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 a b s t r a c t

Large Language Models (LLMs) excel at generating coherent and human-like questions and answers (QAs) across 
various topics, which can be utilized in various applications. However, their performance may be limited in 
domain-specific knowledge outside their training data, potentially resulting in low context recall or factual in-
consistencies. This is particularly true in highly technical or specialized domains that require deep comprehension 
and reasoning beyond surface-level content. To address this, we propose Collective Intentional Reading through
Reflection and Refinement (CIR3), a novel multi-agent framework that leverages collective intelligence for high 
quality Question-Answer Generation (QAG) from domain-specific documents. CIR3 employs a transactive rea-
soning mechanism to facilitate efficient communication and information flow among agents. This enables for in-
depth document analysis and the generation of comprehensive and faithful QAs. Additionally, multi-perspective 
assessment ensures that QAs are evaluated from various viewpoints, enhancing their quality and relevance. A 
balanced collective convergence process is employed to ensure that the agents reach a consensus on the gener-
ated QAs, preventing inconsistencies and improving overall coherence. Our experiments indicate a substantial 
level of alignment between the CIR3-generated QAs and corresponding documents, while improving comprehen-
siveness by 23% and faithfulness by 17% compared to strong baseline approaches. Code and data are available 
at https://github.com/anonym-nlp-ai/cirrr.

1.  Introduction

Question-Answer Generation (QAG) is a data augmentation task that 
consists of generating a set of QA pairs given a context. QAG has a 
variety of applications, from information retrieval [1–3] to healthcare 
[4,5], and education [6–8]. Although Question Generation (QG) has 
been extensively researched in the context of language models [9,10], 
QAG presents a more challenging task, as it requires generating both 
the question and the answer, rather than assuming that the answer is 
already provided in the input, as illustrated in Example 1. While QG 
models offer a more direct and focused approach, they primarily fo-
cus on surface-level features of the context, such as facts and keywords. 
This is due to the limited amount of explicit information that is condi-
tioned on the input answer. Furthermore, despite the proposal of various 
methods, generating comprehensive and semantically distinct questions 
from the same context remains under-explored as highlighted in Zhang 
et al. [11], Vakulenko et al. [12]. The latter attributes this limitation to 
the lack of multi-reference training datasets that exhaustively cover all 
possible questions for each context. This inability is even more evident 
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in highly technical or specialized domains, where documents are often 
rich in information.

In-Context Learning (ICL) [13] is an emerging paradigm that en-
ables LLMs to learn new tasks without the need for extensive fine-
tuning on specific data. By providing a description of the task, along 
with a few or even zero demonstrations as part of the input context, 
LLMs can be conditioned to perform well in various domains. This ap-
proach has shown promising results, surpassing state-of-the-art mod-
els in some tasks, and offers a potential solution to the challenge of 
limited data availability [14–16]. Despite impressive results on pop-
ular NLP benchmarks, we find that using ICL for QAG, given a rela-
tively complex document, often lacks robust inference mechanisms to 
deduce implicit relationships between the different key points inherent 
in the context. If the generation depends on comprehending the under-
lying connections that are not explicitly stated in the context, the model 
may fail to generate faithful QAs that accurately reflect this complexity. 
This is particularly problematic for information-dense contexts, which 
are common in highly domain-specific corpora, such as finance and
health.
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Box 1. Illustrative Example: QG vs. QAG
Context: “A defined contribution pension plan is one where the final 
benefit depends on the contributions made and the performance of the 
selected investments.”
QG Output:

• How does a defined contribution plan work?
• What determines the final benefit in a defined contribution plan?

QAG Output:

• Q: How does a defined contribution plan work?
A: It depends on the contributions and investment performance.

• Q: What determines the final benefit in a defined contribution 
plan?
A: The final benefit depends on contributions and investment re-
turns.

Recent advancements in LLM-based Multi-Agent1 (LLM-MA) sys-
tems have shown significant improvements in problem-solving abili-
ties through planning, collaboration, and autonomous task execution 
[19,20]. These systems break down complex tasks into simpler sub-
tasks to enhance complex task solving. Compared to standard LLMs 
and single-agent setups, LLM-MA systems offer advanced capabilities 
by leveraging collective intelligence and specialized skills [21]. Moti-
vated by the potential of these capabilities, we augment the QAG task 
with collective reasoning through the adoption of LLM-MA settings.

In order to address the aforementioned limitations in relation to gen-
erating comprehensive and faithful QAs from highly domain-specific 
documents, we derive a list of research questions around the adop-
tion of LLM agents for QAG tasks: (R1) Can an LLM-MA workflow un-
cover deeper and perhaps implicit key concepts from a complex and 
information-dense document? (R2) How can LLM-MA effectively em-
phasize deep engagement, with a text, from different viewpoints to en-
able comprehensive and consistent generation and mitigate blind spots?
R3 (a) How can we incentivize multiple agents to seek consensus? (b) 
How can we control the process of convergence to reach common QAG, 
while avoiding premature collapse to incomprehensive and/or unfaith-
ful generation?

To address these research questions, we design Collective Intentional 
Reading through Reflection and Refinement (CIR3) based on three cor-
responding hypotheses:

H.1: Transactive reasoning2 allows the deduction of QAs that uncover 
the implicit relationships between key concepts within the text.

H.2: Multi-perspective group debate leads to an in-depth analysis of the 
document.

H.3: Collective convergence, the process of a group of agents moving 
towards a shared output, requires disruptive signals to ensure di-
versity is maintained and collapse is avoided.

1 LLM-based agents are autonomous systems that leverage LLMs as their core 
reasoning and decision-making engine. These agents can perceive their environ-
ment through natural language, process information, generate plans, and take 
actions to achieve specific goals. Unlike traditional AI systems with static func-
tionalities, LLM-based agents exhibit a degree of general intelligence, enabling 
them to handle a wider range of tasks and adapt to novel situations based on 
their extensive knowledge and language understanding capabilities [17,18].
2 In this paper, we mimic the concept of transactive reasoning [22,23], a cog-

nitive process that occurs through social interaction, where individuals build 
upon each other’s ideas to create new knowledge or solve problems. It involves 
a dynamic exchange of thoughts, critiques, and elaborations, leading to a deeper 
understanding of a topic.

To build upon these hypotheses, CIR3 first utilizes an optimized 
topology of information within the agents to maximize the effective-
ness of collaborative problem-solving and ensure an in-depth analysis 
of the input document. Second, CIR3 gains effectiveness by dynamically 
allocating specialized writer agents, each with a distinct perspective, 
based on the topic categories identified within the input context. Third, 
to reach a shared understanding of the document, despite the diverse 
perspectives and reasoning capabilities of the writers, CIR3 employs a 
curmudgeon agent as a mechanism for introducing variation. The cur-
mudgeon, coupled with an external evaluation tool, incites the writers 
towards a balanced collective convergence on the key concepts within 
the text while maintaining diversity in the generated QAs.

While lexical matching is a standard evaluation method for QA tasks, 
its limitations become apparent when dealing with generative models, 
which often produce plausible answers not found in the predefined gold 
standard. This issue is further compounded by LLMs generating increas-
ingly complex and lengthy answers, making lexical matching even less 
effective [24]. To ensure a comprehensive and accurate evaluation of 
CIR3, we employ diverse automatic metrics, in addition to human eval-
uation.

Following similar motivations as Zeng and Zubiaga[25], Amiri-
Margavi et al. [26], this work also introduces a novel cross-model se-
mantic evaluation framework that addresses the challenge of validat-
ing subtopic identification systems without human gold standards. The 
framework leverages semantic consensus among multiple LLMs as a 
reliability baseline, using agglomerative clustering to group semanti-
cally similar outputs from sentence transformer embeddings into con-
ceptual topic clusters. The performance of the target system is then as-
sessed through semantic agreement metrics, including Soft-F1 and Bipar-
tite matching for partial conceptual overlap, while consensus reliability 
is quantified using Krippendorff’s Alpha [27,28] applied to clustered se-
mantic concepts rather than exact label matches. This approach provides 
a scalable, model-agnostic solution to evaluate classification consistency 
in low-resource domains where annotated datasets are unavailable.

In summary, our main contributions include:

(1) We introduce CIR3, a dual-loop multi-agent framework for QAG 
that formalizes Comprehensiveness and Faithfulness as a diversity-
alignment objective and operationalizes transactive memory via in-
ner/outer iterative refinement with explicit termination conditions.

(2) We design a curmudgeon-guided convergence mechanism that main-
tains diversity while driving consensus, with systematic ablations 
isolating the contributions of agent reasoning versus diversity mea-
surement.

(3) We propose a two-stage cross-model semantic evaluation protocol 
for subtopic identification without gold standards, combining ag-
glomerative clustering with pairwise semantic measures (Soft-F1, Bi-
partite matching) and Krippendorff’s Alpha for holistic reliability.

(4) We demonstrate consistent improvements over strong LLM baselines 
across finance and medical domains through comprehensive auto-
matic and human evaluations, with open-source implementation for 
reproducibility.

2.  Related work

In this section, we briefly review relevant work in the areas of 
Question-Answer Generation and LLM-based Multi-Agent Systems.

2.1.  Question-answer generation

Both rule-based [29–31] and neural [14,32,33] models have been ex-
tensively used for QG from text documents. Similarly, machine reading 
comprehension [34–36] has been employed for answer extraction (AE) 
from text given a question. However, traditional QG and AE methods 
produce either the question or the answer, unlike QAG which outputs 
both.

Knowledge-Based Systems 330 (2025) 114627 
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Several studies have leveraged pre-trained language models for QAG. 
These include fine-tuning BERT [37] for AE and QG [38], fine-tuning 
auto-regressive LMs for QG [39] using BART [40] and RoBERTa [41] 
for AE, jointly fine-tuning LMs for AE and QG [42], and using QAG 
models to generate adversarial examples [43]. Recent advances have 
also focused on dynamically identifying question-worthy context words 
before using them to condition subsequent question generation [12]. 
Ushio et al. [44] improved QAG by designing three distinct approaches: 
Pipeline, Multitask, and End2end. Zhang et al. [45] proposed combining 
entity linkage with a QA system, while Puranik et al. [46] enriched QA 
extraction by augmenting it with entity-level metadata.

Despite these advancements, current research predominantly focuses 
on specific question types, such as Wh-questions, rather than addressing 
open-ended questions. Furthermore, the focus tends to be on extract-
ing short answers from existing text rather than on generating compre-
hensive and detailed responses. Additionally, evaluating the compre-
hensiveness of QAG remains an underexplored area. We address these 
challenges using CIR3.

2.2.  LLM-based multi-agent systems

Recent research has focused on LLM-based multi-agent systems to 
improve the quality of complex reasoning tasks. Studies such as Hong 
et al. [47], Li et al. [48], Qian et al. [49] have shown that collabora-
tion and task division among multiple agents can reduce hallucina-
tions and generate more reliable results. Other works, such as Chan 
et al. [50], Shao et al. [51], highlight the benefits of continuous debate 
among agents to correct misconceptions, analyze problems from diverse 
perspectives, and ultimately achieve higher-quality results.

Furthermore, prior research [52] has examined the issue of inter-
consistency through inter-agent negotiation. Similarly, drawing inspi-
ration from robotics, Chen et al. [53] investigated consensus-seeking in 
multi-robot collaboration by analyzing the effects of agent number, per-
sonality, and network topology. However, their work specifically fo-
cused on agent behavior within a 1𝐷-space. Conversely, Li et al. [54] 
explored the concept of flocking where agents maintain proximity while 
avoiding collisions and preserving formations. In this work, we improve 
the QAG task through a balanced collective convergence process.

3.  Method

Given a context 𝑐 consisting of a text passage, the task of QAG aims 
to produce a set of QA pairs, denoted as  = {(𝑞𝑖, 𝑎𝑖)}𝑁𝑖=1, that satisfies 
two crucial properties:

1. Comprehensiveness: The set  should cover all the key points and 
essential information present in the context 𝑐. In other words, for 
every significant aspect or piece of information 𝑥 ∈ 𝑐, there exists 
at least one QA pair (𝑞𝑖, 𝑎𝑖) ∈  such that 𝑞𝑖 elicits and 𝑎𝑖 provides 
information relevant to 𝑥.

2. Faithfulness: Each answer 𝑎𝑖 in  must be grounded in and sup-
ported by the factual content of the context 𝑐. This constraint ensures 
that the generated answers are not fabricated or hallucinatory, but 
rather reflect accurate information derived from the given text.

Formally, the QAG task can be formulated as an optimization prob-
lem, where the objective is to find the set  that maximizes both 
comprehensiveness and faithfulness with respect to the context 𝑐. This 
can be expressed as: ∗ = argmax

[

Comp(, 𝑐) + Faith(, 𝑐)
]

, where 
Comp(, 𝑐) and Faith(, 𝑐) are scoring functions that assess the extent 
to which the set  covers the key points of 𝑐 and adheres to the factual 
content of 𝑐, respectively. These scoring functions are defined in terms 

of diversity measures as follows: 

∗ = argmax


⎡
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(1)

where q and a denote diversity scores computed over the sets 
of generated questions {𝑞𝑖}𝑁𝑖=1 and answers {𝑎𝑖}𝑁𝑖=1, respectively, and 
a,𝑐 denotes a dissimilarity measure between the concatenated an-
swers 𝑎1 ⊕⋯⊕ 𝑎𝑁  and the context 𝑐.  ∈ [1, 2] ⊂ ℝ, where  =
1 denotes perfect similarity. The coefficients3 𝛼𝑞,𝑎 and 𝛼𝑎,𝑐 , where 𝛼𝑞,𝑎 +
𝛼𝑎,𝑐 = 1, control the relative weighting of question and answer diver-
sity (Comprehensiveness) and the alignment of answers with the context 
(Faithfulness) in the overall score.

In what follows, we describe CIR3 to generate the optimal solution 
∗ given 𝑐. This is achieved by building upon the aforementioned hy-
potheses to ensure that QAG is based on an in-depth analysis of the 
input text through an efficient flow of information and adoption of mul-
tiple views approach (3.1 and 3.2), while maintaining QAG diversity 
and optimizing the convergence rate of agents (3.3). The pseudo-code 
of the algorithm serving as the conceptual foundation of our approach 
is outlined in Algorithm 1.

3.1.  Multi-perspective analysis

Incorporating multi-perspective or various viewpoints is crucial for 
analyzing complex documents as it enhances the depth and breadth 
of understanding. Existing research highlights that a single perspec-
tive may introduce bias or overlook crucial aspects [55]. For instance, 
STORM [51] emphasizes the value of multiple perspectives in writing 
Wikipedia-like articles, by guiding participants to ask more in-depth 
questions in the pre-writing stage. Similarly, Ihori et al. [56] showcased 
how addressing various perspectives improved document clarity and 
readability in document revision task.

While STORM efficiently identifies different perspectives by survey-
ing existing articles from similar topics using a search engine, CIR3 chal-
lenge is to discover diverse perspectives from a contained and limited 
context without retrieving external information. Given the input context 
𝑐, CIR3 leverages LLM’s language understanding capabilities to iden-
tify different subtopics within the input document 𝑐. To this end, we, 
first, utilize few-shot prompting, with a limited set of demonstrations, 
to guide a classifier agent to classify the context into 𝑀 specific cat-
egories 𝑃 = {𝑝1,… , 𝑝𝑀} (Fig. 1 1⃝- 2⃝)4. Next, the moderator agent dy-
namically assigns each identified perspective 𝑝𝑗 to a different writer 𝑊𝑝𝑗 , 
while prompting the agents to analyze the input context and generate a 
set of QA pairs, 𝑝𝑗 , based on their respective perspectives (Fig. 1 3⃝). 
Subsequently, as per 3.2 and 3.3, the list of 𝑝𝑗  are aggregated into 
+ = {𝑝𝑗 }𝑀𝑗=1, then subjected to iterative refinement and evaluation, ul-
timately resulting in ∗. For better coverage of the overall information 
and the relationships between the key concepts within the context, CIR3 
introduces 𝑊𝑝0  based on the corpus domain. Additionally, this approach 
guarantees at least one agent will be available even if no subtopics are 
identified.

3 In this study, the coefficients 𝛼𝑞,𝑎 and 𝛼𝑎,𝑐 are empirically assigned equal 
weights (0.5). Although this choice effectively demonstrates our framework’s 
capabilities, future research will explore dynamic estimation of 𝛼-values, po-
tentially leveraging neural networks or other adaptive techniques, to further 
optimize Comprehensiveness and Faithfulness.
4 For example, given a finance-related document, CIR3 is prompted to dis-

cover the different 𝑀 subtopics present in the context, such as pensions, insur-
ance, and savings.
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Fig. 1. CIR3 takes an input document (1), identifies subtopics (2), and prompts writer agents to generate QA pairs based on their assigned perspectives (subtopics) 
(3). The QAs undergo iterative refinement by the writers (4), followed by an outer refinement where the curmudgeon, using its intrinsic knowledge and the evaluation 
tool, analyses the QAs and provides feedback for the next cycle (5, 6). The process halts when the curmudgeon is satisfied, and CIR3 returns the final QAs (7). The 
transactive memory serves as a central knowledge repository.

Algorithm 1: Pseudo-algorithm describing the CIR3 concep-
tual framework. The loops are designed to terminate grace-
fully when either the feedback is empty (indicating satis-
factory) or the number of iterations reaches the predefined 
threshold. Further implementation details are given in C: Al-
gorithm Implementation Details.
Input :  Max inner-refinement cycles 𝐿;

Max outer-refinement cycles 𝐾;
Max perspective 𝑀 , Context 𝑐

Output:  QA pairs  ∗

1  ← [ε ε] // Writer’s short memory state. (Eq. (2))
2  ← [ε ε] // Long short-term memory state. (Eq. (3))

3 // Identify and assign unique perspectives .
4 𝑊𝑃0  = "default in-domain writer"
5 𝑊 ← [𝑊𝑃0 ] // List of Writers.
6 𝑃 ← classify_subtopics(𝑐, 𝑀) // List of subtopics 

≤ 𝑀.

7 foreach subtopic in 𝑃  do
8 𝑊 .append( get_perspective_writer(subtopic) )
9 end 
10 // Outer-refinement cycles: evaluate and critic
11 𝑘 ← 0; ′𝑘+1 ← ∅

12 do
13 // Inner-refinement cycles: generate, then 

refine.
14 𝑙 ← 0
15 𝑙+1 ← ∅

16 do
17 +𝑙 ← generateQAs(𝑐, [−1], [−1])
18 𝑙+1 ← refineQAs((+𝑙 ,))
19 .append((+𝑙 ,𝑙+1))
20 𝑙 + +
21 while 𝑙 < 𝐿 ∧ 𝑙+1 ≠ ∅;

22 −𝑘 ← +𝑙−1
23  ′𝑘+1 ← curmudgeonQAs((−𝑘,))
24 .append((−𝑘, ′𝑘+1))
25 𝑘 + +
26 while 𝑘 < 𝐾 ∧  ′𝑘+1 ≠ ∅;
27 ∗ ← −𝑘−1
28 return ∗

3.2.  Transactive reasoning

Momennejad[57] explores how the group structure, the pattern of 
connections between individuals, can significantly influence collective 
cognition and shared knowledge within the group. This suggests that the 
structure of a network plays a crucial role in how memories are shared 
and aligned within a group. For instance, centralized networks, where 
information flows through a few key individuals, can lead to faster mem-
ory alignment but may also result in the loss of some details. In contrast, 
decentralized networks, with more diverse connections, may preserve a 
wider range of memories but take longer to reach consensus.

Drawing upon these insights, CIR3 employs a hybrid topology that 
consists of decentralized network of writer agents within a centralized 
network of two more agents, moderator and curmudgeon. To encour-
age communication and interaction, the group of writers form a fully-
connected graph, where they operate at the same hierarchical level. To 
facilitate transactive reasoning, CIR3 adopts a reflection process, which 
benefits from the iterative exchange of critiques and refinements among 
the writers (Fig. 1 4⃝). At iteration 𝑙, CIR3 gathers and aggregates feed-
back from all writers into 𝑙 = {𝑙

𝑗}𝑀𝑗=1, links it to the previous QAs, 
+𝑙−1, and then appends this updated information to the transactive 
memory. This creates a sequential memory state that evolves with each 
iteration: 
 = {(+0,1),… , (+𝑙−1,𝑙)}𝐿𝑙=0 (2)

The reflection prompt is specifically designed to encourage the partic-
ipants to build upon each other’s analysis, while maintaining compre-
hensive and faithful output. To incentivize the agents to seek an optimal 
consensus, CIR3 builds upon the group’s decentralized graph to (1) cap-
italize on the strengths inherent in centralized networks, and (2) incite 
the group towards a shared and optimal solution (3.3).

3.3.  Guiding collective cognitive convergence

In addressing R3, we take inspiration from the phenomenon of Col-
lective Cognitive Convergence (C3) [58,59] and from How social network 
topology can shape collective cognition [57]. C3 highlights that while 
convergence facilitates mutual understanding and coordination, if left 
unchecked, it can lead to cognitive collapse, by reducing the diversity 
of concepts to which the group is exposed, hence limiting the group’s 
ability to explore other viewpoints and generate new ideas.

In order to generate the optimal solution ∗, CIR3 capitalizes on:
(1) The strengths of combining decentralized and centralized networks, 
where (a) the information flow in the group of decentralized writers fa-
cilitates the preservation of a wider range of +, which is amplified by 
the multi-perspective analysis, and (b) the rate of convergence in the 
broader centralized network (between (a) and the curmudgeon agent) 
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facilitates a faster memory alignment of +; (2) The curmudgeon agent 
as a mechanism for introducing variation. Coupled with external eval-
uation tools (Fig. 1 5⃝), the curmudgeon guides the writers towards a 
balanced collective convergence on the key concepts within the docu-
ment, while maintaining diversity in the output.

Combined with the benefits of CIR3’s hybrid topology, the cyclic 
process of reflection and refinement, between the writers and the cur-
mudgeon (Fig. 1 6⃝), amplifies the collective intelligence, and enables 
collaborative knowledge construction by sharing, discussing, and build-
ing upon each other’s analysis, leading to a deeper understanding of the 
document. Additionally, this approach offers a solution to mitigate the 
disadvantages inherent in both centralized (potential loss of informa-
tion) and decentralized (potential slow convergence) networks.

Once the inner-refinement cycle reaches either an agreement or the 
predefined maximum number of iterations, 𝐿, CIR3 is prompted to cre-
ate a separate record of the latest refined QA pairs, − = +𝑙. This state 
is then passed to the outer-refinement cycle 𝑘, where the curmudgeon 
appends its feedback  ′𝑘 along −𝑘−1 to the transactive memory, cre-
ating a central memory state that evolves with each outer-iteration of 
refinement: 
 = {(−0, ′1),… , (−𝑘−2, ′𝑘−1), (∗,∅)}𝐾𝑘=1 (3)

where ∅ denotes a satisfactory alignment between the curmudgeon and 
the writers, which then routes the subsequent operation to the termi-
nation phase, through the moderator, yielding the final output ∗ and 
halting the generation process (Fig. 1 7⃝).

The curmudgeon is equipped with an evaluation tool to help quantify 
the diversity of (a) generated questions, (b) generated answers, and (c) 
concatenated answers and input context. A lower diversity score in (c), 
combined with higher diversity scores in (a) and (b), would indicate 
high faithfulness and better coverage of the input context. To achieve 
this, we use Vendi Score5 Friedman and Dieng[60] as an evaluation tool 
for diversity, where the objective is to minimize diversity in (c), while 
maximizing it in (a) and (b).

At each iteration 𝑘, the curmudgeon evaluates − to determine the 
next action, leveraging the Vendi tool to augment its intrinsic knowledge 
and generate informed feedback. The result is then added to  (Eq. (3)), 
which invokes another cycle of inner-refinements among the writers.

3.3.1.  Diversity metric selection
Vendi Score is a similarity-based diversity metric inspired by quan-

tum statistical mechanics. It quantifies the diversity of a sample set by 
analyzing the eigenvalues of a similarity matrix, which captures the cor-
relations and relationships among all data points. This approach enables 
Vendi Score to measure complex, multidimensional diversity that pair-
wise metrics may miss. Unlike many traditional diversity metrics, it does 
not require prevalence information on items, which makes it particu-
larly useful when such data are unavailable or irrelevant. Vendi Score 
captures both the number and balance of distinct outputs, is less sensi-
tive to sequence length variations, and operates independently of spe-
cific embedding model architectures. By evaluating the joint diversity 
across all attributes simultaneously, Vendi Score provides a comprehen-
sive measure of a set’s overall variability, going beyond simple pairwise 
comparisons to assess the full spectrum of diversity within the samples.

3.3.2.  Convergence properties and limitations
CIR3 operates as a heuristic iterative framework without theoretical 

global optimality guarantees. However, several design safeguards mit-
igate common convergence issues: bounded iterations prevent infinite 

5 We employ SimCSE models from Princeton and BGE models as foundational 
encoders for the Vendi score. Our implementation extends this setup to include 
various embedders. Empirically, it produces scores in the range of 1 to 2, with 
1 indicating perfect similarity, typically observed between a given context and 
its corresponding concatenated answers.

loops, the hybrid topology preserves diversity while enabling coordina-
tion, and the external variation signal (curmudgeon + Vendi tool) pre-
vents premature consensus. Empirically, ablation studies (Section 5.5) 
demonstrate that removing these safeguards leads to either premature 
convergence with information loss or slow convergence with reduced 
faithfulness, validating our design choices.

3.3.3.  Domain robustness
CIR3’s architecture is intentionally domain-agnostic to ensure cross-

domain generalizability through three key mechanisms:

1. Subtopic identification uses LLM semantic understanding without 
domain-specific ontologies, reducing dependence on specialized vo-
cabularies.

2. Perspective-assigned writers leverage general reasoning capabil-
ities based on textual evidence rather than domain-specific knowl-
edge bases or specialized ontologies.

3. Curmudgeon evaluation integrates two complementary mecha-
nisms: intrinsic reasoning capabilities for the coverage assessment 
and Vendi score-based diversity optimization for comprehensive ex-
ploration.

This integrated approach ensures both comprehensive document cov-
erage and diverse solution exploration across domains. The seman-
tic subtopic decomposition enables flexible problem partitioning, 
perspective-based writing generates diverse viewpoints through general 
reasoning, and the dual curmudgeon mechanism balances coverage op-
timization with diversity preservation to prevent convergence to subop-
timal local solutions.

4.  Experiments

This section presents an empirical evaluation of CIR3’s performance. 
We begin by describing the datasets employed, followed by an overview 
of the baselines used for comparison. Next, we detail the implementation 
of CIR3, and finally, we discuss the evaluation metrics, which include 
statistical, encoder-based, and LLM-based approaches.

4.1.  Datasets

While widely used QA datasets like MS MARCO [61] and Natural 
Questions [62] offer valuable resources, they fall short for our purposes 
due to the lack of both in-domain and specialized QA datasets, as well 
as an insufficient coverage of comprehensive QA pairs per document. As 
a result, we conduct our experiments exclusively on passages from four 
specialized datasets in Finance and Medical fields:

(1) FiQA [63]. This dataset6 was used in the Financial Opinion Min-
ing and Question Answering challenge at the 2018 International World 
Wide Web Conference. FiQA comprises 6648 questions and 57,640 an-
swer passages. It was curated from financial posts on platforms such 
as Stackexchange7, Reddit7, and StockTwits7 between 2009 and 2017, 
with the objective of developing QA systems that can address financial 
queries by leveraging information from various sources such as micro-
blogs, reports, and news articles;

(2) InsuranceQA [64] (InsurQA). This corpus8 was sourced from 
the Insurance Library9 website, consists of 16,889 real-world user ques-
tions and 27,413 corresponding answers written by professionals with 
extensive domain knowledge in the insurance industry.

(3) MedQA [65] is a free form multilingual multiple choice QA 
dataset10 specifically curated for medical problem-solving, sourced from 

6 https://huggingface.co/datasets/BeIR/fiqa
7 https://stackexchange.com; https://stocktwits.com; https://reddit.com
8 https://github.com/shuzi/insuranceQA
9 https://www.insurancelibrary.com/
10 https://huggingface.co/datasets/bigbio/med_qa
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professional medical board exams. It encompasses over 61K questions, 
making it a valuable resource for evaluating and training models on clin-
ical reasoning and medical knowledge in diverse contexts. The dataset 
is complemented by a large-scale corpus extracted from medical text-
books, supporting comprehensive reading comprehension and open-
domain medical QA research.

(4) MedMCQA [66] is a large-scale, multiple-choice QA dataset11 
designed to mirror real-world medical entrance exams, notably AIIMS 
and NEET PG. It contains over 194K high-quality MCQs spanning 2400 
healthcare topics and 21 medical subjects, with each question accom-
panied by detailed explanations. The dataset is notable for its topical 
diversity and complexity, requiring models to demonstrate advanced 
reasoning abilities across a broad spectrum of medical disciplines, mak-
ing it a robust benchmark for open-domain medical QA systems.

For each dataset, a subset of 2000 passages is randomly chosen for 
our main experiments.

4.2.  Baselines

Prior research in this area has used varied experimental setups and 
has not focused on generating comprehensive sets of QA pairs from indi-
vidual documents. As a result, direct comparisons between these works 
are challenging. Therefore, we establish the following baselines for our 
study:

• LLM-DP: This baseline directly prompts Meta-Llama-3-70B-Inst12 
to generate QAs without explicit reasoning or tool utilization. It 
serves as a measure of the LLM’s ground performance.

• qGen-aGen: In this pipeline, we employ query-gen-ms- marco-
t5-large-v1 from the Benchmarking IR BEIR [67] to generate ques-
tions, which are then fed into Meta-Llama-3-70B to produce cor-
responding answers. This baseline assesses the LLM’s performance 
when guided by an external query generation model.

4.3.  CIR3 implementation

We implement CIR3 using the LangGraph13 library, supporting both 
heterogeneous (CIR3-Het) and homogeneous (CIR3-Hom) configura-
tions.

• CIR3-Hom uses the Instruct variants of Meta-Llama-3-{70B,8B} 
for their strong performance and moderate resource requirements.

• CIR3-Het14 leverages GPT-4o-mini15, Gemma-3-27B-it16, Meta-
Llama-3-{70B,8B}, and Claude Sonnet 417.
Inference is conducted with a temperature of 0.1 and nucleus sam-

pling of 0.5. We use the Groq18 API for Llama models and self-host 
Gemma via vLLM19 Kwon et al. [68], both offering seamless integra-
tion. Generation is limited to 10 QA pairs per context, with refinement 
iterations set to 𝐾 = 6 and 𝐿 = 12.

4.4.  Evaluation metrics

This section delineates the metrics and evaluation framework used to 
assess CIR3’s performance. We first discuss the primary evaluation, then 

11 https://huggingface.co/datasets/openlifescienceai/medmcqa
12 https://ai.meta.com/blog/meta-llama-3
13 https://langchain-ai.github.io/langgraph
14 The implementation is designed for flexibility and scalability, enabling com-
patibility with a wide range of LLMs through external configuration alone, with-
out requiring code modifications, as detailed in our repository.
15 https://platform.openai.com/docs/models/gpt-4o-mini
16 https://deepmind.google/models/gemma/gemma-3
17 https://www.anthropic.com/news/claude-4
18 https://groq.com
19 Our repository provides a scalable, containerized vLLM setup with inte-
grated monitoring tools, enabling streamlined deployment and robust observ-
ability.

address common generation errors, and finally, we discuss our approach 
to evaluating the classifier agent through cross-model agreement.

4.4.1.  Main evaluation
Automatic evaluation of generated text remains a challenge as tra-

ditional metrics fail to align with human assessments. To address this 
limitation and provide a more comprehensive and refined evaluation of 
CIR3, we augment standard metrics with LLM-based scores tailored to 
our specific use case.
Statistical Scorers. We first use ROUGE-L [69], METEOR [70], and Jac-
card Index [71] to calculate the scores between (1) the generated ques-
tions  and the context 𝑐 as reference, (2) the generated answers  and 
𝑐, and (3)  and . Then, we calculate the mean score over (1), (2) and 
(3), before calculating the average scores over each evaluation dataset.
Encoder-based Scorers. Beyond token overlap, we also use embedding-
based similarity metrics, such as BERTScore [72] and BAAI/bge-large-
en-v1.5 (denoted with BGE score in this study). We measure the mean 
semantic scores between (1) 𝑐 and , (2) 𝑐 and , and (3)  and . To 
assess the quality of QAs when considered collectively, we also include 
BGE scores between (4) the concatenated questions ⊕ = ⊕𝑁

𝑖=1𝑞𝑖 and 𝑐, 
(5) the concatenated answers ⊕ = ⊕𝑁

𝑖=1𝑎𝑖 and 𝑐, and (6) ⊕ and ⊕.

LLM-based Scorers. To further quantify the comprehensiveness and 
faithfulness of the generated QA pairs, we adapt the G-EVAL [73] frame-
work by merging the task definition and evaluation criteria prompt with 
a Chain-of-Thoughts (CoT) prompt [74] to specify detailed evaluation 
steps. This modification provides greater control over the assessment 
process compared to the original G-EVAL, where the LLM generates the 
CoT automatically. We evaluate the comprehensiveness of ∗ based on 
coverage, depth, accuracy and coherence. Similarly, we evaluate the faith-
fulness based on accuracy, exaggeration, consistency, justification, plausi-
bility, and misrepresentation. Additionally, we retain the G-EVAL scoring 
function, which normalizes scores using a weighted sum of token prob-
abilities in LLM output. We also used GPT-4 with the temperature set to 
0 to ensure reproducibility.

Further details on the metrics and scoring calculations used in this 
study are provided in Appendix A: Automatic Metrics. Sample prompts 
designed for evaluating CIR3 can be found in Appendix E: Evaluation 
Prompts.

4.4.2.  Evaluation of common generation errors
To further assess the robustness of our framework, we evaluate CIR3 

in its ability to mitigate common generation errors: hallucination, irrel-
evance, duplication, and over-specificity. We conduct experiments using 
400 samples, with 100 samples from each of the four datasets. The gen-
erated QA pair sets are evaluated using gpt-4o as a model-based eval-
uator, employing G-Eval with detailed evaluation steps for each error 
type. To quantify duplication, we assess the semantic similarity across 
all possible pairs of generated questions for a given document, and re-
port the averaged score. We compare the performance of our approach,
CIR3-Hom and CIR3-Het, against the two baselines: LLM-DP and qGen-
aGen.

4.4.3.  Evaluating classifier agents via cross-model agreement
This section details the quantitative evaluation of our classifier 

agent’s accuracy and robustness in identifying subtopics within FiQA, 
InsurQA, MedQA and MedMCQA. Given the absence of a human-
annotated gold standard, we employ a two-pronged approach for cross-
model agreement: Pairwise Semantic Agreement and Holistic Semantic 
Agreement (Krippendorff’s Alpha), leveraging consensus among multi-
ple advanced LLMs.
(1) Pairwise Semantic Agreement. For each document, our classifier’s 
identified subtopics are compared against those generated by a set of 
cross-LLM models (GPT-4o-mini, Gemma-3-27b-it, Claude Sonnet 4). 
We compute agreement using four distinct metrics:
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Table 1 
Evaluation results using standard metrics. † denotes significant differences (𝑝 < 0.05) from a paired 𝑡-test between CIR3 and the best baseline LLM-DP.

 METEOR  ROUGE-L (F1 Scores)  Jaccard Index
 Dataset  Model 𝑠(𝑐,) 𝑠(𝑐,) 𝑠(,)  Avg. 𝑠(𝑐,) 𝑠(𝑐,) 𝑠(,)  Avg. 𝑠(𝑐,) 𝑠(𝑐,) 𝑠(,)  Avg.

LLM-DP  0.1571  0.3068  0.2119 0.2252  0.1951  0.3189  0.2781  0.2640  0.4377  0.5286  0.4881 0.4847
 FiQA  qGen-aGen  0.1288  0.3383  0.1613  0.2094  0.1771  0.4003  0.2690 0.2821  0.4161  0.5391  0.4703  0.4751

 CIR3-Hom  0.1935  0.3791  0.2767  0.2831†  0.2153  0.3771  0.2893  0.2939  0.5511  0.6112  0.5983  0.5868†
 CIR3-Het  0.2140  0.3905  0.2938  0.2994†  0.2190  0.3913  0.2952  0.3018  0.5633  0.6959  0.5983  0.6191†
LLM-DP  0.2422  0.3972  0.2717 0.3037  0.2877  0.4984  0.3447 0.3769  0.4784  0.5920  0.4987 0.5230

 InsurQA  qGen-aGen  0.1433  0.3134  0.1283  0.1949  0.1898  0.4903  0.2463  0.3088  0.3885  0.5749  0.4729  0.4787
 CIR3-Hom  0.3197  0.4391  0.3632  0.3739†  0.2950  0.4891  0.3972  0.3937  0.5261  0.6716  0.6104  0.6027†
 CIR3-Het  0.3278  0.4579  0.3802  0.3887†  0.3143  0.5002  0.4031  0.4059  0.5354  0.6769  0.6210  0.6111†
LLM-DP  0.1506  0.3042  0.2077 0.2208  0.1959  0.3161  0.2715 0.2611  0.4351  0.5303  0.4814 0.4823

 MedQA  qGen-aGen  0.1231  0.3353  0.1575  0.2053  0.1708  0.2982  0.2708  0.2466  0.4136  0.5390  0.4680  0.4735
 MedMCQA  CIR3-Hom  0.1958  0.3847  0.2765  0.2857†  0.2204  0.3739  0.2887  0.2943  0.5512  0.6146  0.6019  0.5892†

 CIR3-Het  0.2070  0.3934  0.2766  0.3739†  0.2317  0.3798  0.3050  0.3055  0.5582  0.6220  0.6104  0.6212†

Table 2 
Evaluation results using embedding-based metrics. † denotes significant differences (𝑝 < 0.05) from a paired 𝑡-test between CIR3 and the best baseline 
LLM-DP.

 BERTScore (F1 Scores)  BGE Semantic Similarity
 Dataset  Model 𝑠(𝑐,) 𝑠(𝑐,) 𝑠(,)  Avg. 𝑠(𝑐,) 𝑠(𝑐,) 𝑠(,)  Avg. 𝑠(𝑐,⊕) 𝑠(𝑐,⊕) 𝑠(⊕ ,⊕)  Avg.

LLM-DP  0.8415  0.8597  0.8701 0.8571  0.6858  0.6847  0.7872 0.7192  0.7548  0.8078  0.8488 0.8038
 FiQA  qGen-aGen  0.8339  0.8617  0.8472  0.8475  0.6932  0.7051  0.7358  0.7113  0.7462  0.8087  0.8183  0.7910

 CIR3-Hom  0.8702  0.9171  0.9088  0.8987†  0.8312  0.8542  0.8115  0.8323  0.8291  0.9118  0.9264  0.8891†
 CIR3-Het  0.9085  0.9412  0.9378  0.9292†  0.8555  0.8689  0.8407  0.8551  0.8554  0.9384  0.9587  0.9175†
LLM-DP  0.8511  0.8810  0.8779 0.8700  0.7388  0.7540  0.8097 0.7675  0.8173  0.8948  0.8675 0.8598

 InsurQA  qGen-aGen  0.8282  0.8757  0.8472  0.8503  0.7231  0.7404  0.7344  0.7326  0.7708  0.8539  0.7487  0.7911
 CIR3-Hom  0.8972  0.9298  0.9175  0.9148†  0.7591  0.7736  0.8616  0.7980  0.8450  0.9395  0.9072  0.8972†
 CIR3-Het  0.9218  0.9414  0.9352  0.9328†  0.7833  0.8008  0.8809  0.8217  0.8389  0.9530  0.9215  0.9044†
LLM-DP  0.8358  0.8525  0.8696 0.8526  0.6850  0.6795  0.7848 0.7165  0.7486  0.8039  0.8483 0.8003

 MedQA  qGen-aGen  0.7845  0.8633  0.8347  0.8275  0.6528  0.6734  0.6869  0.6710  0.7288  0.7540  0.7770  0.7533
 MedMCQA  CIR3-Hom  0.8776  0.9256  0.9235  0.9089†  0.7777  0.7592  0.8511  0.7960  0.8559  0.9292  0.8851  0.8901†

 CIR3-Het  0.8971  0.9454  0.9525  0.9316†  0.8053  0.7835  0.8708  0.8199  0.8787  0.9552  0.9056  0.9132†

• Jaccard Similarity: Measures the overlap of unique subtopics.
• Soft-F1 Score: A semantic F1 score, measuring precision and recall 
based on cosine similarity between subtopic embeddings.

• Bipartite Matching (Hungarian Algorithm-based F1): Employs 
the Hungarian algorithm to find the optimal one-to-one semantic 
mapping between subtopics from two lists, maximizing the sum of 
cosine similarities above a threshold.

• Average Cosine Similarity (Avg-Cosine): The average of all pair-
wise cosine similarities between subtopic embeddings from two lists.

(2) Holistic Semantic Agreement (Krippendorff’s Alpha). Our frame-
work utilizes a two-stage methodology to rigorously assess the reliability 
of semantic consensus between all annotators and our CIR3 classifier.

In Stage 1, we compute Krippendorff’s Alpha over semantically clus-
tered topics, derived from subtopics identified by all consensus models. 
These subtopics are encoded using sentence transformer embeddings 
and clustered via agglomerative methods with cosine distance. We em-
ploy a range of distance thresholds to ensure optimal semantic granular-
ity, balancing the risk of merging distinct concepts against fragmenting 
related subtopics. The resulting Alpha scores, averaged across thresh-
olds, provide a robust baseline for consensus reliability.

Stage 2 involves evaluating CIR3’s semantic agreement with the es-
tablished consensus using pairwise semantic metrics, thereby validating 
the classifier’s alignment with the consensus.

Further methodological details are given in Appendix B: Classifier 
Agent: Cross-Model Agreement.

5.  Results and observations

This section presents our experimental findings, covering key results, 
human evaluations, and ablation studies to assess the effect of multi-
perspective reasoning, and the impact of introducing variation.

5.1.  Main results

In all tables, the best-performing model is highlighted in bold, with 
the second-best underlined.

As shown in Table 1, our proposed approaches outperform both 
baselines across all lexical metrics on both datasets. Specifically, CIR3-
Hom achieves relative improvements of 6.43% on METEOR, 2.66% 
on ROUGE-L, and 9.62% on the Jaccard Index over the next best-
performing model. Furthermore, CIR3-Het demonstrates even more 
substantial gains, with relative improvements of 10.41%, 3.70%, and 
12.04% on the same metrics, respectively. Although the observed over-
lap might not suggest a high degree of similarity, it is important to con-
sider the limitations of lexical metrics, which are inherently less effective 
when evaluating generative tasks.

Further analysis in Table 2 shows that CIR3 consistently surpasses 
other models in semantic similarity metrics. CIR3 achieves an average 
improvement of 5.94% on BERTScore and 8.33% on BGE compared to 
the second-best model. This trend extends to contextual semantic sim-
ilarity between the context and concatenated answers, suggesting that
CIR3’s generated answers are more faithful to the input text, potentially 
indicating lower hallucination and improved comprehensiveness.
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Table 3 
LLM-based evaluation results for comprehensiveness and faithfulness.
 Dataset  Model  Comprehensive  Faithful  Avg.

LLM-DP  0.7169  0.8030 0.7599
 FiQA  qGen-aGen  0.5290  0.8414  0.6852

 CIR3-Hom  0.9312  0.9762  0.9537
 CIR3-Het  0.9419  0.9749  0.9584
LLM-DP  0.7317  0.8175 0.7746

 InsurQA  qGen-aGen  0.5560  0.8763  0.7161
 CIR3-Hom  0.9389  0.9879  0.9634
 CIR3-Het  0.9501  0.9893  0.9697
LLM-DP  0.6807  0.7961 0.7384

 MedQA  qGen-aGen  0.5052  0.8371  0.6711
 MedMCQA  CIR3-Hom  0.9148  0.9511  0.9329

 CIR3-Het  0.9372  0.9629  0.9500

Table 3 (LLM-based evaluation results) further supports these 
findings, showing that CIR3-Hom achieves average improvements of 
21.85% in comprehensiveness and 16.62% in faithfulness, while CIR3-
Het attains 23.33% and 17% improvements, respectively, outperform-
ing the second-best model, LLM-DP. These results provide additional 
validation for Method 3.3 and Eq. (1), wherein the curmudgeon, utiliz-
ing a diversity-based evaluation tool, directs the generation of diverse 
QAs (Comprehensiveness) while ensuring the alignment of the answers 
with the context (Faithfulness).

Interestingly, LLM-DP demonstrates superior performance compared 
to qGen-aGen in all tests. This implies that the added query generator 
may not be beneficial, possibly due to the limitations of the T5 [75] 
model in uncovering deeper key concepts in financial and medical doc-
uments.

Our analysis also reveals, in Tables 1 and 2, that CIR3’s questions 
are significantly more aligned with the context compared to both base-
lines. This indicates that the CIR3’s deep engagement with the input 
document helps bridging the gaps in machine reading comprehension, 
which results in more comprehensive and relevant question generation.

The results presented in Tables 1–3, provide compelling evidence 
of the effectiveness of CIR3. These results further demonstrate that
CIR3-Het consistently outperforms CIR3-Hom, a performance gap at-
tributable to the advantages conferred by architectural and behavioral 
diversity among heterogeneous agents, where differing model archi-
tectures, training data, and inductive biases result in varied reasoning 
strategies and error profiles, enabling the system to explore a broader 
solution space and mitigate redundancy or shared failure modes com-
mon in homogeneous configurations. This diversity enhances robustness 
through inter-agent disagreement, encourages complementary special-
ization, and supports more effective ensemble decision-making. Recent 
work highlights how heterogeneity improves collaborative reasoning, 
debate, and problem-solving performance in LLM-based agents [76]. 
Such findings also align with our hypotheses in H.2 and H.3, where 
cognitive diversity often correlates with improved group performance.

5.2.  Common generation error analysis

The results presented in Table 4 demonstrate that both CIR3 variants 
significantly outperform the baseline methods across all error categories 
and domains.CIR3-Het achieves the highest performance, with scores 
exceeding 0.94 across all metrics for both Finance and Medical domains.

Duplication Analysis. The most substantial performance gap ap-
pears in duplication scores, where CIR3 achieves scores between 0.93 
and 0.97, while LLM-DP scores range from 0.70-0.79, and qGen-aGen 
performs poorly with scores below 0.5. This suggests that T5-based ques-
tion generation tends to produce highly similar questions, limiting di-
versity in the generated QAs.

Over-specificity. Interestingly, qGen-aGen scores high in over-
specificity (∼ 0.97). This can be attributed to the characteristics of the 

Table 4 
LLM-based evaluation results for common generation errors (semantic 
duplication, hallucinated answers, irrelevant QAs, over-specific and over-
generalized answers). Higher scores indicate better performance.
 Dataset  Model  Duplication  Hallucination  Irrelevance  Over

 Specificity
 LLM-DP 0.7846  0.8088  0.8006  0.8976

 FiQA  qGen-aGen  0.4771 0.8519 0.8481  0.9781
 InsurQA  CIR3-Hom  0.9515  0.9796  0.9783 0.9549

 CIR3-Het  0.9689  0.9853  0.9825 0.9533

 LLM-DP 0.7012  0.7935  0.7933  0.8860
 MedQA  qGen-aGen  0.4919 0.8466 0.8452  0.9703
 MedMCQA  CIR3-Hom  0.9317  0.9690  0.9630 0.9561

 CIR3-Het  0.9481  0.9811  0.9847 0.9598

fine-tuned T5 question generation model (query-gen-ms-marco-t5-large-
v1), which tends to produce more generic, template-driven questions. 
Although this approach helps prevent overfitting to specific contextual 
details, it comes at the steep cost of diversity, as evidenced by the low 
duplication scores.

Hallucination and Irrelevance Control. CIR3 variants exhibit su-
perior hallucination prevention compared to baseline methods, with 
CIR3-Het achieving scores of 0.98+, substantially higher than LLM-DP 
(∼ 0.80) and baseline qGen-aGen (∼ 0.84).

The results demonstrate that CIR3’s approach to QAG effectively bal-
ances all evaluation criteria, producing high-quality, diverse, and con-
textually appropriate QAs while minimizing common generation errors.

5.3.  Classifier agent: cross-model agreement

Table 5 presents the evaluation of our classifier agent using multiple 
agreement metrics. Soft-F1 scores are particularly high (0.9141) for the 
finance domain and 0.9157 for the medical domain, indicating strong 
semantic alignment between our classifier agent and the reference mod-
els, even when subtopic labels differ in wording or structure.Krippen-
dorff’s Alpha, which captures overall agreement beyond chance, also 
shows strong results (0.9338 for finance and 0.9207 for medical), vali-
dating the robustness of our consensus establishment process. The CIR3 
classifier demonstrates excellent alignment with the consensus between 
models in both domains. In the finance domain, CIR3 achieves a seman-
tic agreement score of 0.9434 (𝜎 = 0.0491), while in the medical domain 
it achieves 0.9316 (𝜎 = 0.0473). These scores indicate a strong seman-
tic alignment between the CIR3 classifications and the consensus base-
line. The slightly higher agreement in the finance domain likely reflects 
the more controlled and domain-specific vocabulary typical of financial 
texts. Conversely, Jaccard scores are lower (0.55 and 0.54), reflecting 
the stricter nature of this metric in requiring exact token overlap, which 
can penalize semantically equivalent but differently phrased outputs. 
This contrast highlights the importance of using soft or semantic-aware 
metrics when evaluating classification tasks that involve natural lan-
guage.

Overall, these results validate both the effectiveness of our classifier 
agent and our general approach to scalable subtopic classification in 
scenarios where manual annotations are unavailable or impractical.

5.3.1.  Classifier performance via bipartite agreement scores
To evaluate the consistency of our subtopic prediction, we analyze 

the distribution of Bipartite F1 scores across 400 documents sampled 
uniformly from the four datasets (100 each). We select the bipartite 
score due to its higher standard deviation (as shown in Table 5), which 
makes it particularly sensitive to performance variation and thus a suit-
able measure for evaluating classifier agreement.

Our analysis, summarized in Table 6 and Fig. 2, revealed robust 
semantic alignment between CIR3’s classifier agent and the reference 
models. A significant majority of documents (74%) achieved scores in 
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Table 5 
Cross-model agreement metrics for subtopic identification.
 Metric  FiQA/InsurQA  MedQA/MedMCQA
 Pairwise Semantic Agreement (Mean ± Std Dev)
 Jaccard  0.5530 ± 0.2819  0.5403 ± 0.2938
 Soft-F1  0.9161 ± 0.1060  0.9157 ± 0.0993
 Bipartite  0.8388 ± 0.1596  0.8198 ± 0.1538
 Avg-Cosine  0.7093 ± 0.0368  0.7074 ± 0.0332
 Holistic Semantic Agreement
 Cross-Model Reliability (𝛼)  0.9338  0.9207
 CIR3 Semantic Agreement  0.9434 ± 0.0491  0.9316 ± 0.0473

Table 6 
Statistics of classifier bipartite F1 scores across 400 documents.
 Score  Doc  Avg  Median  Min  Max  CIR3
 Interval  Count (%)  Score  Comp  Faith
 [0.50, 0.66]  4  0.600  0.600  0.600  0.600  0.880  0.923
 [0.66, 0.75]  22  0.724  0.733  0.667  0.733  0.918  0.958
 [0.75, 1.00]  74  0.875  0.867  0.800  1.000  0.949  0.994

Fig. 2. A bar plot depicts the distribution of 400 documents across score inter-
vals based on their Bipartite F1 scores.

the highest agreement interval (0.75, 1]. The middle interval (0.66, 0.75]
accounted for 23% of documents, while a small fraction (4%) scored 
0.6. Notably, no document scored below 0.6, which confirms a consis-
tent baseline of semantic agreement and underscores the strong relia-
bility of the CIR3 classifier.

Importantly, system-level metrics, Comprehensiveness and Faith-
fulness, demonstrate a monotonic improvement as bipartite F1 scores 
increased. In the top interval, these metrics reached 0.949 and 
0.994, respectively. This direct correlation confirms that more accu-
rate subtopic classification directly enhances overall CIR3 performance. 
Consequently, the bipartite F1 score proves to be a reliable indicator of 
meaningful agreement and its positive impact on CIR3’s end-task per-
formance.

5.4.  Human evaluation

We further conduct human evaluation on 80 samples from the In-
surQA corpus and the corresponding generated QA pairs by CIR3 and
LLM-DP. We ask 8 experts in finance20 to assess 10 sets of QA pairs each, 
focusing on comprehensiveness and faithfulness. Comprehensiveness is 
evaluated based on three aspects: coverage, depth, and coherence. Simi-
larly, faithfulness is assessed based on: accuracy, representation, and di-
versification. Each aspect is scored on a scale from 1 (worst) to 5 (best). 

20 Volunteers have 2 to 6 years of experience in the finance domain, all based 
in Europe

Table 7 
Human evaluation results on 80 sets of QA pairs generated by CIR3 
and LLM-DP. The ratings (1 to 5) are normalized between 0 and 1. 
The scores are analyzed using a paired 𝑡-test (𝑝-values are presented).

 Aspect  LLM-DP  CIR3 𝑝-value

Comprehensiveness

 Coverage  0.7875  0.9375  0.0033
 Depth  0.7750  0.9125  0.0038
 Coherence  0.7625  0.9250  0.0023
 Avg.  0.7750  0.9250

Faithfulness

 Accuracy  0.7500  0.9125  0.0020
 Representation  0.7875  0.9125  0.0042
 Diversification  0.8250  0.8875  0.0104
 Avg.  0.7875  0.9041

A partial excerpt of the evaluation guidelines is given in Appendix D: 
Human Evaluation Guidelines.

Table 7 shows the average scores and paired 𝑡-test results, aligning 
with the findings in Table 3. CIR3 demonstrates significant improvement 
over the baseline LLM-DP, with an increase of 15% on comprehensive-
ness and 11.66% on faithfulness.

5.5.  Ablation studies

To provide additional support for our hypotheses in H.2 and H.3, 
we conduct an ablation study with two variations of CIR3:
(1) CIR3 w/o perspectives. Following Shao et al. [51], in this variation, 
we aim to assess the impact of multi-perspective reasoning. We modify 
the moderator’s prompt by removing the section that assigns diverse per-
spectives to the writer agents. To ensure a fair comparison, we maintain 
the same number of writers as in the original model (determined by the 
number of identified subtopics);
(2) CIR3 w/o Curmudgeon. In this variation, we disable the curmud-
geon agent to evaluate the effect of introducing external variation to the 
writer’s sub-network.

For this study, we randomly select 200 samples, equally split be-
tween both datasets, and capped the refinement cycles between writers 
at 12 for each input.

Table 8 
Effect of multi-perspective reasoning and Curmudgeon on Comprehen-
siveness and Faithfulness.
 Model  Comprehensiveness  Faithfulness  Avg.
 LLM-DP  0.7399  0.8221  0.7810
 CIR3  0.9451  0.9895  0.9673
CIR3 w/o perspectives  0.9115  0.9653 0.9384
 CIR3 w/o Curmudgeon  0.8370  0.9046  0.8708

Fig. 3. Number of inner-refinement cycles (𝑥-axis), given as intervals, required 
to process the input documents (𝑦-axis), given as percentage.
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Fig. 4. Comparative analysis of four CIR3 variants, distinguished by their Curmudgeon strategies, across defined outer-refinement cycle ranges. Bars show the 
percentage of documents processed within each cycle range (left y-axis), and scatter points denote the average comprehensiveness score (right y-axis).

Fig. 5. To analyze the behavior of different Curmudgeon strategies, this figure breaks down performance on documents requiring exactly five outer refinement 
iterations, showing the percentage of such documents (left) and the corresponding evolution of their comprehensiveness score (right).

The results in Table 8 demonstrate that CIR3 surpasses the two alter-
native variations. Nonetheless, both variations outperform the baseline
LLM-DP, providing some support for our hypotheses.
Effect of multi-perspective reasoning. Table 8 shows that CIR3 w/o 
perspectives yields inferior results compared to CIR3, suggesting that 
multi-perspective group debate contributes to a comprehensive and 
faithful output, as proposed in H.2.
Effect of variation. Removing the disruptive signal, in CIR3 w/o Cur-
mudgeon, significantly impairs performance, reducing faithfulness by 
8.49% and comprehensiveness by 10.81%. This can be explained by ex-
amining the number of refinement cycles (given as intervals) required 
to process the input documents, as in Fig. 3. Compared to CIR3, and 
CIR3 w/o perspectives, CIR3 w/o Curmudgeon shows a significant increase 
in the number of contexts falling within the refinement cycle ranges 
[0, 3] and [10, 12], as shown in Table 9. For the interval [0, 3], CIR3 w/o 
Curmudgeon exhibits a 13.5% increase compared to CIR3 and an 8.5% 
increase compared to CIR3 w/o perspectives. Similarly, for the interval 
[10, 12], CIR3 w/o Curmudgeon shows an 11% increase over CIR3 and a 

Table 9 
Effect of multi-perspective reasoning and curmudgeon on doc-
ument distribution per cycle.

 Context Distribution Per
 Refinement Cycle Ranges (%)

 Model [0, 3] [4, 6] [7, 9] [10, 12]

 LLM-DP  100  –  –  –
 CIR3  04.00  76.00  19.50  00.50
 CIR3 w/o perspectives  09.00  69.00  17.00  05.00
 CIR3 w/o Curmudgeon  17.50  57.00  14.00  11.50

6.5% increase over CIR3 w/o perspectives. This aligns with H.3, where 
the absence of variation can result in either (1) a potential immature 
collective convergence (collapse) and loss of information, characterized 
by a small number of iterations and potentially low comprehensiveness 
scores, or (2) a potential slow convergence, characterized by a large 
number of iterations and a high likelihood of low faithfulness.

5.5.1.  Ablation studies: curmudgeon strategies
To evaluate the individual contributions of the curmudgeon agent 

and the Vendi diversity tool in CIR3, we conduct comprehensive abla-
tion studies under four experimental conditions using 200 documents 
uniformly sampled from the four datasets (50 each):

1. CIR3 (baseline): The curmudgeon agent combines its intrinsic 
knowledge with the Vendi diversity tool.

2. CIR3 Intrinsic Only: The curmudgeon agent operates solely using 
its intrinsic knowledge without access to the Vendi diversity tool.

3. CIR3 Vendi Only: A simplified configuration using only the Vendi 
tool for diversity measurement (binary feedback21), with no curmud-
geon agent providing qualitative feedback.

4. CIR3 Random Rejection: A control condition employing random 
feedback with an acceptance probability of 0.35, eliminating both 
agent reasoning and diversity measurement.

All configurations utilizing LLM agents employed GPT-4o-mini for 
its superior reasoning capabilities and cost-efficiency. Ablation studies 
reveal distinct behavioral patterns across the four configurations, mea-
sured by document distribution across outer refinement iteration inter-
vals and corresponding comprehensiveness scores.

21 “QA pair meets or not diversity and / or alignment criteria.”
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Table 10 
Ablation study of Curmudgeon feedback strategies.
 Strategy  Avg. Comp↑  Avg. Faith↑  Avg. cycles↓  % docs processed in:

 [1,2]  [3,4]  [5,6]
 CIR3  0.9528  0.9895  2.35  4.0  57.0  39.0
 CIR3 Intrinsic Only  0.9223  0.9696  2.45  5.5  44.5  50.0
 CIR3 Vendi Only  0.8893  0.9331  2.85  0.5  14.5  85.0
 CIR3 Random Rejection  0.8167  0.8969  1.37  73.0  17.0  10.0

Table 11 
Document count percentage and comprehensiveness score progression for documents requiring ex-
actly 5 outer refinement iterations.
 Model Variant  Doc %  Iter 1  Iter 2  Iter 3  Iter 4  Iter 5  Improvement
 CIR3  24.5%  0.7801  0.8795  0.9391  0.9437  0.9573  +0.1772
CIR3 Intrinsic Only  29.0%  0.7819  0.8553  0.9180  0.9193  0.9291 +0.1472
 CIR3 Vendi Only  32.0%  0.7923  0.8333  0.8554  0.8622  0.8770  +0.0847
 CIR3 Random Rejection  7.0%  0.7811  0.7886  0.7909  0.7991  0.7975  +0.0164

Comprehensiveness Performance. As shown in Table 10, the 
CIR3 baseline achieved the highest average comprehensiveness score at 
0.9528, demonstrating the effectiveness of combining the reasoning of 
the curmudgeon agent with the diversity measurement tool. CIR3 Intrin-
sic Only performed moderately well (0.9223) but showed reduced qual-
ity without diversity guidance. CIR3 Vendi Only achieved lower compre-
hensiveness (0.8893), suggesting that diversity measurement alone is in-
sufficient for an effective quality assessment. The random rejection base-
line predictably performed the lowest (0.8167), reinforcing the need for 
intelligent feedback mechanisms.
Document Distribution Patterns. As illustrated in Fig. 4, the distri-
bution of documents across refinement intervals [1,2], [3,4], and [5,6] 
revealed distinct processing patterns. Random rejection processed 73% 
of documents within the first two cycles, indicating premature con-
vergence (Comprehensiveness 0.8165). In contrast, CIR3 Vendi Only
required extensive refinement, with 85% of the documents needing 
5–6 cycles, indicating slow convergence (Comprehensiveness 0.8709). 
The original CIR3 demonstrated a more balanced convergence, with 
document distributions of 4%, 57% and 39% across the [1,2], [3,4], 
and [5,6] intervals, achieving respective comprehensiveness scores of 
0.9412, 0.9674, and 0.9499.

Complex Document Analysis. For the most challenging docu-
ments22, which required exactly five refinement iterations (𝐾 − 1), CIR3
again showed superior performance, with a significant improvement 
from 0.7801 to 0.9573 (+17.72% - Table 11). In contrast, CIR3 Vendi 
Only exhibited the smallest improvement (0.7923 → 0.8770), as detailed 
in Fig. 5. This highlights the critical role of intelligent agent feedback in 
difficult refinement tasks.

Key Finding. The ablation results demonstrate that:
(1) the intrinsic reasoning capabilities of the curmudgeon agent are the 

main driver of quality improvements,
(2) the Vendi diversity tool provides measurable enhancement when 

combined with the reasoning of the agent,
(3) neither component alone achieves the performance of the integrated 

system, and
(4) the substantial performance gap between random rejection and all 

other conditions validates the importance of intelligent feedback in 
iterative refinement processes.
These findings confirm the synergistic benefit of integrating both 

components in CIR3. This combination outperforms either element in 
isolation while achieving balanced convergence, which is reflected in 
the high scores.

22 These were among the most challenging documents, processed in five itera-
tions, just below the maximum limit (𝐾 = 6) used to halt refinement.

6.  Conclusion and future work

This paper presented CIR3, a novel system for comprehensive and 
faithful QAG from information-dense documents. A key contribution lies 
in addressing the more challenging QAG task compared to traditional 
QG, effectively navigating a constrained search space for unique and rel-
evant QA pairs. Notably, to the best of our knowledge, CIR3 is the first 
proposed QAG approach employing multi-agent LLMs, orchestrating in-
formation flow via transactive reasoning, multi-perspective assessment, 
and balanced collective convergence. Our research demonstrates that in-
tegrating an external signal significantly enhances convergence and di-
versity within the agent group, enabling efficient agreement on compre-
hensive and faithful QA pairs representing core text concepts, a crucial 
aspect of CIR3’s design. To improve alignment with human evaluation, 
we developed a custom metric leveraging encoder and LLM-based scores 
on individual and concatenated QA pairs, providing a refined quality 
assessment. This work also presents a cross-model semantic agreement 
framework that evaluates LLM subtopic identification through multi-
model consensus rather than human annotation. Using Soft-F1, bipartite 
matching, and Krippendorff’s Alpha on semantically clustered topics, it 
provides scalable evaluation for classifiers in low-resource domains. Em-
pirical results confirm CIR3’s significant performance gains over strong 
baselines.

Future research aims to broaden the applicability of CIR3 across a 
diverse range of tasks, such as summarization, information retrieval, and 
multi-modal applications.
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Appendix A.  Metrics

A.1.  Automatic metrics

We provide a brief description of the metrics used in this study:
ROUGE-L [69] assesses recall by evaluating the overlap between ref-

erence and generated sentences using Longest Common Subsequence 
statistics. We use the implementation from Google23. In this paper, we 
report the F1 score, the harmonic mean of precision and recall.

METEOR [70] is a recall-oriented metric that measures the simi-
larity between generated and reference text, incorporating synonyms, 
stemming, and paraphrasing. We use the implementation from NLTK24.

Jaccard Index25 [71] is a measure of similarity between two sets. 
It is calculated as the size of their intersection (elements they share) 
divided by the size of their union (total unique elements). Values range 
from 0 (no similarity) to 1 (identical sets). We adopt Scikit-Learn’s 
implementation26.

BERTScore27 [72] uses contextual embeddings to assess word-level 
similarity via cosine similarity, correlating with human judgment in sen-
tence and system evaluation, and providing precision, recall, and F1 
metrics.

BAAI/bge-large28 is a high-performance sentence embedding 
model, designed for semantic similarity tasks. It encodes text into dense 
vectors, allowing similarity to be measured via cosine similarity between 
embeddings.

A.2.  Score calculations

We denote 𝑠(𝑐,), 𝑠(𝑐,), 𝑠(,), 𝑠(𝑐,⊕), 𝑠(𝑐,⊕), and 𝑠(⊕,⊕)
the scores between (context and questions), (context and answers), 
(questions and answers), (context and concatenated questions), (context 
and concatenated answers), and (concatenated questions and concate-
nated answers), respectively. The scores are calculated as follows:

𝑠(𝑐,) = 1
𝑁

𝑁
∑

𝑖=1
𝑠(𝑐, 𝑞𝑖) (A.1)

𝑠(𝑐,) = 1
𝑁

𝑁
∑

𝑖=1
𝑠(𝑐, 𝑎𝑖) (A.2)

𝑠(,) = 1
𝑁

𝑁
∑

𝑖=1
𝑠(𝑞𝑖, 𝑎𝑖) (A.3)

𝑠(𝑐,⊕) = 𝑠(𝑐,⊕𝑁
𝑖=1𝑞𝑖) (A.4)

𝑠(𝑐,⊕) = 𝑠(𝑐,⊕𝑁
𝑖=1𝑎𝑖) (A.5)

𝑠(⊕,⊕) = 𝑠(⊕𝑁
𝑖=1𝑞𝑖, ⊕

𝑁
𝑖=1𝑎𝑖) (A.6)

where 𝑠 is the scoring function and ⊕ is the concatenation function.

Appendix B.  Classifier agent: cross-model agreement

This section provides further methodological details for the two dis-
tinct evaluation approaches used to assess the performance of the CIR3 
classifier: (1) direct pairwise evaluation and (2) holistic consensus-based 
evaluation.

23 https://pypi.org/project/rouge-score
24 https://www.nltk.org
25 https://en.wikipedia.org/wiki/Jaccard_index
26 https://scikit-learn.org
27 https://github.com/Tiiiger/bert_score
28 https://github.com/FlagOpen/FlagEmbedding

B.1.  Subtopic representation: semantic embeddings

Each subtopic 𝑠 is represented as a dense vector embedding using 
the BAAI/bge-large-en-v1.5 sentence transformer model:
𝐸(𝑠) = SentenceTransformerBAAI/bge-large-en-v1.5(𝑠) ∈ ℝ1024 (B.1)

The cosine similarity between embeddings is computed as:

sim(𝑠𝑖, 𝑠𝑗 ) =
𝐸(𝑠𝑖) ⋅ 𝐸(𝑠𝑗 )

‖𝐸(𝑠𝑖)‖2‖𝐸(𝑠𝑗 )‖2
(B.2)

B.2.  Approach 1: direct pairwise evaluation

This approach directly compares the CIR3 subtopics with each con-
sensus model using four complementary metrics. Given CIR3 subtopics 
𝐿CIR3 = {𝑠1,𝑖}𝑚𝑖=1 and consensus model subtopics 𝐿consensus = {𝑠2,𝑗}𝑛𝑗=1:

A. Jaccard Similarity (exact string matching baseline):

𝐽 (𝐿CIR3, 𝐿consensus) =
|𝐿CIR3 ∩ 𝐿consensus|
|𝐿CIR3 ∪ 𝐿consensus|

(B.3)

B. Soft-F1 Score with semantic similarity threshold 𝜃:

𝑃soft =
1
𝑚

𝑚
∑

𝑖=1
𝕀
(

max
𝑗
sim(𝑠1,𝑖, 𝑠2,𝑗 ) ≥ 𝜃

)

(B.4)

𝑅soft =
1
𝑛

𝑛
∑

𝑗=1
𝕀
(

max
𝑖
sim(𝑠1,𝑖, 𝑠2,𝑗 ) ≥ 𝜃

)

(B.5)

𝐹1soft =

⎧

⎪

⎨

⎪

⎩

2 ⋅ 𝑃soft ⋅ 𝑅soft
𝑃soft + 𝑅soft

if 𝑃soft + 𝑅soft > 0

0 otherwise
(B.6)

C. Bipartite Matching (Hungarian Algorithm) using cost matrix:
𝐶𝑖𝑗 = 1 − sim(𝑠1,𝑖, 𝑠2,𝑗 ) (B.7)

Optimal assignment 𝜋∗ minimizes total cost:

𝜋∗ = argmin
𝜋

min(𝑚,𝑛)
∑

𝑖=1
𝐶𝑖,𝜋∗(𝑖) (B.8)

Valid matches 𝑉𝑀 =
∑min(𝑚,𝑛)

𝑖=1 𝕀[sim(𝑠1,𝑖, 𝑠2,𝜋∗(𝑖)) ≥ 𝜃] yield:

𝑃bip = 𝑉𝑀
𝑚

, 𝑅bip = 𝑉𝑀
𝑛

, 𝐹1bip =
2 ⋅ 𝑃bip ⋅ 𝑅bip
𝑃bip + 𝑅bip

(B.9)

D. Average Cosine Similarity:

AvgCos(𝐿CIR3, 𝐿consensus) =
1

𝑚 ⋅ 𝑛

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
sim(𝑠1,𝑖, 𝑠2,𝑗 ) (B.10)

B.3.  Approach 2: holistic two-stage consensus evaluation

This approach establishes the consensus between models through se-
mantic clustering and then evaluates CIR3 against this consensus base-
line.

B.3.1.  Stage 1: consensus establishment via semantic clustering
For each document 𝑑, all subtopics from all consensus models are 

pooled:

𝑆𝑑 =
⋃

𝑚∈{LLMs}
𝑆𝑚
𝑑 (B.11)

Agglomerative clustering is applied using cosine distance with aver-
age linkage:
𝑑cosine(𝐸(𝑠𝑖), 𝐸(𝑠𝑗 )) = 1 − sim(𝑠𝑖, 𝑠𝑗 ) (B.12)

𝑑avg(𝐶𝑝, 𝐶𝑞) =
1

|𝐶𝑝| ⋅ |𝐶𝑞|

∑

𝑠𝑖∈𝐶𝑝

∑

𝑠𝑗∈𝐶𝑞

𝑑cosine(𝐸(𝑠𝑖), 𝐸(𝑠𝑗 )) (B.13)
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Clustering proceeds with distance thresholds 𝜏 ∈
{0.30, 0.35, 0.40, 0.45, 0.50} to ensure optimal semantic granularity. 
Each cluster represents a conceptual topic, forming the consensus 
baseline.

Consensus Reliability Assessment: Krippendorff’s Alpha is com-
puted over the resulting conceptual topic clusters:

𝛼 = 1 −
𝐷𝑜
𝐷𝑒

(B.14)

where 𝐷𝑜 is observed disagreement and 𝐷𝑒 is expected disagreement 
under independence. The final reliability score averages across thresh-
old configurations:

𝛼final =
1
| |

∑

𝜏∈
𝛼𝜏 (B.15)

B.3.2.  Stage 2: CIR3 evaluation against consensus
CIR3’s semantic agreement with the established consensus is evalu-

ated using two complementary pairwise semantic metrics:
A. Soft-F1 Evaluation: CIR3 subtopics are compared against 

consensus-derived conceptual topics using Soft-F1 scoring 
(Eqs. (B.4)–(B.6)). For each threshold configuration, Soft-F1 scores are 
computed and averaged:

Soft-F1 Agreementfinal = 1
| |

∑

𝜏∈
𝐹1soft(𝜏) (B.16)

B. Bipartite Matching Evaluation: CIR3 subtopics are optimally 
matched against consensus conceptual topics using the Hungarian algo-
rithm (Eqs. (B.7)–(B.9)). For each threshold configuration, bipartite F1 
scores are computed and averaged:

Bipartite F1 Agreementfinal = 1
| |

∑

𝜏∈
𝐹1bip(𝜏) (B.17)

The holistic evaluation provides two complementary consensus-
validated semantic agreement scores that account for different matching 
strategies: Soft-F1 allows multiple matches per subtopic while bipartite 
matching enforces one-to-one optimal assignment (Algorithm 2).

B.4.  Algorithm: holistic two-stage evaluation

B.5.  Implementation parameters

• Embedding Model: BAAI/bge-large-en-v1.5 (1024-dimensional);
• Clustering: Agglomerative with cosine distance, average linkage;
• Distance Thresholds: 𝜏 = {0.3, 0.35, 0.4, 0.45, 0.5};
• Similarity Threshold: 𝜃 = 0.7 for semantic matching;
• Consensus Models: GPT-4o-mini, Google/Gemma-27B-IT, Claude 
Sonnet 4;

• Alpha Computation: simpledorff29 library for nominal data;

B.6.  Interpretation guidelines

Approach 1 (Pairwise): Provides direct comparison metrics be-
tween CIR3 and individual consensus models using Eqs. (B.3), (B.6),
(B.9), and (B.10). Higher values across all four metrics indicate stronger 
agreement.

Approach 2 (Holistic): Establishes validated consensus baseline 
(𝛼 ≥ 0.8 indicates excellent reliability per Eq. (B.14)) then measures 
CIR3’s semantic alignment using Soft-F1 (Eq. (B.16)) and bipartite 
matching (Eq. (B.17)). This approach accounts for cross-model variabil-
ity and provides consensus-validated evaluation with complementary 
matching strategies.

Soft-F1 vs. Bipartite Matching: Soft-F1 allows flexible many-to-
many semantic matching, while Bipartite matching enforces optimal 

29 https://pypi.org/project/simpledorff

Algorithm 2: Cross-Model Semantic Evaluation Framework.
Data: Document set , consensus models 

 = {Claude Sonnet, GPT-4o-mini, Gemma-27B}, CIR3 
classifier, thresholds  = {0.3, 0.35, 0.4, 0.45, 0.5}

Result: Cross-model reliability 𝛼final, CIR3 semantic agreement 
scores

1 Stage 1: Consensus Establishment;
2 foreach document 𝑑 ∈  do
3 𝑆𝑑 ←

⋃

𝑚∈ 𝑆𝑚
𝑑 // Pool all subtopics (Eq. (B.11))

4 𝐸𝑑 ← {𝐸(𝑠) ∶ 𝑠 ∈ 𝑆𝑑} // Compute embeddings (Eq. 
(B.1))

5 foreach threshold 𝜏 ∈   do
6 𝐶𝑑 (𝜏) ← AgglomerativeClustering(𝐸𝑑 , 𝜏) // Eq. 

(B.12), B.13
7 𝛼𝑑 (𝜏) ← KrippendorffAlpha(𝐶𝑑 (𝜏),) // Eq. (B.14)
8 end 
9 end 
10 𝛼final ←

1
| |

∑

𝜏∈
1
||

∑

𝑑∈ 𝛼𝑑 (𝜏) // Eq. (B.15)

11 Stage 2: CIR3 Evaluation;
12 foreach document 𝑑 ∈  do
13 𝑆𝑑

CIR3 ← CIR3(𝑑) // Get CIR3 subtopics
14 foreach threshold 𝜏 ∈   do
15 𝑆𝑑

consensus(𝜏) ← GetClusterRepresentatives(𝐶𝑑 (𝜏));
16 𝐹1𝑑soft(𝜏) ← SoftF1(𝑆𝑑

CIR3, 𝑆
𝑑
consensus(𝜏)) // Eq. (B.6)

17 𝐹1𝑑bip(𝜏) ← BipartiteF1(𝑆𝑑
CIR3, 𝑆

𝑑
consensus(𝜏)) // Eq. 

(B.9)
18 end 
19 end 
20 Soft-F1final ←

1
| |

∑

𝜏∈
1
||

∑

𝑑∈ 𝐹1𝑑soft(𝜏) // Eq. (B.16)

21 Bipartite-F1final ←
1
| |

∑

𝜏∈
1
||

∑

𝑑∈ 𝐹1𝑑bip(𝜏) // Eq. (B.17)

one-to-one assignment. Both metrics provide different perspectives on 
the quality of semantic alignment.

Complementary Nature: Approach 1 offers granular pairwise in-
sights while Approach 2 provides a consensus-validated holistic assess-
ment with dual matching strategies, together allowing for comprehen-
sive evaluation of classifier performance.

Appendix C.  CIR3: algorithm implementation details

C.1.  Module input/output specifications

• classify_subtopics(𝑐 ∶ str,𝑀 ∶ int) → 𝑃 ∶ List[str]
Identifies subtopics within context.

• generate_QAs(𝑐 ∶ str,𝑀𝑝𝑟𝑒𝑣 ∶ InnerMemory,𝐻𝑝𝑟𝑒𝑣 ∶
OuterMemory) → + ∶ List[QAPair]
Generates QA pairs from context and memory.

• refine_QAs(+ ∶ List[QAPair], ∶ InnerMemory) →  ∶
Feedback ∪ {∅}
Produces refinement feedback or ∅ for consensus.

• curmudgeon_QAs(− ∶ List[QAPair], ∶ OuterMemory) →  ′ ∶
Feedback ∪ {∅}
External evaluation feedback or ∅ for acceptance.

C.2.  Error handling

• Subtopic identification failure: Fallback to domain-specific default 
writer 𝑊𝑝0 .

• Agent timeout: 30-second timeout with retry mechanism (max 3 
attempts).

• Memory overflow: Truncate oldest entries when memory exceeds 
max input tokens.
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• API failures: Exponential back-off with graceful degradation to 
available models.
(a) Retry with exponential back-off (to handle transient failures).
(b) If still failing after a threshold (e.g. 5 attempts), gracefully de-

grade by using an alternative model / service.

Appendix D.  Human evaluation guidelines

This section represents a partial excerpt of the evaluation guidelines.

Box 2. Partial Excerpt of the Human Evaluation Guidelines.
This document describes the instructions of human evaluation 
for AI-based question-answer generation task. The results will 
be made publicly available within 12 months of study completion.

By proceeding with this task, you agree that any resulting work 
product may be shared publicly.

You will be provided with two datasets, each containing a collec-
tion of text documents and corresponding question-answer pairs. 
Your task is to evaluate the question-answer pairs in terms of 
their accuracy and completeness in relation to the information 
presented in the associated text documents.

Instructions:

Familiarise yourself with the context: Carefully read the 
provided context to understand the topic and key information it 
contains.

Review the generated question-answer pairs: Examine each 
question-answer pair.

Evaluate each criterion: For each of the following criteria, rate 
the question-answer pair on a scale of 1 to 5 (5 being the highest), 
and provide a brief explanation for your rating:

• Coverage: Does the question-answer pair address the main ideas 
and important details in the context?

• Depth: Does the question prompt deeper understanding of the 
context, or is it superficial? Does the answer provide sufficient 
detail and explanation?

• Accuracy: Is the answer factually correct and complete based on 
the information in the context?

• Coherence: Does the question-answer pair flow logically? Does 
the question naturally lead to the answer, and do they together 
contribute to a better understanding of the topic?

• Representation: Does the question-answer pair distort or present 
misleadingly any facts in the context?

• Diversification: Does the collection of question-answer pairs pro-
vide diverse and unique insights, or is there significant overlap in 
the knowledge they convey?

Appendix E.  Evaluation prompts

Following figures show the illustrative prompts used in our evalua-
tion.

We also release CIR3’s source code on GitHub30.

30 https://github.com/anonym-nlp-ai/cirrr
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Listing 1: Comprehensiveness metric with four evaluation aspects: Coverage, Depth, Accuracy, and Coherence.
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Listing 2: Faithfulness metric with six evaluation aspects: Accuracy, Exaggeration, Consistency, Justification, Plausibility, and Misrep-
resentation.
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Appendix F.  Case study: QA evolution trajectory analysis

To demonstrate how iterative feedback tangibly improves QA diversity and alignment, we present a detailed trajectory analysis of a representative 
financial document undergoing CIR3’s refinement process.

F.1.  Qualitative curmudgeon feedback analysis

The curmudgeon’s iterative feedback (Listing: Multi-Iteration Refinement Example) reveals concrete improvement mechanisms:

• Iteration 1: Identifies specific coverage gaps (“misses the role of life insurance”) and structural limitations (“question set lacks diversity,
primarily focusing on factual recall”). The feedback provides actionable guidance: “add more analytical and comparative questions” and “varying 
the linguistic patterns and cognitive demands.”.

Knowledge-Based Systems 330 (2025) 114627 
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• Iteration 2: Demonstrates error detection capabilities by identifying a critical factual inaccuracy in Q7 (“the document does not state that bonds 
guarantee higher returns over time”). This shows the curmudgeon’s ability to catch hallucination errors that could compromise faithfulness.

• Iteration 3: Confirms convergence with comprehensive validation: “covers all major themes and subtopics”, “answers align perfectly with the source 
document” and “demonstrates strong variety in types, including factual, analytical, and comparative questions.”

F.1.1.  Common error mitigation evidence
The trajectory demonstrates CIR3’s effectiveness against the four primary error categories:

• Duplication: The increasing Vendi Score for questions (1.436 → 1.590) indicates successful reduction of redundant or overly
similar questions. The curmudgeon’s observation about “similar structures and complexity” in Iteration 1 implicitly addresses this concern.

• Hallucination: Explicitly detected by the curmudgeon in Iteration 2, identifying Q7’s factual inaccuracy (“the document does not state that bonds 
guarantee higher returns over time”) as hallucinated information not present in the source document.

• Irrelevance: The curmudgeon’s focus on coverage gaps (“misses the role of life insurance”) and requirement for document alignment (“answers 
align perfectly with the source document”) addresses relevance, even if this error type is not explicitly flagged in this particular trajectory.

• Specificity: Addressed through the curmudgeon’s feedback requesting “varying the linguistic patterns and cognitive demands” and “more analytical 
and comparative questions” which counters template driven or overly narrow question generation.
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Table F.12 
Vendi Score diversity metrics for questions, answers, context-answers, and 
balanced G score across iterations.

 Vendi Scores
 Iteration  QA Count  Questions  Answers  Context-Answers  Balanced G
 #1  5  1.436  1.366  1.081  0.660
 #2  7  1.536  1.625  1.175  0.703
 #3  8  1.590  1.500  1.062  0.742

F.2.  Quantitative evolution patterns

Tables F.12 and F.13 reveal a systematic improvement in key metrics with notable intermediate dynamics:
• Comprehensiveness shows substantial growth from 0.734 (Iteration 1) to 0.953 (Iteration 3), representing a 29.85% improvement. QA Count 
expands strategically from 5 to 8 questions, indicating a controlled expansion of coverage rather than arbitrary multiplication.
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Table F.13 
Comprehensiveness and Faithfulness scores across iterations 
for QA trajectory.
 Iteration  QA Count  Comprehensiveness  Faithfulness
 #1  5  0.734  1.000
 #2  7  0.803  0.767
 #3  8  0.953  0.999
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• Faithfulness demonstrates an interesting trajectory: starting at per-
fect alignment (1.00), it drops to 0.767 in Iteration 2 as new content 
is added, then recovers to near-perfect alignment (0.999) in Iteration 
3. Similarly, Vendi Score A (answer diversity) shows a comparable 
pattern, peaking at 1.625 in Iteration 2 before stabilizing at 1.5 in 
Iteration 3. These temporary fluctuations reflect the natural trade-
off between coverage expansion and maintaining document fidelity, 
a pattern that validates the curmudgeon’s role in balancing compre-
hensiveness, diversity, and faithfulness through iterative refinement.

• Vendi Score patterns demonstrate the curmudgeon’s dual optimiza-
tion: Question diversity increases consistently from 1.436 to 1.59, 
while the balanced generation score (G) improves from 0.66 to 
0.742, showing enhanced overall system performance despite the 
intermediate adjustments in answer diversity.

Appendix G.  Computational cost analysis

CIR3’s multi-agent architecture with iterative refinement requires 
careful consideration of computational resources for practical deploy-
ment. We provide detailed cost breakdowns across different infrastruc-
ture configurations to enable informed feasibility assessments.

Table G.14 
Average CIR3 computational resource utilization for 1000 doc-
uments, comparing Groq cloud API deployment and self-hosted 
p5.48xlarge instance with vLLM, showing token consumption and 
round-trip inference times per component.

Component Tokens
 Round trip inference time (s)
 Groq  AWS p5.48xlarge + vLLM

 Classifier Agent  25  0.2  0.26
 Moderator Agent  2007  1.7  2.17
 Writer Agents  17,287  13.71  17.54
 Curmudgeon Agent  617  11.28  14.43
 Diversity (Encoder)  -  6.55  6.55
 Total  19937  38  48.51

Table G.14 presents comprehensive resource utilization metrics 
for CIR3 across two deployment scenarios: cloud-based API services 
(Groq31) and self-hosted infrastructure (p5.48xlarge32 with vLLM). The 
total token consumption per document averages 19,937 tokens across 
all agents, with writer agents consuming the majority (17287 tokens, 
86.7%) due to their iterative QA generation and refinement processes.

G.1.  Component-level analysis

The computational distribution reveals strategic resource alloca-
tion: the classifier agent requires minimal resources (25 tokens, 0.2-
0.26s), enabling efficient subtopic identification. The moderator agent
consumes 2007 tokens (1.7-2.17s) for coordination tasks, while the 
diversity encoder requires 6.5 seconds for Vendi Score computation 
via a self-hosted embeddings API33. The curmudgeon agent runs in 
11.28–14.43 seconds across configurations, reflecting its evaluation and 
feedback generation steps.

G.2.  Infrastructure performance analysis

To provide comprehensive feasibility assessment, we evaluated CIR3 
across two distinct deployment architectures with detailed performance 
characteristics.

31 https://groq.com/pricing
32 https://instances.vantage.sh/aws/ec2/p5.48xlarge?currency=USD
33 https://github.com/huggingface/text-embeddings-inference

Table G.15 
Comparative performance analysis of CIR3 deployment configurations 
showing throughput, latency characteristics, and operational trade-
offs.

 Metric  Groq (LPU)  AWS p5.48xlarge + vLLM
 Throughput (tokens/sec)  525  411
 Total Processing Time (s)  38.0  48.5
 Time to First Token (s)  0.22-0.3  0.2-0.4
 Latency Consistency  Deterministic  Variable
 Operational Complexity  Minimal  High
 Deployment Flexibility  Limited  Full Control

Table G.16 
Cost analysis for processing 1000 documents across deployment configura-
tions. Note: Cost and time estimates are based on sequential execution and 
do not account for batch processing optimizations, which would reduce these 
numbers considerably.
 Configuration  Total Cost  Cost per Document  Processing Time
 Groq Cloud (Llama 3 70B)  $16.90  $0.0169  10.6 hours
 AWS p5.48xlarge (8xH100, Spot)  $253.07  $0.25  13.5 hours
 AWS p4de.24xlarge (8xA100, Spot)  $158.65  $0.16  13.5 hours*
*Estimated processing time; actual performance may vary.

Groq Cloud Deployment: Groq’s Language Processing Unit (LPU) 
architecture delivered consistent performance, processing 19,937 to-
kens in 38.0 seconds with sustained throughput of approximately 525 
tokens per second (Table G.15). The deterministic latency characteris-
tics (time-to-first-token: 0.22-0.3s) prove particularly valuable for multi-
agent systems where round-trip delays compound across iterative cycles.

Self-Hosted AWS Configuration: Our optimized AWS p5.48xlarge 
deployment (8xH100 GPUs with vLLM) achieved comparable perfor-
mance: 19937 tokens in 48.5 seconds, sustaining approximately 411 
tokens per second. Key optimizations included continuous batching 
for pipeline utilization, KV cache management to prevent memory
thrashing, CUDA graphs with FlashAttention for latency reduction, and 
tuned EFA/NCCL communication across GPUs34.

G.3.  Practical implications

The performance differential between configurations is modest 
(22% throughput difference), with Groq achieving superior consistency 
while our AWS setup provides greater customization capabilities. Both 
configurations demonstrate CIR3’s practical feasibility for production 
deployment. The throughput rates (411–525 tokens/second) support 
real-time document processing applications, while the total processing 
time (38–49 seconds per document) remains reasonable for compre-
hensive QA generation tasks. Despite the multi-agent complexity, CIR3 
demonstrates favorable cost-benefit ratios when considering the sub-
stantial quality improvements. The modular architecture enables selec-
tive deployment optimization, such as caching classifier results or par-
allelizing writer agent operations, making the framework adaptable to 
various computational budget constraints.

G.3.1.  Cost analysis for knowledge base processing
To evaluate CIR3’s economic feasibility for large-scale deployment, 

we analyze the costs of processing a knowledge base of 1000 documents 
across multiple infrastructure configurations.

Groq Cloud Pricing: Based on Groq’s current pricing structure [77], 
using Llama 3 70B (our primary model) costs $0.59 per million input 

34 Elastic Fabric Adapter (EFA) enables low-latency interconnect on AWS; 
NCCL provides high-performance multi-GPU/multi-node collectives: https://
docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html, https://developer.
nvidia.com/nccl
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tokens and $0.79 per million output tokens. For CIR3’s token distri-
bution (19,937 tokens per document with approximately 70% input 
and 30% output), the cost per document is approximately $0.0169.
Processing 1000 documents would cost approximately $16.90 in to-
ken fees, with processing completing in approximately 10.6 hours
(Table G.16).

AWS Self-Hosted Configurations: We evaluated two AWS configu-
rations for self-hosted deployment:

• p5.48xlarge (8xH100): At $18.746 per hour spot pricing35, process-
ing 1000 documents (13.5 hours) costs approximately $253.07

• p4de.24xlarge (8xA100): At $11.752 per hour spot pricing, the 
same workload costs approximately $158.65

It is important to note that in practical deployments, self-hosted in-
frastructure typically serves multiple applications beyond CIR3, effec-
tively amortizing costs across various workloads. This shared utilization 
significantly improves the cost-effectiveness of dedicated GPU clusters 
for organizations running multiple AI applications.

G.3.2.  Cost-benefit analysis
The substantial quality improvements achieved by CIR3 (+23% 

comprehensiveness, +17% faithfulness compared to baselines) justify 
the computational overhead for applications requiring high-quality QA 
generation. CIR3 is particularly well-suited for batch processing scenar-
ios such as:

• Knowledge base creation and augmentation for enterprise documen-
tation.

• Dataset indexing and enrichment for information retrieval systems.
• Educational content processing for automated quiz and assessment 
generation.

• Research literature analysis for systematic review and knowledge ex-
traction.

• Financial document processing for banking, investment analysis, and 
regulatory compliance.

• Legal and compliance document processing for searchable QA 
databases.

• Scheduled document processing pipelines for content management 
systems.

For batch processing workflows, AWS spot pricing offers significant 
cost advantages, with the p4de.24xlarge configuration providing a fa-
vorable balance between performance and cost. When infrastructure is 
shared across multiple applications, the effective cost per CIR3 doc-
ument decreases substantially, making large-scale deployment highly 
economical.
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