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ABSTRACT

The first chapter is introductory.

The second chapter considers Ein.stien-Maxwell equations 

which admit a null Killing vector and a* null electromag-
netic field. I present certain solutions of these 
Einstien-Maxwell equations. This work is based on earlier 

work described in Kramer et al 1980 and Boachie and Islam 

1983.

In the next chapter, I calculate the expansion, shear and 
rotation of certain axially symmetric solutions found by 

Islam (1977, 1983).

In Chapter 4, I find Killing vectors for the solution found 
by Islam (1983) mentioned earlier. I also apply to these 
Killing vectors the analysis applied by Bonnor (1980) to 

the Van Stockum solution (1937) to determine if there are 
any time-like hypersuperface-orthogonal Killing vectors, 

and show that Islam's solution is not static but stationary.

In Islam 1983, he found out exact global solution of 
Einstien-Maxwell equations. The solution thus obtained is 
regular and well behaved inside the matter. Such matched 

solutions are rare either for the Einstien or Einstien- 

Maxwell equations. Considering those solutions in 

Chapter 5, I have calculated out all nine curvature 

invariants. The invariants of the Riemann curvature 
tensor are first found in terms of its equivalent 

curvature invariants in terms of two-spinors given by 

Witten (1959) and Penros (1960). We consider briefly some 

properties of these invariants.
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CHAPTER 1

ROTATING METRIC

1.1 INTRODUCTION

This thesis is concerned with stationary axially symmetric 

fields in general relativity. Before giving a summary of 

the following chapters we give a brief review of the 

relevant aspects of general relativity. This review is 

based mostly on the book by Islam (1985).

Einstein field equations are given by:

R -ig R = 8tt  T (1.1)
pv 2 ^pv pv

where Newton’s gravitational constant G and the velocity of 

light c are set equal to unity and where T is energy-

momentum tensor of the source producing the gravitational 

field. The T^ for,matter in the perfect fluid form is:

= (e + p)upuv - pgpv (1.2) 

where s is the mass-energy density, p is the pressure and 

u^1 is the four-velocity of matter given by:

p dxp (1.3)
u = j—ds

where x^(s) describes the world-line of the matter in terms 

of the proper time s along the world-line.

The equations of motion of a particle in a gravitational

field are given by the geodesic equations:

d x „p dx dx
,2 vX ds dsds

(1.4)0



4

Einstein's exterior field equations are given by R^ = 0,

putting T^ 0 and R = O in the Equation (1.1). These are

a set of coupled non-linear partial differential equations 

for the ten unknown functions g^. In particular situations 

of physical interest, using space-time symmetries we can 

reduce the number of unknown functions. In Newtonian theory 

spherical symmetry is usually defined by a centre and the 

property that all points at any given distance from the 

centre are equivalent. When we are handling physical prob-

lems, symmetric systems have not only the advantage of a 

certain simplicity or even beauty, but also special physical 

effects require these symmetries. One can therefore expect

in general relativity, too, that when a high degree of

symmetry is present the field equations are easier to solve 

and that the resulting solutions possess special properties.

Our first problem is to define what we mean by a symmetry of
• >

a Riemannian Space. The mere impression of simplicity which 

a metric might give is not of course on its own sufficient, 

thus for example, the relatively complicated metric:

2 2 2 5 2ds = dx - x siny dxdy + x (-^ + cosy) dy

2 5 1 2 2 2 2+ x (■£ + cosy - -g sin y) sin y dt - dz

in fact has more symmetries than the simple wave:

ds^ = dx^ + dy^ + 2dudv + H(x,y,z)du^

Rather, we must define a symmetry in a manner independent 

of the coordinate system. Here we shall restrict our-

selves to continuous symmetries.
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1.2 KILLING VECTORS

The symmetry of a system in Minkowski space or in three- 

dimensional (Euclidean) space is expressed through the fact 

that under translation along certain lines or on certain 

surfaces the physical variables do not change. One can 

carry over this intuitive idea to Riemannian spaces and 

ascribe a symmetry to the space if there exists an s- 

dimensional (1 s 4)manifold of points in it which are 

physically equivalent under a symmetry operation, that is, 

a motion which takes these points into one another, and the 

metric does not change. But in general relativity one has 

to find some coordinate independent and covariant manner of 

defining space time symmetries such as axial symmetry and 

stationarity. This is done with the help of Killing vectors, 

which we will now consider.

A metric g (x) is said to be form-invatiant under a given 

coordinate transformation x -> x’ when the transformed metric 

g^v(x') is the same.function of its argument x'^ as the 

original metric g^ (x) was of its argument x^, that is:

g’ (y) = g (y) for all y

At any given point the transformed metric is given by the 

relation:

g’ (x')
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or equivalently:

or

g (x)

g (x)

therefore

3x'p 3x'ff

3xp 3xV

3x'p 3x'P
3xp 9xV

3x'p ~ 1 CT9x’
Sx14 9xV

g (x ’) Ph

g’ (x') ^po-
3x'p 3x'° , ,,
TV TV gpa(x ’ 
dx 9x H

(1.6)

using the relation (1.5).

Any transformation x -> x' that satisfies (1.6) is called an

isometry.

Equation (1.6) can be simplified by going to the special case

of an infinitesimal coordinate transformation:

x’+ e£^(x) with |e << 1 (1.7)

using (1.7) in Equation (1.6) we get:

* es’)
9xp

9 , o ro» —-(x + e£ )
9x

gpa(x + eC)

+ + £?a
3gpp

3x“
)

(6P + e
11 9xV

+ 9xox , . x + ee
9g 
__P2) 
3x“

neglecting terms involving 2 
e
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O

or

or

g (x) + ^pv g e pa

+ gpv

+ g
3xp pv

9 ,

+
9ĝpv
9xa

25 ra
a pv

9£
U +

a? 
—2 +

9xV 3xP

9£
P +

8«v

9xV axp

5 r“
9xV a pv

ra/3gpv

9xa

+
3_s

3xP

or E + Ep;v sv;p

Equation (1.8) is

satisfying the

ag°
3xV

+

agp
3xP

agp 
axp

0

+

+ 5“

9xV

9£P
e g — - -3pv PH 9x

9ĝpv
•A « 9x

+

agpq
9xV

0

ra 
a pv

0

+

0

9(<WP)

9xp

9xP

0

a

- ep

0

3x“

3gpv

3xp

(1.8)

Killing’s equation and the vector field

Killing equation is called a Killing

vector of the metric g^ If the Killing equation has a

solution, then it represents an infinitesimal isometry of

the metric ĝpv
symmetry. The

which

above

covariant manner, so

implies

Killing

it is a

that the metric has a certain

equation is expressed in

tensor equation, and if any

metric has an isometry in a given coordinate system then it
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has also isometry in the transformed coordinate system. For 

an example of a Killing vector, we consider a situation in 

which the metric is independent of one of the four coordiantes. 

Let x° = X, be a time-like and x1 i-1,2,3 be space-like co-

ordinates. In general g being independent of x° means 

gravitational field is stationary i.e:

0 (1.9)

Consider a vector given by:

(5°, d, d. £3) = (1, o, o, o)

then

S = vdv = g = q^po ^po

(1.10)

We have:

q + q - g - q +g^po,v vo,p oy,v ov,p pv,o

q̂pv,o (1.11)

Using (1.9) and (1.10). Thus if (1.9) is satisfied, the

vector (1.10) gives a solution to Killing's equation.

Here we will derive some property of Killing vectors. Let

and be two linearly independent solutions of 



9

the Killing Equation (1.8). We define the commutator of these 

two Killing vectors as the vector given by:

(1.12)

In coordinate independent notation the commutator of and

is written as Using symmetric relation of

the Christoffel symbols i.e , we can write covariant

derivatives (1.12) as ordinary derivatives. So:

= ^(l)p “ rU ^(l)a^(2)X_ (^(2)y _ ^(2)a^(l)X
, X 0X , X cr X ’ '

. rp r(2)ar(l)X

^(l)p ^(2)X _ rp ^(l)cr (2)X _ (2)p ?(1)X
, X uXs z Xs

(2) X^ (1) cr

= ^(l)p ?(2)X _ e(2)p ^(1)X
, X r Xs

It can be shown that is also a Killing vector (see e.g

Islam 1985).

If we take n linearly independent, Killing vectors

i=l,2 ... n. Then the commutator of any two of these is a 

Killing vector and so must be a linear combination of some or 

all of the Killing vectors with constant coefficients, since 

there are no other solutions of the Killing equation.

So we have the result:
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(1.13)

In coordinate independent notation, we can write:

(1.14)n

where a^-1 are constants in both equations.

The result (1.14) can. be obtained more elegantly with the

use of Lie.derivatives, but as this would require the 

explanation of Lie derivatives, we have preferred the longer 

and more elementary derivation given here.

1.3 AXIALLY SYMMETRIC STATIONARY METRICES

To derive the most general axially symmetric stationary metric 

with the: use of Killing vectors, we need to consider suitable 

coordinate systems and make some reasonable physical assump-

tions. Consider the field to be generated by the steady 

rotation of a star made of perfect fluid, whose energy-

momentum tensor is given by (1.2). The star and the field 

around it possesses axial symmetry about the axis of rotation 

which passes through the centre of the star, which we will 

consider the origin of the coordinate system. The axis of 

rotation is the z-axis. Because of the time independence and 

axial symmetry of the metric time-like x° = t and an angular
3

coordinate x = $ respectively of which the metric coefficients 

and all the matter variables are independent. So the coordi-

nates are:

(x°, x , x , x ) = (t, p, z, 0) and we have: 

guv = gpv(p'z)' £= e (P'Z)' P=P'P'Z> (1.15)
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where e is the total mass-energy density and p is the pressure. 

Since 0 is the angular coordinate about the rotation axis, the 

coordinate values (t,p,z,<j>) and (t, p , z , 4>+2tt ) correspond to the 

same point in the space-time.

The star’s matter rotates in the 0 direction, so its four- 
dx^1velocity u^ = has the following form:

Since p, z are constants 

and t, (j) are variables, then:

u3 = d* = . dt = fluo
ds dt ds 

is the angular velocity measured in units of

coordinate time t. Equation (1.16) reflects the fact that a 

material particle in the star corresponds to fixed values of 

the coordinates p and z and only its p coordinate changes 

with time. For rigid rotation Q is constant (independent of 

p and z) but for differential rotation Q is in general a 

function of p and z.

Because the star rotates in the <j) direction, the field genera-

ted by it is not invariant under time reversal t -> - t, since 

such a transformation would reverse the sense of rotation of 

the star, resulting in a different space-time geometry. Nor 

is the star’s field invariant under the transformation

(j) - p, for this would also reverse the sense of rotation of 
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the star. However, the field of the star is invariant under 

a simultaneous reverse of t and <$>:(t,<f>-> — t,- 0). In this 

case the motion would be exactly the same as before.

Because of these properties the metric coefficients gQ^, 

go2> 913' ^23 must vanish because otherwise under

(t,4) -> - t, - <j)) , for example, the term gQ^dtdp would change 

sign and so the metric would not be invariant, as it should 

be, under this transformation.

Thus we have: 

(1.17)gol = go2 = g12 = g23 * 0

So that the metric can be written as:

ds2 = goQdt2 + 2gQ3dtd(J) + g33d(f)2 + gABdxAdxB

where A.B are to be summed over values 1, 2.

We can write the metric (1.18) as follows:

ds2 = fdt2 - 2k dtd(J) - £d02 - Adp2 - 2B dpdz - Cdz2 

where f,k,£,A,B and C are all functions of p and z. 

We carry out a coordinate transformation from (p,z) to

(p',z') as follows:

p' = F(p,z), z* = G(p,z)

dz = F-^dp + F3dz

(1.18)

(1.19)

(1.20)

, , 3F , . 9Fdp' = -jt — dp + -77-H 9p 9z
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whe re: 

3F
3z etc

dZ' = dP + dZ = GldP + G2dZ

where:

r = 3G r = 3G 
G1 " 3p ' G2 " 3z 

.dp' = F^dp + F2dz 

dz' = G^dp + G2dz

Multiplying (1.23) by G2 and (1.24) by F2 and

we get:

(1.21)

(1.22)

(1.23)

(1.24)

subtracting

G2dp’ - F2dz' = (F1G2 - G1F2)dp 

.’. Jdp = G2dp* “ F2dz' where J = F-^G2 - G

or dp = J-1(G2dp' - F2dz’)

similarly dz = J 1(- G1dp' + Fjdz*)

where J can be written as:

3(F,G)
3(p ,z)

3F 3G T?

9p 9p F1 G1

3F 3G
3z 3z F2 G2

(1.25)

(1.26)

and is assumed to be non-zero.
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Substituting in (1.19) from (1.25) we get 

ds2 = fdt2- 2kdtd(J) - £d<j)2- J-2 { (Ag | - 2BG;[G2 + CG2) dp ’ 2

+ 2(- AG2F2 +BG2F1 + BG1F2 - CG1F1) dp ' dz '

+ (AF| - 2BF1F2 +CF2)dz’2} (1.27)

The function F and G are so far arbitrary.

Assuming A, B, C are given function of p and z we now 

require F and G to satisfy the following two coupled 

non-linear partial differential equations of p and z.

Ag | - 2BGx G2 + CG2 = Af | - 2BF1F2 + OF2 (1.28a)

or - AG2F2 + BG2F1 + BG1F2 - CG-^ =0 (1.28b)

We assume that for the given A, B, C the system of Equation 

(1.28a, b) has a non-trivial solution with J £ 0. Then 

the coordinates (p‘, z’) in the metric.(1.17) has its
2 2 coefficients of dp’ equal to its coefficients of dz' 

and the coefficient of dp *dz' vanishes. We can now drop 

the primes from p’ and z’ and write the new metric as 

follows (the f,k,£ in the following are not the same 

functions as the f,k,£ in (1.19)):

ds2 = fdt2 - 2kdtd(j) - £d<{>2- eP(dp2 + dz2) (1.29)

where f, k, £ and p are all functions of p and z.
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1.4 CHR1ST0FFEL SYMBOLS

Using the Christoffel symbols of the second kind:

1
2 (1.30)

We can calculate all non-zero values of T,s from the metric

(1.29). The non-zero covariant and contravariant components

of the metric tensor are as follows:

The non-zero Christoffel symbols are as follows and

1 % r12 p ' 133

(1.32b)
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r3
ol

1
2

D-2(fkp " kfp>

r 3
13

1
2 D_2(f% + kkp) ’ r2

= I D’2<fkz - kfz’

(1.32d)

= I D_2<«z + kkz>

After this brief summary of some aspects of general relati-" 

vity which will be needed in the subsequent chapters, we 

proceed to give a resume of the following chapters.

1.5 THE MAIN RESULTS OF THE THESIS

A class of exact and explicit solutions will be considered 

for the Einstein-Maxwell equations admitting a null Killing 

vector and a null electromagnetic field.

We begin with the solutions of the Einstein-Maxwell equations 

which admit a null Killing vector and a null electromagnetic 

field, as given in the book by Kramer et al (1973) (p 233, 

Equations (21.34), (21.35). The metric is given as

follows:

ds2 = 2p du(dv + Mdu) - p 2 (dp2 + dz2) (1.33)

We have changed the signature of the metric and written p,z 

for x,y respectively. M is a function of p and z satisfying 

the following equation (kQ is a constant).



17

(1.34)

where E is related to the electromagnetic potential and 

satisfies

E + E =0 (1.35)pp zz

We consider some motivation for finding exact solutions of 

the system (1.34) and 1.35). It is always useful to have 

exact and explicit solutions of the Einstein or the Einstein- 

Maxwell equation for studying their physical interpretation 

and for comparison with other known solutions. For the system 

given by (1.34) and (1.35), it is easy enough to find a solu-

tion of (1.35). One has only to take the real or imaginary 

part of any analytic function of (p+iz). It is in general 

non-trivial to find explicit solutions of the coupled 

equations (1.34), (1.35) and we find some new solutions in 

Chapter 2.

In Chapter 3 we work out the expansion, shear and rotation of 

the differentially rotating interior solution for dust 

(Winicour 1985). Differential rotation implies that Q is a 

function of p and z, in general. The covariant derivative 

of the covariant four-velocity of the fluid can in general be 

decomposed as follows:

(1.37)
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and oj pv and apv are respectively the rotation and shear

tensors given by:

U) = l(up;v
- u , - u u ) (1-38)PV v ; v p

1,
u . — 2Up;v + u, p’” 2(UUUV + u u )pv v ; v p

- 1 ,
3 gpv ■ u uP V

><a (1.39)

(See, for example, Misner et al (1973),(p 556) wh ere, howe ve r

there are some differences in sign since for them u^u^ = - 1 

while for us u^u11 = D • One of the objects of this 

chapter is to make explicit the fact that the shear is non-

zero for differential rotation but that it vanishes 

identically when the rotation is rigid, i.e, when the 

angular velocity Q is independent of p and z.

In Islam (1983), he found out exact cylindrically symmetric 

global solution of Einstien-Maxwell equations. The solution 

thus obtained is regular and well behaved inside the matter. 

Such matched solutions are rare either for the Einstien or 

the Einstien-Maxwell equations. Van Stockum (1937) found 

a rotating dust interior and three exterior metrics 

referring to different ranges of the mass per unit length.

It has been stated in the literature (Frehland (1971)), 

that the exterior is static, but it was proved by Bonnor 

(1980) that this is so only in the low-mass case. In 

Chapter 4, an analytical argument is given following 

Bonnor (1980) to show that there is no time-like 
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hypersurface orthogonal Killing vectors for the global 

solution found by Islam (1983), so that it is not static 

but stationary. The arguments of this chapter are used 

partly on new Killing vectors which we find in addition 

to the usual ones representing the symmetry of the
3 3metric such as and yy. There is one such Killing

vector for the interior solution and two for the 

exterior solution.

In Islam (1983) , he found out exact global solution of 

Einstien-Maxwell equations. The solution thus obtained is 

regular and well behaved inside the matter. Such matched 

solutions are rare either for the Einstien or Einstien- 

Maxwell equations. Considering those solutions in 

Chapter 5, I have calculated out all nine curvature 

invariants as follows:

r RApVKRApVK

R r VKPCr XP
AjlVK p(J

Ay RpOVK
po A]1\)K

r vk Pu r Ap
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RApvcr F, FXp vo

R,XjlVK
RVKaBFXp

ap

The invariants of the Riemann curvature tensor are first 

found in terms of its equivalent curvature invariants in 

terms of two-spinors given by.Witten (1959) and Penrose 

(1960). We consider briefly some properties of these 

invariants, Pirani (1957).
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CHAPTER 2

EXACT SOLUTIONS FOR EINSTEIN-MAXWELL EQUATIONS

ADMITTING A NULL KILLING VECTOR

2.1 INTRODUCTION

In this chapter we consider the Einstein-Maxwell equations 

admitting a null Killing vector and a null electromagnetic 

field. These equations are given in Kramer et al (1980) but 

we have not found the derivation either in Kramer et al (1980) 

nor anywhere else. The derivation is given here.

The Einstein-Maxwell exterior equations in suitable units can 

be written as:

Rpv 8tt E = 2F ®F ■ • +pv p • v-a
— q F Fa^
2 (2.1)

F + F + F 0 (2.2)pv ;a va;p ap;v

FPV = - 4tt Ju = 0 F A — (2.3);v pv p,v v,p

where E is the electromagnetic energy-momentum tensor and

the four-current which we put equal to zero since we are

here considering only the exterior field. F is the electro- pv
magnetic field tensor, defined in terms of the four-vector

potential A^ by (2.3). A semicolon denotes covariant differen-

tiation and a comma partial differentiation. Because of its 

definition in terms of A the tensor F
pv

satisfies (2.2)
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identically. Equation (2.1) follows from the Einstein’s 

equations given by:

R - ij- g R = 8tt  T 
pv 2 pv pv

where is the energy-momentum tensor of the source producing

the gravitational field, if we interpret

this case the Ricci scalor R vanishes

as E and note

identically sincethat in

EP
• U
Maxwell

0. It can also be shown, using standard procedure of

theory, the E has zero divergence:

E^
;v 0 (2.5)

which represents the conservation of energy and momentum of the 

electromagnetic field.

2 2 -1With the use of the relations D = £f + k and W = f k the

metric

ds2 = fdt2 - 2k dtdcj)£d(|)2 - eP(dp2 + dz2) 

can be written as: 

ds2 = f(dt - Wdcf))2 - p2f ■Ld(j)2 - eU(dp2 + dz2) (2.6) 

where f,W and p are all functions of p and z.

Writing (x°, x\ x2 , x2) = ( (t, p , z, (j>) the vector potential

(AQ, A1' A2' can ke written in terms of two scalar field

(j) and <j) ’ and the metric functions f and W as follows (Ernst, 

(1968b), (the 0’s used here are distinct to the azimuthal 

coordinate (J) of the last chapter) :



23

Ao = Ax = a 2 = o

9A 3A _
^T = W% *z' = - Pf % <2-7>

where = li
" 9P

etc. The consistency of the last two relations

in (2.7) is guaranteed by, (2.11) r, (Islam. 1985)-. The field Equations 

(2.1) and (2.3) in the metric (2.6) and for A^ given by (2.7) 

yield, firstly, the following four equations:

2 2 2 -2 4 2 2fV f - f - f + .p Zf (W + W ) p z p z

= 2f(<f>2 + + ^2 + *,2) (2.8)

fAW + 2f W
P P

+ 2fzWz = 4pf-X(*'*p - 4'V (2.9)

fV2* = fp*p + fz*z + P_1f2(wz^ - wp4>p (2.110)

fV2^' = + Ml + p"lf2(wp<i>z - wzop) (2.11)

where
,2 = a2 

ap2
32 

+ 2 + p 1 ap

a - a2 a2 -1 a
A " 2

9p
+ 2 ’ 

dZ
■ p a?

2.2 FIELD EQUATIONS FOR NULL KILLING VECTOR

Consider the possibility of one of the Killing vectors of the

metric (2.6) namely being null. In this case £ = 0 and

f = 2pM it can be seen that the electromagnetic field

in this case can be taken as null i.e:
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~ Mz • ~ ~ A(^p f A is constant

then

u = - pf’2f„ + f-1 , u = - pf_2f
p p z z

+ p 2f4{(-pf 2f + f x)2+ (-pf 2f )2}
p

= 2f{A2^2 + A2*'2 + *'2 + <t>;2}

+ fzz

n , r-2 , 2^-4^2.- 2pf f + f +pf f } p z

= 2f{ (1 + A2)*'2 + (1 + A2)<f>'2}
p z

fpp + £zz - P_lfp + fp“2=2{(l + A2)*-2

+ (i + a 2)*;2}

we have

f = 2pM , f = 2M + 2pl4 , f = 2M + 2M + 2pM_ H P P ' PP P P PP

4Mp

= 2{ (1

f2 = 2PMz f = 2pM „zz zz

2pMpp + 2PMZZ

A2)<f^2 + (1

p 1(2M + 2pMp)+ 2pM p 2

+ A2)*;2}

+

+

r

2(pMpp + Mp + PMZZ)= 2(1 + A2) {<t>(;2+ <t>^2}

pM + M + pM =k{<f>'2 + <f>'2} (2.13)
pp p zz Yp Tz
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Similarly, putting the relation (2.12) in (2,9) we get the 

relation (2.13).

From Equation (2.10), using.relation (2.12) and putting

A = - 1 we can write:

*pp+ *zz = 0 <2-14’

Similarly, from Equation(2.11) we also get the same as (2.14).

Secondly, the field equations yield the following two equa-

tions for y, the consistency of which is guaranteed by

(2.8 - 2.11) :

-1 1 -2 2 2 -1 2 2*p = - f fp + V P(fp - fz> + 2Pf << -

+ <P'z ~ <t^2) + | P_1f2(“2 - «>p) (2-15)

pz = - f_1fz + Pf’2fpfz - 4Pf-1(*p*z + *■*■)

- P_1f2w 0) (2.16)
P z

From Equation (2.15) as 0 0Z = from (2.12)

as A = - 1:
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In this way

The metric (2.6) can be reduced as: 

ds2 = f(dt - 2 d<t>)2 - 2- d<f>2 - ep(dp2 + dz2)

= f(dt2 - 2dt | d0 + d(f)2) - I2 d<j)2 - ep(dp2 + dz2)

= fdt2 - 2 pdtd<|) - e^(dP2 + dz2)

= fdt2 - 2p dtdcj) - p" (dp2 + dz2) (2.17)

In this chapter I find a class of exact and explicit solutions 

of the Einstein-Maxwell, equations admitting a null Killing 

vector and null electromagnetic field as given in the book 

by Kramer et al (1980) (p 233), Equations (21.34), (21.35); 

see also Boachie and Islam (1983). The metric is given as 

follows:

ds2 = 2p du(dv + Mdu)- p 2 (dp2 + dz2) (2.18)

This is the same as (2.17) with f = 2pM, u = t and v = - 0

M is a function of p and z satisfying the following equation

(a is a constant and a subscript represents differentiation 

with respect to the corresponding variable):
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pMpp + Mp + PM2Z = a(z2 + 2-2) (219)

where E is related to the electromagnetic potential and 

satisfies:

£pp + Sz = 0 <2-20)

Considering some motivation for finding exact solutions of the 

system (2.19) and (2.20), it is always useful to have exact 

and explicit solutions of the Einstein or the Einstein- 

Maxwell equations for studying their physical interpretation 

and for comparison with other known solutions. For the system 

given by (2.19) and (2.20), it is easy enough to find a solu-

tion of (2.20) - one has only to take the real or imaginary 

part of any analytic function of (p + iz).

However, as one sees from the case:

E = log(p2 + z2) (2.21)

which satisfies (2.20), and yields for (2.19) the equation

pM + M + pM = 4a(p2.+ z2)"1 (2.22)
p p p z z

that a solution to (2.20) often leads to a form of (2.19) (such 

as (2.22)) which is difficult to solve explicitly. In this 

chapter we have found a class of solutions to (2.20) and some 

other solutions which lead to forms of (2.19) which we have 

solved exactly and explicitly.

Another motivation for studying this problem is connected with 

an earlier paper, Boachie and Islam (1983), in which was 

considered a solution of (2.19) and (2.20) independent of z 
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which was called s. Then a cylindrically symmetric interior 

solution for rotating charged dust found earlier, Islam (1978) 

was considered which depended on a parameter a and which was 

called s(a). It was then shown that as a tends to zero, the 

interior solution tends to s, i.e s(0) = s. Although this 

does not imply matching of the interior and exterior solutions, 

it is nevertheless of some interest to have this kind of rela-

tion as the vast majority of exterior solutions of the Einstein 

and Einstein-Maxwell equations have no connection whatever to 

any known interior solutions. It is possible that a similar 

connection may exist between the explicit solution found in 

this chapter (which, unlike the solution considered in Boachie 

and Islam (1983) depend on both p and z) and some of the 

known p and z dependent interior solutions of the Einstein- 

Maxwell equations Islam (1977) . For this possible connec-

tion to be established it is useful to have the explicit 

solutions of this chapter.

2.3 THE NEW SOLUTIONS

If u + iv = f(p + iz) real and imaginary parts satisfy:

u 
pp

+ u = 0zz V + Vp p z z = 0

and u = v , u p z z = - V
p

the Cauchy-Riemann equations •

9 2 2 + 2ipz, 2 2• • f = (p + iz) = p - z u = p - Z , V =

U + u = 0, V + V = 0, u = v and u = - vpp zz pp zz P z z p
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Consider solutions of (2.20) given by the following two 

expressions:

E = p2 - z2 or E = 2pz (2.23)

both of which lead to the same of (2.18) , namely:

PM?? + Mp + pMzz = + I2) =4a(p2 + z2) (2.24)

By assuming M to be a cubic in p and z, as:

M = Ap3 + Bp2z + Cpz2 + Dz3 (2.25)

M = 3Ap2 + 2Bpz + C z2 , M = 6Ap + 2Bz
P pp

2 2M = Bp + 2Cpz + 3Dz , M = 2Cp + 6Dzz z z

putting these values in (2.24):

p(6Ap + 2Bz) + 3Ap2 + 2Bpz + Cz2 + p(2Cp + 6Dz) = 4a (p2 + z2)

or p2(9A + 2C) + pz(4B + 6D) + Cz2 = 4a(p2 + z2)

Equating the coefficients, M can be written as

M = 4ap (- p2 + z2) + B(p2z - z3 )

This can be written as

M = 4ap(- | p2 + z2)

(2.26)

(2.27)

In (2.27) we have ignored a term, as we will do throughout, 

which does not vanish as a tends to zero, that is, we will 

not include solutions of (2.19) in which the right hand 

side is zero.
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In fact when E is zero the solution reduces to the pure
5?-

Einstein Van-Stockum exterior solution, Van-Stockum (19?^ 

see also Islam (1985), Section (2.6) and Lewis (1932).

If f = (p + iz)3, then real and imaginary parts are:

3 2 3p - 3pz and 3pz - z respectively.

Considering solutions of (2.20) given by the following two 

expressions:

v 3 o 2 E = p - 3pz or E = 3pz - z3 (2.28)

= 3p2 - 3z2 , S = 6p, 2, = -6pz, E = - 6p
p r pp z r ' z z K

. • . E + E =0 pp zz

v2 2 2 _ 2.2 _ 2 n/ 2 , 2.2E + E = (3p - 3z ) . + (-6pz) = 9(p + z )p z

both of Equations (2.28) which lead to the same form of

(2.18) namely,

2 9 2= 9a(p + zz)z (2.29)

By assuming M to be a fifth order of p and z as:

5 4 32 23 4 5M = Ap + Bp z + Cp z + Dp z + Epz + Fz

M =2OAp3 + 12Bp2z + 6Cpz2 + 2Dz3

M = Bp4 + 2Cp3z + 3Dp2z2 + 4Epz3 + 5Fz4 
z
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M = 2Cp3 + 6Dp2z + 12Epz2 + 2OFz3
Zu zS

putting these values in (2.29):

p(2OAp3 + 12Bp2z + 6Cpz2 + 2Dz3) + 5Ap4

+ 4Bp3z + 3Cp2z2 + 2Dpz3 + Ez4

+ p(2Cp3 + 6Dp2z + 12Epz2 + 2OFz3) = 9a(p2 + z2)2

p4(25A + 2C) + p3z(16B + 6D) + p2z2(9C + 12E)

+ pz3(4D + 20F) + Ez4 = 9a(p4 + 2p2z2 + z4)

Equating the coefficients and putting the values of the

constants.

M 29 5 , / 3 4 2 2 1 4X 3 2 « 4M = Z5 ap + Dz(- g p + p z - - z )- 10 ap z + 9apz

,29 4 -,^2 2, „ 4 x ^,34 2 2 1 4,= ap^ p - 10 p z + 9z )+ Dz(- g p + P' z -’5 Z ’

This can be written as:

29 4 22 4M = ap(jj P4 - 10 p z + 9z ) (2.31)

In (2.31) we have ignored a term, which does not vanish, 

as a tends to zero.
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2.4 A CLASS OF SOLUTIONS

If we define functions E* and E" by

E' + iE" = f (?) , <; = p + iz (2.32)

where f(£) is an analytic function of £, then clearly E' and

E" satisfy (2.20), because of the Cauchy-Riemann equations.

For these same equations it also follows that:

E»2 + 2’2 —
p z p z (2.33)

where the left hand side stands for modulus squared. Clearly 

the solution given by (2.23) and (2.27) corresponds to
2

f(C) = C • Consider now the solution given by:

f(£) = Cn+1 = (p + iz)n+1 = E' + iE" (2.34)

where n is a positive integer. The exact expressions for

E* and E" can easily be obtained from (2.34) by binomial

expansion. From (2.33) it follows that:

S,2 + s '2 = e "2 + £"2 = (n+l) 2| (p + iz)n|2
p z p z

= (n+l)2 (p2 + z2)n (2.35)

The corresponding form of (2.19) is as follows:

pM + M + pM = ot(n+l)2 (p2 + z2)n (2.36)
p p p z z

We proceed to solve (2.36). Assume M to be given by a poly-

nomial in p and z of degree 2n+l, as follows:
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M =
n
E

r=o 
2n-2r+l (2.37)

where the are constants. Substituting in (2.36) and 

equating coefficients, we find the following recurrence 

relation for M :r

(2n - 2r + 1) + (2r + 2) (2r + l)Mr+^

= a (n + l)2(ncr) (2.38) 

where ncr = n!/r!(n - r) ! . One can obtain a solution to 

(2.38) by iterating to get the’following expression: .

Mr+1 = a(n+ 1) 2{ncr /[(2r +2) (2r + 1)]

. . . (2n - 2r + 2k -

. . . (2r - 2k + 1)] } (2.39)

In the Appendix it is shown that (2.39) constitutes a solution 

of (2.38). Thus an exact solution of the system (2.19) and 

(2.20) is given by (2.34) , (2.3 7) and (2.39). One may be able 

to get a closed expression for the right hand side of (2.39) 

in terms of n and r, but we have not looked for this.
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2.5 SOME OTHER SOLUTIONS

Consider the form of f(£) given by:

f(C) = aC3 + M2 (2.40)

where a and b are real constants. The corresponding S’ and

E" are:

E’ = ap^ - 3apz2 + bp2 - bz2, E" = 3ap2z - az3 + 2bpz (2.41)

and the related form of (2.19) is given as follows:

pM + M + pM = a{4(3apz + bz)2
pp p zz K

+ (3ap2 - 3az2 + 2bp)2} (2.42)

Again assuming for M a suitable polynomial, one can get the 

following solution to (2.42): .

M = a2ap (|-| p4 - 10 p2z2 + 9z4)+ aba (-| p4 + z4)

+ b2ap (- | P2 + 4z2) (2.43)

This reduces to (2.27) when a = o, b = 1.

Consider now f given by ^e^, leading to

E' = ep(p cosz - z sinz), E" = ep(p sinz+ zcosz) (2.44)

and to the following form for (2.19):

pM + M + pM = a e2p{(p + l)2 + z2}
pp p zz (2.45)
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we now assume M to be of the form h(p) + g(p)z . Then substi-

tution into (2.45) yields coupled ordinary differential 

equations which can readily be solved to give the following 

expressions for h and g.

~ “ ^* 2P2- Dg + Tg ae2pp

In this Appendix we establish (2.39). We write the expressions 

for M and M in detail, as follows:r+1 r '

Mr+1 = a(n+l)2{ncr /[(2r+2) (2r+l)]

- ncr-l(2n_2r+1) 2/[(2r+2) ... (2r-l)]

+ ncr_2(2n-2r+l)2(2n-2r+3)2/;[(2r+2) ... (2r-3)J ...

+ (-l)n_1 nC1(2n-2r+l) 2 ... (2n-3)2/ [ (2r+2) ... 3]} (Al)

Mr = a (n+1) 2{ncr_1. /[ (2r) (2r-l) |

- ncr_2(2n-2r+3)2 /[2r ... (2r-3)]

+ ncr_3(2n-2r+3)2(2n-2r+5)2 /[2r ... (2r-5)] ...

+ (-l)r“2 nc1 (2n-2r+3) 2 ... (2n-3)2/[2r ... 3]} (A2)

2
If we now form the expression (2r+2)(2r+l)Mr+^ + (2n-2r+l) 

with the use of (Al) and (A2), it is readily seen that only
2

the first term in this’expression, namely a cr(n+l)

(2.46)

APPENDIX
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survives while all the other terms cancel alternatively.

For example, the term arising from the second term in (Al) 

cancels with that arising from the first term in (A2), and 

so on. This proves that (2.39) satisfies (2.38).



37

CHAPTER 3

SOME RESULTS ON DIFFERENTIAL ROTATION

3.1 INTRODUCTION

In this chapter we will calculate the shear and rotation for 

the interior solution of differentially rotating fluid. This 

section is based essentially on the work of Winicour (1975), 

(see also Chapter 4 of Islam (1985)). As mentioned in (1.2), 

when the pressure is zero there is no energy of the matter 

due to the random motion of the particles and so the mass-

energy density consists of only the density of the particles 

which is mn, where m is the mass of each particle and n is 

the number density of the particles.

Thus in this case:

TpV = rm uV (3.1)

Einstein’s Equations (1.35) are given by:

(3.2)

Because the divergence of the left hand side vanishes, we get:

0 (3.3)

0 is just the condition of the conservation of

matter so that we get (with (1.3)): 

,2 p , o
u,J uv = + ru

-j o .. \)dx dx
;v .2 vo ds dsds

(3.4)0
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which is the geodesic equation so that particles of the dust 

follow geodesics.

The general rotating metric given r>y (1.29). Setting

the components of the four-

velocity of the rotating dust are:

dt 
ds

2 -^^2
(f - 2Qk - Q £)

(3.5)
3 _ d(j) _ d0 dt 

U “ ds “ dt ds

We envisage that dust to be rotating about z-axis (the axis 

of symmetry) with angular velocity Q whicn is in general a 

function of p and z.

It is more convenient to consider

V = 871 mn (upuv - j gyv)

the following form of (3.2)

(3.6)

In the metric (1.29) three of the field equations can be writ-

ten as follows:

2ePD 1R
oo

(D~lfp’p + (D 1f ) +
z' z

D 3fS

= 8iTmn D 1eP(f - 2Qk - &2£) 1[2Qk(-f + Qk)

+ f(f + Q2£)J (3.7a)

- 2ePD_1Ro3 = (D_lkp)p+ 'A’z + D’3kZ

= 8nmn D_1eP(f - 2Qk - Q2£)_1(fk + 2Qf£ - Q2k£) (3.7b)
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- 2ePD = (D 1£ ) + (D ) + D 3£E
j  j  p p z z

= - 8iTmn D_1eP(f - 2Qk - Q2£)_1(f£ + 2k2

+ 2Qk£ + Q2£2) (3.7c )

where D2 = £f + k2 and S = £ f + £ f +k2+k2
p p z z p z

An important combination of (3.7, a, b, c) is the following:

eyD 1(£R - 2kR q - fR_q)
oo o3 33 zz (3.8)+ D = 0

we can therefore follow the usual procedure to derive the

relation between f, k and £:

2 2 £f + k = p (3.9)

The geodesic Equations (3.4) imply the following two

equations:

(3.10a)

(3.10b)

The equations are valid for Q as a function of p and z, so 

that we can have differential rotation. We transform to F, 

K, L given by:

L = £, K = k + F = f - 2Qk - Q2Z (3.11)

For constant Q, this amounts to transforming to a rotating 

coordinate system.
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In the case of axisymmetric differential rotation fl is a 

function of p and z. Equations (3.7a, b, c), (3.8), (3.9)

and (3.10a, b) are all valid in this case, with fl = fl(p, z). 

We again transform to the new function L, K, F given as

(3.11) but now these functions no longer refer to a rotating 

coordinate system since fl is not constant. From (3.10a, b) 

we get:

F +
P

2fl k
P

= 0 (3.12a)

F + z 2flzk = 0 (3.12b)

from which it follows that:

= 0fl F 
P

- fl F z p (3.13)

which implies that F is a function of fl,

F = F(fl) (3.14)

Equations (3.12a, b) and (3.14) then imply that K is also a

function of fl given by:

F* = - 2K. (3.15)

where the prime denotes differentiation with respect to fl.

Only two of (3.7a, b, c) are independent. From these equations 

one can derive the following equation:

KAF - FAK + 4K(K fl + K fl )- 2KL(fl2 + fl2)
p p z z p z

+ (2K2 + LF) Afl + 2F(L fl + L fl ) =
p p z z (3.16)

z

0
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2 2 with the use of FL + K = p and identity

AF = F'AQ + F"(fi2
P

+ Q2)
z (3.17)

and similar identities for K, (3.16) can be written as 

follows:

(KF* - FK* + p2 + K2)AQ

+ Tr F"- FK"- F_1F’(p2- K2)] (Q2 +Q2)+ 4p Q = 0 (3.18)
* p z p

Let us now assume that the function Q is given implicit^ by
2

E, satisfying A£ = 0 and p as follows:

(3.19)

and let 1= (|f) n.= constant, C = (||) p= constant (3.20) 

Then E, = t:+
P P

E, = i’ + 2£Q + E>"Q? + E.'^
SPP s s P s P PP

E, = £"Q2 +
bzz z zz

The equation A£ = 0 can then be written as:

A£ = £’AQ + (Q2 + Q2)+ 2£’Q + £ - p-1i = 0
P z P

Compare (3.22) with (3.18) multiplied by F \ For these two 

equations to coincide we must have:

E,' = F_1(KF’ - FK’ + p2 + K2)

(3.

(3.21b)

(3.21c)

(3.22)

(3.23a)
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= F 1 (KF" - FK" - F 1F'(p2 - K2))

25 = 4pF_1

i’ - r1? = 0

(3.23b)

(3.23c)

(3.23d)

It is readily verified that (3.23a, b, c, d) are satisfied by

the following:

(3.24)

7
which gives Q implicitly as a function of p and E,. The solu-

tion involves one arbitrary function, which can be taken as 

F(Q) or Q(F). The function K is then determined by (3.15) and
2

Q is then given as a function of p and by (3.24). This 

solution was first obtained by Winicour (1975). The corres-

ponding function p can be obtained from the following two 

relations:

*11 R22 = + I P’XS + KP " FzLz " Kz

0 (3.25a)

*12
= i p 1u +i p 2Ff „L„ + FL + 2K K

2 H Rz 4 H L p z zp p z + 2(KLz

and

+ 2 (KL - LK ) Q + 2L2Q Q 1 
p p z p zJ (3.25b)

the number density can be obtained from the following

LK ) Q 
z P

0

equation, which is derived from (3.7a,

8iTmn e^ = + Q2)
z

+ 2F 1KAQ + p 2E (3.26)
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where S = F L +FL + K2 + K2 + 2Q (KL - LK )

d0 n o 
= di = Qu

pp zz p z PP P

+ 2Q (KL - LK ) + L2(Q2 + Q2) (3.27)
z z z p z

3.2 THE SHEAR TENSOR FOR DIFFERENTIAL ROTATION

The non-zero members of the Christoffel symbols can be calcu-

lated from the metric (1.29) using the relation (1.30).

The expansion is u^
;a

where

u11 3uP
;v

, + rp (3.28)

setting (x°, x\ x2, x3) = (t, p,

the four-velocity of the rotating dust are:

o dt u _ ds (f - 2fik Q2£)
-^2 2

u = 0,, u1

3 u (3.29)

where Q is the angular velocity., a function of p and z. Here

the expansion vanishes identically.

The rotation and shear tensors are given by:

U) pv
=4(u p;v

uv ;p
* - (3.30)

= 7(u p;v ++ uv ;p ) - u uP V UVUu’

3 (gpv u u )P v'
ua

;a

♦
where u^ = u U° ,

P ;a UP ;v
3u

P
9xv p\)UCJ
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(Misner et al (1973), (p 566), where, however, there are some

differences in sign since for them 1 while for us

a considerable amount of manipulation, it can

be shown that the non-zero values are:

U) T ol
2 -1Z2

(kpQ + kQp)}(f - 2Qk - Qz£)

X{fp (2S2 + 2Qk )
p p

(2f2S2p£ + S2S.p) }]

+ |[{" 7 P 2<£f + kkJ (f - kfi)+ | p 2(fk + kf ) (k + W) }
z z p p P P

+ {- | p—2(k£p - £k ) (f - kSJ)

3 /
+ | p"2 (f£p + kkp) (k + W) }Q]x (f - kQ) (f - 2Qk - Q2£)" 2

%1 = W10

co = “ (k + kQ )}(f - 2Qk - Q2£)“
o z z z z z

3 /- i(f - kQ) (f - 2Qk - Q2£)“ 2 x {f - (2Q + 2Qk )
z z z z

- (2flflz£ +Q2Jlz)}]+ i[{- | p-2 (£fz +kkz) (f - kQ)

+ 4 p"2 (fk - kf ) (k + JU!) }+{- 4 P_2(k£ - £k ) (f - kfi)
z z z z z z

1 -7 7 -3/2
+ 4 p (f«, + kk ) (k + W) }fi]x(f - k£2) (f - 2Sk - Q Z)z z z

%2 = " W20
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1 9 _-*-/9
W13 = " IK " {kp + (£pQ + " 2Qk " Q

3 /
+ i(k + W) (f - 2Qk - Q2£) " 2 x {f - (2Q k + 2Qk )

2 p p p

- (2QQp£ + Q2£p)}'J | p“2(£fp + kkp) (f - kfi)

9 -16
x (f - 2Qk - Qz£)

2 -1/2
+ |p"2(fk -kf ) (k + W) (f - 2Qk - }

p p

2 —^4
X (f - 2flk - SI St,)

1 ? 2 -V2
+ {- | P (ki - Jlkp) (f-kft) (f - 2Kk -flz5.)'

+ | p“2(f£p +kkp) (k + W) (f - 2Qk - Q2£)" }

2 2 -1/2
x Q(f - 2Qk - Qz£) z J {- (k + W) (f - 2Qk - Qz£) z }

" iRk + (£ Q + W„) } (f - 2Qk - Q2£)
Z. *■ Z Z Zj

+ •i(k + W) (f - 2Qk - Q2£) x {f - (2Q k + 2Qk )z z z

- (2QQ £ + Q2£ ) }]- -^-R- i p 2(£f + kk)(f-kQ)
z z z z z z

2 -1Z2
x (f - 2Qk - Qz£) z

+ p"2 (f£z - kfz) (k + W) (f - 2Qk - Q2£) “ (f - 2Qk - Q2£)

+ {- | p“2(k£ -£k ) (f - kQ) (f - 2Qk - Q2£)“
z z z

+ | p"2 (f£ + kk ) (k + W)
z z z
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o _l/9 ? _l/9
x (f-2Qk-Q £) }Q(f-2Qk-Q £) J^_(k

2 -1Z2
+ W) (f - 2Qk - Q £) }

2 -3/2
+ W) (f - kQ) (f - 2Qk - Q £)

2 -1Z2
- k(f - 2Qk - Q £) }Qp

o 1 ol a10

%2
= |{(k + W)(f - kfl)(f - 2Qk - Q2£)“

2 -1Z2
- k(f - 2Qk - Qz£) z }Q z

%2 a20

°13
1 2 -1Z2

= {- ± £(f - 2Qk - £T£) z

3 /- |(k + W) 2 (f - 2Qk - Q2£)" 2 }fip

°13 = G31

a23
= {- | £(f - 2Qk - Q2£)“ 72

3 /- |(k + W)2(f - 2Qk - Q2£)“ 2 }Q
z z

°23 C32

The other components are zero. It is evident from these

expressions that the shear vanishes when the rotation is rigid 



i.e when Q = constant, as expected. One of the objects of 

this chapter is to derive expressions for the shear which 

makes this property, evident. We have also calculated the 

rotation-tensor in detail but we do not give these here as’ 

these expressions are cumbersome and not instructive.

3.3 AN EXPLICIT SOLUTION

2
Substituting F = aQ in the Equation (3.24) we have:

F' = 2aQ =-2k  K = - aQ, K' = - a

+ p2 + K2)dQ

= i Q”2(- aQ x 2aQ + aQ2 x a + p2 + a2Q2)dQ 
a

■
1 2 n-2,n 1 2 n-l= — p Q dQ = - — p Q a a

r 1“2 n-l n 1 “2r-l
a a

„ 1 4r-2 v r-l 2 , -2-2 ..F = - P £ , K = £ p , L = a(p C “I)

%=- 1 pV2ez (A)

f p = |<4 p3r2 - 2p4r3ep). f z = -1 P4r\

-1-22 2 -2K = 2p£ - e P C , K = - p E, Z

Lp = a(- 2P"352 + 2p~2E5p) , L% = 2a P_2UZ 
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Using the above values we can calculate the non-zero 

Christoffel symbols, to calculate the expansion, shear and 

rotations. Here the expansion is zero. After a considerable 

amount of manipulation, it can be shown that:
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CHAPTER 4

KILLING VECTORS OF A

SOLUTION OF EINSTEIN-MAXWELL EQUATIONS

4.. 1 INTRODUCTION

Islam (1980, 1983) found an exact cylindrically symmetric 

stationary global solution of the Einstein-Maxwell equations 

representing rigidly rotating charged dust. By a global solu-

tion is meant a combination of interior and exterior solutions 

which match smoothly at the boundary of the matter distribution. 

Global solutions either of the pure Einstein or the Einstein- 

Maxwell equations are very rare and Islam's solution is of 

considerable importance. This solution Islam (198.0, 1983) has 

been studied by Vanden Bergh and Wils (1985) who find that 

the interior solution is regular on the axis of symmetry. 

However, there are some peculiar features of the solution for 

which it is necessary to study the curvature invariants and 

Killing vectors. The curvature invariants will be discussed 

in Chapter 5; in this chapter we find Killing vectors for the 

global solution and give an argument, following Bonnor (1980) 

to show that there are no hypersurface-orthogonal (HSO)

Killing vectors so that the solution is stationary and not 

static.

4.2 INTERIOR SOLUTION

We use the solutions of Islam (1980, 1983). The metric is 

given by:
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ds2 = fdt2 - 2k d0dt - £d02 - ep(dp2 + dz2) (4.1)

Here, f, k, £ and p are functions of p only.

The interior solution is as follows (see Sections 3, 4 of

Islam (1983):

2 a
2 °

(P------- n
« - . 45

P4)

K — —
% P2

■F — r -j- n o
2£ + up 2

r 2£ P ' s • 1P

-m2/ 2
;ep = a(£ + HP2) q

-2/3 4/ 4/9 , 2 ^2 2 2/3
a = e a PO X' 4q = 3m , 3 apo

n
-46 

po Ko
3a_ o
4(j2

2 6
po

2 2 2/3
8cT = 27az p 

o Ho r a .ko o
2
9

(4.2)

Here ko' Po' X are constants and p = p is the *o

boundary, with m, q the mass and charge (in relativistic

units) respectively, of the particles. The non-zero

Christoffel symbols are given by:

(with t, p, z, 0 = x°, x

£f + kk )P P

4
3 p



Similarly

r1
22

1
’ 2 ^p

4p
2 2 2p| + p2

p2
' 12

1
= 2 %

4 p
n 2 , 2
2po + p

Aol
1

2
-2

P (fkp kfp>
1 ^2
2 P

r1
33

1
2 e

P

26pe

34/9 \ I2Xp <3 %18p

d-12^ - 4po>
26 + 1 P2 ' \ 2/3

4/3
PQ3

r3
13

1 -2,t 1= 2 p (kkp + fV
p~^2Po

<2po

1
3 

+ P2)

p2)

4.3 KILLING VECTORS FOR THE SOLUTION

The Killing equation is ~ 0

where £
P <«o' q, 52,53) ^p ;v

35 a_p - rA 6
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The non-zero and distinct equations from which we can find

the values of £
P

are given below:

p = 0, v 0 ^o;o
35—° - (r° 5
3x°

1 2 + r e, + r + ' oo 1 oo 2
r3 5,) 
oo 3

0 - (0 + 1 e"pf
2 e Z p + O + 0) - A e_pf 5

2 ppl

’ ’ ^o;o + ^o;o e Pf
pl

leading to

p = 1, v

o - (0

23 pae

q = o

2/3

2/ ^1;2

+ 0 4

^2-1 = “4

a^2
9p

‘ " h;2+ ^2;1

i r 8
log $2= - -j

.2 2/3
(3 po +

ax2

1
3

2

4/3
po

41^0 + r51^1 + r21^2

pp^2 + 0) = ’ I P

<ri2Co

(4.4)

(4.5)

+ r2153>

P^2

rLh + ri2S2 *ri2?3>

1
2

r

pp^2

3£2
3p“ PpS2 =

^2
^2

= ppdP

8
3 p 

---- --------- 2 dP (4.6) 
2po + p

p
O 2 -L 2 2po + p

dp = 8
3

1
2

__ 2p____ jp
2 2

J2po + p

- log(2p2 + p2) + logc



53

o 7 n 7 _4/n
log(2pQ + p ) + logc = logc(2pQ + p ) (4.7)

••• ?2 = c <2p1 2.-4/3 
+ P ) (4.8)

where C is any constant.

p = o, v= 1, 5O;1 = -(r?0So + + ri0S2 + riOS3>

3?o
ap

'r^o+°+0 + r3053)= _ (r°oCo + r3o?3>

Cl;o
3 Si

3x°
(r° e + r1^, + r2 + r3,^)

01 o ol^l ol2 ol 3

o - (r° 5
01^0 + 0+0 + rol?3’ (r°e 

ol^o
+ rll«3>

5o;l + 5l;o
3?o
ap

-(2r°,£ 
ol^o

+ 2rli53> 0 (4.9);

3?o
ap 2% +

P
“2
P

+
aQ
P~ 53 = 0,

35 
aoS3=P(-^ +

95
P _ o

9p
+

8 2
3 P 

2p2 +
Ho

P2 ?O

^3
1
ao

_ p 5°
9p

+
8

.3

2% +

2
P
“2
P

(4.10)

^3
3p

1
ao

3«o
ap P

3\

a 29p
+

32
3

+
8 2
3 p

2 2 
(2Pq +p )

3?o
ap (4.11)



54

0 (8) (4.15)
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2putting x = p , Vx p /
a_ = a_ 9x
8p 3x 3/x

1. / 
ax 7

a /x
3x

1
/x 2/x a

3x

a
2 ax

putting the above

a2
+ 4x ----~

ax

= k +
a2

2/S
ax

values in Equation (4.15)

9C
2 —ax +

9\
4x —?

3xZ
8x2 /x ___ ______

/x ' 3X 3(2p2
+ x) 2

0

92^
o 2

3x2 3(2p2 + x) 2 O

or 3(2p2 + x)2 ax2 2?o O (4.17)

putting z = 2p1 + x, dz = dx,
de de o so
dx dz

dz 
dx

d5o
dz

d2e
so

dx2

d2?
so

dz2 (4.18), '

So Equation (4.17) becomes

32C
3z2 _12 _ 25o = 0

3z2
(4.19)

Again putting z = e^ dP
• ’• «? = 1O9Z ’ d£

1
z

de de
dz dp

dP = 1 
dz z

d£ o
dp



5-6

d
_ d (i 9o. 

dz K z dp
1 d£so . 1 dp d

z dz dp2dz2 2 z dp

1 d25
- 2< 2° 

z dp

d£o.
dp (4.20)

putting the above values in (4.19) we get:

3 3p

where D is operator (4.21.).*. (3D2 - 3D - 2)= 0

>3 +/33,n /o 2-2. ,3 -/33. n 2 , 2.= A e<—5"-----Hog(2p0 + p ) + Be (—g— )log(2po + p )

. where A and B are constants.
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4.4 PROOF OF THE STATIONARY NATURE OF THE SOLUTION

We have only found the above Killing vector and three others 

given by:

Z1 = 6* , e1 = 63 , t1 = 6^ (4.25)

We assume that these are the only linearly independent Killing 

vectors. Following Bonnor (1980) we find the most general 

Killing vector, which can be written as:

X1 = P«1 + q<$3 + S6* + WY1 (4.26)

where Y1 is given by Y1 = (£ , 0, ?2, ?3) with £ , ?2, $3 

represented by Equations (4.22, (4.8) and (4.24) respectively 

where p, q, s and w are real constants.

A necessary condition for this to be HSO is that

X r -X -1 = 0
(4.27)

where the comma means partial differentiation and square 

brackets mean antisymmetrisation. Taking i,. j, k respec-

tively equal to 1, 2, 3. we at once find w = o in all cases.

Again following Bonnor (1980), comparing i, j, k = 1, 2, 3 

and i, j, k=i, 2, Owe find that either P = 0 or 

(e^1) 1 _ q£ * + sk* _ gk1 - sf1 .
” q£ + sk _ qk - sf ' 

where the prime means which can be satisfied only if 

q = s = 0. In the latter cases (14) reduces to y1 - pS^, 

which is orthogonal to the hypersurfaces z = constant, but 
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space ..like and so of no interest here. We therefore take

P = 0

Putting i, j, k = 2, 3, Oin (4.27) gives us:

q2(£k* - £'k) + qs(£'f - £f’) + s2(fk - kf') = 0 (4.29)

since £k’ - £'k 0, (s = 0, q f 0) does not lead to an HSO

Killing vector, and we may write (4.29) as:

x2(£k' - £’k) + x(£’f - £f’) + (fk’ - kf') = 0 (4.30) 

where x = q/s.

The square of the magnitude of the Killing vector (4.26) (with

P = 0) is:

qikX1Xk = S2(f - 2xk - x2t) (4.31)

There exist HSO Killing vectors with P = 0 only if the roots 

of (4.30) are real and independent of P; and they are time-like, 

null or space-like according to whether (4.31) is positive, 

zero or negative. We examine the interior case putting the 

values of interior solution in (4.30) and find that the roots 

are not independent of p. So there exist no HSO Killing 

vectors.



59

4.5 EXTERIOR SOLUTION AND KILLING VECTORS FOR IT

From Islam (1983) Sections 2, 4 exterior solution is given as:

£ ,5 p___
l3 a

9
4

2
ao 2 
A P 
a

k io
2/3 

op

f ap 26
r e P , 4/9

Xp exp (-
9 ,2 2/3
2 b ap ),

o
a

(-^2)
2bZ

^3
' PP

4
9

-1 ol2 1/3 
p - 3b ap

The non-zero Christoffel symbols are given by

r°i
ol

1
2

-2
P (£fp + kkp> = <1 -1

P

. 2
+ 3 a

4 a2 P )

r°13
1
2

-2
P (k£p

r1oo

o3

r1li

r i1 22

8
9

1
2

1
2

kop + 9
4

- *kp> = I 

a3
° p

a4

-2r 2 ao
p 3 T p

a

v3

76 }

-i/3

e"pf
P

1
2

2
3 ap

~4//9 9 2 2/3
Xp y exp(- ^ b op A

1
2 eA ~ 1

2
Xp

2ao 1/3 2 , 1/3
— p ~ 3 ko°P

~4^ 9 2 2/3
y exp(- 2 b ap

^p 2
9 P “1 3 i3- 2 b CP

-V3

1 p
2 P

2
= 9 p

-1 3 ,2 -1/3
+ 2 b aP
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r i33
1
2 e^£

P 9 i,2 2/3
2 b °p )

r212
1
2

PP 2
9

-1 3 ,2 1/3
p b aP

r3.ol
_ 1

2
p’2(fkp kfp> = -I

ao
P

r3113
I p_2(f% + .. . 1 -2,14

kkp> = 2 p 9~ P

2
3 %
2 2 CT .

5/3> 
p )

Putting the above non-zero values of Christoffel symbol to

the Killing equations we can find the values of E, for
P

exterior solution as given below:

p = O, v
3C

°' C°;o = aZ° (r° $
00^0 + r1 Cn + r2 Co + r3 CJoo 1 oo 2 oo 3

^o;o + 7-
go;o - e pf Ee p^l

leading to q = o

p = 1, v 2, ^1;2 9x2

^2-1 = —T

+ r21^3}

1
2

e~^fP^l

2 1/3
3 ap

(4.32)

<r2^o + r21«l + r1^2

1 p r
2 pS2

<ruV rL^+ ri2^2+ ri2«3> = 1 P r
2 P ^2

’ ’ ^1;2 + ^2;1
9Cn

- %^2 = 0 (4.33)
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4 -1 2 -1/3
pp = ’ 9 P - 3D ap

4 -1
9 p

4 -1 3 8
’ 9 P 2 ’ 27 '

4 -1
2 ~ a j 0 -MJ

= " 9 P ' 2 3 up
0

2 i /3 ao ly3
2 “2 p

0

1/3 2/3
J 4 > + p )

p2/32/3 9
0 PO

Equation (4.33) can be written as:

}+ C

where a is any constant.
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u = O, V = 1, ?o;1
. 35o . 

ax1

aco— „ —
9p

3?1
r̂ l;o 3x°

(riO^O + rio?l + riOS2 +riO53)

<r!oSo + ri0^3>

<rol5o + rol5l + rll?2 + rol?3>

3?o
or' 3p - 2. ,2 "! 3(9 p 4 ’

2 ao
2 a

_1/3 
P >?° - 2 . (- | 1T>e3 = 0

8?o 4 -1 3
a2

o „’V3 a
Z + — Co so p 3 = 0

ap - 9 p 2 . 2/ P
27 2 o
8 a o Po

Or' 3p ’
- A i(1

9 Pl

2/3 a
+ -t -t —) ? + — 5, - 02/ p 3 (4.35)

po

p = 1, v = 3

h 3
3p~

<2113% + 2ri353> o (4.36)
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d£, lfi 2/3
_3 + :____(2____
dp 81 aQp 2/ 

po

1
%
4/, 

P

2/3
1(11 _ 4 
p 9 9 2/3 J^3

po

O (4.38)

From Equation (4.35)
a o
P

+
de o
dp

1(1
9'p + P_____ )£

2/3
po

0

°r, aQ53 d5o 
p air + -|(1 +

24
p___
■2^ 
p
2/3
o

differentiating with respect to P

d^3 
ao dp

dgo
dp P

d\

dp2
4 

+ +
, -1/3
2 £____
3 2/,

P

)C +|(1 
^Z3 0 °
o

+
2/3

P

po

de
)— dp

or,
d^3
dp

2°
dp

d2t1-P — 
dp

8_
27

p____
2/3 

po

Z + S(1 +
^o y

Z/3
P_____ ■.

2A
po

-5-2} (4.39) 
dp

putting this equation in (4.39) we get:

% dp P s 2 27dp

-1/,P 3

Ho
+ 4(1 +

6 de
P___ )_2}2/3 J dp 1 
po

+ 1
p4/3

%
pp

>SO

- p y
24_ 1 p_____ . r_ _P____

9 2/ 1 1 a dp
P o

d5o + | • 1
ao

(1 +
2A

P__ 1
24

po

3
= 0

1
or' a-

o

d2e
o ,

P—2~ +
dp - 1 + l(1 +

24 
p___

24 
Po

) + (11 -k9
4
9

26
p____)}2/3 } 1

po
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s'11.

Equation (4.38) can be written as:

<15 2/3
a^3 1 14 4 p J .r _ 16
dp p l9 9 2/3 1 ^3 81 aQp

po

26 (p-_( 26
po

3
1 p__ 1

p4/3
Ho

(4.41)

putting the values
4/3

of 5q as p in (4.41)

. a53 1.14 _ 4
‘ ' dp p 9 9

26

po
16

81 ao

26 (p_( 26
po

1
46 p_
4/3

po

4 6)p J (4.42)

Integrating the above equation we can write:
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14/g
P"

. 2 6 +r p__
3 2/3

po

)

{- 16
81 ao

2/3

po

1
4/3 1/,

P 3Vp 

po

} e (log p
-14

9 +3
, 2/3
— —-------- )2/3 'dp 

po

-1_4
s3<»'’

2/3
2 P 

e3 2/3 
po

} =~
26 

______ (p-----  
81 a 1 2/o 

Opo3
{ 16 1 )p }

-14/9 |
x p e 26

po
dp

16
81 a o

»‘5/’ p-11/9 »1Z» 2
3

24
p

dp (4.43)

• r(-D= _ 16
’ ’ ^3 81 a

o

p14/9

2/j
2 P_ 

e3 2/3 
po

r "5/9
,p n-H/9_

po

1/c
) e

po

2
3
&

a»
po

pi4/9

exp (- P^_

po

-S/g
,P _ -11/9
'^7“ P
PO

P \ z■ -T^-)exP(3

2/3
! T7^>dP 

po

(4.44a)

In a similar way putting the values of as p 26 .m
Equation (4.41) we get:
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16__
aQ81

14/9
p r

-17/9
-------- P

po

-5/9 
p____

46 po
Here we have one pair of extra Killing vectors

4 = (S(1)
1 ’o ' °r E(1)) 

' ^(3)' (-4.45)

4 = (E(2) o, e2 E(2))
' ^(3) 1 (4.46)

The other Killing vectors are as in (4.4 7) so that the general

Killing vector can be written as (4.4.8)

Z1 = , e1 = , t1 = (4.-47)

X1 = P’<5^ + q'Sj + S'6° + + W2Yz etc. (4.48)

where p’, q’, S', , W2 are constants.

Using the necessary condition for this to be HSO x X = 0 
h/j q

in case of exterior solution we found that (just like Equation

(4.30))roots of the equations are not independent of p; so there

exist no HSO Killing vector.

Thus the global solution considered here is stationary and not 

static.
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CHAPTER 5

CURVATURE INVARIANTS FOR A

SOLUTION OF THE EINSTEIN-MAXWELL EQUATIONS

5.1 INTRODUCTION

In this chapter we shall work out all the independent 

curvature invariants of the global solution found by Islam 

(1983). As mentioned earlier, global solution of either 

the pure Einstein or Einstein-Maxwell equations are rare 

and it is worthwhile making a detailed study of global 

solutions as these give insight into the physical contents 

of general relativity.

As noted by Islam himself (1983), although the global 

solution is regular and well behaved for all finite values 

of the radial coordinate p, one of the curvature invariants 

goes to infinity as p tends to infinite and further, the 

spatial distance from any point with a finite value of p to 

p = <* along a line with constant angular coordinates is in 

fact finite. The physical significance of this is not 

clear. Partly with a view to clarifying the physical 

properties of this solution we work out all the curvature 

invariants here, of which there are nine,' we will also 

consider Petrov classification of the solution using these

invariants.
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The curvature invariants for a Riemannian space have been 

worked out by Witten (1959) in terms of spinors. He finds 

that when R = 0 in the pure gravitational field, there 

are four invariants, as follows:

R 
pupa

I, = Ao “6e B R'tJVptJ2 - pv a 6 per

7 _ t <5
J1 - R paR Y6R

ea$pcr
The invariants are mentioned explicitly by, e.g. Penrose 

(1960, p 333 (as reprinted by Kilmister 1973)), where his 

complex invariants I, J (with X = 0) are related to the 

above as follows:

1 = Pl + P2

J = Pl + p2
In the case of the electromagnetic field there are nine 

independent invariants which are all given in spinor form. 

We have not found a tensor form of these invariants in the 

literature so we devote the first part of this chapter to 

a brief discussion of spinors, with a view to using 

Witten's expressions in spinors form for the curvature 

invariants to derive their tensor form. This discussion 

of spinor is based mostly on Witten (1959) but the 
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expressions for the curvature invariant of the electromag-

netic field in tensor form, as far as we know, are new. 

There have been interesting discussion about spinors by 

Davis (1970), Penrose (1960) and Penrose and Rindler (1984).

5.2 CONNECTION BETWEEN TENSOR AND SPINOR

It is known that to each real tensor one can assign a spinor.

In this section we assign a spinor to the Riemann curvature 

tensor and find out what the symmetries of the tensor 

require of the assigned spinor, which turns out to be a 

unique spinor. We use a representation in which the g 

matrices are Hermitian, = g^a (bar denotes complex

conjugate) and define the spin matrices by:

(5.1)

The

gpq

are

Latin index in g%,gp'g 

or gPg and Greek indices

can be lowered or
, a(3 ,
by e , e ,

raised by

£a6 which 

numerical spinors invariant under spin transformation.

fundamental spinor is:antisymmetricThe

where

(5.2)

ea|3
o
1

-1

if 6
1,
2,

t

i

a
a
a
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Thus one can write

So that

(5.3)

(putting B = y = a)

Similarly it can be shown that

(5.4a)

(5.4b)

(5.4c)

The simplest way of seeing the connection between tensor 

in space-time and 2-spinors is through the observation 

that a second order Hermitian spinor A d)n* ,ap = and a vector

field are both determined by specifying four real functions. 

Thus one can uniquely connect these two quantities by a 

relation of the form:

(5.5)

Multiplying (5.5) and putting p = q it can be shown

that:

I
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The determinant invariant under

unimodular spin transformations. In

+ ix1, Xi2 =xil
4x

particular,

x2 + ix2

if one

X21 x2 - ix3 and X22
4 . 1

X - IX

, where XdB

, I'2(x )

,-K 2(x )

(x2,2

(S2)2

Thus, the invariant interval

, 3, 2 ,- (X ) +

2 _L
- (x ) +

, 4'2(x )

(X4)2

takes the form

♦ • ♦
i j 1 vaft„ 1 aft y<5 i igi.x x-» = _ X = _ e e» g^g^x.x.

(5.7a)‘

(5.7b)

(5.8)

which leads to Equation (5.1) if (5.8) is to be identically 

satisfied in x1. It is already implicit in (5.7a) and 

(5.7b) that there exists a simple connection between uni-

modular spin transformations and Lorentz transformation in 

space-time.

The more complicated Riemann tensor can be transformed in

the spinor form following Witten (1959) as:

. Aa8pvkXpoR = g «.g ' g • g • d) Hpqrs ^pak^qftX^rpp suer
(5.9)

The reality of Rpgrs requires

The antisymmetry relation RJ pqrs R pqrs imposes the

relation

• rf A * * * *
^aftpvkXpa _ _ ^ftapvXkp-a (5.10)
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(5.11)

So that

R
pars ^pak^qg A^rpp^svcr C4> aftpvkXpcr 4) ftapvXkpa

This can be written as:

<>*%*•

t > 1 . r kA, aftpvpcr .
bqrs 2 ^>ak^qft X^rpp^sw y

£a61pkXp.ayv j (5.12)

where it is defined:

(5.13)

ip is symmetric in the indices aft

So complex conjugate of Equation (5.13) is

2^aftpvpa = ^aftpv^Xpo + ^ftayvppo

and

2ipkXapvp = ^kXgp^yvy + ^Xkap^yvp

From Equation (5.14a):

(5.14a)

(5.14b)

• ’ * • W • s »
^aftyv^Xpo _ ^X ^aftyv^kpa _ 

k

— « • *
, aftyvkApcr
* ekX (5.15)

= <|“3uVpa +
* * I* r

^ftayv^Apoand 2^®^Pa

>•** 0 O 5 A

.aftyvkXpa . .ftayvkXpa
= * ekX + * ekX

similarly
< <* «- <w

kXpaaBpv + XkpaaBpv .
Y aft Y aft



From Equation (.5.9)

, . - . a^uvkXpcrx *(g ’iQoiQ'cf M ’ )^potk^qftA^rpp-svcr

g • g • g - g - (AaBpVkXpa}*
ypkayqXgyrppysovkv

gpkagqX8grppgsov

• * • f
kXpcrappv

= g > g -,g - g ■ 4,“®^kApa
^Pak^qgA rpp 3sw

Rpqrs

Rpqrs is real.

Similarly Rqprs can be written as:

R = a - a " a * a • A^pvkXpa
qprs ypakyp|3AyrpPgsw9

= 9 ^<3 "v9 ' 9 ' ^B^UvAkPO
3qg A^pak^rpp^suo’Y

(5.16)

= g g ■ g - g • (- J^kApa.
ypakyq£Ayrppysw1 J (5.17)

R pqrs (5.18)

.’. From (5.16) and (5.17)

• • *. «<••»»
^aftpvkXpcr _ _ ^gapvAkpu (5.19)
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(5.20)

From Equations (5.16), (5.17) and (5.18):

Rpqrs
= i g ,.g - g • g . Ba^AkPc

Using (5.14a), (5.14b) and (5.15) in (5.12) it can be

written as:

pqrs
a • a • a . a . {1 ekA(e x“Bpv?npa
gpakgqBAgrppgsval4 1

• • • -

+ < •.BauvgnptJi ' 1 .aB/.^.x^epvkXpa
4 ' <|>e9

+ e.-^®^Xkpa)}
(5.21)

From Equations (5.20) and (5.21) it follows that:

1 ,a8p\)£npa
2 te 1

* ♦ •»
^3apv^npo ^epvkxpp

+ e^*°^Akpa)} (4>
* * • •

a3pvkXpa -4)
* * < 0
ftayvAkPcT) (5.22)

+ +

Putting 1. a = 3, k = X 2. a = 3, k X 3. a f 3,
> •

k = X, -4. a f k f X. in all the four cases the above

equation is satisfied so that Equation (5.12) holds.

£kX^a3vpap^kX^a&iivpo + ea3lpkXpapv =

kXcrp vp (5.23)



1

(5.24)

Using (5.231 in Equation (5.12) we can write:

R pqrs
= I Vkgq6Xgrpp9S’Ga ek\^vpa _ ^BvpaP)

+ e“3(1pkXpapv_ ^kXapvp}

. nia3pv _ , aftpv^p, .aBvu PDefining 2ip H _ ip ■ P + ip Hp

and

where . aBpv .<p is
* <

symmetric in a3

and in pc. The Equation (5.24) can be written as

^qrs ^pctk^qgX^rpp^sva
ekAePcrip°t3p^ + e^ee^ipKXpa

+ ^V^B-pa + ga^pa^kXpv
(5.25)

1
4

Equality of (5.24) and (5.25) can be shown by putting 

y = v, p = a; p = v, p f a; p 4= v, p = a; p f v, P 4 a; 

in the (5.24) and (5.25) equations.

The symmetry requirement Rpqrs = Rrspq

Rpqrs “ Rprqs Rprsq ~ Rrpsq Rrspq
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(5.27)

£po a$pv

+ E^vea%pakA

+ e^ekVa(i6

Equation (5.27) is satisfied if and

_ _. .^yvaft ^ich conditions we now impose.

There is still one other restriction that the tensor

R , must satisfy before it can be considered a curvature

tensor. This is the cyclic constraint:

Rpqrs + Rprsq + Rpsqr (5.28)

Writing expression for Rpqrs, Rprsq, Rpsqr and adding up 

we set:

R +pqrs R prsq + Rpsqr 4 gpak^qgX 9ruPgsw[ekXe*’V^

++ ekMv®p0 +

+ ^kp^oX^apve ++ kP vLailaX 
s ■ e 0

+ +
a e * *

ko Xp.avBp e • ip • H + eaveBp^koXp

+ + e“kXp4>ko^'

Putting k = 2, X = 1, p = 2, o=lz a= 1,6=1, p = 1,

v = 1 in (5.29) we get Equation (5.28).
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Write (5.25) in the

qrs 4

R1vpqrs forms

. kA pn.agpv • a| pv.kApar ^,g * g - e e  H ip H + e e : W qBA^rpp^sw y T

Putting s = p and contracting, using also A=p=cr in the

expression we get:

Using the spinor relation:

g e pq cep £pqrs

i.e:

a

in the Equation (5.30) and putting r = q we get:

(5.31)

Contracting (5.31):

or R - 4 ®
Y 3 a

e|3p' £PP is anti-symmetric and is symmetric so

vanishes.

■ a 0
3 aR 4 (5.32)
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(5.33)Let s
pq

Using Equations(5.31) and (5.32) we get:

(5.34)

Equations (5.33) and (5.34) can be written as:

BP<3 = RPq - | 9PqR and = 9^9^“^

. •. R?q _ i gpqR p q .arkX
Vakg rX*

* *
Multiplying both sides by i g ^gj^7 and contracting

6 ppu _ 1
I - 4 (5.35)

,a£pv an expression for ip

double dual Rpgrs, of the Riemann

To obtain we have to define the

curvature tensor

R _1 _ „abcd
Pqrs - 4 gepqabecdrsR (5.36)

Now let E = R +pqrs pqrs

Defining the dual of it

£ 1 1/2 ab
E = n- g , E rspqrs 2 pqab

Epqrs iS PureiY imaginary if Epgrs is real, 

expression it can be readily seen that:

(5.37)

From the above
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(5.38)

Obviously any scalar invariant which can be constructed 

from and can be written, by use of (5.35) and

(5.38),  in terms of geometric tensors alone.

5.3 CURVATURE INVARIANTS IN TERMS OF SPINORS

The first and simplest curvature invariant corresponding

to the scalar curvature R is given by:

(5.39)

The following 

independent real invariants) can be constructed from

aione.

(5.40)

and Y ^pP“6ra8pvY per (5.41)

From the one can construct the three real invariants:

(5.42)

(5.43)

and (5.44)

The remaining six independent real invariants must be 

constructed from and in combination. These

invariants follow from the three complex independent 

invariants given by:



81

(5.45)

(5.46)

(5.47)

In the case of space filled with electromagnetic energy

the spinors are constrained to satisfy conditions:

(5.48)

For electromagnetic fields, invariant (5.39) vanishes. Of 

the three invariants (5.42), (5.43), 5.44), the first one

survives in the form (neglecting in the following constant 

factors):

(5-49)

Using relation such as:

1
2 (5.50)

One sees that the invariant (5.43) vanishes and (5.44) is 

expressed as the square of (5.49). The four real invariants 

of (5.40), (5.41) are unaffected by the change in the

controlling equation for Considering the three expres-

sions (5.45), (5.46), (5.47), the first two remain indepen-

dent and are expressed by:

(5.51)
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(5.52)

The third expression (5.47) becomes:

(5.53)

This is not independent, being the product of (5.49) and 

the complex conjugate of (5.51). Thus in the case of 

electromagnetic radiation there may in general be nine 

independent non-vanishing invariants; only one invariant 

must vanish; only nine of the remaining thirteen are 

independent.
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5.4 CURVATURE INVARIANTS INVOLVING F IN TENSOR FORMS------------------------------------------------------------- ,----------------------------------

The curvature invariants have been worked out in terms of 

spinors following the work of Witten. We have to work out the 

corresponding expressions in terms of tensors. As far as we 

are aware the invariants for the gravitational and electro-

magnetic fields have not been written down in terms of 

tensors. We will work out these tensor invariants expressions 

here. We will give a brief derivation for a typical case;

the other cases are similar and we will simply write down 

the result. We start with the expression for the electro-

magnetic field spinor in terms of the self-dual tensor

a) which is defined as
pq

0) = F + F
pq pq pq (5.54)

Here we have used Latin indices for tensors and Greek

indices for spinors:

1
8

1
8

(5.55)

(5.56)

Thus 1
64 (5.57)

With the use of the relations

+ (5.58)
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4and g e3pq ap £pqrs 6p (5.59)

One can reduce (5.57) to a scalar product of tensors

. This process is rather long and a much simpler 

method is to note that because of the invariant nature of 

the left hand side of (5.57) , the result must be a linear 

combination of

(5.60)

(5.61)

(5.62)

Because of the antisymmetry of vanishes and k2,

k^ are equal to within a sign. Thus in fact is

proportional to One can apply a similar reasoning

to all the other invariants worked out in terms of spinors 

and we finally obtain the following tensor expressions for 

the nine independent invariants in this case: the four 

invariants I^r J^, I2, J2 have already been written down 

earlier. The remaining five are as follows (we revert to 

Greek indices for tensors)

(5.63)

(5.64)



85

(5.65)

(5.66)

(5.67)

As is well know, in flat space the pure electromagnetic
2 2 invariants (5.63,5.64) are proportional to (E - B ) and

E.B, where E and B are respectively the electric and 

magnetic fields. Thus a null field is one in which these 

invariants vanish, so that the electric and magnetic 

fields are equal in magnitude and perpendicular, as in a 

plane wave. The interpretation of the other curvature 

invariants.is not so straightforward.
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5.5 CALCULATION OF THE RIEMANN TENSOR AND CURVATURE

INVARIANTS

5.5.1 INVARIANTS INVOLVING THE RIEMANN TENSOR ALONE 

dv I2, J2)

The non-zero members of the Christoffel symbols for the 

metric: 

ds2 = fdt2 - 2kd6dt - £dp2 - eP(dp2 + dz2) 

with the functions dependent on p only are:

r°
O1 = p2(tfp + kkp) r° _ A

113 2
p2 (kJlp - «.kp)

r1 =
oo

r1 = -
o3

A Z^k r1 =
2 e Kp' 111 pP

r22 = -pp, r1 = -
1 33 7

r2 = — ^p
1 12 2 P

A
ol

= f P2(fkp - kfp>' r3 _ 1
13 2

p2(kkp + «p)

The algebraic properties of the curvature tensor are greatly 

clarified if we consider, instead of its fully

covariant form:

RXpvk - ^AcrR pvk

3 r 3 rA = — PK | pT] pl _ p F| pl
where Rpvk " 9xk 9xv py kd y< vn (5.68)
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Considering all the values of (X,]j,v,k = 0,1,2,3) the non-

zero values of Riemann-Christoffel curvature tensor are 

(apart from sign):

R0131' R0113' R1031' R1013' R1301' R3101' R3110' R1310

Ro 223' RO232' R23O2' R2O32' R2O23' R232O' R322O' R32O2

R0101' R0110' R1001' R1010

RO33O' RO3O3' R3O3O' R3OO3

RO22O' RO2O2'

R1221' R1212'

R1331' R1313z

R2OO2' R2O2O

R2121' R2112

R3131' R3113

R2332' R2323 R3223 R3232

If we have one value of each group, using symmetry properties

of Riemann-Christoffel curvature tensor we can calculate 

the rest of the values.

A representative value from each of the group:

R0131

RO223

k ,
PP . 1
2 4

p k
P P
4

k 
P P
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Rol01
f u fPP P P

2 4
1,(£f2 + 

= 4p2 P

Ro 330 = - _^(£ f
4ey p p

Ro 220 = -
p fp p

4

R1221
1
2

e^p
PP

2kf k - fk2)
P P P

(A)

R1331 + 2k£ k + f£2)
P P P

R2 332

Using the covariant values of we can calculate the

contravariant values of R^W. So one value of each group

is (using A = p2)i..e r ^vk  = (5.69)

. R°131 (£k£ + k2k
P P

£fk + fk£ ) 
P P

+ (£2kf2 + 3£k2f k - 3£fkk2 - k3£ f + k3k2
, 2 v p p p p p p p

+ 3fk2£ k - £2ff k + £fk£ f - £f2£ k
P P P P P P P P

2 2V1+ f k£ P

r o 223 =
-2p

6 % (£kf + k2k - £fk + fk£ )
4A2 P P P P



89

1R0101
e2pA2L ( £2f

P
2£kk + k2£ ) + i

P P 2

+ |a2f +2 pp
2£kk - k2£ )

PP PP

+ “2(“
4p

3 2 2£ f - 4£Zkf k 
P P P

+ Jl2fk2 + 2£k2f «.
p p p

- 3£k2k
P

r o 33°

R°220

R1221

R1331

+

+ -^(>
4p

R2332

Using

2£fk£ k + 2k3£
. P P k 

P P
+ 2 2fkz£z)

—f
4epA2 p p

-2p
6 PP 2

+ RP>

+
P 2£kk

P

(B)

1
2

e 3pp
PP

1
e2pA2L

■Wf2 (R PP

£k2f
P

(- k2f
p

+ fkk
P

+ fkkp)

fkk
PP

f2£
PP

fkk )
PP

2k3f k
P P

2fk2£ f
P P

+

+ 3fk2k2 + 2£fkf k
p ~ ~P P

4f2k£ k
P P

2 2
£f kp + 3 2 f £Z)

P

-2p
^(f2*

4A2 p
+

the symmetric and antisymmetric properties rest of the

values can be found out.
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We can now proceed to evaluate the invariants 1^, I?r 

we first rewrite as KAB the following correspon-

de nee Pirani (1957)

01 02 03 23 31 12 (Ay) (PK)

1 2 3 4 5 6 A B

So that R0101 -> Ku, R0102 k12 an^ so on. Note that

because of the symmetry property = RvkAp' we have

K__AB k ba

K11 = R0101'

K15 = R0131'

K24 = RO223'

K34 = Ro 323'

K45 = R2331'

K12 = R0102'

K16 = R0112'

K25 = RO231'

K35 = RO331'

K46 = R2312'

K13 = R0103'

K22 RO2O2'

K26 = RO212'

K36 = RO312'

K55 = R3131'

K14 = RO123

K23 = RO2O3

K33 = RO3O3

K44 = R2323

K56 = R3112

K66 R1212
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The K can be arranged
AB

in a matrix form as follows:

'Kll K12 K13 K14 K15 K16

K21 K22 K23 K24 K25 K26

K31 K32 K33 K34 K35 K36

K41 K42 K43 K44 K45 K46

K51 K52 K53 K54 K55 K56

/61 *62 *63 K64 K65 K66

non-ze ro part of the matrix is

‘ K11 0 0 0 K15 0

0 K22 0 K24 0 0

0 0 K33 0 0 0

0 0 0 K. „44 0 0

0 0 0 0 K55 0

0 0 0 0 0 K66

In terms of can be expressed as follows:

70)

Using values from Islam (1983) , Section 2 we calculated

all the values of K
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K11
4 -4/3
27PP

2
1 aQ 

+ 2 P
_2/3
p , k

11 71etA2 J5T
4 6 

p___
p

+ 2
27

k2
o

2 6op + f
2 

aQ P2 + 27
16

a4 8A-1 
o 7 3

16 p

K^K11
e2pA2 (- 2 80

2187
8

729 Ki°2-2/3
P +

55
162

ao 4 6
~4 P
p

K15

+ 27
32

6
ao 2.
7P ’

2
9 a

ao -2/3
P 4 K

27 Ko

I T16 % 
e2pA2L27 p2

108
729

1
4

-4/3
op + 9

8

3 
ao 
P3

(5.71)

(5.72)

(5.73)

(5.74)

268
2187

4
101 ao
48 4

P

6
2 7 ao 2
16 6 p

P J
(5.75)

p

8
81 p

4 2 2/3 5
2 

ao
+ 27 Koap - 12 a3

K K22 = 1 / 20.
22 e2PA2(2187

8
729 P

1 ao. 2/3
T8 ~ p

p

(5.76)

(5.77)

(5.78)
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33 1 4 1
2 

ao 2/3 T -4 46.
K33K 2pA2e A ("§T + 9 a2 P + 16 T P )

Q
(5.79)

K44
£ppp 44
-4— r K

-2p e

4p4
2fkk

P
k2fp) (5.80)

44
K44K

4/3
P

1 -48 t6 i
81 O2

2A 1
4 aQ

2p.2 e A 2187 p 12 a4

6
27 0 2 8 2 2-2/3
32 6 p

0 729 Ko° P (5.81)

+

(5.82)

2
27 4 a (5.83)

TZ Tz 55 1 26 51 ao 2y3 4 2 2-2/3
55 2pA2e A [.2187 162 2 0

P + 729 Koa p

.Q a4 4Z, 
.4 9 0 z3 . 9 0 21

48 4 P + 16 6 P (5.84)
a a -

t (5.85)

(5.86)

tz  Tz 24 1 ■ 4 8 tz 2

K24K 2pA2 e HA -
729 729 K c0

2
2 -> / ao 2/3 . 1

4 a0 4 6
81 — p + 16 4 p

a a

2-2/3p J -

1
162

2 0 /ao 26 9
2 p + 32

a

6 
ao 21 
~6 p 
a J

(5.87)
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(5.88)

(5.89)

(5.90)

Putting these values in Equation (5.70)

I, = R. RXPW
1 AyVK

4
e2^A2

280 
' 2187

8
729

2 2-2/3 
v p

+ 55
162

a2
o
2 a

P
26

+ 1
12

4 a o
a4

4/3
P +

27 ao
32 a6

2sP )

+ 2 (—^27

2

“2a
p2/= 268

2187
101
48

4 aQ 
“4 a

4/
P

3 , 108 „2 2-24 
+ 729 Ko° p

- 27

16
a|
a6

2. , I 20 p )+ 2187
8

729
2-26

v p

2
i a+ A_
18 2a

P
2/3 + 5

48

4 aQ 
~4 a

44
P ) + 2(- +729

8
729

2 2-2/3
" PKoa

2
81

2 aQ 
~2 a

P
26

+

4 aQ1_
16 4cr

p4/3

2
i a1 o

162 2a
26 

p + 9
32

6 aQ 
~6 a

P 2)
2i a+ 1 _2

9 2a

2/3
P + 16

4 aQ 4 4. 
T p > 
a

+ (" 48
2187

+ fl
2 

ao 
I- a

24 
p
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2pA2 2187 2187 “27~ 9 2/_ 729 4/_e PA L p /3 pQ/3 Pq/3

1
4 aQ 46 27

6 aQ 2 8 rz2 -24.
12 p 32 ~6 p — 729 Koa P )

0 0

, 26 51
2 ao 26 4 v 2 2-2/3 ' 49 ao 4 6+ l2187 162 2 p + 729 V p 48 4 p

a o

. 9
6

2. . ,4 , 1
2 ao 26 , a4 4 /C -

1 o 3 .
*16 ~6 P ) + 81 + 9 p + 16 ~4 p ’

0 o o
26 2/> 4/,

4 626 + 106 po + 4 p 312 p

128 p2 1
6561 2Pn J

We next evaluate using group A or B, 

(5.91)

we can calculate all

non-zero values of R
VK

(5v9.‘2)

Multiplying (5.72) and (5.92) we get

2/3
K11K1= _ 1 T 56 Po

H Kl'. 3p 3 [177147
, 3844 6106

2/3
P

177147 177147 &
46 2 8/3

299 p J 148 pz 976 p
17714 7 4/_ 17714 7 2 17714 7 8 Ap/3 P„ P/3

192
177147

10Ap 3 (5.93)
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Using the values of from

calculating the values c f

1 n a 2/_4 o z3 ,
54 — p + 1 Ko

y 2e p L 0

(5.71) and Equation (5.74) and

we ge t

3 . / 5
5 ao 4/3 27 ao 2
2 4 P 32 6 p

o cs

(5.94)

Multiplying and with factor 3 we get

Multiplying Equation (5.73) ,

3k Hk 15k 5 1 3 4228 P 2170
e3pA3 [177147 p2/3

tO
177147

18112

1 

vr
Q

. 84 80 2
P

+ 5?
74

24
po

177147

1

o 
Q
.

177147 2 
po

049 P26

44n 8/, ioa
28 po 1568

177147
p 256 P (5.9559049 4/_P 3 177147 10/,

po 3

(5.83) and (5.94) with

factor 3 we get

r 2/3 4/3
v55v 1 3 370 p .. 212 p

15* 5 3pA3 177147 2A 177147 4/o
e A p 3 p 3

2/3
74 256 p2 14 Po

177147 177147 2 59049 2/,P„ P '3

s/3 10/, 4 4 
r\

928 p 32 p- 3 1 2 °
177147 p8/3

*o
59049 10/,

po 3
-59049 p4/3 (5.96)



Multiplying (5.77) with K22 as below:

(5.97)

22 2
K22k K2

1 76 16
26

po
e3^3 177147 177147 P26

26 4/3
896 p , 448 p____

531441 2/, + 177147 4/3

304 p2 , 80
177147 2 177147 P

(5.98)

(5.99)

Using 1^2 from Equation (5.76), and multiplying with (5.86)

and (5.99) with factor we get

24 2
3K22K K4

32
177147

3
177147

P

2/3 2 ^^3
32 p 3 _ _2____ _16____ p_l

177147 2/ 19683 2 177147 8/3
po J po po

32
177147 (5.100)
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p
e P{-£-?(- £k + k£ ) } 

4p2 P P (5.101)

Multiplying from (5.80) with Equation (5.85) and

(5.101) with factor 3, we get as follows

r 2/3
„44,. 2 1 2048 p

24* *4 3p 3[531441 ^2^

4/3
608 p

531441 4/,p '3

16 p2 400
59049 2 531441

po
co

Q
.

T oo oQ
.

64
2 6

32 po
59049 59049 p2/3- (5.102)

Multiplying (5.79) with

33 3
K33K K3

+ 8-._
19683

2 
P

2 
po

(5.103)

8 +1
3p.3 729 e A L

we get

p26
729

8
+ 2187

4/3
8__ P

P473
Ho

(5.103)

(5.104)
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(5.105)

Multiplying (5.105) with (5.81) we get

v44„ 4 _ 1 T 712 , 208
44* *4 e3PA3L 177147 177147

177147 8/_ + 177147 10Z ~ 177147 2/_
P_ 3 p '3 p '3

s 448 1

Q
. 1024 p2

177147 PV3
Ko

177147 2
Po

8/3
1664 £ + _6_4_.

10Z
p _ 56 ,:411664 p . 64 p 56 po

Multiplying (5.84) with (5.107)
(5.108)

v55 5 _ _1____[ 322
55 5 3pA3|177147e A L

26 ioz
. 31 po 256 P

177147 TV 177147 p^°/3

(5.106)

below we get Equation

. 2360
177147

(5.107)

426 . 2256 p2
177147 177147 2

P

7

00
Q

.528 P 528
177147 2 177147

po

C
O 0Q

.

. u. 1 po -
(5.108)* 59049 4Zp 4 J
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(5.109)

Multiplying (5.109) with (5.90) we get

r 26R66 6 = 1 _ ______ 8 P

24 9 44 9 37 3 44 4+ 3K22K24k/ + 3K24K44K/ + K33KJJK3J + K4j}K K4

66* *6 ep 3[ 729 729 p2/3

2187 4/o 19683 2P '3
(5.110)

In terms of can be written as

55 1 22 2+ 3K15K K/ + K22K K/

+ K66K
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2/,
8 I-, 56 po 3

e3pA3j- 177147 q 2/3
3844 , 6106
177147 177147

P

+ 299
p4/3

po4/3 +
148 P* 2

177147 177147
po

8/3 io/3
976 p 192 p 3)

+ f 12648
' 177147177147

1oo 0Q
.

“177147

48 p J , 96 p \ , ,2048 p 608 p
177147 8/, 177147 10/, ’ '531441 2/, 531441 4/

po 3 po 3 po 3 Po 3

2 8/3 p2/3
16 p , 400 p 64 32__  po__ ,

59049 2 531441 8/, 59049 59049 2/,p P 3 P -oHo

o

4/3 2
6510 54336 p J , 25440 p2

177147 177147 4/, + 177147 ~2
P/3 P„

2/,
822 po . + 84

59049
Po3

59049 2/o P 3 p4/3

8/, 10/
4704 P , 768 p ,
177147 8/, 177147 10/, ’

Po 3 Po 3

2/3 4/
+ (- HIP P_l ._ 636 p , 222

177147 2/3 + 177147 4/, + 177147

26
768 p 42 po

177147 2
po

59049 2/qP z3

io/3
96

59049
P 3 + 
p10/3
H o

6
59049

2784 .’4
177147 o 00

o
4/3 2/

’ v3 1 *

p J

( 76
'177147

16 po 3
177147 p2/3

896 p
531441 2/_

P 3

448 p J 
177147 4/3

304 p2 80 p 3
177147 2 177147 8 A }

Po Po3

2/_ 2/_ 0 
, z 96 9 po 3 96 P 3 6 P2

' 177147 177147 2/_ 177147 2/_ 19683 2p 3 P 3 pH o o

8/, 10/, 2/ 4/
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("

2 4 4 4 o 2
8 8 p 8 p 8 P v

729 729 2 A po3
2187 p4/3

o
19683 2

Po

2 A 4
208

177147
712

177147

1664

(-+

2 
P

2 
po

1024
177147

322
177147

177147

177147

177147

)59049

2 
P

2 
Po

19683
po

2256
177147

256
177147

177147 177147

528
177147

31
177147

2360
177147

+

p4/3 24 2/?
8 r . 89 po . 2664

177147P 3

PO. 1498
177147

33636 J
P

‘ ■ 3iiA3 e HA 59049 2/qP 3 531441 2 A po3

4A 2 8/> . 10A
156925 p ° 21694 pz , 31184 P . 704 p J
531441 4/3 177147 2 531441 8/3 177147 10/3

PO PO po po
(5.111)

Similarly, one can carry out the evaluation of the invariants

I3 and J2« After a detailed calculation, which we will not 

reproduce here, it can be shown that these two invariants 

vanish for the metric under consideration.
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5.5.2 INVARIANTS THAT INVOLVE THE ELECTROMAGNETIC

FIELD TENSOR

The electromagnetic field tensor F can be expressed in 

terms of the four-vector potential A^as

F = A — A pv p,v v,p

The electromagnetic four-potential A^ is given by

(5.112)

where and x are respectively the electric and magnetic

potentials. We have numbered the co-ordinahts as follows

From Equation (5.112),afid (5.113) below

Fpv = PP
pu (5.113)

the covariant and contravariant electromagnetic tensor can 

be calculated and non-zero components of the covariants 

electromagnetic fields are Islam (1983)

Fol = - F10 = %

F13 F31 = " Xp 



104

and the contravariants electromagnetic components are

FO1 = _ F10 = p2 (kx - M )
P Yp

F13 = - F31 = - p2 eP(k(j)p + fxp) = 0

the other components being zero.

So that the curvature invariants of exterior solution

F^F
pv

2 — &A 9 2 2A
(2bo/A)p exp(-| b up ) (5.114)

See Islam (1983)

TT , ^pv 1We have F = e Fy<y

So curvature invariants FH F can be calculated as

>F
pv

(F°VF
o\) + F Flv + F F2v + F F3v )

^13F 3F12) = 0 (5.115)

^13where F F,Act
1 ,.1302 , 132O„ .27=^ Fq 2 + e F2q )

Similarly £o1 7=g F23

1
2

13Xa e ___
S-g

/^g Fo 2 0

0
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where Fq 2 = *2 = 0 F23 = ’ xz = 0

V I] y)we do not need other for the above calculation.

Next we consider the invariant L^.

After some manipulation, it can be shown that

= Fol <kllFol + kllFol + k15F k F31 + k15F 1
k

+ Fol <kllFol + kllFol + kl5F31 + K15f 31)

+ F31 <kl5Fo! + kl5Fo! + k55F13 + k55F13>

+ F31 <kl5Fo! + ^ol + k55F31 + k F3]_)

= 4Fol(kllFol + kl5F31> + 4F31(kl5Fol + k55F13>

= 4{4>p (k4\ + k15Xp) + Xp(k15<Dp - k55xp)l

= 4(^2 + 2k15%Xp - k55xjl

11 2 2 — 15 — ^"A 3 aob FA
= 4 {k11 (bap 3 )+ 2k13(-bap 3 ) (-| — P

a
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(5.116)

Calculating three factors individually using Islam (1983)

and putting in (5.116) we get the result

(1)

2
i i a k1;L(— 

R 2a p24 )
"71

e2pA2L81
46

p___
a + 2 , 2

27 koPp
26

(2)

2
+ 23 3

2
P

27
16

ao 8/3

7P
2 

ao 
2?

-26p

i r 7i
2p.2 162e A L

6
27 ao 2 

+ 32 6 p
a

1

3
2k15(32k (4 3

o

28
27

2 
% 
o2

2/3p + 1_
27

2,_2
oa ko ' + I

a4 4/ 
o z3

“4 pa

2pA2 2187e A L
284

-26

k

1 o

oap
2

9 a H

26 3 3 
’ 2 a P

3 
o
3

)
2

2y.2 e A L

13
6

a o
P

46p
3

(2 %'4 a3
1
9

ao
o

_2/.
P 3)

28
27 x 9
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2 r 13 ao 4 6
2p.2 L 8 T p

e A CJ
2

. 13
ao 2/3 56

+ 54 2187

. 14
2 a o 2/3

6
9 ao 2

+ 81 2 CT
P 8 6 po

1
4 aQ 4/3‘

+ 6 ~4a
P

2____ 104
e2pA2L729

+ 680
P272

64 p 56 + 32 t]
6561 p2/3

o
6561 2

po
6561 6561

(3) k55(|4

8 a5
2/-

P '3 1%
3 3a

+ 2_
81

st
a

1______ (2_
e2%2 27

26crp

2

4 a
PV3

>4
4 a o 

a5 P
2/3 1

3

2 a o 
c3

+ 2
81

_2Z: 
p_ 2
a

3 
-)

-A__ (1_
e2%2 12

a4 
o
4 a

P
44 2_

81

2%
P
2/3 + 4

29

+ 32 2
7P

4 a o
“ 12 a4 t3 + iu.

162

a2
o

a2
26 

p )

2p.2(-
e A

3
162

2 ao 
a2

26
p + 4

2187
+ 9_

32

6 
ao 
a6

P2)

4
2187 + 16

2187
2

P
2 

po
)

Putting the above expression (1) (2) and (3) in Equation

(5.116) we get the following

1 l~ 112 
e2pA2 [2187 240

2187
466 24 p

po °
+ 160 p2

2187 ~2
P^

(5.117)
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Similarly after a detailed calculation it can be shown that 

the invariant vanishes

So

r pv Xct f f , 
pv AU

0
L2 (5.118)

Lastly we consider M. It can be shown after detailed 

calculation that

M

8(R 1 1RoloFFoFF , + R ., , RF30FFoFF 
olol ol oll3 ol

+ R ,, R13O1F13F
0113 13

+ R R°FF3F°3’F + R ^1313 ol^ P
ololK * *13 0113* * 13R13O1R F ol

+ R1313r 13°1f 13f o 1

+ 1313 13 .
R1313R F F13

8{(K11K3F + K15K15)FO1Fq 1 + (KX1K15

+ k 15k 55)f o 1f 13}
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280 8 1 2 2-2/3
2

, 55 % 24
2187 ’ 729 koa P 162 2

CT
p

4 . . 6 2 o /

4 4 /105 ao 4 6 81 o
48 4 p 32 6

a o

5
33 a.o
32 4a

1 % 4/3 27 ao 2 _ 16 ao Z3
12 4 P 32 6 p 27 2 p

cr a a

268 , 101 ao. 4 56
2187 48 4 p

a
108
729 Ol

+ 28
27 koap +

3
2 _2.
2 3a

4
27

x _1__ (A_
e2pA2 27 a

)}FO1Fi3

8 f 12 
2pA2 1 2187

e A u
116 2 2-2/3
729 ko° p

2 9 /
41 ao 2 6
162 2 p

a

x 4
27

2/3
108 120 2-2/3
243 ao 27 x 27 ko°' p

4 6
X



8 472 336
2A 4 6 

pp 560
e3^3 59049 59049 2/_ 

po3
59049 p4/3

*o

2 8/3l
4 80 P 224 P

59049 2 
po

59049 P '3 - o
(5.119)
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5.6 PROPERTIES OF INVARIANTS

As noticed by Islam (1983) the invariant F^F^V tends to 

infinity as p tends to infinity. However, as noticed by 

Islam (1983), the spatial distance from any finite value of 

p to p = 00 along the curve 0 = constant, z = constant is

finite. Whatever the situation of the surface (or point) 

p = 00, the fact that F^F^V tends to infinity, 

indicates the presence of sources there.

We note that all the other
!/3 ..l/3

polynomial in p ' or p 

power of p e^. Recall the

invariants have the form of a

multiplied by

expression for

a negative

e^1, which

u -4/9 9 2 2/3
e^ = Xp exp(- 2 b GP ) (5.120)

Thus a negative power of e11 dominates the asymptotic 

behaviour as p 00 and so all the invariants tend to 

infinity as p -> 00. This confirms . Islam’s analysis that 

these may be present sources at p = 00.

As regards Petrov classification, Petrov (1969), Pirani

(1957), consider the following diagram (Penrose (1960)):

if t 6jf

I? = 6j| ]= 0

h = J1 = 0[31]

[211]

1-
[4]

[Uli]
" 1

. [221
!

[-1

III II I

(5.121)
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The brackets |_22] etc refer to the coincidence of the 

principal directions of the Riemann tensor, which are 

defined in terms of the intersections of certain planes 

which are determined by 'eigenbivectors’ of i.e,

from the non-zero (complex) skew tensors which

satisfy a relation

(5.122)

(Penrose (1960)). [22] , for example means that the four 

principal directions coincide in pairs. 1^, refer to 

the invariants given in page 69.

Coming to the invariants calculated in this chater, we see 

that

2
3 _ 64 r, 106,3 po
1 e6pA6U2187' 2

8/3
T2 _ 64 j- (89)2 po

1 ’ e6^6 (59049)2 P86

(5.123)

(5.124)+ ...}

The dots indicate terms which are of higher powers. Thus

we see that in this case we have

(5.125)

So that, from the above diagram, the solution here is 

type I and [1111J, that is, with distinct principal

directions. This is known as the general type.
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It is hoped that the curvature invariants calculated here 

can be used for other purposes in studying the properties 

of Islam’s solution and indeed, as an example of curvature 

invariants of an Einstein-Maxwell solution.
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