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ABSTRACT

This research is concerned with the problem of determining optimum 

operating conditions of a system where a mathematical model is employed to 

compute the performance index. A family of algorithms known as Integrated System 

Optimisation and Parameter Estimation (ISOPE) algorithms have been developed. 

These algorithms are based on the Modified Two-step approach, where the model 

contains certain free parameters which are estimated periodically using system 

measurements, and are then used to solve an optimisation problem in an iterative 

manner. An advantage with these methods is that the optimum operating conditions 

are obtained even when the model structure is not identical to that of the system. 

It is then quite evident that the model-reality differences can be described by the 

magnitude of the parameters which are estimated. However, such a simplistic 

notion of model-reality differences is not an accurate description of these 

differences. For often it is possible that the value of the parameters estimated 

are small, but the efficiency of the iterative process could be poor. Then one of 

the main aim of this research is to identify what consitutes these model-reality 

differences, and how do the ISOPE algorithms overcome these differences.

The ISOPE algorithms studied in this research cover both the centralised as 

well as the decentralised cases. However, a detailed analysis of the model-reality 

differences, is under taken for the centralised case. For it can be seen that the 

analysis is also valid for the decentralised cases.

The ISOPE algorithms have many similarities. They are derived in a similar 

manner, the algorithmic and control structures are similar, so also is the problem 

formulation for the various algorithms. It is in this context that a generalisation 

of these algorithms is attempted.
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CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION

The traditional concept of control of industrial systems is the maintenance 

of certain selected reference variables at their desired value and/or to follow 

changes in the reference variables, in spite of disturbances acting on them. A 

control scheme which incorporates this view ignores other factors which are 

becoming increasingly important, viz:

a) the increasing demand on the product quality.

b) the ever depleting sources of raw materials, and energy, which places 

greater emphasis on the productivity or efficiency of the process.

Then, while designing a control system, if due care is not taken to ensure 

that the productivity of the system is maintained at its best, and hence the optimal 

use of raw materials, the system will not function efficiently. That is, we determine 

that set of controls at which the system operates most efficiently. In practice, 

the efficient operating condition of the system can be achieved by either 

minimising or maximising an index of performance, where the independent variables 

take the form of set-points, which are then used as reference inputs in controlling 

the system. Thus the design or modelling of the control scheme for a system can be 

seen as consisting of two parts :

a) part where the control is optimised.

b) part where the system variables are maintained at their desired value.

Such an integration of the two concepts leads to the notion of Integrated 

System Control (Lefkowitz (1977)). Here, the overall control model is seen as a two 

level scheme, where the lower level is a follow-up or regulatory control layer, and 

the upper level is the optimising control layer also known as the supervisory 

control layer. In fact, such a multi-strata model can be identified in many 

automated industrial systems, as can be seen in figure i.l. Such multi-strata models 

have some typical features, which are (Mesarovic et al (1970)>

a) the higher level units are concerned with a larger portion or broader 

aspects of the overall system behaviour.

b) the decision period of a higher level unit is longer than that of the 

lower level units.

c) the higher level units are concerned with the slower aspects of the

-13-



overall system behaviour.

Thus, in terms of the two layers, we see that the follow-up control layer has 

a shorter span of time and has to maintain the performance of the system at some 

prescribed level, inspite of fast disturbances acting on it. The controllers at the 

lower level generally take the form of two or three term, proportional plus 

integral (PI) or proportional plus integral plus derivative (PID), controllers, where 

the reference inputs are provided by the higher level.

On the other hand the task of the supervisory layer is to ensure that the 

overall system performs efficiently. The task of the supervisory layer is, thus, to 

determine and maintain optimal values of the set-points (reference inputs) under 

slowly varying disturbances. The problem, thus essentially exists in the steady-

state, and is basically one of optimising a given measure of performance.

Here, in this thesis, we are concerned with investigating the various 

techniques for optimising control. In other words we study the various techniques 

for solving the supervisory control problem. In the following chapters, we describe 

some of the techniques which can be implemented, either in a centralised manner, 

or in a decentralised manner.

1.2 OPTIMISING CONTROL

It has already been mentioned that the task of the supervisory layer is to 

determine optimum set-point values, by optimising a given measure of performance. 

This criterion is the maximisation and a given performance index.

There are three ways in which the problem of optimising the control can be solved. 

We can use the mathematical descriptions (models) of the system, and apply the 

results so obtained to the system. The second method is to utilise the system 

measurements directly. Both these techniques have their disadvantages. The third 

is a combination of these, and is known as the adaptive technique.

The model, which is used to represent a system, must satisfy certain 

sufficiency conditions (Ellis and Roberts (1982)) in order to guarantee the system 

optimum. These conditions demand that the model and the system have certain 

properties the same. This demand is not, in general, realistic, as we usually have 

to make some form of a compromise in the modelling process. Optimisation 

techniques are essentially complex mathematical processes, and a complex model — 

so that it is a faithful representation of the system — would tend to increase the 

computational complexity of the optimisation process. On the other hand, a very 

simple model would not be a reasonably accurate description of the system and the 

use of which would be likely to result in sub-optimal results. At the same time, one 

-14-



cannot model external uncertainities — like measurement noise, environmental 

conditions etc —, which play a part in the performance of the system, accurately. 

Hence, using a model in solving the optimising control problem would not in general 

provide optimal results.

The use of measurements directly from the system means that every time 

measurements are required, we have to ensure that the system attains its steady-

state. If the system response is slow, this method can be time consuming. Also the 

presence of uncertainities could result in poor results.

The third method is to integrate these two methods and it leads to the 

concept of adaptive models. An adaptive model is a model which incorporates free 

parameters, which are periodically estimated and the model updated. This updated 

model is now used in determining the optimum set-point values. These two problems 

of parameter estimation and system optimisation are solved repeatedly until, 

hopefully, the iterative process converges to the optimum. However, such a scheme 

will not in general produce optimal results (Roberts (1979), Ellis and Roberts(1982)>. 

The reason for this is that the model still does not satisfy the sufficiency 

conditions.

To overcome these problems Roberts (1979) proposed a model based method, 

known as a modified two-step method (MSTP), where an application of the method to 

a problem produces optimum results. The key feature of this procedure is to 

formulate an optimisation problem, which integrates the problems of parameter 

estimation and system optimisation. An analysis of the first-order necessary 

conditions of such an integrated problem results in a new model based problem, 

(see chapter 3),’the solution of which is the system optimum. The solution of this 

problem is iterative. Using this method it does not matter whether the model 

fulfills the sufficiency conditions or not. In fact convergence will always be 

obtained whether the system optimisation problem is convex or not !s and

Roberts (1987)). In fact, using this algorithm, as a basis, a whole range of 

algorithms which provide optimum results have been developed. All these algorithms 

are classified as Integrated System Optimisation and Parameter Estimation (ISOPE) 

techniques. These cover various control configurations for both centralised and 

hierarchical decentralised situations.

1.3 CONTROL STRUCTURES

The system optimisation problem can be solved in either a centralised 

manner or a decentralised manner. The decision of which type of control 

-15-



configuration to use, centralised or decentralised, would depend on a number of 

factors. In fact, there are no general hard and fast rules, which would tell us 

under what conditions a decentralised configuration is more advantageous than a 

centralised configuration (Maxwell(1983)). However, one can provide some guide lines 

which could would be helpful in deciding the type of configuration. For instance if 

the system dimension (number of set-points) are large, or if the system is such 

that it can be broken down into a number of different sub-systems, then it could be 

advantageous to evolve a decentralised control configuration. However, here the 

economics of designing and implementing the system have to be taken into account. 

Sometimes even if the system has the features mentioned above, it is posible that 

it could be more costly to implement a decentralised configuration than a 

centralised one (Maxwell(1983)).

1.3.1 Centralised Control Structures

In a centralised control configuration, all the information needed to make a 

control decision is taken to and processed at a central location. In such a case, 

the system is treated as a single entity, and it does not matter whether the 

overall system consists of a number of sub-systems or not. Figure 1.2, gives a 

schematic representation of the information flow which takes place in a 

centralised system.

The MSTP algorithm in its original form, solves the centralised system 

optimisaiton problem. Here, the features of the simple two-step approach are 

retained. We still estimate the parameters of the model, and use these parameters 

to update the model. This updated model is then used to solve the optimisation 

problem. However, in the MSTP approach the optimisation problem is modified by a 

parameter known as the modifier. Indeed, as wiil be seen, the modifier plays a 

crucial role throughout the ISOPE algorithms. This modifier quantifies the 

violations of the sufficiency conditions by the model. To evaluate this modifier, 

derivative information from the system is required, and this is the main 

disadvantage with this method. Efforts have been made to either eliminate the need 

for derivative information, or to reduce this requirement. As a result a number of 

extensions have been made to this approach (Brdys et al (1986b), Chen (1986), Ellis 

et al(l988)).

However, a centralised configuration has some disadvantages. Any 

optimisation technique is a mathematical procedure, where the rules for evaluating 

the optimum point are given in the form of an algorithm. This algorithm is then 

implemented on a computing machine, then if the system dimensions — in terms of 



the number of the set-points — is very large, then the computational task will also 

be very large and complex. Also, if the system is spread over a large area, then 

the transfer of information to the central point could prove to be difficult and 

costly. Then, depending on the economics a decentralised control structure could 

prove to be advantageous.

1.3.2 Decentralised Control Structures.

In a decentralised control configuration, the system to be controlled is 

treated as being made up of different sub-systems and each sub-system has its own 

Local Decision Unit (LDU) which defines the set-points for that sub-system. If this 

decision is taken in isolation, that is, not taking into account the effect it has on 

other sub-systems, then it may be found that the system is operating not at the 

system optimum, but some sub-optimal operating point. Such a conflict occurs 

because the optimum for the individual sub-systems need not be the global optimum. 

Then, in such a case the control decision has be to made taking into account the 

effect it has on the other sub-systems, for the aim here is to obtain the global 

optimum. This, then means that there is a need for some form of coordination 

between the control decisions taken by the separate local units. This coordination 

of the LDU's influences their decision making process, and prevents any conflicts 

between the individual decisions. Thus, due to the decomposition of the global
i6 

problem into several sub-problems, another problem has to be solved. This^the 

coordination problem, and it is the main feature of the algorithms which solve the 

optimising control problem in a decentralised manner.

The decentralised control problem, then, arises when a system is acted upon 

by a number of different controllers who are not able to communicate with each 

other on-line or are not in a position to process all the information available to 

them. However, it is assumed that the decision making is cooperative, that is the 

controllers may use some a priori rules so that some overall system objective is 

achieved (Singh, Titli and Malinowski (1983)).

Established h ie rarchical decentralised algorithms use the principles of 

'decomposition and coordination' (Cohen (1978), Singh and Titli (1978), Findeisen et 

al (1980)). Here, the optimisation problem is solved using a two level structure, 

see fig 1.3, where at the lower level the optimisation problem for each sub-system 

is solved by a LDU and coordination is done at the higher level so that the overall 

goal of optimising the global problem is achieved. The principle here, is that the 

objective of the system is modified in such a manner so that when decomposition — 

into separate sub-problems — of the global problem is made, we take into account 
-17-



the various conflicts which are likely to take place between the sub-problems. The 

modification is made by a parameter known as the 'price vector', which is evaluated 

by the cooridnator. These techniques, however, use fixed models and as has been 

mentioned earlier, the use of such models in general would not produce optimum 

results.

However, when these techniques are integrated with the techniques of the 

modified two-step (MSTP) approach, it is seen that a whole family of optimal 

algorithms are obtained (Michalska et al (1985), Brdys and Roberts (1986a), Chen 

(1986), Abdullah (1988)). These algorithms are optimal in the sense that an 

application of any of these to a problem would produce the system optimum. Here, 

the problem at the higher — coordination — level, is dynamic, in the sense that 

apart from evaluating a parameter known as the modifier through some simple 

matrix manipulations, we still have to solve a separate coordination problem which 

is to evaluate the price vector. This evaluation is done in an iterative manner, and 

the algorithm used for solving this problem is a simple gradient type algorithm 

(Cohen (1978), Singh and Titli (1978), Findeisen et al (1980)). The algorithms obtained 

by such an integration are termed 'Dynamic Coordination', (Ellis et al (1986)).

On the other hand, if we extend the MSTP algorithm, so that we can solve the 

hierarchical decentralised problem, we see that the need for solving the additional 

coordination problem is eliminated (Ellis et al (1986)). Here the coordinator is still 

retained, and its sole task is to evaluate the modifier through some simple matrix 

manipulations and the coordination is termed passive as opposed to the dynamic 

nature of the other algorithms. However, there is one drawback with this algorithm, 

in that it needs two models : an output model and an interaction model. The 

interaction model is needed to take into account the interactions taking place 

between the sub-systems. A similar technique was put forward by Brdys and Roberts 

(1986a), where the need for an additional model, was eliminated. This was made by 

using the information available from the system more efficiently. In these 

techniques the task of the coordinator is passive, and they are therefore known as 

algorthms with passive coordination.

1.4 OBJECTIVES AND SCOPE OF THE THESIS

The case for the development of adaptive model based optimisation 

techniques is quite evident, as these techniques utilise the advantages of both the 

direct and the model based methods. It has been found that a simple two-step 

iterative scheme consisting of :
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a) model parameter estimation

b) updating the model using the parameters estimated in step a, and using

this updated model to solve the optimisation problem,

will not in general provide the optimum results (Roberts (±979), Ellis and Roberts 

(1982)). The reason -For this is that, in such a scheme, the model does not satisfy 

the sufficiency conditions, and in general, it can be said that a model will not 

satisfy these conditions, because if it did, it would mean that the system and the 

model representing it have the same important properties, or even the same 

structure, which is not realistic.

To overcome these difficulties Roberts(1979) proposed a technique known as 

the modified two-step (MSTP) approach. Here, the features of the simple two-step 

approach are retained, the difference being that the optimisation problem is 

modified by a parameter, known as the modifier, which quantifies the violations of 

the sufficiency conditions. This technique has proved useful in providing optimum 

solutions to the on-line system optimisation problem (Roberts (1979), Roberts and 

Williams (1981), Roberts and Lalui (1982), Ellis and Roberts<1982, 1985)). The 

important feature of the method is that the system optimum is always achieved 

irrespective of whether the system optimisation problem is convex or not (Brdys 

and Roberts (1987)). However, this method has a draw back in that derivative 

information from the system is needed, in order to evaluate the modifier. These 

derivatives are obtained using finite difference approximation techniques. Hence 

the number of simultaneous set-point changes needed so that convergence to the 

optimum is obtained becomes important. If there are n control set-points, then for 

every iteration n set-point changes are needed, so that the derivatives can be 

eveluated at each iteration. Since the optimising control problem is solved in the 

steady state, this process could become time co?fisuming, as it has to be ensured 

that, after each set of simultaneous set-point change^, the system attains,

- a steady-state. Attempts to improve on the performance of the 

technique in this regard have been made on two fronts, viz:

a) Eliminate the need for evaluating the derivatives

b) Reduce the number of iterations, and hence the number of times the 

derivatives have to be evaluated.

Towards this end a number of extensions have been made to the MSTP 

technique. An attempt has been made to eliminate the need for evaluating the 

derivatives by Chen (1986). Here, a three level structure has been proposed, and it 

was found that although optimal results are obtained, this scheme is less efficient 

than the MSTP. For although the derivatives are no longer needed the total number 
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of set-point changes exceeds the number when using the MSTP approach (Chen 

(1986)).

On the other hand attempts to reduce the number of iterations, and hence 

the number of simul taneous set-point changes have been found to be more 

successful. It has been found that it is beneficial if the performance index is 

augmented by a quadratic penalty function (Brdys et al (1986b». The other method 

which has proved sucessfull is known as the Approximate Linear Model (ALM-ISOPE) 

method (Sheng and Ellis (1985), Kambhampati and Ellis (1987), Ellis et al (1988)). This 

method has an advantage in that we do not have to provide the algortihm with a 

model a priori.

As was mentioned earlier, the MSTP approach in its original form, is 

suitable for solving the system optimisation problem in a centralised manner. 

However, for solving the hierarchical decentralised problem the MSTP algorithm 

has to be modified. This is done, as was mentioned earlier, by integrating the MSTP 

approach with the principle of decomposition and coordination (Michalska et 

al(1985), Brdys and Roberts (1986a), Chen(1986), Abdullah (1988)). Such an integration 

gives rise to algorithms which are known as dynamic coordination algorithms (Ellis 

et al (1986)). As a result of such an integration, and depending on the manner in 

which the information available from the system is utilised, it is seen that a 

number of algorithms can be developed, all of which are optimal in the sense that 

an application of them to a given problem provides us with the system optimum. 

Although these algorithms are developed using the same principles, it is seen that 

all of them do not have the same efficiency in providing the optimum. However, it 

has been seen (Roberts et al (1988)) one particular algorithm, which uses both input 

and output feed back information is the most efficient. Here, as is the case with 

the MSTP derivative information is needed so that the problem can be solved and 

the resulting solution is optimal. In order to reduce this need, new algorithms have 

been developed. For these algorithms, the performance index is again augmented by 

a quadratic penalty function (Roberts et al (1988)).

Generally, in all ISOPE algorithms, augmented or * the control

set-points are updated using an under-relaxation scheme (Cohen 1978)). In such a 

scheme we change the values of the set-points by a small amount, rather than apply 

the results of the modified optimisation problem directly, so that the iterative 

process is stable. Here, we need to select certain parameters, known as the 

iterative loop gains. These are obtained through trial and error, which in an on-

line situation could pose difficulties. In order to overcome these difficulties, 

Tatjewski and Roberts(1987a, 1987b) proposed Newton-like schemes for updating the 

control set-points, where the mechanism for updating the controls is more precise
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and has been found to have good convergence properties.

The aim of this thesis is to undertake a detailed analysis of the algorithms 

mentioned above. It is expected, that, through such a study we can understand the 

properties of the algorithms better. The properties of the algorithms can be 

divided into two categories namely

a) Optimality properties

b) Convergence properties.

A study of the optimality properties, gives us conditions under which the 

solution, obtained by an application of a given algorithm, would be the same as that 

of the system. On the other hand, a study of the convergence properties gives an 

idea of the properties the problem has to have, so that the algorithm can converge 

to the optimum of the system in the most efficient manner. The result of such a 

study is that we can get some idea about the applicability of the algorithm. For, if 

such an understanding is not there, then some times it could prove futile to apply 

an algorithm to a problem and this problem does not satisfy the conditions for 

convergence to the optimum.

Apart from studying these properties, some of the other objectives are 

concerned with understanding what are model-reality differences, the significance 

of the modifier in the ISOPE algorithms and how far the model-reality differences 

are reflected in it, and, the effect of augmentations on the properties of the 

algorithm.

The analysis presented for the centralised algorithms, in chapter 4, answers 

these questions. A similar analysis is not undertaken for the decentralised case, 

for clearly, the situation where there are a number of sub-systems, the analysis 

performed for the centralised case is valid for the decentralised cases also.

Also, it has been mentioned that, the algorithms which solve the hierarchical 

decentralised optimising control problem can be divided into two groups, namely 

algorithms with dynamic coordination and those with passive coordination. Then, the 

question arises which type of coordinations would be suitable and more 

advantageous to use. Of course some of the advantages are quite apparent, as will 

be seen in chapter 6, where these two types of algorithms are described. It is then 

intended to study these two classes, and perfrom simulations so as to make a

comparision between them.

A simulation study of the performance of these algorithms is also 

undertaken. The objective here is to verify the results of the analysis of an 

algorithm. A simulation study helps us understand some of the properties of the 
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algorithm, -For often it is found that the conditions for convergence and optimality 

of an algorithm, obtained through an analysis of the algorithm are stricter than 

required. This could be due to the nature of the algorithm and it may not be 

possible to develop weak convergence conditions and the conditions obtained will 

be much stricter than required, (Brdys et al (1986c)). Then, the aim of any 

simulation exercise is :

a) To verify the theore tical results obtained

b) To investigate the algorithm further so that those properties of, the

algorithm, which could not be assessed theoretically could be brought

out.

In fact, there is one more point to be kept in mind; that is, any proposed algorithm 

or a technique has to have a practical viability. To test this particular aspect we 

have to mimic a realistic situation, whereby there would be disturbances in the 

form of noise, present in the system. All the algorithms must perform 

satisfactorily in such a situation. However, this particular aspect of a simulation 

study is beyond the scope of the present thesis.

Another objective is to develop a generalised set of results for all the 

algorithms which are classified as ISOPE algorithms. For, a remarkable feature of 

these algorithms is that whether the algorithm solves the problem in a centralised 

manner or in a decentralised manner, the mode of deriving these algorithms is the 

same. In all cases we see that not only is the structure of the algorithm similar, 

but the structure of the modifier is also similar. In fact, as will be evident later 

on, there a number of such similarities. If such similarities exist then it should be 

possible to develop a generalised problem, a generalised algorithmic structure, and 

a set of generalised properties.

Then, to summarise the principal objectives of this research are :

a) To understand what are the model-reality differences.

b) To determine what is the significance of the modifier in the ISOPE

algorithms, and how far are the model-reality differences reflected in 

it.

c) To determine the effect of the augmentation of the performance index

■ t on the properties of the algorithm.

d) To determine how to reduce the need for derivatives of the outputs of

the real system.

e) To examine the possibilities of generalising the ISOPE algorithms.
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Of course the other objective of studying the properties of the algorithms 

goes without saying, for in order to answer the above questions one has to 

analyse the properties of the algorithms.

1.5 LAYOUT OF THE THESIS

This thesis consists of ten chapters, which can be divided into four groups. 

This first group consists of chapters 1 and 2. In chapter 2, the optimising control 

problem is formulated. Here the problem is formulated for the various ways in 

which the optimising control problem can be solved :

a) Direct methods

b) Model based methods

c) Adaptive model based methods.

In this chapter, we also present the sufficiency conditions which a model has to 

satisfy so that the solution of a model based problem can be guaranteed to be the 

system optimum. . -

The second group of chapters consists of chapters 3, 4, and 5. In these 

chapters we describe and study the centralised control structures. In chapter 3, 

some of the centralised ISOPE algorithms are derived. These algorithms are 

analysed in chapter 4. In chapter 4, apart from investigating the optimality and 

convergence properties of these algorithms, an analysis is undertaken to describe 

the model-reality differences. We also investigate the significance of the modifier 

on the algorithms, and study the effect of augmenting the performance index by a 

quadractic penalty function. In chapter 5, a simulation study is undertaken. Here we 

verify the conclusions of chapters 3 and 4. The simulation is made using two 

examples, one an abstract example and the other a more realistic example of a fuel 

gas mixing system which is used by ICI pic.

The third group of chapters consists of chapter 6, 7, and 8. Here the layout 

is similar to that of the second group. In these chapters the h'ie'rarchical 

decentralised control algorithms are studied. In chapter 6 these algorithms are 

derived. In chapter 7, the properties of the algorithms are discussed and finally in 

chapter 8, a simulation study is presented. The simulation study is carried out 

using abstract examples.

Finally, the fourth group of chapters consists of chapters 9 and 10. In 

chapter 9, the ISOPE techniques are generalised. The generalisation is made in 

terms of the problem and algorithmic structure, and a set of generalised 

convergence conditions also given. In chapter 10, we discuss the possibilities 
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of Further study, so that the ISOPE techniques can be developed further and 

refined.
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Figure i.i Multi-level Model for System Control
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Figure 1.2 Information Exchange and Control Structure in Centralised Control
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CHAPTER Z THE OPTIMISING CONTROL PROBLEM (OCP)

Zi INTRODUCTION

As described in chapter 1, the optimising control problem (OCP) can be 

solved using any of the three methods mentioned, viz:

a) Direct Methods

b) Model Based Methods

c) Adaptive Model Based Methods.

Of these three methods the direct methods and adaptive model based methods are 

more likely to provide us with the optimum results. The model based methods would 

provide the optimum only if certain sufficient conditions are fulfilled. These 

conditions will be discussed in section 2.4. The direct methods, which employ a 

standard optimisation algorithm and measurements from the system only, are likely 

to fail to converge when there is noise present and would undoubtedly be 

inefficient. On the other hand, a purely model based method, besides failing to
be.

provide the optimum solution, could prove to^equally inefficient if there are model-

reality differences. Adaptive model based methods, on the other hand, are an 

integration of the direct methods and the model based methods.

Whatever the method one employs to solve the OCP, optimisation is 

essentially a mathematical procedure. Hence the OCP has to have a mathematical 

formulation.

In this chapter the OCP will be formulated for a general system consisting 

of a number of interconnected sub-systems. This is the formulation which is used 

for decentralised cases, and the problem for the centralised case can be obtained 

from this by eliminating the interconnections, that is obtaining the global problem. 

The formulation will be done for both the direct methods and the model based 

methods. Later these two will be transformed into an adaptive problem along with 

the associated problem of parameter estimation. The parameter estimation arises 

due to model-reality differences.

2.2 THE OCP.

We will assume that the controlled system, inclusive of its follow-up 

controllers, is described in a decomposed way by a set of sub-system input-output 

mappings (figure 2.1) :

F*i : ^ni x -* ; * <= 1,N
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Yi = F*i«W

where N is the number of sub-systems

C| € 9?ni is the control vector

Uj € is the interaction input vector

Yj € 9Rml is the interaction output vector

The sub-systems are interconnected with assumed structure;
N 

ui = HiY = 22 Yj -1 e 

3=1 
where and Hjj are the interconnection matrices.

Globally we can write them as

Y = F*(C'IJ> I
U = HY f

If further we assume that for a given set of controls the set of equations 

(2.1) have one unique solution, then we can represent the s^ste^as a mapping;

Y = K*(C) (2.2)

The performance of each sub-system is evaluated on basis of a performance 

index :

Qi : Stnl x SRml x SRml , i 6 1,N

Qi = 8^,0^)

and of course subject to a set of constraints

Gij(Ci'Ui'Y? < 0 i € 1,N ; j = 1,2,3,----------

One of the most important assumptions we make here is that the global 

performance index is "Additively Separable" (Singh and Titli (1978), Findeisen et al 

(1980)) , and hence the global performance index is;
N

Q(C,U,Y> = StCpUpYp (2.3)
i=i

We can now define the Optimising Control Problem (OCP) as;

min Q(C,U,Y)
C,U,Y

s.t

Y = F*(C,U) (2.4)

U = HY

G(C,U,Y) £ 0
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In the direct methods, it is this formulation that is used. Of course the 

mapping F* is not known and measurements from the system are used.

The formulation of the OCP given by (2.4) is used to solve the problem in a 

decentralised manner. If however the problem is to be solved in a centralised 

manner then (2.4) is transformed into:

s.t

Y = K,(C) (2.5)

G(C,Y) £ 0

2.3 MODEL BASED CONTROL PROBLEM (MOCP)

As mentioned earlier the mappings K* are not known exactly. However, it is 

possible to develop a set of mathematical relationships; models, to represent the 

system. These can be represented by the mappings

: <8™ X an"11 , i 6 i,N

Yi = Fi«w

where Yp Cp are as before.

Globally we can write these as

Y = F(C,U)

If now we replace the system mappings by the model mappings in the OCP we

get the following problem:

min Q(C,U,Y) 
C,U,Y
s.t

Y = F(C,U) (2.6)

U = HY

G(C,U,Y) £ 0

If as before, we make the assumption that for a given set of controls there 

is a unique set of outputs, the model can be defined by a mapping:

K : -»

Y = K(C) 

then the centralised model based problem becomes:
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min Q(C,Y)
C,Y

s.t

Y = K(C) (2.7)

G(C,Y) £ 0

2.4 SUFFICIENT CONDITIONS FOR THE MOCP

In general, the model adopted in the MOCP will not be an accurate 

description of the system under study. Inaccuracies can be caused due to many 

inherent deficiences present during the development of the model and often we 

cannot be aware of the true environmental conditions present. The question then 

is under what conditions would the MOCP give the optimum of the OCP. Some 

conditions were given by Durbeck (1965) and Foord (1974) and these were later 

extended by Ellis and Roberts (1982). These conditions, described here are for the 

overall system (global system) for clearly the situation where there is a number of 

sub-systems, is still subject to these conditions.

Consider the system optimisation problem given by (2.5). The 

associated with this problem is defined as:

L*( . ) = Q(C,K») + UTG(C,K*(O) (2.8)

Then the first order necessary optimality conditions are:

ai_* aQ(c,K*(O) , aQ(c,K»<c)) aK*(C) • aG(c,K*(c» n
ac “ ac + 8K» ac + ac

, aG(c,K»(O) aK»(o „
+ aK» ac M

ALTG(C,K*(C)) = 0 ; AL = 0 G(C,K*(C)) < 0 (2.10)

where AL is the Kuhn-Tucker multiplier associated with the constraints GO.

Also consider the the model based problem given by (2.7). The

associated with this problem is:

L( . ) = Q(C,K(C>)+ 7?TG(C,K(C» (2.11)

Then the first order optimality conditions are

8L _ 3Q(C,K(O) , aQ(C,K(C)) 9K(C) 8G(C,K(C))
ac “ ac + „ 8K ac ac

, aG(C,K(C)) 8K(C) n
8K ac '

7)TCj (C,K(C» = 0 ; 7? = 0 G(C,K(C)) < 0
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where 7? is the Kuhn-Tucker multiplier associated with the constraints GO.

It is clear, that if the model based optimality conditions given by (2.12) and 

(2.13) agree with the system optimality conditions (2.9) and (2.10) at the system 

optimum, then the model based problem will provide the system optimum. This 

matching is possible if the model outputs match the system outputs and also if the 

model based derivatives match the system based derivatives at the system optimum.

The sufficient conditions, then for the MOCP to give the optimum of the OCP 

are:

K(C) = K»(C) i4)
3K(C) _ 9K<(C)
ac “ ac

at the system optimum.

If the model employed in the MOCP does not satisfy the sufficient conditions 

of (2.14), then the results obtained cannot be guaranteed to be optimal. Generally, 

the results will be sub-optimal. Conversely, we can say that the only way to 

guarantee that the results of MOCP will provide the system optimum is to ensure 

the satisfaction of the conditions, (2.14). To overcome these difficulties, adaptive 

model-based strategies are used. In the following section the adaptive model-based 

problem is formulated.

2.5 ADAPTIVE MODEL BASED PROBLEM (AMOCP)

It has been seen in the previous section that to ensure a model based 

problem will provide the optimum for the OCP sufficient conditions given by (2.14) 

should be fulfilled. As it is not always possible for a model to satisfy these 

conditions and to overcome them adaptive strategies are used. A simple adaptive 

strategy is to include some free parameters in the model. These parameters are 

periodically estimated and the model is updated (see figure 2.2). This updated model 

is then used to solve the problem.

The adaptive model can be represented by a mapping :

Fj. : $Rni X X , i e i,N

Yi = ^(CpUpap

where Yp Cp U| are as before and

6 is the parameter estimate vector

Globally we can write these as
Y = F(C,U,a) 1

U = HY J (2.15)
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where H, as before, is the interconnection matrix.

The inclusion of the parameters, a, into the model, leads to an associated 

problem of parameter estimation. In this thesis a simple parameter estimation 

procedure is adopted which consists of matching model and system outputs, and 
the parameter estimation problem is :

F(C,U,<%) = K,(C) —> a (2.16)

and the AMOCP is then defined as

min Q(C,U,Y)
C,U,Y

s.t

Y = F(C,U,a) (2.17)

U = HY

G(C,U,Y) £ 0

The strategy, then, for adaptive optimisation is to solve problem (2.16) and 

(2.17) repeatedly until no further improvement in the solution is possible. This type 

of adaptive strategy is known as a two-step method. More will be said about this 

later.

It should be stated, however, that the introduction of an adaptive model, still 

does not ensure the satisfaction of conditions (2.14) and hence does not guarantee 

the correct system solution.

2.6 CONCLUDING REMARKS

The mathematical formulation of the optimising control has been made. It is 

seen that the problem deals with the selection of controls (set-points) for a 

system which satisfy given performance criteria. In practice the determination of 

controls can^made using measurements directly or by using models. The use of 

measurements directly involves difficulties such as having to cope with 

measurements which are contaminated by process noise and also having to decide 

when the process has reached a steady-state before the measurements can be 

taken.

The use of system models involves mathematical descriptions of the system 

concerned, where the results obtained from the model based problem are applied to 

the system. However, the use of models is still not straight forward as models are 

likely not to follow the system accurately due to the inherent deficiencies present 

during the development of the model. The conditions under which it is advantageous 

to use a purely model-based problem were given in section 2.4.

As it is not always possible to fulfill both these conditions, an adaptive
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strategy can be used. In the simple two-step strategy mentioned in section 2.5, only 

one condition is satisfied. The derivative matching condition is not guaranteed to 

be satisfied and, as a result, even such a strategy may give sub-optimal results.

To overcome these difficulties, a new adaptive strategy known as Integrated 

System Optimisation and Parameter Estimation QSOPE) was proposed by Roberts 

(1979). It is this algorithm and its various extensions, for both centralised and 

decentralised control structures, which is the major concern of this thesis.
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Figure 2.1 A Large Interconnected System
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CHAPTER 3 CENTRALISED CONTROL STRUCTURES

3.1 INTRODUCTION

It has been stated that optimising control deals with the selection of 

controls for a system which satisfy given conditions; these are the maximisation 

or minimisation of a given performance index. The control problem then essentially 

exists in the steady-state, although system dynamics have to be borne in mind, and 

the controls take the form of set-points. In practice the determination of the 

controls can be made using models, that is the mathematical descriptions of the 

system concerned, where the results from the model based problem are applied to 

the system; or by directly using measurements from the system itself. The use of 

measurements directly means that every time measurements are required we need to 

be sure that the steady-state has been attained, and hence the use of steady-state 
be

models may^ preferable. On the other hand, we require a model to satisfy the 

sufficient conditions of section 2.4. It is often difficult to satisfy these 

conditions as there are a number of inherent deficiencies present during the 

development of the model. Thus, when using a model, we are likely to get 

sub—optimal system performance.

Thus, there would appear to be a need for adaptive schemes, where the model 

is updated, through its parameters, taking account of reality conditions. The design 

of the control system can then be divided into two parts, as shown in figure 3.1. 

These are :

a) A Model Parameter Estimation Problem

b) A System Optimisation Problem.

Adaptive schemes can be thought of as an integration of the direct methods 

and the model based methods, In such schemes the optimisation problem is solved 

using a model where the parameters are periodically updated. Here we see that one 

of the sufficiency conditions, namely the output matching condition, is fulfilled. In 

the frequently encountered situation where model-reality differences exist, the 

problems of parameter estimation and optimisation will interact with each other. 

The results of the parameter estimation problem — the model parameters — affect 

the model used in the optimisation problem which, in turn, produces results — 

set—points — which affect the model parameter estimates. Hence, a number of 

iterations are required until hopefully convergence is obtained. Such a simple 

approach is known as the two-step approach, where step 1 is the parameter 

estimation problem and step 2 is the optimisation problem. This two-step approach 
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will not, in general, produce optimum results (Roberts (1979), Ellis and

Roberts(1982)) because of ensuring only the satisfaction of the output matching 

sufficiency condition.

A method intended to decouple these interactions was put forward by 

(Roberts (1979)), where the two problems were integrated into one scheme. Here, a 

; is defined and a set of simultaneous equations are solved repeatedly 

so that the first-oder optimality conditions are satisfied. The model based problem 

was modified by a certain parameter, known as the modifier. This procedure was 

termed the Modified Two-Step (MSTP) approach, in the sense that the overall 

approach remained the same, but the optimisation problem is modified so that the 

the final solution is optimal. This method comes under the broad class of ISOPE 

techniques. Since then several studies have been carried out to assess the 

applicability of this technique (Roberts (1979), Roberts and Williams (1981), Roberts 

and Lalui (1982), Ellis and Roberts (1982), Ellis et al (1988), Chen (1986)). These have 

demonstrated that the modified two-step approach is superior to the two-step 

approach in overcoming the model-reality differences and providing optimal 

solutions.

Another approach which again is an ISOPE technique was put forward by 

Sheng and Ellis (1985). This approach is a modification of the modified two-step 

approach and involves system linearization techniques and is known as the 

Approximate Linear Model (ALM-ISOPE) approach. This approach has proved to be 

successful in providing optimal results as various studies have shown (Sheng and 

Ellis (1985), Kambhampati and Ellis (1987), Ellis et al (1986)).

Apart from these, two other ISOPE techniques have been developed (Brdys et 

al (1986b), Tatjewski and Roberts (1987a)) which employ convexification measures. 

Although convexification of the problem is not needed in general for the 

centralised cases for convergence to the optimum is always achieved whether the 

OCP is convex or not (Brdys and Roberts(1987), Kambhampati and Ellis (1987)). 

However, convexification of the problem does lead to increased stability of the 

iterative process and also speeds it up. Of these, the method given by Brdys et 

al(1986b) retains all the features of the MSTP approach and is known as the 

Augmented-ISOPE (AISOPE) technique. The other, given by Tatjewski and Roberts 

(1987a), involves more complex mathematical computations and is a Newton-Like 

algorithm (NL-ISOPE).

In this chapter centralised control structures are described. After 

decribing the centralised problem, direct methods are discussed. Although, as has 

been mentioned, such methods are not really suitable for the on-line problem, and 
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are therefore not dealt with to any extent in the thesis. They are, howeven 

described here for completeness of the approaches to the centralised problem.

Then come the main elements of this chapter : the decription of the modified 

two-step approach and the approximate linear model approach (ALM-ISOPE). The 

chapter concludes with a brief presentation of the Augmented ISOPE approach 

and a Newton-like algorithm.

3.1 THE CENTRALISED CONTROL PROBLEM

The control problem for the centralised case has already been formulated 

in chapter 2, and is as follows:

min Q(C,Y)
C,Y

s.t

Y = K*(C) (3.1)

G(C,Y) £ 0

The aim of the ISOPE methods is to solve (3.1), using the following model 

based problem:

min Q(C,Y)
C,Y

s.t

Y = F(C,a) (3.2)

G(C,Y) £ 0

Where the parameters, a, are obtained by solving the following parameter 

estimation problem:

F(C,a) = K*(C) -+ a (3.3)

3.3 DIRECT METHODS

It has already been mentioned, that in the direct methods, measurements from 

the system are used directly in solving the optimising control problem. For this

particular approach one uses the problem as given by 3.1. Here, it can be 

the mapping K* is unknown and hence the use of ' measurements. The

here is to use an optimisation ^or example the conjugate

(Powell (1964)) method in an on-line situation.

seen that

technique

direction
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3.3,1 Optimisation Methods

There are a number of optimisation algorithms at our disposal (Fletcher 

(1981), Gill et al (1981)) which can be used to solve the control problem. These 

algorithms can be broadly classified as :

a) Gradient (Derivative) based algorithms.

b) Derivative free algorithms.

In general, one would expect the gradient methods to be more effective than the 

derivative techniques, due to the added information provided. However, in an 

on-line situation these algorithms are not appropriate. This is because the 

derivatives are estimated using finite^ approximations and involve perturbing the 

system and then taking measurements. This whole procedure could be time 

consuming. Again, the approximations will not be accurate if there is measurement 

noise present. This means that the optimisation algorithm has to cope with 

unrepeatable measurements, causing the algorithm to fail to converge.

The derivative free techniques have the advantage that derivatives are not 

needed by the algorithm. There are a whole range of techniques, derivative free, 

which one can use in an on-line situation. Fletcher (1970), in his review on function 

minimisation without evaluating derivatives showed that the method given by Powell 

(1964) and later modified by Zangwill (1967), is one of the most efficient algorithms 

where derivative information is not used. So, if a direct method was to be used, 

Powell's method would be the obvious choice and it is this algorithm which is 

described here.

3.3.2 Powell's Conjugate Direction Method

Most optimisation algorithms, whether gradient based or derivative free, use 

a direction search approach. In Powell's conjugate direction technique, a search is 

made for the minimum along conjugate directions.

Consider a quadratic function to be minimised, of type: 

f(x) = xTA x + BTx + C

where A 6 and is positive definite

x 6 -SR"

and if there is a set of non-zero vectors G such that :

(3.4)

G = ( St- } i € [i,Nl

covering n-dimensional space, then conjugacy is defined as the property such that

V i * j (3.5) 
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and S; and Sj are said to be conjugate directions. Essentially Powell's procedure 

is one of selecting a set of conjugate directions, G, and searching along each of 

them until the minimum is obtained.

3.3.21 The Al jo r i t h m

Each iteration of the procedure commences with a search down n linearly 

independent directions E±, E2, ■■■> Eft ,starting from the best known approximation to 

the minimum, xo. These directions are chosen to be the coordinate directions 

initially, so that the start of the first iteration is identical to an iteration of the 

method which changes one parameter at a time. This is later modified to generate 

conjugate directions by making each iteration define a new direction, E, so that the 

new set of linearly independent directions are, E2, EQ, •••, Eft, E. The way in which E 

is defined ensures that if a quadratic is being minimised, after k iterations the 
last k of the n directions chosen for the (k+l)th iteration are mutually conjugate. 

Thus after n iterations the whole set of directions are mutually conjugate.

An iteration of the procedure is as follows:

Step I : for r = 1, 2, 3, • • •, n calculate Xr such that f(xr_i + XrEr) is a

minimum and define xr = xr_± 4- XrEr

Step II : for r = 1, 2, 3, -• •, n-1 replace Er by Er+1

Step III : replace En by (x^-x*)

Step IV : Choose X so that f (xft + XErt) is a minimum and replace x* by 

X« + XEft

3.4 THE MODIFIED TNO-STEP APPROACH (MSTP)

Adaptive model based approaches are an integration of the direct and model 

based techniques. The disadvantage with the direct technique is that every time 

the performance index has to be evaluated, measurements from the system are 

needed. This could be time consuming and often in the presence of noise achieving 

convergence can be difficult. A purely model based approach will not produce the 

true optimum unless the model satisfies the sufficiency conditions given in section 

2.4. Even after the introduction of an adaptive parameter estimation procedure to 

give the simple two-step approach, there can be no guarantee of producing optimal 

results, because the model is unlikely to satisfy the derivative matching condition 

(see 214 of section 2.4). In order to overcome these problems, Roberts (1979) 

proposed a technique, which would produce the optimal solution. The approach is 

known as the Modified Two-Step (MSTP) approach, in the sense that the overall 
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approach remains the same as that of the two-step approach but the optimisation 

problem is modified so that the final result is optimal.

3,4.1 The MSTP Problem

The modified two-step approach uses a problem which is an integration of 

the two problems of optimisation ((3.2)) and parameter estimation ((3.3)), to obtain the 

solution of (3.1). The integrated problem is thus:

min q(C,a)
C,a

s.t

F(C,a) = K»(C) (3.6)

g(C,a) £ 0

where g(C,a) = G(C,F(C,a)) and q(C,a) = Q(C,F(C,a))

The key step in deriving the algorithm is to integrate the parameter 

estimation problem and the the optimisation problem, and also introduce a new set 

of variables, V, into the problem which are defined as

V 6 JR* , V = C (3.7)

Now the variables C in the parameter estimation problem are replaced by the new 

variables V, and the equivalent integrated problem becomes :

min q(C,a)
C,V,a
s.t

F(V,a) = K#(V) (3.8)

g(C,a) £ 0

V = C

We now define the L(C,V,a,X,j0,Al), associated with the above problem as :

L(.) = q(C,a) + 0T(F(V,a) - K»(V)) + XT(V - C) + XiTg(C,a) (3.9)

where j3 and X are the Ttxvxg multipliers associated with the 

constraints F(V,a)=K4(V) and V=C respectively

and y is the Kuhn-Tucker multiplier associated with the inequality g(C,a) 

The first order necessary optimality conditions for the existence of a stationary 

point of (3.9) are :

_ x + = o (3.io)
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tb = [i - W* + x = 0
8L = §q
3a 8a

U > 0 ; g(C,a) = 0

F(V,a) = K*(V)

(3.11)

(3.12)

(3.13)

(3.14)

V = C (3.15)

If we now solve for X using (3.11) and (3.12) we get the following

X = [F'r(V,a) - Ki(V)]T[F/a(V,a)T]‘i[q,a(C/a) + g'a(C,a)TZl] (3.16)

It should^noted here, that from now on we shall use the following notation to 

represent the partial derivatives:

Fzr(V,a)=-- and so is the case with the others.8v .

Now for a given C, V, fl, a we can evaluate X such that conditions (3.11) and (3.12) 

are satisfied. The condition (3.10) can be satisfied by solving the following 

minifYitSAtiim problem:

min (q(C,a) — X^C}
C

s.t (3.17)

g(C,a) £ 0

The condition (3.13) is automatically satisfied by the above. The other conditions, 

namely (3.14) and (3.15) are also similarly satisfied.
the

It can be seen, from^above analysis, that we now have an equivalent problem 

which is composed of three problems which are :

The Parameter Estimation Problem

F(V,a) = K*(V) --> a (3.18)

The Modified Optimisation Problem

min (q(C,a) — X^C)
C

s.t (3.19)

g(C,a) £ 0

where X is as given by (3.16)
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The Coordination Problem

V = C (3.20)

Evaluate the modifier X

The resultant control structure is shown in figure 3.2. From the manner in 

which the problem and the structure have been derived, the apparent conclusion is 

that the structure is h terarchical. However, the whole algorithm can be viewed in 

an iterative fashion, which is the true interpretation. This is achieved by 

rationalising the number of variables in the problem (Ellis et al (1988)). This is 

done by eliminating the variables V. Then the

L(.) = q(C,a) + £T(F(C,a) - K«(C)) + ZlTg(C,a) (3.21)

and the necessary optimality conditions for the existence of a saddle point of the

(3.22)

(3.23)

11 > 0 ; g(C,a) = 0 (3.24)

(3.25)

It can be seen that condition (3.22), using (3.23), can be reduced to the following

3L _ 8d
3C “ SC (3.26)

where X is given by the following

(3.27)

From (3.22) to (3.25) it can be seen, as before, that we have a problem which 

is composed of the following three components:

The Parameter Estimation Problem

F(C,a) = K«(C) —> a (3.28)

The Modified Optimisation Problem

min (q(C,a) — X^C)

s.t (3.29)

g(C,a) £ 0

where X is as given by (3.27)
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Hie
Notice here that the general structure of the problem is similar to that ofA 

simple two-step approach. In fact, the way the MSTP algorithm functions can be 

better understood using the above formulation. For the algorithm is basically 

iterative in nature, and in general when considering centralised systems we see 

that there is no need for any form of coordination as would be required when the 

system is decomposed into individual sub-systems. Then, for centralised control the 

term coordinator is misleading as there is no coordinating function involved in the 

process. Thiscontrol structure and does not give a true picture o 

rationalised form of the control structure, was given by Ellis et al (1988), and is 

shown in figure 3.3. However, for the sake of clarity, and for the sake of ease in 

identifying the on-line and the off-line part of the algorithm, we shall be using the 

former formulation throughout the thesis.

Whether we take the original form or the rationalised version of the 

problem structure, it is seen that the resultant structure of the algorithm is the 

same. Also, due to the modifications introduced into the problem the model need not 

satisfy the second sufficient condition of derivative matching (Brdys and Roberts 

(1987), Chen (1986), See chapter 4 of this thesis). This is done by the modifying 

term X, which is introduced into the optimisation problem. In fact, it is this term 

which ensures that an application of this algorithm to a problem yields the true 

optimum. It will be shown in chapter 4, that, the modifier can be interpreted as 

following

a) A parameter which quantifies the violations of the sufficiency conditions

by the model.

or as

b) A parameter which compensates for the differences in the properties of 

the model based performance index and the system based performance 

index.

Whatever interpretation we have given the modifier ultimately, as shall be seen in 

Chapter 4, they mean the same.

3.4,2 The Algorithmic Structure

We now give the algorithmic structure for the control structure discussed 

above. Before that let us define the following:

(3.30)
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The algorithmic structure is then as follows:

STEP 0 : Set k = 0

Select initial controls C° and £ > 0 the convergence criteria 

and 6 , 0 < f < 1 where E is known as the iterative loop

gain

IF the old formulation is used then

set V* = C*

STEP I

STEP la : Apply controls to the system and take measurements to 

evaluate the parameters a

STEP lb : Apply further perturbations to the system and take 

measurements to get a finite difference approximation for K\

STEP Ic : Evaluate the modifier X

Ak STEP H : Solve the modified optimisation problem to obtain C

STEP III : IF the old formulation is used then check
IF |,Vk - Ck|| < £ then STOP

else check
IF || Ck - Ck|| < £ then STOP

else continue

STEP IV : IF the old formulation is used then
set Vk+i = Vk 4- E ( Ck - Vk) (3.31)

else
set Ck+i = Ck + E ( Ck - Ck) (3.32)

set k 4- k+1 

GO TO STEP I

Notice the mpckt'vrg , scheme, (3.31) or (3.32), used for updating the control
A A

set-points. Here the controls are not updated as per the equation V=C or C=C 

instead we use the above schemes. This scheme is known as the under-relaxation 

scheme (Cohen (1978)). The idea here is that instead of changing the controls in one 

go we change the values in a small step. Then the iterative loop gains, E, 

effectively define the step lengVA, The under-relaxation scheme is used so that an 

element of stability is introduced into the iterative process, for a direct 

application of the controls obtained from the optimisation problem could have 

either or both of the following effects:

a) The algorithm may move away from the optimum
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b) The algorithm may start to oscillate.

3.5 THE APPROXIMATE MODEL APPROACH (ALM-ISOPE)

The MSTP approach requires the derivatives of the system to evaluate the 

modifier, so that the modified optimisation problem can be solved. It is seen that 

the modifier is a term which quantifies the violations of the sufficient conditions 

by the model. The modifier exists because of the differences in the system and its 

model. If, however, we use a model, which is linear and of type

F(C,a) = WC + a (3.33)

where W € and a G

then for such a model to satisfy the sufficiency conditions we see that

Fzc(C,a) = W = KZ»(C) (3.34)

a = K»(C) - WC (3.35)

Now in the modified two-step approach we need the derivatives KZ<(C) for 

evaluating the modifier X. However, by using a model of type given by (3.33) and set 

W as given by (3.34) we obtain a linear model which satisfies the sufficient 

conditions. This means that in such a case the modifiers, X, are zero and there is 

no need to evaluate them and, consequently, the optimisation problem need not be 

modified.

3,5,1 The ALM-ISOPE Problem

If the approach described above is to be used, we see that the control 

problem now consists of two parts, as before, and we can refer to these parts as:

a) Model identification

b) Optimisation

Here, model identification replaces the parameter estimation of the modified two- 

step approach. Of course one could still use the term parameter estimation as we 

still identify parameters W and a. The difference now is that we develop a 

completely new model at each iteration. Hence using the term model identification 

is more appropriate.

So the two problems are:

Model Identification

Fzr(V,a) = W = KZ*(V) (3.36)

a = K«(V) - WV (3.37)
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Optimisation Problem

min Q(C,Y)
C

s.t (3.38)

Y = WC 4- a

G(C,Y) £ 0

3.5.2 The Algorithmic Structure

The control structure -for ALM-ISOPE is shown in -Figure 3.4. The algorithmic 

structure -For ALM-ISOPE remains the same as that given in section 3.4.2. The only 

difference being that STEPI is now replaced by the following:

STEP I

STEP la Perform perturbations about V to get a finite difference
L- 

approximation for K'4(V ) and set it to W
STEP lb : Evaluate a = K,(Vk) — WVk

STEP Ic : Set the new model to

Y = WC 4- a

All the other steps remain the same.

3.5.3 Interpretation of the Structure

We have seen that the MSTP algorithm introduces a modifier, X, into the 

optimisation problem. The modifier quantifies the violations of the sufficient 

conditions by the model. On the other hand, it has been seen that the sufficient 

conditions can be used directly to develop a linear model. This model satisfies ' 
oj-

both^the sufficient conditions at each iteration and hence there is no need to 

have a term which quantifies the violations.

One can, of course, look at the approach from a different point of view. It 

can be seen that the ALM-ISOPE tries to linearise the system about a given point. 
Consider the Taylor series expansion of a function K#(V) about a point Vk :

K»(V) = K*(Vk) 4- K'»(Vk> Vk -+- || 0 || (3.39)

where || 0 || denotes the higher order terms of the expansion.

If now we set

a = K»(Vk) 4- II 0 II (3.40)

we get the expression
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K,(V) = K'*(Vk> Vk + co (3.41 >

which then is the same as what we are doing in the ALM-ISOPE. Thus near the point 

V the model follows the system in a linear manner and at each iteration we 

satisfy both the sufficient conditions and at the optimum these are also satisfied.

3.6 OTHER STRUCTURES

It has been shown that the MSTP algorithm will always converge to the true 

optimum (Brdys and Roberts(1987)), whether the OCP is convex or not as long as the 

model based problem is convex. This is the main advantage with the the MSTP 

algorithm. However, when large model-reality differences exist, the convergence 

rate of the algorithm is slow. Also, the iterative loop gains used in the relaxation 

scheme are found out through a trial and error procedure. This could be very 

troublesome and a given iterative loop gain could be either very large or to small. 

A similar problem occurs with the ALM-ISOPE for high non-linear systems. However, 

with the ALM-ISOPE algorithm there is definitely an advantage in that we do not 

have to provide the algorithm with a model apriori. Also the model developed by the 

algorithm would be a better representation of reality at that point and as^ result 

we find that we can use high iterative loop gains with this technique. However, it 

is possible that with highly non-linear systems, this technique could have the same 

disadvantages as the MSTP algorithm. To overcome these difficulties two other 

algorithms have been developed. Both these are an extension of the MSTP algorithm 

and use convexification techniques, where the performance index is augmented with 

a quadratic penalty function.

One algorithm known as the Augmented ISOPE (AISOPE) algorithm, was proposed 

by Brdjjte et al(1986b). Here all the features of the MSTP algorithm were maintained. 

The extra feature is that an additional quadratic penalty function was appended to 

the performance index.

The other algorithm developed by Tatjewski and Roberts (1987a) uses the 

same formulation as AISOPE. Here, however, a major change has been made in the 

manner in which the control set-points are updated. Instead of using an under-

relaxation scheme, a precise Newton-like step is taken, and there is no need to 

select the iterative loop gains. This has an obvious advantage for the convergence 

of the procedure.

3.6.1 The Augmented ISQPE (AISOPE)

This retains all

additional feature of the algorithm

the features of the MSTP algorithm. The

is that the performance index is augmented by 
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a quadratic penalty function. The analysis for the derivation is the same as that 

for the MSTP, and hence it is not discussed in detail. The parameter estimation 

problem remains the same as in MSTP and there is no change is the formula to 

evaluate the modifier X. The obvious change occurs in the MBOP, which now becomes:

min {q(C,a) - XTC + Z>|| V - C ||2 }

s.t (3.42)

g(C,a) £ 0

where Q is the penalty factor.

The only benefit one derives from such a formulation is that due to the 

augmentation the convergence could be faster.

3.6.2, The Newton-Like Algorithm (NL-ISOPE)

It has been mentioned that one of the problems with the algorithms 

discussed so far is the selection of the iterative loop gains. These gains are 

arrived at after some trials, and this in an on-line situation could pose some 

difficulties. The NL-ISOPE algorithm (Tatjewski and Roberts (1987a)) overcomes this 

problem by using a precise Newton-like step. The overall problem formulation 

remains the same as in the AISOPE. The difference is in the manner in which we 

update the controls.

The scheme for updating controls can be seen as solving the following 

operator equation:

W) = V - C(V) = 0 (3.43)

the solution for the above equation is then as follows

[ 1 - C'(Vk)J [vk+i - Vk] = [ck+i - Vk] (3.44)

where

I is an Identity matrix of appropriate dimensions

C'(Vk) = E { pl + Fz(Ck,a)P"F(Ck,a) [F'(Vk,a) - K'*(Vk)] +

[Fz(Vk,a) - Kz*(Vk)]pzzF(Vk,a)KzI(Vk) } (3.45)

where

E = A’1 - A_1(gza)T[gziA"ig,j]_ig^A’i (3.46)

A = Lzzcc(C,a,jll) + jOl (3.47)
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L(C,a,/2) = q(C,a) + jU^g(C,U)

<3* = The set of constraints which are active

jO = penalty factor

A detailed derivation of this method is given in Tatjewski and Roberts (1987).

Looking at the formulation one immediately recognises the complexity of the 

process. This complexity in calculation is compensated for by the fact that the 

method converges faster.

3.7 CONCLUDING REMARKS

Five different approaches to solve the centralised optimisation problem 

have been discussed. Of these, the first technique is a direct method and the 

remainder are adaptive techniques which use models of the system. The direct 

methods have disadvantages (see chapter 5) and there is a definite advantage in 

using the adaptive techniques.

Most of the adaptive techniques discussed are extensions of the original 

MSTP algorithm . Each one tries to improve the performance of the MSTP while 

retaining the features of this algorithm. Of these the ALM-ISOPE is the algorithm 

which deviates from the original algorithm in an important way. This is because 

here a model need not be supplied to the algorithm a priori. Again, as shall be 

seen in chapter 5, this algorithm functions very well in that very high iterative 

loop gains can be used, as the model developed by the algorithm is a better 

representation of the process at the current operating point. This model changes 

from iteration to iteration.

The AISOPE technique improves upon the rate of convergence of the MSTP. 

However, this method increases the number of parameters which we have to select. 

In addition to the iterative loop gains, we have to select appropriate penalty 

factors. A very high penalty factor would ill condition the problem and a very low 

factor would not produce any improvement to the iterative process.

The NL-ISOPE algorithm improves on the AISOPE by increasing the off-line 

calculations. It has been found (Tatjewski and Roberts (1987a)) that this algorithm 

has good convergence properties.

However, in this thesis we shall be discussing only four of these methods in 

detail — the direct method, the MSTP, ALM-ISOPE and the AISOPE algorithms — for 

the NL-ISOPE algorithm was developed during the time of writing this thesis. In 

chapter 4 the conditions for convergence of the adaptive algorithms will be 

(3.48)
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discussed. In chapter 5 a detailed simulation is presented. An examination of what 

really constitutes model-reality differences is made. It shall be seen that these 

differences are in agreement with the analysis presented in chapter 4.
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Figure 3.1 The Two Problems of System Optimisation and Parameter Estimation

Figure 3.2 The MSTP Structure as Proposed by Roberts
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Figure 3.3 The MSTP Structure in an Algorithmic Framework
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(SET-POINTS) KX(UX) MEASUREMENTS)

Figure 3.4 The ALM-ISOPE Structure
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CHAPTER 4 OPTIMALITY AND CONVERGENCE OF THE CENTERALISED CONTROL 

STRUCTURES

4,1 INTRODUCTION

In chapter 3 a number of schemes for solving the centralised optimising 

control problem have been discussed. In this chapter the optimality convergence 

properties of these algorithms will be presented. A detailed study will be given 

for the MSTP and ALM-ISOPE algorithms. The analysis for AISOPE is similar to that 

of the MSTP algorithm. The only difference is that one has to take into account 

the augmentations done in the AISOPE algorithm. The analysis for the NL-ISOPE 

algorithm is different from that of the others and can be seen in Tatjewski and 

Roberts (1987).

Of course, the properties of the MSTP algorithm have been studied by Brdys 

and Roberts(1987). In their study there was a discussion on the type of model to 

be used, but this was only in terms of a linear or non-linear model. Here we extend 

those concepts to study the model structure and to evaluate what really constitute 

model-reality differences.

An analysis similar to that for MSTP, given by Brdjs and Roberts, has been 

given for AISOPE by Br^^s, et al(1986b). Here a detailed analysis of this algorithm 

is not undertaken. However, a set of conditions for convergence is presented to 

highlight the effect of the augmentations on the algorithm.

It shall be seen seen that the derivative differences, used in evaluating the 

modifier, X, really constitute the model-reality differences. Then a logical 

extension of this idea is the ALM-ISOPE algorithm, where the algorithm develops a 

linear model by using the derivatives of the system.

One can conclude that the algorithms which can be classified as ISOPE 

algorithms are all optimal.This is because of the manner in which thay are derived. 
In fact these algorithms solve repeatedly a set^simultaneous equations so that the 

first order necessary optimality conditions for the problem are satisfied. However, 

for the sake of simplifying further analysis, a brief^of the optimality of these 

algorithms is undertaken.

£2 OPTIMALITY

i
Before proceeding to look into the optimality conditions for the algorithms

some definitions are necessary.Let us define the algorithmic solution set Cl as
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n^C(V):VeC,V = C(V,a) J (4.1)

This definition of the solution set is the same for- MSTP, AISOPE, NL-ISuPE 

algorithms. However for the ALM-ISOPE algorithm it is

a = C(V):V£,C:V = C(V) }

e I tc : g(C) o )

For further analysis the modifier X has to be simplified further. For simplicity in 

Analysis let us assume that the constraints are independent of the outputs. We have
X = [ F'c(V,a) - KZ*(V) 1T QzY(C,F(C,a» (4.2)

= Q'Y(C,F(C,a))Fzc(V,a)T - QzY(C,F(C,a»Kz*(V)T

now since V=C and F(C,a)=K^(C) we get from above

X = Q'c(V,F(V,a» + QzY(V,F(V,a))Fzc(V,a)T - QZC(V,K,(V» - QZY(V,K«(V))KZ*(V)T

=4 X = qzc (V,a) - qZ£ (V) (4.3)

Having defined the solution set ft and simplified the form of the modifier, X, we 

can now proceed to give the optimality conditions for the algorithms. The following 

lemma gives these conditions and is common to all algorithms.

Lemma 4.2d_

Assume that each point of the set C satisfies the Yegulcxrclj conditions.

Then the point V € fi satisfies the Kuhn-Tucker necessary conditions for the OCP.

Proof

The MSTP Algorithm

Since C € C we have :
qzc(C,a) - X + gzc(C,a)T?? = 0 1
7?Tg(C,a> = 0 ; T> > 0 ,g(C,a) = 0 J (4.4)

Now, since V = C and F(V,a) = K^(V) and using (4.3) in above we get 
qz*( V) + gy V)T7? = 0 2
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(4.5)?7Tg*(V) = 0 ; n > 0 ,g*(V) = 0 )

where q(C,a) = Q(C,F(C,a)) and g(C,a) = G(C,F(C,a)) and 7? are the Kuhn-Tucker 

multipliers corresponding to the constraints.

It is then clear that (4.5) are the Kuhn-tucker conditions for the OCP so that 

V is the optimum point of the OCP.

The proof for the other algorithms follows the same principles and is not 

given.

4.3 CONVERGENCE CONDITIONS

The idea behind the study of convergence properties of algorithms, is to 

get more information regarding the behaviour of the algorithms. That is, under 

what conditions would a given algorithm ‘ be the most efficient. In other words we 

study what makes an algorithm work as desired and converge to the optimum.

There are a number of techniques which one can use to develop conditions 

under which an algorithm will converge. One can use some of the Zangwill 

convergence theorems (Zangwill (1969)) or use the contraction mapping theorems 

(Ortega and Rheinboldt(1980)) or else use some of the techniques of Cohen (Cohen 

(1978)). The strictness of the conditions imposed on the algorithm depends on the 

technique used to develop the convergence conditions. Of these techniques it can 

be said the Zangwill's theorems would give the most mild conditions but often it is 

not possible to use these theorems as a basis for proving convergence. Then one 

has to resort to other methods. At the other extreme, the use of contraction 

mapping theorems give strict conditions. However, one can say that the more strict 

the conditions are, the more the information regarding the algorithm we get. In 

fact, at times it is even possible to establish the rate of convergence (Tatjewski 

and Roberts(1987)). Another advantage of undertaking this kind of an analysis is 

that, for the problem we have, one can find out what really constitutes model-

reality differences. Are they simply the parameter estimates or is there some
*■<•■**

other factor which decides the efficiency of the algorithm both in terms of the 

number of set-point changes and the iterative loop gains. These criteria of 

deciding the efficiency of the algorithm are discussed in greater detail in chapter 

5.

4.3.1 The MSTP Algorithm

Brdys and Roberts(1987) have provided the conditions for and proved the 

convergence of the MSTP algorithm through Zangwill's theorems. These conditions 

are mild and do not give any idea as to what properties the model should possess 
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so that the algorithm is efficient. But the important result obtained through their 

analysis was that the MSTP algorithm will converge whether the OCP is convex or 

not. This is a very useful property of the algorithm and makes it invaluable in an 

on-line situation where one cannot predict the convexity or non-convexity of the 
OCP.

However, one would like to have some knowledge about the properties to be 

incorporated into the model so that the efficiency of the algorithm can be 

improved. This can be done if the conditions given by Brdys and Roberts are 

st-renghtened. An analysis of these conditions would then tell us what constitutes 

model-reality differences. The following theorem gives conditions, which when 

analysed would answer the question of model-reality differences.

Theorem 4.3JLJL

3. The functional qzc( . xc) is uniformly monotone on C with some constant 

ata) > 0 for every a e A and also that qz^( . ) is also uniformly monotone 

on C with some constant at > 0 .

where A = a(V)

4. There exist such numbers A and a such that

A > Ata) ata) £ a > 0 (4.6)

where Ata) is the Lipschitz constant of q( xt) on C.

5. The model is selected such that

A 2al - | Ai (4.7)

|a * < a AI (4.8)

where AX is the Lipschitz constant of ql on C

6. The class of systems considered is restricted in a manner 

a* £ | Al (4.9)
o

Then

I. There exists a solution V of the OCP

H There exists such scalars Q , €2 • such that 0< Q<0.5,0.5< €2 *■'
v

such that for every £ 6 the algorithm generates a sequence €V )

which converges to V.
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Proof

Part I of the theorem follows from the assumption of continuity and 

differentiablity of q&( . ) and q( . ,a) on C, which is compact and every point of the 

set C satisfies the conditions. Also the functions qzr( . ,a) and qzx< . )

are uniformly monotone on C. There is thus a unique point V which solves the OCP 

and satisfies the optimality conditions (Lemma 4.1).

Now consider the kth iteration of the algorithm. From the assumptions made 

it is seen that, (Luenberger (1970), Zangwill(1969))

[qzc(Ck ak) - X 1(V - Ck) £ 0 (4.10)

using the modified version of X given by (4.3), (4.10) can be transformed to the 

following:

Cqzc(Ck ak) - qzc(Vk ak) + qz^(Vk)l(0 - Ck) £ 0 (4.11)
Aksince C eC and Vc-H we have

[qz^(V)l(Ck - V) £ 0 (4.12)

then adding (4.11) and (4.12) we get

[qzc(Ck ak) - qzc(Vk ak) + qz*(Vk) -qz^(V)l(V - Ck) £ 0 (4.13)

we also have by the assumptions (Cohen (1978))

qzc(Ckak)(V - Ck) £ q(V,ak) - q(C,ak) - |a ||ck - v||2 (4.14)

qzc(Vkak)(Ck - V) £ q(Ck,ak) - q(Vkak) - |a||ck - Vk||2 + q(Vkak) - q(V,ak)

+ |llvk - v||2 (4.15)

q*z(Vk)(V - Ck) £ q*(V) - q*(Vk) - |a*||v - Vk||2 + q/(Vk)(Vk - Vk+i)

+q/(Vk)(Vk+1 - Ck) (4.16)

and

q/(VXCk - V) £ q^'(V)(Ck - Vk+1) + q*<Vk+1) - q^W) - |a*||vk+1 - v||2 (4.17)

q»(Vk+1> - q*'(Vk) + q',Wk> £ | 62ll Vk+i - Ck ||2 (4.18)

and

[ q*'(Vk) - q'j(V)](Vk+1 - Ck> £ |(l-f)A«[l|vk - i'll2 + IIVk - Ck||Z] (4.19)

Then using (4.14) to (4.19) in (4.13) and after some manipulations we get the 

following
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+ [a - A*(€2 - € + D>k - Ck||2 (4.20)

From (4.20) it is easily seen that that right hand side of (4.20) will not be 

negative if

2a* - A + (€—1) > 0 (4.21)

a > 0 (4.22)

a - A*(f2 - € 4- i) > 0 (4.23)

This is ensured by the conditions 

the existence of numbers fp &

existence of the pair (a, A) to satisfy (4.7) and (4.8).

(4.6) to (4.9) and these are sufficient for

Again condition (4.9) is enough for the

We now define a function T(V) such that

(4.24)

hand side which is non negative also tends to

It is seen from (4.20) that the sequence (T(V )} is strictly decreasing and is 

bounded below by zero. Thus, the sequence is convergent and the left hand side 

tends to zero. the right

zero. We can then conclude that

Vk - V —> 0 (4.25)

Q. E. D.

Before discussing the results of 

lemma. It is similar to that given

theorem 4.3.1.1, let us formulate the following
by and Roberts (1987), and it

analysing the results of theorem 4.3.1.1 in terms of

helps in

a) The model-reality differences

b) The significance of the modifier X

Lemma 4.3JLJL

Let the process be described by the following mathematical model

F(C,a) = D(a)C 4- P(a)

where D(a) and P(a) are matrix functions of appropriate dimensions.

If the performance index Q(C,Y) is uniformly convex, then q'<(C,a) is uniformly 

monotone with a constant b(a) > 0 such that

b(a) = fi[AM/„(D(a)TD(a))]

where AM;n(D(a)^D(a» is the least eigenvalue of the matrix D(a)TD(a).
-61-



Proof

By the assumptions of the lemma there is a constant cr > 0 (Ortega and

Rheinboldt (1970)) such that

[Q/^C+hp Y+h2) - Q'c(C, Y)]h± 4- [QzY(C4-hp Y+h2> - Q'Y<C' Y)]h2

> - [|M2 + llh2fl <42®
for every C, C4-h± € C and Y, Y4-h2 €

We also have

qz€(C,a) = Qzc(C,F(C,a.)) 4- QzY(C,F(C,a))Fzc(C,a.)

= Qzc(C,F(C,a)) 4- QzY(C,F(C,a))D(a) (4.27)

hence we have 

[q'^C+hpa) - qzc(C,a)]hi = pzc<C4-hi,F(C4-hi,a)) 4- Qzc(C,F(C,a))Jhi 4-

pzY(C+hi,F(C+h1/a)) 4- Q/Y(CJF(C/a))jD(a)h1 (4.28)

Now Y = F(C,a) and let h2 = D(a)h£and since F(C+h^a) — F(C,a) = D(a)h^ we get 

using (4.28) along with (4.26)
[q'^C+hpa) - o '£<Ca»>}i1 2 <7 + ||D(a)h1||2^ (4.29)

> cr [1 + A«M(D(a)TD<«»] Ijh^J]2 (4.30)

where A»zn(D(a)^D(a)) is the least eigenvalue of the matrix D(a)^D(a) 

Now let b(a) = cr [1 4- A«/n(D(a)TD(a))J

then we have

[qzc(C4-hi,a> - z b(a)||h±||2 (4.31)

since c > 0 and A»xft(D(a)^D(a)) > 0 we have b(a) > 0

Q. E. D

This lemma shows that the monotonicity of the function qzc is a function of 

the first order derivatives of the model output with respect to the control set-

points. This is a very important conclusion. If this is similarly extended to the 

function q<z, we see that it is also the function of the first order derivatives of 

the system. We can thus write the following

a(a) = fa(Fzc(C,a)) (4.32)
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a* = fs(K»'(C)) (4.33)

Consider assumption 5 of theorem 4.3.1.1, where some conditions were posed on the 

selection of the model. From these and the above relationships, (4.32) and (4.33), we 

see that the efficiency of the algorithm depends on the differences between the 

model based and process based derivatives. The closer these are, the more 

efficient is the iterative process. In fact this conclusion can also be arrived at 

from the sufficiency conditions, which the model has to satisfy, given in section 

2.4.

In practice there are bound to be model-reality differences, and as a result, 

one finds that the properties of the model based performance index are different 

from that of the system based performance index. It was stated in chapter 3 that 

this difference was compensated for by the modifier X. In the light of (4.32) and 

(4.33), we can define the modifier as a function of the differences in the monotone 

properties of the system based performance index and the model based 

performance index. Thus, we can write X as:

X = f3(fl(a(a)) - fjj(a*)) (4.34)

and as a result give the modifier two interpretations which are, ultimately, the 

same except that they are arrived at through different means. These are:

a) A parameter which quantifies the violations of the sufficiency conditions

by the model.

b) A parameter which compensates for the differences in the properties of

the model based performance index and the real system based 

performance index.

But whatever the interpretation one gives to the modifier, we see that the 

derivative differences are of prime importance, and we can conclude that the 

derivative differences are what really constitute the model-reality differences. 

The greater these differences the more inefficient the performance of the 

algorithm will be. In fact, this conclusion can be further verified through the 

simulation study presented in chapter 5.

4.3,2 The AISOPE Algorithm.

In the previous section, it has been shown that the MSTP algorithm would 

converge provided the model and the system, under study, satisfied certain 

conditions. It has also been shown that the MSTP algorithm will converge for any 

system, provided the model based problem is convex (Brdys and Rob ^erts(i986)). 

However, in order to arrive at some conclusions regarding the efficiency of the 
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algorithm, and the model-reality differences, the conditions posed have to be 

stricter than required.

It has also been stated that the modifier is some sort of a compensating 

factor, and the amount of compensation required decides the efficiency of the 

algorithm. We can improve the efficiency of the algorithm by reducing the amount 

of compensation required. This can be done by changing the model so that the 

model-reality differences are reduced. However, sometimes it is not possible to 

change a given model. Then one has to resort to other means to improve the 

overall efficiency. This is done by augmenting the performance index by a 

quadratic penalty function, as is done in the AISOPE algorithm. This algorithm 

retains all the features of the MSTP algorithm, the difference being the 

augmentation. This leads to a slackening in some of the conditions posed in 

assessing the convergence of the algorithm. The following theorem gives these 

conditions. They are similar to those given in theorem 4.3.I.I. Here however, the 

effect of the augmentations is taken into account. The proof for this theorem is 

similar to that given for theorem 4.3.1.1.

Theorem 4.3.Z1

Assume that assumptions 1, 2, 3, 4, of theorem 4.3_L_1 are satisfied, and

additionally assume that

1) The model is selected such that

A 2a« - (4.35)

|a * < a 1 AX (4.36)

where A 2 max || qz«XC/r) || + 2fl (4.37)
Cr € dr

a £ min A min ||qzzc(Cxx)|| + 2p (4.38)

Z The class of systems under consideration is restricted such that

aX 2 |AX (4.39)

Then the assertions of theorem 4.3JL.1 are valid.

The proof of this theorem follows along similar lines to that given for 

theorem 4.3J..1 and hence is omitted here.

Notice that A and a are the Lipschitz and monotone constants of the 
function q(C,a) + Z)||V—C||2 and hence we can modify (4.37) and (4.38) to:

A 2 A(a) + 20 (4.40)

a 2 a(a) + 20 (4.41)
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where a(«) and Ma) are as before.

Then analysing the conditions as before we can get the -Following expression

r = f4(fo(f^(a(«)) - fJ(aB) + 2/?)

= f4( a + 2fl) (4.42)

Notice the similarity between (4.34) and (4.42). Equation (4.34) is the expression for 

the modifier and (4.42) is the same but now takes into account the effect of the 

augmentation. Notice that if the model-reality differences — which are reflected in 

the properties of the model based performance index and the system based 

performance index — are large then, this is reflected in X being large, and also 

the model may violate the conditions of theorem 4.3.I.I. However, with augmentation 

it is seen that if the conditions of theorem 4.3.1.1 are violated, we can select a 

penalty factor, fl, such that the conditions given by theorem 4.3.2.1 are satisfied. 

Then, from (4.42) we see the effect this has on the compensation taking place.

It is for this reason that the interpretation that the modifier, X, is a 

parameter which compensates for the differences in the properties of the model 

based and system based performance indices, could be a more accurate definition.

4,3,3 The ALM-ISOPE Algorithm.

The ALM-ISOPE algorithm has been derived, using the sufficiency conditions 

given in section 2.4. Because we ensure that the sufficiency conditions are met at 

each iteration, this algorithm proves to be quite successful and relatively more 

efficient. For this algorithm the conditions given by theorem 4.3.1.1 are valid, only 

some minor modifications are necessary to take into account the fact that the 

model is not provided to the algorithm, but the algorithm develops one itself.

Theorem 4.3.31

Assume that

1. Every point of the set C satisfies the re.( : conditions.

Z The set C is compact and convex.

3. The functional q'c( . ) is uniformly monotone on C with some constant 

a > 0 .

4. The iterative loop gains are selected such that the algorithm develops a

model such that

A <: 2a* - |a * 
f A* < a 1 Al 
4

(4.43)

(4.44)

where A is the Lipschitz constant of q on C and a*, At are as before

5. The considered is restricted in a manner
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a* k | AX 
o

Then

L There exists a solution V of the OCP

IL There exists such scalars ' ^2 • suc^ that 0< €^<0.5,0.5<
tC such that for every € € (Epf^ ^ie algorithm generates a sequence CM J 

which, converges to V.

The proof of this is again similar to that given for theorem 4.3.1.1 and is 

not given.

It should be noted here that-, given the formulation of the ALM-ISOPE, one 

could be under the impression that the properties of both the OCP and the model 

based problem should be the same, and as a result the algorithm should converge 

in one iteration. However, this is not the case, because the method is a form of 

system linearization about a given point. If, however the system is highly non-

linear the linear approximation need not be an accurate description of the system 

since then the higher order derivatives may have a larger role to play. This, then 

would lead to a difference in the properties of the two problems. Hence, it is 

likely that the algorithm performs more than one iteration. However, it has been 

found that this algorithm approaches the optimum much faster, as shall be seen in 

the following chapter, than the other algorithms.

For the ALM-ISOPE algorithm, the conditions for convergence given by 

theorem 4.3.3.1 are strict. It is possible to develop conditions which are weaker, 

and these are similar to those given by Brdysand Roberts for the MSTP (Brdys and 

Roberts (1987)) and use Zangwill's (Zangwill(1969)) Convergence Theorem A as the 

basis for proving the convergence. Before formulating these conditions let us 

define the mapping of the algorithm. We shall first define the mapping for each 

step of the algorithm, and the mapping of the whole algorithm is then a composition 

of the seperate mappings (Zangwill (1969)) :

Step I : is directly by the system input-output mapping.

Step II: Let C(V) 4 arg min [Q(C,F(C>]
CSC

Then step II can be described as

' For a given Vk find Ck such that Ck € C(Vk) '

(4.45)

Step IV: is concerned with the updation of the control set-points that is

We shall assume that the iterative loop gains change at each 

iteration, this means that every time the controls are updated

we select some sort of an optimum gain, so that the iterative 
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process is stable.
Lf L*

where € is the iterative loop gain such that 7 £ f < B(V)

where 7 > 0 , b(V) is an appropriately defined function of V.

Then the mapping is deifned by the following

C x ( e - e ) 3 (V,d) —> U(V,d) G 2 A and

v(V,d) = { V + cd : r < € < B(V) }

Then step IV can be described as :

' For given Vk and Ck find Vk+^ such that

vk+1 € u(vk ck - vkr

Then the kth iteration can be described as finding Vk+^ such that Vk+^ G H(Vk) ,

where II is an algorithmic mapping defined by

CSV —> n<V) G 2C

n = v r
ret

T is a point-to-set map which associates each point V G C a set

{(V, C-V) G CX(C-C) : C G C(V)}

Theorem 4.3.32

Assume that

1) The set C is bounded.

2) The functions G are convex and continuous.

3) The function qlz is Lipschitz continuous on C with a constant 8 > 0 , Le;

||q*z (C+h±) - q*z(C)|| < SJI^H (4.46)

4. The function qz<O is uniformly monotone on C with a constant b(V) > 0, Le;

fqVC+h) - qzXC) ]h £ b(V)||h||2 (4.47)

and b(V) is upper semi-continuous on C and inf b(V) > 0 
VGC

5. The iterative loop gains are such that

t  £ f £ B(V)

7 > 0 and B(V) is an appropriately defined function of V

(4.48)



and rand e are selected such that

1^7>0,fc>0

and
2 inf b(V) 

r + ^ ve.c.„.

then the algorithmic mapping is well defined on C.

IL There is atleast one subsequence of the sequence (Vk} generated by

Vk+1 € ntykj, and pOint of flAJ belongs to the set ft, where

no/’) is the algorithmic mapping

HL Each Vk satisfies real system constraints arid the following is satisfied

qtc/*1) £ qtc/) if / € ft for aUk = 0, 1, 2,

(4.49)

Proof

Due to assumptions i and 2 the set C is compact and convex. Due to 

assumption 4 the functions

exc g  <c,v) —> q(c,v) g  sr 1
A

are continuous on CXC and C is compact. Hence the mapping C(V) is well defined.
A

Because of the monotonicity assumption made in 5, C(V) consists of a single point 

for every V G C. Thus, C is a point-to-point continuous mapping, (Hogan(i973)). The
A

compactness of C and the continuity of C implies that C is closed on a compact set. 

Thus, the accessory mapping is closed on C.

Next, consider the mapping U. Since we have kif

the inequality of I, then it is easy to verify IK.) is well

b(V) > 0, and 7, e satisfy
C
defined. Now, we show that

Vi.) is closed at every point (V,d) G CX<C—C) such that d=0.

Let C 3 V —> inf b(V) G SR1
VGC

and V(Vk, dk) G yk = Vk + / dk-----> y
k-+oo

Therefore for a very large k, we have
ck _ - VkH . 119 - VII _ ,

lldk|| M "
thus y = V + f d

k Psince t  <. f <. B(V') and due to assumption, B(V) is upper semi-continuous, 

then

7 £ €k £ lim sup B(Vk) £ B(V) 
k->co
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therefore y 6 IXV, d) and consequently U is closed.

Then to recap we have a set C which is compact-, and thus C—C is also 

compact and consequently Cx(C—C) is also compact. We can then say that the 

algorithmic mapping II is closed at every point which is not a solution. We see that 
B(V> < i and t  > 0 , and C is convex, then IKV) € 2*“.

Then we can state that all the points generated by the algorithm are in a 

compact set C and the algorithmic mapping is closed outside an algorithm solution 

set.

We now prove the final assertion. Due to assumptions 3 and the convexity of

C, we have (Kantorovich and Akilov (1964)) :

q»(V) - q»(C) £ q'*(V) (V - C) - |||V - C||2 (4.50)

Now, we have C = V + f (C(V) — V) and r H B(V) where

therefore
2

q»(V) - q«(C) £ fq«z(V)(V - C(V» - ^||v - C(V)||2 (4.5i)

Now from assumption 4 and the convexity of C (Luenberger (1970)) 

q'c(C(V))[v-C(V)] £ 0 (4.52)

and we also have

[q'<(V> - q'€(C(V)](V - C(V)) £ b(V)||v-C(V)||2 (4.53)

Due to the definition of the model we have

qz«(V) = qzc(V) (4.54)

Then using (4.52), (4.53), (4.54) we get

qz*(V)(V-C(V)) £ b(V)|| V-C(V)||2 (4.55)

Using this in (4.51) we get

> r [b(V> - - C(V)F

since t  > 0 and 7 £ € £ B(V) and I we have

€ £ B(V) s ? inf b(V) - e £ j b(V) - e
8 V € C 8

=> y b(V) - €,8

=* b(V) - £ &S
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Using this (4.58) in (4.56) we get,

q*(V) - q*(C) £ TSe ||v - C(V)||2 (4.59)

ans since r > 0, 6’ > 0, t > 0, and || V — C(V)IF

then we have

q£(V) > q*(C)

=» q*(Vk+1) £ q*(Vk)

Q. E. D

It was stated that the MSTP algorithm will converge to the optimum, whether 

the OCP is convex or not (Brdys and Roberts(1987)). In -Fact, this is also true for 

the ALM-ISOPE, or for that matter any of the centralised ISOPE algorithms. It 

should be noted here that the only condition we impose on the system based 

problem is that the performance index be continuous. This is a standard assumption 

or else it would not be possible to establish the convergence of the algorithm. A 

stricter condition was posed on the model based performance index, in that it had 

to be monotone. This can be ensured always if the original performance index, 

Q(C,Y) is convex. This can be seen from the result of lemma 4.3.1.1 where the 

assumption of monotonicity was proved using a linear model.

4,4 CONCLUDING REMARKS

This chapter dealt with three aspects of the centralised adaptive 

algorithms, viz

a) Under what conditions does a given algorithm converge?

b) What constitutes the model-reality differences?

c) What is the significance of the modifier?

The convergence conditions had already been given for the MSTP and the AISOPE 

algorithms. An analysis of these conditions does not answer the remaining 

questions. To do this the conditions for convergence had to be made stricter. In 

general one can say that the stricter the conditions one imposes the more 

information we can get about the algorithm. Eventually, it may also be possible to 

come to some conclusions about the rate of convergence, as would be possible if 

the contraction mapping theorems of Ortega and Rheinboldt(1970), as was done by 

Tatjewski and Roberts (1987a) for the NL-ISOPE algorithm.

From the analysis presented in this chapter we can conclude that

a) The derivative differences,[Fzc(V,a)—K'*(V)J constitute the model-reality
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differences

b) The modifier can be interpreted in either of the following two ways

i) A parameter which quantifies the violations of the sufficiency

conditions by the models

or

ii) A compensator which compensates for the differences in the model

based performance index and the system based performance 

index.

These conclusions are of prime importance for, having once understood the 

model-reality difference, we can then ensure that the model has the necessary 

characteristics so that the performance of the algorithm is efficient. And hence 

the smaller the model-reality differences the more efficient is the performance of 

the algorithm. Then, the logical extension of this is the ALM-ISOPE algorithm, where 

at the current point there are no model-reality differences and hence should be 

more efficient than the MSTP algorithm. Also, understanding the function of the 

modifier has enabled us to understand the effect of the augmentations, and as a 

result the value of penalty factor fl, on the functioning the algorithm. It is in this 

context that we define the modifier as a compensating parameter rather than a 

parameter which quantifies the violation of the sufficiency conditions by the 

model.

In the next chapter we present a simulation study, so that the conclusions 

of this chapter can be verified. The simulation study is carried out using two 

example systems. One, an abstract example and the other, a more realistic example, 

a fuel gas mixing system, consisting of a vapouriser and gas mixer.
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CHAPTER & SIMULATION RESULTS FOR THE CENTRAL ISED CONTROL

STRUCTURES.

5.1 INTRODUCTION

In the preceeding chapters, techniques for salving the on-line optimising 

control problem were introduced. In chapter 3, both direct methods and adaptive, 

model-based methods were discussed, along with some of the advantages of using 

adaptive techniques relative to both the direct methods and fixed-model based 

methods. In chapter 4 the convergence properties of the algorithms were presented 

and the analysis was carried out in terms of :

a) The model-reality differences

b) The effect of and the properties of the modifier X

In this chapter the conclusions of chapters 3 and 4 will be verified 

through a simulation study, on two examples namely

a) Example 1 is an abstract system.

b) Example 2 is a Butane Fuel Gas mixing system.

The programs used for the computer simulation can be seen in appendix — A.

5.2 CRITERIA FOR DECIDING THE EFFICIENCY GF ALGORITHMS.

One of the common methods of assessing the performance of iterative 

algorithms is to compare the number of iterations needed by each algorithm to 

provide the required solution. However, this criterion is not a suitable one for 

algorithms which are to be implemented on-line. Take for example, the direct 

technique, here we find that although the number of iterations are few, the number 

of simultaneous set-point changes are very large. This is because we have to 

perform linear searches and every time the performance of the system has to be 

evaluated there is a need for measurements from the system. Thus, it is the number 

of set-point changes which is important here, for the numerical computations take 

very little time compared to the time required for the system to settle down to a 

steady-state.

If we were just comparing the direct technique with an adaptive algorithm 

then the comparision of the set-point changes would be sufficient . However, if on 

the other hand, a comparison of two adaptive algorithms, of the relative 

efficiency of an algorithm using two different models is made, then this criterion 
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is not sufficient. For example, if we have a given system, its model and 

performance index? then the iterative behaviour of each algorithm is bound to be 

different because of the nature of the modifications made to the problem or the 

Properties of the models as the case may be. The iterative behaviour of algorithms 

can be observed by paying attention to :

a) The stabilty of the algorithmic/iterative process.

b) The number of set-point changes.

Both these features are interconnected. The stability of the algorithmic process 

can be defined by the iterative loop gains used in the relaxation schemes. A high 

gain signifies a high degree of stabilty of the algorithm for that example and 

would result in a reduced number of set-point changes. A small gain value indicates 

the reverse. The values of these gains depend on the model-reality differences. 

One immediately realises that the larger the model-reality differences then the 

smaller the gains to be used and hence the larger the number of set-point changes. 

If a very large gain is used, in order to reduce the set-point changes, then it is 

possible that the algorithm would move away from the solution or would tend to 

oscillate about the solution and hence a compromise has to be found between the 

desire to reduce the number of set-point changes and the stability of the 

algorithm. Hence, we can say that both the iterative loop gains as well as the set-

point changes are characteristics of the algorithm. Thus, when comparing two 

adaptive algorithms, the criteria one has to take into account are the number of 

setpoint changes and the value of the gains.

5,3 EXAMPLES

5.3.1 Example 1

The first example is an abstract one and has 5 control set-points, and 3 

outputs. For purposes of simulation the real process is represented by a system 

of equations:

— — ” -

i —<2 4- 0.15CP 0 Yi» 1.3CX - C2

-1.2 1.0 3.0 ^2* = C3 — C4 4- C42

1.0 -1.0 1.0 2.0C4 - 1.25C£ 4- 0.25C4C£
-
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Performance index--
5

Q = (Yk  - 1.0)2 4- 2.0(Y2< - 2.0)2 + (Y3* - 3.0)2 + 2>i2
i=l

For this system 3 different models were used namely :

a) Linear Model I

1 -2 0 Yi Cl — c2 ttl

-1 1 3 y 2 =
c3 — c4 + a2

1 -1 1 y 3 2.OC4 - c5 a3

-

b) Non-Linear Model I

*

1 3 0 Yi Ci - c2

-1 1 -1 y 2 = C3 -
C42

+ a2

1 -1 1 Ys 2.OC4 -- c4c5 «3

-

c) Non-Linear Model II

- ■

1 -(1.5 + 0.1Ci) 0 Yi Ci -- C2 a±

-1 1 6 y 2 = C3 -- C42

+ a2

0.9 -1 1 Yg 6.OC4 - C4CS

- -

The simulations were carried out using all the models, from the same 

starting conditions which is:

C = (CiP ,i = 1,2 A j = 1,2,3

= C 0, 0, 2, 2, 0 }

5.3.2. Example 2

The second example is a fuel gas mixer system, operated by ICI pic, and is 

shown in figure 5.1. This is a part of a large olefine plant, and as can be seen, the 

system effectively consists of two sub-systems, which are treated as a whole. The 
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systems are ■

a) The Vapouriser, which receives liquid butane to be converted into vapour

b) The Gas Mixer, where the Butane is mixed with Hydrogen, Methane, Ethane

and Propane each of which is present in the -Flows Qe, Q7, Qs, Q9 and

which enter as constant flows in fixed proportions to provide a fuel gas 

mix to be delivered to a furnace.

The aim of the regulatory control in the system is to supply the furnace 

fuel gas in the pressure range 60 psi — 90 psi. Two secondary level control loops 

for steam condensate and liquid butane also exist. In addition, two relief valves 

are connected to the gas mixer so that fuel gas can be rapidly taken from or 

added to the gas mixer during unexpected conditions.

The real system is represented by the following relations. For the 

vapouriser, the heat transferred from the steam to the butane is considered to be 

proportional to the differences in temperature between the steam and butane and 

is also proportional to the areas of the tubes in the steam side and the butane 

side. This area is assumed to be proportional to the difference in the levels of 

the steam condensate and the liquid butane. Thus, the relations are ( for notations 

and symbols see appendix - B),

Q = (TJt - Tr5p) (L^p - Lst) (5.1)

(5.2)

Then a mass balance between the liquid butane inlet and outlet flow gives

dMr5p 
dt = q45 — qi2 (5.3)

The energy balance for the vapouriser, and pressure/temperature relations,

provide the following:

dt ( M$Cp$ + Mr<jpCpt) = Q — h/fiqi2 — — T45)Cpi (5.4)

P,ap = 22166 Trap - 53.38 (5.5)

Similarly, for the gas mixer concentrations, where the mixer is treated as a single 

volume, the mass balances and the internal energies of the gas are :

x2; = /=1,5 (5.6)
SM/
J=i
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x
dfr12 _
dt “

Clfi

Q?

Cl8

qg

Qi 2

— ( d£3 + C|27^ ~2 (5.7)

= ^L2^P^rip + —

i=i

(^23 + ^27^2 ^21Cp (5.8)

T2 = Eg
M2iCr

(5.9)

_<m2V2)
P2~^r (5.10)

02 = (5.11)

q12 = Ki2(Prap — P2)

q; =

(5.12)

(5.13)

where x2 , M2 , and E2 denote the concentration, mass, and internal energy of 

the gas mix in the mixer.

These equations, together with the three control loops which consists of 

three term controllers, the measurement transducers and valve actuators provide 

the process description. The measurement transducers and actuators were modelled 

as first order lags.

Equations (5.1) to (5.13) represent the mapping K< described earlier, where 

the output vector Y< is given by

Y> = ( Ckcntf ^12 • ^23 3 (5.14)

and the control vector is given by

C = ( LJt , LKip , P2} (5.15)

The performance of the system is based on the following index

Q = 1200(Lrap - 0.15)2 + 250(LJt - 0.3)2 + 0.15(P2 - 70)2 + 4q12 + 10qr<?ft</

- 15q23 + 128 (5.16)
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The above system was simulated using two models. The -first model had a 

similar structure to that of the above and consisted only of the mass balance and 

heat transfer equations. The difference here was that the constants TJt , , hZf2>

> h/<T^ and Cpi> varied by 5% from those of the process. Such variations are likely 

to occur in practice due to scaling, heat losses and other factors. The parameter 
estimation procedure is carried out in accordance to the relationships already 

established, and the -following were the parameters estimated:

a = C K? , Kj _2 > ^23 — di2^ 3

The second model used -for this system was a linear model of type

Y = W C + a

3X3where W G JR has the following elements

-8.0 8.0 -4.0 

W = -8.0 8.0 -4.0 

(5.16)

(5.17)

(5.18)

-1.0 1.0-0.001

Here the parameters a are different from those given by (5.16) and 

represent the differences between the real outputs and the model outputs and are

a = , a2 • as 3 (5.19)

From the above model one immediately realises that the effective gradients 

of the model are constant throughout the algorithmic procedure and the physical 

structure of this model is totally different from that of the real system.

5.4 SIMULATION RESULTS

Both the two examples described above were simulated using the PRIME 750 

computer and where necessary the NAGF (Numerical Algorithms Group) Library was 

used.

5.4,1 Example 1

The first example was using the three models already mentioned. In

all the cases the initial conditions were CO, 0, 2, 2, 01

Table 5.1 summarises the results of noise free simulations using Powell's 

conjugate direction optimisation technique. This was used directly, since whenever 

the performance index was to be evaluated, system measurements were used. The 

simulations confirmed the earlier conclusions that this method could prove to be 
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difficult- tc implement as the number of simultaneous set-point changes required is 

very large —2204 in this example. This number is prohibitive and the whole process 

could take a very long time as in reality allowance has to be made for the process 

to sufficiently settle. Also, if there is any presence of measurement noise then 

the whole algorithm is likely to fail to converge. Also in the same table a summary 

of the results obtained using a fixed model is given. The degree of sub-optimality 

when using the fixed model, which in this case was 9.5% , is clearly model 

dependent. This clearly proves the case for using model based adaptive 

techniques.

The results obtained using the MSTP algorithm are shown in Table 5.2. This 

table summarises results using the various models after convergence was 

obtained.Table 5.3 gives the summary of the results obtained using the ALM-ISOPE 

algorithm. Here of course, as mentioned earlier, we do not have to provide an a 

priori model to the algorithm as it develops a linear model on its own. The relative 

rate of convergence using the various models with the MSTP algorithm and the 

ALM-ISOPE algorithm can be seen in Figure 5.2 where the variations at each 

iteration in the objective function are plotted. Figure 5.3 shows the variations in 

the parameters estimated for the three models at each iteration. Finally, Figures

5.5 to 5.7 show the variations in the derivative differences (F'< — K») with each 

model and Figure 5.8 is a consolidation of these three figures and Table 5.4 gives 

these differences when final convergence is obtained.

5.4.2 Example 2

The initial condi Lztsvfcfor the second system were

C = ( 0.06, 0.08, 60.5} (5.20)

and , at all times after any changes in controls, sufficient time was allowed for a 

new steady-state condition to come into being before measurements were taken.

The final converged results of the simulations for the various techniques 

are shown in Tables 5.5 to 5.7. In all cases, the relief valve system never came into 

operation. Table 5.5 summarises the results obtained using the direct technique and 

as with the previous example it is clearly seen that the number of simultaneous 

set-point changes are high. Table 5.6 gives the summary of the converged results 

using the two models and finally Table 5.7 is for the ALM-ISOPE algorithm. Figure 

5.9 shows the variations of the objective function using the two models with the 

MSTP and the ALM-ISOPE algorithms. Figure 5.10 is similar to that of Figure 5.8 in 

that it shows the variations of the derivative differences at each iteration using
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the two models.

Table 5.7 summarises the results obtained using the AISOPE algorithm with 

the first example and the Non-linear Model I.

5,5 DISCUSSION OF THE RESULTS

One of the primary aims of any simulation exercise is to verify the 

theoretical results obtained. It was mentioned in the previous chapter that the 

derivative differences (Fzc — Kt) consitute and define the model-reality 

differences more than just the free parameters which are estimated through 

solving the parameter estimation problem.

Take example 1. Here we find that although the parameter estimates 

obtained using Linear Model I when convergence is obtained, see Table 5.2, do not 

differ greatly from those obtained using the Non-linear model II, the number of 

set-point changes made using Linear model I is much less than those for the second 

model, and so also with Non-linear model II. If, now, we compare the derivative 

differences (Table 5.4 and Figures 5.5 to 5.8) we see that there is a large variation 

in the derivative differences. Using linear model I the differences are smaller 

than those when using the other models. This can be seen further with the results 

obtained with the second example. The derivative differences, for the fuel-gas 

mixing, using the linear model were smaller than those when using the model where 

the physical structure of the model was the same as that of the system (figure 

5.10). It was stated in section 5.2 that the iterative loop gains define the stability 

of the algorithmic process. This can be verified from the results obtained, where 

we find that the value of the iterative loop gains decreases as the model-reality 

differences increase.

We can then conclude that the smaller the derivative differences the better 

the rate of convergence and the better are the stabilty properties of the 

algorithmic process. This is further reinforced by the value of gains which could 

be used using various models with the two examples. It can be seen that the 

smaller the derivative differences the higher the gains we could use, and hence 

the greater is the stability of the algorithmic procedure.

If, we then extend this concept, as mentioned in chapter 4, that the smaller 

the derivative differences the better the iterative process then using the ALM- 

ISOPE algorithm we should get the best results —both in terms of the rate of 

convergence, and hence the number of set-point changes, and the values of the 

iterative loop gains. This inference is confirmed through the simulation study 

carried out on the two examples. It is seen that with the first example we could use 
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unity gain and the algorithm converged in 5 iterations. And with the second example 

the gains used were again unity and the algorithm converged in 5 iterations.

In the last chapter we gave two int-erpretaions to the modifier X, namely that 

we either interpret it as

a) A parameter which quantifies the violations of the sufficiency conditions

(see section 2.4)

or

b) As a parameter which quantifies the differences in the properties of the

model based performance index and the process based performance 

index.

The simulations carried out with the MSTP and the ALM-ISOPE algorithms 

verify the first interpretation. The second one can be verified using the results 

obtained with the AISOPE algorithm.

If we refer to Table 5.7, it can be seen that augmenting the performance 

index by a quadratic penalty function, the algorithm behaves in a better fashion. 

We see that the number of iterations are reduced and higher iterative loop gains 

can be used. We see that the model used (Non-linear model I) has not been changed 

in any manner at all and hence the derivative differences remain the same. Then 

using the penalty function has some effect on the algorithm. It was shown in the 

last chapter that the modifier X can be written as a function of a(a) and a* :

X = f1(a(a)) - f2(a»)

This was for the MSTP and the AISOPE algorithms. However with the AISOPE 

algorithm we now have to add the effect of the penalty function. If, then, by A we 

represent the modified version of X taking into account the penalty function then 

we get the following

A = fi(a(a)) — f2(at) + 20

We then see that the penalty factor 0 in fact augments the model based 

performance index so that its monotone number and the Lipschitz constant (see 

Theorem 4.3.2.1) are closer to that of the process based performance index. Hence, 

we can also interpret the modifier in the second way.

5,6 CONCLUDING REMARKS

From the results of chapter 4 and those obtained in this chapter, we can 

conclude the following :

a) that, apart from the estimated parameters, the differences between the 
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model based derivatives and the process based derivatives represent

the model-reality differences.

b) that the modifier X quantifies the differences between the purely model

based optimisation problem and the process based optimisation problem.

c) that, even though the model may resemble the process physically (ref:

example2, model I) a model whose derivatives are closer to that of the

process gives better results, even if structurally incorrect.

d) that the stability of the iterative process depends on the model-reality

differences, and hence on the derivative differences.

From conclusions (a) and (c), we can draw a subsidiary conclusion that if the 

derivatives of the model are the same as those of the process, then there is 

structural equivalence between the two.

So far, we have studied the centralised control structures. In the following 

chapters some decentralised control structures are also studied and later some 

generalisations are made for both the centralised and decentralised control 

structures.
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Table 5.1 Results of Model and Direct Optimisation (Example 1)

MODEL SYSTEM

FUNCTION VALUE 9.74041 8.899984

ITERATIONS 11 28

SET POINT CHANGES NIL 2204

SUB-OPTIMALITY X +9.5X 0Z

Table 5.2 Results of Modified Two-step Approach Using Different Models

(Example 1)

LINEAR MODEL NON-LINEAR MODEL I NON-LINEAR MODEL II

PARAMETERS

<1 -0.288050 -0.287674 0.545366

<2 0.362133 0.297724 -0.208757

s 0.118695 0.573585 0.343833

FUNCTION VALUE 8.899984 8,900207 8.901966

ITERATIONS 27 150 240

SET POINT CHANGES 162 900 1440

ITERATIVE LOOP GAINS 0.4 0.2 0.1
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Table 5.3 Results of Approximate Linear Model Approach (Example i)

FUNCTION VALUE 8.899983

ITERATIONS 5

SET POINT CHANGES 25

ITERATIVE LOOP GAINS 1.0

Table 5.4 Derivative Differences When Convergence is Obtained (Example i)

LINEAR MODEL NON-LINEAR MODEL I NON-LINEAR MODEL II

- aylt 0.504893 0.5044164 -1.7655088

- £^2*
1. ScT

0.5798188 0.5796372 -1.4792441

8C(
0.0752295 0.0752208 -0.0302481

*C2 Scl
0.0134622 0.0135680 1.857903

-0.0358647 -0.0357536 1.6250462

-0.0493269 -0.0493216 0.0424178

-0.0270148 -0.0270400 -0.9853911

-0.0033655 -0.0033920 -0.7627929

0.0236493 0.0236480 0.0491888

_ as,. 
ac<t

0.3744024 0.6807456 3.6513370

K4 btz,
0.1201814 0.2733653 3.0626024

... 3c 4
-0.1277567 0.2091646 0.5815669

- ab,» 0.2518604 1.6443657 1.5300769

2c$
0.1634940 0.8596336 0.7614149

_9Sjt
dc<

0.1462462 0.3781696 0.3615372
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ITERATIONS
Figure 5.3 Parameters Estimated Vs Iterations (Example i)
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figure 5.5 Derivative Differences Vs Iterations (Example 1; Linear Model)
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Figure 5.6 Derivative Differences Vs Iterations (Example 1; Non-Linear Model I)
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Table 5.5 Converged Results of Direct Optimisation (Fuel Gas System)

FUNCTION VALUE -199.4

ITERATIONS 5

SET POINT CHANGES 356

Table 5.6 Converged Results of MSTP Using Different Models (Fuel Gas System)

NON-LINEAR MODEL LINEAR MODEL

PARAMETERS

<1 12.95 -10.10013
3.567 9.02210

S 5.764 0.99239

FUNCTION VALUE -199.4 -199.4

ITERATIONS 150 7

SET POINT CHANGES 600 28

ITERATIVE LOOP GAINS 0.1 0.9

Table 5.7 Converged Results of ALM-ISOPE (Fuel Gas System)

FUNCTION VALUE -199.4

ITERATIONS 5

SET POINT CHANGES 15

ITERATIVE LOOP GAINS 1.0
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Table 5.8 Results of the AISOPE Method (example 1)

LINEAR MODEL NON-LINEAR MODEL I

FUNCTION VALUE 8.899 8.999

ITERATIONS 24 75

SET POINT CHANGES 144 450

ITERATIVE LOOP GAINS 8.5 0.4

PENALTY FACTOR p 2.0 2.0
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CHAPTER 6 DECENTRALISED CONTROL STRUCTURES

6.1 INTRODUCTION

So far, we have studied centralised control structures and their associated 

algorithms. In centralised control all the information needed to make a control 

decision is taken to and processed at a central location. However, there are 

essentially two difficulties in solving problems of large scale systems using the 

techniques developed so far. The first is numerical, and arises due to high 

dimensionality caused by an increase in system dimensions. That is, there are too 

many control decisions to be made. The second is that there may be a lack of 

centrality in a system. Then, consider a system having the following 

characteristics:

a) A large system consisting of a number of sub-systems and a large number

of controls (high dimesionality).

b) The whole system is spread over a large area. That is, there is a

geographical dispersion of the sub-systems so that it is not possible to 

bring all the available information to a central point so that a control 

decision can be taken.

It may then be necessary to process the information, so that a control 

decision can be taken, locally. This means that we need to establish a 

decentralised control structure, whereby each sub-system has its own local 

decision unit taking the control decision locally. Of course this decision has to 

take into account the effect it has on the other sub-systems. This, then means that 

there a need for some form of coordination between the decisions taken by the 

separate local units. The coordination influences these decisions and effectively 

prevents conflicts between the individual decisions.

The lack of centrality arises in many systems, such as the gas and water 

systems, large industrial systems distributed all over the world, where due to the 

geographical dispersion, the cost of centralising the task of taking a control 

decision may become prohibitive. Thus, sometimes it may be found that establishing 

a decentralised control strategy may be the only answer to effectively control the 

system.

The decentralised control problem, then, arises when a system is acted upon 

-96-



by a number of different controllers which are not able to communicate with each 

other on-line or are not in a position to process all the information available to 

them. However, it is assumed that the decision making is cooperative, that is the 

controllers may use some a priori rules so that some overall system objective is 

achieved (Singh, Titli and Malinowski (1983), Findiesen et al (1980)1

Established algorithms for solving the decentralised problems (Findiesen et 

al (1980), Singh and Titli (1978), Cohen (1978)) are based on 'decomposition and 

coordination' techniques. These use fixed models, and in general, have been found 

to produce sub-optimal results. These techniques when integrated with the ISOPE 

(MSTP) technique produce a whole family of algorithms which are all classified as 

ISOPE algorithms (Brdys and Roberts (1986), Michalska et al (1985), Ellis et al 

(1986), Lin et al (1987a), Tatjewski et al (1987) .

The ISOPE algorithms for solving the decentralised control problem can be 

classified as :

a) Dynamic Coordination algorithms (Brdys and Roberts(1986a), Michalska et

al (1985), Lin et al (1987a)).

b) Passive Coordination algorithms (Fills et al(1986), Kambhampati and Ellis 

(1987)).

This classification comes about because of the type of coordination task 

involved in each structure. Algorithms which use the techniques of 'decomposition 

and coordination' in conjunction with the ISOPE techniques have dynamic 

coordination. This is because they have to solve an additional coordination 

problem in an iterative manner so that the final solution is optimal. This additional 

problem arises because of the manner in which the problems, for these algorithms, 

have been formulated. This, then, leads to the necessity of solving the dual 

associated with it. It is in this sense that we term these algorithms dynamic (Ellis 

et al (1986)). Of course, all these algorithms do not have the same behavioural 

Pattern, that is the convergence rate is different. Of these algorithms the one 

selected for study here is the algorithm which uses both input and output feedback 

information (Brdys and Roberts (1986a), Chen (1986)) as this algorithm has been 

seen to be the most efficient so far (Roberts et al (1988)).

It was noted in the previous chapter, concerning the centralised algorithms, 

that there is a problem in selecting appropriate iterative loop gains. These gains 

are usually selected on a trial and error basis. However, Tatjewski and 

Roberts(1987a) developed an algorithm which uses a precise Newton-like step for 

updating the controls. The whole control structure for this algorithm and the
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problem formulation remains the same. Only the control updating mechanism changes. 

This, of course, leads to an increase in the off-line calculations but there is an 

advantage here in that the algorithm is not very sensitive to the augmentation of 

the performance index nor is it sensitive to any non-linearities, present in the 

system. Tatjewski and Roberts (1987b) have developed an algorithm, similar to the 

centralised Newton-like algorithm, for solving the decentralised problem. This 

algorithm retains most of the basic features of the dyanamic coordination 

algorithm mentioned above. The difference is in the control updating mechanism.

If we extend the MSTP algorithm so that the decentralised problem can be 

solved, we find that there is no additional coordination problem to be solved. The 

sole task of the coordinator is to evaluate the modifier, X, and this is done using 

elimentary matrix operations. This, then, would avoid the need for sophisticated 

mathematical computations to solve the coordination problem. Ellis et al (1986) gave 

an algorithm which incorporated these concepts. However, there was one drawback 

with this algorithm. It needed two models : an output model and an interaction model. 

The interaction model is needed to take into account the interactions taking place 

between the sub-systems. This additional requirement can be avoided if we make use 

of the information from the system more efficiently. Here, we can use the 

interaction input measurements directly in the optimisation problem. This has a two 

fold effect. Namely, the number of independent variables in the problem is reduced 

and therefore the numerical complexity. Also there is no coordination problem to 

solve. Brdys and Roberts(i986a) were the first to give an algorithm which uses 

these concepts. However, the interpretation they gave for their resulting control 

structure is that it was completely decentralised with information exchange 

between the sub-systems. Such an interpretation would be difficult to implement on-

line. If, however, we now add a coordinator, whose task it is to evaluate the 

modifier and pass the information to the individual decision units, it would then be 

easy to implement the algorithm on-line. Here, we see that the coordinators task is 

passive.

In this chapter, we shall describe dynamic and passive forms of the ISOPE 

algorithms. In the dynamic case, the algorithm will be described with relaxation and 

Newton-like schemes for updating the controls.

It should be noted here that for these algorithms we shall not make any 

distinction between the augmented case and the unaugmented case. This is so 

because augmentation does not make any difference to the analysis, the control 

structure obtained or the algorithmic structure. All one has to do, to obtain the 

unaugmented case is to set the penalty factor fl equal to zero and leave 

everything else the same. The analysis of the properties of these algorithms and 
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the simulation results is presented in the -following chapters.

6.2 THE DECENTRALISED ALGORITHMS

In chapter 2 we made the assumption, while formulating the OCP, that the 
performance index is additively separable. In fact, it is this assumption that 

enables us to develop decentralised control structures. For, when the global 

performance index is split into different sub-problems, each sub-problem 

corresponds to each sub-system. This particular property has been used by Singh 

and Titli (1978) and Findeisen et al (1980) to develop a whole range of algorithms. 

However, these algorithms use fixed models, and in general would not produce 

optimum results. It has, however, been found that optimal results can be obtained 

when we combine the concept of the MSTP with these algorithms (Brdys and 

Raber ts(l986a), Chen (1986), Abdullah (1988)). When the combination is made, it has 

been seen that a whole family of algorithms are obtained, each of which produce 

optimal results. We have already classified these algorithms as algorithms with 

dynamic coordination and algorithms with passive coordination.

To recap then, see chapter 2, the OCP is as follows:

min Q(C,U,Y)
C,U,Y

s.t

Y = F*(C,U) (6.1)

U = HY

G(C,U,Y) £ 0

N
where Q(C,U,Y) = Up Yp, and the adaptive model based problem, where the
problems of system^ optimisation and parameter estimation are integrated into one 

problem is then as follows :

min Q(C,U,Y)
C,U,Y

s.t

Y = F(C,U,a) (6.2)

F(C,U,a) = K*(C)

U = HY

G(C,U,Y) £ 0

The separability of the problem into N different sub-problems, corresponding to N 

different sub-systems, is still maintained even while using the problem given by 

(6.2). The detailed description of this separation is described later. It is this 

problem which is used in describing the three algorithms in this chapter.
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6.2,1 Algorithms with Dynamic Coordination

Here in this section, the algorithms with dynamic coordination are derived. 

It has already been mentioned that the difference between the relaxed algorithm 

and the Newton-like algorithm is only in the mechanism for control updating. Hence, 

we shall derive the general control structure for both the algorithms, together 

and later describe the updating scheme in detail.

Notice that in the problem described ifu equ (6.2) only the output feedback 

information is used in the problem. If we use the total system information available 

to us, we can transform the above problem into the following (Brdys and Roberts 

(1986a)):

min Q(C,U,Y)
C,U,Y

s.t

Y = F(C,U,a) (6.3)

U = HY

F(C,HKt(C),a) = K*(C)

G(C,U,Y) £ 0

We now have to transform this problem into its equivalent expanded form, by 

introducing the relevant new variables and augmenting the performance index with 

the relevant quadratic penalty functions. Then if, as before, we introduce new 

variables V € SRrt, V = C into the problem, and append the performance index by the 
following function, p -(llV—C||2 + ||U—HKt(V)[j2J, we get the following equivalent 

problem:

min q(C,U,a) + p (|| V-C||2 4- ||U-HK*(V)||2}
C,U,V,a ' '

s.t

U = HY (6.4)

F(V,HK«(V),a) = K*(V)

g(C,U) £ 0

V = C

where as before q(C,U,a) = Q(C,U,F(C,U,a)) and G(C,U) = g(C,U)

An analysis of the first order optimality conditions for (6.4), in a similar 

manner to chapter 3, (Brdys and Roberts (1986a)) would give an equivalent problem 

which is composed of the following three sub-problems:

Parameter Estimation Problem (DCPEP)

F(V,HK*(V),a) = K«(V) —) a (6.5)
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Modified Optimisation Problem (DCMOP)

min { q(C,U,a) - XTC + PT(U - HF(C,U,a)+ 0 (||V-C||2 4- }
C,0

s.t (6.6)
g(C,U) < 0

where X is the modifier

The vector P € is known as the price vector, which is obtained by

solving the dual of (6.4) in the coordinator and compensates for the

interactions between the various sub-systems.

Coordination Problem (DCCP)

U = HF(C,U,«) (6.7)

V = C (6.8)

Evaluate the modifier X, given by

X = [ Fzv(V,HK»(V),a) - Kzt(V) ]T [ QyWK^V^FCV^K^V^a) - HTP ] (6.9)

6.2.1.1 Decomposability and the resultant control structure

Now, let us consider the decomposability of the DCMOP. The function which is 

to be optimised consists of four different components. Let us then consider each 

of these parts and consider the decomposability of each:

a) The function q(C,U,a) is decomposable into the N different sub-functions, 

because of the assumption of additive separabilty.

b) The function X^C, is decomposable, and can be wfi^aas follows

N
XTC = ^XiCi (6.10)

i=l

c) Similarly the function P^(U — HF(C,U,a)) is also decomposable. This can be 

written as

N N
PT(U - HF(C,U,a)) = S( PiUi ” ^HijF(C,U,a)) (6.11)

i=l j=l

d) Finally the last function, which is a quadratic funciton is easily 

decomposable, for



(6.12)

Of course the parameter estimation problem is also separable into its 

different problems, each corresponding to a sub-system. Then the problem for the 
i^1 Local Decision Unit (LDU) , for a given Vp ap and Xp is as follows*.

Parameter estimation problem:

Fi<Ci-UW = Yti (6.13>

The modified optimisation problem:

min

g/Cy, up $ o
(6.14)

The overall control structure is shown in figure 6.1

6.2.1.2 The algorithmic structure

So far the problem formulation is common to both the relaxed and the 

Newton-like algorithms. However, now the difference in these algorithms occurs 

because of the way in which the controls and the price vectors are updated. 

However, the general algorithmic and control structures remain the same for both 

the algortihms. The algorithmic structure then is as follows:

STEP I : Select C°, U°, P°

select $ > 0 ,where £ is the accuracy needed.

Set k ♦- 0

Set Vk = Ck

STEP II : Apply the controls Vk to the system and take measurements and

evaluate the parameters a

STEP III *. Apply further perturbation about V and take measurements to

obtain finite difference approximations to KZ*(V)

STEP IV : Evaluate the modifier given by (6.9)

STEP V : Solve the DCMOP to obtain Ck+i and Uk+i

STEP VI : Check IF Uk+1 = HF(Ck+i,Uk+1,ak) and || Vk - Ck+1|| < £ THEN STOP

-102-



ELSE

> A PSet Vk = Ch (6.15)

Update price vector P'

GO TO STEP II

6,2,1,3. Relaxed Algorithm

IT the algorithm is implemented in the manner described above, it is likely 

that the iterative process will be unstable (See Chapter 5). In order to introduce 

an element of stability into the algorithm, a scheme known as under-relaxation 

(Cohen (1978)) is used. Here, instead of going the whole length in updating controls, 

only a small step is taken. Then (6,15) is replaced by the following:

(6.16)

where and 0 < €v and is termed the iterative loop gain.

The interactions are taken into account by the price vector which needs to 

be updated by the coordinator at the end of every iteration. Here we use a simple 

gradient type mechanism to do so :

pk = pk-1 + Qk _ HF(ck,0k,ak) j (6.17)

where €p > 0 and

6.2.1.4 Newton-Like Algorithm

In the relaxed algorithms the selection of the scalars 6v and is done by 

trial and error. This, then, would pose a problem while implementing the algorithm 

on-line. The Newton-like algorithm does away with the need for selecting these 

scalars by defining an exact step lenght to take. Of course the computational 

complexity would increase, but this is offset by the fact (Tatjewski and Roberts 

(1987b)) that this algorithm converges at a faster rate then the other algorithm. 

Also, the algorithm is less sensitive to the non-linearities in the system. There is 

a definite advantage if the performance index is augmented by a quadratic penalty 

function. However, we cannot define the exact value for the penalty factor p. It is 

found that as the value of this factor increases the performance is definitely 

bettered but beyond a certain value the performance of the algorithm deteriorates. 

The Newton-like algorithm solves this problem, for whatever be the value of the 

Penalty factor the performance of the algorithm does not deteriorate.
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The updating of both the controls and the price vector can be viewed as 

solving the following operator equation:

'F(V.P) = V - C(V,P)
U - HF(C(V,P),U(V,P)a(V))

(6.18)= 0

let t(C,U,a) = U - HF(C,U,a)

Then the Newton-like updation scheme for solving (6.18) would be:

Vk+i Vk — Rz(vk pk)]-i k A k kVK - C(V,P)
pk+1 pk t,* '* z 1 _t(C(VkPk),U(VkPk),a(Vk))

k k provided 4'Z(V ,P') is non-singular.

For purposes of notational simplicity, C(Vk,Pk) is replaced by C; U(Vk,Pk) by U 

and a(Vk) by a

(6.20)

where X = (C,U) = (CpUpCg^/...... ,C^,Ufq). It is important to note the ordering here.

Let

D* = Fzv(V,HK1(V),a) - KZ*(V) (6.21)

zt = c .....,vN,u<N)

(6.22)

°nNx(n-nN) • 1

UZ<N(V)

U< = HKf(V)

£„ = A'1 - A'

9a is the set of constraints which are active.

(6.23)

A = Lzzxx(X,a,P,Ai) + X)I (6.24)
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(6.25)L(X,a,P,M> = q(C,U,a) + PTt(C,U,a) + MTg(C,U)

X = (Xp OiXmi,................... , XN, OiXm^) (6.26)

A A A

Now, for sake of notational simplicity we shall denote X(V,P) by X and a(V) 

by a.

The first order optimality conditions for DCMOP are
q'x(X,a)T 4- p(X-Z») -f.tzx(X,«)TP - X + g'J/2 = 0 (62?)

9a = 0

Theorem 6.2JL.4J.

Assume that

(1) The strict complementarity condition is satisfied at the optimal point

X=(C, U) of the OCP

(2) The constraints G(X) 0 are regular at the optimal point.

Then, provided fl is sufficiently large, there is a neighbourhood N(V, P) of

the point (V, P) such that for each (V, P) €• N(V, P) the solution of the set of 
A A

equations (6.27) is a locally unique minimising point-multiplier pair (X, lij for the
A

optimisation problem (6.6). Moreover X(.) is continuously differentiable, and

X = + Xzr - ' • -tzx(X,a)T + XP) (6.28)

Proof

The Jacobian matrix of the set of equ (6.27) with respect to X and Ma as

dependent variables,

J(X,a,P,M>

is

Lzzxx(X,a,P,M) + fll
9'a

(6.29)

where all the components of the vector M which are not contained in Ma are equal 

to zero. Let I I be the smallest eigenvalue of the matrix LzzxX(X,a,P,M). Then it can 

easily be shown that the Jacobian J(X,a,P,M) is non-singular provided £> > I u* I. The 
~ A a
Jacobian is non-singular iff the set of equations J(X,a,P,M)=O has only the zero 

solution s = 0. Suppose s # 0. Then denoting s = (t,w), we have

At + 9zaTw = 0 (6.30)

g^t = 0 (6.31)
Suppose t # 0, then multiplying (6.30) by t^ and using (6.31) we get

tTAt = 0

which is a contradiction, since p > I I and thus the matrix A is positive definite. 
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Thus t = 0, then gz^w = 0 also implies that w = 0. Hence the Jacobian J(X,a,P,ll) is 

non-singular.

We can now apply the implicit function theorem to (6.27), and restricting the 
A

analysis to such a neighbourhood of X that changes of activity of the constraints 
Z% A A A

do not occur. Thus, there are neighbourhoods Nj/V, P) and N(X, such that
(X(V,P),Ua(V,P)) € N(X, if (V,P) € Nx(0, P) and the mappings X(.), &(.) are unique,

A A

continuous and continuously differentiable in Nj/V, P). Since all elements of the
A A

matrix Lzzxx(.,.,„.) are continuous functions of (V, P) in N/V, P), then so also are its 
A A ___ ___ Z% A

eigenvalues. Let N(V, P) = int N, where N € NX(V, P) is some closed subset satisfying 

(V, P) € int N, and denote

where P), j=i, 2, 3, •••, n, are eigenvalues of LzzxxG.>.J. Then, for /) > 0, the
A /\

Hessian matrix A of the performance index is positive definite at each (X,

(V, P) € N(V, P), and the second order sufficient optimality conditions are satisfied 

at these points.

It follows from the implicit function theorem that

■J(X,a,P,/l).

0

ezx(X,a)T - V

(6.32)

Evaluating the inverse of the Jacobian in terms of A and g5 we get (6.29).

Q. E. D.

We can simplify (6.27) further. Now we have

qzx(X,a) = Qzx(X,F(X,a)) + Qzy(X,F(X,a))Fzx(X,a) (6.33)

then
qzzxa(X,a) = Qzzxa(X,F(X,a))F'a(X,a) + Fzx(X,a)TQzzYY(X,F(X,a))Fza(X,a) +

+ SQ'y^Xa VF^X^’j)^ (6.34)

also \'P = -D,THT (6.35)

Now

(6.36)

m
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Ajl CV) 4- A2(V,P) + A3(V,P) (6.37)

where the arguments of’ Q have been omitted for clarity. Now to evaluate

(6.37) second derivative information is needed. Thus there is a need for more 

information than what is already available from the ISOPE structure. This is not
A /v

» and hence Xz is approximated to Xz by eliminating the term which 

requires the second derivatives.

Let us denote

\'P = Sn (XZP) (6.38)

X\ = <£m (Xzy) (6.39)

where (En, and (£m are appropriately defined matrix operators. Also noting 

that the model is contracted such that

F(X,a) = f±(X) + ^2(a)
A

and using the above, we get the following approximation for Xz

where $Z(V,P) ~ ^Z(V,P)

It is clearly seen that the amount of information needed from the system is 

identical to that needed by the relaxed algorithm. Here, however, this information 

is used more efficiently and this leads to an increase in the amount of off-line 

calculations. However, as will be seen in chapters 7 and 8, there are three definite 

advantages, which are

a) The updating scheme is near-precise and the convergence is much quicker

b) It is known that when adding the quadratic penalty function, the

properties of the algorithm are vastly improved (Tatjewski et al(l987)).

However there is no exact scheme whereby the penalty factors, fi, can be 

selected. It is seen that as this factor increases in magnitude the 

performance of the algorithm is improved. But increasing the value of 
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p beyond a certain value the performance deteriorates (ill-conditioning 

of the problem). Using the the Newton-like scheme it is seen that the 

algorithm is less sensitive to the penalty factor.

c) The sensitivity to large non-linearities in the system is reduced. This is 

important in an on-line situation where we do not have an exact 

knowledge of the non-linearities.

6,2.2 Algorithm with Passive Coordination

In the preceeding sections, control structures with dynamic coordination 

were described. In deriving those structures we used the interaction input 

information which is fed back, in evaluating the parameters, a. If now we were to 

use this information more extensively, as was done by Brdys and Roberts (1986a) 

and Kambhampati and Ellis (1988) we get a structure where the coordination 

problem is very much simplified. This simplification comes about because we have 

eliminated the need to evaluate the price vectors, and also because at the lower 

level of the local decision unit the number of independent variables in reduced. 

The simplification in the coordination problem comes about because when using the 

feedback information more extensively, we see that we can eliminate one of the 

constraints, namely

U = HY (6.42)

It is because of this constraint that the nature of the coordination is dynamic. 

Then, it is natural that if this constraint is eliminated then the resulting 

coordinating strategy would be passive. Let us then formulate the problem 
accordingly. Adding the additional variables V € JRn, V=C, and appending the 

performance index with the quadratic penalty function, we get:

C,V,a
s.t

F(V,HK,(V),a) = K*(V) 

g(C,HK*(V),a) £ 0 

V = C

(6.43)

Then an analysis of the first order necessary optimality (Brdys and Roberts 

(1986a)) conditions for the above would yield, as before, a problem which consists 

of three sub-problems which are

Parameter Estimation Problem (PCPEP)

F(V,HK»(V),a) = K«(V) --> a (6.44)
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Modified Optimisation Problem (PCMOP)

min { q(C,HK*(V),a) - XTC + flllV - C||2}
C,U

s.t (6.45)

g(C,HK<(V)) £ 0

where X is the modifier

Coordination Problem (PCCP)

V = C (6.46)

Evaluate the modifier X, given by:

X = [ F'v(V,HK*(V),a) - KZ*(V) ]T [ Qzy(V,HK*(V),F(V,HK*(V),a) 1

- [qzv(C,HK*(V),a> + gzv(C,HK*(V»TU ] (6.47)

where U- are the Kuhn-Tucker multipliers corresponding to the inequality 

constraints. '

The algorithmic structure is exactly similar to that given in section 6.2.1.1 

The only difference is that we do not have to update the price vector.

Notice the obvious differences between the two problems ((6.5) to (6.9) and 

(6.44) to (6.47)). We see that in the PCMOP a term is missing. This is the term which 

in the DCMOP takes into account the various interactions between the subsystems. 

Here then it can be seen that we use the interaction measurements directly in the 

optimisation problem, and assume that they are constant for a given iteration. It 

can easily be seen that the PCMOP is also decomposable into N different sub-

problems. The resultant control structure in shown in figure 6.3.

6.3 CONCLUDING REMARKS

In this chapter some decentralised algorithms were discussed. The 

algorithms discussed covered the two classifications of the decentralised ISOPE 

algortihms: the dynamic coordination and the passive coordination techniques. Both 

these types have their advantages and disadvantages. Using the passive 

coordination technique we see that the method is simple and does not need the 

sophisticated approach of the dynamic coordination technique. The point to 

remember here is that there is an increased reliance on the system measurements 

which, when noise is present, would definitely pose difficulties.

The dynamic coordination technique, on the other hand, does not face these 

problems. However, it is more complicated than the passive algorithm. However, its 

advantage is that it could be more robust in the presence of noise.
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In the next chapter we shall study the properties of these algorithms. The 

optimality of these algorithms is beyond doubt, and the conditions are the same as 

those for the centralised algorithms. We shall also look into the convergence 

properties of these algorithms. In chapter 8 simulation results are presented. 

Finally, in chapter 9, a generalisation of these algorithms is made.
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Figure 6.1 Control Structure for the Algorithms with Dynamic Coordination
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Figure 6.2 Inset A -from Figure S.i
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COORD INATOR

a) CHECK FOR CONVERGENCE Vx = Cx+i

b) UPDATE Vx+i

C) EVALUATE k ACCORDING TO (6.43)

Figure 6.3 Control Structure for the ALgorithms With Passive Coordination
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X,, U,

I

I

Figure 6.4 Inset B from Figure 6.2
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CHAPTER 7 OPTIMALITY AND CONVERGENCE OF THE DECENTRALISED

ALGORITHMS

7,1 INTRODUCTION

In the previous chapter algorithms -For solving the decentralised control 

problem were discussed. In this chapter these algortihms will be analysed and their 

properties discussed. It is an inherent property of the algorithms, classified 

under ISOPE, that they will provide optimal solutions, because of the manner in 

which they are derived. The algorithms are obtained after an analysis of the first- 

order optimality conditions of the relevant problem. This problem is equivalent to 

the OCP and hence the result obtained from these is bound to be optimal. The other 

property, which is discussed, is the convergence of these algorithms. In fact, the 

question that shall be put is what are the requirements that we have to put on the 

problem so that the algorithms converge to the optimum in the most efficient 

manner.

Here, we shall not be discussing the relaxed form of the dynamic algorithm, 

as it has been seen to be difficult to prove the convergence of this algorithm. 

However, it has been seen that this algorithm converges to the optimum very 

efficiently (Chen (1986), Abdullah (1988)). However, the convergence of the Newton-

like form of the dynamic algorithm will be discussed. It will be seen that we can 

give a measure of the the rate of convergence for this algorithm. The reason for 

this is that the updating scheme employed, enables us to use the contraction 

mapping theorems of Ortega and Rheinboldt (1970)

The passive coordination technique is also analysed. The analysis includes 

the optimality and the convergence conditions of the algorithm. As has been 

mentioned earlier, the optimality properties of all the ISOPE algorithms are the 

same. This is because of the manner in which the algorithms are derived. Again, as 

was analysed in chapter 5, the modifier, X, can be reduced to the difference of the 

model based performance index and the system based performance index. This 

reduction is then used in proving the optimality and assessing the convergence 

Properties of the algorithm.

Z2 OPTIMALITY

Here we shall assess the optimality^ of the algorithms. In fact the optimality 

of these algorithms is beyond doubt, as they are all derived using the first-order 

necessary optimality conditions of their respective problem formulations, which

1
Sy optimality of algorithm, we are referring to a local optimum 

will be a local minimum.
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are all equivalent to the OCR. However, the study of the optimality of these 

algorithms helps us in analysing the properties of the algorithm further. Here, we 

shall be studying the optimality conditions for the passive coordination technique, 

as the properties of dynamic coordination algorithm have already been studied 

(Abdullah(1988)). Before proceding further let us make some definetions.

Let fl be the solution set which contains all the points (V), which are the 

solution to the OCR; such that

ft A {(V) : (V,HK*(V)> € C<U, V = ft(Va) }

where

C41 = { (C,U) : G(C,U) £ 0 }

As was seen in chapter 4 the modifier X, if we assume that it is autonomous 

and dependent on V, can be reduced in terms of the model based and system based 

performance indices. Hence X can be written as

X = q'c(V,HK«(V),a) - q't(V) <7.i)

We are now in a position to verify the optimality of the algorithm. The 

conditions are similar to those given in chapter 4.

Lemma 72A.

Let C = {(C) : g(C,HK*(V))S 0 }

Assume that each point of the set C satisfies the > conditions.

Then the point V € ft is the solution of the OCR, and satisfies the Kuhn-Tucker 

necessary optimality conditions for the OCP.

Proof

A

Now let C(V,a) € C ; then we have
q'c(C(V,a),HK,(V),a) - X + UTgz<:(C(V,a),HK«(V)) = 0

M > 0 g(C(V,a),HK*(V» = 0; UTg(C(V,a),HK,(V)> = 0
Then using (7.1) and the fact that V = C(V,a) in the above we have

qz«(V) + gz«(V)TJl = 0
MTg*(V) = 0; H > 0 g,(V) = 0

which are the Kuhn-Tucker conditions for V to be the solution of the OCP.

Q. E. D

Notice the similarity , between the conditions lemma 4.2.1 poses and those 

that lemma 7.2.1 poses. In fact these conditions are valid for all the algorithms 

which are derived using the ISOPE techniques. The optimality is ensured by the 
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modifier, X, which in all cases can be reduced in terms of the model based and 

system based performance indices. Then, using the first order conditions for 

optimality of the modified optimisation problem, along with the reduced definition 

of X, we get the optimality conditions for the OCP.

7,3 THE CONVERGENCE CONDITIONS

It was mentioned in section 7.2 that the optimality conditions for the ISOPE 

algorithms are similar. This property stems from the fact that the method of 

deriving these algorithms is similar for all the algorithms. In fact this^also true 

of the convergence conditions for these algorithms. This shall be seen in chapter 

9, where a generalised set of conditions are provided for the algorithms which use 

the under-relaxation scheme.

Here, in this section we shall discuss the convergence conditions of the 

dynamic coordination Newton-like algorithm and the passive coordination algorithm. 

The methods employed to do this, vary for the two algorithms. For the dynamic 

Newton-like algorithm we use some of the techniques used by Ortega and Rheinboldt 

(1970). This is facilitated by the fact that the updating scheme is structured in 

such a manner that the use of these methods is convenient. On the other hand, for 

the passive coordination algorithm we employ the techniques already used in 

chapter 4. We shall then, first discuss the properties of the Newton-like algorithm 

and then go on to the passive coordination algorithm.

7.3.1 The Newton-like Dynamic Coordination Algorithm

Using the same notation as in chapter 6, the following theorem gives the 

conditions under which the Newton-like algorithm converges. It should be noted 

here that due to the manner in which the algorithm has been derived, and the 

updating procedure employed, we can use the contraction mapping theorems and 

establish some sort of a measure for the convergence rate of the algorithm.

Theorem 7.31.1

Assume that the assumptions of theorem 6771are satisfied, and that the 

matrix ¥'(V,P) is non-singular.

Then, for every p such that theorem 6.2.2.1 holds, there exists a 

neighbourhood N^(VP) of the optimal control-multiplier pair (V,P) such that if

G N^(VP) then provided the model used is sufficiently accurate the sequence
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{ykpkj generated by the algorithm remains in N(V,P) and converges linearly to (V,P), 

with the R-convergence factor S satisfying

S <> || I - HfrM/P) ||s (7.4)

where || . ||s denotes the spectral norm.

Proof

An iteration of the Newton-like algorithm can be described as follows
" vk+i _ vk Vk - C(Vk,Pk)

pk+1 _  pk _ U(Vk,Pk) - HF(X(Vk,Pk),a)_

= H(Vk,Pk) (7.5)

Using similar arguments as Tatjewski and Roberts (1987a), it is sufficient to 
show that || Hz(V,P)|js is less than one. Then, using an argument similar to that of 

Ortega and Rheinboldt (1970, section 10.2_l) it can be shown that H(.,.) is 

differentiable at (V,P) and

we have

HZ(V,P) = I - i'(V,P)"V(V,P) (7.6)

Then we have to show that

II H'(V,P)||s £ II I ~ ||s (7.7)

Let us denote by the eigenvalues of i =1, •••, n, then

|| I - YW'Wf) ||s = max I 1 - in I (7.11)
l£i£n 1

Then it is sufficient to show that |i—< 1 . Then using similar arguments 

as Tatjewski and Roberts (1987), we can easily show that if the model is accurate, 
the closer is the matrix ^(Vpr^'CvM3) to I and that the algorithm is convergent.

Q. E. D

The above theorem gives some useful properties of the algorithm. It states 

that the smaller the model-reality differences the better is the local convergence 

of the algorithm — regardless of the value of X), which is easily confirmed through 

simulations. On the other hand, with a precise non-linear model, which in practice 

is not a realistic condition, or for a different but linear model and system 

mappings, we have ¥ = ¥ ( the arguments have been dropped) and then S = 0, and 

the algorithm converges superlinearly. Moreover, the problem does not become ill- 

conditioned as easily as the relaxed algorithm for large values of A
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7,3.2 Passive Coordination Algorithm

From the similarities in the structures of the passive coordination

algorithm and the MSTP algorithm, it can be seen that these two algorithms will 

have similar convergence properties. In fact

classified as ISOPE will have similar convergence

all the algorithms which are 

conditions. This, as was Mentioned
earlier, is because of the way in which these algorithms and their associated

control structures are derived. Starting from the OCP, depending on how we use

the system feedback information (Bryds and Roberts(1986a)), we obtain a whole set

of model-based problems. All these problems

a modifier, X, which attempts to quantify

are equivalent to the OCP, and employ 

the in the model based-

performance index and the system based performance index. In fact in chapter 9, we 

provide a generalised set of convergence conditions for these problems.

The following theorem then gives the conditions under which the algorithm, 

which employs a passive coordination technique, would converge. This is similar to 

the convergence theorem given for the MSTP algorithm.

Theorem 7.3.21

Assume that

1. All constraint sets are convex and compact and that all the mappings

involved are continuous and continuously Frechet differentiable.

Z The functional -HK4(V),<x ) is uniformly monotone with some constant 

a(a) > 0 for every a & and also that qzj( . ) is also uniformly monotone 

with some constant a* > 0 .
where A = [J a(V)

3. There exist such numbers A and a such that

A > A(a) a(a) £ a > 0

where A(a) is the Lipschitz constant of q(.44K*(V)xr)

4. The model is selected such that
A £ 2a* - |A*

f A* < a £ A*
4

where A* is the Lipschitz constant of q*

(7.12)

(7.13)

(7J.4)

5. The class of systems considered is restricted 
a* £ | A*

in a manner

(7JL5)

Then

I. There exists a solution V of the OCP

IL There exists such scalars , f2 • such that 0< €^<0.5,0.5< f2 £ 

such that for every € G the algorithm generates a sequence
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which converges to V.

Proof

The proof of this theorem is similar to that of theorem 4.2.1 and is hence 

omitted.

The conditions, as has been already mentioned, for convergence of the 

algorithm are similar to those given for the MSTP. We have already stated earlier 

that this is a feature of the algorithms which come under the class of ISOPE 

techniques. In fact, these conditions are more strict than required. One can 

develop conditions, which are similar those developed for the MSTP by Brdys and 

Roberts (1987). The reason for the development of these conditions is that this 

facilitates the generalisation of the ISOPE algorithms, as will be seen in chapter 
9.

7.4 CONCLUDING REMARKS

In this chapter we have seen that the decentralised algorithms, described in 

chapter 6, produce optimal solutions for the OCP, and also that under some given 

conditions they will converge to that optimum solution.

The analysis given for the Newton-like algorithm is local assuming that the 
A A A

algorithm works in a neighbourhood of the optimal point X = (C, U) such that at 
A L--

each iteration precisely those constraints are active at X(V', P') which are also 
A

active at X. Such a neighbourhood always exists when the problem satisfies the 

strict complementarity conditions at the optimal point. Here it should be noted that 

at times when the model and system differ a lot or for highly non-linear systems 

and also when the constraint activities keep changing, the updating mechnism has 

to be modified in that we use scalar € < i, which effectively reduces the step 

length The updating scheme then becomes

r -- vk - _e $z(Vk,Pk)~i
k A k kV - C(V ,P )

L pk+i --pk- _ U(Vk,Pk) - HF(X(Vk,Pk),a)

Generally the activity of the constraints will keep changing, when they are 

composed of the control set-points and the interactions. One cannot guarantee that 

these constraints will not be violated, as the system mappings are not known 

Precisely, and it is not possible to predict the value of the interactions U* = 

HK*(V) for a given value of V. Thus, it is not possible to predict the changes in 

activity of these constraints so that some a priori action may be taken.
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On the other handy the analysis -For the passive coordination technique is 

more general, and no strict conditions are posed on it. The constraint activity is 

of no prime importance here. And it can handle the violations of the conditions 

better. However, for the constraints which are dependent on the interaction inputs 

and outputs, techniques have been developed which ensure that these are not 

violated (Lin et al (1987a, 1987b, 1987c)).

In the next chapter we present a simulation study of the algorithms 

described.
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CHAPTER 8 SIMULATION RESULTS FOR THE DECENTRALISED ALGORITHMS

8.1 INTRODUCTION

The objective of any simulation exercise is to verify the results of the 

analysis of an algorithm. The simulation can be carried out using an abstract 

example, where we could incorporate those properties we wish to verify in the 

example or else change the characteristics of the example whereby we could gain 

further insight into the algorithm. Often it is found that in most cases the 

conditions for convergence and optimality of an algorithm, obtained through an 

analysis of the algorithm, are stricter than is necessary. This particular aspect- 

has been dealt with already in chapter 4 where a set of convergence conditions 

were developed for the MSTP algorithm which were stricter than those put forward 

by Bryds and Roberts (1987). This was done mainly to get an insight into the
cd

significance^ the modifier, and to establish some framework for defining the model-

reality zti^efewjes.. However, sometimes due to the nature of the algorithm, it may 

not be possible to develop weak convergence conditions and the conditions 

obtained will be very strict than what is necessary, (Brdys et al(1986c)). Thus, any 

simulation exercise has the following functions :

a) To verify the theoretical results obtained

b) To investigate the algorithm further so that those properties of the 

algorithm which could not be assessed theoretically could be brought 

out and investigated further.

In fact there is one more point to be kept in mind. That is, a proposed algorithm or 

technique has to have practical viability. To test this particular aspect we have to 

mimic a realistic situation, whereby there would be disturbances in the form of 

noise, present in the system. All the algorithms must also perform satisfactorily in 

such a situation. However, this particular aspect of a simulation study is beyond 

the scope of the present thesis.

Here in this chapter, the algorithms described in chapter 6 are tested using 

abstract examples. All the algorithms were found to converge to the optimum within 

the desired accuracy with, of course, varying rates of convergence.

8.2 ALGORITHMS WITH DYNAMIC COORDINATION

Both, the relaxed as well as the Newton-like, algorithms converged to the 

desired optimum. However, the rates at which they converged differed.

-122-



A sensitivity analysis is carried cut -For the algorithms with dynamic 

coordination. The algorithms were tested for sensitivity to the non-linearities in 

the system and also to the penalty Factor. The results of such an analysis helps in 

verifying some of the conclusions reached in chapter 6 and 7. It was found that 

that an increase in the non-linearities in the system reduced the performance of 

the relaxed algorithms more than that of the Newton-like algorithm. This was even 

though the Newton-like updating scheme became more and more approximate, as was 

mentioned in the previous chapter. Again, it was found that with an increase in the 

value of the penalty factor, the performance of the relaxed algorithm tended to 

improve but deteriorated after some limit, where as with the Newton-like algorithm 

it made no appreciable difference. On the whole the Newton-like algorithm seemed 

to have better convergence properties than the relaxed algorithm.

8,2.1 Example

The example used for the simulation study consists of 3 interconnected sub-

systems and has a total of 7 control set-points and 4 interconnection inputs and 

outputs. The configuration of this example is shown in figure 8.1.

For purposes of simulation, the real system is represented by the following 

equations ■

Sub—system L

Ym = — Ci2 + 2.0Utt< 4- /3iC11U11

The performance index is

Qi = ( Uii* — 1 )4 + 5( cii + C1± — 2 )2

The constraint set { 1 — (CXi 4- C12) £ 0 ; 0 £ Un* £ 0.5 |

Sub—system II

Y2k  = C2£ — C22 4- $2C222 4- i.2U2nf — 3.0U22*

Y22< = 2C22 — 1.25C23 4- $3C2gC22 4- t>22t — ^21 + 0.1

The performance index is

Qo = 2^ C2JL — 2 j2 4- C222 4- 3C232 4- 4U2£ *2 4- U22<2

eil2 = { 4 - (4C21 + C22 + 2C23> 2 0 A 4.5 - (4CX1 + 2U21, + C23) 2 o)

Sub—system III

Y3K = 0.8C3^ 4- 2.5C32 — 4.2U31<

The performance index is
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Qs = ( C31 4- 1 4- 2.5C32Z 4- ( U31# — 1

C<U-3 = { C3i 4- U3i* + i.O 0 A 0 < C32 < i }

The interconnections are given by

• •

Yn« 0 i 0 0

¥21* 1 0 0 0
= H = HY#; where H =

^22« Y22* 0 0 0 i

Ygi* 0 0 1 0

and C = ( Ci; , C2j , C3<f ), i = 1,2 j = 1,3 k = 1,2 are the control set-points 

and U<, Y< are the interconnection inputs and outputs.

In the above set of expressions representing the system the parameters 

i=l,2,3, are the non-linearity parameters, the nominal values of which are ( 0.1, 0.1, 

0.1). By varying these non-linearity parameters, we are effectively changing the 

mapping of the system. Then, by keeping the model mapping unaltered, we can 

judge the effect of the model-reality differences on the two algorithms. By this we 

achieve the objective of comparing the rates of deterioration in the performance 

of the algorithms as the model-reality differences increase. This can be 

effectively done by changing the non-linearity parameters.

It has also been mentioned earlier that, models do not represent the reality 

due to the simplifing assumptions one makes during the modelling process. Thus, we 

may find that the model developed, is a linear representation of the system, where 

as in actual fact the system is non-linear. This particular aspect can be seen from 

the example selected. The model used to represent the system, consists of the 

linear parts of the system mappings, and does not include the non-linearties 

present. Then by varying these non-linearities, which in reality one cannot predict 

accurately, we can see what effect this model simplification has on the 

Performance of the algorithms.

Then the model used to represent this system is as follows

Sub—system I

Y11 = — C12 4- U1JL 4-

Sub—system II

Y2£ = C2£ — ^22 4" 1^21 — 3U22 4" ^2

Y22 = 2C22 — C23 — U2£ 4- U22 4- a3
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Sub—system III

Ygt = C_3£ 4- Z.5C-32 — 4U31 4- <x4

The simulations -For testing the sensitivity of the algorithms, were all 

started from the same set of initial conditions, which is the optimum obtained when 

using a fixed model, with the parameters i=l,2,3,4] set to zero, which is

C° = { 0.530, 0.847, 0.99, -0.147, 0.0031, -0.505, 0.343 }

U° -zr { 0.17288, 0.02864, 0.331, 0.0050 }

P° = { -0.5980, -1.4307, 0.6852, -0.44631 }

8.2,2 Results and Discussion

The starting point for solving any optimisation problem should be as near 

as possible to the optimum. However, for solving the system optimisation problem 

the real optimum is not known as we are dealing with an unknown system mapping. 

Then it is reasonable that the starting point is the model based optimum, as this 

would be more realistic. Hence, the simulations were started from the model based 

optimum, which has been enumerated above. Also in the simulation study, the system 

mapping was varied, by changing the non-linearities in the system.

Table 8.1 shows the comparative efficiency of the two algorithms in 

achieving the optimum. One can immediately see that the relaxed algorithm is more 

inefficient than the Newton-like scheme. This can be seen by the number of 

iterations that are required to reach the optimum, 33 for the relaxed algorithm as 

compared to 4 for the Newton-like algorithm. This was with nominal values of 2 for 

the penalty factor, and /3 = { 0.1, 0.1, 0.1 } for the r\o mWjion-linearities.

It has been stated that for linear system and model mappings the Newton-like 

algorithm should, provided the activity of the constraints does not change, 

converge superlinearly. This can be confirmed from table 8.2, where results of the 

simulations, with linear system and model mappings and setting the penalty factor fl 

to zero, using different starting points are shown. Here three starting points were 

selected:

a) The starting point A is close to the optimum and there are no changes in

the activity of the constraints, as can be seen in table 8.2

b) The starting point B is the model based optimum, already mentioned above

c) The starting point C is far from the optimum, and as can be seen from

table 8.2 there are changes in the activity of the constraints.
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Using these three starting points, one can see the effect of the changes of the 

activity of the constraints on the algorithms. It can be seen that if the starting 

point is A, there no changes in the activity of the constraints and hence the 

algorithm converges as prescribed. However, using the model based optimum it can 

be seen that there are changes in the activity of the constraints, and this is 

reflected in the increased number of iterations. On the other hand, using the 

starting point C it can be seen that there are a number of changes in the activity 

of the constraints and it takes 4 iterations to reach the optimum. Notice that even 

when using a starting point which is from the optimum, the algorithm converges 

to near optimum, very quickly.

Tables 8.3 and 8.4, show the effect of the value of the penalty factor .0, on 

the performance of the algorithm. It has been stated that within reasonable limits, 

whatever be the value of /?, the formulation of the j problem for the relaxed

algorithm gets ill-conditioned faster, where as the Newton-like algorithm does not. 

This can be seen from the results tabulated in tables 8.3 and 8.4. Table 8.3 

tabulates the results obtained from simulating the example problem, using the 

nominal value for the non-linearities, that is j6 = ( O.i, O.i, 0.1), and for a range of 

values of the penalty factor p. Table 8.4 shows similar results, for the Newton-like 

algorithm, but where the system and model mappings are linear, that is the 

parameters J3 = {0.0, 0.0, 0.0). These results are shown graphically in figure 8.2. 

Here it can be seen that, for the example considered, the performance of the 

relaxed algorithm gets better as the value of the penalty factor increases but 

beyond a value of 0 = 2 this performance deteriorates. On the other hand the 

Performance of the Newton-like algorithm shows no appreciable sign of 

deterioration, and is fairly constant.

Table 8.5 shows the effect of the non-linearities in the system on the 

algorithm. It must be remembered here that the Newton-like updating scheme, 

becomes more imprecise as the non-linearities increase. This is because of the 

approximation made by ignoring the higher derivative terms in the control updating 

scheme. Thus by varying the non-linearity parameters, one can study their effect 

on the performance of the algorithms. Then using the nominal value of {) — 2, and 

the model based optimum as the starting point for all the simulations, we get the 

results tabulated in table 8.5 and graphically represented in figure 8.3. It can be 

seen that as the non-linearities in the system are increased the . of

the algorithms deteriorates. But the deterioration is much quicker for the relaxed 

algorithm than for the Newton-like algorithm.
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8,3 ALGORITHMS WITH PASSIVE COORDINATION

Some of’ the advantages of this algorithm have already been discussed in 

detail, in the earlier chapters. It has been proved that this algorithm converges 

and the point of convergence is the optimum, under some conditions. Here, in this 

section this algorithm is tested using two example systems.

8.3.1 Examples

To test the algorithm, two example systems were used. The configuration of 

these systems is the same as that used for simulating the dynamic coordination 

algorithms. That is, both the examples had three interconnected sub-systems, a 

total of seven set-points and four interconnection inputs and outputs.

8.3.1.1 Example A

The first example selected has, as was mentioned, three sub-systems and the 

same configuration as the example used for testing the dynamic coordination 

algorithm. Then, as before, the system mappings are represented by the following 

equations :

Sub—system L

Yxl< = l-SCxi - Ci2 4- 0.02Ullie

The performance index is

Qx = 0.1 ( Ylxi - 1 )2 + 5CU2 + 5C122

The constraint set = { 1 - (Cu2 + CI22 + O.iU11)() 2 0 ; UX1I < 2.0 }

Sub—system II

Y2k  — C2£ — ^22 4~ 0.12C22 — 0.5U2u  0.0S0U22t

Y22* — 2C22 — 1.3C23 + 0.25C23C22 4* 0.09U22^ — U2£ 4" 0-1

The performance index is

Q2 = 2^ C2i — 2^4- C22 4- 3C23 4- 0.1^Y2£^ — 2.0j

C4I2 ~ 1-2 — (0.5C21 4“ C22 4" 2C23 4* 0.01(U2£ 4* tl22^)) 0 A

-10.0 £ C2; S 10.0, i=i,2,3 }

Sub—system III

Y3£< = i.3C3£ 4- 2.5C32 — 0.8U3£3

The performance index is
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0.3 = ( C31 + i )2 + 2.5C322 4- 0.0i( Y31* - 3.0 )2

CTlg = { 03± 4- C32 4- 0.1U3i« 4- 1.0 0 A 0 <, C32 S 1 |

The interconnections are given by

- - -
YUf 0 1 0 0

U2JL<
= H

Ysif
= HY*; where H =

1 0 0 0

^22« Y22* 0 0 0 1

^31* Y31* 0 0 1 0
- -

and C = £ CiZ , C2j > C3if ), i = 1,2 j = 1,3 k = 1,2 are the control set-points 

and U*, Y< are the interconnection inputs and outputs.

The model used to represent this system is as follows

Sub—system I

Yii = cn — C12 + + ai

Sub—system II

Y2i = C21 — C22 — + U22 4- <x2

Y22 = 2C-22 — C2s — 1.5U2£ 4- 0.5U22 4" <£3

Sub—system III

Y3x = C31 4- 2.5C32 — 1.0U3x 4- a4

The starting point for this example was C° = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

8.3.1.2 Example B

The second example is similar to the previous example. It again consists of 

three sub-systems, and has seven control set-points. The system mappings are, as 

has been done for the other examples, represented by the following ■

Sub—system L

Yn« = l-SCix — C12 4- O.5U1X<

The performance index is

Qi = 0.1 ( YI1{ - 1 )2 + 5C!!2 + 5C12Z

The constraint set 1 — (Clt2 + CI22 ) 1 0 ; U11B 1 2.0 }

Sub—system II

-128-



Ygij — C£1 Coo 4~ 0.1£C££ — i-SU£_£$ + 0.5.0U22«

Y22* — ^C22 1.3C£3 + 0.25C£3C£2 4* 0.5U22$ — ^21 4" 0.1

The performance index is

Qo = 2( C2i - 2 j2 4- C££2 4- 3C£32 4- 0.1(Y£i$ - 2.o)2

C<U2 = { 1.2 - (0.5C21 4- C22 4- 2C23 ) £ 0 A -10.0 < C£/ < 10.0, i=l,2,3 }

Sub—system III

Y3K — l-3CSi 4- 2.5C3£ — 0.1U3£$

The performance index is

Qs = ( C3i 4- 1 )2 4- 2.5C3£2 4- 0.0i( Y31$ - 3.0 )2

Clt3 = { C31 4- C32 4- 1.0 £ 0 A 0 < C32 £ 1 }

The interconnections are given by

• -
Uli* Yin 0 1 0 0

U21* Y21« 1 0 0 0
= H = HY$; where H =

U22* Y22* 0 0 0 1

U31* Y31* 0 0 1 0
-

and C = { Ci; , C2j > C3{f ), i = 1,2 j = 1,3 k = 1,2 are the control set-points 

and U$, Y$ are the interconnection inputs and outputs.

The model used to represent this system, is the same as that used for 

example B, and is . as follows

Sub—system I

Yu = C1JL — Ci£ 4- Uit 4- ai

Sub—system II

Y2£ = C2£ — C22 — U££ 4- U22 4- «2

Y£2 = 2C22 — C23 — 1.5U££ 4* 0.5U22 4- a3

Sub—system III

Y31 = C3£ 4- 2.5C32 — 1.0U3£ 4- <£4

The starting point for this example was C° = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, O.o)
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q .3.2 Results and Discussion

The results of the simulation for these two examples are shown in table 8.6. 

As has been mentioned before the iterative loop gains are arrived at after some 

trials. It can be seen that the examples converge to the optimum, rather 

efficiently. This can also be seen in the figures S.4 and 8.6. These figures show 

the variation of the system based performance index with each iteration. In 

chapter 4, it was shown that' the function T(V) converges to zero as the algorithm 

approaches the optimum. This was a part of the proof for the convergence of the 

algorithm. For the passive coordination algorithm also it is seen that such a 

function will also converge to zero as the algorithm approaches the optimum. 

Generally, the function T(V) is not known exactly, as it is a function of the 

monotone constant, a*, of the system based index. Hence, here we use

the following function, Tt(V) , which is:

and the figures 8.6 and 8.7 show the variation of this function with each iteration. 

It can be seen that this function converges to zero, as the algorithm approaches 

the optimum.

8,4 CONCLUDING REMARKS

It has been shown that the algorithms which solve the decentralised control 

problem produce and converge to the optimum of the OCP. Of course the rate at 

which they do so vary, and this is because of the modification made to the problem, 

which gives different properties to the model based problem. This would then, make 

the behaviour of the algorithms differ. However, in general it can be said that 

they all converge to the optimal solution. At this point, it should, however, be 

pointed out, that, with the example, with linear system and model mappings, used for 

the dynamic coordination algorithm, it was found difficult to obtain the 

convergence to the optimum. This could mean that the algorithm, using a passive 

coordinator has some special properties which have not been investigated. An 

algorithm, which has a similar problem formulation to the passive coordination 

algorithm, had been proposed by Brdys and Ulanicki (1978). Here the problem was 

solved in a completely manner, and as a result they had some

problems regarding the continuity of some of the mappings involved. It could be 

possible that these conditions may also be valid here and are subject to 
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investigation at the time of' writ ing this thesis.

In fact, as been often repeated in this thesis, all the ISOPE algorithms, when 

they converge, will converge to the optimum. This is because of the manner in 

which they are derived. They are all obtained after analysing the first order 

necessary conditions for optimality of the integrated problem of parameter 

estimation and system optimisation. It is this fact, which helps us to generalise 

these algrithms.

Then in the next chapter, we shall generalise these algorithms. In the 

process of generalising these algorithm, we see that we get a generalised set of 

variable^ and also a generalised integrated problem. A set of generalised

optimality conditions are not provided as one can assume that all the ISOPE 

algorithms are optimal. The algorithms considered, include those algorithms where 

the performance index is augmented. The unaugmented algorithms are considered as 

a special case of the augmented algorithms when the penalty factor fl is set to 

zero. In fact, this can be seen is chapter 4 where the convergence for the MSTP 

algorithm and its associated augmented algorithm are the same. The only difference 

occurs in that we have to take into account the augmentations. If p is set to zero 

the conditions are then the same as those of the MSTP.
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Figure 8.1 Configuration of Example

Table 8.1 A Comparitive Table of the Efficiency of the Two Algorithms which

use Dynamic Coordination

ALGORITHM TYPE
ITERATIVE LOOP GAINS

ITERATIONS

No of SET-POINT

CHANGES
PENALTY 

FACTOR p

P = P

NON-LINEARITY 

PARAMETERS

3 = <3

RELAXED SCHEME 0.4 0.5 33 231 2.0 0.1, 0.1, 0.1

NEWTON-LIKE SCHEME — — 4 28 2.0 0.1, 0.1, 0.1
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Table 8.2 Effect of Change in Activity of Constraints on the Newton-like

ALgorithm

STARTING POINT ITERATION No PERFORMANCE INDEX

CONSTRAINT SET ACTIVITY

CU CU CU

A
1 4.527806 0.0 0.6522 0.0 0.2318

2 4.161889 0.0 0.6521 0.0 0.0226

1 6.267736 0.0 0.6845 -0.001 0.1632

B 2 4.14660 0.0 0.6522 0.0 0.2265

3 4.162402 0.0 0.6521 0.0 0.O22

1 30.842911 -0.004 0.6076 0.0 0.9993

2 4.010699 -0.001 0.6536 0.00O3 0.2275

c 3 4.151252 -0.801 0.6522 -.0001 0.2264

4 4.16240 .00001 0.6522 0.0 0.2264

ParaMeters used forsinulation in obtaining the above results.

Penalty factor = 0
Non— 1 i neari *ty paraMeters = M

= €0,0,0T
Starting Points

C €0.14,1.3,1.2,-0.27,
0. 007 , -0. 7,0.33-

A u = €0. 5,-0.18,0. 24,-0. 02 3
P = €-0.516,0.023,0.615,

-0.4193

C €0.531,0.848,0.991,-0.148

B 0.0031,-0.5051,0.34263
u = €0.1729,0.02 87,0.331,0. 0053
p €-0.5981,-1.4307,0.6852,

-0.446313

c = €0, 0, 0, 0, 0, 0, 03
C u = €0, 0, 0, 03

p = €0, 0, 0, 03
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Table 8.3 Sensitivity of the Two Dynamic Coordination Algorithms to the 

Penalty Factor with Non-linearities Kept Constant

ITERATIONS GAINS SET-POINT CHANGES

AUGMENTATION RELAXED ALG NEWTON-LIKE ALG RELAXED ALG NEWTON-LIKE ALG

0.0 NO-CONUERGENCE 3 - - — 21
0.5 67 3 0.1 0.2 469 21

0.75 43 3 0.2 0.2 291 21

1.0 35 4 0.3 0.3 245 28

1.5 34 4 0.35 0.4 238 28

2.0 33 4 0.4 0.5 231 28

3.0 44 4 0.4 0.6 308 28

4.0 61 5 0.4 0.5 427 35

5.0 —— 5 — 35

Table 8.4 The Performance of the Newton-like Algorithm with Linear model

and System Mappings

AUGMENTATION 0.0 0.5 0.75 1.0 1.5 2.0 4.0 6.0

ITERATIONS 3 3 3 3 3 3 3 3
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Table 8.5 Sensitivity of the two Dynamic Coordination Algorithms to Variations 

in the Non-Linearities of the System

ITERATIONS GAINS SET-POINT CHANGES

NON-LINEARITIES RELAXED ALG NEWTON-LIKE ALG RELAXED ALG NEWT OH-LI KE ALG

0.1, 0.1, 0.2S 36 4 0.35 0.5 252 28

0.25,0.1, 0.25 43 4 0.3 0.4 301 28

0.5, 0.1, 0.25 — 4 — — — 28

1.0, 0.1, 0.25 75 4 0.15 0.3 525 28

1.5, 0.1, 0.25 __ 5 — — — 35

2.0, 0.1, 0.25 77 5 0.15 0.2 539 35

3.0, 0.1, 0.25 NO CONVERGENCE 5 — — — 35

4.0, 0.1, 0.25 -D0- 5 — — — 35

5.0, 0.1, 0.25 -D0- 6 — — — 42

6.0, 0.1, 0.25 -D0- 6 — — — 42

10.0,0.1, 0.25 -D0- 6 — —— —— 42
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Table 8.6 Simulation Results Using Passive Coordination Technique when

Convergence is Attained

EXAMPLE ITERATIONS REAL OPTIMUM OPTIMUM OBTAINED GAINS

A 4 0.18834 0.1884 1.0

B 26 0.34312 0.34309 0.9
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CHAPTER 9 GENERALISATION OF INTEGRATED SYSTEM OPTIMISATION AND PARAMETER 

ESTIMATION TECHNIQUES

9.1 INTRODUCTION

Consider a group of system optimisation algorithms, which have the -Following 

Features :

a) Each algorithm solves the same problem.

b) The problem, arrived at aFter some Form of an analysis is equivalent, in

each case, to the original problem.

c) The analysis through whioh each algorithm is arrived at is the same in

all cases.

d) Because of (b) and (c) the algorithmic and control structure are similar in

all cases.

If such a group exists, then, it can be seen that all the algorithms will have 

similar properties, and hence the optimality and convergence conditions should be 

the same for each algorithm.

Then consider the family of ISOPE algorithms. It can be seen from the 

algorithms described in this thesis, and those given by Brdys and Roberts (1986a), 

Ellis et al (1986), which are classified as ISOPE, possess all the above features. 

Then the logical conclusion one can draw from here is that these algorithms can 

be generalised.

Then, in this chapter we generalise these algorithms. We have already 

presented the properties of the centralised algorithms, and the passive 

coordination algorithm in chapters 4 and 7; and hence a detailed description of 

these will be omitted here. However, we shall select one more algorithm which has 

not been described thus far. Then we present the generalised algorithm and finally 

give the generalised properties for these algorithms. It should be noted here that 

the generalisation is made for all the algorithms. However, it has been found to be 

difficult to prove that the conditions are enough for the relaxed dynamic 

algorithm described in chapter 6. However, because this algorithm has the features 

mentioned above it is assumed that these are also valid for this algorithm.

It should be noted that the generalisation is made for the relaxed 

algorithms where the performance index is augmented. The algorithms, where the 

Performance index is not augmented, will be special cases of the augmented 
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algorithms, with the penaly factor X? set to zero. Then the algorithms which are 

selected are as follows :

a) ISOPEI : The MSTP algorithm.

b) ISQPE2 : The algorithm proposed by Brdys and Roberts (1986a), which was

later used in an augmented manner by Abdullah (1988).

9.2. GENERALISED ALGORITHMS

The key feature of the ISOPE algorithms is to replace the problem given by 

(5) , after an analysis of the first order optimality conditions (Roberts (1979), 

Brdys and Roberts (1986a)), by an equivalent problem which is ultimately 

decomposed into :

a) A parameter estimation problem

b) A modified model-based optimisation problem

c) A coordination problem

In order that a generalised form of the ISOPE algorithm can be developed, 

let us define the following generalised variables :

For IS0PE1
X = EC1; X € <Rn 1 , n

Z = CVJ; Z € J
96 « { (X) : G(C,Y) £ 0 )

and, for IS0PE2:
X = EC, Ul; X G 2Rn+ml
Z = CV, Wl; Z G 9?n+mJ

96 = ( (X) : G(X) £ 0 )

Then using the generalised variables we can now, formulate the generalised 

system optimisation problem as:

min (q(X,a) + MX,Z) )
X G 96 ' f

s.t { X = Z; F(Z,a) = K*(V) ; e(X,a) = 0 ) (9.3)

where q(X,a) = Q(X,Y)

e(X,a) = U - HF(X,a) (for ISOPE2 only)
#X,Z> = ||V - C||2 (for ISOPEI)

#X,Z) = || V - C||2 4- IIW - U||2 (for IS0PE2)

In addition, if the non-augmented forms of the algorithm are to be used, then fl — 0. 

After analysis of the first order conditions of optimality for (9.3), the equivalent 

decomposed problem is:
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The Generalised Parameter Estimation Problem

(9.4)F(Z,a) = K«(V)-----> a

The Generalised Modified Model Based Optimisation Problem 
min ( q(X,a) 4- XTX 4- PTe(X,a) 4- 0#X,Z>| (9.5)
X € SG1 7

P € is known as the price vector, and takes account of the possible 

imbalances between the various sub-systems in IS0PE2.

The Generalised Coordination Problem

X = Z (9.6)

U = HF(X,a) (for IS0PE2 only) (9.7)

X = [F'z(Z,a) - K'*(V) ]T [QzY(X,F(X,a)) - HTp] (9.8)

It should, however, be noted that there are important differences on how these 

separate problems are solved depending on whether ISOPEi or ISOPE2 is being 

applied.

For the decentralised problem, ISOPE2, the parameter estimation and the 

modified optimisation problems are separated into N local problems, in manner 

similar to that in chapter 6. In the IS0PE2, the modifier, X acts as a genuine 

coordination variable and can be written in the partitioned form
N

XTX = xixi <99)

i — 1

where the local modifier, Xj effectively contains coordinating information about 

distant sub-systems.

In ISOPEi, the centralised case, the coordination problem does not exist is 

the strict sense and the function of X is to simply modify the performance 

objective and ensure the satisfaction of the optimality conditions for the overall 

problem.

9,2.1 The Algorithmic Structure

The algorithmic structure is then:

STEP I : Set k=0
Select suitable values for Xk and if ISOPE2, for Pk

Select scalars , fp such that 0 < ,fp 1 

Set 0 = 0 IF using the non-augmented problem

Else select a suitable value for the penalty factor p
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(9.10)

STEP II: Through local problems set 
zk+l = zk + €z(Xk _ zk}

For IS0PE2 only set

pk+l = pk + €p(uk _ HF(Xk a)) (9.11)

Set k <— k+i

STEP III: Apply Z to the model and V to the system and take measurements 

K^(V') and evaluate the parameters a

STEP IV: Apply additional perturbations about V to the system to get a
k kfinite approximation for K'^(V ). Use the model, at Z , to 

evaluate the remaining terms in the expression for the

modifier, X Evaluate X and partition into local modifiers X^ 

to be used in the local optimisation problem.

STEP V: Solve the local modified model-based optimisation problem and
collect the results to obtain xK

STEP VI: Check for satisfacton of the coordination conditions.

If (yes) STOP, else go STEP II.

The vector z is updated in STEP II, using an under-relaxation scheme (Cohen 

(1978)) and represents the applied controls and the values of the interaction 

inputs used in the parameter estimation problem. The scalars are known as the 

iterative loop gains.

9.3, GENERALISED CONVERGENCE CONDITIONS

One of the remarkable features of the ISOPE algorithms is the manner in 

which they are derived. Even though they start from different problem 

formulations eventually they have the same structure. It is because of this that 

these algorithms can be generalised. The convergence conditions for the ISOPE 

algorithms are now stated.

The conditions derived here are for both the augmented as well as the 

unaugmented algorithms. If, in these conditions, the value of the penalty factor, 0, 

is set to zero, the conditions for the algorithms where the performance index is 

not augmented are obtained. It is in this sense that these conditions are termed 

generalised convergence conditions. The conditions derived here use some of 

Cohen's (1980) techniques. Let Cl be the algorithmic solution set.
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GENERALISED CONVERGENCE THEROEM (GCT)

Assume that

1. Every point of the set SG satisfies the regulatory conditions.

Z The set SG is compact and convex.

3. The functional q'y( . /x) is uniformly monotone on SG with some constant 

a(a) > 0 for every a G A and also that q'^( . ) is also uniformly monotone 

on SG with some constant al > 0 .

where A = a(z)
z g  n

4. There exist such numbers A and a such that

A - 20 £ Ata) ata) 4- 20 £ a > 0 (9J.2)

where Ata) is the Lipschitz constant of q< xx) on SG.

5. The model is selected such that

A < 2a* - |a < (9.13)

^A* < a < A* (9-14)
4 - *

where A* is the Lipschitz constant of on SG

fi.The class of systems considered is restricted in a manner 

al i § Al <S15>

7. The mappings F(x/x) and K^(V) are linear for every a G A

Then

L There exists a solution z of the OCP and for algorithms of type

IS0PE2 every point belonging to the solution set is of the form (zP>.

IL There exists such scalars €jl  ' ^2 ' suc^1 that 0< <0.5,0.5<E2^1,

such that far every Ez G (EpG^ algorithm generates a sequence 

which converges to z and provided (for algorithms of type IS0PE2)

there exist additional scalars Ep such that

where / = max C 1, r^lHH2 } and r is the Lipschitz constant of K^O on 

SG.

The proof for this theorem for ISOPEi is given in chapter 4, and is omitted 

here. The proof for IS0PE2 is given by Brdys and Roberts (1985), and is hence 

omitted here.

Notice here the restriction placed on the selection of the model. The model 

should have properties such that it satisfies the conditions (9.13) and (9.14). The 

advantage of augmenting the problem with the quadratic penalty factor is clearly 

seen through the conditions posed on the selection of the model. If the penalty 

factor, £>, is set to zero, then condition 4, Equ(9.12), becomes
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A £ A(a) a(«) £ a > 0 (9.16)

This is now more stronger than is necessary when augmenting the problem. With 

appropriate selection of the penalty -factor the conditions given for the model 

selection will always be satisfied.

9.4. DISCUSSION AND CONCLUDING REMARKS

The algorithms discussed here are representative of the various ISOPE 

algorithms. The reason one can generalise these algorithms is the manner in which 

they are derived, and they all have a similar structure. However, there is an 

exception to this generalisation. The Approximate Linear Model approach, deviates 

from the algorithms discussed here, in that a model is not provided to the 

algorithm a priori. However, by changing the wording of the model selection 

conditions from 'The model is selected such that' to 'The algorithm selects a model 

such that' it is seen that the rest of the conditions remain the same.

The important condition to note here is condition 7. This places a severe 

restriction on both the model and the system, in that they should be linear. 

However this condition is valid only for those algorithms which resemble IS0PE2 

only and not necessary for all the other algorithms. However, this is only a 

mathematical limitation, as simulation results have shown, (Abdullah (1988), 

Tatjewski et al (1987c)), that algorithms of type IS0PE1 converge even if the 

relevent mappings are not linear.

We have already mentioned that, it has proved difficult to prove the above 

theorem for the dynamic relaxed algorithm described in chapter 6. However 

following the reasoning given in section 9.1, we can assume that the above theorem 

is valid for that algorithm also.

It is also important to note here that although generalised results for the 

algorithms can be derived, one cannot say that the rate of convergence will be the 

same for all the algorithms. This is because of the modifications made to the OOP 

to get the required form of the problem for the algorithm. The numbers a, which 

bear a relationship to convergence rate will necessarily be subject to variation.
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CHAPTER 10 CONCLUSIONS AND SCOPE FOR FUTHER UORK

10.1 INTRODUCTION

The notion that the design of an optimising control system for any system 

can be divided into two parts, one part seeing to it that the system performs at 

some desired level (regulatory oontrol) using, perhaps, a standard three term 

controller, and another part which deals with optimising the performance of the 

system (Supervisory control), is well established (Lefkowitz (1977), Mesarovic et al 

(1970), Findeisen et al (1980)). Then, if the reference inputs to the regulatory 

controllers are the solutions of the system optimisation problem, the system would 

then be performing at its optimum. This thesis was concerned with the problem of 

solving the optimising control problem. That is the supervisory problem.

At the outset, we had stated the need for developing techniques which use 

an adaptive model to solve the optimising control problem. It was' also stated that, 

a technique, MSTP, was proposed by Roberts (1979), which uses an adaptive model, 

which provided the optimal solutions for the system optimisation problem. This 

method was found to be rather efficient in solving the problem on hand, even when 

the model had a structure which did not correspond to the real system it was 

to model (Ellis and Roberts (1982). In fact this was also brought out by 

Brdys and Roberts (1987), where the convergence was proved under very weak 

conditions. These conditions required that the model based problem be convex, and 

no other extraordinary conditions were posed. Here no restriction, whatsoever, was 

put on the structure of the model. Then, under such conditions, it is not very 

surprising that this algorithm is very powerful indeed. This algorithm, MSTP, has 

been extended to improve its performance and also to solve the decentralised 

problem (Michalska et al (1986), Brdys and Roberts (1986a), 1986c, 1986d, Chen 

(1986), Abdullah (1988), Ellis et al (1988), Kambhampati and Ellis (1988), Tatjewski and 

Roberts (1987a, 1987b)).

The objectives of this research were stated in chapter 1, and these are 

briefly:

a) To understand what are the model-reality differences.

b) To determine what is the significance of the modifier in ISOPE algorithms,

and how far are the model-reality differences reflected in it.

c) To determine the effect of the augmentation of the performance index

have on the properties of the algorithm.
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d) To determine how to reduce the need -for derivatives, of the outputs oil

the real system.

e) To examine the possibilities of generalising the ISOPE algorithms.

Of course, in answering the above, the objective of studying and analysing

the properties of the algorithms is also undertaken.

10.2 CONCLUSIONS

The analysis presented in chapter 4, enables us to complete some of the 

above objectives. The analysis, of chapter 4, was made for the centralised 

algorithms where, although the system could consist of several sub-systems, we 

were concerned with the global system taken as a whole. This analysis is, then, 

clearly valid for the case where the global problem is decomposed into several 

sub-problems corresponding to sub-systems, which make up the total system.

Through the analysis, which was presented in chapter 4, we can come to the 

following conclusions :

a) That, apart from the model parameters which are estimated, the difference

in derivatives of the model outputs with respect to the set-points and 

rfe$ pond'V/j derivatives of the system constitute the model-reality 

differences. In fact, from the simulation results shown in chapter 4, it 

was seen that these derivative differences play a greater role in 

describing the model-reality differences, than do the parameters.

b) The second objective, regarding the significance of the modifier is again

quite apparent from the analysis shown in chapter 4. It was shown that

the modifier could have two interpretations, viz:

(i) As parameter which quantifies the violations of the sufficiency

conditions by the model

or

(ii) As compensator, which compensates for the differences in the

properties of the model based performance index and the system 

based performance index.

c) The third objective follows from that of the second objective. If we 
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interpret the modifier, X, as a compensating parameter, the effect of 

the augmentation is such that the

penalty factor reduces the d in the properties of the two

indices. Thus, if the differences are large than the value of the penalty 

factor must also be large.

The important conclusion here, is that the derivative differences play a 

greater role in describing the model-reality differences. For whatever the 

interpretation we give to the modifier, the derivative differences are ultimately 

reflected there. The stability of the iterative process depends on these 

differences. A very large difference, would cause the iterative process to become 

unstable, as seen in chapter 5, and would result in our selecting very low gains. 

This in turn results in a very slow convergence to the optimum. Again, if these 

derivative differences are large, it can be seen that the model_will not satisfy the 

conditions given in theorem 4.3.I.I. This conclusion is verified by the simulation 

results presented in chapter 5. This is more apparent with the results obtained by 

simulating the fuel—gas mixing system. The linear model used here is not 

structurally correct, but its derivatives were closer to the reality and hence it 

gave better results than the second model which had similar structure to the 

reality but some of the physical constants were varied by 5%.

It has been stated that the drawback with the ISOPE algorithms is that 

derivative information from the system is needed, so that the optimisation problem 

can be solved. This need comes about because of the integration of the two 

problems of system optimisation and parameter estimation. This results in one of 

the constraints becoming based on the system mapping, which is F(C,a) = K*(C). As 

long as this constraint is present in the problem, and there are no other effective 

method of solving the integrated problem, it is felt that there is no alternative 

other than to use derivative information. Of course some techniques have been 

proposed (Chen (1986)), but these are not more efficient than the ISOPE techniques.

If one cannot eliminate this need for derivative information, then the only 

other alternative is to develop algorithms which reduce this requirement. That is 

algorithms which converge faster, and as a result fewer number of iterations are 

needed for attaining the optimum. It is towards this end that the augmented and the 

Newton-like algorithms were developed. These techniques have been used in both 

the centralised as well as a decentralised situations.

One simple method, which has been proposed in this research is the 

ALM—ISOPE approach. This technique can be used only in the centralised case as
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the model developed by the algorithm is not decomposable. This approach, is a 

logical extension of the conclusion that the derivative differences describe the 

model—reality differences. If this is the case then, an iterative process which 

develops a model using the system derivatives would function relatively more 

efficiently than the MSTP. This conclusion is easily verified, by the simulation 

results presented in chapter 5. This particular approach can be viewed as a 

system linearisation approach, where we linearJ.se the system at a given point. 

This results in the model so developed being a better description of the reality, 

in the region around the point at which the linearisation has been performed. This 

method however, cannot be extended for the decentralised cases, for which the 

reason has already been mentioned.

Other techniques which improve the performance of the ISOPE algorithms, 

both centralised as well as decentralised, are the augmented algorithms. In both 

these techniques, the performance index is augmented by a quadratic penalty 

function. The effect of this augmentation is that the resulting convergence 

conditions are weakened, as can be seen in chapters 4 and 9. For the sake of 

clarity we give the conditions posed, in general for all ISOPE algorithms where the 

performance index is augmented, on the model again (see chapter 9)

1. There exist such numbers A and a such that

A — 20 £ A(p<) a(t>0 + 20 £ a > 0 (10.1)

2. The model is selected such that
A £ 2a* - |a* (10.2)

^A* < a £ A* (10.3)

Here if the penalty factor, 0, is set to zero we see that the resulting 

conditions are stricter. However, the problem, with such an augmentation is that if 
is hot

a proper value oj- the penalty factory it could be possible that there is no effect 

on the performance of the algorithm, or else the problem could become 

ill-conditioned.

With ISOPE algorithms, we need to select some parameters known as the 

iterative loop gains, which are used in the under—relaxation scheme, for updating 

the control set-points. Generally, these gains are obtained through a trial and 

error procedure. This, when implementing the algorithms in an on-line situation 

would pose problems as there is no way of knowing what the value of these gains 

should be. Then, when using an augmented approach, it is seen that the number of 

parameters which have to be selected through a trial and error procedure 

increases. A not so proper selection of these parameters could have far reaching 

results on the performance of the algorithms. The reasons for selecting 
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appropriate gains has been discussed in chapter 4. A very high value for the gains 

could lead the algorithm to become unstable, and similarly a low value could make 

the iterative process very slow. Similar is the case with the penalty factor. A low 

penalty factor, would not result in any appreciable improvement in the performance 

of the algorithm, and a high Per/dbu^actor could make the problem ill-conditioned.

To overcome these difficulties the Newton-like algorithms have been 

proposed. It has been seen, whether in the centralised case (Tatjewski and Roberts 

(1987)), or in the decentralised case (chapter 8), the Newton-like algorithm 

overcomes these problems rather well. In this method the updating scheme, for the 

controls, is more precise as opposed to the approximate method of the relaxation 

scheme. This results the algorithm converging to the optimum very quickly. In 

fact for the case where the system and model mappings are linear it is seen that 

we can have superlinear convergence. It also is seen that within reasonable limits 

of the penalty factor value, the performance of the algorithm remains fairly 

constant. This is in marked con. ;trast to the algorithms which use the relaxation 

scheme, where, within reasonable limits, it is seen that as the value of the penalty 

factor .15 increased the performance of the algorithm is improved but after some 

value this performance deteriorates, (see chapter 8, (Roberts et al (1986)). Also the 

Newton—like algorithm can handle large model-reality differences better. It is seen 

that, as these model—reality differences are increased, (by using the non-linearity 

parameters (see chapter 8)), the deterioration in the performance of the relaxed 

algorithm is more than it is with the Newton-like algorithm.

We have often repeated that the algorithms which are classified under 

ISOPE, that is, those which are described in this thesis and those described 

elsewhere (Michalska et al (1985), Bryds and Roberts(1986a), Chen (1986), Abdullah 

(1988), Ellis et al (1986), Kambhampati and Ellis(1988)), have some common features. It 

is these features which help in the generalisation of the ISOPE algorithms. This 

generalisation was presented in chapter 9. However, as mentioned it was not 

possible to include one algorithm, namely the algorithm using dynamic coordination. 

However, because of the features mentioned in chapter 9, we can conclude that it 

should be possible to fit this algorithm into the general scheme.

10.3 FURTHER WORK

It has been often repeated that the disadvantage with the ISOPE algorithms 

is that derivatives of the system are needed. Efforts have been made to either 

totally eliminate this necessity or to make the algorithm converge faster. The 

algorithms, which have been developed to make the convergence faster have proved 
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successful and some of them have been discussed in this thesis. On the other hand, 

the attempts to eliminate the need for the derivatives have been sucessful to a 

limited extent. The algorithm developed by Liu et al (1988) has been successful. 

However, it has been found that the efficiency of the algorithm reduces as the 

number of variables, that is the set-points, increases. These algorithms, however, 

are suitable for the centralised cases and attempts have to be made to extend this 

for the decentralised cases.

There is one definite advantage, with the centralised structures. This is 

that whatever the form the algorithm takes, whether we use a linearisation 

technique as was done with the ALM-ISOPE or with the point-linearized inout-output 

mapping technique of Hu et al (1988), one does not have to ensure that the model is 

separable into different sub-models. This is the case with the decentralised 

algorithms. It is for this reason that efforts to extend these algorithms to the 

decentralised cases have proved to be difficult. However, these techniques when 

incorporated with the existing algorithms, it is possible to develop some efficient 

algorithms ( Lin et al (1987a, 1987b, 1987 c, 1987cD). These use a two model 

technique, where we not only use the model provided, but also develop an 

approximate linear model along the lines of the ALM-ISOPE technique. Here, this 

linear model is used to update the price vetors. Thus, instead of using the

following

pk+1 _ pk + <uk+1 - HF(Ck+±, Uk+i, ak)

we use

Pk+i = pk + € (Uk+1 - H(WCk+1 + ak)

where € € and W € JRm'x'n are as before.

The advantage here is that this linearised model is a better representation 

of the system near the point red, and hence would be a better measure of

the interactions taking place.

Prom the survey presented here in this chapter and else where in the 

thesis, it can be seen that, here at the Control Engineering Centre, City 

University, a lot of effort has been and is being put into developing algorithms 

for solving the system optimisation problem. Most of the work done so far has been 

mostly theoretical, and the simulation have used abstract examples. For any 

algorithm to be practical, it has to be tested on some existing system, like a pilot 

scale plant, of which they are quite a few in the laboratory here in the City 

University. Other than the MSTP and AISOPE algorithms, which have been 

sucessfully implemented on pilot scale plants (Brdys et al (1986b), Bakalis (1986))
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in the laboratory, none of the other algorithms have been tested on real 

situations. This task is, however, rather as there are numerous

algorithm which can be used. However, it is expected that the ALM-ISOPE and the 

Newton-like algorithms would be the most efficient, as simulation results have 

shown them to be so.

Then the major project which has to be undertaken is to test these ISOPE 

algorithms, either all of them or those which have been seen, through simulation to 

be the most efficient.
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Q ******************************************************************* 
C * *
C * PROGRAM FOR MSTP AND AISOPE ALGORITHMS. FOR MSTP SET Rl=0.0 *
C * AND FOR AISOPE SET R1 TO ANYTHING ELSE (R1 IS THE PENALTY FACTOR* 
C * SEE FLOW CHART TO SEE HOW THE PROGRAM WORKS *
C * *
C ******************************************************************* 

c

PROGRAM MAISOPE 
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION W(100),X(5),XVP(5),XIP(5),XUOP(5),EINC(5),

& YMDL(3) ,YREAL(3) ,YRLC(3) ,DEDV(5,3) ,COOR(5) ,YMODEL(3) ,
& DYDA(3,3),DFDA(3,1),UNIMAT(3,3),DADY(3,3) ,PE(3),
& DFDY(3,1),DFDV(5,1),DMDY(5,3),DRDY(5,3) ,
& BB(8,8) ,AA(8,8) ,WKSPCE(10) ,R1,DSQRTC,DSQRT

INTEGER IW(7),IOPT
COMMON/USED1/COOR, R1, XVP
COMMON/USED3/TOC 
COMMON/JSED2/PE

C
C INITIALISATION OF PARAMETERS
C
Q********************************************************************** 

***

C PART I
WRITE(*,'(24(/)) ')
PRINT*INTEGRATED SYSTEM OPTIMISATION AND PARAMETER'
PRINT*,' ESTIMATION'
WRITE(*,' (12(/)) ')
PRINT*,'ENTER CHOISE FOR PROGRAM RUN: '
PRINT*,' :<0> FOR STD ISOPE'
PRINT*,' :<1> FOR AISOPE'
READ*, IOPT
PRINT*,'ENTER NUMBER OF SET POINTS'
READ*,NC
PRINT*,'ENTER INITIAL VALUES OF SET POINTS' 
READ*,(XIP(I),1=1,NC)
PRINT*,'ENTER GAIN'
READ*,GK
PRINT*,'ENTER CONVERGENCE CRITEREA'
READ*,S
PRINT*,'ENTER R1 (PENALTY FACTOR)'
PRINT*,'ENTER <0> (ZERO) FOR MSTP, AND ANYTHING ELSE FOR AISOPE' 
READ*,R1

c

5 NP=3
LIW=10
LW=100
IA=7
IAA=7
PFI=0.0

C
C
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C**********************************************************************
*

PART II

OPEN (40, FILE= ’GRPH. DAT', STATUS= ’NEW’)
OPEN(20,FILE=’SETPT.DAT', STATUS =’NEW’)
OPEN(21,FILE=’PARA.DAT’,STATUS='NEW')
OPEN(41,FILE=’REALFUNC.DAT’ ,STATUS=’NEW’)
OPEN(15,FILE=’MODIF.DAT’,STATUS='NEW’)
OPEN(14,FILE=’DEDV.DAT’,STATUS='NEW’)

n 
o 

n 
n n n

 qq 
q

 
q

 q
 

q
q

q
q

 
q

 
q

 q
 q

DO 900 1=1,NO
XVP(I)=XIP(I)
XUOP(I)=XIP(I)

900 CONTINUE

ITERAT=1

PARAMETER ESTIMATION PROBLEM

850 DO 800 1=1,NC
XVP(I)=XVP(I)+GK*(XUOP(I)-XVP (I))

800 CONTINUE

EVALUATE PLANT OUTPUTS & EQUATE TO MODEL OUTPUTS 
CALL PLANT (NP, I A, IAA, XVP, YREAL)
DO 750 1=1, NP
YMDL(I)=YREAL(I)

750 CONTINUE

PE (1) =YREAL (1)-XVP (1)+XVP (2)-2.0*YREAL (2)
PE (2) =YREAL (2) -XVP (3) +XVP (4) -YREAL (1) +YREAL (3) *3
PS (3) =YREAL (3) -2.0*XVP (4) +XVP (5) +YREAL (1)-YREAL (2)

CALL FUNCT(XVP,YREAL,F)
WRITE(41,*) FA

IF(IOPT.EQ.0) GO TO 400

OBTAIN REAL PROCESS MEASUREMENTS
DIFFERENCE BETWEEN MODEL AND PLANT OUTPUT DERIVATIVES

CALL PLANT (NP,IA, IAA,XVP, YR)
CALL MODEL(NP,IA,IAA,XVP,YMODEL,PE)
DO 700 1=1,NC
EINC(I)=0.01*XVP(I)
IF(EINC(I).LE.1.0D-08) EINC(I)=0.001
XVP (I)=XVP(I)+EINC(I)
CALL MODEL(NP,IA,IAA,XVP,YMDL,PE)
CALL PLANT (NP,IA, IAA, XVP, YREAL)
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DO 10 J=1,NP
DMDY(I,J)= (YMDL(J)-YMODEL(J) ) /EINC(I)
DRDY(I,J) = (YR(J)-YREAL (J))/EINC(I)
DEDV(I, J) = (YMDL (J)-YREAL (J)) /EINC (I)

10 CONTINUE
XVP(I)=XVP(I)-EINC(I)

700 CONTINUE
C

WRITE(14,*)((DEDV(I,J),J=1,3),1=1,5)
C

CALL OPFC‘T(NP,IA,IAA,XIP,FA1,PE)
CALL MODEL (NP, IA, IAA, XVP, YRLC, PE)
DO 650 1=1,NP
EINC(I)=0.01*PE(I)
IF(EINC(I).LE.1.0D-08)EINC(I)=0.0001
PE (I)=PE(I)+EINC(I)
NNP = NP
CALL MODEL(NNP,IA, IAA,XVP,YMDL,PE)
DO 20 J=1,NP
DYDA (I, J) = (YMDL (J) -YRLC (J)) /EINC (I)

20 CONTINUE
NNP = NP
CALL OPFCT (NNP, IA, IAA, XIP, FA2, PE)
DFDA (1,1) = (FA2-F Al) /EINC (I)
PE(I)=PE(I)-EINC(I)

650 CONTINUE
C
C COMPUTATION OF MODIFIERS (COOR) BY MATRIX OPERATIONS
C

IFAIL=1
CALL F01CBF(UNIMAT,3,3,IFAIL)
IF(IFAIL.EQ.0) GO TO 600
WRITE(1,30)IFAIL

30 FORMAT(’ IDENTITY MATRIX NOT FOUND,IFAIL= ’, 13)
STOP

600 IFAIL=1
CALL F04AEF (DYDA, 3, UNIMAT, 3,3,3, DADY, 3, WKSPCE, AA, 8, BB, 8, IF AIL) 
IF(IFAIL.EQ.0) GO TO 550
WRITE(1,40)IFAIL

40 FORMAT(’ERROR IN F04AEF,IFAIL=’,12)
STOP

550 N=1
CALL F01CKF(DFDY,DADY,DFDA,NP,N,NP,Z,N,N,IFAIL)
CALL F01CKF(DFDV,DEDV,DFDY,NC,N,NP,Z,N,N,IFAIL)
DO 500 1=1,NC
COOR(I)=DFDV(I,1)

500 CONTINUE
C

WRITE(15,*)(COOR(I),1=1,5)
C

400 DO 450 I=1,NC
X(I)=XIP(I)

450 CONTINUE
C
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SOLVE OPTIMISATION PR03LSM

CALL OPTIM(X)
50 IF (HERAT. EQ. 500) THEN

GO TO 390
ELSE

CONTINUE
ENDIF

DSQRTC=0.0
DO 300 1=1,NC
DSQRTC=DSQRTC+(X(I)-XIP(I))**2

300 CONTINUE
DSQRTC=DSQRT(DSQRTC/5.0)

IF(DSQRTC.GT.S) GO TO 250

390 CALL RESULT(X,XVP,ITERAT,F,YREAL,YMDL,PE,COOR,CTR,DSQRTC)

Q
Q

Q
Q

Q
Q

O
Q

Q
Q

Q
Q

Q
 

Q
no

 
Q

 Q
 Q

 Q Q
 

Q
 

Q
 Q

CLOSE FILES AND STOP

CLOSE(40,STATUS=’KEEP')
CLOSE(20,STATUS=’KEEP')
CLOSE(41,STATUS=’KEEP’)
CLOSE(22,STATUS=’KEEP')
CLOSE(15,STATUS=’KEEP')
CLOSE(14,STATUS=’KEEP’)

STOP

ARGUMENT TRANSFER

!50 DO 200 1=1, NC
XIP(I)=X(I)
XUOP(I)=X(I)

200 CONTINUE

CALL RESULT(X,XVP,ITERAT,F,YREAL,YMDL,PE,COOR,CTR,DSQRTC)

ITERAT=ITERAT+1

GO TO 850

END

*********************************************************************

SUBROUTINE PLANT : SIMULATES STEADY STATE RESPONSE OF A SYSTEM

INPUTS CONTROL SET-POINTS (XVP)
OUTPUTS SYSTEM OUTPUTS (YREAL)

SUBROUTINE USES A NAG ROUTINE F04ATF FOR SOLVING THE SET
OF SIMULTANEOUS EQUATIONS
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SUBROUTINE PLANT(NP,IA,IAA,XVP,YREAL)
C USING F04ATF TO SOLVE LINEAR EQUATIONS

IMPLICIT REAL *8 (A-H,O-Z)
REAL*8 A(7,7),B(7),CD(7),AA(7,7) ,WKSPC1(1O),WKSPC2(10),XVP(5),

& YREAL(3)

nn
Q

Q
Q

Q
Q

Q
D

Q
 

Q
 Q

 
Q

 
Q

 
D

. 
Q

 
Q

 Q

A(l,l)=1.0
A(l,2)=-(2.0+0.15*XVP(l))
A(l,3)=0.0
A(2,l)=-1.2
A(2,2)=1.0
A(2,3)=3.0
A(3,l)=1.0
A(3,2)=-1.0
A(3,3)=1.0

B (1)=1.3*XVP(1)-1.0*XVP(2)
B (2)=1.0*XVP(3)-1.0*XVP(4)+0.1*XVP(4)**2 
B(3)=2.0*XVP(4)-1.25*XVP(5)+0.25*XVP(4)*XVP(5)

IFAIL=1
CALL F04ATF (A, IA,B,NP,CD,AA, IAA,WKSPC1,WKSPC2, IFAIL)
IF (IFAIL.EQ.0) GO TO 20
WRITE(1,99)IFAIL

99 FORMAT(’ERROR IN F04ATF (PLANT),IFAIL=*,12)
STOP

20 DO 30 1=1,NP
YREAL(I)=CD(I)

30 CONTINUE

RETURN
END

********************************************************************
SUBROUTINE PFORM(PFI,F)
REAL*8 PFI,TOC,F
COMMON /USED3/TOC
PFI=F+TOC
RETURN
END

*********************************************************************

SUBROUTINE MODEL : SIMULATES STEADY STATE RESPONSE OF A SYSTEM

INPUTS CONTROL SET-POINTS (XVP)
OUTPUTS MODEL OUTPUTS (YREAL)

SUBROUTINE USES A NAG ROUTINE F04ATF FOR SOLVING THE SET
OF SIMULTANEOUS EQUATIONS

SUBROUTINE MODEL (NP, IA, IAA, XVP, YMDL, PE)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 XVP(5),YREAL(3),YMDL(3),PE(3)
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REAL*8 AM(7,7) , BM(7) ,01(7) ,AAM(7,7) ,WKSPC3(10) ,WKSPC4(10)
C

AM(l,l)=1.0
AM(1,2)=—2.0
AM(l,3)=0.0
AM(2,l)=-1.0
AM(2,2)=1.0
AM(2,3)=3.0
AM(3,l)=1.0
AM(3,2)=-1.0
AM(3,3)=1.0

C
BM(1)=XVP(l)-XVP(2)+PE(1)
BM(2)=XVP(3J-XVP(4)+PE(2)
BM(3)=2.0*XVP(4)-XVP(5)+PE(3)

C
C

IFAIL=1
CALL F04ATF(AM,IA,BM,NP,CM,AAM,IAA,WKSPC3,WKSPC4, IFAIL)
IF(IFAIL.EQ.0) GO TO 20
WRITE(1,99)IFAIL

99 FORMAT('ERROR IN F04ATF (MODEL) ,IFAIL=’ ,12)
C STOP

20 DO 30 1=1,NP
Y?1DL(I)=CM(I)

30 CONTINUE
RETURN
END

C
Q *********************************************************************
c

C SUBROUTINE OPFCT EVALUATES THE VALUE OF THE INDEX PERFROMANCE
C USED FOR EVALUATING THE DERIVATIVES OF THE INDEX
C WITH RESPECT TO THE PARAMETERS
C

SUBROUTINE OPFCT (NP,IA, IAA,XIP, FA,PE)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 XIP(5),PE(3),YREAL(3),YMDL(3),FA
CALL MODEL(NP, IA,IAA,XIP,YMDL,PE)

C EXPRESSION OF PERFORMANCE INDEX
FA=(YMDL(1)-1.0)**2+XIP(1)**2+XIP (2)**2+2.0*(YMDL (2)-2.0)**2+ 

&(YMDL(3) -3.0)**2+XIP(3)**2+XIP(4)**2+XIP(5)**2
C

RETURN
END

C

C
C SUBROUTINE RESULT DISPLAYS ALL THE RELEVANT DATA AT THE END OF
C
C
C 
C
C

EACH ITERATION.
THE VALUE OF THE PERFORMANCE INDEX
THE CURRENT SET-POINT VALUES
THE CURRENT MODEL AND SYSTEM OUTPUTS
THE CURRENT ITERATION NUMBER
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C -THE VALUE OF THE MODIFIER
C

SUBROUI1INE RESULT (X, XVP, HERAT, F, YREAL, YMDL, PE, COOR, DSQRTC)
C

DOUBLE PRECISION X(5),YREAL(3),PE(3),YMDL(3),COOR(5),XVP(5),
★ F,DSQRTC

C
IF (ITERAT.EQ.1) THEN
PRINT*INTEGRATED SYSTEM OPTIMISATION AND PARAMETER ESTIMATION’

ELSE
CONTINUE

ENDIF
WRITE(*,'(2(/))')
WRITE(*,11)ITERAT
WRITE(*,1)F
WRITE(*,2)(X(I),1=1,5)
WRITE(*,3)(XVP(I),1=1,5)
WRITE(*,4) (YREAL(I),1=1,3)
WRITE(*,5)(YMDL(I),1=1,3)
WRTTE(*,6)(PE(I),1=1,3)
WRTTE(*,7)(COOR(I),1=1,5)
WRITE(*,9)DSQRTC
WRITE(*,10)

C
1 FORMAT (’ FUNCTION VALUE= ' , F10.5)
2 FORMAT (’X = ',5(F10.5,2X))
3 FORMAT(’XVP = ' ,5 (F10.5,2X))
4 FORMAT ('YREAL = ' ,3(F10.5,2X))
5 FORMAT (’YMDL = ',3(F10.5,2X))
6 FORMAT (‘PE = ',3(F10.5,2X))
7 FORMAT (’COOR = ’,5(F10.5,2X))
9 FORMAT('DSQRTC= ’,F10.5)
10 FORMAT(’*******************************************************)
11 FORMAT('ITERATION ’,110)

C
RETURN
END

Q********************************************************************** 
*
C
C SUBROUTINE OPTIM SOLVES THE OPTMISATION PROBLEM
C INPUTS THE STARTING POINT FOR OPTIMISATION
C THROUGH THE VARIABLE X AND OUTPUTS THE OPTIMUM
C VALUE THROUGH THE SAME VARIABLE X
C
C OPTIM USES THE NAG ROUTINE E04CGF FOR SOLVING THE OPTIMISATION
C PROBLEM.
C

SUBROUTINE OPTIM(CS)
C

REAL*8 CS(5),F, W(200)
INTEGER IW(20),IFAIL

C
LIW=10

- 167-



APPENDIX Al

LW=100
IFAIL=O

CALL E04CGF (5, CS, F, IW, LIW, W, UN r IF AIL)
IF(IFAIL.NE.O)THEN

PRINT*,’IFAIL IN E04CGF=’,IFAIL
STOP

END

RETURN
END

*********************************************************************
**

on
 Q Q 

Q
 Q n 

O
 0000

0*
00

SUBROUTINE FUNCT1 IS A USER DEFINED SUBROUTINE.
IT CONTAINS THE FUNCTION TO MINIMISED
AND IS CALLED BY THE SUBROUTINE E04CGF

SUBROUTINE FUNCT1(N,XC,FC)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
................. LOCAL ARGUMENTS ....
DOUBLE PRECISION FC, XC(N)

REAL*8 C00R(5),PE(3),YMDL(3),TOC,R1,XVP (5),TOCR

SCALAR IN COMMON
COMMON /USED1/COOR,R1,XVP
COMMON /USED3/T0C
COMMON /USED2/PE
TOC=0.0D+0
TOCR=0.0D+0
DO 900 1=1,N
TOC=TOC+COOR(I) *XC (I)
TOCR=TOCR+R1*((XC(I)-XVP(I))* *2)

900 CONTINUE
CALL MODEL(3,7,7,XC,YMDL,PE)

FC= (YMDL (1)-1.0) **2+XC (1) **2+XC (2) **2+2.0* (YMDL (2)-2.0) **2 
*+ (YMDL (3) -3.0) **2+XC (3) **2+XC (4) **2+XC (5) **2-T0C+T0CR

RETURN
END

SUBROUTINE FUNCT (XIP, YMDL, FA)
IMPLICIT REAL*8 (A-H,O-Z)
RE.AL*8 XIP (5),YMDL (3) , FA

C
FA= (YMDL (1)-1.0) **2+XIP (1) **2+XIP (2) **2+2.0* (YMDL (2) -2.0) **2+ 

& (YMDL (3) -3.0) **2+XIP (3) **2+XIP (4) **2+XIP (5) **2
C

RETURN
END
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C PROGRAM ISOPEIA
C
(2 ***************************************************************
C * *
C * LINEARISES A PROCESS ABOUT A POINT TO DEVELOPS A MODSL1 OF *
C * TYPE [Y] = [W] [C]+[PE] WHERE Y=3X1 *
C * W=3X5 *
C
C
C
C

*
*
*

PE=3X1
C=3X1

*
*
*

***************************************************************
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION W(100),X(5),XVP(5),XIP(5),XUOP(5)

& ,YMDL(3) ,YREAL(3) ,YRLC(3) ,DEDV(5,3) ,COOR(5) ,
& BB(3,8) ,AA(8,8) ,WKSPCE(10) ,Z(1) ,PE(3) ,WM(3,5)

INTEGER IW(7),IOPT
COMMON/USED1/COOR
COMMON/MODE/WM
COMMON/USED3/TOC
COMMON/USED2/PE

C INITIALISATION OF PARAMETERS
C
c********************************************************************** 

***

C PART I
WRITE (*,' (24 (/))')
PRINT*,’INTEGRATED SYSTEM OPTIMISATION AND PARAMETER'
PRINT*,' ESTIMATION'
WRITE(*,'(12 (/)) ')
PRINT*,'ENTER NUMBER OF SET POINTS'
READ*,NC
PRINT*,'ENTER INITIAL VALUES OF SET POINTS'
READ*,(XIP(I),I=1,NC)
PRINT*,'ENTER GAIN'
READ*,GK
PRINT*,'ENTER CONVERGENCE CRITEREA'
READ*,S

C
5 NP-=3

LIW=10
LW=100
IA=7
IAA=7

C
C
c**********************************************************************

c

C PART II
p

OPEN (40, FILE=' GRPH.DAT', STATUS=' NEW')
OPEN(20,FILE='SETPT.DAT',STATUS='NEW')
OPEN(21,FILE='REALFUN.DAT' ,STATUS='NEW')
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DO 900 1=1,NC
XVP(I)=XIP(I)
XUOP(I)=XIP(I)

900 CONTINUE
C

ITERAT=1
C
C MODEL IDENTIFICATION
kx

850 DO 800 1=1,NC
XVP (I)=XVP (I )+GK*(XUOP(I)-XVP(I))

800 CONTINUE
C

CALL PEDERV(XVP,NC,NP,IA,IAA,WM,PE)
CALL OPFCT(NP, IA, IAA,XVP,FA,PE, WM, NC)
WRITE(21,*)FA

C
400 DO 450 1=1,NC

X(I)=XIP(I)
450 CONTINUE

C SOLVE OPTIMISATION PROBLEM
IFAIL=1
CALL E04CGF(NC,X,F,IW,LIW,W,LW, IFAIL)
IF(IFAIL.EQ.0) GO TO 350
IF(IFAIL.EQ.1)STOP

C
350 IF(ITERAT.EQ.5OO) THEN

GO TO 390
ELSE

CONTINUE
ENDIF
DO 300 1=1,NC
IF(DABS(X(I)-XIP(I)).GT.S)GO TO 250

300 CONTINUE
390 CALL PLANT(NP,IA,IAA,X,YREAL)

CALL MODEL1 (NP,IA, IAA,X,YMDL,PE,WM,NC)
PFI=F
CALL RESULT (NC,NP,X,ITERAT, F, PF I, YREAL, YMDL, PE, COOR)
WRITE (40,*)PFI
WRITE(20,*)(XVP(I),1=1,NC)

C
CLOSE(40,STATUS=’KEEP’)
CLOSE(20,STATUS='KEEP’)

C
STOP

c
C ARGUMENT TRANSFER
C

250 DO 200 1=1,NC
XIP(I)=X(I)

200 CONTINUE
DO 150 1=1,NC
XUOP(I)=X(I)
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150 CONTINUE
CALL PLANT (NP, IA, IAA, XUOP, YREAL)
CALL MODEL1 (NP, IA, IAA,XUOP,YMDL, PE,WM,NC)
CALL RESULT(NC,NP,XUOP,HERAT,F,PFI,YREAL,YMDL,PE,COOR)
WRITE (40,*) PFI
WRITE(20,*)(XVP(I),I=1,NC)

C
ITERA'T=I TERAT+1
GO TO 850

C
STOP
END

C* ****************************
SUBROUTINE FUNCT1(NC,XC,FC)
IMPLICIT REAL*8 (A-H,O-Z)

C SCALAR ARGUMENTS
REAL*8 FC,TOC
REAL*8 WM(3,5)
INTEGER NC,NP

C ARRAY ARGUMENTS
REAL*8 XC(5),COOR(5),PE(3),YMDL(3)

C
C SCALAR IN COMMON

COMMON /USED1/COOR
COMMON /USED3/TOC
COMMON /USED2/PE
COMMON/MODE/WM
TOC=0.0D+0
DO 900 1=1,NC
TOC-TOC+COOR(I)*XC(I)

900 CONTINUE
CALL MODEL1 (3,7,7,XC,YMDL, PE, WM, NC)

C
FC= (YMDL (1) -1.0) **2+XC (1) **2+XC (2) **2+2.0* (YMDL (2) -2.0) **2+

& (YMDL (3) -3.0) **2+XC (3) **2+XC (4) **2+XC (5) **2-TOC
C &-TOC
C FC=YMDL(l)**2+1.7*(XC(l)-2.0)**2-2.8*XC(2)**2+7.3*(YMDL(3)-1.0)
C & **2-1.3*YMDL (2) **2+1. 1*XC (3) **2+ (XC (4) -1.0) **2+0.6*XC (5)
C & **2-TOC

RETURN
END

C
C* *****************************

SUBROUTINE OPFCT(NP,IA,IAA,XIP,FA,PE,WM,NC)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 XIP(5),PE(3),YREAL(3),YMDL(3),FA

REAL*8 WM(NP,NC)
CALL MODEL1 (NP, IA, IAA, XIP, YMDL, PE, WM, NC)

C EXPRESSION OF PERFORMANCE INDEX
FA= (YMDL(l)-1.0) **2+XIP(l) **2+XIP(2)**2+2.0*(YMDL(2)-2.0)**2

&+ (YMDL(3)-3.0)**2+XIP(3)**2+XIP(4)**2+XIP(5)**2
C FA=YMDL(l)**2+1.7*(XIP(l)-2.0)**2-2.8*XIP(2)**2+7.3*(YMDL(3)-2.0
C & ) **2-1.3*YMDL (2) **2+1.1*XIP (3) **2+ (XIP (4)-1.0) **2+0.6*XIP (5)
C & **2
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RETURN
END

C
0********************************************************************* 

c

SUBROUTINE RESULT (NC,NP,X, ITERAT, F,PFI, YREAL, YMDL, PE,COOR)
C

DOUBLE PRECISION X(NC) ,YREAL (NP) ,PE (NP) ,Y4DL(NP) ,COOR (NC)
*,F,PFI

C
IF (ITERAT.EQ.1) THEN
PRINT*,’INTEGRATED SYSTEM OPTIMISATION AND PARAMETER ESTIMATION' 

ELSE
CONTINUE

ENDIF
WRITE (*,' (2 (/))')
PRINT*,' ITERATION ' , ITERAT
PRINT*,'AT POINT:'
PRINT*,(X(I),I=1,NC)
PRINT*,'MODEL1 OUTPUTS ARE:'
PRINT*,(YMDL(I),1=1,NP)
PRINT*,'PROCESS OUTPUTS ARE:'
PRINT*, (YREAL (I) , 1=1 ,NP)
PRINT*,'PARAMETERS ESTIMATES ARE:'
PRINT*,(PE(I),1=1,NP)
PRINT*,'MODIFIED PERFORMANCE INDEX:',F
PRINT*,'REAL PERFORMANCE INDEX: ' ,PFI
PRINT*,'MODIFIERS ARE:'
PRINT*, (COOR (I) , 1=1,NC)
PRINT*,'*********************************************************i

C
RETURN
END

c**********************************************************************

*

Q
 Q

 Q
 Q

 Q

SUBROUTINE PEDERV IDENTIFIES THE LINEAR MODEL WHICH IS USED
SETS THE SYSTEM DERIVATIVES TO WM
AND MODEL IS IDENTIFIED AS Y=WM*XVP+PE

SUBROUTINE PEDERV (XVP, NC,NP,IA, IAA,WM,PE)
DOUBLE PRECISION XVP(NC) ,PE (NP) ,WM(NP,NC) ,PROD(3) ,SUM,YREAL(3) , 

* YRLD(3),EINC(10)

DOUBLE PRECISION ALPHA,ALPHA2,STDN
INTEGER NEXP(3)
COMMON/NOIS/INCH,STDN, IFILT, ALPHA
COMMON/FILTV/ALPHA2
COMMON/FILT/IFYR
COMMON/NEXPL/NEXP

CALL PLANT (NP, IA, IAA,XVP,YREAL)
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DO 5 1=1,NC
EINC(I)=0.01*XVP(I)
IF(EINC(I).LE.1.0D-08)EINC(I)=0.01
XVP(I)=XVP(I)+EINC(I)
CALL PLANT (NP, IA, IAA, XVP,YRLD)
DO 10 J=1,NP

WM(J, I) = (YRLD (J) -YREAL (J)) /EINC (I)
10 CONTINUE

XVP (I)=XVP(I)-SINC(I)
5 CONTINUE

C
DO 20 1=1,NP

3114=0.0
DO 15 J=1,NC

SUM=SUM+XVP (J) *WM(I, J)
15 CONTINUE

PROD(I)=SUM
20 CONTINUE

C
DO 25 1=1,NP
PE(I)=YREAL(I) -PROD(I)

25 CONTINUE
C

RETURN
END

C
q **********************************************************************  
c

SUBROUTINE MODEL1 (NP,IA, IAA,XVP,YMDL,PE,WM,NC)
REAL*8 XVP(NC) ,PE (NP) ,YMDL(NP) ,WM(NP,NC)

DOUBLE PRECISION SUM,PROD(3)
C

DO 10 1=1,NP
SUM=0.0
DO 5 J=1,NC

SUM=SUM+XVP (J) *WM(I, J)
5 CONTINUE

PROD(I)=SUM
10 CONTINUE

C
DO 15 1=1,NP

YMDL (I) =PROD (I) +PE (I)
15 CONTINUE

C
RETURN
END

************************** ***********************************XXXXXX XX

uuuuuoou

SUBROUTINE PLANT : SIMULATES STEADY STATE RESPONSE OF A SYSTEM

INPUTS CONTROL SET-POINTS (XVP)
OUTPUTS SYSTEM OUTPUTS (YREAL)

SUBROUTINE USES A NAG ROUTINE F04ATF FOR SOLVING THE SET
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C OF SIMULTANEOUS EQUATIONS
C

SUBROUTINE PLANT (NP, IA, IAA,XVP,YREAL)
C USING F04ATF TO SOLVE LINEAR EQUATIONS

IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 A(7,7),B(7),CD(7),AA(7,7),WKSPC1(1O),WKSPC2(10),XVP(5),

& YREAL(3)
C
C

A(l,l)=1.0
A(1,2)=-(2.0+0.15*XVP(1))
A(l,3)=0.0
A(2,l)=-1.2
A(2,2)=1.0
A(2,3)=3.0
A(3,l)=1.0
A(3,2)=-1.0
A(3,3)=1.0

C
B(l)=1.3*XVP(l)-1.0*XVP (2)
B(2)=1.0*XVP (3)-1.0*XVP(4)+0.1*XVP(4)**2
B(3)=2.0*XVP(4)-1.25*XVP(5)+0.25*XVP(4)*XVP(5)

C
IFAIL=1
CALL F04ATF (A, IA, B, NP, CD, AA, IAA, WKS PCI, WKSPC2, IF AIL)
IF (IFAIL.EQ.0) GO TO 20
WRITE(1,99)IFAIL

99 FORMAT (’ ERROR IN F04ATF (PLANT) ,IFAIL=’,12)
C STOP

20 DO 30 1=1,NP
YREAL(I)=CD(I)

30 CONTINUE
C

RETURN
END
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ououuuoou
 

o 
ooo

* *
* PROGRAM FOR NEWTON-LIKE ALGORITHM FOR SOLVING ’THE DECENTRALISED *
* OPTIMISING CONTROL PROBLEM. SEE FLOW CHART FOR WORKING OF THE *
* PROGRAM ** ★

PROGRAM SL-NEWT

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION EF(4), CX(7) , UX(4), SKI, SK2, SK3,

* H, G, CTR(4) ,EFC(7) ,SKC,SKG,DMDY(7,4) ,DYDW(4,4)
DOUBLE PRECISION CV(7), CS(7), UW(4), U(4), T(4) , PLAM(7),

* P(4), AL(4), YREAL(4), YMDL(4),ERHOCK(11,11),EPS (11),R1,R2,
* ERHOC(11,11) ,RLAM(3) ,DSQRTU,DSQRTC,DSQRTP,DSQRT,EP,UR1 (4) ,
* RLAMM(4) ,DRDY(7,4) ,DA3S,BETA(3) ,UREAL(4) ,FCO,FC,CVP(7) ,UP(4) ,
* TOTC,TOTP,UOLD(4) ,UXOLD(4) ,EPC

INTEGER IN, IA, IAA, M ,IPROJE(4)

COMMON/CON’TR/CS, U, CTR 
COMMON/VARB/UW, Rl, R2
COMMON/SUBN/K
COMMON/PRMT1/PLAM, T, P, AL
COMMON/ER/ERHOCK
COMMON/CVB/CV
COM?40N/RIAtWI/RLAMM, M2
COMMON/DED/DRDY
COMMON/NONLIN/BETA
COMMON/PRO/CVP , UP, IPRO

SET DERIVATIVES

DO 1 1=1,4 
DO 1 J=l,4

DYDW(I,J)=0.0
1 CONTINUE 

DO 3 1=1,7
DO 3 J=l,4

DMDY(I,J)=0.0
3 CONTINUE

DYDW(l,l)=2.0
DYDW(2,2)=1.0
DYDW(2,3)=-3.0
DYDW(3,2)=-l.0
DYDW(3,3)=1.0
DYDW(4,4)=-4.0

I

DMDY(l,l)=1.0
DMDY(2,1)=-1.0
DMDY(3,2)=1.0
DMDY(4,2)=-1.0
DMDY(4,3)=2.0
DMDY(5,3)=-1.0
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DMDY(6,4)=1.0
DMDY(7,4)=2.0

C
OPEN(11,FILE='FUNC.DAT',STATUS=’UNKNOWN’)

C
DO 10 1=1,7
PRINT*,’ENTER CX(',I,')'
READ*,CX(I)
CV(I) = CX(I)
CS(I) = CX(I)

10 CONTINUE
C

DO 20 1=1,4
PRINT*,'ENTER UX(’,1,’)’
READ*,UX(I)
U(I) = UX(I)
UW(I) = UX(I)
T(I)=0.0
UOLD(I)=UX(I)
UXOLD(I)=UX(I)

20 CONTINUE
PRINT*,'ENTER P(I),I=1,4'
READ*,(P(I),1=1,4)

C
PRINT*,'ENTER SK1,SK2,SK3,SK4'
READ*, SKI, SK2, SK3,SK4
PRINT*,'ENTER SKC,SKG,EPS,EPC'
READ*,SKC,SKG,EP,EPC
PRINT*,'ENTER G,H'
READ*,G,H

C H = 5.0D-4
PRINT*,'ENTER R1,R2'
READ*,R1,R2
PRINT*,'ENTER NONLIN PARAMETERS 1=1,3'
READ*,(BETA(I),1=1,3)
LN = 4
IA = 7
IAA = 7
M2 = 1

C
L = 0

C
WRITE (1, 55555)

55555 FORMAT ('AUGMENTED SINGLE LOOP (ISOPE), EXAMPLE 1')
WRITE (1, 55554) SKI, SK3, SK4

55554 FORMAT (/'SK1=',1PD12.4,2X,'SK3=',1PD12.4,2X,'SK4=',1PD12.4)
WRITE (1, 55559) H, G, Rl, R2

55559 FORMAT('H AND G',1X,2(1X,1PD12.2) ,3X,'Rl AND R2',1X,
* 2(1X,1PD12.2))

C
1500 CALL COORD(LN,IA,IAA,CV,CS,U,UW,P,PLAM,T,AL,SK4,EPS,R1,R2,EF,EFC,

& EP, SK2, ISELEC, SKI, SK2, M2, DYDW ,DMDY, UOLD)
CALL PFORM(CV, UW, FC, AL)
FCO=FC
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C
1000 DO 111 1=1,7

CS(I) = CX(I)
111 CONTINUE

DO 222 1=1,4
U(I) = UX(I)

222 CONTINUE
C

K = 1
CALL OPTIM(CV)
K = 2
CALL OPTIM(CV)
K = 3
CALL OPTIM(CV)

C
YMDL(l) = CS(1) - CS(2) + 2.0*U(l) + AL(1)
YMDL(2) = CS(3) - CS(4) + U(2) - 3.0*U(3) + AL(2)
YMDL(3) = CS(4)*2.0 - CS(5) - U(2) + U (3) + AL(3)
YMDL(4) = CS(6) + CS(7)*2.5 - 4.0*U(4) + AL(4)

C CALL MODEL (LN, IA, IAA, YMDL, CS, AL)
C CALL PLANT (LN, IA, IAA, YMDL, CS)
C

EF(1)=U(1)-YMDL(2)
EF(2)=U(2)-YMDL(1)
EF(3)=U(3)-YMDL(4)
EF(4)=U(4)-YMDL(3)

C
DSQRTC=0.0
DO 1001 1=1,7
EFC(I)=CV(I)-CS (I)

1001 CONTINUE
C

DSQRTC=0.0
DO 9900 1=1,7

DSQRTC=DSQRTC+(CV(I) -CS(I))**2
C DSQRTC=DSQRTC+(CX(I)-CS(I))**2

9900 CONTINUE
TOTC=FDOAT(7)
DSQRTC=DSQRT (DSQRTC/TOTC)
PRINT*,’DSRTQC=’ ,DSQRTC

C.
DSQRTP=0.0
DO 9911 1=1,4

DSQRTP=OSQRTP+EF(I)**2
9911 CONTINUE

DSQRTP=DSQRT (DSQRTP/FLOAT (4))
PRINT*, *DSQRP=' ,DSQRTP

C
IF (DSQRTC. GT. G) GOTO 3456
IF(DSQRTP.GT.H)GOTO 3456

C
RM2 = M2
WRITE (1, 44441) M2
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C

WRITE (1, 66666)
WRITE (1, 99996)
WRITE (1, 66661)
WRITE (1, 99993)
WRITE (1, 66662)
WRITE (1, 99992)
WRITE (1, 33332)
WRITE (1, 33331)
WRITE (1, 33330)
WRITE (1, 22229)
WRITE (1, 22244)

FC
(CS(I),1=1,7) 
(CV(I),1=1,7) 
(0(1),1=1,4)
(UW(I),1=1,4) 
(EF(I),1=1,4) 
(P (I),1=1,4) 
(T(I),1=1,4)
(AL(I),1=1,4) 
(PLAM(I),1=1,7) 
(CTR(I) ,1=1,4)

PRINT*, ’ PROJECTION FLAGS'
PRINT*,(IPROJE(I),1=1,4)
STOP

3456 RM2 = M2
WRITE
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE

(1, 22222)
(1, 66666)
(1, 99996)
(1, 66661)
(1, 99993)
(1, 66662)
(1, 99992)
(1, 33332)
(1, 33331)
(1, 33330)
(1, 22229)
(1, 22244)

M2
FC
(CS(I),1=1,7) 
(CV(I),1=1,7) 
(U(I),1=1,4) 
(UW(I),1=1,4) 
(EF(I),1=1,4) 
(P(I),1=1,4) 
(T(l) ,1=1,4) 
(AL(I),1=1,4) 
(PLAN(I),1=1,7) 
(CTR(I),1=1,4)

PRINT*,'EPS (I),1=1,11) ARE'

C

101

102

PRINT*,(EPS(I),1=1,11)
PRINT*,'PROJECTION FLAGS'
PRINT*,(IPROJE(I),1=1,4)

DO 101 1=1,4
U (I)=UX(I)+SK2*(U(I)-UX(I))

CONTINUE
DO 102 1=1,7

CS (I)=CX(I)+SK3*(CS (I)-CX(I))
CONTINUE

C
CALL NEWTON (DRDY,CV,UV,DYDW,DMDY, ERHOCK,AL, EPS, CS, U, R1, R2, EF,EFC, 

& EP,EPC)I
DO 999 1=1,7

CV(I)=CV(I)+EPS(I)
999 CONTINUE

DO 998 1=1,4
P (I)=P (I)+EPS (1+7)

998 CONTINUEO
U

O CALL PROJEC(CV,UW,U,IPROJE) 

3310 DO 599 1=1,7
C CS(I)=CV(I)
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C CX (I) = CV(I)
CX(I) = CS(I)

C CV(I)=CV(I)+SK2*(CS(I)-CV(I))
599 CONTINUE

DO 699 1=1,4
UX(I)=U(I)

C P (I)=P(I)+SK3*EF(I)
699 CONTINUE

C
CALL PFORM(CV, U, FC, AL)
WRITE(11,*)FC

C
142 = M2 + 1
GO TO 1500

C
99996 FORMAT ('C',4X,7(1X,F12.6))
12345 FORMAT (6(1X,F12.5))
22229 FORMAT ('PLAM',2X,7(1X,F12.6))
66661 FORMAT ('CV',3X,7(1X,F12.6))
22244 FORMAT ('CONSTRAINTS',IX,4 (1X,F12.6))
66662 FORMAT ('UW',3X,4(1X,F12.6))
22222 FORMAT (’**** AFTER',IX,13,IX,'ITERATIONS ****•)
99992 FORMAT ('EF',4X,4(1X,F12.6))
44441 FORMAT (///'CONVERGENT AFTER',13,2X,' ITERATION '//)
33332 FORMAT ('P',4X,4 (1X,F12.6))
33331 FORMAT ('T',4X,4(1X,F12.6))
33330 FORMAT ('AL',3X,4 (1X,F12.6))
66666 FORMAT ('PERFORMANCE INDEX',1X,F12.6)
99993 FORMAT ('□',4X,4(1X,F12.6))

END
C

n 
Q

 Q
 

Q
 

Q
 

Q
 Q

SUBROUTINE OPTIM(CV)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
................LOCAL ARGUMENTS...............
DOUBLE PRECISION ETA, F , RHO, STEPMX, XTOL, A(5,5), G(5) ,

* C(3), RLAM(3), W(255), X(5), XL(5), XU (5), CL(1) , CU(1) ,
* CTR(4),RLAMM(4)

INTEGER I, IBOUND, IFAIL, IPRINT, LA, DCLU, LIW, IW, MAXCAL,
* N, NX, M, IW(30), MEQ, MRNGE, MINEQ
LOGICAL LAMSET
................SCALAR IN COMMON....
DOUBLE PRECISION CS(7), U(4)
REAL*8 P(4) ,R1,R2,T(4) ,AL(4) ,PLAM(7) ,CV(7) ,UW(4) ,ERHOC(11,11) , 

& ERHOCK(11,11)
INTEGER K

.................. SUBROUTINE REFERENCE..............

EXTERNAL FUNCT2,CON2,E04WAY,E04VAZ
COMMON/CONTR/CS, U, CTR
COMMON/SUBN/X
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COM'lON/PRMTl/PLAM,T,P,AL 
COMMON/VARB/UW, R1, R2 
CO?4MON/ER/ERHOCK 
COMMON/RLAMM ■ VRIAM'4, *42 
IPRINT = -1
ETA = 0.00001
XTOL = 1.0D-16
STEPMX =20.0
LCLU = 1
IBOUND = 0
LAJ4SET = .FALSE.
MEQ = 0
•?4RNGE = 0
GO TO (100,200,300),K

100 N = 3
(4INEQ = 1
X(l) = CS(1)
X(2) = CS(2)
X(3) = U(l)
XL(1) = -1.0D+6
XU(1) = 1.0D+6
XL(2) = -1.0D+6
XU(2) = 1.0D+6
XL(3) = 0.0D+0
XU(3) = 0.5
IF(M2.EQ.1)THEN

LAT4SET=. FALSE.
EISE

LAMSET=.TRUE.
RLAM(1)=RLA?4?4(1)

ENDIF
GO TO 400

200 N = 5
MINEQ = 2
X(l) = CS(3)
X(2) = CS(4)
X(3) = CS(5)
X(4) = U(2)
X(5) = U(3)
DO 40 1=1,5
XL (I) = -1.0D+6
XU (I) = 1.0D+6

40 CONTINUE
IF(M2.EQ.1)THEN 

LAMSET=. FALSE.
ELSE

LAMSET=.TRUE.
RLAM(1)=RLAMM(2)
RLA'4(2)=RLAMM(3)

ENDIF
GO TO 400

300 N = 3
MINEQ = 1
X (1) = CS(6)
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X(2) = CS(7)
X(3) = U(4)
XL(1) = -1.0D+6
XU(1) = 1.0D+6
XL(2) = O.OD+O
XU (2) = l.OD+O
XL(3) = -1.0D+6
XU(3) = 1.0D+6
IF(M2.EQ.1)THEN

LAMSET=.FALSE.
ELSE

LAMSET=.TRUE.
RLAM(1)=RIAMM(4)

ENDIF
400 LA = 5

LIW = 30
LW = 255
M = MEQ + MINEQ + MRNGE
IFAIL = 0
CALL E04ZAF(N,M,FUNCT2,CON2,X,F,G,C,A,LA,W,LN,IFAIL)
NX =N+MINEQ+MRNGE
MAXCAL = 250*NX
RHO =1.00+0
IFAIL = 1
CALL E04VAF(N,MEQ/MINEQ,MRNGE,M,E04WAY,IPRINT,E04VAZ, MAXCAL,

* ETA, XTOL, STEPMX, CL, CU, DCLU, IBOUND, XL, XU, IAMSET, X, RHO, RLAM, F,
* G,C,IW,LIW,W,EW, IFAIL)

GO TO(500,600,700),K
500 CS(1) = X(l)

CS(2) = X(2)
U(l) = X(3)
CTR(l) = C(l)
RLAMM(1)=RIAM(1)
GO TO 800

600 CS(3) = X(l)
CS(4) = X(2)
CS(5) = X(3)
U(2) = X(4)
U(3) = X(5)
CTR(2) = C(l)
CTR(3) = C(2)
RLAMM(2)=RIAM(1)
RLAMM(3)=RIAM(2)
GO TO 800

700 CS(6) = X(l)
CS(7) = X(2)
U(4) = X(3)
CTR(4) = C(l)
RLAilM(4)=RIAM(l)

800 CONTINUE
C
C 800 IF (IFAIL.NE.2) GO TO 900
C WRITE (1, 1800) K
C STOP
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C1800 FORMAT ('K=',11,5X,'IFAIL=2’)
C

900 NERHO=N
CALL ERHO (CTR, K,CS,U,4,7, PLAN, P, R1, R2, ERHOC,T,NERHO, RIAN)

C
GO TO (110,210,310),K

C
110 DO 111 1=1,NERHO

DO 111 J=l,NERHO
ERHOCK(I,J)=ERHOC(I,J)

111 CONTINUE
GO TO 4000

C
210 KK=3

DO 211 1=1,NERHO
DO 211 J=l,NERHO

ERHOCK(I+KK,J+KK)=ERHOC(I, J)
211 CONTINUE

GO TO 4000
C

310 KK=8
DO 311 1=1,NERHO

DO 311 -J=l,NERHO
ERHOCK (I+KK, J+KK) =ERHOC (I, J)

311 CONTINUE
GO TO 4000

C
4000 RETURN

END
C
c**********************************************************************

C
c

SUBROUTINE FUNCT2(IFLAG,N,XC,FC,GC)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

C ................LOCAL ARGUMENTS ....
DOUBLE PRECISION FC, GC(N) , XC(N)

C ..............SCALAR IN COMMON..........
DOUBLE PRECISION PLAM(7), T(4), AL(4), P(4), CV(7) , UW(4), 

& R1,R2
INTEGER K
COMMON/SUBN/K
COMMON/PRMT1/PLAM, T, P, AL
COMMON/VARB/UW, Rl, R2
COMMON/CVB/CV

C
GO TO (100,200,300),K

C
100 FC = (XC(3)-1.0)**4 + ((XC(l)+XC(2)-2.0)**2)*5.0

& + P(1)*XC(3) - P(2)*(XC(l)-XC(2)+XC(3)*2.0+AL(l))
& - PLAM(l)*XC(1) - PLAM(2)*XC(2)
& + (R1*(XC(1)-CV(1))**2) +(R1*(XC(2)-CV(2))**2)
& +(R2*(XC(3)-UW(1))**2)
IF (IFLAG.EQ.O)GO TO 400
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GC(1) = 10.0*(XC(l)+XC(2)-2.0) - P(2) - PLAM(l)
& + 2.0*Rl*(XC(l)-CV(l))
GC(2) =P(2) - PLAM(2)+ 2.O*R1*(XC(2)-CV(2))+

& 10.0*(XC(l)+XC(2)-2.0)
GC(3) = 4.0*(XC(3)-1.0)**3 + P(l) - 2.0*P(2)

& + 2.0*R2*(XC(3)-UW(l))
GO TO 400

200 FC = (XC(l)-2.0)**2*2.0 + XC(2)**2 + XC(3)**2*3.0
* + XC(4)**2*4.0 + XC(5)**2 + P(2)*XC(4) + P(3)*XC(5)
* - P (l)*(XC(l)-XC(2)+XC(4)-3.0*XC(5)+AL(2))
* - P (4)*(2.0*XC(2)-XC(3)-XC(4)+XC(5)+AL(3))
* - PLAN(3)*XC(1) - PLAM(4)*XC(2) - PLAM(5)*XC(3)
* + (R1*(XC(1)-CV(3))**2) + (Rl*(XC(2)-CV(4))**2)
* + (Rl* (XC(3)-CV(5)) **2)+(R2*(XC (4)-UW(2)) **2)
1 + (R2* (XC (5)-UW(3)) **2)
IF (IFLAG.EQ.O) GO TO 400
GC(1) = 4.0*(XC(l)-2.0) - P(l) —PLAN(3)

1 + 2.0*Rl*(XC(l)-CV(3))
GC(2) = 2.0*XC(2) + P(l) - P(4)*2.0 - PLAM(4)

1 + 2.0*Rl*(XC(2)-CV(4))
GC(3) = 6.0*XC(3) + P(4) - PLAM(5)

1 + 2.0*Rl*(XC(3)-CV(5))
GC(4) = 8.0*XC(4) + P(2) + P(4) - P(l)

1 + 2.0*R2*(XC(4)-UW(2))
GC(5) = 2.0*XC(5) + P(3) + 3.0*P(l) - P(4)

1 + 2.0*R2*(XC(5)-UW(3))
GO TO 400

300 FC = (XC(l)+1.0)**2 + (XC(3)-1.0)**2 +(XC(2)**2)*2.5
* + P(4)*XC(3) - P (3) *(XC(l)+2.5*XC(2)-4.0*XC(3)+AL(4))
* - PLAM(6)*XC(1) - PLAM(7)*XC(2)
1 +( R1*(XC(1)—CV(6) )**2) +( R1*(XC(2)-CV(7))**2)
1 +( R2*(XC(3)-UW(4))**2)
IF (IFLAG.EQ.O) GO TO 400
GC(1) = 2.0*(XC(l)+1.0) - P(3) - PLAM(6)

1 + 2.O*R1*(XC(1)-CV(6))
GC(2) = 5.0*XC(2) - 2.5*P(3) - PLAM(7)

1 + 2.0*Rl*(XC(2)-CV(7))
GC(3) = 2.0*(XC(3)-1.0) + P(4) + P(3)*4.0

1 + 2.0*R2*(XC(3)-UW(4))
GO TO 400

C
400 RETURN

END
C
C**********************************************************************
c

SUBROUTINE CON2(IFLAG,N,M,XC,CC,A,LA)
C ................LOCAL ARGUMENTS ....

DOUBLE PRECISION CC(M) ,XC (N) ,A(LA,M)
INTEGER K
COMMON/SUBN/K

C
GO TO(100,200,300),K

C
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C 100 CC(1) = 1.0 - (XC(1)**2+XC(2)**2)
100 CC(1) = 1.5 - (XC(1)+XC(2))

IF (IFLAG.EQ.0) GO TO 400
A(l,l) = -1.0
A(2,l) = -1.0
A(3,l) = 0.0
GO TO 400

200 CC(1) = 1.0 - (0.5*XC(l)+XC(2)+2.0*XC(3))
Q

C CC(2) = 4.0 - (4.0*XC(1)**2+2.0*XC(1)*XC(4)+0.4*XC(4)
C & +XC(1)*XC(3)+0.5*XC(3)**2+XC(4)**2)
n

CC(2) = 4.5 - (4.0*XC(l)+2.0*XC(4)+XC(3))
IF (IFLAG.EQ.O) GO TO 400
A(l,l) = - 0.5D+O
A(2,l) = “ 1.0D+0
A(3,l) = - 2.0D+0
A(4,l) = O.OD+O
A(5,l) = O.OD+O
A(l,2) = -4.0
A(2,2) = 0.0
A(3,2) = -1.0
A(4,2) = -2.0
A(5,2) = 0.0
GO TO 400

300 CC(1) = XC(1) + XC(3) + 1.0
IF (IFLAG.EQ.O) GO TO 400
A(l,l) = l.OD+O
A(2,l) = O.OD+O
A(3,l) = l.OD+O

C
400 RETURN

END
C
C********************************************************************** 

c

c

c

c

SUBROUTINE AMONIT (N,M,X,F,C,NITER,NNF,GLNORM,COND,POSDEF,RHO,
* RIAN)
............ LOCAL ARGUMENTS ....
DOUBLE PRECISION COND,F,GLWRM,RHO, CNORM, C(M) ,RLAM(M) ,X(N)
LOGICAL POSDEF
..............SCALAR IN COMMON ....
INTEGER K
COMMON/SUBN/K
....FUNCTIO REFERENCE ...
DOUBLE PRECISION DSQRT
IF (NITER.GE.0) GO TO 140
CNORM =0.0
GO TO(100,200,300),K

100 IF(C(1).LT.0.0) CNORM = CNORM + C(l)**2 
CNORM = DSQRT(CNORM)
GO TO 400

200 IF (C(l).LT.0.0) CNORM = CNORM + C(l)**2
IF (C(2) .ET.0.0) CNORM = CNORM + C(2)**2
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CNOR-l = DSQRT (CNORM)
GO TO 400

300 IF(C(1).LT.0.0) CNORM = CNORM + C(l)**2
CNORM = DSQRT(CNORM)

400 WRITE (1,69990) GLNORM,CNORM
WRITE (1,69989) RHO
WRITE (1,69988) (RIAH(I),I=1,M)
RETURN

140 IF (COND.EQ.O.O) RETURN
IF (COND.LT.1.OD+6) GO TO 180
WRITE (1, 69993)

180 IF(.NOT.POSDEF) WRITE(1,69991)
RETURN

69993 FORMAT
69991 FORMAT
69990 FORMAT
69989 FORMAT
69988 FORMAT

(’CONDITION NUMBER OF PROJECTED HESSIAN EXCEED 1.0D+6') 
(’THE PROJECTED HESSIAN IS NOT POSITIVE DEFINITE’) 
('END OF THE CYCLE GLNORM AND CNORM ARE', (1PD12.4)) 
(’RHO = ’,1PD12.4)
('THE LAGRANGE MULTIPLIER ARE'/(1PD12.4))

END
C
0**********************************************************************
c

SUBROUTINE COORD (LN, IA, IAA, CV,CS,U,UW,P,PLAN, T, AL, SK4, EPS ,R1, R2,
& EF,EFC,EP,SK2,ISELEC,SKI,SK3,M2,DYDW,DMDY,UOLD)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

C .................. LOCAL ARGUMENT ....
DOUBLE PRECISION DMDY(7,4), DYDW(4,4), EINC(7), PT(4), YR1(4),

* YR2(4), DEDV(7,4), YREAL(4), AL(4), DRDY(7,4), Q(4), DQPT(4) 
C .................SCALAR IN COMMON..........

DOUBLE PRECISION CV(7), UW(4), P(4), PLAM(7), T(4), CS(7), U(4) , 
& ERHOCK(11,11) , EES (11) ,EF(4) ,EFC(7) ,R1,R2,EP,SK2
& ,SK1,SK3,H(4,4),TEMP(4,4),TEMP2(4,7),TEMP3(4,7)
& ,DMDYT(4,7),DRDYT(4,7),YMODEL(4),YMDL(4),UOLD(4)
& ,DSTAR(4,7)

C

n 
a 

q
 

q
 

a 
a 

a

COMMON/ER/ERHOCK 
COMMON/DED/DRDY

ESTIMATION UNIT

CALL PLANT (LN, IA, IAA, YREAL, CV)
UW(1)=YREAL(2)
UW(2)=YREAL(1)
UW(3)=YREAL(4)
UW(4)=YREAL(3)

AL(1) = YREAL(l) - CV(1) + CV(2) - 2.0*UW(l)
AL(2) = YREAL(2) - CV(3) + CV(4) - UW(2) + 3.0*UW(3)
AL (3) = YREAL(3) - 2.0*CV(4) + CV(5) + UW(2) - UW(3)
AL(4) = YREAL(4) - CV(6) - 2.5*CV(7) + 4.0*(JW(4)

DERIVATIVE OF OUTPUT W.R.T CV
CALL PLANT (LN, IA, IAA, YR1,CV)

- 188-



APPENDIX A3

CALL MODEL (LN, IA, IAA, YMODEL, CV, AL)

DO 350 1=1,7
EINC(I) = 0.01*CV(I)
IF (EINC(I).EQ.0.0D+0) EINC(I)=0.001
CV(I) = CV(I) + EINC(I)
CALL PLANT (LN, IA, IAA, YR2, CV)
CALL MODEL(LN,IA,IAA,YMDL,CV,AL)
DO 355 J=1,4
DRDY(I,J) = (YR2(J) - YR1 (J))/EINC(I)
DMDY(I,J) = (YMDL (J)-YMODEL (J))/EINC (I)

355 CONTINUE
CV(I) = CV(I) - EINC(I)

350 CONTINUE
DO 352 1=1,7
DO 353 J=1,4
DEDV(I,J) =- (SK4*DRDY(I,J)-DMDY(I,J))

353 CONTINUE
352 CONTINUE

PT(1) = - P(2)
PT(2) = - P(l)
PT(3) = - P(4)
PT(4) = - P (3)

DO 545 1=1,7
SUM = 0.0D+0
DO 560 J=l,4
SUM = SUM + DEDV(I, J) *PT (J)

560 CONTINUE
PLAM(I) = SUM

545 CONTINUE

RETURN
END

c**********************************************************************
*
C

SUBROUTINE PFORM(CS, U, FC, AL)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION CS(7), U(4), AL(4)
FC = (U(l)-1.0)**4 + (CS(l)+CS(2)-2.0) **2*5.0

* + (CS(3)-2.0)**2*2.0 + CS(4)**2 + CS(5)**2*3.0
* + U(2)**2*4.0 + U(3)**2 + (CS(6)+1.0)**2
* + (U(4)-1.0)**2 + CS(7)**2*2.5

RETURN
END

C
Q********************************************************************** 
C

SUBROUTINE MODEL(LN, IA, IAA, YMDL, CS, AL)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
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DOUBLE PREC IS ION YNDL (4) , CS (7) , AL (4) , YREAL (4) ,U (4)
C

CALL PLANT(LN,IA,IAA,YREAL,CS)
C

U(1)=YREAL(2)
U(2)=YREAL(1)
U (3) =YREAL (4)
U (4) =YREAL (3)

C
YMDL(l) = CS(1) - CS(2) + 2.0*U(l) + AL(1)
YMDL(2) = CS(3) - CS(4) 4- U (2) - 3.0*U(3) + AL (2)
YNDL(3) = CS(4)*2.0 - CS(5) - U(2) + U (3) + AL(3)
YMDL(4) = CS(6) + CS(7)*2.5 - 4.0*U(4) + AL(4)

C
RETURN
END

C

c
SUBROUTINE FUNCT1(IFLAG,N,XC,FC)
REAL*8 XC(N),FC,CVP(7),UP(4)
COMMON/PRO/CVP,UP,IPRO

C
GOTO (700,800,900),IPRO

C
700 FC=(CVP(1) -XC (1))**2+(CVP(2)-XC(2))**2

GO TO 400
C

800 FC=0.0
FC= (CVP (3) -XC (1)) **2+ (CVP (4) -XC (2)) **2+ (CVP (5) -XC (3)) **2 
GO TO 400

C
900 FC=0.0

FC=(CVP(6)-XC(1))*2+(CVP(7)-XC(2))**2
C

400 RETURN
END

C
C ******************************************************************** 
c

SUBROUTINE CONI (IFLAG,N,M,XC,CC)
r*

REAL*8 XC(N),CC(M),CVP(7),UP(4)
COMMON/PRO/CVP, UP, IPRO

C
GO TO(800,900,1000)IPRO

C
800 CC(1) = 1.0 - (XC(1)**2+XC(2)**2)

GO TO 400
900 CC(1) = 1.0 - (0.5*XC(l)+XC(2)+2.0*XC(3))

CC(2) = 4.0 - (4.0*XC(l)**2+2.0*XC(l)*UP(2)+0.4*UP(2)
& +XC(1)*XC(3)+0.5*XC(3)**2+UP (2)**2)

GO TO 400
1000 CC(1) = XC(1) + UP(4) + 0.5
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C
400 RETURN

END
C
C
C

= 1.0D+0
= (-2.0-BE'TA(l) *CS (1))
= 0.0D+0
= 0.0D+O
= -1.2D+0
= 1.0D+0
= 0.0D+0
= 3.0D+0
= 1.0D+0
= 0.0D+0
= 1.0D+0
= -1.0D+0
= 0.0D+O
= 0.0D+0
= 4.2D+0
= 1.0D+0

SUBROUTINE PLANT(LN, IA, IAA, YREAL, CS)
DOUBLE PRECISION A(7,7), B(7), CD(7), AA(7,7), WKSPC1(3O), 

* WKSPC2(10), YREAL(4), CS(7),BETA(3)
INTEGER LN, IA, IAA, IFAIL
COMMON/NONLIN/BETA
A(l,l)
A(l,2)
A(l,3)
A(l,4)
A(2,l)
A(2,2)
A(2,3)
A(2,4)
A(3,l)
A(3,2)
A(3,3)
A(3,4)
A(4,l)
A(4,2)
A(4,3)
A(4,4)

c

B(l)
B(2)
B(3)
B(4)

= 1.3*CS(1) - CS(2)
= CS(3) - CS(4) + CS(4)**2*BETA(2)
= CS(4)*2.0 - CS(5)*1.25 + CS (4)*CS(5)*BETA(3) + 0.1
= 0.8*CS(6) + CS(7)*2.5

C
C
C
C
C
C

B(l)
B(2)
B(3)
B(4)

= 1.3*CS(1) - CS (2)
= CS(3) - CS(4)*2.0
= CS(4)*2.0 - CS(5)*2.0
= 0.8*CS(6) + CS(7)*2.0

90000
20

30

IFAIL = 1
CALL F04ATF(A, IA, B, LN, CD, AA, IAA, WKS PCI, WKSPC2, IFAIL) 
IF (IFAIL.EQ.0) GO TO 20
WRITE (1, 90000) IFAIL
FORMAT (/’ERROR IN F04ATF - IFAIL =’,I2/)
DO 30 1=1,LN
YREAL(I) = CD (I)
CONTINUE

C
RETURN
END

C 
C 
*
C

*********************************************************************

SUBROUTINE ERHO(CTR,K,CS,U,NU,NCS,PLAM,P,R1,R2,ERHOC,T,
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* NERHO, RLAM)
n

REAL*8 CTR(4),CS(7),U(4),PLAN(7),T(4),P(4),R1,R2,ERHOC(11,11),
* RLAM(3)

INTEGER K,NERHO
C
C VARIABLES FOR THIS SUBROUTINE ONLY
C

REAL*8 L(ll,ll) ,ERHOC2(11,11) ,G(l,10) ,TEMP(10,10) ,TEMP2 (10,10) , 
& SUM,TEM,G2 (2,10) ,TEMPI(10,10) ,TEMP2I(10,10) ,GT(10,1) ,
& Ll(ll,ll),UNIT(11,11),WKSPCE(11)

C
C CHECK FOR SUBSYSTEM
C

DO 1 1=1,11
DO 1 J=l,ll
L(I,J)=0.0 
Ll(I,J)=0.0

1 CONTINUE
’ DO 9000 1=1,10

G(l,I)=0.0
GT(I,l)=0.0
G2(l,I)=0.0
G2(2,I)=0.0

9000 CONTINUE
C

GO TO (10,20,30) ,K
C
C K = 1 SUBSYSTEM I
C

10 L(l,l)=10.0
L(l,2)=10.0
L(l,3)=0.0
L(2,l)=10.0
L(2,2)=10.0
L(2,3)=0.0
L(3,l)=0.0
L(3,2)=0.0
L(3,3)=12.0*(U(l)-1.0)**2

C
DO 101 1=1,NERHO

L(I,I)=L(I,I)+Rl*2.0
101 CONTINUE

C
C INVERT L(N,N)
C

NL=NERHO
CALL INVERT(L, 11,NL)

C
C IF(RLAM(1) .LE.O.O.OR.CTR(l) .GT.0.0)THEN

IF(RLAM(l).LE.0.0)THEN
DO 102 1=1,NERHO

DO 102 J=l,NERHO
ERHOC(I,J)=L(I,J)
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102 CONTINUE
r*

ELSE
C

G(l,l)=+1.0
G(l,2)=+1.0
G(l,3)=0.0
DO 11 I=1,NERHO

GT (I,1)=G (1,1)
11 CONTINUE

SUM-0.0
DO 103 I=1,NERHO

SUM=0.0
DO 104 J=1,NERHO 

SUZ4=SUM+L (I, J) *GT (J, 1)
104 CONTINUE

TEMP(I,1)=SUM
103 CONTINUE

C
SUT4-0.0
DO 105 I=1,NERHO

SU?1=SUM+G (1,1) *TE?4P (1,1)
105 CONTINUE

TEM=SUM
TE‘4=1.0/TEM

C
DO 106 I=1,NERHO

TEMP (1, 1)=TE‘4P (1,1) *TEM
106 CONTINUE

C
DO 107 I =1,NERHO

SU?4=0.0
DO 108 J =1,NERHO
SUJ4=SUM+G(1,J)*L(J,I)

108 CONTINUE
TEMP2(1,I)=SUM

107 CONTINUE
C

DO 109 I=1,NERHO
DO 109 J=1,NERHO

ERHOC2 (I, J) -TEMP (1,1) *TEMP2 (1, J)
109 CONTINUE

C
DO 110 I=1,NERHO

DO 110 J=1,NERHO
ERHOC (I, J) —L (I, J) -ERHOC2 (I, J)

110 CONTINUE
C

ENDIF
C

GO TO 40
C
C K = 2 SUBSYSTEM II
C
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20 L(l,l)=4.0
L(l,3)=0.0
L(l,4)=0.0
L(2,2)=2.0
L(3,l)=0.0
L(3,3)=6.0
L(3,4)=0.0
L(4,l)=0.0
L(4,4)=8.0
L(5,5)=2.0

C
DO 201 I=1,NERHO

L(I,I)=L(I,I)+R1*2.O
201 CONTINUE

C
C INVERT L(N,N)
C

NL=NERHO
CALL INVERT (L, 11, NL)

C
IF(RLAM(1) .LE. 0.0. AND.RLAT1(2) .LE.0.0)THEN

C IF( (RIAM(l) .LE.0.0. AND.RLA*4(2) .LE.0.0) .OR. (CTR(2) .GT.0.0
C * .AND.CTR(3).GT.0.0))THEN

DO 202 I=1,NERHO
DO 202 J=1,NERHO 
ERHOC(I,J)=L(I,J)

202 CONTINUE
C

ELSE
C

IF(RLAN(1).LE.0.0.AND.RLAM(2).GT.O.OJTHEN
C IF( (RIAM(l) .LE.0.0.AND.RIAN(2) .GT.0.0) .OR. (CTR(2) .GT.0.0
C * .AND.CTR(3) .LE.0.0) )THEN

NGA=1
G2(l,l) = +4.0
G2(l,2) = 0.0
G2(l,3) = +1.0
G2(l,4) = +2.0
G2(l,5) = 0.0

EISE
IF(RLAM(1).GT.0.0.AND.RLAM(2).LE.O.OJTHEN

C IF((RLAN(l).GT.0.0.AND.RLAM(2).LE.0.0) .OR. (CTR(2).LE.0.0
C * .AND.CTR(3)-GT.0.0) )THEN
C

G2 (l,l)=+0.5
G2(l,2)=+1.0
G2(l,3)=+2.0
G2(l,4)=0.0
G2(l,5)=0.0
NGA=2

ELSE
C

IF(RLAM(1) .GT.0.0.AND.RLAM(2) .GT.0.0)THEN
NGA=3
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G2 (l,l)=+0.5
G2(l,2)=+1.0 
G2(l,3)=+2.0 
G2(l,4)=0.0 
G2(l,5)=0.0 
G2(2,l) = +4.0 
G2(2,2) = 0.0 
G2(2,3) = +1 
G2(2,4) = +2.0 
G2(2,5) = 0.0

c
ENDIF

ENDIF
ENDIF

c 
c 
c

NCTR=2

IF(NGA.EQ.1)THEN
NCTR=1

ELSE
IF(NGA.EQ.2)THEN

NCTR=1
ELSE

NCTR=2
ENDIF

ENDIF
c

SUM=0.0
DO 203 I=1,NERHO

SUM=0.0
DO 204 J=1,NCTR

SUM=0.0
DO 205 KKK=1,NERHO

SUM=SUM+L (I ,KKK) *G2 (J, KKK)
205 CONTINUE

TEMP (I, J) =S UM
204
203

CONTINUE
CONTINUE

n 
q

 q
 

q
 n 

q

G2 (2,5) *TEMP (5 , 2) =TENPI (2,2)

DO 206 1=1,NOIR
SUM=0.0
DO 207 J=1,NCTR

SUN=0.0
DO 208 KKK=1,NERHO

SUM=SUM4G2 (I, KKK) *TEMP (KKK, J)
208 CONTINUE

TE’4PI (I,J)=SUM
207 CONTINUE
206 CONTINUE

INVERT TEflPI

- 195-



APPENDIX A3

IF(NC;TR.EQ.1)THEN
TEMPI (1,1)=1.O/TEMPI (1,1)

ELSE
CALL INVERT(TEMPI,10,2)

ENDIF
C
C MULTIPLY TEMP(5,2)*TEMPI(2,2)=TEMP2I(5,2) 
r

DO 209 I=1,NERHO
SUM=0.0
DO 210 J=1,NCTR

SUM=0.0
DO 211 KKK=1,NCTR

SUM=SUM+TSMP(I,KKK)*TEMPI(KKK, J)
211 CONTINUE

TEMP2I(I,J)=SUM
210 CONTINUE
209 CONTINUE

C
C MULTIPLY G2(2r5j*L(5,5)=TEMP2(2,5)
C

DO 212 I=1,NCTR
SUM=0.0
DO 213 J=1,NERHO

SUM=0.0
DO 214 KKK=1,NERHO

SUM=SUM+G2 (I , KKK) *L (KKK, J)
214 CONTINUE

TEMP2(I,J)=SUM
213 CONTINUE
212 CONTINUE

C
C ERHOC2(5,5)=TEMP2I(5,2)*TEMP2(2,5)
C

DO 215 I=1,NERHO
SUM=0.0
DO 216 J=1,NERHO

SUM=0.0
DO 217 KKK=1,NCTR

SU?l=SUM+TEMP2l (I ,KKK) *TEMP2 (KKK, J)
217 CONTINUE

ERHOC2(I,J)=SUM
216 CONTINUE
215 CONTINUE

C
C

DO 218 I=1,NERHO
DO 218 J=1,NERHO

ERHOC(I,J)=L(I,J)-ERHOC2(I,J)
218 CONTINUE

C
ENDIF

C
GO TO 40
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C
C K = 3 SUBSYSTEM III
C

30 L(l,l)=2.0
L(2,2)=5.0
L(3,3)=2.0

C
DO 301 1=1,NERHO

L(I,I)=L(I,I)+R1*2.O
301 CONTINUE

C
C INVERT L(N,N)
C

NL = NERHO
CALL INVERT(L,11,NL)

C
C IF(RIAM(1).IE. 0.0. AND.CTR (3).GT.0.0)THEN 

IF(RLAM(1).LE.0.0)THEN
DO 302 1=1,NERHO

DO 302 J=l,NERHO
ERHOC(I,J)=L(I,J)

302 CONTINUE
C

ELSE
C

G(l,l)=-1.0
G(l,2)=0.0
G(l,3)=-1.0
DO 31 1=1,NERHO

GT (I,1)=G(1,1)
31 CONTINUE

SUM=0.0
DO 303 1=1,NERHO

SUM=0.0
DO 304 J=l,NERHO 

SUM=SUM+L (I, J) *GT (J, 1)
304 CONTINUE

TEMP(I,1)=SUM
303 CONTINUE

SUM=0.0
DO 305 1=1,NERHO

SUM=SUM+G (1,1)*TEMP(1,1)
305 CONTINUE

TEM=SUM
TEM=1.0/TEM

DO 306 1=1,NERHO
TEMP(I,1)=TEMP(1,1)*TEM

306 CONTINUE

CO 307 I =1,NERHO
SUM=0.0
DO 308 J =1,NERHO
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SUM=SUM+G (1, J) *L (J, I)
308 CONTINUE

TEMP2(1,I)=SUM
307 CONTINUE

C
DO 309 I=1,NERHO

DO 309 J=1,NERHO 
ERHOC2 (I, J) =TEMP(1,1) *TEMP2 (1, J)

309 CONTINUE
C

DO 310 I=1,NERHO
DO 310 J=1,NERHO

ERHOC(I,J)=L(I,J)-ERHOC2(I, J)
310 CONTINUE

C
ENDIF

C
40 RETURN

END
C
C**********************************************************************
C
C

SUBROUTINE NENTON (DRDY, CV, UW, DYDW, DMDY, ERHOCK, AL,EPS ,CS,U,R1,R2, 
& EF,EFC,EP,EPC)

C
REAL*8 ZSTAR(11,7) ,DSTAR(4,7) ,DRDY(7,4) ,CV(7) ,114(4) ,DMDY(7,4) ,

* DYDW(4,4),DSTART(7,4),H(4,4),DT(7,4),EPS (11) ,CS(7),
* CMDT(11,4),GDASH(11,4),SUM,TEMPI(11,4),TEMP2(11,11),U(4),
* ERHOCK(11,11) ,XDASH(11,11) ,CDASH(7,11) ,AB(4) ,TEMP3 (11,11),
* TEMP4(11,11),TEMP5(11,11),HT(4,4),XZ(11),AA(20,20),UR1(4),
* BB(20,20) ,WKSPCE(20) ,R1,R2,KSTAR(4,7) ,EF(4) ,EFC(7) ,UR2(4) ,
* EINC(ll),EP,EPC

C
DO 1000 1=1,4

DO 1000 J=l,4
H(I,J)=0.0

1000 CONTINUE
C

H(l,2)=1.0
H(2,l)=1.0
H(3,4)=1.0
H(4,3)=1.0

C
CALL ZSTARI (DRDY,ZSTAR)

C
DO 9999 1=1,7

DO 9999 J=1,4
KSTAR (J, I) =DRDY (I, J)

9999 CONTINUE
C
C
C TRANSPOSE DSTAR TO DSTART
C
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DO 1 1=1,7
DO 1 J=l,4

DSTART (I, J) =DMDY (I, J) -DRDY (I, J)
DSTART (I, J) =DSTAR(J, I)
DS TAR (J,I)=DSTART(I,J)

1 CONTINUE

O
Q

Q
Q

 
Q

Q
Q

 
Q

 Q
 Q

 Q

MULTIPLY DSTART*HT

DO 2 1=1,4 
DO 2 J=l,4

HT(J,I)=H(I,J)
2 CONTINUE

DO 3 1=1,7
SUM=0.0
DO 4 J=l,4

SUM=0.0
DO 5 KKK=1,4 

SUM=SUM+DSTART(I,KKK)*HT(KKK,J)
5 CONTINUE

DT(I,J)=SUM
4 CONTINUE
3 CONTINUE

PERFORM OPERATION CM (BY ADDING ROWS OF ZEROS

KKK=1
DO 6 1=1,11

IF(I.EQ.3.OR. I.EQ.7.OR. I.EQ. 8.OR. I.EQ. 11)THEN
DO 7 J=l,4

CMDT (I,J)=0.0
7 CONTINUE

EISE
DO 71 J=1,4

CMDT(I,J)=DT (KKK,J)
71 CONTINUE

KKK=KKK+1
ENDIF

6 CONTINUE

EVALUATE GDASH............

DO 8 1=1,11 
DO 8 J=l,4

GDASH(I,J)=0.0
8 CONTINUE

C
UR1(1)=U(1)-(CS(3)-CS(4)+U(2)-3.O*U(3)) 
UR1(2)=U(2)-(CS(1)-CS(2)+2.O*U(1))
UR1 (3) =U (3) - (CS (6)+2.5*CS (7)-4.0*U (4))
UR1 (4)=U (4)-(2.0*CS (4)-CS (5)-U (2)+U (3)) 

C
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q
 n

 n
 

q
 

n 
q

 q
KKK=O
KKKKK=O
DO 40 1=1,11

IF(I.EQ.3.OR.I.EQ.7.OR. I.EQ.8.OR.I.EQ.11)THEN 
KKKKK=KKKKK+1
EINC(I) =U(KKKKK)*0.001
IF(EINC(I).LT.1.0D-10)EINC(I)=0.0001
U(KKKKK)=U(KKKKK)+EINC(I)
UR2 (1)=U (1)-(CS(3)-CS(4)+U(2)-3.0*U(3))
UR2 (2)=U (2)-(CS(l)-CS(2)+2.0*U(1))
UR2 (3) =U (3) - (CS (6)4-2.5*CS (7) -4.0*U (4))
UR2 (4) =U (4) - (2.0*CS (4) -CS (5) -U (2) +U (3)) 
DO 41 J=l,4

GDASH (I, J) = (UR2 (J) -UR1 (J)) /EINC (I)
41 CONTINUE

U(KKKKK)=U(KKKKK)-EINC(I)
ELSE

KKK=KKK+1
EINC(I)=CS(KKK)*0.0001
IF(EINC(I).LT.1.0D-08)EINC(I)=0.001
CS(KKK)=CS(KKK)+EINC(I)
UR2 (1)=U (1)-(CS(3)-CS(4)+U (2)-3.0*U (3))
UR2(2)=U(2)-(CS(l)-CS(2)+2.0*U(l)) 
□R2(3)=U (3)-(CS (6)+2.5*CS(7)-4.0*U(4)) 
UR2 (4)=U(4)-(2.0*CS(4)-CS(5)-U(2)+U(3)) 
DO 42 J=l,4

GDASH (I, J)= (UR2 (J)-UR1 (J)) /EINC(I)
42 CONTINUE

CS(KKK)=CS (KKK)-EINC(I)
ENDIF

40 CONTINUE

PERFORM -GDASH (I, J) -CMDT (I, J) -TEMPI (I, J)

DO 9 1=1,11
DO 9 J=l,4

TEMPI (I, J) =-GDASH (I, J) -CMDT (I, J)
9 CONTINUE

DO 10 1=1,11 
DO 10 J=l,7

IF(I.EQ.3.OR.I.EQ.7.OR.I.EQ.8.OR.I.EQ.11)THEN 
ZSTAR(I,J)=R2*ZSTAR(I,J)*2.0

ELSE
ZSTAR(I, J)=R1*ZSTAR(I, J) *2.0

ENDIF
10 CONTINUE

ASSEMBLE MATRIX TEMP2 = Z STAR J TEMPI

DO 11 1=1,11
DO 12 J=l,ll

IF(J.GE.8)THEN
TEMP2(I,J)=TEMP1(I,J-7)
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Q
Q

Q
nQ

Q
Q

Q
 

Q
 Q

 Q
 

Q
 Q

 O
ELSE

TEMP2(I, J) =ZSTAR(I,J)
ENDIF

12 CONTINUE
11 CONTINUE

MULTIPLY ERHOCK*TEMP2 = XDASH

DO 13 1=1,11
SUM=0.0
DO 14 J=l,ll

SUM=0.0
DO 15 KKK=1,11

SUM=SUM+ERHOCK (I, KKK) *TEMP2 (KKK,J)
15 CONTINUE

XDASH(I,J)=SUM
14 CONTINUE
13 CONTINUE

SELECT CERTAIN ROWS OF XDASH TO GIVE CDASH

KKK=1
DO 16 1=1,11

IF(I.NE.3.AND.I.NE.7. AND.I.NE.8.AND.I.NE.11)THEN
DO 17 J=l,ll

CDASH (KKK, J) =XDASH (I, J)
17 CONTINUE

KKK=KKK+1
ENDIF

16 CONTINUE

; i o ;
ASSEMBLE MATRIX TEMP3 = ] {

! HDSTAR 0 ;

DO 18 1=1,7
DO 18 J=l,7

IF(I.EQ.J)THEN
TEMP3(I,J)=1.0

ELSE
TEMP3 (I,J) =0.0 

ENDIF
18 CONTINUE

DO 19 1=1,7
DO 19 J=1,4

TEMP3(I,J+7)=0.0
19 CONTINUE

DO 20 1=1,4
DO 20 J=l,4
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TEMP3(1+7,J+7)=0.0
20 CONTINUE

C
DO 21 1=1,4

SUM=0.0
DO 22 -J=l,7

SUM=0.0
DO 23 KKK=1,4

SUM=SUM+a (I, KKK) *DSTAR (KKK, J)
23 CONTINUE

TEMP3 (7+I,J)=SUM
22 CONTINUE
21 CONTINUEuuuuooouuuu

 
o 

u o o 
ooooouoo

]—CDASH ;
PERFORM TEMP4=TEMP3+‘ }

J GDASH*XDASH |

ASSEMBLE MATRIX TEMP5=’-CDASH !
! GDASH*XDASH!

DO 24 1=1,7
DO 24 J=l,ll

TEMP5 (I, J) =-CDASH (I, J)
24 CONTINUE

DO 25 1=1,4
SUM=0.0
DO 26 J=l,ll

SUM=0.0
DO 27 KKK=1,11 

SUM=SUM+(GDASH(KKK,I)*XDASH(KKK,J))
27 CONTINUE

TEMP5 (I+7,J)=SUM
26 CONTINUE
25 CONTINUE

PERFORM TEMP4=TEMP3+TEMP5

DO 28 1=1,11
DO 28 J=l,ll 

TEMP4(I,J)-TEMP3(I,J)+TEMP5(I,J)
28 CONTINUE

TEMP4 = SIDASH(V,P) [IN FORMULA]

CALCULATE NENTON STEP BY SOLVING TEMP4*EPS=XZ
EPS= NEWTON STEP

XZ=-! CV-CS !
! UW-U !
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C
J u 

u u u 
u o u o o o o 

u o o u u u 
oooooo

KKKK=1
KKK=1
DO 29 I=1,H

IF(I.LT.8)THEN
XZ(I)=-EFC(KKK)*EPC
KKK=KKK+1

ELSE
XZ (I)=—EF(KKKK)*EP
KKKK=KKKK+1

ENDIF
29 CONTINUE

SOLVE AS PER ABOVE

IFAIL=1
CALL F04ATF (TEMP4,11, XZ, 11, EPS, AA, 20,WKSPCE, BB, IFAIL) 
IF(IFAIL.NE.O)THEN

PRINT*,’IFAIL IN NEWTON STEP ,IFAIL=',IFAIL 
ENDIF

RETURN EPS AS SOLUTION OF THIS SUBROUTINE 
THIS IS THE NEWTON STEP
EPS(l) IO EPS(7) FOR C
EPS (8) TO EPS(11) FOR PRICE

RETURN
END

SUBROUTINE FOR EVALUATING Z*
CALLED FROM COORDINATOR

SUBROUTINE ZSTARI (DRDY,ZSTAR)
REAL*8 ZSTAR(11,7),DRDY(7,4)

LOCAL VARIABLES

REAL*8 H(4,4),Z(7),DRDYU(4,7),DRDYr(4,7)

INITIALISING MATRICES

DO 1 1=1,4 
DO 1 J=l,4 
H(I,J)=0.0

1 CONTINUE
I

DO 10 1=1,7
DO 10 J=l,4 

DRDYT (J, I) =DRDY (I, J) 
10 CONTINUE
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C
DO 2 1=1,11

DO 2 J=l,7
ZSTAR (I, J) =0.0

2 CONriNUE
C

H(l,2)=1.0
H(2,l)=1.0
H(3,4)=1.0
H(4,3)=1.0

C
C -MULTIPLYING H*DRDY
C

IFAIL = 1
CALL F01CKF(DRDYU,H,DRDYT,4,7,4,Z,7,7,IFAIL)
IF(IFAIL.NS.0)THEN
PRINT*,’IFAIL IN F01CKF IN ZS'TARI,IFAIL=’,IFAIL
STOP

ENDIF
C

ZSTAR(l,l)=1.0
ZSTAR (2,2)=1.0
ZSTAR(4,3)=1.0
ZSTAR(5,4)=1.0
ZSTAR(6,5)=1.0
ZSTAR (9,6) =1.0
ZSTAR(10,7)=1.0
DO 3 1=1,7

ZSTAR (3,1)=DRDYU(1,1)
ZSTAR (7,1)=DRDYU(2,1)
ZSTAR(8,I)=DRDYU(3,I)
ZSTAR (11,1) =DRDYU (4,1)

3 CONTINUE
C

RETURN
END

C
£**********************************************************************
C
C SUBROUTINE DSTARI FOR DSTAR
C CALLED FROM COORDINATOR VIA SUBROUTINE NEWTON
C

SUBROUTINE DSTARI (DSTAR, CV,UW,DRDY,DYDW,DMDY,KSTAR)
REAL*8 DSTAR(4,7) ,CV(7) ,UW(4) ,DRDY(7,4) ,DMDY(7,4) ,DYDW(4,4),

& DRDYT(4,7) ,DMDYT(4,7) ,DYDWT(4,4) ,KSTAR(4,7)
C
C LOCAL VARIABLES
C

REAL*8 H(4,4),TEMP(4,7),SUM,TEMP2(4,7),Z(7)
C
C DYDW =-F/UW TRANPOSE
C DRDY = F*/CV
C DMDY = F/CV
C
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C TRANSPOSE ALL MATRICES
C

DO 10 1=1,7
DO 10 J=l,4

DRDYT (J, I) =DRDY (I, J)
DMDYI (J, I)=DMDY(I, J)

10 CONTINUE
C
C DO 11 1=1,4
C DO 11 J=l,4
C DYDWT(J,I)=-DYDW(I,J)
Cll CONTINUE
C

DO 1 1=1,4
DO 1 J=l,4
H(I,J)=0.0

1 CONTINUE
C

H(l,2)=1.0
H(2,l)=1.0
H(3,4)=1.0
H(4,3)=1.0

C
DO 20 KKK=1,4

SUM=0.0
DO 2 1=1,4

SUM=0.0
DO 3 J=l,4

SUM=SUM+DYDW(KKK, J) *H (J, I)
3 CONTINUE

TEMP(KKK,I)=SUM
2 CONTINUE
20 CONTINUE

C
IFAIL=1

C CALL F01CKF(TEMP2,TEMP,KSTAR,4,7,4,Z,7,7,IFAIL)
CALL F01CKF(TEMP2, TEMP, DRDYT,4,7,4,Z,7,7,IFAIL)
IF(IFAIL.NE.0) THEN
PRINT*,'IFAIL IN F01CKF OF DS'TAR,IFAIL=',IFAIL
STOP

ENDIF
C

DO 4 1=1,4
DO 5 J=l,7

C DSTAR (I, J) =DMDYT (I, J) +TEMP2 (I, J) -KSTAR(I, J)
DSTAR(I, J) =DMDYT (I, J) +TEMP2 (I, J) -DRDYT (I, J)

5 CONTINUE
4 CONTINUE

C
RETURN
END

C
Q********************************************************************** 
C

- 205-



APPENDIX A3

C
SUBROUTINE INVERT(A, N,NL)u uouu u 

uo U
 

U
O

 
O

 
<J 

oooo

INVERSE OF MATRIX A(N,N) INTO A(N,N) BY GAUSS-JORDAN METHOD

A IS UNCHANGED ON EXIT

IMPLICIT REAL*8(A-H,O-Z) 
REAL*8 A(N,N),B(20,20),C(20,20)

SET UP B AS UNIT MATRIX AND COPY A INTO C

DO 20 1=1,NL
DO 10 J=1,NL 

C(I,J)=A(I,J) 
B(I,J)=0.0

10 CONTINUE
B(I,I)=1.0

20 CONTINUE
SELECT COL K FOR ELIMINATION
DO 60 K=1,NL
DO ALL ROWS EXCEPT RON K

DO 40 1=1,NL
IF (I.EQ.K) GO TO 40 

Z=C(I,K)/C(K,K) 
DO 30 J=1,NL

C(I,J)=C(I,J)-C(K,J)*Z 
B(I,J)=B(I,J)-B(K,J)*Z

30 CONTINUE
40 CONTINUE

AND DIVIDE ROW K BY C(K,K) 
Z=C(K,K) 
DO 50 J=1,NL

C(K, J)=C(K, J)/Z 
B(K,J)=B(K,J)/Z

50 CONTINUE
60 CONTINUE

DO 100 1=1,NL 
DO 100 J=1,NL

A(I,J)=B(I,J)
00 CONTINUE

RETURN
END

*********************************************************************

SUBROUTINE PROJEC (CV,UW,U, IPROJE) 
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
REAL*8 CV(7),UW(4),U(4),CC(4)

C ................LOCAL ARGUMENTS...............
DOUBLE PRECISION ETA, F , RHO, STEPMX, XTOL, A(5,5) , G(5),
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RETURN
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Q
 Q 

Q
 n ISOPE BASED ON NORMAL LANGRANGIAN

A WO LEVEL STRUCTURE WITH COORDINATION PASSIVE 
WITH I/O FEEDBACK

ILLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION CX(7), SKI, SK2, SK3,H, G, CTR(4) ,CV(7) , CS(7), 

UW(4), PLAM(7), AL(4), YREAL(4) , YMDL(4) ,DSQTRC, 
DSQRT,DABS,A(9) ,LAGM(4) ,LAGMO(4) ,U(4) ,RHO1,RHO2, 
RHO3,YMODEL(4)

C
INTEGER LN, IA, IAA, M ,IPROJEC(4)

C
COMMON/CONTR/CS, U, CTR,LAGM ,M2
COMMON/VARB/CV, (IN, Rl, R2
COMMON/SUBN/K
COWION/PRMT1/PLAM, AL
COMMON/PLAPAR/A

C
OPEN(12,FILE=*FUNCI.DAT’,STATUS=’UNKNOWN*)

C
DO 10 1=1,7
PRINT*,’ENTER C(’,1,’)’
READ*,CX(I)

C CX(I) = 0.01
CV(I) = CX(I)
CS(I) = CX(I)
PLA?l(I)=0.0
COORO (I) =0.0

10 CONTINUE
C

PRINT*,’ENTER A(I) ,1=1,9*
READ*,(A(I),1=1,9)

C
PRINT*,’ENTER SKI,SK2,SK3’
READ*,SKI,SK2,SK3 
PRINT*,’ENTER G’
READ*,G

C
DO 11 1=1,4 

LAG! (I) =0.0 
LAGMO(I)=0.0

11 CONTINUE
LN = 4
IA = 7
IAA = 7
M2 = 1
L = 0

C
1500 DO 88 1=1,7

CV(I) = CV(I) + SK1*(CS(I) - CV(I))
88 CONTINUE

C
DO 87 1=1,3

LAG4 (I) =LAGMO (I) +SK3* (LAGM(I)-LAGMO (I))
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LAG40(I)=LAGM(I)
87 CONTINUE

C
CALL COORD (LN, IA, IAA, CV, CS, UW, PLAN,AL,SK2,A, LAGM)

C
CALL PFORM(CV, UW, FC, AL)
WRITE(12,*) FC

C
1000 DO 111 1=1,7

CS(I) = CX (I)
111 CONTINUE

C
K = 1
CALL OPTIN
K = 2
CALL OPTIN
K = 3
CALL OPTIN

C
CALL MODEL (YREAL, CS, AL,YMODEL)
DSQRTC=0.0
DO 1001 1=1,7

DSQRTC=DSQRTC+ (CS (I) -CV(I)) **2
1001 CONTINUE

DSQRTC=DSQRT (DSQRTC/7.0)
PRINT*,’DSQRTC=’,DSQRTC

C
2311 IF (DSQRTC.GT.G) GO TO 3456

C
RN2 = M2
WRITE (1, 44441) M2
WRITE (1, 66666) FC
WRITE (1, 99996) (CS(I),1=1,7)
WRITE (1, 66661) (CV(I),1=1,7)
WRITE (1, 66662) (UW(I),1=1,4)
WRITE (1, 33330) (AL(I),1=1,4)
WRITS (1, 22229) (PLAM(I),1=1,7)
WRITE (1, 22244) (CTR(I),1=1,4)
STOP

C
3456 RM2 = M2

WRITE (1, 22222) M2
WRITE (1, 66666) FC
WRITE (1, 99996) (CS(I),1=1,7)
WRITE (1, 66661) (CV(I),1=1,7)
WRITE (1, 66662) (UW(I),1=1,4)
WRITE (1, 33330) (AL(I),1=1,4)
WRITE (1, 22229) (PLAM(I),1=1,7)
WRITE (1, 22244) (CTR(I),1=1,4)

C
DO 599 1=1,7
CX(I) = CS(I)

599 CONTINUE
C

- 212-



APPENDIX A4

M2 = M2 + 1
GO TO 1500

C
99996 FORMAT 
12345 FORMAT 
22229 FORMAT
66661 FOR^IAT 
22244 FORMAT
66662 FORMAT 
22222 FORMAT 
99992 FORMAT 
44441 FORMAT 
33332 FORMAT 
33331 FORMAT 
33330 FORMAT 
66666 FORMAT

(’C',4X,7(1X,F12.6))
(6 (1X,F12.5))
(’PLAN',2X,7 (1X,F12.6))
(’CV’,3X,7(1X,F12.6))
(’CONSTRAINTS’ ,IX,4(IX,F12.6))
(W ,3X,4(1X,F12.6))
(>**** AFTER',IX,13,IX,’ITERATIONS ****')
(’EF’,4X,4(1X,F12.6)) '
(///’ CONVERGENT AFTER’ , 13,2X, ’ ITERATION ’ //)
('P',4X,4(1X,F12.6))
('T',4X,4 (1X,F12.6))
(’AL',3X,4(1X,F12.6))
('PERFORMANCE INDEX’,IX,F12.6)

99993 FORMAT ('U’,4X,4(1X,F12.6))
END

C
SUBROUTINE OPTIM
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

C ............... LOCAL ARGUMENTS............
DOUBLE PRECISION ETA, F , RHO, STEPMX, XTOL, A(5,5), G(5) ,

* C(3), RIAM(3), W(255), X(5) , XL(5), XU(5), CL(1) , CU(1) ,
* CTR(4) ,LAGM(4)

INTEGER I, IBOUND, IFAIL, IPRINT, LA, LCLU, LW, IW, MAXCAL,
* N, NX, M, IW(30), MEQ, MRNGE, MINEQ

LOGICAL LAMSET
C ............... SCALAR UN COMMON....

DOUBLE PRECISION CS(7), U(4)
INTEGER K

C
EXTERNAL E04WAY, COM2, E04VAZ, FUNCT2
COMMON/CONTR/CS, U, CTR,LAGM,M2 
C0MM0N/SU3N/K

C
IN=0
IPRINT = -1
ETA = 0.001
XTOL = 1.0D-8
STEPMX = 4.0D+0
LCLU = 1
IBOUND = 0
LAMSET = .FALSE.
MEQ = 0
MRNGE = 0

1 GO TO (100,200,300),K
100 N = 2

MINEQ = 1
X(l) = CS(1)
X(2) = CS(2)
XL(1) = -1.0D+6
XU(1) = 1.0D+6
XL(2) = -1.0D+6
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XU (2) = 1.0D+6
RHO=1.0
IF(IN.NE.0.AND.M2.NE.l)THEN

LAMSET=.TRUE.
RLAM(1)=LAGM(1)

ENDIF
GO TO 400

200 N = 3
MINEQ = 1
X(l) = CS(3)
X(2) = CS(4)
X(3) = CS(5)
DO 40 1=1,3
XL(I) = -10.0
XU (I) = 10.0

40 CONTINUE
RHO=1.0
IF(IN.NE.0.AND.M2.NE.l)THEN

LAMSET=.TRUE.
RLAM(1)=LAG?4(2)

ENDIF
GO TO 400

300 N = 2
MINEQ = 1
X(l) = CS(6)
X (2) = CS(7)
X(3) = U(4)

C SUBSYSTEM 3
XL(1) = -1.0D+6
XU(1) = 1.0D+6
XL(2) = 0.0D+0
XU(2) = 1.0D+0
RHO=1.0
IF (IN.NE. 0. AND.M2.NE. 1)THEN

LAMSET=.TRUE.
RLAI4(1)=LAGM(3)

ENDIF
400 LA = 5

LIW = 30
LW = 255
M = MEQ + MINEQ + MRNGE
IFAIL = 0
CALL E04Z AF (N, M, FUNCT2,CON2, X, F, G, C, A, LA, W, LW, IFAIL)
NX =N+MINEQ4+IRNGE
MAXCAL = 250*NX

C RHO =1.00+0
IFAIL = 1
CALL E04VAF (N,C4EQ,MINEQ,MRNGE, 14, E04WAY, IPRINT, E04VAZ,MAXCAL,

* ETA, XTOL, STEPMX, CL, CU, LCLU, IBOUND, XL, XU, LAMSET, X, RHO, RLAM, F,
* G,C,IW,LIW,W,LW, IFAIL)

C
GO TO(500,600,700),K

500 CS(1) = X(l)
CS(2) = X(2)
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Q
 Q

 Q
 Q

 Q
 Q

 Q
CTR(l) = C(l)
LAGM(1)=RLAM(1)
GO TO 800

600 CS(3) = X(l)
CS(4) = X(2)
CS(5) = X(3)
CTR(2) = C(l)
CTR(3) = C(2)
LAGM(2)=RLAM(1)
GO TO 800

700 CS(6) = X(l)
CS(7) = X(2)
CTR(4) = C(l)
LAG4(3)=RLAM(1)

800 IF (IFAIL. NE. 2) GO TO 900
IF(IN.NE.2)THEN

IN=IN+1
GO TO 1

ENDIF
PRINT*,’K=',K,' OPITM NUMBER= ’ , IN

900 RETURN
800 RETURN

END

SUBROUTINE FUNCT2(IFLAG,N,XC,FC,GO)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

C ................ LOCAL ARGUMENTS ....
DOUBLE PRECISION FC, XC(N)

* rGC(N)
C ............. SCALAR IN COMMON..........

DOUBLE PRECISION PLAM(7), AL(4), CV(7), UN(4),YM(4)
INTEGER K
COMMON/SUBN/K
COMMON/PRMT1/PLAM, AL
COMMON/VARB/CV, UW, Rl, R2
GO TO (100,200,300),K

C
100 YM(l)=XC(l)-XC(2)-1.00*UW(l)+AL(l)

FC=5.0*XC(l)**2+5.0*XC(2)**2- PLAM(l) *XC (1)-PLAM(2)*XC(2)
* +0.01*(YM(l)-1.0)**2
IF (IFLAG.EQ.O)GO TO 400
GC(l)=10.0*XC(l)-PLAM(l)+0.02*(YM(l)-1.0)
GC(2)=10.0*XC(2)-PLAM(2)-0.02*(YM(l)-l.O)
GO TO 400

C
200 YM(2)=XC(l)-XC(2)-1.0*UW(2)+1.00*UW(3)+AL(2)

FC = (XC(1)-2.0)**2*2.0 +XC(2)**2 + XC(3)**2*3.0- PLAM(3)*XC(1)
* - PLAM(4)*XC(2)- PLAM(5)*XC(3)+0.01*(YM(2)-2.0)**2
IF (IFLAG.EQ.0) GO TO 400
GC(1) = 4.0*(XC(l)-2.0) -PLAM(3)+0.02*(YM(2)-2.0)
GC(2) = 2.0*XC(2) - PLAM(4)-0.02*(YM(2)-2.0)
GC(3) = 6.0*XC(3) - PLAM(5)
GO TO 400

- 215-



APPENDIX A4

300 YM(4)=XC(l)+2.5*XC(2)-1.00*UW(4)+AL(4)
FC = (XC(1)+T.0)**2+XC(2)**2*2.5-PLAM(6)*XC(l)-PLAM(7)*XC(2)

* +0.01*(YM(4)-3.0)**2
IF (IFLAG.EQ.O) GO TO 400
GC(1) = 2.0*(XC(l)+1.0) - PLAM(6)+0.02*(YM(4)-3.0)
GC(2) = 5.0*XC(2) - PLAM(7)+0.02*(YM(4)-3.0)*2.5

400 RETURN
END

C
SUBROUTINE CON2 (IFLAG,N, M, XC, CC, A, LA)

C ................ LOCAL ARGUMENTS ....
DOUBLE PRECISION CC(M),XC(N),A(LA,M)

* ,R1,R2,CV(7) ,UW(4)
INTEGER K

C
C0MM0N/SU3N/K
COMMON/VARB/CV, UW, Rl, R2

C
GO 10(100,200,300),K

100 CC(1) = 2.0 - (XC(1)**2+XC(2)**2)
IF (IFLAG.EQ.O) GO TO 400
A(l,l) = - 2.0*XC(l)
A(2,l) = - 2.0*XC(2)
GO TO 400

200 CC(1) = 1.2 - (0.5*XC(1)+XC(2)+2.0*XC(3))
IF (IFIAG.EQ.0) GO TO 400
A(l,l) = - 0.5D+0
A(2,l) = - 1.0D+0
A(3,l) = - 2.0D40
GO TO 400

300 CC(1) = XC(1) + XC(2) + 2.0
IF (IFLAG.EQ.O) GO TO 400
A(l,l) = 1.0D+0
A(2,l) = 1.0D+0

400 RETURN
END

C
SUBROUTINE AMONIT (N, M, X, F, C, NITER, NNF, GENORM, COND, POSDEF, RHO,

* RLAM)
C

DOUBLE PRECISION COND, F,GLNORM, RHO, CNORM,C(M) ,RLAM(M) ,X(N)
LOGICAL POSDEF
INTEGER K
COMMON/SUBN/K

C
RETURN
END

C
SUBROUTINE COORD (LN, IA, IAA, CV, CS, UW,PLAN, AL, SK2, A, LAGM)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

C .................. LOCAL ARGUMENT ....
DOUBLE PRECISION DMDY(7,4),EINC(7), YR1(4), YR2(4), DEDV(7,4),

* YREAL(4), AL(4), DRDY(7,4), QY(7), CCY(7) ,
* CV(7), UN(4), PLAM(7), CS(7),SK2,A(9) ,YM1 (4),
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* H(4,4) ,TEMP(4,4) ,TEMP2(7,4) ,TEMP3(7,4) ,YM2(4)
* ,DCQYM(4) ,CCYM(4,4) ,LAGM(4) ,DQY(4) ,DQYY(7)

C
C ESTIMATION UNIT
C DERIVATIVE OF OUTPUT W.R.T CV
C

CALL PLANT (LN, IA,IAA,YR1,CV)
UW(1)=YR1(2)
□N(2)=YR1(1)
UN(3)=YR1 (4)
UN(4)=YR1(3)

C
AL(1) = YR1(1) - CV(1) + CV(2) + 1.00*UW(l)
AL (2) = YR1(2) - CV(3) + CV(4) +1.0*UW(2) - 1.00*UW(3)
AL(3) = YR1(3) - 2.0*CV(4) + CV(5) +1.5*UW(2) -0.50*UW(3)
AL(4) = YR1(4) - CV(6) - 2.5*CV(7) + 1.00*UW(4)

C
CALL MODEL (YR1,CV, AL, YM1)

C
DO 1 1=1,7

EINC(I) = 0.0001*CV(I)
IF (EINC(I).EQ.0.0D+0) EINC(I)=0.0001
CV(I) = CV(I) + EINC (I)
CALL PLANT (LN, IA, IAA, YR2, CV)
CALL MODEL (YR2,CV, AL, YM2)
DO 2 J=l,4

DRDY (I, J) = (YR2(J) - YR1(J))/EINC(I)
DRDY (I, J)=DRDY (I, J) *SK2
DMDY(I,J) = (YM2(J) - YM1 (J))/EINC(I)

2 CONTINUE
CV(I) = CV(I) - EINC (I)

1 CONTINUE
C

DQY (1) =0.02* (YM1 (1) -1.0)
DQY(2)=0.02*(YMl(2)-2.0)
DQY(3)=0.0
DQY(4)=0.02*(YMl (4)-3.0)

C
DO 21 1=1,7

S=0.0
DO 22 J=1,4

S=S+ (DMDY (I, J) -DRDY (I, J)) *DQY (J)
22 CONTINUE

DQYY(I)=S
21 CONTINUE

C
DO 3 1=1,4

DO 3 J=l,4
H(I,J)=0.0
CCYM(I,J)=0.0

3 CONTINUE
H(l,2)=1.0
H(2,l)=1.0
H(3,4)=1.0
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H(4,3)=1.0

DCQYN(l)=0.02*(YMl(l)-1.0)*(-1.00)
DCQY'l(2)=0.02* (YJ41 (2)-2.0) * (—1.0)
DCQYM(3)=0.02*(YMl(2)-2.0)*(1.00)
DCQYM (4) =0.02* (YMl (4) -3.0) * (-1.0 0)

DO 5 1=1,7
TE?4P2(I,1)=DRDY(I,2)
TE'4P2 (1,2) =DRDY (1,1)
TEMP2(I,3)=DRDY(I,4)
TEMP2(I,4)=DRDY(I,3)

5 CONTINUE

DO 7 1=1,7
S=0.0
DO 8 J=l,4

S=S+DCQYM(J) *TEMP2 (I, J)
8 CONTINUE

QY(I)=S
7 CONTINUE

DO 11 1=1,7
PLAN(I) =—QY (I) +DQYY (I)

11 CONTINUE

RETURN
END

SUBROUTINE PLANT (LN, IA, IAA, YREAL, CS)
DOUBLE PRECISION A(7,7), B(7) , CD(7) , AA(7,7), WKSPC1(3O),

* WKSPC2(10), YREAL(4), CS(7)
INTEGER LN, IA, IAA, IFAIL

A(l,l) = 1.0D4O
A(l,2) = 0.02
A(l,3) = 0.0D+0
A(l,4) = 0.0D+0
A(2,l) = 0.5
A(2,2) = 1.0D+0
A(2,3) = 0.0D+0
A(2,4) = -0.05
A(3,l) = 1.0D+0
A(3,2) = 0.0D+0
A(3,3) = 1.0D+0
A(3,4) = -0.09
A(4,l) = 0.0D+0
A(4,2) = 0.0D+O
A(4,3) = 0.08
A(4,4) = 1.0D+0

B(l) = 1.5*CS(1) - CS(2)
B(2) =CS(3) - CS(4) + CS(4)**2*0.1
B(3) = CS(4)*2.0 - CS(5)*1.30 - CS(4)*CS(5)*0.25 + 0.1

- 218-



APPENDIX A4

3(4) = 1.3*CS(6) + CS(7)*2.5 
r>

IFAIL = 1
CALL F04ATF(A, IA, B, LN, CD, AA, IAA, WKSPCI, WKSPC2, IFAIL)
IF (IFAIL.EQ.0) GO TO 20
WRITE (1, 90000) IFAIL

90000 FORMAT (/'ERROR IN F04ATF - IFAIL =',I2/)
20 DO 30 1=1,LN

YREAL(I) = CD(I)
30 CONTINUE

RETURN
END

*********************************************************************

00*0 
o 

o 
o 

oooooo

SUBROUTINE PFORM(CS, U, FC, AL)
IMPLICIT DOUBLE PRECISION (A-El, O-Z)
DIMENSION CS(7), U(4), AL (4)

FC=5.0*CS (1) **2+5.0*CS (2) **2+2.0* (CS (3) -2.0) **24CS (4) **2
* +3.0*CS (5) **2+ (CS (6) +1.0) **2+2.5*CS (7) **2
* +0.01*(U (2)-1.0)**2+0.01* (U (1)-2.0)**2+0.01*(U(3)-3.0)**2

RETURN
END

SUBROUTINE MODEL(YR, C, AL, YM)
REAL*8 YR(4),YM(4),C(7),AL(4)

YM(l)=C(l)-C(2)-0.02*YR(2)+AL(l)
YM(2)=C(3)-C(4)-0.5*YR(l)+0.05*YR(4)+AL(2)
YM(3)=2.0*C(4)-C(5)-YR(l)+0.09*YR(4)+AL(3)
YM(4)=C(6)+2.5*C(7)-0.08*YR(3)+AL(4)

YM(l)=C(l)-C(2)-1.00*YR(2)+AL(l)
YM(2)=C(3)-C(4)-1.0*YR(l)+1.00*YR(4)+AL(2)
YM(3)=2.0*C(4)-C(5)-1.5*YR(l)+0.50*YR(4)+AL(3)
YM(4)=C(6)+2.5*C(7)-1.00*YR(3)+AL(4)

RETURN
END
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APPENDIX B

Nomenclature and value of constants in the fuel-gas mixing system given in chapter

4.

Symbol Definition

Aw 2Effective cross sectional area of water (0.96 m )

A1

Cp

Effective cross sectional area of Butene (2.1 mZ)

Specific heat at constant pressure of the 5 

components ( 3.5, 0.55, 0.45, 0.406, 0.388 KCAL/Kg *C)

Cv Specific heat at constant volume of the 5 

components (2.48, 0.44, 0.375, 0.359, 0.349 

KCAL/Kg^C)

Cpb

Cps

E2 

h;

Specific heat of butene

Specific heat of steel

Total internal energy of gas mixer (KCAL)

Specific enthalpy of the component (KCAL/Kg)

i-rap Level of Butene in vapouriser

L;t Level of steam condensate

Mrap

m2
Ms

Mass of butene in vapouriser

Mass of gas mixer

Mass of Vapouriser

p2

Pressure in Vapouriser (psig)

Pressure in gas mixer

T^p

T45

Temperature in vapouriser

Temperature of liquid butene

T2

Q

Temperature in gas mixer

Heat transferred from steam to liquid butene

*q Heat transfer coefficient for vapouriser

qst Rate of steam flow into vapouriser (Kg/s)

qi Flow of the various components into the gas mixer

qcond Rate of flow of condensate from the vapouriser
r Gas Constants <0.57, 0.0713, 0.038, 0.0259, 0.0204

KCAL/Kg °C)

X Matrix of composition vectors X = (XI, X6, X7, X8,

X9, X2)

Latent heats of water and butene

0W» Density of water and butene (1000.0, 600.0 Kg/m3) 
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K;

Gas density of gas mixier

Flow canstant of valve i
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