram of the Optimization Iteration Process
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non-rotating cantilever beams excited by an oscillatory force 

of constant amplitude at the tip. This simple optimization 

is shown in the block diagram, Figure 22. The objective 

function based on the oscillatory bending moment at the root 

of the cantilever will be minimised. Realistic bounds on 

the depths are imposed throughout the optimization, as shown 

in Figure 23, so that there is a minimum and maximum thickness 

at any point along the cantilever beam. Thus, the objective 

function is taken to be:

M0(H) = Mbo (107)

where Mbo is the amplitude of the oscillatory bending 

moment at the root of the cantilever beam. This amplitude 

has been calculated using the modal analysis, as described in 

the Appendix (5). The finite element method (Section 3) has 

been used to estimate the dynamic characteristics for both 

rotating and non-rotating cantilever beams (4-degrees of 

freedom taper beam elements being used).

Substituting equation (107) into equation (98), (the 

basic objective function, Wb(H), represents the cantilever 

weight in this case), and applying the described optimization 

procedure leads to the optimum solutions (optimum configurations). 

These solutions may be produced for both non-rotating and 

rotating cantilever beams with the exciting frequency rather 

less than and rather greater than the first and second natural 

frequencies of the cantilever of minimum weight penalty.
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Figure 22 Block Diagram of Simple Optimization Problem.

-------- Minimum Weight Solution ; H^L^=0.5

-------- Beam to be Modified , H = H =1.0 
o

-------- Maximum Weight Solution ; H^U^=1.5

Figure 23 Optimization Model
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6.3.2. Experimental Model

To provide a check on the validity of the optimum 

solutions obtained theoretically in the foregoing, an 

experiment was carried out on a cantilever beam. In 

designing an experimental model on which the above task 

could be practically carried out it was necessary to 

embody a standard strain gauge load cell to measure the 

root vibration bending moment of the cantilever beam.

The system finally adopted is shown in Figure 24, 

and consists of a beam (3), welded to a flange of relatively 

small thickness which in turn is bolted to a rigid base (1) 

through two studs, so that the end conditions approximate 

to those of a cantilever beam. Four strain gauges (2) are 

cemented in the longitudinal direction on the studs and 

connected in full bridge fashion. The resulting strains 

in the bolts are transformed through the strain gauges and 

the connected bridge amplifier into electrical signals which 

are directly proportional to the applied bending moment at 

the cantilever root. A small shaker (4) is used to excite 

the cantilever beam at its tip.

The experimental methods are described as follows:

i) VBM - Frequency Response

An electrodynamic shaker driven by an automatic vibration 

exciter control through the power amplifier was used to excite 

the cantilever beam at its tip. A force transducer of 3kC6
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PC/N sensitivity was fitted between the beam and shaker to 

measure the exciting force. The experimental procedure 

follows the usual practice, and consists of setting up the 

magnitude and frequency of the exciting force, and measuring 

the magnitude of the vibration bending moment (VBM) at the 

cantilever root (strain gauge load cell output), and thereafter 

relating these to the force input. Charge and bridge amplifiers 

were calibrated so as to enable the phase and the amplitude of 

ratio of the vibration bending moment to exciting force which 

were displayed by the gain phase meter to be reliable. The 

X-Y plotter was used to show graphically the variation of 

phase and amplitude with frequency. A block diagram of the 

testing equipment is shown in Figure 25 and a photograph of 

the flexural test apparatus is also shown in Figure 26. A 

list of equipment used as well as the static calibration of 

the strain gauge load cell are given in Appendix (6).

ii) Modal Shapes

From the VBM-Frequency curves it is possible to determine 

the resonant frequencies (= natural frequencies). The deflected 

shapes of the cantilever (modal shapes) were obtained at each 

resonant frequency and the absolute vibration amplitude was 

measured using the piezoelectric accelerometer which was located 

at different stations along the beam.
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Figure 25 Block Diagram for the Dynamic Testing Equipment
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Figure 26 Instrumentation Used for the Model Dynamic Testing
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7. RESULTS AND DISCUSSION

7.1. The Preliminary Exercise Results

The cantilever beam considered is a uniform beam, of 

length 600 mm (23.6 in), with depth and width of 20 mm 

(0.88 in) and 60 mm (2.36 in) respectively. This cantilever 

beam was excited by an harmonic exciting force of constant 

amplitude of 1 N (0.225 Ibf) at its tip. In our calculation, 

only three finite elements are used, with three depths as 

design variables (Hj, H2, H3). These design variables are 

dimensionless with respect to the depth at the root of the 

cantilever (held constant). The other initial data are 

given in Appendix (7). Both the computational and 

experimental work are described in the following sections.

7.1.1. VBM - Frequency Response

The vibration bending moment (VBM) response of the 

cantilever root was obtained experimentally and theoretically 

and the results are compared in Figure 27. It can be seen 

that the measured natural frequencies are lower than those 

obtained from theoretically by approximately 10%. This is 

thought to be partly due to the flange-base joint flexibility 

of the cantilever model; since in the mathematical model, 

it is assumed to have zero flexibility. Another source of 

inaccuracy of the calculated natural frequencies could be 

due to the use of a value of Young's modulus for the steel 

beam material as published in the text book, (a tensile test
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for a beam specimen was not carried out due to time limitation). 

Finally, the computed frequency values would be improved as 

a result of increasing the number of elements subdividing the 

beam in the finite element model.

7.1.2. Modal Shapes

The modal shapes of the model are plotted in Figure 28 

for the first and second natural frequencies. It can be 

seen from both experimental and theoretical mode shapes that 

the maximum vibration displacement was attained at the free 

end. Moreover, the vibration displacement of the experimental 

model which consists of the bending displacement of the beam 

itself and the displacement due to flange-base joint flexibility, 

behaves as a cantilever; its modal shapes being very close 

to those obtained theoretically.

Therefore the experimental model proves the reliability 

of the presented mathematical model.

7.1.3. Computed Results

A set of computer results for the variation of VBM with 

excitation frequency for various values of one of the depth 

parameters (the others being held constant) is shown in 

Figures 29 to 34. Each set of curves applies to the region 

around either the first or the second natural frequency.

Leaving aside for the present formal optimization, the 

simple way of roughly finding the minimum VBM (Convergence
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Figure 28 First Two Normal Modes of Bending Vibration 
of Uniform Cantilever Beam.
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Figure 30 VBM-Frequency Response of the Cantilever Root with Varying H

(1st Mode).
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Figure 31 VBM-Frequency Response of the Cantilever Root with Varying ;

(1st Mode).
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Figure 32 VBM-Frquency Response of the Cantilever Root 

(2nd Mode).

exciting frequency ; (c/s)

with Varying ;
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Figure 33 VBM-Frequency Response of the Cantilever Root with Varying ;

(2nd Mode).
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Figure 34 VBM-Frequency Response of the Cantilever Root with Varying H
3

(2nd Mode).
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value "e0" in the block diagram of the optimization process, 

Figure 21), as well as the most effective parameters, is 

to vary H , H and H in turn and plot or record the VBM-
12 3

frequency curve with each variation. These curves are 

shown in Figures 29 to 31 for excitation frequencies near 

the first natural frequency and Figures 32 to 34 for 

excitation frequencies around the second. It can be seen 

that H is the most sensitive parameter, because it produces
i

the largest response change per unit change in H at a given 

excitation frequency, for both the first and second normal 

modes. Also the unit change in parameter H produces the
i 

largest change of the natural frequency (other H's held 

constant) as shown in Figure 35. These effects are due to 

the increased stiffness with increasing H* and increased 

mass at the cantilever tip with increasing H^.

7.1.4. Effect of Rotation

The natural frequencies of the rotating cantilever beam 

for various rotation speeds were computed and the results 

obtained, by the present finite element formulation, show 

that as the speed of rotation increases, the lowest natural 

frequency is asymptotic to a straight line passing through 

the origin, as shown in Figure 36. The increase in natural 

frequency with rotation speed is due to the centrifugal 

stiffening effect.
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- 148 -



7.1.5. Optimization Results

The optimization technique previously described in which 

the modified objective function, equation (98), is used, was 

applied to the problem of minimising the vibratory root 

bending moment of the cantilever beam. The results of 

optimum variables, namely % weight penalty (% Mass Incr.), 

% decrease in bending moment (% BM deer.), % shearing force 

(% SF deer.) and the corresponding depth parameters (H's) 

as well as the natural frequency for the modified cantilever 

(w ) for various values of the penalty function coefficient 

(y) are plotted in Figures 37 to 46.

The results for the two initial frequency separations 

wsi = *(wf - wyOk), which correspond to the cases when the 

exciting frequency (w^) is close to the first (k=l) and 

second (k=2) natural frequencies of the cantilever of minimum

weight penalty, are examined individually below. The

computed first and second natural frequencies are wyoi 37.45

c/s and w = 199.7 c/s respectively.

(i) Non-Rotating Cantilever Beam; 1st Mode

As shown in Figures 37 to 39, it can be seen that minimum

BM and SF were obtainable. A maximum reduction of about 90%

in BM as well as in SF can be achieved, although, a rather

heavy weight penalty, (in added mass of the cantilever), of

about 70% is paid for this reduction in

w. < w and w . = 1.38; Wx > w f yoi si t yo2

the cases wsi- = 1.12;

Obviously these values
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depend on the particular value of the penalty parameter (y); 

this parameter can be thought of as representing the trade-

off between the weight penalty and achieved bending reduction. 

The corresponding optimum profiles (H’s) can be attained.

Other sequences of the results which demonstrate the 

difference between local and global minima are shown in 

Figure 39, in which the cases under investigation were 

re-run but with different starting values of the variable 

design parameters for the same values of the penalty function 

coefficient (y). These obtainable minima, in fact, depend 

not only on the coefficient y but strongly on the initial 

starting values of the design vector; thus the human operator 

enters into the picture and judgement backed up by experience 

must be used to obtain the best solution.

The results shown in Figures 39 and 44 illustrate that 

a considerable reduction in BM of up to 92%, (90% in the case 

of the local minima) can be achieved, although, a rather heavy 

weight penalty up to 67%, (70% for the local minima) is paid 

for this reduction.

It can also be observed that the final natural frequencies 

of the modified cantilever beam are affected strongly by the 

value of penalty parameter y and the initial frequency separation. 

With an increase of y the frequency separation wsep, (which is 

equal to the absolute difference between the exciting frequency 

and the natural frequency of the modified cantilever), was 

found to be increased. For the case in which wsl- = 1.12;
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the natural frequency was increased by an amount

105%. On the other hand it was found to be decreased by 

an amount 21%, for the case in which w$i = 1.38; wf > w^Q1. 

These effects are due to increased stiffness, (the increase

of H ) in the first case and the increased mass on the i
cantilever tip, (the increase of Hp in the second case.

ii) Non-Rotating Cantilever Beam; 2nd Mode

Computed results for this case are presented in Figures

40 and 41. The exciting frequency was changed around the

second natural frequency w^Q , i 

and w . = 1.34; wx > w n a-nd itsi f yO2
with first case (i) for the same 

(y) the design variable required 

a 80% to 98% reduction in BM (as 

On the other hand the cantilever

e. w • = 1.16; Wr < w _si ’ f yO2

may be seen that compared 

values of penalty parameter

18 stages to converge. Also 

well as in SF) can be achieved, 

mass must be increased by

about 4% to 11% respectively. It can also be observed that 

with the change of initial frequency separation, from ws-= 1.16

to w . = si 1.34, around the second natural frequency w^Q2 the 

resultant changes in computed profiles are quite small which 

suggests that one configuration might usefully represent an 

approximate solution for different cases of exciting frequency 

which are very close to the second natural frequency (199.7 c/s).

iii) Rotating Cantilever Beam; 1st Mode

The results are plotted in Figures 42 to 44 for the

cantilever rotating at 500 r.p.m., when the exciting frequency
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is changed very close to the first natural frequency and 

the initial separation is taken as the same as for the

non-rotating beam, i.e. wsi- = 1.12; < wy01 and wsi- = 1.38;

Wf > w^Q1 . It can be seen that a large reduction in BM 

and SF can be attained and the computed profiles are similar

to those that obtained without rotation case (i).

Another example of two solutions being obtained, one 

global and one local are shown in Figures 43 and 44. These 

are similar to the case (i) solutions.

iv) Rotating Cantilever Beam; 2nd Mode

The complete set of computer results, for the exciting 

frequencies are very close to the second natural frequency 

of the cantilever beam rotating at 500 r.p.m. and w$i- = 1.16; 

wr <wA and w • = 1.38; w^ > w ~ are shown in Figures45t yO2 si f yO2

and 46 .

Generally, for the case of rotating cantilever beam, 

Figures 42 to 46, it is perhaps a little surprising to note 

that the effect of rotation on the optimum profiles is quite 

small, which suggests that the non-rotating cantilever optimum 

profiles might be useful approximations to the rotating beam 

profiles.

7.1.6. VBM-Modal Contributions

Computations of the vibration bending moment of the 

cantilever beam for certain situations in which the beam 

configuration remains constant for an increase in y
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configurations have been carried out with different exciting 

frequencies; less than and then higher than the first and 

second natural frequencies of the cantilever of minimum 

weight penalty configuration. It was assumed that the 

contributions of the first six modes were sufficient to 

account for the vibration bending moment at the cantilever 

root. The computed results appear in Figures 47 and 48. 

It can be seen that the sum of each individual contribution 

is equal to the computed minimum bending moment (BM) which 

corresponds to the computed profile under investigation at 

the same exciting frequency. Moreover the contributions 

from modes other than the first or second are quite small; 

they would be even smaller if the exciting frequency were 

closer to the first or second natural frequency.

7.2. Helicopter Rotor Blade Results

The analysis of a representative Westland helicopter 

hingeless blade is discussed. The blade is represented 

aerodynamically by a blade element model, the rotor wake 

being simulated firstly by a Glauert downwash distribution 

(uniform inflow) and then by a series of vortex rings (non- 

uniform inflow), using up to 12 rings and 2 filaments which 

are situated at the root and tip blade section [81, 82], 

(vortex ring model "RAE-Farnborough"). Aerofoil section 

lift was obtained from tabular data (C^ = 5.7). Dynamic 

stall and three dimensional effects were not included, only
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flapping deflection being considered using a 24-finite 

element model. The initial mass and flatwise stiffness 

distributions of the blade under consideration are shown 

in Figures 49.a and 49.b. Other initial data required 

are given in Appendix (7). The computational results 

are discussed in the following sections.

7.2.1. Flapping Natural Frequencies and Modal
Shapes of the Blade

The blade finite element model which has been formulated 

in Section (3) has been used to calculate the vibration 

frequencies and associated mode shapes for both rotating 

and non-rotating rotor blades. The first four rotating 

and non-rotating natural modes are plotted in Figures 50.a 

to 50.d. The resultant natural frequencies for the two 

cases are also indicated in these figures for comparison. 

It can be seen that the rotating modes are significantly 

different from the non-rotating modes due to the rotation 

effect. The first rotating mode shape can be regarded as 

a straight line cantilever beam. Moreover, the curvature 

of the blade is confined mainly due to the root region (most 

of the outer part of the blade being almost straight). It 

produces the large root moment characteristic of the hingeless 

blade.

The rotation effect which increases the natural frequencies 

(with increased rotating speed) is shown in Figure 51. As 

mentioned before, the lowest natural frequency is asymptotic
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Figure 50 The First Four Normalized Mode Shapes of the Flatwise 

Bending Vibration of the Rotor Blade.
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to a straight line passing through the origin. On the other 

hand, one can see at a glance if there are any natural 

frequencies of the blade which coincide with a harmonic of 

the rotor speed, indicating the possibility of resonance.

The ratio of the first four natural frequencies to the blade 

rotating speed (330 r.p.m.) are 1.091, 2.92, 5.97, and 9.7 

respectively.

7.2.2. Helicopter Rotor Trim Characteristics

The trimmed flight condition of the helicopter was 

computed iteratively, to estimate the actual forward flight 

condition, using the iteration processes described in Section 

(4.4). Blade geometry, aerodynamic constants and operating 

conditions are given in Appendix (7). The computed trim 

parameters (0, A and A ) for the tip-speed ratio "yH up 

to 0.48, and for both uniform and non-uniform inflow, are 

plotted in Figures 52 and 53 (a,b). In order that the 

thrust should be kept in equilibrium with the total weight 

of the helicopter (within -0.001 of the vehicle gross weight) 

the collective pitch "0" (at the feathering bearing) must 

vary with the helicopter speed as shown in Figure 52. It 

can be seen that there are significant differences in magnitude 

of 0 between the non-uniform and uniform inflow cases but 

they both follow the trend drawn by Bramwell [1].

The variation of amplitudes of lateral cyclic pitch "As" 

and longitudinal cyclic pitch "Ac" required for trim at
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Figure 52 Collective Pitch Variation in Trimmed 

Flight.
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different forward speeds are shown in Figures 53.a and 53.b. 

It can be observed that A$ varies linearly with the helicopter 

speed and the values of both A and in the uniform inflow c s 
case are consistently lower than those values of A and A 

in the non-uniform inflow case. These results emphasise 

the influence of the non-uniform inflow for quantities such 

as the trim parameters (0, A and A ) which in turn affect
c s

the aerodynamic loading as discussed below.

7.2.3. The Vibratory Airloading on the Rotor Blade

The nature of the airloading acting on the rotor blades 

that causes helicopter vibration was determined in trimmed 

steady flight conditions, for both uniform and non-uniform 

inflow, with the particular advance ratio p = 0.284. The 

section lift during the rotation was computed using the 

strip theory as given in Section (4.3) (equation (63)). 

Azimuthal and radial distributions of the sectional lift 

per unit length of the blade are shown in Figures 54.a, 

54.b and 55.a,b through 58.a,b. In Figures 54.a and 54.b 

the section lift at seven radial stations as a function of 

azimuth are plotted for both uniform and non-uniform inflow. 

Figures 55.a,b through 58.a,b, illustrate the radial 

distribution of the blade section loading for different 

azimuth angles (from 0 to 330°) for the two cases (uniform 

and non-uniform inflow). It can be seen that there is a 

reduction in lift in the tip region of the advancing blade
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which is required to maintain a balance with low lift on 

the retreating blade for both cases. This reduction in 

lift is attributed to the reverse flow effects. It can 

also be seen that the vortex-induced loading is apparent 

around ip = 90° and ip = 270°, particularly close to the 

tip in the case of non-uniform induced velocity. So, when 

variable inflow in included, a significant difference in 

azimuthal variations in local blade loading obtains. These 

results follow the trend of Johnson [2] (a direct comparison 

cannot be made due to lack of availability of similar data).

7.2.4. Blade Flapping Response

Recall the iteration processes to solve the flapping 

equation of motion described in Section (5.4). These 

iteration processes are illustrated in the block diagram, 

Figure 18. The coefficient matrices [Pml, [RmJ, and

{Q^} developed in Section (4), required for flapping motion 

(refer later to CMC), which contain contributions derived 

from the mass and stiffness distributions and from aerodynamic 

force, were computed. In order to establish confidence in 

the numerical results, the characterstic equation of the 

flapping motion (equation (80)) was solved for the eigenvalues. 

The resultant natural frequencies for both rotating and non-

rotating blades are compared with those obtained by the previous 

finite element model (FEM). The first four natural frequencies 

are tabulated in Table (1) for comparison. It can be seen
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Table 1 Rotating and Non-Rotating Blade Natural Frequencies.

Values

Blade FEM CMC of the Blade

Natural Frequencies 
(rad/sec)

Natural Frequencies 
(rad/sec)

Wnl wn2 wn3 Wn4 w i nl Wn2 w o 
n3

w , 
n4

Rotating

Blade
37.7 101.1 200.3 335.3 38.1 100.6 200.6 336.3

Non-Rotating

Blade
14.6 66.7 165.0 302.5 14.6 66.7 165.0 302.5
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that these frequencies have the same values for the non-

rotating case, as those obtained from the previous finite 

element model. These are due to the loss of accuracy in 

the numerical integration of the centrifugal contribution 

<V-

The flapping equation of motion was now solved for the 

generalised co-ordinate {q^}, through the first four revolutions 

of the blade (i.e. Nfev = 4 in the block diagram, Figure 18). 

This solution yields the blade response of steady state for 

each flatwise mode. The results as a function of azimuth, 

expressed in terms of the blade tip deflection (coning 

deflection plus mode deflection), are plotted in Figure 59 

for both uniform and non-uniform inflow cases. Blade tip 

deflection mode contributions for both cases are also shown 

in Figures 60.a and 60.b. It was assumed that the contributions 

of the first four modes were sufficient to account for the 

computed blade deflection. It can be seen that such a blade 

subjected to aerodynamic forces as it moves around the azimuth 

tends to oscillate up and down (as shown in Figure 59) at its 

natural frequency, and there is one complete flapping cycle 

for each revolution of the rotor. It can also be seen that 

for both uniform and non-uniform inflow the contributions 

from modes other than the first mode to the blade deflection 

(Figures 60.a and 60.b) are quite small.
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7.2.5. Flapping Root Bending Moment

i) Rotating Bending Moment

The rotating hub flapwise bending moment as a function 

of azimuth was calculated using the equations developed in 

Section (5) for both uniform and non-uniform inflow. The 

results for both cases as well as the flight test flapwise 

root bending moment at the particular advance ratio (v = 0.284) 

are compared in Figure 61. In each theoretical case the 

rotor was trimmed to the same thrust and constant average 

rolling and pitching moments (due to flapping displacement), 

as mentioned in Section (5.4). The input control pitch for 

each case is written below the figure. It can be seen that 

there are differences between the two theoretical root 

flapping bending moments. These are due entirely to change 

in the induced velocity through the rotor. Also, the calculated 

flapping bending moments on the retreating side of the disc 

show a single peak compared to double peak of the flight test 

measurements. The reasons for this discrepancy are discussed 

in Ref.[82]. These are mainly due to the loss of accuracy

in calculating the higher harmonics of the induced velocity. 

In addition there is a lack of input data which is necessary 

for such a comparison. Moreover, it was assumed that the 

contribution of the first four flapwise root bending moments 

were sufficient to account for the calculated moment. These 

bending moment mode contributions for both uniform and non-



X1 o3

Figure 61 Rotating Hub Flapwise Bending Moment Vs.

Azimuth Angle at p = 0.284 ;

0S = 9.84 + 1.64 cos ip - 3.25 sin ip (°) - Glauert

0S = 10.53 + 2.17 cos ip - 4.5 sin ip (°) - vortex ring 

0 = 14.80 + 0.96 cos ip - 5.15 sin ip (°)- flight test 
o
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uniform induced velocity, at the same advance ratio, are 

plotted in Figures 62.a and 62.b. It can be seen that the 

first and second modes are the prime contributors, for 

both cases, and the contributions from the third and fourth 

modes to the root flapwise bending moment are quite small.

ii) Non-Rotating Co-ordinate Bending Moment

The pitching and rolling moments (equation (92) and (93)) 

were computed by resolving the rotating flapwise bending 

moment in the hub fixed non-rotating co-ordinate system and 

summing over all four blades of the rotor. The peak to 

peak values of these moments as a function of advance ratio 

(p), for the case of non-uniform induced velocity, are plotted 

in Figure 63. It can be seen that the peak values are of 

more or less the same order, their magnitude increasing with 

increasing p. On the other hand, these non-rotating moments 

as a function of azimuth, at the particular advance ratio 

p = 0.284, are also plotted in Figures 64.a and 64.b respectively. 

As pointed out in Section (5.2), only the four per rev. pitching 

and rolling moments can be shown in the last two figures, since

the magnitudes at higher harmonic components are relatively 

small. These moments, which are transmitted from the rotating 

hub system to the fixed fuselage system, where they act as 

exciting moments at the frequency of 4q (four blades), had 

pitching and rolling peak to peak values of 6000 Ibf-in and 

5400 lbf-in respectively. Thus, it can be concluded that,
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for such a helicopter the vibration is characterised by 

harmonic moment excitation in the fixed system with 

relatively high peak to peak values. The minimisation 

of these peak values is the aim of the present study and 

will be discussed below through the application of 

structural optimization techniques. It can also be 

observed that the average values of pitching and rolling 

moments over one revolution of the blade (due to flapping 

displacement), which are required from the rotor to trim, 

are constant. These come directly from the assumption 

that no aerodynamic moments from the fuselage and tail 

are considered, as mentioned before.

7.3. Preliminary Optimization Results of the Rotor Blade

The problem of helicopter vibration reduction through 

the application of structural optimization techniques to 

rotor blade design was described in detail in Chapter 6. 

The block diagram of Figure 21 illustrates the basic 

organisation of the optimization processes. The initial 
blade design variable (H^0^) (initial mass, flatwise stiffness 

and built-in twist distributions) was selected to start the 

optimization process.

The design variables considered are the mass per unit 

length "m.(x)", flatwise stiffness "EI(x)M and built-in twist 

"et(x)" at 19 spanwise stations (starting from the station 



just after the feathering bearing) along the blade. Upper 

and lower bounds on these design variables were prescribed 

to prevent them from reaching impractical values as mentioned 

before-in Section (6).

The objective function to be minimised is the mathematical 

representation of rolling and pitching moments. These 

moments are calculated as described in Section (5).

Unfortunately, the size of such an optimization problem, 

in terms of the above huge number of design variables, is 

computationally expensive. It leads to unacceptably long 

computation times, since the major computational effort is 

in evaluation of the objective function. Thus, in order 

to reduce the computational time involved in the mathematical 

programming approach chosen, some of the approximation 

concepts described in Ref. [531 are incorporated in the 

present optimization study. However, the rate of change 

of the objective function with changes in all the variable 

parameters was computed (the larger of these "gradients" 

would indicate those parameters which have the greatest effect). 

The maximum increase in the objective function occurs along 

its gradient. Then, moving in the negative gradient direction 

(as mentioned in Section (6.1)) will produce the maximum 

decrease in the objective function.

In order to gain some insight into the optimization 

process, a set of preliminary results for the blade tailoring 

configuration were generated. The understanding gained from 
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these preliminary results, in addition to the results obtained 

from the optimum configurations of the cantilever beam, 

Section (7.1), led to the development of more refined 

optimization procedure. The preliminary results presented 

are organised in the following two distinct sections.

7.3.1. Minimisation of Oscillatory Rolling Moment

In this section, the preliminary results for the optimum 

blade configurations are presented separately for: (i) blade 

mass distribution, (ii) blade flatwise distribution, (iii) 

built-in twist along the blade. The objective function used 

in generating these results was the peak-to-peak value of 

oscillatory rolling moment (M ) in forward flight at only xp
one particular advance ratio (y = 0.284). In each case 

the gradient of this objective function at 19 spanwise stations 

along the blade was computed and the normalised descent 

direction emanating from the initial design variable 

has been obtained. Three different blade designs with three 

different descent steplengths along the descent direction were 

generated.

(i) Optimum Blade Mass Distribution

The preliminary modified blade mass distributions are 

presented in Figure 65, which are obtained for different 

descent steplengths Ami = 0.5*10"3, Am2 = 0.625*10~3 and 

Am3 = 0.125*10"2 along the computed descent direction. 

Figures 66 and 67 show, respectively, the corresponding rolling
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Mass Distributions ( p = 0.284 ).
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and pitching moments for the distributions Am , A^ and

A at p= 0.284, as a function of azimuth. The optimization III 3
results for these mass distributions are also presented in 

Table (2). It can be seen from Figures 66 and 67 that 

distribution X yields, respectively, a 35.6% and 18.6% 

reduction in peak to peak value of the rolling and pitching 

moments, whilst distribution Xm3 produces a total reduction 

of 44.8% and 21.5% respectively. These vibration reductions 

were accompanied by slight increases of the original blade 

weight of 6.3% and 18.9% for the distributions xmj and xm3 

respectively. In these figures, the oscillatory rolling 

and pitching moments for the modified mass distributions 

show a phase shift in the maximum values with respect to 

the maximum values of those moments obtained for the inital 

distribution. The reason for this phase shift is explained 

in the next section.

In Figure 65, most of the modified blade mass is located 

in the outboard one-third portion of the blade and is 

distributed as shown in this figure. This is a good practical 

means for such vibration reduction. A mild decrease in the 

mass per unit length at the blade radial distance equal 

220 in (r = 87%) was evident and there is a substantial 

increase at the two adjacent stations for the modified 

distribution of Xm , Xm and xm . This mass distribution 

(at the tip region) acts like a "dumb-bell" (see also the 

modified flatwise stiffness distributions at the blade tip

197 -
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region next section), which increases the blade inertia 

and thus affects the blade natural frequencies as well 

as its mode shapes. These modified mass distributions 

of the blade for the same descent steplengths xmi, 

and X are also shown in Figure 68 in which the above 

optimization results were computed at another advance 

ratio, y = 0.372. It is interesting to note that the 

resultant modified mass distributions are more or less 

the same as those for p = 0.284 and each distribution in 

the outboard one-third of the blade acts again as what 

is called a "dumb-bell". The optimization results 

corresponding to these modified distributions (Xm , Xm m i m2 
and X ) in this case, are compared in Table (3) with that 

of the initial blade distribution. From this comparison 

it is evident that the peak to peak values of the rolling 

and pitching moments have decreased substantially, however, 

the percentage reduction seen in those values are from 

40.7% to 54.2% and from 36.2% to 46.3% respectively, and 

a slight increase (from 5.6% to 13%) of the original blade 

mass accompanied these vibration reductions. The effects 

of the modified mass distribution on the blade natural 

frequencies as well as its modal shapes will be discussed 

below.

A comparison of the first four modal shapes of the 

rotating blade, for its initial and modified mass distribution

- 199 -



o <o
CM

0
.
5
*
1
0

<u 
o 
c 
03 
4J 
cn 
•A 
T3

CO 
•A 
nj
cO

F
i
g
u
r
e
 
6
8
 
I
n
i
t
i
a
l
 
a
n
d
 
M
o
d
i
f
i
e
d
 
B
l
a
d
e
 
M
a
s
s
 
D
i
s
t
r
i
b
u
t
i
o
n
s
 
f
o
r
 
M
i
n
i
m
u
m
 

R
o
l
l
i
n
g
 
M
o
m
e
n
t
 
(
 
y
 
=
 
0
.
3
7
2
)
.

—,-------- J------- i-------r~—.------ ,------- ,—-n 5
c or-l o o CM 2 o

(ui/3nqo) ipguaj zjiun jad ssaui

200



Ta
bl

e 3
. Opt

im
iz

at
io

n R
es

ul
ts

 Co
m

pa
ris

on
 fo

r th
e I

ni
tia

l an
d M

od
ifi

ed
 Bla

de
 Ma

ss
 Di

st
rib

ut
io

ns
 at

o oo
J- OJ OJ 05

o c cs • • • •
•r— 2 05 05 05 00
+->

ce

>» tn ID LO co
o g 05 CO CO co
c 2 • • • •
(V LD LO in in
23
CT in 1—
CD OJ o r— r^.
S- CM 05 05 05 05

Li_ c a • • • •

<0 
S- 
Z5

2 OJ OJ OJ OJ

(__ Q OJ
4-> rd 05 m in OJ
<0 c c? o o o o

■Z. 2 • • • •
fr— 1 1

G
o

•1—
+-> 4-> CLc o >5 OJ CD co
CD ZJ z 1 • • •
E c -U CO co CD
O •r- cd c co co ’J-

z: 1 cc •r—

CD _Qc r— o •
•r— +-> • n

j C -X 00 co
o '5-X 05 CL co o co
+J z: CD >> OJ 05 OJ
•f— cd Q. Z 05 CO LO in
CL CL

c
o

•r—
+-> CL

+-> o X CD OJ
c =5 z 1 • • •
CD x— TJ o co '3"
E c CD c LD

O •i— CC •r—
z: 1.

<+-
CD _Q o
G r— +-> • *5

•r— _x co
r— _X 05 CL co LD OJ
f—• 05 CD X co 00 LD LO
o X CD CL z 05 LD in

c£ Z CL

s- x> CD o o
o Z2 1 • • •
c ID co

»—4 G r—
•r*

r

JO in 'J- co
CD • e r— r— CO r— r—

TJ tn • • • •
no cn o I— •=3- 00

05 _Q o r— r— OJ
DO E OJ OJ OJ OJ

cn CM
*+- u- 1 M— 1
o tn o o O o

1 r— r—
g c o g * G ■K

o o r— o LO o LD
in .p. •r— * •r— OJ •r— OJ
cd +-> +-> in +-> CO +-> f—

D Z5 Z5 • Z5 • •
I---- -Q -Q o D o -Q o

05 05 •r— •r— •r— •r—
> •r— s- G II G II G II

4-> +-> +-> 4_> 4->
•r— </) in r-« cn CM in cn

c •r— •r- E E •r— E
>—< a Q r< a r< Q

- 201 -



(of A and P= 0.284), is shown in Figures 69.a to 69.d. m 3
The rotating natural frequencies of the blade for both 

distributions are also compared in Table (2). It can 

be seen from these figures that for the second flatwise 

mode, the amplitude of the antinode (near midspan) is 

larger than that for the initial blade mass distribution 

and the node point (at r = 74%) has moved outboard by 

about 7.3%. For the third and fourth modes, both the 

antinode amplitudes and the antinode radii have also 

increased, (Figures 69.c and 69.d). It can also be seen

that the additional weight at the node region of the 

second mode causes the second natural frequency to remain 

virtually unchanged, and, thereafter, a slight increase 

was observed as shown in Tables (2) and (3). This is due 

to the changes in the resultant generalised mass, for the 

modified distributions (xm , Xm , and a ) of this mode.mJ m2 m3

Vibration modal analysis results for both initial and 

modified mass distributions of the blade were carried out 

to obtain the modified blade response. Also, the rotating 

flapwise root bending moment of the blade and its mode 

contributions for each modified distribution were performed 

to understand the effects on the prime contributors to the 

4 per rev. pitching and rolling moments. These results 

will be discussed later in the next section.
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(ii) Optimum Blade Flatwise Stiffness Distribution

Within limits dictated by blade strength and aerofoil 

thickness requirements, the blade flatwise stiffness 

distribution may be adjusted in order to reduce helicopter 

vibration. Again, the normalised descent direction emanating 

from the initial blade flatwise stiffness (initial design 

variable) was produced for the computed gradients of the 

objective function (rolling moment) at the previous spanwise 

stations of the blade. Three different flatwise stiffness 

distributions for the descent steplengths Xk = 0.5*107, 

X|<2 = 0.625*107 and X^ = 1.25*107 along this descent 

direction are examined below.

Figure 70 illustrates the initial and resultant modified 

blade flatwise stiffness distributions (xb , X. , and XL ) 
K1 K 2 K 3

for comparison. The reductions in the peak to peak value 

of the rolling moment (as well as the pitching moment) of 

these distributions are also shown in Figures 71 and 72.

In these figures the oscillatory rolling and pitching moments 

for initial and improved stiffness distributions, at advance 

ratio p = 0.284, as a function of azimuth are also plotted 

for comparison. It can be seen that these oscillatory 

moments were slightly reduced. For instance, distribution 

A|<1 yields respectively a 5.1% and 4.4% reduction in peak to 

peak value of rolling and pitching moments, whilst distribution 

X|(3 produces a total reduction of 19.2% and 14.6% respectively, 

compared with the initial flatwise stiffness distribution of 

the blade.
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Figure 71 Rolling Moment Vs. Azimuth Angle for Different Blade

Flatwise Stiffness Distributions ( p = 0.284 ).
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Figure 72 Pitching Moment Vs. Azimuth Angle for Different Blade

Flatwise Stiffness Distributions ( p = 0.284 )
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A comparison of rotating flapping frequencies of the

modified distributions with that of the initial stiffness 

distribution is presented in Table (4). In this table 

the preliminary optimization results are also summarised.

It indicates that the first four natural frequencies of the

modified flatwise stiffness distribution (of A. , K 1
Ak3 ) have decreased slightly with respect to those of the 

blade initial flatwise stiffness distribution. This 

indicates that the increased blade flexibility, between the 

blade radial distances of 80 in and 160 in (i.e. 30% <r<60%), 

as shown in Figure 70, appears favourable for such reduction 

in the oscillatory rolling and pitching moment peak to peak 

values.

It is perhaps a little surprising to note from Figure 70 

that at a radial distance equal to 220 in (r = 87%) of the 

blade, all the improved flatwise stiffness distributions are 

higher than those at the two adjacent stations, while the 

mass per unit length of the modified blade mass distributions 

(Am » Xm2 and xm3) shown in Figure 65 are smaller than at 

those stations. Thus, the modified mass and stiffness 

distributions of the blade (at the tip region) act like a 

"dumb-bell", as mentioned before.

On the other hand, one can conclude that the blade mass 

distribution, rather than flatwise stiffness distribution 

is the prime variable in reducing the oscillatory rolling 

and pitching moments. In order to investigate the cause
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of this and to understand the cause of the phase shift in 

maximum values of rolling and pitching moments (Figures 66 

and 67) from the modified mass distributions, a complete 

set of aeroelastic analyses for both improved mass and 

stiffness distributions of the blade were carried out.

The rotating flapping root bending moment, its modal 

contributions and steady state responses at the blade tip 

as a function of azimuth, at advance ratio p = 0.284, are 

compared in Figures 73.a and 73.b to 78.a and 78.b for 

both cases of modified distributions.

In Figures 73.a to 78.a, the above aeroelastic results 

for the modified blade mass distributions of X , Xm andmz m2
X are compared with those of the initial mass distribution 

of the blade. At the same time the results of the modified 

blade flatwise stiffness (of X. , X. and X. ) distributions
K1 K2 K 3

are also compared in Figures 73.b to 78.b. It can be seen 

that the flapping root bending moment "M^.(ip)", its first 

four mode contributions and the steady state response for the 

modified blade flatwise stiffness distributions (X. , X. andK1 K2 
Xk3), are almost identical with those of the initial stiffness 

distribution, whilst these results are considerably different 

from those of the modified blade mass distributions (X , X_ mi m2 
and x ).m3'

In Figure 73.a, the rotating flapping moment (ip) at 

p = 0.284 is compared for the initial and modified blade mass 

distributions. It can be seen that the peak to peak value
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of this moment was reduced and the minimum peak at the 

retreating side was shifted by about 90° in azimuth for 

each modified distribution. For instance, the distribution 

A exhibits a 18.9% reduction in peak to peak values of 

with respect to the initial mass distribution.

It can also be seen that the average value of M (ip) (over 
fi

one revolution of the blade) was shifted down for each 

modified mass distribution. This is actually due to the 

additional mass at the tip region of the blade, which in 

turn affects the steady state contribution (S .} of equation 

(54) of i th flatwise mode. This effect is clearly shown, 

for the first and second mode contributions, in Figures 

74.a and 75.a respectively. Their average values are 

shifted down and up for the modified distributions Xm , 

Am2 and \i3 comPared with the initial mass distribution. 

On the other hand, the peak to peak value of the first four 

mode contributions to the moment M^.(^) are significantly 

reduced (Figures 74.a through 77.a). For the first mode, 

a 34.6% reduction in peak to peak value of its contribution 

to Mf.(<P) was evident and the minimum peak was shifted by 

about 14° in azimuth, in the case of X distribution. This 
m3 

distribution also exhibits a 31% reduction in the peak to 

peak value of the second mode contribution with respect to 

the initial mass distribution. Harmonics of these modal 

contributions to the pitching and rolling moments will be 

discussed later, in Section (7.3.3).



In Figure 78.a, the steady state responses at the blade

tip for the modified mass distributions

are compared with that of the initial mass distribution at 

the particular advance ratio "p = 0.284". It can be seen 

that the responses for these modified distributions are 

significantly reduced with respect to that of initial mass 

distribution. For instance, the peak to peak value of the 

response was reduced by 59%, for the case of distribution, 

and the minimum peak was shifted by an amount of 14° in 

azimuth, compared with that of the initial distribution. 

The reason for this reduction will be discussed in Section 

7.3.3.

Thus, from the foregoing results the reduction in the 

peak to peak values of (ip) in steady state response of 

the blade and the previous phase shifts, may be the cause 

of the phase shift of the maximum values of pitching and 

rolling moments for the modified mass distributions shown 

in Figures 66 and 67. There is no such phase shift in the 

case of modified flatwise stiffness distributions (Figures 

71 and 72), with respect to those of the initial distributions. 

This is because the computed quantities (ip) and the steady 

state response for each of the modified flatwise stiffness 

distributions (Figures 73.b through 78.b) are almost identical 

with that of initial flatwise stiffness distribution.
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(iii) Optimum Built-in Twist Distribution Along the Blade

Blade twist may also affect vibratory hub loads and 

moments by altering the basic airloads applied to the blade. 

Thus, the rates of change of the objective function (rolling 

moment) with changes in the built-in twist variable 0^(x) 

at the previous 19 stations along the blade were computed. 

The baseline of these gradients is taken to be the initial 

distribution of ©t(x) along the blade. The normalised 

descent direction emanating from this initial design variable 

was performed, and three different descent steplengths 

X_. = 0.01, X_ = 0.0125 and XQ = 0.025 along this

direction are examined. The preliminary optimization 

results, at p = 0.284, for the distributions of X , Xrt
01 02 

and X03 are presented in Table (5) and the modified 

distribution is compared with the initial distribution 

in Figure 79. However, the results presented in Table (5) 

show very little effect from the built-in twist along the 

blade on the oscillatory rolling and pitching moments. For 

instance, the modified distribution XQ yields 6.5% and 2.3% 

reductions in the peak to peak value of pitching and rolling 

moments respectively, while the distribution xo, yields 16% 

and 5.8% reductions respectively with respect to the initial 

distribution. It can also be seen from Figure 79 that the 

modified distribution x« has more or less the same values
03

as those of the initial distribution, except in the tip
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Table 5. Optimization Results Comparison for the
Initial and Modified Built-in Distributions
Along the Blade at p = 0.284

Values

Rolling Moment
Mx (Ibf-in)

Pitching Moment
My (lbf-in)

Peak to 
peak;

Mxp

Of 
/o

Reduction
in M xp

Peak to 
peak;

M 
yp

%
Reduction

in Myp

Initial 
Distribution 6029 • 5149 -

Distribution of
x91 - 0.01 5892 2.3 4823 6.3

Distribution of

X02 = 0.0125
5858 2.8 4741 7.9

Distribution of

= 0.025
5682 5.8 4330 15.9
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region of the blade in which a slight increase in the 

built-in twist was observed. This results from the fact 

that the negative angle of attack experiences impulsive 

lift, drag and pitching moment. This impulse translates 

into increased higher harmonic blade response and increased 

vibration. Thus, the increased built-in twist (at the 

tip region) decreases the possibility of reaching such a 

negative value, therefore reducing the vibration level as 

shown in Table (5).

7.3.2. Minimisation of Oscillatory Pitching Moment

In this section, the feasibility of using the oscillatory 

pitching moment as an alternative objective function is 

explored. The preliminary results obtained from minimising 

the peak to peak value of this moment for the modified mass 

distribution, at the advance ratio p = 0.284, are presented 

and appropriate conclusions are drawn. The gradients of 

this objective function at the previous blade stations were 

computed, as mentioned before, and the normalised descent 

has been performed. The same descent steplengths = 0.5*10"3 

Xm2 = 0.625*10 3 and xm3 = 0.125*10"2) as those in Section 

(7.3.1) were used to obtain three different blade mass 

distributions. These resultant modified distributions are 

compared in Figure 80 with the initial mass distribution of 

the blade. The corresponding oscillatory rolling and pitching 

moments, as a function of azimuth, are plotted in Figures 81
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Figure 81 Rolling Moment Vs. Azimuth Angle for Different

Blade Mass Distributions ( ]d = 0.284 and

M is the Objective Function).
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Figure 82 Pitching Moment Vs. Azimuth Angle for Different

Blade Mass Distributions ( y = 0.284 and

M is the Objective Function ). 
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and 82 respectively. It can be seen from Figure 80 that 

the modified mass distributions of and are

more or less the same as those given in Section (7.3.1) 

(for rolling moment used as objective function), especially 

at the tip region of the blade where these distributions 

act as what we have called a "dumb-bell". The result 

derived from Figures 81 and 82 is that a considerable 

reduction in the peak to peak value of pitching moment 

(up to 29%), as well as in rolling moment (up to 43%) 

can be achieved for the modified mass distribution, 

for example. These reductions are accomplished by 

relatively small changes in the original blade mass (13.25% 

increment) as illustrated in Table (6). It can also be 

seen from these figures that the maximum values of the 

oscillatory pitching and rolling moments of the modified 

distributions have a phase shift, of the same order as in 

case (i) of Section (7.3.1), with respect to the maximum 

values of oscillatory pitching and rolling moments obtained 

for the initial mass distribution of the blade, due to the 

reasons mentioned in that section.

In Table (6), the rotating natural frequencies of the 

modified blade mass distribution are also compared with those 

of the initial distribution. This indicates that all but 

the second flapping natural frequencies are decreased slightly, 

the second remaining virtually unchanged initially, thereafter 

a slight increment being observed, as discussed in case (i) 

of Section (7.3.1).
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Other sequences of the above preliminary results, in 

which the second frequency ratio (-^-) of the initial blade 

configurations was reduced to 2.7, were carried out. This 

frequency ratio was obtained by multiplying the flatwise 

stiffness, at each station of the original blade, by a 

factor of 0.675. The above optimization process (with 

pitching moment peak to peak value used as objective function) 

was re-run. The optimization results at the same advance 

ratio p = 0.284 and same descent steplengths (X = 0.5*10'3, 

Xm = 0.625*10~3 and Xm = 0.125*10'2) are compared in 

Table (7) with those of the initial mass distribution. The 

resultant modified distributions are also plotted in Figure 

83. It is interesting to note that these modified mass 

distributions for this special case are again more or less 

the same as those mentioned above as well as for the foregoing 

resultant distributions in case (i) of Section (7.3.1). 

Moreover, the reductions in the peak to peak values of pitching 

moment (as well as in rolling moment) in this case (Table (7)) 

are of the same order as for those cases indicated in Tables 

(2,3 and 6). For instance, reductions in the order of 33.4% 

and 40.4% in pitching and rolling moment peak to peak values 

respectively have been achieved, for the modified mass 

distribution Xm3 . A relatively small change in the original 

blade weight (up to 17.4% increase) is sacrificed for these 

reductions.
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It is worthwhile pointing out that the optimization 

results in the previous sections reveal that additions to 

the blade mass distribution in one-third outboard span of 

the blade that are favourable for vibration reduction take 

the form of a "dumb-bell". The literature shows that 

something similar to this has been observed before, but, 

however, not in the general context of structural optimization. 

The analytical results described in Ref.[661 and [67], for 

example, projected significant reductions in 4P vertical root 

shear, when a simple concentrated mass was added to the tip 

of the blade.

7.3.3. Harmonic and Modal Contributions to Pitch
and Roll Moments

Figures 84 to 88 show the root flapping bending moment 

produced by the first four flatwise bending modes at the first 

to fifth harmonic. The amplitudes of these harmonics (sine 

amplitude "a ", cosine amplitude "a " and the resultant 

amplitude "cn = (a$n + a^)2" as well as the phase angle ( <t>n 

= tan_1(f^- ); n=l,....5 ) of the Fourier series representation 
acn

of each mode are computed. The computational results obtained 

for both initial and modified mass distributions (A ) of the 

blade, at advance ratio u = 0.284, are compared in these Figures. 

The modal contributions for each harmonic can be clearly seen, 

from a polar plot of the rotating co-ordinate moment vector 

of each mode, the right hand side of these figures. In these 

polar plots the resultant moment vector (denoted by R) which
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is the sum of the modal contributions for each harmonic is 

also shown. It is evident from these Figures that the 

moment vector loci as well as its n th components (asn, acn) 

are significantly different for both initial and modified 

mass distributions of the blade. Also, one can see at a 

glance the second mode contribution effect is the predominant 

one for all harmonics and the modified mass distribution has 

a significant influence on this mode effect. This influence 

will be discussed below.

As pointed out in Section (5.2), for a four bladed rotor 

the fixed co-ordinate fourth harmonic (other components of 

diminishing order at eighth harmonic, twelfth harmonic and 

so on are neglected) pitch and roll moments are the resultant 

non-rotating moment vectors of third and fifth harmonic flap 

moment vectors in the rotating co-ordinates of the rotor system. 

Thus, a comparison of these harmonic bending moments (third 

and fifth) in rotating co-ordinates, for both initial and 

modified mass distributions of the blade, is made in Figures 

86a,b. and 88a,b. It is apparent from these figures that 

the major contribution to the fixed co-ordinate moments is 

from third harmonic response of the second flap mode, with a 

smaller contribution from the third flap mode for the case of 

initial mass distribution of the blade as shown in Figures 86,a 

and 88.a. For the fifth harmonic the contributions from the 

four flatwise modes have more or less the same order of one 

third of third harmonic second flap mode contribution.
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In Figures 86. b and 88.b,the effect of the modified mass 

distribution on the major contributions to the fixed co-ordinate 

moments is clearly shown. However this distribution yields 

a 60% reduction in the second mode of third harmonic while 

this mode increases by an amount of 20% in the case of fifth 

harmonic with respect to the initial distribution. It can 

also be seen that the second mode vector loci has a phase shift, 

with respect to that of the initial blade mass distribution, 

of about 150° and 175° for the third and fifth harmonics 

respectively. The fourth mode contribution also shows a 

significant reduction of amount 30% compared with the initial 

distribution for both harmonics. On the other hand, the third 

mode contribution has increased by an amount 60% and decreased 

by amount 45% for the third and fifth harmonics respectively, 

while the first mode contribution has a negligible change for 

both harmonics. Consequently, the resultant rotating moment 

vector (R) has decreased by amount of 30.5% and 46.2% for third 

and fifth harmonics respectively with respect to the initial 

blade mass distribution. Also, the loci of these moment 

vectors is shifted by 10° and 110° respectively for both 

harmonics compared with the initial distribution.

Thus, one can conclude that the second flatwise mode 

response is the prime contributor to the fixed co-ordinate 

fourth harmonic pitch and roll moments. It is clear that 

the modified mass distribution has a significant influence 

on this second mode contribution, especially the third harmonic 

content of the fixed co-ordinate moments.
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To understand the reasons for the observed vibration 

reduction in the major contributor to the pitching and 

rolling moments (i.e. the third harmonic bending moment of 

the second flatwise mode, Figure 86), it is helpful to 

consider the vibratory airloads which are applied to the 

blade at the exciting frequency w^. The generalised response

of this mode, to sinusoidal excitation at w^, is characterised 

by the ratio of generalised force to generalised mass, the 

aerodynamic damping and the frequency separation (separation 

of the damped natural frequency from the forcing frequency 

"wf"). Each of these will be discussed below.

The amplitudes of the third harmonic (a , a and c )
S3 C 3 3

of the Fourier series representation of the airload F^(x), 

equation (62.a) are computed. The computational results 

obtained for both initial and modified mass distributions 

of the blade, at p = 0.284, are compared in Figures 89.a and 

89.b. The ratio of generalised modal airload (product of 

F^(x) times the displacements at x in the second flatwise 

mode) to generalised mass are also plotted, for comparison, 

in Figure 90. Moreover the aerodynamic damping is estimated 

for both initial and modified blade mass distributions. 

These damping calculations are given in Appendix (8).

In Figures 89.a and 89.b, it is observed that the effect 

of the modified blade mass distribution on the 3/rev airload 

(F^(x)) is not very noticeable; however it does have a 

significant effect on both the generalised modal force and
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Figure 90 Comparison of the Second Flatwise Mode-3/rev Generalised

Forces for the Initial and Modified Mass Distributions

of the Blade ( p = 0.284 ).
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the generalised mass (equation (83.a)) as shown in Figure 90. 

This is due to the large change in the second flatwise bending 

mode shape as mentioned previously (Figure 68.b). Figure 90 

shows in effect the positive and negative work done in the 

mode by the inboard and outboard modal airloads per unit 

generalised mass (the shaded area) for the modified blade mass 

distribution, and also for the initial mass distribution 

(unshaded area). The net area in the former case is much 

less than in the latter, which indicates a significant reduction 

in the excitation. The role played by damping is fairly small 

since it is revealed in Appendix (8.2) that the aerodynamic 

damping in the second flap mode is relatively high (C2 = 43% 

critical). Thus, resonance peak is not sharp (as it was for ■ 

the cantilever beam, Section 7.1). Moreover, as a result of 

the damping it occurs at a frequency well below the undamped 

frequency. So the frequency separation effect is not very 

noticeable. Certainly, it is not nearly as significant as 

in the case of the cantilever beam.

It should be noted that increasing the generalised mass 

will decrease the damping ratio (c2 = 43.22% and c2 = 21.61% 

for initial and modified blade mass distributions respectively), 

so the frequency separation effect begins to become significant 

in the latter case.
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7.3.4. Refined Optimization Results of the Blade 
Configurations

The preliminary results, presented so far, imply that for 

greater refinement the modified distributions of mass, flatwise 

stiffness and built-in twist along the blade (for Xmi, X^-, and 

XA.; i = 1,2,3) should be used simultaneously to obtain minimum 

rolling and pitching moments. To this end, these moments were 

re-computed, at the same advance ratio (p = 0.284), firstly 

with the rolling moment as the objective function and then with 

the alternative objective function being pitching moment. The 

results obtained are summarised in Tables (8 and 9). These 

tables contain the initial and modified distributions resulting 

after one stage of optimization. The rotating natural frequencies, 

the oscillatory rolling and pitching moments (peak to peak values) 

and the total blade mass are compared for both objective functions. 

It is evident from these tables that the peak to peak values of 

the rolling and pitching moments have decreased substantially. 

However, the percentage reduction seen in these values obtained, 

for example, for distributions xm » Xl and x are 48.5% and 

28.8% respectively for the rolling moment (peak to peak values) 

used as the objective function, whilst these reductions are 45.7% 

and 34.1% respectively for the pitching moment used as the alternative 

objective function. It is interesting to note that the reduction 

in the peak values are somewhat higher than those of cases of 

the modified blade mass only distributions shown in Tables (2) and 

(6). However, these differences are quite small (less than 8%).
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Although the moment peak values have decreased, the corresponding 

values of the total blade mass have the same values as those 

for modified blade mass distributions shown in Tables (3) and 

(7); also the rotating natural frequencies are slightly 

decreased due to the increased blade flexibility shown in 

Figure 70. It can be concluded that the oscillatory hub 

rolling moment is a better objective function because it 

results in a greater maximum reduction in vibration level 

(see Tables (9) and (10)).
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CONCLUSIONS

The conclusions presented in this section are divided 

into two distinct categories; firstly, those associated 

with the complete optimization leading to minimisation of 

the vibration bending moment at the cantilever root of the 

plain cantilever beam, and secondly, those associated with 

the hingeless helicopter rotor blade configurations which 

minimise the non-rotating rolling and pitching moment at 

the rotor head.

The main conclusions for the optimum configurations 

of the cantilever beam that minimise the root vibration 

bending moment are as follows:

1. The minimum vibration bending moment (as well as minimum 

shearing force) at the cantilever root were obtained using

a sequential unconstrained minimisation technique incorporating 

an algorithm based on the steepest descent method [89]. The 

optimization proceeded without complication and the results 

indicate a satisfactory sequence which has led to a reduction 

in some cases of 92% in bending moment, although a rather 

heavy weight penalty (in added cantilever weight of about 70%) 

is paid for this reduction.

2. The ability to obtain a global minimum did not seem to 

be a problem; it does however depend on the actual starting 

value of the design parameters so human operator experience 

enters into the picture.
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3. It is perhaps a little surprising to note that the 

effect of rotation on the computed profiles is quite small 

which suggests that the optimum non-rotating cantilever 

profiles might provide useful approximations in the 

estimation of the rotating cantilever beam profiles.

The conclusions for the hingeless rotor blade 

configurations in forward flight are summarised below. 

These conclusions should be viewed in the framwork of the 

assumptions made in the analysis. The theoretical analysis 

employed has demonstrated its potential to give a detailed 

definition of the rotor's aeroelastic behaviour in steady 

flight conditions. Based on the computed aerodynamic 

quantities in the preceding sections the following conclusions 

are drawn:

4. Inevitably, errors in the magnitude and distribution 

of the aerodynamic loading arise, shown up in particular by 

the comparison of theoretical flapwise root bending moment 

and flight test measurements, due to a lack of fully detailed 

data for oscillating aerofoils. The definition of downwash, 

even the vortex ring model (non-uniform inflow) is a simplified 

model of the actual downwash and this may have a significant 

effect on the harmonic response of the higher order modes. 

Similarly, interference effects with the airframe, tail rotor 

and vortices shed from the rotor hub may influence the response 

of these modes.
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5. The first and second flatwise bending modes are the 

prime vibration contributors whilst the contributions from 

the third and fourth modes to the root flapwise bending 

moment are quite small.

6. The second flatwise mode response plays an important 

role in the vibration response of rotor blades. It is a 

predominant contributor to the fixed co-ordinate fourth 

harmonic pitch and roll moments. These moments have 

relatively high peak to peak values (they act as exciting 

moments) which increases with increasing advance ratio.

The minimisation of these peak values through the application 

of structural optimization technique is the aim of the 

present study.

7. Optimization of a blade configuration at chosen advance 

ratio offers very good potential for vibration reduction.

By selecting a completely arbitrary initial blade configuration 

a very dramatic gain could have been obtained by the 

optimization process. However, it is more consistent with 

good engineering practice to try and improve on what is 

already a satisfactory design.

8. The optimization technique results in realistic designs 

by locating mass distributed in the outboard one-third portion 

of the blade and by adding stiffness near the nodepoint of 

the second flatwise mode, providing a "dumb-bell" effect.
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9. The mass distribution, rather than flatwise stiffness 

or built-in twist distribution along the blade is the prime 

variable in reducing the oscillatory rolling and pitching 

moments.

10. The optimization results show very little effect of 

the built-in twist along the blade on the fixed co-ordinate 

moments (rolling and pitching moments).

11. A 48.5% and 28.8% reduction in the peak to peak value 

of the oscillatory rolling and pitching moments respectively 

can be achieved with relatively minor modifications of the 

original blade configuration (mass distribution, flatwise 

stiffness distribution and built-in twist distribution).

These vibration reductions are accompanied by an increase 

in the original blade weight of 15.9%. With up to 44.8% 

and 21.5% reductions respectively occurring in the stage 

of using modified mass distribution only, while the remaining 

reduction (3.7% and 6.3% respectively) is achieved by introducing 

the modified flatwise stiffness and built-in twist distributions 

as wel1.

12. The percentage reductions in vibration amplitude were 

achieved at both advance ratios of p = 0.284 and p = 0.372, 

and also at both second mode rotational frequency ratios of 

wn2 wn2^-=2.92 and-£-=2.7.

13.. The comparison of rotating natural frequencies of the 

modified blade distributions with those of the initial 
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distribution indicates that all the second flapping natural 

frequencies are decreased slightly, the second remaining 

virtually unchanged for the shorter optimization steplength 

whilst a slight increase occurred for longer steplengths.

14. The choice of rolling moment as the objective function 

produces a larger overall reduction in the vibration level 

than that resulting from choosing the hub pitching moment.

15. Higher levels of vibration reduction can be expected 

for the complete sequence of the structural optimization 

process, i.e. many steps in appropriate directions until 

convergence is achieved.

16. Structural optimization should be considered as a 

method that is complementary to other philosophies and 

devices, e.g. higher harmonic control, in the overall aim

of reducing vibration in helicopters. It provides significant 

alleviation of vibration with small penalty, and it could 

well be incorporated into the normal design process used 

by the helicopter industry.
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APPENDIX 1

A.1. Strain Energy Expression for a Slender Pre-twisted Blade

The blade considered is initially pre-coned away from the 

plane of rotation about the rotor axis. It has pre-twist 

(getting less outboard) and applied pitch (which is actually 

time varying).

The flapping deflection f^(x) in the plane of pre-cone, 

the twisting deflection about a local axis f„(x) and the
V

lagging deflection f^(x) normal to the flapping plane are 

elastic deformations considered.

To obtain the strain energy, an axis system is set up on 

intermediate positions of the strained and unstrained blade. 

This axis system is given in Ref.[74]. The displacement 

field {u }h {u ,v ,w } can be obtained by subtraction of these two 

position vectors and it would be related to the local blade 

axes, i.e.:

{u} = [T ]T[T ][T ][T ]
40 2 3 4

+ [T ]T[T ]
40 2

(1.1)

X
(-W?(x)2dx) 

0

fc(x)

[T f
40 

+
(-Ve(x)2dx)

0
0

0 fe(x)
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in which the rotational matrices and symbols are as in the

text (equations (27) to (33)). The matrix [T ] is equal 
40

[T ] with elastic twist
4

excluded,

[T ] =
3

cos s(x) - sin c(x)

sin s(x) cos c(x)

and [I] is the unit diagonal matrix,

where f^(x), f^(x) and fQ(x) 

elastic deflections respectively,

are lag, flap and twist

and

5(x)

e(x)

f';(x) 

f'e(x)

The rotation part of the {u} vector, of a point of

interest {r}= {o,y,z} is:

[A*]{r} = [T ]T[T ][T ][T ]-[I]
40 2 3 4

(1.2)

By successive matrix multiplication the matrix [A*] can

be written as:

[A*] 0 (-c(x) cos 9
-B(x) sin e0)

(c(x) sin 0Q
-B(x) cos 0Q)

0

0

0 0 1

o

y
2

(c(x) cos 0Q
+g(x) sin 0Q)

0

(-C(x) sin eQ
+B(x) cos 0Q)

fe(x)

-feW

0

(1.3)
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The displacement part of the {u} vector, equation (1.1),

can be found to the 1st order:

[T ]T[T ] 0 + [T ]T 0
2 uo

f?(x) 0

0 f3(x)

and in this case [T ]->[I] so it gives:
2

0

cos e0 

-sin e0

cos 0Q + fg(x) sin 0Q 

sin e0 + fg(x) cos eQ
(1.4)

Therefore, the displacement field vector {u} can be 

rewritten as:

u = (-f^(x)coseo-f^(x)sin0o)y+(f^(x)sineo-f^(x)cos6o)z

V -fe(x)z + (f^(x)cos0Q + fg(x)sin0Q)

w f0(x)y + (-f^(x)sin0Q + f^(x)cos0Q)
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Accordingly:

= (-f"(x)coseQ -fg(x)sineo)y +(f"(x)sineo-f"(x)coseo)z

|y“ (-f'(x)coseo - f’(x)sine0)

= (f‘(x)sine0 - f^(x)coseo)

= -f'(x)z + f•(x)coseo + f-(x)sine0

% ■

Il = feW* - f^x)sin0o + fg(x)cos%

57 = feW

57 = °

which leads to the following strains [76]:

i) non-zero strains:

£xx = 57 = <-f”(x)coseo - fg(x)Sine0)y

+ (f"(x)sineQ - fg(x)coseo)z

YXz = 57 = f5(x)sineo ’ fB(x)cos6o

9 u , 9 v _ f i / v \Yxy 9y 9x _f9(x)z
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ii) zero strains:

yz
_ 3v

az
+ aw

ay

3v = 0
yy ay

aw = 0zz az

These zero strains actually due to the chordwise sections

being assumed rigid.

The strain energy stored in any section of volume dv is

given by:

u = % f {e}T[0]{e} dv 
vol

(1.6)

where

[D] is the elastic matrix

and

{c} - <exx» Yxz» YXy) (1.7)

and ezz are zero, therefore e cannot be affected XX

by Oyy and ozz through Poisson's ratio thus:

[D] = diag [E,G,G]

Substituting the above matrix [D] and the strain vector 

(equation (1.7)) into equation (1.6) the strain energy can 

be written as:
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L
S.E. = %{f I(EIZZ (f"(x)cos0Q + fg(x)sin9Q)2

0

- 2EIzy(f£(x)cos6o + fg(x)sin0o)(f^(x)sin0o-f^(x)coseo)

+ EIyy(f“(x)sin0Q - f£(x)cos0o)2

+ GJ f'(x)] dx} (1.8)

where

!zz= ffy2d^z

1zy = ffyzdydz

iyy = //z2dydz

J = //(y2 + z2)dydz

We assume symmetry for the blade cross-section and hence 

the yy-principle axis coincides with blade chord (the zz-axis 

coincides with that of the blade). It is also assumed that 

there is no twisting flexibility along the blade (i.e. fQ(x) = 0). 

Then, the strain energy becomes:

L .
S.E. = is {/[EIzz(f^(x)cos0o + f£(x)sin0Q)2

+ EIyy(f£(x)sin0o - fg(x)cos0Q)2]dx}

(1.9)
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Pure flapping response (i.e. f^(x) = 0) gives:

L
S.E. = ?H/[EIzzfg(x)2sin20Q

o

+ EIyyf£(x)2cos2eo]dx} (1.10)

Typically Izz is higher order than I ; the effect of 

the relative size of the two terms of the above equation is 

discussed as follows. For lower modes and especially the 

first flap, the curvature is greatest inboard of the blade, 

where 0Q is zero. Thus, approximately, the strain energy 

is given by:

L
S.E. =WEI fj(x)2dx (1.11)

o yy

For higher modes, the blade itself provides a relatively 

larger contribution to the strain energy (i.e. the contribution 

to stiffness from Izz is significant). Thus, pure flapping 

will not happen. Nevertheless, for a uniform beam (assuming 

symmetry at any cross-section) the "flatwise" and "edgewise" 

modes will be uncoupled. Thus, from equation (1.9) a flatwise 

mode (effect of Izz is zero) is such that:

f£(x)cos 0Q + fg(x)sin eo = 0

i.e.

fc(x) = -fg(x)tan 0Q
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Substituting the above equation into equation (1.9)

leads:

L
S.E. = \ /[EIyyf"(x)7cos20o]dx (1.12)

Similarly, an edgewise mode is such that:

f£(x) sin 0O - f£(x) cos 0Q = 0

i .e.

fgW = f?(x) tan 0Q

The strain energy in this case is given by:

L
S.E. = \ /[EIzzf^(x)2/cos2 eQ Jdx (1.13)

Consequently, if the strain energy for pure flapping

(equation (1.10)) is used, it will be overestimated for those 

modes involving significant curvature of the blade itself, 

i.e. higher modes, compared with what happens in practice, 

where these modes tend to be flatwise (equation (1.12)).

Thus, the rotor and blade motion is computed assuming 

flapping deflections only, the strain energy and hence the 

structural stiffness terms being more applicable to flatwise 

deformations.

Since, eQ is normally moderately small, and moreover 

varies according to the trim situation being considered, a 

further approximation is to take cos 0Q = 1. This approximation
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will lead to an underestimate in the strain energy, and in

this case equation (1.12) becomes:

L
S.E. = \ /[EIyy^(x)2dx] (1.14)
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APPENDIX 2

A.2. Contribution to Matrices; [pm]»[RSJ and[RmJ

A2.1. General Expressions

The elemental i th and j th mode shape function,

equation (23) can be written as:

f .(x) = A + A x + A2x + A3x
$1 ' 1 2 3 4

fn.(x) = B + B x + B2x + B3x 
Bj 12 3 4 (2.1)

where (A ....A ) and (B ........B ) are respectively the
14 14

unknown constants of the i th and j th mode shape of the 

element under consideration.

The first and second derivatives of the above equations

are:

The product of the i th and j th mode gives:

f-i(x) =A2 + 2A3X + 3A x2
4

f'j{x) = B2 ♦ 2B3X + 3B x2
4

(2.2)

and

f".(x) = 2A + 6A x
Pl 3 4

f" (x) = 2B + 6B xBj 3 4
(2.3)

fo-(x)fo4(x) = (A B )+(A B +A B )x+(A B +A B +A B )x2
Pl BJ 1 1 1 2 2 1 1 3 2 2 3 1

+(A B +A B +A B +A B )x3
1 4 2 3 3 2 4 1

+(A B +A B +A B )xu+(A B + A B )x5+(A B )x6
243342 34 43 44

(2.4)

- 273 -



fMx)fUx) “(AB) +(2A B +2A B )x
Pl PJ 2 2 2 3 3 2

+ (3A B +4A B +3A B )x2
2 4 3 3 4 2

+ (6A B + 6A B )x 3+(9A B Jx 1* (2.5)
3 4 43 44 '

fRi(x)fRi(x) = (4A B ) + (12A B +12A B )x
Pl Pj 3 3 3 4 4 3

+ (36A B )x 2 (2.6)

The constant coefficients of the above equations can be

written as:

7 11 3 4 12 4 3

c
2

= (A^)

c = (A B + A B )
3 12 2 1

c. = § A B + § A B + § A B
/ 1 1 3 2 2 2 3 3 1

c = § A B + § A B + § A B +§ A B
5 414 523 632 741

c = § A B + § A B +§ AB
6 824 933 1042

C = § A B + § AB

C = § A B
8 13 4 4

where

the factors {§}= {§ ...........§ }=1 for the case of a
1 13

zero derivative product,

§ = § = § = § = 0 
13 4 7

§ = 1
2

§ = § =2
5 6

§ = § =3
8 10

§ = § =6
11 12
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and

§ = 4
9

§13 = 9 for the case of a 1st derivative product,

§ = § =0
8 1 0

§ = 4
9

§ = § = 12
11 12

§13 = 36 for the case of a 2nd derivative product.

Thus the product of the i th and j th mode shape becomes:

fQ. (x)fQ.(x) = C +C x + C x2 +C x3+ C x4+C x5 +C x6 
plpj 2 3 4 S 6 7 8

(2.8)

= c + C x +C x2 +C x3 +C x“ (2.9)
pl Pj 4 5 6 7 8

fR,-(x)f^(x) = C + C x + C x2 (2.10)
pl PJ 6 7 8

It should be noted that the constants [C ........C ] must
2 8

be calculated for both the k th element and the i th and j th

mode shape of the blade, e.g.:

C (k,i,j) = A(k,l,i) *A(k,l,j)
2

Similarly,

C3(k,i ,j) = [A(k,l ,i )*A(k,2,j)] + [A(k,2,i )*A(k,l, j)J,... 

Accordingly, the constants [C ..........C ] are easily computed
2 8

and hence the previous integrations which are required to form 

respective contributions to matrices can be performed.
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A2.2. Inertia Matrix [p^l

Substituting equations (12) and (2.8) into equation (51) 

and carrying out the indicated integration, the matrix [p ] 

is given as:

= y* (2'n)

where
pm (k,i,j) =[mL^k^C (k,i,j)L(k)]+^[y(k)C (k,i,j)+
mi 7 L 2 2

mL(k)C3(k,i,j)]L2(k) +-!■ [y(k)C3(k,i,j) +

m. (k)C (k,i ,j)]L3(k) + -My(k)C (k,i,j)+ 
L 4 4 4

m, (k)C (k,i,j)]L-(k) + |[y(k)C (k,i,j)+
L 5 b 5

m. (k)c (k,i ,j)]L5(k) + f[y(k)C (k,i,j)+ 
L 6 b 6

mL(k)C7(k,i,j)]L6(k) + |[Y(k)C7(k,i,j)+

,jjL7(k) + | y(k)Ce (k,i ,j)Le(k)

A2.3. Structural Stiffness Matrix [RsJ

Substituting equations (8) and (2.10) into equation (57) 

and performing the indicated integration leads to:

n E
[Rji,j)l =t £ R. (k.ij)] (2.12)S k=1 Si4
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where
R (k,i,j) = s.(k)C (k,i,j)L(k) + ^[ot(k)C (k,i,j)+

Sm L 6 6

sL(k)C7(k,i,j)]L2(k) + |[a(k)C7(k,i,j)+ 

s. <k>C (k,i,j)]L3(k) +
L 8

i[a(k)C8(k,i,j)]L*»(k)

A2.4. Centrifugal Stiffness Matrix [RmJ

Substituting equation (2.9) into equation (53) the matrix

[R 1 can be rewritten as: m
L

[R ] = [Q2/ m(x*)x*f (x*)dx* ] (2.13)
m o 1

where
f (x*) = *C(k) (x)dx (2.14)

1 4 8
0

in which

C^k\x) = C (k,i,j)+C (k,i,j)x + C (k,i,j)x2 +
48 4 ‘5 6

c (k,i,j)x3 + C (k.ijjx* (2.15)
7 8

and k,i,j denote the k th element, i th and j th mode shape 

respectively.

The integration of equation (2.13) is carried out numerically, 

as shown in the block diagram given in Figure 91 , using the 

standard NAG-library routine (D01GAF). Thus the matrix [R ] 

becomes:
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Figure gl Block Diagram Of Iteration Process to Compute the Centrifugal Matrix ( R ).
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(Ne+1)
[ft2 X f <xj] 

k=l 2 k

where

f2(xk) = ^(xk)xkf1(xk)

in which is the k th station co-ordinate and mc|(x|<) 

is the mass distribution at the k th station.
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APPENDIX 3

A.3. Rotor Lateral and Longitudinal Flapping Angles

The blades of an articulated helicopter rotor have a 

hinge at the blade root that allows out-of-phase motion 

(flapping). In forward flight a once-per-revolution motion 

of the blade about the flap hinge is produced that corresponds 

to longitudinal and lateral tilt of the rotor tip-path plane 

relative to the shaft. Such motion occurs with hingeless 

helicopter rotors due to blade bending at the root of the 

blade. The simplest analysis of helicopter rotor behaviour 

assumes that the induced velocity distribution is constant 

over the rotor disc. In fact, however, the induced velocity 

distribution is highly non-uniform, and the rotor flapping 

motion is quite sensitive to the inflow distribution. With 

a hingeless rotor, the magnitude of the flapping response to 

non-uniform inflow is not greatly affected [79], but the phase 

of the response can be significantly affected, so that a 

longitudinal inflow variation can produce longitudinal flapping 

as well as lateral flapping.

In order to calculate such longitudinal and lateral 

flapping the hingeless blade is represented by a rigid blade 

having an offset flapping hinge [77,80]. Thus, the 

fundamental bending mode shape of the blade is approximated 

by a straight line. This leads to the concept of a virtual 

offset flapping hinge, permitting the use of conventional 
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analytical methods for articulated rotors with offset 

flapping hinge. A typical fundamental rotating bending 

mode shape of the hingeless blade under consideration, 

which is calculated by the previous finite element model, 

is shown in Figure 92. Accordingly, an offset flapping 

hinge "e" of amount 20% has been obtained.

The generalised co-ordinate is a periodic function 

of (<p). It represents the flapping deflection of the i th 

mode at the blade tip. Therefore, one may write (Eq^/L)
1

in a Fourier series, so the flapping angle relative to the 

shaft can be written as:

(3.1)

where

3s is the 1st harmonic lateral flapping angle,

6 is the 1st harmonic longitudinal flapping angle, c

and (3.2)

is the equivalent coning angle.
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Figure 92 Equivalent Offset Flapping Hinge

Fundamental Mode Approximation.
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APPENDIX 4

A.4. Harmonic Content of the Rolling and Pitching Moments

For an ideal four bladed rotor with identical blades the 

rotating hub moment equation (90) can be rewritten as a Fourier 

series based on azimuth position (<p) for each of the four 

blades; thus:

ao +
co

E 
n=l

00

<asn sin nip + acn cos n

Mf2 = ao + E
n=l

{asn sin n f) + acn cos n f)}

Mf3 = ao + 00
E

n=l
<asn sin n (ip+ir) + acn cos n (tp+ir)}

= ao + 00
E

n=l
Tasn sin n (ip+ T1) + a cos2 ' cn

n ^)}

Substituting the above equations into equations (92) and 

(93) in the text, the rolling moment M^x and pitching moment 

Mfy can be obtained.

[asn cos ip^in n ip cos n y + cos n ip sin n y

- sin n^cos n - cos nip sin n

+ acn cos ipfcos nip cos n y - sin nip sin n y

- cos n ip cos n y^ + sin n ip sin n y^}

+ asn sin ip sin n ip {1 - cos n tt }

+ a sin ip cos n ip {1 - cos n it }] (4.1) V I I
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and

[asn sin <p {cos n ~ sin n <p + sin n y cos n ip

- cos n sin n ip - sin n cos n <p}

+ a sin ip {cos n ; cos n ip - sin n | sin n Cil

- cos n cos n ip + sin n -|^ sin n ip}

- agn cos ip sin n ip {1 - cos n tt }

-a cos ip cos n ip {1 - cos n tt }] (4.2)

The harmonic contents of the rolling and pitching moments

can be obtained by substituting n=l,2,........ into equation (4.1)

and (4.2). The results are summarised in the following Table.

harmonic 
order

rolling moment M^x pitching moment

1 2a e -2aS 1 Cl
2 0 0

3 -2as 3cos4ip+2ac 3Si n4ip -2a„ sin4ip-2a^ cos4<pS3 C3
4 0 0

5 2ac cos4ip -2a^ sin4ip S5 c5 -2a _ sin4ip-2a„ cos4ip b 5 C5
6 0 0

7 -2a„ cos8ip+ 2a „ sin8ipS7 C7 -2a_ sin8ip -2a^ cos8ipS7 C7
8 0 0

9 2ao cos8ip +2a„ sin8<p Sg Cg -2a sin8ip -2a cos8ip Sg Cg
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APPENDIX 5

A.5. Cantilever Beam Vibration Bending Moment Calculation

A5.1. Modal Analysis

Let the cantilever beam under consideration be excited by 

an external harmonic force of constant amplitude at its tip. 

Then the differential equations of motion of the viscously 

damped system are:

[m]6 + [C] 6 + [K] 6 = {F} (5.1)

where

[m] and [k] are the overall assembly mass and stiffness 

matrices respectively (calculated using the finite element method 

described in Section (3)),

[C] is the damping coefficient matrix,

and {F} is the exciting force vector.

The normal modes associated with an undamped free vibration 

system can be used as a transformation matrix to uncouple the 

above equation (the eigenproblem may be solved as mentioned in 

Section (3.4)).

The uncoupled equation, for the j th mode is:

[ M ]Y + 2 t.w ■[ M ]Y +[ K ]Y = F(j) (5.2)
~ J '* J

in which

6 = [<t>l Y
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and

Im] [<l>] = t'Mj

[*]T (kj [*j =rkj
>a diagonal matrix

’ = FQ(j) e1Wft is the generating force vector,

and is the damping ratio corresponding to the j th
,v

mode shape (assumed to be constant for all modes and

approximately equation to 1%).

The steady amplitude of the uncoupled vibratory system

is given by:

y (j)
0

= (F0(j)/Kjj)/([i - (wf/wnjpr

(5.3)

which leads to the generalised amplitude vector:

+

T 
}

The nodal amplitude vector (translational and rotational)

can be determined as:

«O> = [*1{Y0J (5.5)

A5.2. Vibration Response of the Cantilever Beam

The cantilever amplitude matrix [<Sq ] can be set up for 

different exciting frequencies; say,
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where is the amplitude vector corresponding to

the j th exciting frequency.

Using equation (5.5) and then rearranging {6^)}, 

in the same way as in Section (3.5), the corresponding 

elemental unknown constant vector (equation (22)) can be 
obtained, say {A^J\x)}. Equation (1) of Section (3) is 

used to calculate the vibration response at distance x 

along the cantilever, i.e.:

(Z.^\x)} = {1 x x2 x3} {A|(J\X)} (5.6)

which corresponds to the i th element and the j th 

exciting frequency.

The computer subroutine (GAUSEL) which was used to 
compute the mode shape function {f . ^J*\x)} (equation (23)) 

is also used to compute the vibration response function (z/J\x)} 

of the above equation in which j relates to the j th natural 

mode and j th exciting frequency respectively.

A5.3. Vibration Bending Moment for the Cantilever Beam

The usual relationship between the bending moment and 

curvature is given by:

and the shearing force is:

(5.7)

s ~ dx (5.8)
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By twice differentiating the vibration response function, 

equation (5.6), to determine the curvature, the vibration 

bending moment Mbo and shearing force Fs can be calculated.

A5.4. Vibration Bending Moment Modes Contribution

The contribution from the i th mode to the vibration 

bending moment, at distance x on the cantilever considered, 

can be calculated by the previous section in conjunction with 
the estimated mode shape function {f^ ^(x)}, equation (23). 

The steady state response may be described as a superposition 

of the normal modes. Thus, the bending moment can be written

as:

(5.9)

where

[A.j] = (EI(x). (f^(j)(x)}.{Y0(t)}] (5.10)

is a matrix of order (N^*mQ) and can be written as:

1st 2nd
mode mode

A A
i i 12

A A
2 1 22
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Substituting equation (5.4) into equation (5.10) the 

contribution of the j th mode to vibration bending moment 

of the cantilever root (i.e. x = 0) can be computed using 

the same procedure as given in Section (5).



APPENDIX 6

A.6.1. Dynamic Testing Equipment

The equipment used for the dynamic testing of the cantilever 

beam model, which is shown in the block diagram,Figure 25, 

consists of the following instruments:

- Automatic Vibration Exciter Control (Type 1025);

frequency range 5 Hz to 10 kHz.

- Power Amplifier (Model PA300);

frequency range 3 Hz to 10 kHz.

- Electrodynamic Vibrator (of 400 series vibrator)

frequency range 1.5 Hz to 9 kHz.

The maximum exciting force 98N (22 lbf).

- Force Transducer (9301A); sensitivity 3.66 PC/N

Resonance frequency - 90 kHz.

- Charge Amplifier (CA/04);

frequency range 2 Hz to 12 kHz.

- DC - 5 kHz Carrier Frequency Bridge Amplifier (Model 3C66).

- Cathode Ray Oscilloscope (Model 3A74); DC - 2 MHz.

- Piezoelectric Accelerometer (233 E); sensitivity 59.3 PC/g.

- Gain Phase Meter (Model 3575 A).

- X-Y Plotter (Type 26000 A).
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A6.2. Static Calibration of the Strain Gauge Load Cell

The cantilever beam, Figure 24, was loaded by a dead 

weight, in steps, and strain gauge outputs were recorded 

on the oscilloscope. The results are plotted in Figure 93 

from which a good linearity with practically no hysteresis 

in the range of the test can be observed. The VBM (in N.mm) 

is given by multiplying the oscilloscope signal (sd) by the 

factor (9.8*580)/2.5/1.63.
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Figure 93 Static Calibration Curve for the Strain

Gauge Load Cell.
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APPENDIX 7

A.7.1. The Hingeless Rotor Blade

A rotor blade based on that of the Westland Lynx helicopter 

was considered, and has the features listed below. The flight 

condition is for a weight (gross helicopter weight) of 8500 lbs 

at 2000 ft. I.S.A.

(i) Blade Geometry:

Radius; L 252 in

Chord; C 15.504 in

Coning Angle,

Mass per unit length; m(x)

5.2336 x 10’2rad.

see Table (10)

Built-in twist; 0t(x)

Flatwise stiffness; El (x)

see Table (10)

see Table (10)

(ii) Operating Condition:

Rotor speed; Q 330 r.p.m.

Helicopter flight speed; 122 (or 160) knots

(iii)Aerodynamic Constants:

Air density; p 0.002241 slug/ft3

Lift Slope; C£ 5.7
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Table 10 Blade Station Properties.

Station 
No.

Blade
Radius

(in)

Built-in 
Twist

(rad)

Mass Per
Unit Lenth

(chug/in)

Flatwise 
Stiffness

(Ibf-in4-)

1 0.0 0.0 0.5179E-02 0.1000E 13

2 10.05 0.0 0.3722E-02 0.2288E 08

3 20.10 0.0 0.1190E-01 0.2168E 09

4 30.15 0.0 0.8981E-02 0.2289E 09

5 31.55 0.0 0.5508E-02 0.2192E 09

6 40.22 0.3192 0.1960E-02 0.1870E 08

7 50.00 0.3192 0.1797E-02 0.1779E 08

8 60.08 0.3158 0.3549E-02 0.1613E 09

9 70.16 0.3102 0.2036E-02 0.4080E 08

10 80.23 0.3046 0.1112E-02 0.2470E 08

11 90.02 0.2992 0.1096E-02 0.2344E 08

12 110.20 0.2880 0.1204E-02 0.2085E 08

13 120.20 0.2825 0.1186E-02 0.1965E 08

14 130.30 0.2770 0.1065E-02 0.1853E 08

15 141.00 0.2715 0.1046E-02 0.1741E 08

16 151.70 0.2659 0.9389E-03 0.1632E 08

17 160.20 0.2603 0.9062E-03 0.1465E 08

18 170.00 0.2549 0.8746E-03 0.1377E 08

19 180.00 0.2493 0.8419E-03 0.1249E 08

20 190.20 0.2437 0.8093E-03 0.1176E 08

21 200.20 0.2381 0.7964E-03 0.1092E 08

22 210.00 0.2327 0.7856E-03 0.1032E 08

23 220.10 0.2271 0.7744E-03 0.9703E 07

24 230.20 0.2215 0.7633E-03 0.9087E 07

25 252.00 0.2094 0.5220E-07 0.8740E 07
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A7.2. The Cantilever Beam

The cross-sectional properties and dimensions of the

cantilever beam (steel) considered are as follows:

cross-section depth*width 

cantilever length 

material density

Young's Modulus

0.88 * 2.36 in

23.6 in

0.282 lb/cu.in

0.3016*1011lbf/in2



APPENDIX 8

A8.1. Aerodynamic Damping Estimation

The estimation of the aerodynamic damping contribution 

to the flapping equation of motion is described in this 

section. This contribution is given in Ref. [74] as:

{V (8J>

Inspection of the above equation shows that an 

aerodynamic damping coefficient is given by the integral 

of the elemental surface ds times the dot product of two 

vectors. One is a certain differential of {R} and the 

other is a particular differential of the pressure vector 

{F} with reference to fixed axes (the component of pressure

vector {p} w.r.t. local blade axes are shown in Figure 14 

in the text). The required transformation between {F} and 

{p} is made through the matrix [A] of equation (26) in

Section 4. Therefore, equation (8.1) becomes:

{QJ = {D01} ds (8.2)
d d q.

where the {D01} elements are given in equation (60).

Now, using equation (61) the vector can be written

as:
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r9 (pli

3V

In general, using (') to indicate the derivative

3 . „ 3v , 3L
9’ ’V ), for small angle

approximation (i.e. cos a = 1, sin a = a) the above

equation can be rewritten as:

3{p}
3q.

o

(aL 1 + La 1)

- Laa ’) (8.3)

Referring to equation (64), v^ is normally -ve, so

the incidence angle a can be written as:

Thus,

a'=l (8.4)
y

V' = V (vyv‘ + vzv') (8.5)

From equation (63):

L* = % pC C£ v (2av‘ + va') (8.6)
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therefore:

aL' + La' = C v (2a2v‘ + 2vaa')

Substituting equations (8.4) and (8.5) into the above 

equation yields:

v v' vv'
aL' + La' = C C^v [2a2 + 2a2 ——

vv'
+ 2a------- 2a2

y

vz
Assuming v ~ - v (since a = —) and neglecting the 

y
higher order in a, the above equation becomes:

aL' + La' = %p C Co v {-2av'} (8.7)x z

Similarly:

L' - Laa' = C C£ v {-2v*} (8.8)

Substituting equations (8.7) and (8.8) into equation (8.3)

gives:

0

-2av^

(8.9)

From equation (68)

3v
Vz = 9qT ="cos cos
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Then, equation (8.9) can be rewritten as:

CC.v 0

-2afej(x)

-2VX) (8.10)

Substituting the above equation and equation (60) (Section 

4) into equation (8.2) and carrying out the indicated matrix 

multiplication the estimated aerodynamic damping (for small 

B(x) and 0(x)) of the j th mode can be written as:

{Qa(j)} = / pC v (fgj(x)}2 dx) (8.11)

A8.2. Damping Estimation in Second Flap Mode of the Blade

The damping in second flap mode, for both initial and 

modified blade (mass distributions), will be calculated below.

In these calculations, only the non-periodic part of the 

aerodynamic damping {Q (non-periodic part of the relative a 
velocity of equation (68)) is considered for the sake of

simplicity and obtaining an approximate result.

Thus, equation (8.11) becomes:

<Qa(j)} =p C C£q f x {fgj(x)}2dx (8.12)

Recalling the results of the blade mode shape fD (x) and 
p2

corresponding undamped natural frequency w^ in the text as

well as the aerodynamic constants (p,C^) and blade chord (C)
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given in Appendix (7) we obtain:

(i) For Initial Blade

f 2 )
damping coefficient; Q/ - 2.071 lbf/in/sec 

a
Qa(2)

damping ratio; c = = 43.22%
n2 2

(ii) For Modified Blade (of Xm3)

(2Idamping coefficient; Q k 7 = 3.24 Ibf/in/sec

aQ w
damping ratio; = 21.61%

2 2wn2M2
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Computer program  
(Appendix 9, pp. 301-331)

has been removed for 
copyright reasons
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