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ABSTRACT

Given a finite number of data points, simulated from a mixture of exponentials, we propose 

two nonparametric techniques and a kernel method for estimating the mixing density function.

Firstly, an estimation technique based on Laplace transform, is introduced. We suggest a set 

of assumptions on which an estimation procedure is based. Simulations are presented that 

demonstrate the behaviour of the estimated mixing density. In this numerical study, some 

ways of improving the shape of the estimated density have been explored. Recommendations 

are given for controlling this shape.

A second estimation technique has been proposed by introducing a set of assumptions placing 

our estimation problem in an optimization form. The generalized simulated annealing 

algorithm (G.S.A) has been modified to adapt with our estimation setting. A criterion for 

measuring the performance of the adaptive (G.S.A.) is suggested. A sensitivity analysis of 

this adaptive algorithm is made, upon which some recommendations for improving its 

performance have been given.

In both of the above techniques a similarity is found between one of their parameters and the 

usual smoothing parameter in density estimation context. This is demonstrated by a 

numerical example in the case of the optimization technique.

A kernel method for estimating the mixing density is introduced within a Bayesian framework. 

Some characteristics (such as the limiting behaviour and the moment properties) of the derived 

kernel-type estimator, are studied. A graphical representation of the estimator, under two 

different values of (r), has been given using different sets of real data.



(iv)

ACKNOWLEDGEMENTS

The work contained in this thesis was supervised by Professor H.P. Wynn. I am deeply 

grateful for his guidance, and for the considerable time he spent in giving his advice, criticism 

and encouragement during the writing of this thesis. I would like to thank  

 for initially introducing me to this area of research. 

I wish to thank all the staff who are involved in the running of the computer center at Imperial 

College specially . I would like to extend my thanks to 

all staff, research students and friends at I.C. and T.C.U.

Finally, I would like to express my warm gratitude to  for her invaluable 

help in typing this thesis.



(v)

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION

1.1 ESTIMATION OF THE MIXING DISTRIBUTION 1

1.2 ESTIMATION OF THE MIXING DENSITY FUNCTION 2

CHAPTER 2

REVIEW OF SOME APPROACHES TO NONPARAMETRIC
DENSITY ESTIMATION

2.1 INTRODUCTION 7

2.2 MAXIMUM PENALIZED LIKELIHOOD ESTIMATION APPROACH 8

2.2.1 Penalizing the Likelihood Function 8

2.2.2 The Existence and the Uniqueness 9

2.2.3 Penalizing the Logarithm of the Density 11

2.2.4 Evaluation of the Idea of Penalization 12

2.2.5 The Discretized Maximum penalized likelihood 13
estimation

2.2.5.1 The Basic Idea of Discretization 13

2.2.5.2 A Discrete Approximation 13

2.2.5.3 An Evaluation of the Idea of Discretization 15

2.2.5.3.1 Remarks on the Discretized 15
formulation

2.2.5.3.2 A Limiting Property of the
(D.M.P.L.E) 15

2.2.6 A Bayesian Approach lg

2.2.6.1 Bayesian Interpretation of the (M.P.L) approach 16

2.2.6.2 Controlling the Degree of Smoothing: U
A Bayesian Rationale

2.2.7 General Features of the (M.P.L) apaproach lg



(vi)

2.3 KERNEL DENSITY ESTIMATION APPROACH 19

2.3.1 Basic Idea and Definitions 19

2.3.2 An Optimal Kernel Function 20

2.3.2.1 A Bayesian-Based Approach 20

2.3.2.2 An Optimization Technique for Optimally 22
Chosen Kernels

2.3.3 Determination of the Correct Degree of Smoothing 23

2.3.3.1 The Smoothing Problem 23

2.3.3.2 Approaches For Estimating the Optimal h(n) 24

2.3.3.2.1 A Modified Maximum Likelihood
Criterion 24

2.3.3.2.2 Data-Based Smoothing by Cross-Validation 25

2.3.3.2.3 Evaluation of the Cross Validation
Technique 26

2.4 THEORETICAL COMPARISONS 27

2.4.1 The Kernel Approach versus the (M.P.L) Approach 27

2.4.2 The Bayesian Approach versus the (M.P.L) Approach 29

2.5 CONCLUDING RECOMMENDATIONS 30

CHAPTER 3

THE LAPLACE-BASED TECHNIQUE FOR ESTIMATING THE MIXING 
DENSITY FUNCTION IN THE MIXED EXPONENTIAL CASE

3.1 INTRODUCTION 31

3.2 MAIN REQUIREMENTS FOR THE ESTIMATION PROBLEM 32

3.2.1 Definitions and Notations 32

3.2.2 The Uniqueness Feature 33

3.3 THE MAIN RESULTS 33



(vii)

3.3.1 Assumptions and Formulation 33

3.3.2 An Estimation Procedure 36

3.4 A SIMULATION STUDY 38

3.4.1 Introduction 38

3.4.2 A Numerical Representation Scheme 39

3.4.3 An illustrative Examples 41

3.4.3.1 Levels of analysis 42

3.4.3.2 The Effect of the Sample Size n 43

3.4.3.3 The Effect of the Parameter m 47

3.4.3.4 A General Comment on Improving the Results 52

3.5 THE DEGREE OF SMOOTHNESS 58

3.5.1 Introduction 58

3.5.2 An analogy of the smoothing parameter 59

3.6 SOME COMPARATIVE REMARKS 61

3.6.1 Introduction 61

3.6.2 A Theoretical Comparison 62

CHAPTER 4

A KERNEL METHOD OF ESTIMATION

4.1 INTRODUCTION 64

4.2 GENERAL CONSIDERATIONS 65

4.2.1 An Abstract Framework 65

4.2.2 Some Basic Definitions 65



(viu)

4.3 A GENERAL FORMULATION OF THE THEORETICAL
KERNEL ESTIMATOR 69

4.3.1 Empirical Bayes Framework 69

4.3.2 The Exponential Case 71

4.4 SOME LIMITING PROPERTIES OF THE
ESTIMATOR i(A) 74

4.4.1 Introduction 74

4.4.2 The Tail Limiting Behaviour 76

4.4.3 The Limiting Behaviour of the Mode 79

4.4.4 A General Remark 80

4.5 A MOMENT PROPERTY 82

4.5.1 A motivation for a Study of Moments 82

4.5.2 An Inverse-Mean Type of Bias 83

CHAPTER 5

AN OPTIMIZATION TECHNIQUE OF ESTIMATION

5.1 INTRODUCTION 94

5.2 DEFINITIONS AND NOTATIONS 95

5.3 A NONPARAMETER OPTIMIZATION TECHNIQUE
OF ESTIMATION 97

5.3.1 The Basic Idea 97

5.3.2 The Main Assumptions gg

5.3.3 Some Theoretical Aspects of the Optimization Technique 100

5.3.3.1 Introduction 1qq

5.3.3.2 A Characterization of the Estimator 7r 101



(ix)

5.3.4 An Algorithm for Optimization 103

5.3.4.1 Introduction 103

5.3.4.2 Steps of the (G.S.A) algorithm 104

5.4 A SIMULATION STUDY 106

5.4.1 Introduction and Motivations 106

5.4.2 A Criterion for Convergence 108

5.4.3 A sensitivity Analysis 109

5.4.3.1 The Effect of the Step Size 110

5.4.3.2 The Effect of the Parameter “G” 112

5.4.3.3 The Effect of the Parameter “B” 114

5.4.3.4 The Effect of the Level of Accuracy 116

5.4.3.5 The Effect of the Number of Iterations 118

5.5 A COMPARATIVE STUDY OF SOME RELATED
METHODS OF ESTIMATION 120

5.5.1 Introduction 120

5.5.2 The Optimization Technique versus the Kernel Method 120

5.5.2.1 A Comparison between the (O.T) and the 121

Kernel Method 122
5.5.2.2 A Connection between the (O.T) and the

Kernel Method 122

5.5.3 The Optimization Technique versus the (M.L) Method 123

5.5.3.1 Definitions and Notations 123

5.5.3.2 A Comparison between the (O.T) and
(M.L) Method 125



to

5.5.4 The Limiting Behaviour : An Important Rationale 126

CHAPTER 6

THE CONCLUSIONS

6.1 MAIN ACHIEVEMENTS AND CONTRIBUTIONS 128

6.2 SUGGESTIONS FOR FURTHER RESEARCH 131

APPENDIX

Al Derivation of the Likelihood Function of the (O.T) 133

REFERENCES 136



1

CHAPTER ONE

INTRODUCTION

1.1 Estimation of the Mixing Distribution:

The methods of estimating the mixing distribution could be broadly classified into three major 

kinds: (i) methods depend upon the maximum likelihood approach (either parametrically or 

nonparametrically) (ii) the Bayesian approach for the estimation of the mixing distribution, 

and (iii) methods depend upon some approaches other than the previously mentioned ones, 

such as, for example, the minimum distance method for estimating the mixing distribution 

(firstly introduced by Wolfwoitz [1957]).

Laird, A [1979] suggested a nonparametric maximum likelihood estimator for the mixing 

distribution, by assuming that, such an estimator, is a step function having k which is 

unknown-number of steps, associated with the amount of probability (height) at each step. 

Having considered the previous assumptions, he proposed an algorithm for computing a non-

parametric maximum likelihood estimator of the mixing distribution in this case.

Lindsay, B [19831] proved certain properties of the maximum likelihood estimators of the 

mixing distribution, such as the existence, uniqueness, the convergence to the true mixing 

distribution and the discreteness of these estimators.

Giammo, T [1984] considered the same approach of Lindsey [19831], calling it as ‘‘the 

distribution space maximum likelihood estimation”, and giving some numerical results based, 

essentially , on the discreteness of the estimator of the mixing distribution.

It is well known that mixtures of distributions occur in the empirical Bayes procedure, 
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proposed by Robbin, H. [1964], in which the mixing distribution corresponds to a “priori” 

distribution. Thus, Ralph,E. [1968] and Meeden, G. [1972] had proposed a Bayesian 

approach for estimating the mixing distribution by constructing a prior probability distribution 

over the class of all probability distributions on [0, oo], and using a certain loss function.

Choi, K and Bulgren, W [1968] had used the minimum distance approach for the estimation 

of the mixing distribution, based upon the minimization of certain distance-

quadratic function.

1.2 Estimation of the Mixing Density Function

This thesis discusses the estimation of the mixing density function in the mixture model, with 

emphasis on the mixture of two(or more) exponential components. Thus, the problem, 

concerning us, will be, generally, viewed as estimating the density function - the mixing density 

in our case - from a finite number of observations.

It is known (see Wegman [1972]) that, current nonparametric density estimates may be found 

in three basic types, namely the orthogonal series estimators, kernel estimators and the 

maximum likelihood estimators of the density function.

In fact, the orthogonal series estimates are not densities, they may actually take on negative 

values. Also, from a philosophical point of view, the class of orthogonal series estimates has at 

least one major drawback, that is the choice of the series is not made by the data but it is left 

as an arbitrary choice of the user. This may lead to distorted estimates or, at least, to 

estimates whose appearence is dictated more by the arbitrary choice of the series than by the 

data.

The thesis is concerned with discussing the two basic types of density estimators, the kernel 
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and the maximum likelihood estimators. This thesis also makes three contributions in the 

context of estimating the mixing density function in the mixture of exponentials setting. In 

other words, the body of this thesis consists of four parts, which will be seen to be closely 

connected.

Pointing out the relations between these parts will be helpful in the better understanding of 

well-known methods, as well as the new proposed techniques, and detecting some fruitful 

features and characteristics of these suggested techniques.

The second chapter of this thesis reviews the idea of deriving the maximum likelihood and the 

kernel estimates of the probability density function.

In the third chapter we introduce a Laplace-based technique for estimating the mixing desnity 

in the mixture of exponential setting. This technique uses an approximation formula for the 

Laplace integral equation, which is suggested as being compatible with our mixture of 

exponentials case, and then employs the inversion operator to estimate the mixing density. 

An estimation procedure, summing up the previous steps, is constructed. A limiting property 

for our proposed formula has been given, which generalizes the discrete case of Lindsay [19831].

A demonstration consists of a simulation study is given, in which we clarify the behaviour of 

the estimated mixing dsensity under changes of its parameters. This numerical study explores 

some ways of improving the characteristics of the resulting mixing density.

Finally, an extensive set of graphs has been given, representing the estimated mixing density 

under various changes of its parameters. This graphical representation of the estimated 

mixing density can be considered as guide line for controlling the shape of this mixing density 

in the mixture of exponentials case.
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The review of the Bayesian interpretation of some nonparametric methods of density 

estimation, which will be made in the second chapter, expresses the need to considering some 

Bayesian-based approaches for density estimation. This has been our justification for 

proposing a theoretical Bayesian-based kernel estimator for the mixing density in our mixed 

exponentials problem. This estimator has been introduced in the fourth chapter, in an 

empirical Bayes framework.

In the fourth chapter, an unbiased estimator for the above-mentioned mixing density , ?r(A) , is 

derived. This is done by taking the kernel density function, denoted by tt (A,x ), to be equal to 

the conditional distribution of A given a single observation x.

In order to study the limiting features of this theoretical kernel estimator, a lemma will be 

introduced which will be useful in investigating how well the assumed kernel function (on 

which our theoretical estimator r(A) has been based) behaves when one of its parameters 

(referred to as r) tends to infinity. There are links between the limiting behaviour of 7r(A) as r 

—► oo, and the behaviour of any other nonparametric density estimator (kernel, M.P.L., etc.) 

when the smoothing parameter approaches zero. This suggests that (r—^) is the smoothing 

parameter in our theoretical kernel estimator i(A).

In this chapter, an investigation of the bias of the proposed estimator tt (A) will be carried out. 

This aims at judging how far the moments of the derived estimator 7r(A) imitate the moments 

of the underlying true density function t (A). At the end of this chapter a graphical 

representation of our estimator i(A) is given using different sets of real data. This is done by 

presenting the estimator for two different values of r, namely, r = 1 and r = 2. The first 

case demonstrates the mixed exponential density as a special case of our estimator ir(A).

In the fifth chapter we propose a technique for estimating the mixing density in our 

exponential case. This is called "the optimization tecnique* of mixing density estimation.



5

The generalized simulated annealing algorithm (abbreviated by G.S.A) for function 

optimization [1986], will be employed to perform the optimization process. Some 

modifications of the (G.S.A) algorithm will be made to adapt it for dealing with our 

formulation of the optimization problem. By these adaptations the (G.S.A) algorithm will be 

capable of not only calculating the optimal value of the objective function, associated with the 

optimal set of estimated probabilities, but also of exploring some new criteria for judging its 

performance in this estimation case. For example, to assess the performance of the adaptive 

(G.S.A) algorithm - being applied to our estimation problem - we suggest a certain criterion 

for measuring the convergence of the algorithm.

Some numerical examples have been given to measure the sensitivity of the adaptive (G.S.A) 

algorithm to changes in the parameters which specify and affect our estimation problem. In 

this context, attempts will be made, for pursuing possible ways of improving the algorithm’s 

performance, measured by how far we are successful in achieving the desired characteristics of 

the algorithm namely, the convergence and the optimality of the results.

Finally we finish this chapter with some comparisons between our optimization technique of 

estimation and two other density estimation methods, namely, the kernel method and the 

maximum likelihood method.
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CHAPTER TWO

REVIEW OF SOME APPROACHES TO NONPARAMETRIC DENSITY

ESTIMATION
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CHAPTER TWO

REVIEW OF SOME APPROACHES TO NONPARAMETRIC DENSITY 
ESTIMATION

2.1 INTRODUCTION

In this chapter, we review two nonparametric approaches to probability density estimation, 

namely, the maximum penalized likelihood method and the kernel density approach.

The (M.P.L) method is presented. The idea of penalization is discussed, with the concept 

of the discretized maximum penalized likelihood estimator (D.M.P.L.E). A limiting 

property of this (D.M.PJL.E) is mentioned. A Bayesian approach to the (M.P.L) method is 

reviewed, together with a Bayesian rationale for choosing the correct degree of smoothing. 

Some general features of the (M.P.L) approach are briefly discussed.

The kernel density estimation approach is defined, with emphasis on the technique of 

optimally choosing the kernel function. Firstly, a Bayesian-based approach for such choice 

is reviewed. Secondly, an optimization techniques are discussed. The problem of optimally 

choosing the smoothing parameter is reviewed with reference to some data-based procedures 

for solving this problem.

A theoretical comparisons between the above approaches are presented. We suggest a 

compromise between the Bayesian approach and the other two approaches, namely, the 

(M.P.L) and the kernel approach.

Finally, recommendations are given concerning some other techniques of density estimation.
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2.2 MAXIMUM PENALIZED LIKELIHOOD ESTIMATION APPROACH

2.2.1 Penalizing the Likelihood Function

We start by some basic definitions, discuss the main difficulty in finding a nonparametric 

generalization of the maximum likelihood procedure and the proposed method of Good and 

Gaskins [1972] to avoid this difficulty.

Definition 2.2.1:

Given a random sample xp...pcn from a density function f defined on the set Q = (a,b), 

we let H(a,b) = H(Q) be a manifold in L^D). We define the likelihood that a function f G

L](Q), which gives rise to the random sample, as

L(f) = n f(Xj) 
j=i j

(2.1)

Definition 2.2.2:

Consider the following constrained optimization problem

max L(f) 

subject to f G H(fi) ,

and f(t) > 0

Jf(t)dt = 1

V t G Q

(2.2)

Any solution to problem (2.2) is defined to be a maximum likelihood estimate based on the 

sample x^,...pcn.

The main difficulty with problem (2.2) is that the likelihood considered as a functional is 

unbounded. That is, a linear combination of Dirac delta function at the sample points 

results in a value of infinity for the objective likelihood functional. This is not an acceptable 
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estimate for the probability density function.

To avoid the delta function candidates in problem 2.2, Good and Gaskins (1977) suggested 

a penalty functional

$ : H(Q) — Rp (2.3)

which would evaluate the smoothness of a particular density estimate on an interval scale.

Thus, by replacing the likelihood by a penalized likelihood, they defined the the 

$ — penalized likelihood of f G H(Q) by 

*(o = n f(xj)
j =i

(2.4)

for a given sample Xp...,xn.

Definition 2.2.3:

Consider the constrained optimization problem

maximize JL(f)

subject to f 6 H(O) , Jf(t)dt = 1

Q
(2-5)

and f(t) > 0 , V t G Q

Any solution of (2.5) is called a maximum penalized likelihood estimate (M.P.L.E.). This 

solution is a measurable function fn : Rn—► Q which maximizes the penalized likelihood 

(2.5), and where Q is the class of all continuous probability densities on the real line.
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A manifold H(Q) = H(a,b) is said to be reproducing kernel Hilbert space (R.K.H.S) if for 

every T G [a,b] the point evaluation functional Et : H(a,b) — R defined by

(2-6)

is continuous.

Denoting the inner product in H(a,b) by <.,.>g, the uniqueness feature can be stated by 

the following theorem.

Theorem 2.1:

Suppose that H(a,b) is (R.K.H.S), then integration over [a,b] is continuous operation, and 

there exists at least one f G H(a,b) which integrates to one, is nonnegative and is positive 

at the sample points Xp...,xn. Then (2.5) with H = H(a,b) and $(f) = a<f,f>g for every 

a > 0, has a unique solution.

It has been suggested, here, [1971] by Good and Gaskins, to choose a manifold and penalty 

function that lead to polynomial splines. The following definition is required:

Definition 2.5:

Let Hg[a,b] be a Sobolev space of funcitons defined on a finite interval [a,b] whose first 

(k—1) derivatives are absolutely continuous and vanish at “a” and at “b” and whose k^ 

derivative G L^[a,b]. It is well known that Hg[a,b] is (R.K.H.S) with inn pt  product defined

as

(2.7)

Theorem 2.2:

If in theorem 2.1, mentioned above, we let H[a,b] = Hg[a,b] and $(f) = a<f,f> 



11

every a > 0, then the solution of the maximum penalized likelihood exists, is unique and is 

a polynomial spline of degree (2k).

2.3: Penalizing the Logarithm of the Density

Given a set of observations Xp...,xn, the penalized log likelihood is defined as

v(f) = £ log f(X.) - a$(f), (2.8)
i=l

where #(f) is a certain functional such as j(f,Z) and the parameter a controls the amount 

by which the data are smoothed to give the estimate. The above estimate, introduced by 

Silverman B (1982), is an alternative for Good-Gaskins estimator, by which the logarithm of 

the density (rather than the density itself) will be penalized for roughness.

Silverman B (1982) illustrated his idea by considering a special case, in which the penalty,

oo
$/*) = j [(d/dx)3logf(x)]2dx (2.9)

—oo

is used. He showed that the limiting estimate as the parameter a — in equation (2.8) — 

tends to infinity will be the normal density with the same mean and variance as the data. A 

result of this case is that as a varies, the method will give a range of estimates from the 

infinitly rough sum of delta functions to the infinitely smooth maximum likelihood normal 

fit to the data.

An interesting feature is that if we substitute in (2.8) using (2.9) we arrive at the following

w(0 = 12 Io8 f(xi) - “ (2.10)
i=l

in which the functional uw” depends only on the logarithm of the density. This guarantees 
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that any density estimate obtained will be automatically positive.

Leonard (1978) deals with the logarithm of the density. He uses a Bayesian approach to 

density estimation in which a stochastic process structure is placed on the log density. This 

represents an example of penalizing for roughness in the logarithm of the density.

2.4 Evaluation of the Idea of Penalization

De Montricher, Tapia and Thompson (1975) have shown that Good-Gaskin approach does 

not always yield the true solution. They showed that in case of the roughness functional,

$(f) = j(f'2/f), (2.11)

their approach yields the unique and true solution.

To avoid having to deal with a nonnegative constraint on f, Good and Gaskin suggested an 

alternative way of expressing the problem. This is done by formulating the problem in 

terms of the square root of the density function 7 = Jf. Thus, the roughness penalty $ is 

a functional of the root-density function. De Montricher, Tapia and Thompson (1975)
1

proved that working with 7 = f2, is not always equivalent to working with f itself. Also 

Wegman [1983] concluded that, the price of this nonnegativity trick is to lose the 

polynomial spline form of the solution. The solution will be an exponential spline instead} 

also with knots at the sample points.

Silverman B (1982) showed that the limiting case as the parameter a-in relation (2.10) - 

tends to zero is represented by the functional w. This functional, being dependent only 

on the logarithm of the density, guarantees us that any density estimates obtained will be 

positive. This is a major advantage of this method over some other density estimation 

methods, by which we get some negative estimates.
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2.2.5 The Discretized Maximum Penalized Likelihood Estimator

2.2.5.1 The Basic Idea of Discretization

It is not computationally feasible to calculate the spline density estimators described above by 

theorem (2.2.1). It has been suggested that one should deal with the nonnegativity constraint 

directly. This avoids the unsatisfactory trick of working with the square root of the density 

estimator.

A discrete maximum penalized likelihood estimate (D.M.P.L.E) has been proposed as an 

approximation to the spline maximum penalized likelihood estimate (M.P.L.E) given by 

theorem 2.2.1 for the Sobolev space Hn[a,b].

The idea of (D.M.P.L.E) was to replace the infinite-dimensional problem by a finite-

dimensional one. This arises when we restrict attention to (i) piecewise constant simple 

functions, or (ii) piecewise linear functions defined using a uniform mesh or partition of the 

interval [a,b].

2.2.5.2 A Discrete Approximation:

Start by recalling definition 2.2.5 for the Sobolev space, and let Q = [a,b] be a finite interval. 

Assume a number m, which is moderately sized number (typically m = 40), and cover [a,b] 

with a regularly spaced mesh of points. The equally spaced mesh will be defined by the nodes 

a = tQ < tf < ... < tm = b, where the mesh interval rj is defined by

m. (2-12)

Further, assume that p(-) be a continuous piecewise linear function defined over the mesh 

<‘^=0 “d vanishin8 outside m‘«val 0 = [a,b]. Let Pm be the space of all such
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functions p on the interval [a,b] which are linear on each interval L = [tj, Assume

that the estimator is completely determined by its value at the mesh nodes, i.e.,

Pj = P(tj), J =

Suppose that

p(a) = p(tQ) = pQ = 0

and p(b) = p(tm) = pm = _ 

(2-13)

(2.14)

then, the linear spline p will belong to Hg(a,b), where Hg(a,b) is a special case of the Sobolev

It is a straightforward matter to show that

(2-15)

Having mentioned that p. = p(t.) - equation (3.2) - a roughness penalty $(p) can be defined as 
J J

follows.

«(p)=»£ - (2-16)

which is a discrete approximation to the integral penalty Jp^. In other words, the usual 

infinite dimensional problem, which depends upon maximizing the criterion functional

n 00L(f) = 521ogf(Xi) - a [ f'^dt, 

i=l -oo
(2.17)

has been approximated, specially the differential operator, by a finite differences, represented 

by (2.16), over values at the mesh nodes.

Definition 2.2.5.1 :

For Xp X2?...,xn e[a,b] consider the following constrained optimization problem, represented by 

the following

max = 521o 8 P(*i) “ “ 1 
i=l

(2.18)
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subject to

m—1
1 £ Pj = 1 

j=l (2-19)
and Pj^°> j = 1.....“-1

The solution to the above problem is called the discrete maximum penalized likelihood 

estimate (D.M.P.L.E).

2.2.5.3 An Evaluation of the Idea of Discetization

2.2.5.3.1 Remarks on the Discretized Formulation

We make two remarks on the previous formulation, being represented by relation (2.18) and

(2.19). Firstly, the penalized likelihood L(pp...,pm_j) is written indirectly in terms of the 

(m—1) parameters Pp—»Pm_j and p(Xj) - appearing in (2.18) - is just a linear combination 

that the resulting (D.M.P.L.E) will be (i) nonnegative on the real line, and (ii) integrating to 

one.

Tapia, Scott and Thompson (1980) have made an important suggestion, by which an 

improvement of the (D.M.P.L.E) has taken place. They gave a theoretical justification for the 

intuitive property that p will be a good approximation to the exact maximum penalized 

likelihood estimator with penalty £(f) = jf*2. In their practical work [1980], they used a 

penalty representing higher derivatives, namely, the second derivative jf^2, which is being 

approximated by the second differences.

2.2.5.3.2 A Limiting Property of the (D.M.P.L.E)

A general conclusion is detected from the above representation, given by relations 2.18 and 

2.19, of the (D.M.P.L.E). This suggests that, the (D.M.P.L.E) is an approximat.i nn to the 

spline maximum penalized likelihood estimate (M.P.L.E) given by theorem 2.2.5 for the 
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Sobolev space Hg[a,b]. This conclusion is resulted from replacing the infinite-dimensional 

problem by the finite-dimensional one, which arises by restricting our attention to piecewise 

linear functions p(-) defined using a regular mesh or a partition of the interval [a,b].

A related point arises here, concerns how good this (D.M.P.L.E) will be in approximating the 

spline (M.P.L.E). The answer is represented by the fact that the (D.M.P.L.E) approaches the 

spline (M.P.L.E) as the mesh size rj approaches zero. This will be stated by the following 

theorem.

Theorem 2.2.5.1:

Suppose Q = [a,b] is a finite interval, Xp...pcn is a fixed sample and that the data outside Q 

is ignored. Let r) be the size of the mesh - given by (2.12) - used to obtain the discrete 

maximum penalized likelihood estimate (D.M.P.L.E) guaranteed by theorem 2.2.5 given 

above. Then the simple function (D.M.P.L.E) converges to Hg[a,b] spline maximum penalized 

likelihooh estimate (M.P.L.E) guaranteed by theorem 2.1 in the sup norm as rj —► 0.

2.2.6 A Bayesian Approach

2.2.6.1 Bayesian Interpretation of the (M.P.L) Approach

The maximum penalized likelihood method has been interpreted using a Bayesian argument., 

This was supported by an exploratory data analysis procedure for density estimation and 

bump-hunting introduced by Good and Gaskins (1980). This is done by maximizing a certain 

score function w. The funciton w is defined as

w = w(f) = L - $(f) = L - a [[7"(x)]2dx, (2.20) 

where L is the likelihood function and £(f) is the roughness penalty. The function £(f) 

depends upon the density function f, apart from the proportionality paramter a which 

depends on the observations.
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The coefficient a , appearing in equation (2.20), determines the magnitude of the roughness 

penalty, and hence is analogous to the smoothing parameter in the context of density 

estimation methods. According to the Bayesian interpretation of the maximum penalized 

likelihood method (M.P.L), the coefficient a will be called the “hyperparameter”, being a 

parameter in a prior.

Suppose that the data are categorized in a histogram of J bins, the likelihood L, appearing in

(2.20) takes the form

(2-21)

where n^ is the sample frequency in the bin Bp Now, recall equation (2.4) and regard 

e as proportioned to an “improper” prior density in function space. This space consists

of either functions f when estimating a density function (as in (2.20)) or discrete probabilities 

when estimating the probabilities for categorized data (as in (2.21)). Thus, the maximum 

penalized likelihooh (M.P.L) method maximizes the pasterior density in the function space.

2.2.6.2 Controlling the Degree of Smoothing : A Bayesian Rationale

The main conclusion of considering the prior of the density f proportion to exp(—a£(f)), is 

that we will arrive at the fact that the smoothing parameter a is a parameter of the prior - 

being called the hyperparameter. Thus, the penalized likelihood, in this case, represents the 

logarithm of the posterior distribution. The maximum likelihood estimate (M.P.L.E) is 

equivalent to the mode of the posterior distribution over the space of all smooth curves Ps.

An important consequence is that we can control the degree of smoothing, using the 

hyperparameter a, which is analogous to the smoothing parameter in the density estimation 

context. By varying the hyperparameter a, we get estimates ranging from an infinitely rough 
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(as a tends to zero) to the infinity smooth maximum likelihood normal fit to the data when a 

tends to infinity.

The above argument gives us a satisfying rationale for a particular choice of the 

hyperparameter a (or the roughness functional). Such decision, previously, used to be made 

either in an ad hoc way or for reasons of mathematical conveniences.

There is an important recommendation, ought to be mentioned, in the context of using the 

Bayesian interpretation of the maximum penalized likelihood approach. That is, the 

hyperparameter a be necessary estimated from the data. This had been done by Scott (1976) 

who developed an iterative data-based approach for estimating the smoothing parameter a. 

His technique only requires the prior knowledge that the unknown density has a square 

integrable second derivative.

2.2.7 General Features of the Penalized Likelihood Approach

From a philosophical point of view, the penalized approach, represented by equation (2.20) for 

example, makes clear the notion that there are two conflicting goals in density estimation.

The first, is to maximize fidelity to the data as measured by the log likelihood log f(X|), 

while the second is to avoid estimates which exhibit too much roughness as measured by £(f).

The choice of the smoothing parameter a controls the balance (trade-off) between smoothness 

and goodness-of-fit. Also, the choice of the roughness penalty 4>(f) determines what kind of 

behaviour, in the density estimate, is considered to be undesirable in excess.

The wide applicability of the penalized likelihood approach to a variety of density estimation 

problems, represents an interesting feature of this approach. As an example, the method of 

nonparametric regression via the penalized log likelihood functional, which is often called 

“spline smoothing” (see, for example, De Montricher, Tapia and Thompson (1975) for the 
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relationship to spline methods).

Another attractive feature of the penalized approach is its readiness to be interpreted using

Bayesian argument. Having mentioned that - see subsection (2.6), it seems useful to introduce 

a comparison between the (M.P.L) and the Bayesian approach. This will be done in the next 

subsections.

2.3 KERNEL DENSITY ESTIMATION APPROACH

2.3.1 Basic Idea and Definitions

Given a random sample Xp...,xn from a continuous but unknown density f, Rosenblatt (1956) 

proposed an estimate of the form

where w(y) is a weight function which equals | if |y| < 1, and is equal to zero otherwise.

Although Rosenblatt suggested generalizing (3.1) to estimates using different bases than step 

function, the detailed explication of kernel estimators is due to Parzen (1962).

Definition 2.3.1:

Parzen [1962] defines the kernel estimator for f(x) as

where the kernel function K(-) satisfies the following conditions:
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(i) sup |K(y)| < oo 
—oo<y<oo

oo
(ii) j |K(y)|dp(y) < oo 

—oo

(Ui) y^ool yK(y) I = 0

and oo
(iv) J |K(y)|dp(y) < oo

—oo

(3.4)

Rosenblatt asserted that h(n), appearing in equation (3.2), satisfies the following conditions

Lim nh(n) = oon—*oo ' '

and Lim h(n) = 0n—*oo v '

In general, the idea of these estimates (3.1) is that (3.2) is a distribution with mass g placed at 

each of the observation. Thus the expressions (3.1) and (3.2) smear this probability out 

continuously, according to the choice of the kernel function K(-). In other wards, the kernel 

estimator is constructed by placing a kernel function K(x; Xj, h(n)), where h(n) is the 

smoothing parameter, over each observation in the data Xp...,xn, being assumed to be a 

random sample from the distribution is question.

An important conclusion, conerning the smoothness of the kernel estimate, could be realized 

from the above definitions. That is, the smoothness of the estimated density depends upon 

two factors, namely, the smoothness of the kernel function K(«) and the data responsiveness of 

the window size h(n). Thus, we study each factor, in detail in the next subsections.

2.3.2 An Optimal Kernel Function

2.3.2.1 A Bayesian-based approach

Whittle (1958) approached the problem of finding an optimal kernel for estimating the density 
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at a point, using a prior information about the density.

The idea, in general, is based upon relating the density estimation problem to the theory of 

stochastic process. Specifically, he assumes that different values of the density are related by a 

prior covariance structure, and then obtains integral equations for his posterior estimates.

Whittle considers the kernel

Kn(x,y) = wx(y), (3.5)

and assumes that the sample size n is Poisson mean M. An estimate of the unnormalized 

density </> = Mf will be as follows

oo
</>n(x) = n | wx(y) dFn(y). (3.6)

—oo

Assumptions and the method:

Whittle assumes a prior distribution for </>(y), which has the first moment

Ep{^(x)} = p(x), (3.7)

where Ep, represents the expectation with respect to the prior distribution. Also, he assumes 

that for his prior distribution, the second moment takes the form

Ep{<^(x)^(y)} = /x(x,y). (3.8)

Based upon these assumptions, he arrives at the weighting function wx (appearing in (3.6) by 

minimizing A , where

A2 = EpEa[^n(x) - «J(x)]2, (3-9)
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where Es is the expectation over sampling variations. The resulting optimal weighting 

function (or kernel) is the solution of the integral equation

P(x)wx(y) + p(y,z)wx(z)dz = p(ypc). (3.10)

An important advantage of this method is that the prior distribution, need not be known, only 

the first two moments are required.

interesting feature of this method shows that Parzen’s [1962] kernel estimator (given by 

(3.2)) is a special case of Whittle’s estimator, when there is no prior information available. In 

this case, he considers a normalized covariance function that is “second-order stationary”. 

This assumption allows him to estimate the entire density with one kernel, i.e., to view his 

estimator as a Parzen kernel estimator. Also, this stationarity assumption gives Whittle’s 

approach a “time series” flavour.

2.3.3.2 An Optimizatgion Techniques for Optimally Chosen Kernels 

Watson and Leadbetter [1963], consider an estimator

(3-11)

where Fn is the empirical distribution function.

Definition 2.3.2:

The integrated mean squared error (I.M.S.E) is defined as

I.M.S.E = |E{fn(x) - f(x)}2dx

= E |{fnM “ fW}2dx (3-12)
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Watson and Leadbetter considered (3.12), as a measure of goodness. They found 6n, 

satisfying the equation

^n(x-y) = Kn(x-y),

which minimizes the integrated mean squared error (3.12).

(3.13)

In the previous formulation, the problem of choosing the optimal kernel Kn(x,y) has been 

casted in an optimization framework, guaranteeing that the resulting estimate be nonnegative.

A main disadvantage associated with this technique is that <5n, defined by (3.13), depends upon 

the explicit form of the probability density function to be estimated.

A similar approach, had been pursued by Rosenblatt [1971], who suggested that the optimal 

kernel K(«) can be estimated by solving the following optimization problem:

subject to:

jK(x)dx = 1

K(—x) = K(x) > 0 

]x2K(x)dx = 1.

(3.15)

The above formulation, leads to an estimate of the kernel K*(«) which is nonnegative and has 

a finite support. Philosophically, kernels with finite support [Wegman (1972)] seem more 

attractive than those with infinite support, on the grounds that the resulting density has zero 

mass in the tails. As far as, the numerical calculations are concerned, kernels with finite 

support has definite computational advantages.
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2.3.3 Determination of the correct degree of smoothing

2.3.3.1 The Smoothing Problem

The smoothing problem does exist when estimating a density function, and manifests itself in 

the ability of the resulting estimator to explain or to fit the observed data.

The problem is similar to the bias-variance tradeoff, which is well-known in spectral analysis of 

time series. That is, for a very large smoothing parameter h, we have too smooth estimates 

representing a small variance at the price of a large bias. On the other hand, by a very small 

value of the smoothing parameter h we may detect the fine structure (i.e., reducing the bias) 

observed from the data, but at the expense of high variance.

The point where, the bias and variance of the estimate are both acceptable has largely been a 

subjective decision best resolved in an interactive mode with the computer.

In conclusion, it is more convincing to use the observations themselves to determine an 

appropriate degree of smoothing, and this general approach is known as data-based smoothing. 

Scott [1981] asserts that, the data-based algorithm is that can be embodied in a computer 

subroutine whose input is the data and where the output is the value of the smoothing 

parameter h, that is approximately equal to the theoretically optimal, but unknown, value of 

the smoothing parameter.

2.3.3.2 Approaches For Estimating the Optimal h(n)

We have mentioned the need for data-defined procedures of determining the correct degree of 

smoothing. Some of these approaches depend upon the optimization of certain criteria for the 

performance of the density estimate. On the other hand, other approaches have the feature of 

being iterative or quasi-optimal. A common feature is that they are, to a great extent data- 
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based approaches.

2.3.3.2.1 A Modified Maximum Likelihood Criterion

Duin,R. [1976], studied the choice of the smoothing parameters for Parzen [1962] estimators of 

probability density function, being given by equation (3.2).

Firstly, he had considered the following problem with a maximum likelihood criterion for 

choosing h

max L(t) = ft fck)
(3.16)

From the definition of the kernel estimator (3.2), it may be seen that h = 0 maximizes L(h), 

corresponding to an estimate with a Dirac function at each of the sample points and value of 

zero elsewhere.

Duin and Habbema et al (1976), consider problem (3.16) with a slightly modified maximum 

likelihood criterion, as follows

max L(h) = {J fk(xk) (3.17)
h>0 k=l

where

, n /xi— xA
W = i ,Ek  piH)- (3'18’

They found the optimal smoothing parameter h* as a solution to problem (3.18).

We notice, in the formulation represented by relations (3.17) and (3.18), that they omit the 

contribution of the sample itself in the estimation of the density at that point. This is 

because each term in the product (3.17) becomes infinite if h becomes zero.
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2.3.3.2.2 Data-based smoothing by Cross-Validation

The idea of this method is to define a certain smoothing criterion (referred to as a likelihood-

like expression) which measures the ability of the estimator to explain the observed data. The 

optimal smoothing parameter h*, is then chosen to maximize this measure of explanation.

Now recall the kernel estimator, defined by Parzen [1962] as

j^k \ /

and denote by n_j the estimator computed after deleting the observation, i.e.,

(3.20)

Now, fjj n_ j is not dependent on Xj, and ffon—l may taken 35 a measure of the 

appropriateness of h as a value of the smoothing parameter. As the supper-script j ranges 

through the full sample, we obtain n such measures of explanations, by which we define the 

likelihood-like expression

(3.21)

as the smoothing criterion.

Definition 2.3.3.1 Cross-Validated Smoothing Parameters

The optimal smoothing parameter h* is that value of h, which maximizes the smoothing 

criterion L^, given by equation (3.21), and is called the cross-validated smoothing parameter.

Definition 2.3.3.2 Cross-validated Kernel Estimator

The cross-validated kernel estimator f, * is that estimator which results from 
h ,n

the substitution
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by the optimal h* in the kernel estimator 3.19.

2.3.3.2.3 Evaluation of the Cross-Validation Technique

The main advantage of the cross-validation method is that, it can be considered as a natural 

develpment (or extension) of the idea of using the likelihood principle to judge the adequacy of 

fit of a statistical model.

The method has applications to other estimation problems. A wide variety of applications, to 

ridge regression (Wahba (1979)), spline smoothing [Wahba (1973), (1975) and Boneva (1970)] 

and density estimation, have demonstrated a good performance of estimators smoothed by 

cross-validation techniques.

The cross-validation technique, as presented in subsection 3.3.2.2, has a fruitful feature of being 

able to incorporate some Bayesian-based ideas of smoothing a curve. As far as, constructing a 

stochastic model for curve smoothing, Wahba [1970] presented some theoretical results in this 

context. By using such results, the selection of a smoothing criterion - given by equation 

(3.21)- has been related to the specification of a prior probability measure over a function 

space.

The main difficulty with this method, is that there is no guarantee of having a consistent cross-

validated kernel estimators, when the kernel has a compact support. Schuster and Gregory 

[1981] have given some conditions under which compact kernel density estimators are not 

consistent.

Chow, Geman and Wu [1983] suggested, without proof, that kernels with heavy tails will 

undersmooth densities with light tails (such as densities with compact suport). Hall [1984] 

has come to a similar conclusion stating that : cross-validation tends to undersmooth, when 

restricted to finite intervals on which the density is smooth and bounded away from zero.
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2.4 THEORETICAL COMPARISONS

2.4.1 The Kernel Approach versus the (M.P.L) Approach

The kernel density estimate has been defined as

fn(‘) = E K( ^P)- (41)

j=l

where K(-) is the kernel function which integrates to one. The estimate fp which maximizes

- over all values of f - the penalized likelihood funciton

L«(f)= E l°gf(xi)(4.2) 
j=l

is called the (M.P.L.) estimate. In equation (4.2), £(f) refers to the roughness penalty 

functional, and a is the smoothing parameter.

Similarities between the two approaches, are summed up in the following remarks:

(i) The parameter a in equation (4.2), represents the smoothing parameter and 

corresponds to the kernel scaling-parameter h shown by equation (4.1).

(ii) The parameter a controls the balance between smoothness (as represented by the

penalty functional £(f)) and the goodness-of-fit (as measured by log f(X)). Thus, it is

analogous, in its effect, to the kernel smoothing parameter h.

(iii) In equation (4.1) the averaging operation is in fact a smoothing operation. Thus it is 

similar to giving the parameter a - in equation (4.2)

- values which are greater than zero.
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Since the data is used to determine the estimate (4.2) with relatively minor arbitrary choices, 

the resulting (M.P.L.E) is derived in a more datar-oriented (nonparametric) sense. On the 

other hand, the choice of the kernel function K(-), in relation 4.1 is not determined by the 

data, but rather by the user.

Secondly, the kernel estimate fn(t), given in (4.1), depends linearly on the kernel function K(-). 

Thus, the appearence and properties of fn are dictated more by the arbitrary choice of K(«).

Finally, if we take equation (4.2) to be represented by

i-a(0= S logf(X.)-a [ f'(t)dt, 
j = l -Joo

(4.3)

we realize the difficulty, in the infinite-dimensional problem, of maximizing the penalized 

likelihood 4.3. For this reason, Scott, Tapia and Thompson (1980) introduced a discrete
oo

approximation to the integral J f1 using the first differences. In the kernel approach, there is 

—oo
no need for such approximations, because there is no restrictions to estimating on a finite 

domain as there is with the (M.P.L) method.

2.4.2 The Bayesian Approach versus the (M.P.L.) Approach

Bayesian advocates argued that, the roughness penalties methods, do not incorporate prior 

estimates for the density. These methods are, in fact, roughly equivalent to a Bayesian 

approach, where the prior estimate is a uniform density. Consquently, the tails of these 

posterior estimates will tend to be relatively thicker than under using more reasonably prior 

estimates.

Apart from the Bayesian approach, the majority of nonparametric density estimation methods 

have a smoothing parameter which must be chosen by the experimenter. Regarding the 

penalty function methods, this parameter has to be estimated, preferably using data-based 

technique (see Wahba (1975) and (1977)).

Another possible drawback of using the (M.P.L) approach, will be associated with using a 

roughness penalty term $(f) basaed only upon the first derivative of f. In this case, the 
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resulting estimates will be having jags at the data points.

Because of the previous undesirable features of the (M.P.L) approach, Leonard, T. (1978) 

proposed an interesting approach for desnity estimation. His approach, could be considered, 

from a roughness penalty viewpoint, as a device to interpret penalty methods within a prior- 

informative Bayesian framework.

2.5 CONCLUDING RECOMMENDATIONS

Practically all density estimation methods have the property that the limiting estimate as the 

amount of smoothing (controlled by a in (4.2) or h in (4.1)) decreases is a sum of spikes at 

the observations.

From the previous comparisons, we introduce a linkage between the Bayesian analysis and the 

above two approaches of density estimation. This suggests, choosing the smallest value of a 

(or h in the case of the kernel estimate) which reveals fine structure without too much 

oscillary behaviour consistent with “prior knowledge”. This remark represents a compromise 

between the Bayesian approach and the nonparametric approaches of density estimation.

There is a disappointed fact associated with the kernel approach of density estimation. That 

is, for very small samples, the direct use for computation of formula 4.1, for the kernel 

estimate, is highly inefficient. Thus, it is more convincing to think of the kernel estimate as a 

convolution of the data with the kernel. We recommend, here, the use of an integral 

transform (Laplace transform, for example) to perform this convolution. This remark 

constitutes the basic idea upon which we introduce the Laplace-based technique of mixing 

density estimation. This will be done in the next chapter.

Finally, the introduction of the Bayesian interpretation of some nonparamtric density 

estimation methods, is helpful in expressing the need to consider some Bayesian-based 

approaches for desnity estimation. This is our justification for proposing a theoretical 

Bayesian-based kernel estimator for the mixing density in the mixed exponentials problem. 

This will be given in chapter V.
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CHAPTER THREE

THE LAPLACE-BASED TECHNIQUE FOR ESTIMATING THE
MIXING DENSITY FUNCTION IN THE MIXED EXPONENTIALS CASE

INTRODUCTION

In this chapter we propose a simple technique for using the Laplace transformation in 

solving the problem of estimating the mixing density function for the mixture of 

exponentials problem.

We start with some necessary definitions and notation. Then a set of assumptions will be 

proposed, upon which the Laplace-based estimation technique has been based. This is done 

by : (i) introducing an approximation formula for the Laplace integral in the exponential 

case, and (ii) inverting it to estimate the mixing density function.

An estimation procedure using these steps will be described and applied to some simulated 

data.

Simulations are presented that illustrate the proposed estimation technique and relate the 

behaviour of the estimated mixing density to changes of its parameters.

The idea of using the maximum likelihood method is applied to the image density function 

for estimating the original (or the mixing in our case) density function. An extensive set of 

figures will show the effect on the shape of the resulting estimated mixing density of varying 

its parameters.

Some suggestions on the choice of an appropriate degree of smoothing of the estimated 

mixing density, will be made.
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Finally, we make some remarks on the differences between our estimation technique and the 

kernel approach of density estimation.

3.2 MAIN REQUIREMENTS FOR THE ESTIMATION PROBLEM

3.2.1 Definitions and Notations

We start with some basic definitions, a theorem, and notation which will be helpful in 

proving the main results, being proposed in the next section of this chapter.

Definition 3.2.1: A function h(A) is called sectionally (or piecewise) continuous in an 

interval a < A < b if the interval can be subdivided into a finite number of intervals in 

each of which the function is continuous and has finite right and left hand limit.

Definition 3.2.2: If there exist a real constants M > 0 and a, such that for all A, we

have that

|h(A)| < Me“A (2.1)

we say that h(A) is a function of exponential order a as A -+ oo, or, briefly, is of 

exponential order.

Theorem 3.2.1:

Suppose that h(A) is a piecewise continuous function, is of exponential order and its Laplace 

transform is

oo
<0(s) = j e”sA h(A)dA (2.2)

0

Thus if 0^n\s) is the n^ derivative of 0(s) with respect to s, then we have that
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= (-1)" An h(A), (2.3)

where JL —denotes the inverse Laplace operator.

In equation (2.2), the function h(A) is usually referred to as the original function, and the 

function as the image function.

Definition 3.2.3: The set of all original functions h(A) will be called the original space and 

the set of all image functions </>(s) will be referred to as the image space.

3.2.2 The Uniqueness Feature

In the Laplace terminology, the concept of a mapping (or a transformation) means that the 

Laplace integral (2.2) expresses a relation which states that every original function h(A) is 

related to an image function ^(s). Therefore, one of the main topics, associated with the 

mapping representation (2.2) is the question of recovering (or estimating) the original 

function h(A) from the image function ^(s).

In order to find a solution to our estimation problem we have to pay much attention to the 

conditions under which the uniqueness of the estimated original function h(A) (mixing in our 

case) could be guaranteed. Continuity is sufficient in most cases to determine the original 

function h(A) uniquely from the image function

3.3 THE MAIN RESULTS

3.3.1 Assumptions and Formulation

Assumption 1:

Assume that we define the density function f(x,r) as
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f(x,r) = J Ae—‘^xir(A,r)dA

0

The above function (3.1), being defined in the image space, is the Laplace transform of the 

function A?r(A,r).

Assumption 2:

Suppose that the density function is assumed to take the mixed Gamma form

(3-2)

where

k=l
«k>°

Under the above assumptions, the mixture density will be taking the following form

k=l (x+V+1
(3.4)

m
= 52 ak qk^x; r’ 

k=l
(3.5)

In equations (3.4) and (3.5) the function qk(x; r, /?) is a Pareto density function.
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We notice that the Pareto density function, has a mean equals to while the expression

for E(Xk) is equal to

k! /?k
(r—l)(r—2)..(r—k) (3-6)

where r > k.

A special case of the second assumption, being represented by equation (3.2), results when r

equals one. Thus, the density function (3.2), takes the form

P(A,1) = “k^k (3-7)

which represents a mixture of exponentials.

Another way of getting the mixed exponentials (3.7) is found by keeping x fixed in relation

(3.4), and letting both r and /3^ tend to infinity in such a way that the ratio equals a 
k

constant, say, t^. This is represented by

.... =1.
(x+/3k)r+1

(3.8)

By taking the limit as r tends of infinity of relation (3.8), we find that the density function 
_tkx

q^(x; r,/?), appearing in equation (3.5), tends to the density t^ e .In other words, we



36

have that

lim
— tiX

q]j(x; r, /?) = tk e (3-9)

We discuss the implementation of the above result, as follows:

The limiting relation, could be represented by

m -A, t
= £ “t \e 

k=l

00
(A), = J A e d/xm(A)

0
(3.10)

where, in terms of probability measure, the measure pm(A) has jumps of Supposing

that this measure is entirely concentrated at A, i.e.,

Pm = 5(A) = Ae“At, (3.11)

where 5(A) is the Delta function. Knowing that 5(A) = 0 at A = oo and 5(A) — 1 at

A = 0, so that at these limits of integration - appearing in (3.10) - the value of 5(A) will be 

zero or one. In other words, equation (3.10) represents an integration with respect to a 

measure /xm taking either zero or one, so 0(t) = Ae—The fined conclusion from the 

above argument is that the limiting case of our formulation (3.4) gives us the discrete case 

of Lindsay (1983) as a special case.

3.3.2 An Estimation Procedure

A natural extension of the assumptions, being mentioned in subsection 3.3.1, is to suggest a 

procedure for estimating the mixing density in our mixture problem.

The basic structure of this estimation procedure consists of the following theoretical steps.
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Step 1:

Assume the existence of an asymptotic expansion for the following Laplace

transform, which has been proposed in our assumptions.

oo 
f(x,r) = J Ae“^x %(A,r)dA.

0
(3.12)

Notice that the uniqueness of the inversion of formula 3.12 is being guaranteed by the 

continuity of the mixing density.

Step 2:

We assume that the asymptotic expansion of the image function

f(x,r) could be represented as 

where »j, /L are coefficients to be determined, and the parameter r > 0.

Step 3:

Taking a partial sum of the formal series 3.13, it becomes as

f(x,r) = 22 “j r^j ’ (3-14)
J = 1

This partial sum 3.14 can be considered as an asymptotic approximation of the image 

function f(x,r).

Step 4:

By employing the inversion operator of Lapalce transform, we recover the original

(mixing) density function
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(3.15)

Notice that for the case where r = 1, we have the following mixing density

7r(A»r) = £ aj e ’ 

j = l

which is the mixed exponentials density.

(3.16)

As a justification for deriving formula 3.15 of the original mixing density from the image 

3.14, we argue that, becasue of having a finite number of terms in relation 3.14 - in the 

image space -, the inversion operation could be performed term by term to recover the 

original mixing density by equation 3.15.

3.4 SIMULATION STUDY

3.4.1 Introduction

In this section, we start by recalling the estimation procedure being proposed in the previous 

section to deal with the problem of estimating the mixing density ?r(A,r) which is given by 

equation 3.15. Numerical representation for this estimation procedure will employ the 

maximum likelihood method for estimating the parameters of the mixing density 3.15, 

which has been recovered by using the procedure.

A new idea will be suggested through our numerical study of the estimated mixing density. 

This idea will be introduced by trying to explore a possible connection between one of the

parameters - being the truncation point m - of the estimated mixing density and the well- 

known notion of the “smoothing parameter” as one of the key factors in the probability 
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density estimation context.

A simulated examples, comparing the effect of varing the parameter (which is analogous to 

the smoothing parameter) will be given. This will be associated with a graphical 

representation of the results, exhibiting how sharp these variations will be in smoothing the 

resulting estimated density under different sample sizes. In other words, comparisons will be 

performed by introducing an extensive set of curves expressing the behaviour of the 

estimated mixing density, being influenced by variations in sample size n as well as changes 

in the parameter m. This latter parameter is considered to be analogous to the smoothing 

parameter.

3.4.2 A Numerical Representation Scheme

We will be recalling the previous idea, being reviewed in subsection 3.2.2 concerning the 

significance of the Laplace formulation of the mixture setting. This idea assures that 

dealing with the image function f(x,r) is much easier than with the original density function 

7r(A,r), being shown in equation (3.15),

For handling our problem of estimating the mixing density, the following suggested scheme 

will be as a numerical representation of the estimation procedure, being proposed in 

subsection 3.3.2. The numerical scheme will aim to solve the proposed integral equation 

3.12 for the sake of recovering the mixing density function, which has been given by 

equation 3.15. In fact, we mean by recovering the density function 3.15, the estimation of 

its parameters.

By invoking the asymptotic approximation 3.14, being mentioned in the third step of the 

procedure, and by employing the maximum likelihood criterion, the previous estimation 

procedure (introduced in (3.3.2)) can be represented by the following scheme :
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First:

Start by taking a sample Xp...,xn, consists of n independent observations from the

density function f(x,r) given by 3.14 as

f(x,r) = £ «k (*+Z?k) 1 + 4^. 

k=l
(4-1)

We notice that the partial sum in equation (4.1) is determined by the truncation 

point m.

Second:

Find the likelihood function of these n independent observations. This is 

represented as follows:

L(x,r) = J} f(x.,r)
j=l

(4-2)

where, for a given real value of r, the constants ak and ^k(k=l,...,m) are the 

parameters to be determined by the maximum likelihood estimation method.

Third:

Maximize the logarithm of the likelihood function 4.2 to estimate the parameters

«k and /?k(k = l,...,m), i.e.,

max log L(x,r)

(4.3)
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Fourth:

Substitute the estimated values of the parameters and ^(k=l,...,m) in the

formula (3.15), given in the fourth step of the previous estimation procedure. Thia

gives us the following estimate of the mixing density function

*(*,*) = 52 dk
k=l

(4.4)

3.4.3 An Illustrative Examples:

We start by the proposed likelihood function, which has been given by relation (4.3). A 

maximization of this formulation results two sets of estimates for and ^(k=l,...,m). 

This values are substituted into equation (4.4) to get the estimate 7r(A,r) for the mixing 

density function.

Different sets of observations (having different sizes) are generated from the same mixture of 

exponentials which consists of two components with parameters (A^ = 3, A2 = 8), and the 

corresponding mixing probabilities are (tt ^ = .7, 7^ = .3), respectively. These sets of 

observations will represent the data (Xj, j = l,...,n), and will be used in formula (4.3), 

shown above.

Throughout the estimation process (of the parameters and k = l,...,m) and for 

reasons of comparison the value of the parameter r, appearing in equations (4.3) and (4.4), 

has been unified and taken to be equal to two (i.e., r =2) in all cases of the numerical 

results.

3.4.3.1 Levels of Analysis 
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In our numerical example, we have carried out the analysis by using different sample sizes, 

being classified as

(i) small sample size (as n = 15)

(ii) moderate sample size (as n = 40 or n = 50),

and (iii) large sample size (as n equals 100 or 120).

The value of the parameter m denotes the number of terms (or the trimcation point) to be 

summed up by the internal summation of formula (4.3), and also, represents the number of 

the parameters a^and /^(k = l,...,m) which have to be estimated.

The criterion for the estimation of the above-mentioned parameters is the maximization of 

the likelihood function given by equation (4.3). These parameters have been estimated for 

cases where m takes the values 2,5,10 and 15, using different sample sizes for each of the 

previous values of m.

Having mentioned that we will be changing both the parameter m and the sample size n, 

it is convenient, for exploring the behaviour of our estimated density, to perform the 

analysis on two levels. These are

Level 1:

Studying the behaviour of the estimated density, being recovered using a specific 

value of m, under various values of the sample size n.

Level 2:

Analyzing the sensitivity of the estimated density, being estimated using a specific 

sample size n, to various values of the parameter m.

3.4.3.2 The Effect of the Sample Size n: 
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We start by a certain small value of the parameter m, then we increase the sample size and 

measure the sensitivity of the results of these changes, to the sample size by giving a 

graphical representation of the estimated density. Then, under a greater value of m, we 

repeat this process of increasing the sample size and displaying graphically the effect on the 

estimated density.

We suggest a criterion for judging the resulting estimated density. This is based upon the 

relative capability of the density in recapturing the true values of the parameters we have 

started with.

In all the figures, being given in this chapter, a rescaling operation has been carried out to 

place the different curves onto the same picture. The aim of this operation is to make all 

the curves having the same height. In figure (3.1), we find that under a small value of 

m(say m=2), the smaller the value of n the more peaked the estimated density will be.

As the sample size n increases we get a better curve for the estimated density. Our 

judgement is based upon the criterion that the peak for the estimated curve (when n = 100)



44

TH
E ES

TI
M

AT
ED

 DEN
SI

TY
 WH

EN
 M=

2,
(N

= 
15

,3
0,

50
,8

0,
10

0)

IVHId A1ISN3Q aaivnusa am

TH
E VA

LU
ES

 OF 
LA

M
BD

AH
AT



45

TH
E ES

TI
M

AT
ED

 DEN
SI

TY
 WH

EN
 M=

5,
(N

= 
15

,6
0,

12
0)

JLVHId A1ISN3Q Q31VWUS3 3H1

TH
E VA

LU
ES

 OF 
LA

M
BD

AH
AT



46

TH
E ES

TI
M

AT
ED

 DEN
SI

TY
 WH

EN
 M=

10
,(N

=1
5,

40
,9

0)

JLVHIcI A1ISN3G CI31VHJ1S3 3H1

TH
E VA

LU
ES

 OF 
LA

M
BD

AH
AT



47

happens at a value of A equal, approximately, one of the true values of the parameter (being 

Aj = 3).

Notice also, the poor results for the estimated density at moderate values (n = 50).

A greater value of m = 5 (see figure (3.2)) has been used in case the sample size takes the 

values n = 15, 60 and 120. Here, we have noticed the following:

(i) the poor result for small sample size (n = 15)

(ii) an improvement has taken place for moderate sample size (as n = 60).

(iii) Finally, the estimated curve becomes more satisfactory when the sample size is as 

big

as n = 120.

As the parameter m becomes sufficiently large as m = 10, we get an acceptable estimated 

curve, where the effect of changing-in fact increasing - the sample size is too small to be 

realized, as has been shown by figure (3.3)

A CONCLUDING REMARK

The final conclusion from the above set of curves is that when the parameter m is as small 

as (m = 2), the sample size will be the dominant factor, by which we could improve the 

results. Such improvement is achieved by increasing the sample size n.

On the other hand, if m is taken to be reasonably large the resulting estimated density will 

be, generally improved. But, in this case, the effect of increasing the sample size n on the 

estimated curve will be negligible. In other words when m is large enough, we could not 

gain additional improvement in the results by using bigger sample sizes.

3.4.3.3 The Effect of the Parameter m

By using a small size (as n = 15), we notice that (see figure (3.4)), the samller the value of 
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m(m = 2 or m = 5), the more likely we get an undesirable spiky estimated density.

These results (curves) will improve (even at such small n) when the parameter m takes 

values m = 10 and m = 15.

At a moderate value of the sample size (n = 50), we have a similar desirable effect on the 

estimated density for the increased values of m = 2, 5 and 10. This is shown in figure (3.5).

Taking samples of size as big as n = 100, we notice that the result is, in general, acceptable. 

In this case, the improvement in the estimated curve, resulting from increasing the 

parameter m(m = 2, 4 and 10), is slower than the cases in which m is increasing but the 

sample is smaller than n = 100. See figure (3.6).
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A CONCLUDING REMARK

The final conclusion from the previous set of figures is summed up as follows:

(i) In cases where the sample size n is small or moderate (i.e., n = 15 or n = 50), the 

parameter m will be the dominant factor, by which we could improve the results. A 

larger values of m = 5 or 10,15, will be improving the estimated density.

(ii) On the other hand, if the sample size n is sufficiently large, the resulting 

estimated density will be generally, better and acceptable, even under small values of the 

parameter m.

3.4.3.4 A General Comment on Improving the Results

A useful conclusion could be deduced from the above analysis by benefiting from the 

desirable effect of both the sample size n and the parameter m.

In situations where there are some restrictions on taking a larger sample size n, we can 

avoid the undesirable consequences by taking a bigger values of the parameter m, 

guaranteeing us an acceptable estimated density.

If we are interested in saving time and effort by the reduction of the computational 

complexities, we will have to consider only a small number of the parameters and (3^ (k 

= l,...,m) to be estimated. A useful recommendation, here, is to consider a bigger sample 

size as n = 100.

In conclusion, our proposed Laplace-based technique of estimating the mixing density is 

offering us two tuning factors, namely the sample size n and the truncation parameter m.
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The latter is found to be analogous to the smoothing parameter in the density estimation 

context. By these tuning parameters, we can adapt the resulting shape of the estimated 

mixing density to cope with or even avoid the drawbacks of some imposed limitations and 

thus widening the chance of getting an acceptable curve for this estimated density.

As an example for choosing an acceptable shape of the estimated mixing density, by picking 

up a suitable value of m, we give the following set of figure (3.7-3.10). These figures 

represent four possible views of the same estimated mixing density ir(A,r), which has been 

given by equation (4.4).

Here, we have found that the choice of a moderate value of m = 10 (i.e., taking ten terms 

of the right-hand side of (4.1)), gives us this acceptable shape of ir(A,r). The parameters 

and (k = l,...,10) have been estimated by maximizing the likelihood function (4.3).

In this example a sample of size n = 40 (see, also figure (3.3)) has been generated from the 

same mixture of exponentials which consists of two components with parameters (A^ = 3,

A2 = 8) with the associated mixing probabilities (7^ = .7, = .3). The set of data will

represent Xj, j = l,...,40. The value of r is assumed to have a value of r = 2.
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3.5 THE DEGREE OF SMOOTHNESS

3.5.1 Introduction

In all nonparametric methods of probability density estimation an inevitable question, 

concerning how much one does have to smooth, must be answered. A parameter which 

controls this degree of smoothness is called the smoothing parameter.

One of the main difficulties of using a nonparametric estimation method of a probability 

density function is to determine an appropriate value of this smoothing parameter to give an 

acceptable degree of smoothing for the density estimate.

The determination of the optimal value of the smoothing parameter is a very significant 

step in the process of density estimation. This is becasue of its great effect on the resulting 

density estimate. Specifically, if the value of the smoothing parameter is chosen too small, 

the resulting density estimate will be unacceptably spiky (or rough), a case which reprsents 

an under-smoothing (or over-fit). On the other hand, a very big value for the smoothing 

parameter results in an over-smoothed (or under-fit) density estimate. Thus, balancing the 

situation between the degree of smoothness and the goodness-of-fit will be achieved by the 

crucial role of the optimally chosen smoothing parameter.

Throughout our Laplace-based technique of estimation, a formula (equation (4.4)) for the 

estimated mixing density in the mixture of exponentials problem, has been proposed. 

Depending upon this formula, we have structured our numerical results to assess how far the 

choice of the value of the integer m (or the truncation point) will be effective in controlling 

the shape of this estimated mixing density.
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3.5.2 An analogy of the Smoothing Parameter

It is well-known that the choice of the value of the smoothing parameter in the probability 

density estimation context is the controlling factor in the final resulting density estimate.

A similar situation will be faced in handling our Laplace-based technique of mixing density 

estimation. Here, the crucial issue is found to be the determination of a suitable value of 

the parameter m, ( assuming that it is not equal to the sample size n ) which gives us an 

acceptable shape of the mixing density estimate.

The similarity manifests itself through the fact that we have two conflicting goals, 

concerning the choice of the value of the integer m. That is, if m is chosen too large, this 

entails an undesirable difficulty in estimating too many parameters (represented by and 

k = l,...,m) relative to the available sample size n. On the other hand, if m is 

chosen too small, important detectable features of the estimated mixing density may not 

appear in our estimate, being represented by formula 4.4.

Our approach for arriving at an appropriate value of m, is to reach an acceptable situation 

(see subsection 4.4.3.4) about how sensitive the resulting estimated density would be to 

changing the sample sizes under a specific value of m. In other words, we use the 

variations in the sample sizes as the decisive factor in choosing the appropriate value of the 

parameter m (see subsection 3.4.3.3).

Throughout our numerical example, it has been noticed that changing the sample size n 

will be having an undesirable sharp effect on the estimated mixing density, which has been 

constructed using too small value of m relative to the sample size n. In adition to the 

computational difficulties of estimating too many parameters (d^ and k = l,...,m) - by 

maximizing formula 4.3 - the sensitivity of the estimated mixing density (represented by 
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relation 4.4)) to changes in the sample size n will be unacceptably low.

A balancing situation has been detected, by the analysis of the simulated example, being 

introduced in the previous subsection 3.4.3. This suggests that, the choice of a moderate 

value of the parameter m, by which we promote the relative capability of the resulting 

density estimate (equation (4.4)) in recapturing the true values of the parameters of the 

mixture we have started with. This value of m should, also, be reasonably sensitive to 

the changes in the sample size n.
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3.6 SOME COMPARATIVE REMARKS

3.6.1 Introduction

Given a kernel function K, which is a probability density function symmetric about zero, a 

positive smoothing parameter h and a sample Xp...,xn, the kernel estimate of the density 

f at each fixed point t is

1=1

The kernel estimate (6.1) is nonnegative and integrates to one.

Recall the assumed formulation, which has been mentioned in subsection 3.1, specifically 

relation 3.4. Using the additional set of assumptions, which is

(i)

(H)

and (iii)

“i = n v ' ~ 1>-’n

Z*i = xj(r-l)

(6-2)

we get the following estimator represented by

f(t) = 1 t

i=l

r[Xj(r-l)]r

[t+Xi(r-l)]r+1

This estimator represents a kernel-type estimator, which will be discussed, in details, in the 

next chapter.

An evaluation of our Laplace-based technique of estimation in the mixture of exponentials 

setting, will be mentioned. This will be done by considering the formula 6.3 as 

respresenting the estimator of the density 3.1 in the image space. Then, a comparison will 
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be performed between this estimator and the usual kernel density estimator, being 

represented by equation (6.1).

3.6.2 A Theoretical Comparison

For the previously defined estimators, we notice that they have the same nature. In 

equation (6.1), Rosenblatt (1956) places a kernel function K(*) at each observation Xp

i = l,...,n. Also, in the same sense, our estimator 6.3 places a Gamma (A; r, Xj(r—1)) with 

its maximum A = at each i = l,...,n.

In regard to having an estimate, which is itself a density, the two approaches achieve this 

goal. That is, if the kernel function K(.) (in equation (6.1)) is simply chosen as a density, 

then the estimate f will, also, be.

By reviewing our assumptions, specially equation (3.2), we realize that this feature does 

exist.

Concerning the number of observations upon which the density estimate will be based, the 

Laplace-based approach marks an advantage over the kernel one. In the Laplace-based 

technique, specially the following formula for the estimator of the mixing desnity function

m
*(*?) = ib “k

k=l
r(r) (6.4)

it is recommended to avoid taking too many parameters k = l,...,m) relative to the

available sample size n. This indicates that our technique rarely invloves more than 

twenty terms (i.e., the value of the trimcation point m in equation 6.4). But, the kernel 

estimate, being represented by equation (6.1), involves as many terms as there are 

observations.
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Finally, the issue of correctly choosing the parameter m, appearing in equation (6.4), is a 

significant practical problem in our technique. Because if m is chosen too large, this 

requires estimating too many parameters and /3^ from the relation

max log L(x;r)

(6.5)

This means, in fact, facing computational difficulties. On the other hand, if m is chosen 

too small, an important detectable features of the true mixing density may not appear by 

the estimated density 6.4.

This situation is exactly similar to the problem of optimally choosing the smoothing 

parameter h in the kernel approach, being represented by equation (6.1).
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CHAPTER FOUR

A KERNEL METHOD OF ESTIMATION

4.1 INTRODUCTION

This chapter starts with some basic definitions of the kernel density estimators. In this 

context, two main approaches, introduced by Rosenblatt (1956) and Parzen (1962), will be 

defined, associated with some of their main features.

A kernel-type estimation method for the mixing density say, 7r(A) in the mixture of 

exponentials setting has been proposed. This is done by introducing a theoretical form for 

the estimator ir(A), which is essentially based upon an empirical Bayes formulation. This 

estimator has been constructed by assuming the kernel density function to be equal to the 

conditional distribution of A given a single observation x. Under this assumption an 

unbiased estimator of tf (A) will be derived. In this context an artificial example will be 

given in which we implement the estimator.

Some limiting features of the proposed theoretical kernel estimator have been studied. In 

this context, a lemma will be introduced, by which we investigate how well the assumed 

kernel function (on which the theoretical estimator has been based) behaves for a general 

density f(x) as r tends to infinity.

Having considered (r —^) as the smoothing parameter in our theoretical kernel estimator 

?r(A), then the limiting behaviour is shown to be analogous to the behaviour of a density 

estimator (kernel, M.P.L., etc.) when the smoothing parameter approaches zero.

Also, an investigation of the bias of the proposed estimator will be carried out. We assess 
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how far the moments of the derived estimator 7r(A) mimic the moments of the underlying 

density function ?r(A).

Finally a graphical representation of the kernel-type estimator will be given for two values 

of r ,namely, r = 1 and r = 2. the first case gives us the mixed exponential density as a 

special case of our estimator ir(A). This has been done using different sets of real data.

4.2 GENERAL CONSIDERATIONS

4.2.1 An Abstract Framework

For the sake of clarification, it is appropriate that the general abstract framework, upon 

which the estimation problem will be based, be given.

Let the random variable X be defined on the probability space (95, A, P). For reasons of 

presentation, 96 may be taken to be the real line and A to be the family of Borel sets. 

It is assumed that f = dP/d/^ is the desired density function of the random variable X 

with respect to Lebesgue measure

Let Xp X2, ... , xn be a random sample of n independent realizations of the random variable 

X. The estimate , say, fn(x) is then some specified function of these sample values at the 

point x.

4.2.2 Some Basic Definitions

An earliest definition of the kernel estimate had been introduced by Rosenblatt (1956), who 

considered using a central difference of the sample distribution function as an estimate of 

the density.

Definition 4.2.2.1: Given a random sample Xp...pcn from a continuous but unknown
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density f, Rosenblatt (1956) proposed an estimate of the form

fnW = 2h(^){Fn(x+h^n^ “ Fq^X ~

where Fn(x) is the empirical distribution function defined by

Fn(x) = ^number of sample points < xj

(2-1)

(2.2)

and where h(n) —► 0 as n —* oo.

Another representation for the Rosenblatt estimate 2.1, has been given through defining a

weight function ”w” by

1
2

0
w(y) = <

if I y I < 1

otherwise
(2-3)

Thus the estimate (2.1) is expressed - in this sense - as

V — j^l h(n) (2-4)

where x^ xn are the data points.

An important remark concerning Rosenblatt approach is that, it is simply a histogram 

which, for estimating the desnity of x, say, has been shifted so that x lies at the centre of a 

mesh interval. For evaluating the density at another point, say y, the mesh is shifted again 

so that y is at the centre of a mesh interval.

Although Rosenblatt suggested generalizing (2.4) to estimates using different bases than step 

functions, the detailed explication of kernel estimators is due to Parzen (1962).
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Definition 4.2.2.2: Parzen (1962) defines the kernel estimator for f(x) as

where the kernel K(*), is defined to be a Borel measurable function satisfying the conditions:

(i) sup |K(y)| < oo
—oo<y<oo

oo
(ii) | |K(y)| dp(y) < oo

—oo
(2.6)

(“>) yJijgo lyR(y)l =0
and

oo
(iv) j K(y)d/i(y) = 1.

—oo

The idea of the estimate fn(x) is that it has been constructed by placing a kernel function

K(x; x., h(n)), where h(n) is the smoothing parameter, over each observation in the data

Xj,...Xn, being assumed to be a random sample from the distribution in question.

Concerning the above-mentioned definitions 4.2.1 and 4.2.2 we give the following remarks:

(i) The condition that the kernel K(x; Xj, h(n)) is a density function guarantees that the 

estimate fn(x) will also be.

(ii) The kernel function K(x; y,h(n)), for example, is a density function with location 

parameter y and scale parameter h(n).

(iii) The estimate fn(x) has equal weights of ( g ) on each of the n kernels centered at the 

data points.



68

(iv) The parameter h(n) is a scale parameter which reflects the spread or support of

K(x; Xj,h(n)).

(v) The choice of the kernel function is very important in determining the properties of 

the estimate fn(x). Nevertheless, it is generally accepted that the choice of the kernel 

function is less crucial than determining the value of the smoothing parameter h(n).

An important conclusion, from the last remark on the choice of the smoothing parameter 

(s), has been commonly accepted. That, it is natural and more convincing to try to use the 

observations themselves to determine an appropriate degree of smoothing. This generally 

accepted approach is known as “data-based smoothing”. The idea of this approach is to 

define a certain “smoothing” criterion (referred to as a likelihood-like expression) which 

measures the ability of the estimator to explain the observed data. The optimal smoothing 

parameter h*(n) is then chosen to maximize this measure of explanation. The method is 

usually referred to as data-based smoothing by cross-validation.
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4.3 A GENERAL FORMULATION OF THE THEORETICAL KERNEL 

ESTIMATOR

4.3.1 Empirical Bayes Framework

The methods of kernel estimation, mentioned above in section H of this chapter, are all for a 

simple density. We seek, here, a kernel estimation method for the mixing density 7r(A). 

Any such method will be having the assumed form:

*W = 6 E xi). (3-1)
i=l

where the function 7r(A,«) is the kernel function and Xp...,Xn are the observations in a 

random sample of size n.

If tt (A) is known, then a theoretical form for ir(A) can be found using an empirical Bayes 

formulation as follows:

Suppose that f(x/A) is taken to be the sampling distribution of the random variable X, then 

the mixing density 7r(A) may be interpreted as a prior density for A. Thus, the joint 

density function of X and A is defined as

f(x,A) = f(x/A) 7t (A) (3.2)

Also, suppose that 7r(A/x) is the conditional distribution of A given a single observation x, 

then the posterior distribution for A, will be

<(*/*) = (3.3)

We consider, now, setting the kernel, appearing in (3.1), equal to the conditional 

distribution of A given a single observation x. In other wards, assume that
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?t (A,x ) = 7t (A/x )

Given an n observations Xp...,Xn of the random variable X, then the expectation of ?r(A) 

with respect to these observations will be

E{*(A)J = Ex[ J £ r(A, Xj)J 
i=l

= J E Ex^(A’ xi)i 
i=l

— n 52 Ext7r(A/ xi^ 
i=l

— Ex[r(A/ Xj)]

But, we have that

(3.5)

oo
Ex[?r(A/ Xj )] = | 7r(A/x)f(x)dx, (3.6)

—oo

then we have, fom (3.5) that

oo
Ex [tt (A/ Xj )] = J f(x,A)dx 

—oo

= >r(A). (3-7)

Thus, t (A) is an unbiased estimator for tt (A).

In evaluating assumption (3.4), we argue that : despite the fact that 7r(A) is unknown, the 

above result is promising because it may be helpful in suggesting a suitable form for the 

kernel.
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4.3.2 The Exponential Case

Suppose that

f(x/A) = Ae-^, (3-8)

and
_ ^(A/?)I“1e_^A

“ r(r) (3.9)

Thus, we have that

f(x) = (3.10)

knowing that

»r(A/x) =
f(x/A)x(A ) 

f(x) (3.11)

then we have that

tt (A/x ) =( rw

r(r+l)
.r -(x+/?)A 
A e (3-12)

Equation (3.12) represents the Gamma density for A, i.e., it is Gamma (r4-l, x+/?). Thus 

ir(A,x) takes the following form

7T(A,X) _ n r(r+l)

From the above example, it is seen that the shape parameter r 

(3.13)

will be considered as a

smoothing parameter in same way as the usual scale parameter h in kernel density

estimator. One obvious drawback in formula (3.13) is its dependence on /?.
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Consider the case where ft = 0, then from equation (3.13) we have that

(3.14)

Recalling that

f(x) = r/3r 
(x+/?)r+1 ’ (3.15)

we can recapture 7r(A) by replacing ft by (xj+/?) and r by (r+l) in the same way we 

obtain the kernel appearing in equation (3.14).

By taking equation (3.15) we can obtain the maximum likelihood estimator of ft based on 

a single observation x, as follows

Log f(x) = Log r + r Log ft — (r+l) Log (x+£)

dLog f(x) _ r _ (£±H _ n
9 ft -ft (x+ft) ~

Equation (3.16) gives us, the maximum likelihood estimator as

^MLE ~ ”•

(3.16)

(3.17)

Thus, another way of interpreting the method in the case where ft = 0 and r = 1 is to 

substitute x. = in equation (3.14), replace r by (r+l) and then recapture 7r(A) in

the same way. This suggests a slightly different form for the kernel, represented by

tt (A,x )
(xr)r+1 Ar e~xAr

T(r+1) (3.18)
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We notice that, the case where r = 1 is established, also, when the Gamma mixing density 

%(A) reduces to an exponential. This case has been demonstrated , by giving a graphical 

representation of our estimator for two comparative values of r , namely , r = 1 and r = 2. 

This is applied to different sets of real data shown in Table 4.1 below (see Smith(1986)). 

The graphs are given at the end of this chapter. Another interpretation is to put (3 = 

Xj(r —1) in equation (3.13). Note that, the mean of f(x), being given in equation (3.15) is 

equal to -^-=- .
r—1

TABLE 4.1

60 100 199 141 118 173 156 230 155
51 90 105 143 273 218 173 169 397
83 59 147 98 192 162 125 178 1063
140 80 113 122 238 288 852 271 738
109 128 98 110 105 394 559 129 140
106 117 118 132 398 585 442 568 364
119 177 182 194 108 295 168 115 218
76 98 131 155 182 262 286 280 461
68 158 156 104 130 127 261 305 174
67 107 78 83 170 151 227 326 326
111 125 84 125 181 181 285 1101 504
57 118 103 165 119 209 253 285 374
69 99 89 146 152 141 166 734 321
75 186 124 100 199 186 133 177 169
122 66 71 318 89 309 309 493 426
128 132 65 136 211 192 247 218 248
95 97 220 200 324 117 112 342 350
87 87 109 201 164 203 202 431 348
82 69 93 251 133 198 365 143 265
132 109 171 111 121 255 702 381 293

Each column of Table 4.1 represents a set of data . These are the lifetimes ( in units of 

1000 cycles) of steel specimens under various stress amplitudes.
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4.4 SOME LIMITING PROPERTIES of ir(A)

4.4.1 Introduction

In this section we pay attention to the estimator ?r(A,x), which has been given by equation 

(3.18) and which is shown to be unbiased as /? —► 0 and r = 1. This estimator will be 

proven to have an interesting properties as r —► oo.

The maximum of tt (A,x ) is obtained at

(4.1)

Moreover, as r tends to infinity the mean of the density (3.18) which is Gamma

(r+l, xr) density, is The variance, also, which equals to will be tending to 

zero as r tends to infinity.

Thus, the kernel 7r(A,x) tends to a Dirac-delta function spiking at the point (A).

Thus, for the full kernel given by equation (3.1) as

*(A) = n $2 *(A’ xi) (4-2)
i=l

tends to a series of spikes at the points (i=l,...,n).

infinity.

We give now the following Lemma, associated with its proof.

Lemma 4.1

For the density %(A,x) represented by

(4.3)
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the integral

oo
ir(A,x)dx (4.4)

tends to A^ 1 as r tends to infinity.

Proof

Starting by the integral (4.4) , we have that

oo (xr)t+1 Are~”A 

xk+1 r(r+l)
dx

(r)r+1 Ar 
r(r+l)

OO 
f

(4.5)
0

By making the substitution

xrA = y , dy = rAdx

then relation (4.5) is written as

(r)r+1 V
T(r+1)

OO

0

Wr+1 *r 

(rA)r_k+1 r(r-t-l)

OO
J e-y /-

0

kdy

(r)r+1 Ar r(r-k+1)
(rA)r~k+1 ' r(r+l) (4-6)

From Stirling’s approximation formula
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(4.7)

1
r(n+l) = n! = (27m)2 (n)n e—n,

we get from (4.6) that

oo j
j *(A, x)dx ~ Ak—!(r)k (?I^r-))2 • (r—k)r—k 

w1

1
From equation (4.7), we have that f tends to one as r tends to infinity. Also, we

have from (4.7) that

By substituting from (4.8) into (4.7) and taking the limit of (4.7) as r tends to infinity, we 

find that the whole expression tends to A^ — \ completing the proof. □

We will be using the result of the lemma to evaluate the bias in our estimator of 7r(A).

4.4.2 The Tail Limiting Behaviour

We will start by the following example, and then state two concluding remarks about this

limiting behaviour. Let us define a density on the interval [0,1] as

tt (A) = 2(1 —A) A e [0,1]
(4.9)

otherwise.
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Thus f(x) takes the form

1
f(x) = | Ae—^x ?r(A)dA

0

1
= 2 j A(l-A)e“AxdA

0
(4.10)

By putting u = A and dv = e AxdA in relation (4.10) and integrating it by parts, we get

that

(4.11)

Taking the limit of relation (4.11) as x tends to infinity we have the following relation

(4.12)

Notice that relation (4.12) is derived in the sense of the following definition:

Definition 4.4.2.1 If an and bn are two sequences, and if

lim n—*oo
an _ i 
h —Dn 

then an is asymptotically equivalent to bn. This relation will be denoted by an ~ bn.

It is common that for large x, the density f(x) will have an expansion of the form

ak4-l _i_ afc+2 
l(x) u11 4" .1-4-2 *(x)k+1 (x)k+2 (4-13)

Now, assuming that f(x) can be expressed by the expansion (4.13), then the above
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(4.14)

lemma 4.1 allows us to express the expectation of 7r(A,x) as

oo
Ex{ir(A,x)} = | Ae—f(x)dx

0

~ ak+l Ak 1 + ak+2 Ak +"

In the above example if k = 1, the expectation (4.14) can be approximated by

E{tt (A,x )} ~ 2(1 - 2A). (4.15)

Notice that this is no longer a density.

This example shows two things: First, the example demonstrates that the bias can be 

removed by replacing (2A) by A, which represents a rescaling of the A axis. Second, the 

example shows us a way of extending the applicability of the lemma to any density f(x), 

which takes the form

(4.16)

as x tends to infinity. That is, the bias up to linear terms in A, in the estimation of 7r(A), 

can be eliminated by the rescaling.

An important special case results if we take r = 1, so that the mixing density is

exponential, and the density f(x) takes the form

f(x) = P
W)2

. 1 ( *£ >2 
x2/? ) '
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(4.17)

By applying the lemma, we get the following relation for the density

(P > 0).

4.4.3 The Limiting Behaviour of the Mode

We can investiagte the mode of the estimator ir(A) in the limit as r rends to infinity. In 

the case of a single point mass for 7r(A) at Aq (i.e., 7r(A) is a Dirac-delta function at the 

point Aq ), we have

f(x) = Afl e (4-18)

Thus, the expectation of 7r(A,x) could be written as

oo
Ex [7t (A,x )] = j

0
(4.19)

By taking 7r(A,x) as proposed by equation (3.18), we have that

Ex[?r(A,x)]
r(i+l)A0(r)t+1Ar~1

(rA+A0)r+1 r(r+l)

(4-20)

Taking the limit as r tends to infinity of the right-hand side of equation (4.20), we have

that

Ex[ir(A,x)] (4-21)

The above approximate result, represented by relation 4.21 achieves a maximum at
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A* = ^ . (4.22)

Thus, we see that the mode of the expected density (for one observation) is achieved at

| x the correct value.

The final conclusion is that, for obtaining an unbiased estimator of the density 7r(A,x), a 

scale factor of two is appropriate in the limit. This holds for the case of mode as with the 

linear tail.

4.4.4 A General Remark

We have introduced the definition of the full kernel-type estimator as

*(A) = 52 *<A; xi)’ 
i=l

(4.23)

which is a linear function of the estimator 7r(A, x ^). Thus, all the results, being stated 

above for the density 7r(A, Xj), hold in moving to the kernel-type estimator, represented by 

equation (4.23).

The kernel density estimate fn is defined as

(4-24)

where K(*) is the kernel function which integrates to one. This estimate depends linearly 

on the kernel function K(«), hence the appearence and properties of fn will be dictated by 

the choice of the kernel K(-)-

This general remark establishes a connection between our kernel-type estimator and the 
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usual kernel-density estimator (4.24). That is, discussing the features of the kernel 

estimator “fn” through studying the features of its kernel function K(«) is similar to 

studying the properties of our estimator ir(A) via results about the estimator ir(A, x).
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4.5 A MOMENT PROPERTY

4.5.1 A Motivation for a Study of Moments

One of the mathematical conveniencs of using mixtures is that the moments are inherited in 

the following way. If, we define

oo

— oo
then

oo
= J f(x)dx,

—oo

oo
/ (5-1)

Thus, the ktk moment, can be written, from (5.1), as

oo
j pk(A)T(A)dA

0
(5.2)

Having mentioned the limiting behaviour of the estimators 7r(A), we shall continue to 

investigate the moments of these estimators (or densities). The aim of such study is to 

judge how far the moments of the estimator 7r(A) mimic the moments of the underlying 

tt (A). Thus, if we define

oo
rk = J Ak ir(A)dA, (5.3)

—oo

then for the theoretical kernel of section (3.2), we have that 
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oo
j* A^ ir(A/x)dA.

0

Then, the expectation of the formula (5.4) is

oo oo
Ex{rk) = f f

-oo 0

A^ f(x/A) 7r(A)dA dx

oo oo
A^ | | f(x/A) dx|?r(A)dA 

o
(5.5)

knowing that the integral, given between brackets, in equation (5.5) is equal to one. Thus, 

we have for the expectation of that

oo
ExRfc} = j ’r(A)dA = rk>

0
(5.6)

in which the right-hand side of (5.6) is a result of the definition in equation (5.3).

In conclusion, equations (5.3) and (5.6) tell us that the same properties are inherited, again, 

by the estimator 7t (A).

4.5.2 An Inverse-Mean Type of Bias

The mean of the density represented by equation (3.18) is

« (r+1)
rl — XT •

Thus

T1) = (Th)E(x)
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r > 1, (5-8)

where f(x) = (r/?r)/(x+/?)r+\ So that

p i 2.—1\ _ r . _P_ — rEX< T1 > ~ (r+l) r-1 - r2_j (5-9)

where = y is the mean of the original 7r(A) distribution given by equation (3.9). Notice 

that when r = 1, then E-^('rj-^) which is given by (5.9) will be infinite, providing us with a 

further justification for using a value of ”r” greater than one.

Now, from equations (5.6) and (5.7) the mean of the estimator %(A) will be

(5.10)

thus, we have

E(fi_1)^ r+I ^£>1) = r+i E(X>

— r P _ r2 — 1
- r+l r-1 - r2_x T1 * (5.H)

By considering equation (5.11), and letting r tend to infinity we have, in a sense, an 

“inverse-mean biasedness”.

The conclusion, being mentioned by the last statement, confirms the scaling downwards 

which was clear for the cases of the mode and the tail of the estimator ir(A).
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CHAPTER FIVE

AN OPTIMIZATION TECHNIQUE OF ESTIMATION

5.1 INTRODUCTION

In this chapter we will cover the problem of the estimation of the mixing density in the 

mixed exponential setting. An optimization technique for the estimation of this mixing 

density will be proposed by introducing a set of assumptions. We start by giving some 

background. This will explore some theoretical aspects of the estimator resulting from this 

optimization technique. We will also make an interesting observation on the identifiability 

of the likelihood function. Finally, a theoretical representation will be mentioned in which 

the indicator function will be employed and by which the mixing density is viewed as a 

point in a function space.

Since the publication of the Bohachevsky, Johnson and Stein (1986) paper, their proposed 

method of generalized simulated annealing (abbreviated by GSA) for function optimization 

has been drawing much attention.

In performing the optimization process, we will use this (GSA) algorithm, after adapting it 

to deal with our formulation of the estimation problem. Through our usage of this 

adaptive (GSA) algorithm we will be aiming at not only achieving the optimal value of the 

objective function with the associated set of estimated probabilities, but also exploring some 

new methods for judging the performance of the (GSA) algorithm itself.

In our application of the adaptive (GSA) algorithm we introduce a criterion for measuring 

the performance of the algorithm through the convergence of the algorithm. We carry out a 

numerical study for the sensitivity of the (GSA) algorithm to changes in the parameters 



95

affecting our estimation problem. The numerical examples will involve exploring possible 

ways of improving the algorithm performance measured by the success in achieving the 

desired characteristics of the algorithm namely convergence and optimality.

The numerical study is of importance because it may be helpful in: (i) discovering some 

new features of the adaptive (GSA) algorithm, (ii) enhancing better understanding of 

the algorithm performance, and (iii) making us more able to conclude some general 

characteristics of the problems to which the algorithm is applicable.

A justification for adopting the (GSA) algorithm in performing our optimization technique 

for estimating the mixing probabilities will be based upon two important features of the 

(GSA) algorithm itself. Firstly, the (GSA) algorithm is mainly useful for finding a global 

extremum of a function that has many local extrema such as the present problem. 

Secondly, the algorithm is useful for functions which may not be smooth, because it does not 

require any calculations of derivatives.

Finally, this chapter ends with a comparative study between our optimization technique and 

two other density estimation methods, namely, the kernel method and the maximum 

likelihood method. In this context some connections between these methods (specifically, 

between our technique and the two above-mentioned methods of density estimation) are 

drawn. Finally, a suggested rationale has been given by which our optimization technique 

is related to other nonparametric methods of density estimation.

5.2 DEFINITIONS AND NOTATIONS

This section puts the problem of the estimation of the mixing distribution from a random 

sample of observations in an abstract representation, and refers to the issue of identifiability 

as one of the main requirements for the estimation problem to be a meaningful one. Also, 

an interesting observation is made concerning the uniqueness of the solution of our problem.
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Let (x,5) and (0,/?) be two measurable spaces such that contains all Borel subsets of 0.

Let $ = {P^, 0 E 0} be a family of probability measures on (x,^F) such that the mapping 

0 —► Pg(A) is /?—measurable for each A E Suppose that if 0^ ^en

Definition 5.2.1: If G and H are two probability measures defined on the probability

spaces (0,/?) and (x,^F) respectively, such that

0
(2.1)E S

then the probability measure H is a mixture of $ = {Pg, 0 E 0}, and the probability 

measure G is mixing distribution.

The problem of estimating the mixing distribution, which has been expressed by equation 

(2.1), can be considered meaningful only if there is a one-to-one correspondence between the 

mixing distribution G and the resulting mixture H.

Definition 5.2.2: Identifiability: Let A be the class of all mixing distributions on (0,/?)

and f be the corresponding class of mixtures. Let Q be a mapping Q : A —* £ defined

by

Q(G) H. (2.2)

Here the class A of all mixing distributions is said to be “identifiable” if Q is a one-to- 

one mapping.
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5.3 NONPARAMETRIC TECHNIQUE OF ESTIMATION

5.3.1 The basic idea

The optimization technique here for a nonparametric estimation of the mxing density, is 

based upon generalizing some concepts which have been used in the histogram and kernel 

density estimation methods. In order to demonstrate this idea we start by the following 

definition.

Definition 5.3.1: Parzen Kernel Estimator: Given a random sample Xp...xn from a

continuous but unknown density f. Parzen (1962) defines the kernel density estimator as

oo
fn(x) = J iK(^)dFn(y) (3.1)

-OO

Denoting Kg(y) = J ) as the scaled kernal we could rewrite equation (3.1) for a given 

random sample Xp...xn as

f(x) = Kh(x-x.)
j = l

This estimate has equal weights of g on each of the n

(3-2)

kernels centered at the data points

Xj(j = l,...,n).

In fact, the kernel estimator- shown by equation (3.2) — is simply a histogram where every 

point (in case of estimating the density at that point) is the center of a smapling interval, so 

by using definition 5.3.1 we have the advantage of freeing the histogram from a particular 

choice of bin position. This argument could be considered as a justification for some of 

our main assumptions, specifically those which have been based upon a kernel structure.

The optimization technique, we propose here, is based upon exploiting the connection 
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between the kernel and the histogram methods of density estimation and upon making a 

certain generalization of the idea of equally weightening the n kernels being presented by 

the above-mentioned equation (3.2).

5. 3.2: The Main Assumptions:

The optimization technique for estimating the mixing probabilities is based upon the

following set of assumptions:

Assumption 1

Having said that the kernel estimator (3.2) has equal weights of g on each of the n kernels 

centered at the data points, we make a more general assumption of unequal weights. We

Assumption 2:

The kernel function K^(xj), j=l,...,k, which appears in equation (3.2) is replaced by the 

histogram-like mapping Ij, j = l,...,k defined by

, V integer j (3-3)

where (cj—cj_|) is the width of the cell (cj_p cj)«

In fact I. is a mapping M : ► H, where % is the space of functions f and H is the 

space of reals (or the space of integrals L which have been shown by (3.3)). Thus, each L, 

j=l,...,k is in fact a functional.

Assumption 3:

Assume that we have k equally spaced cells (cj_p <j)» j = lv-A, and that we have given 

a sample Xp...,xn of size n from f, then we can evaluate the integral, represented by 

equation (3.3), over each cell (see the appendix for such evaluation). Define the likelihood
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function of these n observations as

(3-4)

The above reprsentation (3.4) is, in fact, a polynomial of the n^ degree in 7r’s.

Assumption 4:

Estimate the unequal weights tt ’s , by maximizing the likelihood function L(tt ;x ) given in the

previous assumption by equation (3.4). The resulting set of estimated weights j = l,...,k
J

will be representing the mixing probabilities in our case of the mixture of exponentials.

Assumption 5:

From the previous set of assumptions we present the estimation problem in an optimization

representation as

= m#x ( slog I s Jj(xi)) 

~ li=l j = l
(3.5)

subject to the linear constraints

TTj > ° and

j = l,...,k (3-6)
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5.3.3 Some Theoretical Aspects of the Optimization Technique:

5.3.3.1 Introduction .

We discuss here some theoretical consequences of the above assumptions.

Let

(j = l,...,k) by parts - see the appendix - we obtainBy evaluating the integrals L

v*) = - Ie k (<V + 1) - e k 1 (ck_1X + 1)], (3-8)

where x > 0.

2Note that the above formula (3.8), after multiplying it by x , becomes an exponential

polynomial.

By the third assumption, having assumed that we have k intervals associated with k

heights 7r-(j = l,...,k), the joint density function (for a particualr x) will be
J

k
f(x) = S ri (3-9)

.j=1

Take a sample of n independent observations on the random variable X with the density

function (3.9). The likelihood function L(?r; x) will be represented by equation (3.4).

Now, suppose that we have from equation (3.9),

fitxj) = y-= E
j=l 

(3.10)
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Suppose that there exists an estimator for 7!j(j = l,...,k) denoted by j = (*]»♦••>«]£)♦ which 

represents the solution of the optimization setting (3.5), we get the following relation from

(3.10),

(3-11)

We can interpret formula (3.11) as representing a mapping from the measure space, say, [J

to Rn, in which the point (yp...,yn) in the image space determines the measure

i = (%p...,Xk) in this measure space fj, such that

V»(t) = (yp-^n). (3.12)

where ip is the logarithm of the likelihood (3.4).

5.3.3.2 A Characterization of the Estimator t :

From the fifth assumption, specially the optimization formulation (3.5), we realize that the 

solution of it can be charaterized by two things:

(i) The width of the intervals of the original histogram (cj—cj_p, (j = l,...,k), knowing 

that this number is assumed to be k.

(ii) the amount of probability (height ij) at each support interval of the histogram.

Concerning the width of the interval, we will be studying its effect, proposing linking this 

with the idea of controlling the smoothness of the density estimator by varying the 

smoothing parameter. This link will be demonstrated by a numerical example in the next 

subsections.
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A partial uniqueness result can be established using a theorem of Polya and Szego (1925): a 

non-identically vanishing exponential polynomial taking the form

k k-y
£ PjMe 
j=i

(3.13)

k
where the p- is an ordinary polynomial of degree n-, (j=l,...,k) has at most (n-+l) —1 

J J • - J
J=1

zeros. We shall show that if n > 2k, then no two different vectors can

determine the same values

(3-14)

The proof runs as follows:

Since

(3.15)

we have that

(3.16)

is a polynomial of the Polya-Szego form with each n. = 1. Now, consider 
k J

x^ 7Tj Ij(xj). If this yields the same yj then
j=l J

j=i J
(3-17)

has zeros at Xp...,xn. Thus it is either identically zero or n < 2k—1. In other words, if n 

> 2k the in uniquely determine the y.. 
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This is essentially an identifiability result and should be the starting point for more detailed 

uniqueness questions.

5.3.4 An Algorithm for Optimization:

5.3.4.1 Introduction

This section covers generalized simulated annealing GSA for function optimization as 

introduced recently by Bohachevsky, Johnson and Stein (1986), and uses it for the 

optimization problem given in the fifth assumption.

We will attack the problem of the estimation of the mixing density, throughout our usage of

the GSA method by:

(i) discussing the applicability of the algorithm to the mixture of exponentials case, and

(ii) investigating the possible adaptations required for such application.

The stages of our application are

First: We start by generating a set of data from a mixture consists of, for example, 

two exponential distributions, say, Fj and F2.

Second: Set up initial values by solving the optimization problem being represented by

(3.5) and (3.6). The result of this step is the following set of initial values:

(1) Consider the optimal set of the estimated probabilities (or heights %*) among 

the total estimated sets is one thousand sets). Take the optimal value of the 

objective function L* at this optimal set %*. Denote this optimal value L* 

bX ^optimal or just

(2) Exclude this optimal case, and consider another (any other) set of estimated
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probabilities %. This set of initial probabilities (or heights) will be referred

(3) Take the corresponding value of the objective function L(ift) and denote this

initial value of L at 7Tq  by </>q .

We give the following definition:

Definition 5.3.4.1 Assumethat the initial set of heights t  lie in the set Q G Rn which is 

assumed to be the unit interval [0,1]. This set will be referred to as the domain of 

definition of the estimated probabilities.

5.3.4.2 Steps of the GSA Algorithms:

In the framework of the previous “estimated ” sets of initial values, being determined in the 

previous subsection, our problem of estimation has been “adapted” to the application of the 

(GSA) algorithm. The steps of (GSA) in our case will be:

The First Step:

Start by setting a level of accuracy, denoted by “jy”, which is chosen arbitrary 

as small as possible. Compute the difference | </>q — 0m| and compare it with 

“77”. The result will be either

(1) | (</>q — 0m)| < T] we stop. This is not likely to happen in early stages

of iterations because of choosing “77” too small.

(2) or, I (^0 “ ^m)l > i? we g° to the second step.

The Second Step:

We will be performing this step in two stages:

(1) Compute the step “direction”, denoted by “SDIR”, by generating a
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uniform random variable [0,1].

(2) Assume arbitrary value for the step size, denoted by “SSIZE” or just

“SS”.

The Third Step:

Compute the new point after making a step of size SS in the direction

SDIR and denote it by tt *, where

J* = ?r0 + (SS)(SDIR) (3.18)

Notice that tt * is referred to as “XNEW” in our computer program.

The Fourth Step:

Check if the value given by (3.18), will be lying in the domain of definition 

of the estimated probabilities given by definition (3.4.1). In other words, we 

check if the elements of 7r* will be summing to unity. We have one of the 

following two cases:

t * is not in the set Q = [0,1], we go back to the second step to compute 

another random direction.

If %* is an element of Q , we compute:

(a) the value of the objective function 0(%*) or , and

(b) the difference — 0q |, denoted by

The Fifth Step:

Compare the values of and <f>Q, the outcome will be one of

(1) If we accept the step, being determined by (3.18) and proceed by

(a) taking the most recent value r* to be our initial 7Tq .
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(2)

(b)

(c)

taking to be our initial </>q , and

computing the difference |<^q — </>m| which will be

(i) either |</>q — <^m | > rjt we take the new values to start another

random direction by repeating step (2).

If <f>i < <f>Q, i.e., if we are diverging from the maximum we are aiming to

achieve , then

(a) Consider the greater value </>q , to define the conditional probability 

of acceptance p as

(3.19)

where “B” is arbitrary constant, and “G” is a negative arbitrary constant.

(b) Generate a uniform [0,1] random number denoted by V.

(e) Compare p with the value of V , we have one of the two cases

(*) If p > V, we accept the step, and so

• set it * = 7Tq and

•• repeat the loop starting from finding another direction

(H) if p < V, reject the step, and go back to step (2) to try another

step moving from another random direction.

5.4.1 A SIMULATION STUDY

4.1 Introduction and Motivation

In the framework of our structure of the problem of estimating the mixing probabilities in a 

mixture of exponentials, we carry out simulation study to assess the general impact of 

changing the algorithm’s parameters on two features of the solution. These features of the 

resulting solution are:
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(i) its sensitivity to changes in these parameters.

(ii) its behaviour from the convergence point of view.

The two aspects will be achieved by performing a sensitivity analysis in which we propose a 

criterion for the convergence of the results. Thus, by this analysis we will be able to 

explore some new characteristics of our problem to which the adaptive GSA algorithm is 

applied.

The set of data is simulated, using a sample of size n = 30, from a mixture of exponential 

distributions with parameters (Aj = 1, A2 = 3, A^ = 6, A4 = 9), associated with the 

mixing probabilities (7^ = .2, %2 = *3, ^3 = ^4 = «3). These data will be substituted

into our main program for the adaptive GSA algorithm. The initial values for 7r’s (denoted 

by ZTq ) wiU be shown in the first two columns of each table. We consider four equally 

spaced intervals (i.e., the value of k in equation (3.4) equals four). These intervals are 

(0,2),...,(6,8), where we notice that the width of the intervals is equal to two, and Cq = 0, 

which is required by equation (3.5). The level of accuracy is denoted by (ETA), and defined 

in the steps of the adaptive GSA algorithm. Similar definitions of the parameters of the 

algorithm (like, for example, B, G and p) have been given in the above-mentioned 

subsection (5.3.4.2).

The simulation study will be performed by applying the previously mentioned steps of the 

adaptive algorithm, considering two different cases for the number of iterations. A 

comparison will be made between the results obtained in these cases.

The simulation study will be helpful in clarifying

(i) the meaning and the effect of the parameters, which are specifying the adaptive 

algorithm and affecting its performance.
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(ii) the relations between these parameters. Thus, such information will enhance better 

understanding for the numerical results and for the algorithm’s performance in general.

5.4.2 A Criterion for Convergence:

By recalling the notion of the conditional probability of acceptance p, being defined by 

equation (3.19), we extend that notion, here, by proposing the following definition

Definition 5.4.2.1 : The unconditional probability of acceptance is the limiting case of the

conditional probability of acceptance when the exponent in the right-hand side of equation 

(3.19) is equal to zero. In other words, in situation when p = 1 we will accept the step 

directly (or unconditionally).

From the previous definition(5.4.2.1) an important relation has been realized, which will be 

confirmed by our simulation results. That is, the lower the value of the exponent, the more 

likely the step to be accepted.

Also, using the above definition, we could classify a step to be either beneficial or 

detrimental. If p equals one, the step is a beneficial one (i.e., will be accepted 

unconditionally), while if p is less than one, the step is a detrimental one. The later type 

of steps, will be accepted according to an auxiliary experiment, being shown by case (i) in

(c) of the fifth step.

We introduce a second convergence indicator, by calculating the ratio (R) of the number of 

the conditionally accepted (conditioned upon p > V) steps - denoted by CT(4) in our 

computer program - to the total number of detrimental steps - denoted by CT(3).

From the conditional probability of acceptance p and the calculated ratio R we suggest a 

criterion for measuring the convergence of the adaptive GSA algorithm. Thus, we give the 
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following definition:

Definition 5.4.2.2 The convergence of the adaptive GSA algorithm could be expressed by 

the closeness of p to the ratio R. In other words, the closer the ratio R to the value p, 

the better the results will be from the point of view of having an improved convergence 

feature.

By the above criterion, we will be able to assess the impact of varying the parameters, 

specifying the algorithm, on its performance, measured from a convergence point of view. 

This assessment will be made in our simulation study.

5.4.3 A Sensitivity Analysis

A sensitivity analysis will be carried out, considering the previously mentioned definitions 

and criteria, and using the set of simulated data together with the other assumptions which 

have been referred to in subsection (5.4.1). This analysis will be done within the framework 

of our main problem of estimating the mixing probabilities in a mixture of exponentials.

The sensitivity analysis will produce extensive numerical results. These results show the 

effectiveness of varying the parameters of the algorithm on its performance from two points 

of view:

(i) achieving the optimal (in our case the maximum) value of the objective function

L = L(x; x) = 52 loS ( J2 *j (4-1)
i=l j=l

associated with the optimal set of estimated probabilities, which is denoted by tt *. (in our

reaching a satisfactory rate of convergence, where the definiiton of convergence has
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been given in subsection (5.4.2).

The basic numerical results, calculated by performing such sensitivity analysis, can be 

summed up in the following:

5.4.3.1 The Effect of the Step Size (SS)

The numerical results, show that the step size (SS) is the predominate factor affecting the 

performance of the algorithm, as far as achieving the optimal value of the objective 

function, shown by equation (4.1), is concerned.

Table 4.1 shows the results of varying the step size SS on both the objective function (stated 

by equation (4.1)) and the convergence of the algorithm as given by definition (5.4.2.2).
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TABLE 4.1

INITIAL VALUES

THE ESTIMATED PROBABILITIES (f)

*0 SS=.3O SS=.2O SS=.15 SS=.1O SS=.O3

.170 .255 .226 .212 .198 .214

7T2 .318 .342 .334 .330 .326 .305

Tg .189 .193 .192 .191 .190 .163

%4 .323 .210 .248 .266 .286 .320

VALUE
OF L 12.049 20.313 20.446 20.486 20.492 20.492

VALUE OF (B) 1 1 1 1 1
VALUE OF (G) -1 -1 -1 -1 -1

LEVEL OF
ACCURACY “ETA” IE-4 IE-4 IE-4 IE-4 IE-4

CONVERGENCE p .88610 .87360 .95950 .75419 .91309

INDICATORS R 1.0 1.0 .95000 1.0 1.0

The above results, given by table 4.1, have been derived in the framework of subsection

5.4.1, specifically for a true mixing distribution which places discrete probabilities

(7Tj = .2, ^2 — .3, — .2 and 7r4 —— .3), at — 1, ^2 ~ Ag —— ~ 9).

Concluding Remarks

(i) By keeping the values of the step size (SS) as small as .10 or .03 we always achieve 

the optimal value of the objective function (L). This objective function has been shown by 

equation (4.1).
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(ii) A review of the values of the conditional probability of acceptance p under various 

step sizes SS, shows us that: the larger the step size the smaller the probability p of 

accepting this step.

(iii) As far as the convergence of the solution is concerned, we notice that the best result, 

according to the criterion being introduced by definition 5.4.2.2, is reached when the step 

size (SS) is equal to .15. The poor convergence results of the optimal L* cases (SS = .10 

and .03) will be analyzed further in the light of changing the other parameters of the 

algorithm such as G and B. This will be made to explore ways of improving such 

results.

5.4.3.2 The Effect of the Parameter G

It has been mentioned in relation (3.19) that G is an arbitrary negative constant. We 

give the following table 4.2 which considers the same setting given in the introductory 

subsection 5.4.1, but assumes decreasing the value of the parameter G. The results will be 

as follows:
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TABLE 4.2

INITIAL VALUES

THE ESTIMATED PROBABILITIES (tt )

*0 G = -2 G = -3 G = - 4 G = -5

7T1 .170 .198 .198 .198 .198

^2 .318 .326 .326 .326 .326

.189 .190 .190 .190 .190

7r^ .323 .285 .285 .286 .285

VALUE
OF L 12.049 20.492 20.492 20.492 20.492

LEVEL OF
ACCURACY “ETA” IE—6 IE—6 IE—6 IE—6

STEP SIZE (SS) .10 .10 .10 .10

CONVERGENCE p .97042 .99681 .99966 .99996

INDICATORS R 1.0 1.0 1.0 1.0

Concluding Remarks

(i) Under a suitably chosen small step size SS = .10, the resulting solution is always 

optimal from the point of view of achieving the maximum value of the objective function L.

(ii) By reviewing the convergence results of table 4.2, given above, we notice that the 

smaller the value of the parameter G the better these results (measured by the closeness of 

p and R) will be.
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5.4.3.3 The Effect of the Parameter B

The numerical results, show an undesirable effects of increasing the value of B on the 

convergence results. This is realized from the observation that the larger the value of B 

the more divergent the convergence indicators (p and R) will be.

Table 4.3 shows this efect.

TABLE 4.3

INITIAL VALUES THE ESTIMATED PROBABILITIES (f)

*0

0=1 0=2 0=3 0=4 0=5

7T1 .170 .214 .214 .214 .214 .214

ir2 .318 .303 .303 .303 .303 .303

fl-g .189 .163 .163 .163 .163 .163

?r4 .323 .320 .320 .320 .320 .320

VALUE
OF L 12.049 20.492 20.492 20.492 20.492 20.492

VALUE OF (G) -5 -5 -5 -5 -5

STEP SIZE (SS) .03 .03 .03 .03 .03

CONVERGENCE p .99999 .99999 .99998 .99997 .99996

INDICATORS R 1.0 1.0 1.0 1.0 1.0

As with the previous cases, the data used in the above table 4.3, is simulated - see

subsection 5.4.1 - using a true discrete mixing probabilities which are Tj = .2, = .3,

7T0 — .2 and %4 — .3, at (A^ — 1, A2 —■ 3, A3 — 6, A^ = 9).
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Concluding Remarks

(i) The optimal value of the objective function L* (20.492) is achieved by choosing a 

small step size SS = .03 in all cases of B. This value of L* is associated with the set of 

estimated mixing probabilities = .214, = *303, = .163 and = .320. This is

as far as the optimality of the results of table 4.3 is concerned.

(«) From the convergence point of view, table 4.3 shows us that increasing the value of B 

has diverted the value of p (from .99999 to .99996) from the value of R.

The above convergence remark, concerning the negative effect of increasing B, coincides with 

the well-known result in statistical mechanics which states that : the probability of a transit 

from a state of energy to another state of energy E2 (assuming E2 > Ej) is equal to 

[exp( =^)], where k is a Boltzman’s constant, and T is the temperature. Here, the 

relation is the lower the temperature the smaller the probability of a transition.

Recall equation (3.19) which is

p = exp(-B A^>) (4-2)

and compare it with the previous notion we notice that B in equation (4.2) corresponds to 

1
KT and the larger the value of B, the smaller the probability of accepting the step.

The sensitivity analysis applied with respect to the parameter G may be helpful in seeking 

a possible way of overcoming the negative effect (as shown above in (ii)) of increasing B on 

the convergence results. This will be demonstrated in the following table 4.4, where we have 

recorded the convergence indicators for increasing values of B coupled with decreasing 

values of G.
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TABLE 4.4

VALUES OF (B) VALUES OF THE PARAMETER (G)

G=—1 G=—1

CONVERGENCE INDICATOR CONVERGENCE INDICATOR

Concluding Remarks

P R P R

B = 1 .75419 1.0 .99993 1.0

B=2 .56881 1.0 .99989 1.0

B=3 .42899 1.0 .99986 1.0

The above table 4.4 shows that decreasing the parameter G from —1 to —5 has a 

profound influence on the convergence results. It is not only improving the convergence 

results (measured by the closeness of p and R) at each individual level of B, but it is also 

slowing down the rate of deterioration in convergence associated with higher values of B.

5.4.3.4 The Effect of the Level of Accuracy (ETA)

We have repeated running the above-mentioned cases of table 4.1 using higher levels of 

accuracy, such as ETA = IE—5 and ETA = IE—6. We have found that there is no effect 

for choosing higher levels of accuracy either on the optimal value of the objective function 

(represented by equation (4.1)) or on the convergence results.

A sensitivity analysis may be employed, here, for improving the convergence results 

(measured by definition 5.4.2.2), irrespective of the level of accuracy ETA, by either 

decreasing G or decreasing B or both, as shown by table 4.5
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TABLE 4.5

LEVEL OF

ACCURACY(ETA) ETA=1E—3 ETA=IE-4 ETA=1E—5

VALUES OF B VALUES OF B VALUES OF B

B = 3 B = 2 B = 3 B = 2 B = 3 B = 2

G=-l
P .42899 .56881 .42899 .56881 .42899 .56881

R 1.0 1.0 1.0 1.0 1.0 1.0

G=—2
P .91387 .94172 .91387 .94172 .91387 .94172

R 1.0 1.0 1.0 1.0 1.0 1.0

G=—3
P .99046 .99363 .99046 .99363 .99046 .99363

R 1.0 1.0 1.0 1.0 1.0 1.0

G = —4
P .99898 .99932 .99898 .99932 .99898 .99932

R 1.0 1.0 1.0 1.0 1.0 1.0

A Concluding Remarks

From the numerical results, shown by table 4.5 we can conclude the following:

(i) Decreasing the parameter G as well as decreasing B will have a positive effect on 

the convergence results, represented by the closeness of p to R. This effect is still valid 

even under lower levels of accuracy ETA.

(ii) The rate of improvement in convergence associated with decreased values of G is 

more faster than with decreased values of B.



118

5.4.3.5 The Effect of the Number of Iterations

All the previously mentioned results, discussed in the above four subsections, have been 

calculated for a total number of iterations (denoted by J) equals 10.000.

We have made an attempt to reduce the number of iterations to only J = 1000, and have 

given the results in the following table 4.6. This table demonstrated the effect of varying 

the parameter G - see its effect in subsection 5.4.3.2 - with the number of iterations J. 

The results have been given in the sequel.

The results of the following table are produced using a set of data simulated from a mixture 

of exponentials with the true mixing probabilities = .2, = .3, 7Tg = .2 and tt ^ = .3.

The objective function, shown by equation (4.1) achieves its optimal value

L* = 20.492. This optimal value L* is associated with the estimated mixing probabilities, 

which are = .214, = .303, ig = .163 and = .320. (see subsection 4.1 for

details).

A Concluding Recommendation

From the previous table 4.6, we see that at a certain value of G the convergence results, 

being measured by the closeness of p and R are better for smaller number of iterations. 

Having concluded that, and because of the need to minimize the cost of computer time by 

using smaller number of iterations, then we recommend using the smaller number of 

iterations J = 1000 instead of J = 10000.
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5.5 A COMPARATIVE STUDY OF SOME RELATED METHODS OF

ESTIMATION

5.5.1 Introduction

Having mentioned - see section three of this chapter - that our technique for estimating the 

mixing probabilities is based upon some concepts of a two nonparametric methods of density 

estimation, namely, the kernel method and the maximum likelihood method, then we 

introduce a brief comparative study between these methods and our optimization method.

The comparative study will be aiming at (i) exploring the relations between these methods 

and ours, and (ii) discussing the connections between some of their main characteristics. 

Such comparisons will be helpful in enhancing better understanding of the features of our 

optimization technique of estimation.

Having based our optimization technique on an idea borrowed from the kernel method of 

density estimation, we will start by making a comparison between the two methods. 

Throughout this comparison an analogy between these methods has been deduced and 

presented by a numerical example. This example exhibits some sort of common feature 

between our technique of estimation and the kernel method of density estimation.

Because of using the likelihood principle as a corner stone for constructing our optimization 

technique of estimation (notice the third assumption equation (3.4)), we will establish some 

comparisons between our technique and the nonparametric maximum likelihood method of 

density estimation. Also, an analogy between the two methods has been realized, and its 

impact on the results has been discussed.

5.5.2 The Optimization Method Versus the Kernel Method

We start by reviewing Parzen (1962) kernel estimator, being given in section 3 equation



121

(3.1), as

where K(*) is the kernel function.

Knowing that the empircial distribution function “Fn”, appearing in 5.1, is a discrete 

distribution placing a mass ( g ) at each of the n observations, thus the idea of the 

estimator is that, formula (5.1) smears this probability out continuously, according to the 

“choice” of the kernel K(-).

5.5.2.1 A Comparison between the Optimization and Kernel Methods

From a practical point of view, it is more convincing and realistic to place unequal weights 

on the integrals L,(j = l,...,k)(as has been assumed by the optimization technique equation

(3.4)) than placing equal weights g on each of the n kernels shown by equation (5.1).

In the optimization technique, and because of using the likelihood criterion to estimate these

unequal weights (ttj , j = l,...,k) (as shown by the fourth assumption), we could achieve the

following advantages over the kernel method:

(1) reflect the structure of the data

(2) avoid the effect of the arbitrary choice of the kernels K(-) by the experimenter.

An important remark, to be made here is that the kernel estimate fn, as appears in (5.1), 

depends linearly on the kernel function K(-), hence the appearence and properties of fn are 

dictated more by the arbitrary choice of the kernel K(-). Such choice is not determined by 

the data, but rather by the user himself. In our optimization method, since the data is 

used to determine the estimated probabilities with relatively minor arbitrary choices, then 
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the resulting estimates are determined in more data-oriented (or nonparametric) sense.

5.5.2.2 The Connection between the Optimization and Kernel Methods

The connection between our optimization technique and the kernel method is based upon

the notion that the cell width (cj— cj_])> (j = being considered as the smoothing

param pt er (or tuning parameter) in our method. This will be shown to be analogous to the 

smoothing parameter hn, shown by equation (5.1), for the kernel estimate. Thus, widening 

the cell width in our optimization technique will improve the results, similar to the case of 

increasing the smoothing parameter h in the kernel method.

In our optimization technique, the improvement of the results is represented by achieving an 

optimal (maximum) value of the objective function (shown by equation (3.4)). But, in the 

kernel method such improvement is represented by getting a smoother density estimate.

The following table 5.1 sums up the results of an example, where we use a mixture of four 

exponentials (i.e., k is equal to four in equation (3.4)) with paramerters (Ap = 1, A2 = 3, 

Ag = 6, A4 = 4) associated with the mixing probabilities (7^ = .2, 7r2 = .3, 7^ = .1, 

7r4 = .4) respectively.
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TABLE 5.1

VALUES OF
Cj(c0=0)

THE
CELL 
WIDTH (cj -Cj-j)

THE ESTIMATED 
PROBABILITIES

THE 
MAXIMUM 
OF THE
FUNCTION

c0 C1 c2 c3 c4 J=l,...,4 *1 *2 *4 L(f; x)

0 3 6 9 12 3 .174 .316 .186 .324 31.253

0 4 8 12 16 4 .178 .314 .187 .321 37.529

0 5 10 15 20 5 .175 .314 .187 .324 41.663

0 6 12 18 24 6 .173 .318 .186 .323 44.592

0 7 14 21 28 7 .176 .314 .187 .323 46.772

For reasons of comparison, table 5.1 fixes the number of intervals k = 4, varies the width of 

these intervals, and presents the results of five of these cases.

The above table 5.1 illustrates a way for improving the results (notice the last column),

obtained from the optimization technique. Such improvement is achieved by increasing the

cell width (c- —
J

j = l,...,k, being shown in the second column.

This is analogous to the way of improving the kernel density estimate (i.e. getting a 

reasonably smoother estimate) by increasing the smoothing parameter h in formula (5.1).

5.5.3 The Optimization Method versus the (M.P.L) Method

5.5.3.1 Definitions and Notations

Given a random sample Xp...prn from a density function f defined on the set Q = (a,b),
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we define

Definition 5.5.3.1 Let H(a,b) = H(Q) be a manifold in Lj(Q). A manifold is a set of

reasonably similiar functions.

Definition 5.5.3.2 Consider a manifold H(Q) C Lj(Q), and the following constrained 

optimization problem

maximize L(f)

subject to f G jf(x)dx = 1 (5.2)

and f(x) > 0 V x G Q

The integration in 5.2 is with respect to Lebesgue measure. Any solution to problem 5.2 is 

defined to be a maximum likelihood estimate based on the sample Xp...xn.

The main drawback of problem 5.2 is that the likelihood considered as a functional is 

unbounded, i.e.,

n
Max JJ f(x.) = 4-oo, (5.3)

j = l

where the maximum is taken over all probability densities on the real line. In other words, 

a linear combination of Dirac delta function at the sample points satisfies the constraints 

and results in a value of 4-oo for the objective likelihood functional.

For the sake of avoiding this Dirac catastroph and guaranteeing the existence of problem 

5.2, Good and Gaskins (1971) introduced the maximum penalized likelihood method 

(M.P.L) of density estimation.
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Definition 5.5.3.3

Assume Xp...,xn be independent observations from a distribution function F with density 

function f. Define the penalized likelihood function as

n
L«(0 = 52 log 

j = l
(5-4)

where the positive number a is the smoothing parameter, and 0(f) is the roughness 

penalty functional

Definition 5.5.3.4 An estimate f will be called a maximum penalized likelihood density

estimate if

f maximizes La(f)

subject toct to yf(x)dx = l, f(x) > 0 Vx 

and $(f) < oo,

(5-5)

In other words, f maximizes La(f) over the class of all f satisfying 5.5.

5.5.3.2 A Comparison between the Optimization and (M.P.L) Methods

Some remarks, which are necessary for constructing a comparison between the optimization 

and the (M.P.L) methods of estimation will be discussed briefly, with emphasis on detecting 

an analogy between one of the main features of them.

Having used a histogram-like idea and the maximum likelihood criterion in the optimization 

technique, then the resulting estimates can be considered as nonparametric ones. Also, 

unless a specific functional form for the density is assumed in H(Q) - see definition 5.5.3.1 - 
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the (M.L) estimate is a nonparametric one. Therefore, both of the two methods have the 

same nature of being nonparametric methods of estimation.

Unlike the kernel method, both of the above-mentioned method (namely, the optimization 

and (M.L)) have the desired property of being data-oriented methods of estimation with a 

minor degree of arbitrariness in the estimation procedure.

We have mentioned, in the previous subsection, the idea of considering the cell width as an 

analogy of the smoothing parameter in the density estimation context. Also, from equation 

(5.4), we notice that as the parameter a gets bigger the resulting density estimate gets 

smoother. This establishes some sort of connection between the optimization technique and 

the (M.P.L) method. This connection manifests itself in the fact that increasing the cell 

width in our method has a positive effect (see table 5.1) as increasing the parameter a in 

the (M.P.L) method. The improvement in the later case is represented by getting a 

smoother maximum penalized likelihood estimate.

5.5.4 The limiting Behaviour: An Important Rationale

The limiting behaviour of the resulting estimates will be helpful in realizing the connection 

between our optimization technique and the (M.P.L) method. That is, by narrowing the 

cell width (i.e., increasing the number of cells to infinity), we will have a Dirac catastroph 

(i.e. , too rough estimates). This is exactly the same as when the smoothing parameter a 

- in equation (5.4) - approaches the value zero in (M.P.L) method. In conclusion there is 

an analogy between narrowing the cell width (i.e., letting k —► oo) in our optimization 

technique and taking a too small in (M.P.L) method.

Finally, we suggest an important rationale which could be relating the previous limiting 

behaviour of the optimization technique to a general feature of all nonparametric probability 
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density estimation methods. This states that, since one of the objects of nonparametric 

methods is to investigate the effect of relaxing parametric assumptions, it seems sensible 

that the limiting case of a nonparametric density estimate should (or ought to) be a natural 

parametric estimate.
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CHAPTER SIX

THE CONCLUSIONS

6.1 Main Achievements and Contributions

This thesis introduces three main ideas. It proposes two techniques and a kernel method for 

estimating the mixing density in the mixture of exponentials setting.

The first technique offers us a procedure in which our estimation problem has been represented 

as an integral equation, specially Laplace transform. Then, a truncated infinite series formula 

has been suggested, as an approximation for such integral transform. Depending upon this, an 

analogy has been proposed between the truncation point m (which is assumed to be different 

from the value of the sample size n) and the notion of the smoothing parameter in the context 

of the estimation of a probability density function.

In this Laplace-based technique, an estimation procedure has been suggested. This enables us 

to study, the issue of controlling the shape of the estimated mixing density. It has been found 

that the determination of a suitable value of the parameter m gives us an acceptable shape of 

the mixing density estimate. This is because, if m is chosen too large, this causes an 

undesirable difficulty in estimating too many parameters (represented by anc^ B^, k =

l,...,m) relative to the available sample size. On the other hand, if m is selected too small, 

then important detectable features of the estimated mixing density may not appear.

The numerical study of the introduced Laplace-based technique shows its dependence not only 

upon the parameter m, but also on the sample size n. It has been noticed that an estimate 

of a mixing density which is based upon too small value of m, will be sharply (or undesirably) 

affected by varying the sample size n. On the other hand, the sensitivity of the estimated 
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density to changes in the sample size n will be unacceptably low in case of using too large a 

value of m. As a result of our simulation study, a balancing situation has been reached, 

which suggests some sort of compromise between these two factors to get an acceptable shape 

for the estimated density. That is, the choice of a moderate value of the parameter m 

(relative to the sample size n), results a mixing density estimate which is reasonably sensitive 

to the variations in the sample size n.

The second contribution in this thesis is the introduction of a kernel method for estimating the 

mixing density in our mixture problem. An empirical Bayes framework has been suggested to 

construct this kernel estimator. This estimator 7t (A) is proved to be unbiased under the 

assumption that the kernel function is equal to the conditional distribution of A given a 

single observation x.

A lemma has been introduced, by which some limiting properties of the derived estimator ir(A) 

have been given. The limiting behaviour of this kernel-type estimator (as r —> oo) is found to 

be analogous to the behaviour of a density estimator (M.P.L for example) when the smoothing 

parameter approaches zero. Thus, under the assumption that the values of m and n are 

equal, the parameter r—is considered to be the smoothing parameter in our kernel estimator 

ir(A).

The investigation of the tail limiting behaviour, suggests that a rescaling operation is necessary 

for the removal of the bias up to a linear terms. An artificial example has been given to 

illustrate this result. This extends the applicability of the proposed lemma to any other 

density f(x). Also, by studying the mode, it has been found that a scaling operation (scale 

factor of two) is appropriate to achieve unbiasedness in the limit.

Some moment properties have been derived. This is done to assess how far the behaviour of 

the moments of the estimator ir(A) is similar to that of the true underlying density x(A). In 

this case, the limiting behaviour (as r —► oo) has shown us an winverse-mean” biasedness.
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This confirms the conclusions of the scaling downwards which have been derived for the mode

and the tail of the estimator 7r(A).

Finally, different sets of real data have been used to represent the estimator ir(A) graphically.

These graphs show us the mixed exponential density as a special case of our estimator 7r(A) 

when the value of the parameter r equals one.

The third approach introduced in this thesis is an optimization technique for nonparametric 

mixing density estimation.

Having used the generalized simulated annealing (G.S.A) algorithm, we have been able to : (i) 

generalize some concepts, borrowed from the histogram and the kernel methods of density 

estimation, and (ii) discuss the possible adaptations required for the application of the 

(G.S.A) algorithm to the mixture of exponentials case.

In a simulation study, a sensitivity analysis has been carried out, in which a criterion for the 

convergence of the adaptive (G.S.A) algorithm has been defined. Thus, we have been able to 

assess the impact of varying the parameters of the algorithm on its performance, measured 

from a convergence viewpoint. This sensitivity analysis measures, also, the performance of the 

algorithm, represented by achieving the maximum (the optimal in our case) value of the 

objective fiicntion.

A connection between our optimization technique and the kernel method of density estimation 

has been suggested. This is confirmed by giving a numerical example. In this context, it is 

shown that widening the cell width (cj — cj_p will improve the results in our optimization 

technique. This is similar to improving the kernel estimate by increasing the smoothing 

parameters. Thus, we have a tuning device, represented by the cell-width, by which better 

results can be obtained. 
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Having based our optimization technique on the likelihood of the data, then it is more date- 

oriented (or nonparametric) than the kernel approach, where the arbitrary choice of the kernel 

function represents its corner-stone.

Finally, in comparing any two methods of density estimation, there is a fundamental issue, 

represented by the ability of a given method to achieve two goals, namely, the diagnosis and 

the estimation. By starting with a bimodal histogram, in our optimization technique, we have 

been interested in the problem of (i) breaking down what appears to be a mixed distribution, 

and (ii) estimating the mixing density.

6.2 Suggestions for Further Research

Some asymptotic properties of our Laplace-based technique could be derived in conjunction 

with the optimal choice of our tuning parameters n and m (assuming that they are 

different).

Firstly, we may study the optimal truncation point m. This optimal choice could be defined 

in terms of minimizing the integrated mean square error (I.M.S.E) in an asymptotic sense. In 

this context, we suggest, for reasons of computational convenience, that the (I.M.S.E) could be 

approximated by the average square error at the observations. This takes the form:

1 E [fap - fapi2- (6-1)

where f is the density estimator of the true density f (•).

Some ideas of Wahba’s paper [1977] may be used in optimally choosing these values of m. 

For example, the method of cross-validation could be employed as a powerful data-based 

criterion for this optimal choice.
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Secondly, the sample size n could be studied in order to explore the possibility of defining 

some sort of asymptotic “normality” of the estimated mixing density function. An idea, which 

has been introduced by Barron, A. [1986] could be helpful in this context. This discusses the 

convergence to normality of a density function in the sense of relative entropy.

Finally, under the equality assumption of the tuning parameters m and n, we have established 

a connection between our kernel-type estimator ( see chapter IV) and the usual Parzen (1962) 

kernel estimator. This suggests that r-1 is the smoothing parameter in our kernel method. 

Thus the reviewed methods of chapter II ( see for example subsections (2.3.3) and (2.3.3.2) ) 

could be employed for the determination of an “optimal” value of this smoothing parameter.



APPENDIX
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(Al) Derivation of the Likelihood Function: The Optimization Technique Case

We will start by recalling our definition, being given in the second assumption, and by

which we represent the histogram-like mapping Ij, j = l,...,k, as

Ij(x) = J f(x; A)dA , j = l,...,k

Cj-1
(1)

where f(x; A) = A e is the exponential density function. In the above definition k is

the number of equally spaced cells (c._p Cj), j = l,...,k. The amount of probability 

(height) at each support interval of this histogram is denoted by 7Tj , j = 1,..., k.

To evaluate the integral in equation (1), we take the case where j = 1, to get for the first 

interval (0,Cj) the following integral

C1
Ix = | Ae_Ax dA

0
(2)

Thus, by making the substitution u = A and dv = e dA, and integrating by parts, we 

get from equation (2), the following

(3)

For j = 2 in equation (1), we get for the second interval (cp c2) the following integral



Thus, by applying the same rule of integration by parts as before, we get from equation (4) 

the following

l2 = ~ °2X(c 2x + X) ” e 1 (clx + X)1 (5)

From equation (1) and also by taking j = 3, we get for the third interval (c2, c^), the 

following integral

°3
I3 = J A e_Ax dA

c2

(6)

Integrating by parts, we get from equation (6) the following

1 —Cq X ~~ CnX -I CnX — CnXI3=-l[c3e ^-c2e r]- i[e 3 -e *]

. —Cq X — CnXT3 = ~ e 3 ^C3X + x) “ e + X)1 (7)

By continuing the previous task, we get for the k^ interval (cj£_p c^) the following

integral
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Ik = J A e_Ax dA (8)

ck-l

In line with the previous evaluations of the above integrals, we get, for equation (8) the

following result

Ik(x) = “^e k(ckx+l)-e k_1 (ck_1x + 1)] (9)

By assuming (as in our assumptions) that we have k of these support intervals associated

with k heights Tj, )j = l,...,k), then the joint density function (for a particular x) will be

= E 'i ijW <10>
j=i

Thus, given “n” independent observations on the random variable X, with the density (10),

the likelihood function will be (denoting it by L)

1(53)=n { e  ’j
i=l j=l

(11)

Representation (11), given above, is in fact a polynomial of the ntk degree in 7r’s. Hence, 

we have to have a program for maximizing the n^k degree polynomial for each n.
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