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We present numerical methods based on the fast Fourier transform (FFT) to solve convolution integral
equations on a semi-infinite interval (Wiener-Hopf equation) or on a finite interval (Fredholm equation).
We improve a FFT-based method for the Wiener-Hopf equation due to Henery by expressing it in terms of
the Hilbert transform and computing the latter in a more sophisticated way with a sinc function expansion.
We further enhance the error convergence using a spectral filter. We then generalise our method to
the Fredholm equation by reformulating it as two coupled Wiener-Hopf equations and solving them
iteratively. We provide numerical tests and open-source code.
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1. Introduction

We consider the linear integral equation of convolution type with constant limits of integration

λ f (x)−
∫ b

a
k(x− x′) f (x′)dx′ = g(x), x ∈ [a,b], (1.1)

where f (x) is the unknown function, k(x) is a given kernel, and g(x) is a given so-called forcing function.
The domain of f (x) and g(x) is [a,b], the domain of k(x) is [a−b,b−a]; an endpoint is excluded if it is
infinite or a function is undefined there. If a=−∞ or b=+∞ Eq. (1.1) is called a Wiener-Hopf equation
(Wiener & Hopf, 1931; Noble, 1958; Krein, 1962; Polyanin & Manzhirov, 1998; Lawrie & Abrahams,
2007); if both integration limits are finite, it is called a Fredholm equation (Fredholm, 1903; Whittaker &
Watson, 1927; Polyanin & Manzhirov, 1998). The latter case is also called a Wiener-Hopf equation on a
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finite interval (Voronin, 2004) or, because of an application in electrotechnics, a longitudinally modified
Wiener-Hopf equation (LMWHE), while the former case is also called a classical Wiener-Hopf equation
(CWHE) (Daniele & Zich, 2014). If λ = 0 it is an equation of the first kind; if λ 6= 0 it is an equation
of the second kind. In the latter case it can be assumed that λ = 1, dividing the kernel and the forcing
function by values of this parameter different from 1. Historically these equations arose in physics,
e.g. to describe diffraction in the presence of an impenetrable wedge or of planar waveguides (Daniele
& Lombardi, 2007), but also for problems in crystal growth, fracture mechanics, flow mechanics (Choi
et al., 2005), geophysics, and diffusion (Lawrie & Abrahams, 2007). The connection of the Wiener-Hopf
equation with probabilistic problems was noticed by Spitzer (1957) and is discussed by Feller (1971)
together with the application of Fourier transform methods to stochastic processes. More recently these
equations have become of interest in finance for the pricing of discretely monitored path-dependent
options like barrier, first-touch, lookback (or hindsight), quantile and Bermudan options (Fusai et al.,
2006; Green et al., 2010; Fusai et al., 2012; Marazzina et al., 2012; Fusai et al., 2016; Phelan et al., 2018,
2019, 2020). The Wiener-Hopf method is employed also to solve a large collection of mixed boundary
value problems (Duffy, 2008).

2. Mathematical tools

2.1 Fourier transform and projection operators

We define the Fourier transform of a function f (x),

f̂ (ξ ) = Fx→ξ [ f (x)] :=
∫ +∞

−∞

eiξ x f (x)dx, (2.1)

where i is the imaginary unit, and correspondingly the inverse transform of f̂ (ξ ),

f (x) = F−1
ξ→x[ f̂ (ξ )] :=

1
2π

∫ +∞

−∞

e−ixξ f̂ (ξ )dξ . (2.2)

We choose this definition because it is the one normally used in major application fields of Eq. (1.1), i.e.
probability, physics and finance, so that the Fourier transform of the probability density function (PDF)
fX (x) of a random variable X coincides with its characteristic function ϕX (ξ ) := E(eiξ X ) = f̂X (ξ ),
where E is the expectation. However, it would be better to define the Fourier transform in terms of
frequency ν rather than angular frequency or pulsation ξ = ω = 2πν (in physics terminology if x is
interpreted as time): “We were raised on the ω-convention, but we changed!” (Press et al., 2007, Section
12.0). With ν , the transform is unitary, i.e. the inverse transform is the adjoint of the forward transform,
and norm-preserving (Plancherel, 1910), the inverse transform lacks the factor 1/(2π) making it sym-
metric with respect to the forward transform, and the Nyquist relation between grids in the normal and
Fourier spaces simplifies to ∆x∆ν = 1/N, where N is the number of grid steps, without a factor 2π on
the right-hand side. Moreover, a minus sign in the exponent of the forward Fourier transform is consis-
tent with the definition of the Laplace transform. Indeed the Fourier kernel e−i2πνx is the more common
choice in fast Fourier transform (FFT) libraries, including the FFTW Frigo & Johnson (2005) used in
MATLAB. Thus an inconvenience is that the Fourier transform F of Eq. (2.1) with the Fourier kernel
eiξ x translates into ifft()*N*Dx in the MATLAB code that we give in the supplementary material,
and the inverse transform F−1 into fft()*Dxi/(2*pi).

The function space Lp(R) is the set of functions f : R→C where | f |p has a finite Lebesgue integral
over R. The Fourier transform f̂ naturally exists if f ∈ L1(R), i.e. if f is absolutely integrable. Necessary
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conditions for f ∈ L1(R) are that f vanishes at infinity faster than 1/|x| and tends to infinity slower than
1/(x− x0) at any pole x0. The PDF fX of a random variable X is in L1(R), and its non-unitary Fourier
transform given by Eq. (2.1) is the characteristic function of X , ϕX (ξ ) := E(eiξ X ) = f̂X (ξ ). It does
not necessarily follow from f ∈ L1(R) that f̂ ∈ L1(R) too; the Riemann-Lebesgue lemma just states
that f̂ ∈ C0(R), the space of continuous functions that vanish at infinity, which is a subset of L∞(R).
However, if f ∈ L1(R)∩ L2(R), i.e. f is also square-integrable, the Plancherel (1910) theorem states
that f̂ ∈ L2(R)∩ L∞(R) and the unitary Fourier transform is an isometry. The Fourier transform is then
extended to the closure of L1(R)∩ L2(R), which is the whole L2(R). Because F : L1(R)→ L∞(R)
and F : L2(R)→ L2(R) are continuous linear maps, the Riesz-Thorin interpolation theorem further
extends the Fourier transform to F : Lp(R)→ Lq(R) with 1 6 p 6 2 (Hausdorff-Young inequality)
and 1/p+1/q = 1 (p,q are Hölder conjugates). Thus, f ∈ L2(R) is a sufficient condition for both the
forward and the inverse Fourier transforms of f to exist.

Eq. (1.1) is solved in Fourier space, requiring that the Fourier transform k̂ of the kernel exists. In
his fundamental work on the Wiener-Hopf equation, i.e. Eq. (1.1) with a = 0 and b =+∞, Krein (1962)
proved that a sufficient condition for a solution f to exist is that for all ξ ∈ R, l̂(ξ ) := λ − k̂(ξ ) 6= 0,
and that if and only if the winding number of l̂, called the index of the equation, is 0, for any forcing
function g ∈ Lp(R+), 1 6 p 6 ∞, there is a unique solution f ∈ Lp(R+). Similar results exist for other
values of a and b. However, to operatively find f̂ requires 1 6 p 6 2, and to be sure that f can be
retrieved, a sufficient condition is p = 2. Actually, most solution methods assume k ∈ L1(R)∩ L2(R),
and several methods require additional assumptions, e.g. that k(x) decays exponentially for |x| → ∞.
Like the seminal paper by Wiener and Hopf Wiener & Hopf (1931), our method assumes only that all
functions are in L2, although our numerical examples are in L1∩ L2 like many practically relevant cases,
where often the unknown f is a PDF and the kernel k is a transition density, i.e. a conditional PDF. A
notable case in L2 \L1 is the sinc function.

We define the projection of a function f (x) on the positive or negative real half-axis through the
multiplication with the indicator function of that set,

f+(x) = P+,x[ f (x)] := 1R+(x) f (x) (2.3)
f−(x) = P−,x[ f (x)] := 1R−(x) f (x). (2.4)

A function that, like f+(x), is 0 for x < 0 and nonzero for x > 0 is called “causal” because it can be used
to describe the effect of something that happens at x = 0 and causes the function to become nonzero.
The two half-range Fourier transforms are

f̂+(ξ ) = Fx→ξ [ f+(x)] =
∫ +∞

0
eiξ x f (x)dx (2.5)

f̂−(ξ ) = Fx→ξ [ f−(x)] =
∫ 0

−∞

eiξ x f (x)dx. (2.6)

Notice that f̂+(ξ ) is the Fourier transform of a projected function, while f̂+(ξ ) is the projection of a
Fourier-transformed function,

f̂+(ξ ) = Fx→ξ [P+,x[ f (x)]] 6= f̂+(ξ ) = P+,ξ [Fx→ξ [ f (x)]]. (2.7)

In other words, f̂+(ξ ) is the Fourier transform of a function f (x) that vanishes for negative arguments x,
but f̂+(ξ ) does not vanish itself for negative arguments ξ , which instead happens with f̂+(ξ ); similarly
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for the − case. The function f̂+(ξ ) is analytic (or holomorphic), i.e. locally given by a convergent
power series, in an upper complex half-plane that includes the real line; the function f̂−(ξ ) is analytic
in a lower complex half-plane that includes the real line. The half-range Fourier transforms can be
considered special cases of the Laplace transform,

f̃ (s) = Lx→s[ f (x)] =
∫ +∞

0
e−sx f (x)dx, s ∈ C, (2.8)

where s = ±iξ , while the Fourier transform can be considered a special case of the bilateral or two-
sided Laplace transform. Except possibly for x = 0, the indicator function 1R+(x) coincides with the
Heaviside step function H(x), and 1R−(x) with 1−H(x); H(x) = 1 if x> 0 and 0 if x< 0, while for x= 0
it can be assigned the value 0 (left-continuous choice), 1 (right-continuous choice), or 1/2 (symmetric
choice). When integrating as in Eqs. (2.5) and (2.6), the value for x = 0 matters only numerically and
only if x = 0 is a grid point, as analytically the measure of a point is zero. Clearly the sum of the two
projections, Eqs. (2.3) and (2.4), is the full function,

f+(x)+ f−(x) = f (x), (2.9)

and the sum of the two half-range Fourier transforms, Eqs. (2.5) and (2.6), is the full Fourier transform,

f̂+(ξ )+ f̂−(ξ ) = f̂ (ξ ). (2.10)

2.2 Gibbs phenomenon

As explained in the previous subsection, we numerically implement the forward and inverse Fourier
transform using the FFTW library in MATLAB. The ranges of x and ξ cease to be infinite and continuous,
and are approximated with grids of size N. The other parameter which defines both grids, which we
centre around zero, is the truncation in the x domain xmax. The step is ∆x = 2xmax/N and the x grid is

xn = n∆x, n =−N
2
,−N

2
+1, . . . ,

N
2
−1. (2.11)

The step of the ξ grid is given by the Nyquist relation, ∆ξ = 2π/(N∆x) = π/xmax; the truncation in the
ξ domain is ξmax = π/∆x and the ξ grid is

ξm = m∆ξ , m =−N
2
,−N

2
+1, . . . ,

N
2
−1. (2.12)

The discrete forward and inverse Fourier transforms are

f̂ (ξm,∆x,N) = ∆x
N/2−1

∑
n=−N/2

eiξmxn f (xn) (2.13)

f (xn,∆ξ ,N) =
∆ξ

2π

N/2−1

∑
m=−N/2

e−ixnξm f̂ (ξm). (2.14)

The truncation of the sums in Eqs. (2.13) and (2.14) causes the Gibbs phenomenon. For a detailed
explanation of its effect on the solution to Wiener-Hopf type equations see Phelan et al. (2019). In this
case we must consider two main issues: firstly, if the function f (x) has a discontinuity, the truncation
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of f̂ (ξm,∆x,N) causes oscillations in f (xn,∆ξ ,N) close to the discontinuity; secondly, the error away
from that discontinuity will decay with the grid size N as | f (xn)− f (xn,∆ξ ,N)|= O(1/N).

There have been many different approaches to solve or mitigate the Gibbs phenomenon (Vandeven,
1991; Gottlieb & Shu, 1997; Tadmor & Tanner, 2005; Tadmor, 2007; Ruijter et al., 2015). As in Phe-
lan et al. (2019), we apply a spectral filter in the Fourier domain, specifically the exponential filter of
Gottlieb & Shu (1997)

σ(η) = e−ϑη p
, (2.15)

where p ∈ N is even and η = ξ/ξmax. This function does not strictly meet the usual filter requirements
described for example by Vandeven (1991), as it does not go exactly to zero when |η | = 1, nor do so
its derivatives. However, if we select ϑ > − logεm, where εm is the machine precision, then the filter
coefficients are within computational accuracy of the requirements. Advantages of the exponential filter
are its good performance, its simple form, and the order of the filter being equal to the parameter p
which is directly input into the filter equation.

We also investigated the use of the Planck taper described in McKechan et al. (2010), which is
defined piecewise as

σ(η) :=



0, η 6 η1, η1 =−1
1

e z(η)+1
, z(η) = η2−η1

η−η1
+ η2−η1

η−η2
, η1 < η < η2, η2 = ε−1

1, η2 6 η 6 η3, η3 = 1− ε

1
e z(η)+1

, z(η) = η3−η4
η−η3

+ η3−η4
η−η4

, η3 < η < η4, η4 = 1

0, η > η4.

(2.16)

Here, the value of ε gives the proportion of the range of η which is used for the slope regions. In com-
mon with the findings by Phelan et al. (2019), the Planck taper, whilst having interesting characteristics
such as a flat central section and a filter order of ∞, when tested did not offer any advantage over the
exponential filter, so we did not pursue its use any further.

2.3 Hilbert transform and Wiener-Hopf factorisation

The Hilbert transform (Pandey, 1996; Vergara Caffarelli & Loreti, 1999; King, 2009) of f̂ (ξ ) is the
Cauchy principal value of the convolution of f̂ (ξ ) with 1/(πξ ),

Hξ [ f̂ (ξ )] := p.v.
1

πξ
∗ f̂ (ξ ) = p.v.

1
π

∫ +∞

−∞

f̂ (ξ ′)
ξ −ξ ′

dξ
′

= lim
ε→0+

1
π

(∫
ξ−ε

−∞

f̂ (ξ ′)
ξ −ξ ′

dξ
′+
∫ +∞

ξ+ε

f̂ (ξ ′)
ξ −ξ ′

dξ
′

)
. (2.17)

The principal value avoids that the improper integral evaluates to the indefinite form +∞−∞. The
Hilbert transform is well defined for f̂ ∈ Lp(R), 1 < p < ∞, and maps to the same space, H : Lp(R)→
Lp(R). Because with the above definition the Hilbert transform often appears multiplied by the imag-
inary unit (see the following equations), some authors such as Stenger (1973) define the Hilbert trans-
form as the principal value of the convolution with i/(πξ ). The Hilbert transform is a functional like
the Fourier and Laplace transforms; as it maps to the same space, we just write Hξ [ f̂ (ξ )] instead of
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the more cumbersome Hξ ′→ξ [ f (ξ ′)]. For clarity we will keep the subscripts x→ ξ , ξ → x and ξ

although they could be omitted when there is no misunderstanding about which variable the operators
F ,F−1,P+,P− and H act on, notably when the argument function depends on a single variable
which is always the case here, whereas in applications the argument functions often depend also on
time. The operator iHξ is its own inverse,

(iHξ )
2[ f̂ (ξ )] = f̂ (ξ ); (2.18)

equivalently, H −1
ξ

=−Hξ . The convolution theorem

F−1
ξ→x[( f̂ ∗ ĝ)(ξ )] = f (x)g(x), (2.19)

which maps the convolution to a product via a Fourier transform, together with the inverse Fourier
transform (Weisstein, 2025)

p.v.F−1
ξ→x

[
1

πξ

]
=−isgnx (2.20)

enables to express the Hilbert transform through an inverse and a forward Fourier transform,

iHξ

[
f̂ (ξ )

]
= Fx→ξ [sgn(x) f (x)]. (2.21)

Thus a fast method to numerically compute the Hilbert transform consists simply in evaluating Eq. (2.21)
through an inverse and a forward FFT. In the next subsection, we shall see more sophisticated numerical
methods.

Substituting sgnx = 1R+(x)− 1R−(x) (this is true also for x = 0, while sgnx = 2H(x)− 1 is ful-
filled for x = 0 only if H(0) = 1/2), and applying the definitions of the half-range Fourier transforms,
Eqs. (2.5) and (2.6), yields

f̂+(ξ )− f̂−(ξ ) = iHξ [ f̂ (ξ )]. (2.22)

This can be shown also by evaluating the integral in Eq. (2.17) with contour integration methods in the
complex plane. Together, Eqs. (2.10) and (2.22) are known as Plemelj-Sokhotsky relations (Pandey,
1996; Vergara Caffarelli & Loreti, 1999; King, 2009). They can be rearranged as

f̂+(ξ ) =
1
2
{

f̂ (ξ )+ iHξ [ f̂ (ξ )]
}

(2.23)

f̂−(ξ ) =
1
2
{

f̂ (ξ )− iHξ [ f̂ (ξ )]
}

(2.24)

or, with a different notation involving the Fourier-transform and projection operators, as

Fx→ξ [P+,x[ f (x)]] =
1
2
{
Fx→ξ [ f (x)]+ iHξ [Fx→ξ [ f (x)]]

}
(2.25)

Fx→ξ [P−,x[ f (x)]] =
1
2
{
Fx→ξ [ f (x)]− iHξ [Fx→ξ [ f (x)]]

}
. (2.26)

Substituting f (x) with P+ f (x) in Eq. (2.25) and f (x) with P− f (x) in Eq. (2.26), and taking into
account that projection operators are idempotent, i.e., PP f (x) = P f (x), shows that the half-range
Fourier transforms are eigenfunctions of the Hilbert transform operator,

iHξ [ f̂+(ξ )] = f̂+(ξ ) (2.27)

iHξ [ f̂−(ξ )] =− f̂−(ξ ). (2.28)
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This is evident also by substituting f (x) with f+(x) or with f−(x) in Eq. (2.21), or applying the operator
iHξ to both sides of Eqs. (2.23)–(2.24) and simplifying with Eq. (2.18). Eqs. (2.27) and (2.28) allow
us to obtain Eq. (2.22) by applying the operator iHξ to both sides of Eq. (2.10); conversely, Eq. (2.10)
can be reobtained by applying iHξ to both sides of Eq. (2.22). Eqs. (2.23) and (2.24) are invariant with
respect to an application of iHξ to both sides.

The key step in the Wiener-Hopf solution of Eq. (1.1) described in the following section is the
decomposition of a function f̂ , i.e., the reverse of Eq. (2.10),

f̂ (ξ ) = f̂+(ξ )+ f̂−(ξ ). (2.29)

The factorisation of a function f̂ (ξ )
f̂ (ξ ) = f̂+(ξ ) f̂−(ξ ), (2.30)

which is required too, can be reduced to a decomposition by taking logarithms,

log f̂ (ξ ) = log f̂+(ξ )+ log f̂−(ξ ). (2.31)

This procedure is called logarithmic decomposition. The decomposition can be achieved by (Rino,
1970; Henery, 1974; Bart et al., 2004)

f̂+(ξ ) = Fx→ξ [P+,x[F
−1
ξ→x[ f̂ (ξ )]]] (2.32)

f̂−(ξ ) = Fx→ξ [P−,x[F
−1
ξ→x[ f̂ (ξ )]]], (2.33)

as can also be seen from the definitions of the half-range Fourier transforms, Eqs. (2.5) and (2.6). For
the state of the art of the solution of convolution equations with projection methods in the early 1970s,
see also Gohberg & Fel’dman (1974). More in general, the Plemelj-Sokhotsky relations, Eqs. (2.23) and
(2.24) can be used (Stenger, 1973): Eqs. (2.32) and (2.33) are a special case of the latter if the Hilbert
transform is computed through Eq. (2.21).

The definition of the two half-range Fourier transforms, Eqs. (2.5) and (2.6), can be generalised by
splitting the x axis around a constant a 6= 0. Feng & Linetsky (2008) showed how the shift theorem,

Fx→ξ [ f (x+a)] = e−iaξ f̂ (ξ ), (2.34)

can be exploited to generalise the Plemelj-Sokhotsky relations to

f̂+(ξ ) ==
1
2
{

f̂ (ξ )+ eiaξ iHξ

[
e−iaξ f̂ (ξ )

]}
(2.35)

f̂−(ξ ) ==
1
2
{

f̂ (ξ )− eiaξ iHξ

[
e−iaξ f̂ (ξ )

]}
. (2.36)

It might be a good idea to write f̂+,a and f̂−,a on the left-hand side, but we will avoid it to not over-
burden the notation, as it will be clear from the context with respect to which parameter a function is
decomposed. In the above formulas Eq. (2.21) generalises to

eiaξ iHξ

[
e−iaξ f̂ (ξ )

]
= eiaξ Fx→ξ

[
sgn(x) f (x+a)

]
(2.37)

= Fx→ξ

[
sgn(x−a) f (x)

]
(2.38)

= Fx→ξ

[
(1(a,+∞)(x)−1(−∞,a)(x)) f (x)

]
. (2.39)
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Thus it is easy to show that

lim
a→−∞

eiaξ iHξ

[
e−iaξ f̂ (ξ )

]
= f̂ (ξ ) (2.40)

lim
a→+∞

eiaξ iHξ

[
e−iaξ f̂ (ξ )

]
=− f̂ (ξ ) (2.41)

and that lima→−∞ f̂+(ξ ) = f̂ (ξ ), lima→+∞ f̂+(ξ ) = 0, lima→−∞ f̂−(ξ ) = 0, lima→+∞ f̂−(ξ ) = f̂ (ξ ).
These limits are useful to retrieve the results for the classical Wiener-Hopf equation from those for the
Fredholm equation.

2.4 Fast Hilbert transform with sinc functions

Eq. (2.21) provides a straightforward method to evaluate numerically the Hilbert transform. As it is
based on two FFTs, its computational cost is O(N logN), where N is the number of grid points, and thus
is called fast. We compared this method with the quadrature method described in Eqs. (4.19)–(4.20) of
King (2009), where the summation is taken over every second point in order to avoid the singularity
which results when xi− x j = 0. We tried various quadrature weights, including Simpson’s rule and
3rd and 4th order quadrature (Press et al., 2007, Chapter 4). For our implementation, see the MATLAB
functions htq.m and weights.m in the supplementary material. All weights give the same result and
have polynomial convergence with N. Therefore, as with quadrature the computation speed is O(N2),
the FFT-based method is preferable because of its higher speed.

An alternative, but equally fast O(N logN) approach to compute numerically the Hilbert transform is
based on the sinc expansion approximation of analytical functions. Sinc functions were deeply studied
by Stenger (1993, 2011), who proved that a function f (z)∈ L2(C) analytical in the whole complex plane
and of exponential type with parameter π/h, i.e.,

| f (z)|6Ceπ|z|/h, z ∈ C, (2.42)

can be reconstructed exactly from the knowledge of its values on an equispaced grid of step h. We
consider the latter constraint further down in this section. Defining the sinc functions

Sn(z,h) =
sin(π(z−nh)/h)

π(z−nh)/h
, n ∈ Z, (2.43)

the function f admits the sinc expansion (Stenger, 1993, Theorem 1.10.1)

f (z) =
+∞

∑
n=−∞

f (nh)Sn(z,h). (2.44)

Also its Fourier transform admits the sinc expansion

f̂ (ξ ) = h
+∞

∑
n=−∞

f (nh)eiξ nh if |ξ |< π/h, (2.45)

while it is zero if |ξ |> π/h. Moreover, the integrals of f and | f |2 over R can be written as sums of the
coefficients of the sinc expansion of f (Stenger, 1993, Corollary 1.10.2),∫ +∞

−∞

f (x)dx = h
+∞

∑
n=−∞

f (nh),
∫ +∞

−∞

| f (x)|2dx = h
+∞

∑
n=−∞

| f (nh)|2. (2.46)
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The above results show that the trapezoidal quadrature rule with step size h is exact. Using the following
result on the Hilbert transform of the sinc functions (Feng & Linetsky, 2008, Corollary 6.1)

Hξ [Sn(ξ ,h)] =
1− cos(π(ξ −nh)/h)

π(ξ −nh)/h
, (2.47)

also the Hilbert transform can be evaluated exactly,

Hξ [ f̂ (ξ )] =
+∞

∑
n=−∞

f (nh)
1− cos(π(ξ −nh)/h)

π(ξ −nh)/h
. (2.48)

The equality holds for a function f analytic in the whole complex plane. It becomes an approximation
for a function analytic only in a strip that includes the real axis; the proof and error bounds were given by
Stenger (1993), Chapter 3. Feng & Linetsky (2008) described this approximation for its application in
option pricing and gave details of the error for various classes of functions. The following convergence
result was proven: if a function is analytic in a suitable strip around the real axis, then the discretisation
error of its numerical decomposition or factorisation decays exponentially with respect to the discreti-
sation step h, see Press et al. (2007), Section 4.5.5, Feng & Linetsky (2008), Section 6.3 and Stenger
(1993), Theorems 3.1.3, 3.2.1 and 3.1.4.

Now this approximation can be exploited to compute the Hilbert transform with an exponentially
decaying discretisation error by combining a FFT with a sinc expansion (Feng & Linetsky, 2008, Section
6.5). The idea is that to compute a discrete Hilbert transform it is necessary to do matrix-vector multi-
plications involving Toeplitz matrices. These multiplications can be performed exploiting the FFT once
those matrices are embedded in a circulant matrix (Fusai et al., 2012; Feng & Linetsky, 2008, Appendix
B). Feng & Linetsky (2009), Theorem 3.3, concerns the computation of the Hilbert transform; Feng &
Linetsky (2008), Theorem 6.5, and Feng & Linetsky (2009), Theorem 3.4, consider in particular the
calculation of the Plemelj-Sokhotsky relations Eqs. (2.23) and (2.24). An implementation of both the
O(N logN) methods presented above is available in the function ifht.m in the supplementary material.

In addition to the discretisation error, an error is caused also by the truncation of the infinite sum
in Eq. (2.48) to the number of FFT grid points (Stenger, 1993). This truncation error depends on
the shape of the function under transform; its bounds have been explored further by Feng & Linetsky
(2008), Section 6.4.2, and Phelan et al. (2019), Section 3. For a function that decays exponentially
for |ξ | → ∞, the truncation error converges exponentially. For a function with a polynomial decay, the
convergence of the truncation error is only polynomial. In their paper on lookback options, Feng &
Linetsky (2009) report a result by Stenger which proves the exponential convergence of the discrete
sinc-based fast Hilbert transform to the continuous Hilbert transform. They also examine the truncation
error, specifically observing in a footnote that this converges exponentially only under certain conditions,
notably f (x)6 aexp(−b|x|c) for some a,b,c> 0. This algorithm can be obtained with an eigenfunction
expansion of Hξ and is identical to the Kress and Martensen method, which was introduced with a proof
that its error converges exponentially (Kress & Martensen, 1970; Weideman, 1995).

We can also revisit the requirement that f̂ ∈ L2(R) to show that the approximation is valid for the
functions and methodology in this paper. The Fourier transform of a piecewise continuous function is
bounded and for |ξ | → ∞ decays at least as O(1/|ξ |) (Boyd, 2001) and so the functions used in our
experiments meet this requirement.
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3. The classical Wiener-Hopf method for a convolution equation on a semi-infinite interval

Consider Eq. (1.1) with b = +∞. The lower integration limit a can be set to 0 shifting the x scale
horizontally by the constant a to a new scale x′ = x− a; the prime is dropped hereafter. The functions
f (x) and g(x), whose domain is [0,+∞), are extended to the whole real axis defining f0(x) = 0 for x < 0,
f0(x) = f (x) for x > 0 and g0(x) = 0 for x < 0, g0(x) = g(x) for x > 0. Define moreover the auxiliary
function

f1(x) :=
∫

∞

0
k(x− x′) f (x′)dx′ =

∫ +∞

−∞

k(x− x′) f0(x′)dx′, x < 0, (3.1)

and f1(x) := 0 for x > 0, i.e., f̂1 =
(
k̂ f̂0
)
−. As f0 and g0 are + functions and f1 is a − function, it is

customary to denote these functions f+, g+, and f− respectively. With them Eq. (1.1) is extended to

λ f+(x)−
∫ +∞

−∞

k(x− x′) f+(x′)dx′+ f−(x) = g+(x), x ∈ R, (3.2)

or, with a more compact notation for the convolution,

λ f+(x)− (k ∗ f+)(x)+ f−(x) = g+(x), x ∈ R. (3.3)

The extension of the integration domain to the whole real axis does not affect the equation and its
solution on the positive half-axis. Assuming that k̂, f̂+, f̂−, ĝ+ exist, we can now apply the convolution
theorem, Eq. (2.19), and obtain the equation in Fourier space,

l̂(ξ ) f̂+(ξ )+ f̂−(ξ ) = ĝ+(ξ ), ξ ∈ R, (3.4)

where l̂(ξ ) := λ − k̂(ξ ); l and l̂ are the functional derivatives of the equation with respect to the solution
in normal and Fourier space. Dropping the argument ξ for brevity, factorising l̂ = l̂− l̂+ and dividing the
equation by l̂− gives

l̂+ f̂++ l̂−
−1

f̂− = l̂−
−1

ĝ+. (3.5)

This is subject to the condition (Krein, 1962) l̂ = λ − k̂ 6= 0⇔
∫ +∞

−∞
k(x)dx < λ . Defining

ĉ = l̂−
−1

ĝ+ (3.6)

and decomposing it as ĉ = ĉ++ ĉ− yields finally

l̂+ f̂++ l̂−
−1

f̂− = ĉ++ ĉ−. (3.7)

The + and − components are separated into

f̂+ = l̂+
−1

ĉ+ (3.8)

f̂− = l̂−ĉ−, (3.9)

which allows to obtain the sought solution from

f+(x) = F−1
ξ→x

[
l̂+
−1
(ξ )ĉ+(ξ )

]
, (3.10)

while f−(x) was introduced as an auxiliary function and is not of further interest.
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The case with a =−∞ is treated in a similar fashion. The upper integration limit b is set to 0 shifting
the x scale horizontally by the constant b to a new scale x′ = x− b; the prime is dropped hereafter.
The functions f (x) and g(x), whose domain is (−∞,0], are extended to the whole real axis defining
f0(x) = f (x) for x 6 0, f0(x) = 0 for x > 0 and g0(x) = g(x) for x 6 0, g0(x) = 0 for x > 0. Define
moreover the auxiliary function

f2(x) =
∫ 0

−∞

k(x− x′) f (x′)dx′ =
∫ +∞

−∞

k(x− x′) f0(x′)dx′, x > 0, (3.11)

and f2(x) = 0 for x 6 0, i.e., f̂2 =
(
k̂ f̂0
)
+

. Now f0 and g0 are − functions and f2 is a + function, so it
is customary to denote these functions f−, g−, and f+ respectively. With them Eq. (1.1) is extended to
equations identical to Eqs. (3.2)–(3.10), except that the + and − indices are swapped. In particular, the
sought solution is obtained from

ĉ(ξ ) = l̂+
−1
(ξ )ĝ−(ξ ) (3.12)

f−(ξ ) = F−1
ξ→x

[
l̂−
−1
(ξ )ĉ−(ξ )

]
. (3.13)

A more elegant alternative to shifting the x scale forth and back by the constant a or b is to modulate
the functions in Fourier space decomposing ĉ with respect to this constant by the generalised Plemelj-
Sokhotsky relations, Eqs. (2.35) and (2.36). The function l̂ is always factorised with respect to 0, while
ĉ is decomposed with respect to a when b = +∞ or to b when a = −∞. For details, see the function
whf gmf filt4.m in the supplementary material.

4. Generalisation of the Wiener-Hopf method to a convolution equation on a finite interval: the
Fredholm equation

4.1 Theory

In the Fredholm equation both integration limits a and b are finite; either a or, less usually, b can be set
to 0 shifting the x scale, but, unlike with the classical Wiener-Hopf equation described in the previous
section, we prefer not to modify any of the two integration limits; instead, we will use the generalised
Plemelj-Sokhotsky relations. The functions f (x) and g(x), whose domain is [a,b], are extended to the
whole real axis defining f0(x) = f (x) for x∈ [a,b], f0(x) = 0 for x /∈ [a,b] and g0(x) = g(x) for x∈ [a,b],
g0(x) = 0 for x /∈ [a,b]. The kernel k(x), whose domain is [a− b,b− a], is extended to the whole real
axis defining k0(x) = k(x) for x ∈ [a−b,b−a] and k0(x) = 0 for x /∈ [a−b,b−a]. Define moreover the
two auxiliary functions

f1(x) =
∫ b

a
k(x− x′) f (x′)dx′ =

∫ +∞

−∞

k0(x− x′) f0(x′)dx′, x < a, (4.1)

f1(x) = 0 for x > a, i.e., f̂1 = eiaξ
(
e−iaξ k̂0 f̂0

)
− = f̂−,

f2(x) =
∫ b

a
k(x− x′) f (x′)dx′ =

∫ +∞

−∞

k0(x− x′) f0(x′)dx′, x > b, (4.2)

and f2(x) = 0 for x 6 b, i.e., f̂2 = eibξ
(
e−ibξ k̂ f̂0

)
+
= f̂+. Because k0(x) = 0 for x /∈ [a− b,b− a],

f−(x) = 0 also for x < a− (b− a) = 2a− b and f+(x) = 0 also for x > b− (a− b) = 2b− a. Thus
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Eq. (1.1) extends to

λ f0(x)−
∫ +∞

−∞

k0(x− x′) f0(x′)dx′+ f−(x)+ f+(x) = g0(x) (4.3)

or, with a more compact notation for the convolution,

λ f0(x)− (k0 ∗ f0)(x)+ f−(x)+ f+(x) = g0(x), (4.4)

and upon Fourier transformation, setting l̂(ξ ) = λ − k̂0(ξ ),

l̂(ξ ) f̂0(ξ )+ f̂−(ξ )+ f̂+(ξ ) = ĝ0(ξ ). (4.5)

Eqs. (4.3)–(4.5) look similar to Eqs. (3.2)–(3.4), but now we have two auxiliary functions, f̂−(ξ ), which
is− with respect to any c > a, and f̂+(ξ ), which is + with respect to any d 6 b, while both the unknown
function f̂0(ξ ) and the forcing function ĝ0(ξ ) are + with respect to a (or any number 6 a) and − with
respect to b (or any number > b). Therefore the usual approach is to split Eq. (4.5) into two coupled
Wiener-Hopf equations, one with the origin shifted to a, the other with the origin shifted to b (Green
et al., 2010). These functions typically involve the four redundant unknowns e−iaξ f̂0(ξ ), e−ibξ f̂+(ξ )
(which are + functions), e−ibξ f̂0(ξ ), e−iaξ f̂−(ξ ) (which are − functions). In the next subsection, the
functions f̂−(ξ ) and f̂+(ξ ) correspond to J− and J+ from Green et al. (2010), Eq. (2.51), while ĉ1 and
ĉ2 correspond to P and Q from Eqs. (2.12) and (2.24) in that paper.

4.2 Iterative solution

We solved the system of integral equations described in Eqs. (4.1)–(4.3) iteratively observing that, if
we know f̂+(ξ ) and subtract it from both sides of Eq. (4.5) with the origin of the x axis shifted to a,
the result looks like Eq. (3.4), so that we can use the method described in Section 3 to obtain f̂−(ξ );
similarly, if we know f̂−(ξ ) and subtract it from both sides of Eq. (4.5) with the origin of the x axis
shifted to b, we can use the method described in Section 3 to obtain f̂+(ξ ). Thus, once again dropping
the argument ξ for brevity of notation, our procedure is to write Eq. (4.5) divided once by l̂−, as in
Eq. (3.5), and once by l̂+,

l̂+ f̂0 + l̂−
−1

f̂−+ l̂−
−1

f̂+ = l̂−
−1

ĝ0 (4.6)

l̂− f̂0 + l̂+
−1

f̂−+ l̂+
−1

f̂+ = l̂+
−1

ĝ0, (4.7)

start from the guess f̂+ = 0 in Eq. (4.6), set

ĉ1 = l̂−
−1
(ĝ0− f̂+), (4.8)

decompose ĉ1 = ĉ1++ ĉ1− with respect to a, and compute the approximations

f̂0 = l̂+
−1

ĉ1+ (4.9)

f̂− = l̂−ĉ1− (4.10)
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as + and − functions with respect to a; then turn to Eq. (4.7), set

ĉ2 = l̂+
−1
(ĝ0− f̂−), (4.11)

decompose ĉ2 = ĉ2++ ĉ2− with respect to b, and compute the new approximations

f̂0 = l̂−
−1

ĉ2− (4.12)

f̂+ = l̂+ĉ2+ (4.13)

as + and − functions with respect to b; and so on until the difference between the values of f̂0 at an
iteration and the previous falls below a threshold. An equivalent result is obtained starting from the
guess f̂− = 0 in Eq. (4.7) and the computation of ĉ2. Notice that the iterations are performed looking
for a fixed point on the variables f̂− and f̂+, while f̂0 is a side product output at each step, but not used
to compute the next step. For details, see the function whf gmf filt4.m in the supplementary material.

4.3 Other iterative solutions

Henery (1977) proposed an iterative solution of the Fredholm equation, but presented only the theory
without a numerical validation. In our tests, its literal implementation does not work. The procedure
can be mapped to ours including a missing projection and an untold detail: the yn found in the resid-
ual correction scheme are corrections to the solution and thus must be added together. Besides these
omissions, Henery (1977) did not express the algorithm in terms of the Hilbert transform and thus used
only the simple implementation with the sign function, not the more sophisticated with a sinc function
expansion as we did.

Margetis & Choi (2006) presented an iterative solution limited to algebraic kernel functions. More-
over, in the example they implemented which is based on a steady advection-diffusion problem first
suggested by Choi et al. (2005), they noted that “this choice of source function and kernel causes for-
tuitous algebraic simplifications.” Therefore this method, whilst interesting as an iterative procedure,
cannot be considered to have a general validity.

4.4 Noble’s matrix factorisation approach

To avoid the iterations, we tried to solve the two simultaneous Wiener-Hopf equations cast in matrix
form according to the classic approach of Noble (1958) pp. 153–157; see also Daniele (1984) and
Daniele & Zich (2014), Section 1.5.2. We write Eq. (4.5) multiplied once by e−iaξ and once by e−ibξ as(

l̂ ei(d−a)ξ

0 ei(d−b)ξ

)(
e−iaξ f̂0

e−idξ f̂+

)
+

(
0 ei(c−a)ξ

l̂ ei(c−b)ξ

)(
e−ibξ f̂0

e−icξ f̂−

)
=

(
0 1
l̂ ei(a−b)ξ

)(
0

e−iaξ ĝ0

)
, (4.14)

where a 6 c and d 6 b, as described in Section 4.1. Convenient choices of the parameters c and d are
c = a, d = b; c = b, d = a; c = d = a; c = d = b. We choose c = a, d = b and write for short

L̂1 f̂++ L̂2 f̂− = L̂2 ĝ+. (4.15)

Multiplying from the left with L̂2
−1

yields a matrix version of Eq. (3.4),

L̂ f̂++ f̂− = ĝ+, (4.16)
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where

L̂ = L̂2
−1

L̂1 = l̂−1
(
−ei(a−b)ξ 1

l̂ 0

)(
l̂ ei(b−a)ξ

0 1

)
=

(
−ei(a−b)ξ 0

l̂ ei(b−a)ξ

)
(4.17)

is a triangular matrix. Swapping the elements of f̂+ and f̂− permutes the elements of L̂. If we knew how

to factorise L̂ = L̂− L̂+, multiplying Eq. (4.16) from the left with L̂−
−1

would lead finally to

L̂+ f̂++ L̂−
−1

f̂− = L̂−
−1

ĝ+, (4.18)

which is a matrix version of Eq. (3.5) and is solved in a similar fashion decomposing its right-hand side.

The same result is obtained multiplying Eq. (4.15) from the left with L̂1
−1

or Eq. (4.16) from the left
with L̂−1, yielding

f̂++ L̂−1 f̂− = L̂−1 ĝ+, (4.19)

where

L̂−1 = L̂1
−1

L̂2 = l̂−1
(

1 −ei(b−a)ξ

0 l̂

)(
0 1
l̂ ei(a−b)ξ

)
=

(
−ei(b−a)ξ 0

l̂ ei(a−b)ξ

)
(4.20)

If we knew how to factorise L̂−1 = L̂+
−1

L̂−
−1

, multiplying Eq. (4.19) from the left with L̂+ would
lead again to Eq. (4.18).

The matrix L̂ does not have a commutative factorisation because L̂(ξ )L̂(ξ ′) 6= L̂(ξ ′)L̂(ξ ): this
condition is fulfilled by the elements L̂11, L̂12, L̂22, but not by L̂21. A formula to factorise triangular
2× 2 matrices due to Jones (1984), Eq. (21), and Jones (1991), Eq. (6), cannot be applied because the
oscillatory elements of L̂ do not fulfil the required condition that + or − factors remain + or − when
inverted: the inverse of the + function ei(b−a)ξ is the − function ei(a−b)ξ ; see also Daniele & Zich
(2014), Section 4.3, Example 2. Feldman et al. (2000) proposed a factorisation of a matrix G which
coincides with our matrix L̂ except for the sign of the element L̂11, but it requires the factorisation of
another matrix A built from the elements of G which is not straightforward.

4.5 Voronin’s matrix factorisation approach

Voronin (2004) proposed a different matrix form of the two simultaneous Wiener-Hopf equations. We
present it with slight modifications. Start from Eq. (4.5) and decompose the kernel, k̂0 = k̂−+ k̂+ (for
simplicity, we drop the 0 subscript from k̂0−, k̂0+), obtaining

(λ − k̂−− k̂+) f̂0 + f̂−+ f̂+ = ĝ0. (4.21)

Multiply by e−iaξ , take the + part, thus eliminating f̂−, which is a − function with respect to a, and
multiply by eiaξ , yielding

(λ − k̂+) f̂0− eiaξ (e−iaξ k̂− f̂0)++ f̂+ = ĝ0. (4.22)

Multiply by e−ibξ , take the − part, thus eliminating f̂+, which is a + function with respect to b, and
multiply by eibξ , yielding

λ f̂0− eiaξ (e−iaξ k̂− f̂0)+− eibξ (e−ibξ k̂+ f̂0)− = ĝ0. (4.23)
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Define ϕ̂1 =
(
k̂−+ 1−λ

2

)
f̂0 and decompose it with respect to a, ϕ̂1 = ϕ̂1+ + ϕ̂1−; define ϕ̂2 =

(
k̂+ +

1−λ

2

)
f̂0 and decompose it with respect to b, ϕ̂2 = ϕ̂2++ ϕ̂2−; this gives

f̂0− ϕ̂1+− ϕ̂2− = ĝ0. (4.24)

The two coupled Wiener-Hopf equations are now obtained multiplying once by k̂−e−iaξ and once by
k̂+e−ibξ ,(

1− k̂− 0
−ei(a−b)ξ k̂+ 1

)(
e−iaξ ϕ̂1+

e−ibξ ϕ̂2+

)
+

(
1 −ei(b−a)ξ k̂−
0 1− k̂+

)(
e−iaξ ϕ̂1−
e−ibξ ϕ̂2−

)
=

(
e−iaξ k̂−ĝ0

e−ibξ k̂+ĝ0

)
, (4.25)

for short
M̂r−

−1
ϕ̂ϕϕ++M̂r+ ϕ̂ϕϕ− = ĝ. (4.26)

Here one can see that the parameter λ has been inserted in the definition of ϕ̂ϕϕ1 and ϕ̂ϕϕ2 to avoid that it

appears in place of the numbers 1 in the diagonal elements of M̂r−
−1

and M̂r+, which would make these
matrices singular for λ = 0. Multiplying from the left by M̂r− yields

ϕ̂ϕϕ++M̂ ϕ̂ϕϕ− = M̂r− ĝ, (4.27)

where

M̂ = M̂r−M̂r+

=
1

1− k̂−

(
1 0

ei(a−b)ξ k̂+ 1− k̂−

)(
1 −ei(b−a)ξ k̂−
0 1− k̂+

)

=
1

1− k̂−

(
1 −ei(b−a)ξ k̂−

ei(a−b)ξ k̂+ 1− k̂

)
. (4.28)

An equivalent result is obtained multiplying Eq. (4.26) from the left by M̂r+
−1

. If we knew how to

factorise M̂ = M̂l+M̂l−, multiplying Eq. (4.27) from the left by M̂l+
−1

would lead finally to

M̂l+
−1

ϕ̂ϕϕ++M̂l− ϕ̂ϕϕ− = M̂l+
−1

M̂r− ĝ, (4.29)

which, like Eq. (4.18), is a matrix version of Eq. (3.5) and is solved in a similar fashion decomposing
its right-hand side.

Unfortunately we are stuck again: though formulas to convert left (+−) factorisations of 2× 2
matrices into right (−+) ones and vice versa have been published by Jones (1991), Eqs. (8)–(11), their
application to obtain M̂l+M̂l− from M̂r−M̂r+ given by Eq. (4.28) is not straightforward.

4.6 Iterative solution based on Voronin’s approach

An iterative solution is possible also with Voronin’s approach. Write Eq. (4.24) multiplied once by
k̂−/(1− k̂−) and once by k̂+/(1− k̂+),

ϕ̂1+−
1

1− k̂−
ϕ̂1−−

k̂−
1− k̂−

ϕ̂2− =
k̂−

1− k̂−
ĝ0 (4.30)

ϕ̂2−−
1

1− k̂+
ϕ̂2+−

k̂+
1− k̂+

ϕ̂1+ =
k̂+

1− k̂+
ĝ0, (4.31)
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in Eq. (4.30) set

ĉ1 =
k̂−

1− k̂−
(ĝ0 + ϕ̂2−), (4.32)

start from the guess ϕ̂2− = 0, decompose ĉ1 = ĉ1++ ĉ1− with respect to a, and compute the approxima-
tions

ϕ̂1+ = ĉ1+ (4.33)

ϕ̂1− = (1− k̂−)ĉ1− (4.34)

as + and − functions with respect to a, as well as

f̂0 =
1

k̂−+ 1−λ

2

(ϕ̂1++ ϕ̂1−) =
1

k̂−+ 1−λ

2

(
ĉ1++(1− k̂−)ĉ1−

)
; (4.35)

then turn to Eq. (4.31), set

ĉ2 =
k̂+

1− k̂+
(ĝ0− ϕ̂1+), (4.36)

decompose ĉ2 = ĉ2++ ĉ2− with respect to b, and compute the new approximations

ϕ̂2− = ĉ2− (4.37)

ϕ̂2+ = (1− k̂+)ĉ2+ (4.38)

as + and − functions with respect to b, as well as

f̂0 =
1

k̂++ 1−λ

2

(ϕ̂2−+ ϕ̂2+) =
1

k̂++ 1−λ

2

(
ĉ2−+(1− k̂+)ĉ2+

)
. (4.39)

This is repeated until the difference between the values of f̂0 at an iteration and the previous falls below
a threshold. An equivalent result is obtained starting from the guess ϕ̂1+ = 0 in Eq. (4.31) and the
computation of ĉ2. Similarly to Section 4 4.2, the iterations are performed looking for a fixed point on
the variables ϕ̂1 and ϕ̂2, while f̂0 is a side product output at each step, but not used to compute the next
step. For details, see the function whf gmf v.m in the supplementary material.

Work on factorisation has found methods for particular matrix classes, often approximate and cor-
responding to specific applications. For example, after presenting an approximate solution of the scalar
Wiener-Hopf equation based on the approximation of the kernel with a rational function (Kisil, 2013),
Kisil (2015) has developed and analysed an approximate factorisation approach for Daniele-Khrapkov
matrices; although several matrix classes can be reduced to them, this is not a general solution and does
not include our case. Kisil also introduced an iterative Wiener-Hopf method for triangular matrices with
exponential factors (Kisil, 2018), but our aim would be a general direct (i.e. non-iterative) numerical
method. Rogosin & Mishuris (2016) and Kisil et al. (2021) have reviewed constructive analytical and
numerical methods for the factorisation of several specific classes of matrices. These comprehensive
reviews confirm that there is no general factorisation approach which can be used for all matrices, in
particular no direct one.
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5. Tests

As we present a general solution to the Fredholm equation, rather than one limited to a particular appli-
cation, we provide several test cases to solve for f Eq. (1.1) with λ = 1. Although the methods devel-
opped herein can be applied to both Fredholm and Wiener-Hopf equations, for the numerical tests we
have chosen to concentrate on solving examples of the Fredholm equation as it is the more challenging
case and encompasses Wiener-Hopf as a special example when a→−∞ or b→+∞.

Solutions to Eq. (1.1) with simple closed-form expressions for f (x), g(x) and k(x) are not readily
available. However, if for simplicity we limit the requirement to f (x) and k(x), then closed-form expres-
sions for g(x) in Eq. (1.1) can be calculated. These g(x) and k(x) are used as inputs to our numerical
method, whose accuracy is measured by comparing the result with f (x). We selected f (x) and k(x) to
give closed-form expressions for g(x) and also to have Fourier transforms which are easily calculable.
We derived three solutions, where both f (x) and k(x) are: 1. Gaussian (normal), 2. Cauchy (Lorentz), 3.
Laplace (bilateral exponential). As discussed in Section 2.2, the decay of the functions as x,ξ → ∞ can
influence the error performance of Fourier-based methods. The functions were therefore selected to be
exponentially decaying in both the state space and Fourier space (Gaussian), to be polynomially decay-
ing in the state space and exponentially decaying in the Fourier space (Cauchy) and to be exponentially
decaying in the state space and polynomially decaying in the Fourier space (Laplace). The derivation of
g(x) is described in the following sections.

5.1 Gaussian

We set f (x) = k(x) = 1√
π

e−x2
. The expression for g(x) is then

g(x) =
1√
π

e−x2 − 1
π

∫ b

a
e−(x−y)2

e−y2
dy

=
1√
π

e−x2 − 1
π

e−
x2
2

∫ b

a
e−2(y− x

2 )
2
dy

=
1√
π

e−x2 − 1√
2π

e−
x2
2
[
Φ(2b− x)−Φ(2a− x)

]
, x ∈ [a,b], (5.1)

where Φ(·) is the standard normal cumulative distribution function.

5.2 Cauchy

We set f (x) = k(x) = 1
π(x2+1) . The first step in the calculation of g(x) is to solve the integral

gint(x) =
1

π2

∫ b

a

1
y2 +1

1
(x− y)2 +1

dy. (5.2)



18 of 31 G. GERMANO, C. E. PHELAN, D. MARAZZINA, G. FUSAI

Using partial fractions,

gint(x) =
1

π2

∫ b

a

1
y2 +1

1
(x− y)2 +1

dy

=
1

π2x(x2 +4)

∫ b

a

(
2y

y2 +1
+

x
y2 +1

− 2(y− x)
(y− x)2 +1

+
x

(y− x)2 +1

)
dy

=
1

π2x(x2 +4)
[
log(y2 +1)+ xarctan(y)− log[(x− y)2 +1]+ xarctan(y− x)

]b
a

=
1

π2x(x2 +4)

{
log

(b2 +1)((a− x)2 +1)
(a2 +1)((b− x)2 +1)

+

+x [arctan(b)− arctan(a)+ arctan(b− x)− arctan(a− x)]} . (5.3)

This gives g(x) in closed form,

g(x) =
1

π(x2 +1)
− 1

π2x(x2 +4)

{
log

(b2 +1)((a− x)2 +1)
(a2 +1)((b− x)2 +1)

+

+x [arctan(b)− arctan(a)+ arctan(b− x)− arctan(a− x)]} , x ∈ [a,b]. (5.4)

5.3 Laplace

We set f (x) = k(x) = 1
2 e−|x|. In order to make the calculation of g(x) simpler, the values of a and b are

restricted so that 0 < a < b < ∞. Then the formula for g(x) in closed form is

g(x) =
1
2

e−x− 1
4

∫ b

a
e−|x−y|e−ydy

=
1
2

e−x− 1
4

[∫ b

x
e(x−y)e−ydy+

∫ x

a
e−(x−y)e−ydy

]
=

1
2

e−x− 1
4

ex
(∫ b

x
e−2ydy+ e−x

∫ x

a
dy
)

=
1
2

e−x +
1
8

ex [e−2y]b
x−

1
4

e−x[y]xa
=

1
2

e−x +
1
8

ex
(

e−2b− e−2x
)
− 1

4
e−x(x−a)

= e−x
[

3
8
+

1
8

e−2(b−x)+
1
4
(a− x)

]
, x ∈ [a,b]. (5.5)

6. Results

We use the following methods to recover f (x) and produce the detailed results shown in this section:

1. 4th order Newton-Cotes quadrature King (2009); Press et al. (2007) with preconditioner (Fusai
et al., 2012); see the MATLAB functions quadrature.m and weights.m in the supplementary mate-
rial.

2. Wiener-Hopf method using the sinc-based fast Hilbert transform with no zero padding. In order
to counteract the oscillations on the recovered function, we used an exponential filter of order
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8 on the final stage of the fixed-point algorithm. The maximum number of iterations of the
fixed-point algorithm is set to 5. In fact, in most cases the final error level is achieved within
3 iterations. We discuss the use of the sinc-based fast Hilbert transform and a spectral filter in
Subsection 6.1 (6.1.1) below.

3. Wiener-Hopf method using the symmetric sign function in the fast Hilbert transform, i.e. with
zeros placed at both ξ = 0 and ξ = ξmin = −N

2 ∆ξ , similar to the method introduced by Rino
(1970) and Henery (1974) and tested by Fusai et al. (2016).

4. Wiener-Hopf method with Voronin’s variant using the symmetrical sign function for the Hilbert
transform.

6.1 Results for the Gaussian test case

We first examine the performance of the different numerical methods with the Gaussian test case, with
particular emphasis on the method used to implement the Hilbert transform.

6.1.1 Sinc-based fast Hilbert transform and spectral filtering In the financial pricing applications
described by Feng & Linetsky (2008) and Fusai et al. (2016), the sinc-based fast Hilbert transform has
shown excellent error convergence, especially when combined with a spectral filter as in Phelan et al.
(2019). However, when we consider its use for this application we must take account of several ways
in which the requirements differ from its general use for finding solutions to Wiener-Hopf or Fredholm
equations.

Firstly the pricing methods that were implemented using the Wiener-Hopf method in Fusai et al.
(2016), as devised by Green et al. (2010), use the analytic continuation of x, i.e. they give results for
values of x both inside and outside the barriers (the integration limits of Fredholm equation). This means
that for these applications there is no requirement to truncate the functions to the integration limits of
a and b in the state space, unlike the problems presented as examples in this paper. The requirement
to truncate the function means that there is a jump discontinuity introduced in the state space, meaning
that, as described by Boyd (2001), the function in the Fourier space decays as a first order polynomial
due to the Gibbs phenomenon. As explained in Stenger (1993) this polynomial decay means that the
sinc-based fast Hilbert transform no longer obtains an error which is exponentially convergent with
grid size but rather converges polynomially. This is in contrast with the aforementioned finance-based
papers from Green et al. (2010) and Fusai et al. (2016) where the Fourier domain functions subject to
the sinc-based fast Hilbert transform are exponentially decaying (or polynomially so in the case of the
VG process) and so excellent error performance is achieved, especially in conjunction with a spectral
filter to solve the issue with the fixed-point algorithm.

In contrast, here we solve the Fredholm and Wiener-Hopf equations as they were originally formu-
lated, i.e. the function is only defined for the range of the integration [a,b] and therefore the functions
g(x) and k(x) must be truncated to the ranges [a,b] and [a−b,b−a] respectively. This truncation will
introduce a jump in the functions which means that their Fourier transforms now have first order polyno-
mial decay. Therefore the truncation error from the Hilbert transform will have a first order polynomial
convergence unless we can exploit some symmetry between the Fourier domain functions for positive
and negative ξ as in Phelan et al. (2018), in which case we may achieve second order polynomial con-
vergence.

Moreover, there is a second important distinction to be made between the general solution presented
here and the work in the above literature. In the finance literature the solutions to the Fredholm equation
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are used to calculate the expectation of a further function, in this case the payoff function. Therefore
the exact errors in the function for individual values of x are not particularly important. Rather, the
finance literature is concerned with the average error, weighted according to the shape of the payoff
function. This also has particular importance when we are considering the use of the sinc-based fast
Hilbert transform described in Section 2 2.4 which was instrumental in achieving exponential error
convergence with the number of FFT grid points N in Feng & Linetsky (2008) and Fusai et al. (2016).

In Figures 1 and 2, we show results using the sinc-based fast Hilbert transform with no filter for the
Gaussian test case described in Section 5.1. It is immediately obvious that, even for high values of N,
oscillations are visible in the numerical solution.
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FIG. 1. Numerical and analytical f (x) using the sinc-based fast Hilbert transform with no filter.
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FIG. 2. Error in the numerical calculation of f (x) using the sinc-based fast Hilbert transform with no filter.

The oscillations can be overcome with a spectral filter, but this can have a negative effect on the
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accuracy of the numerical method, especially close to the discontinuities in the state space; this is
illustrated in Figures 3–5. Figure 4 shows that the lower order filter gives a shallower slope at the
discontinuity, but has a stronger effect on the oscillations. However, we can see from Figure 4 that,
regardless of the order of the filter, the overshoot at the discontinuity remains approximately the same.
Figure 5 shows that a spectral filter removes the oscillations away from the discontinuity and that the
best results are achieved with a filter of order 8. Although the behaviour of the numerical method using
the sinc-based fast Hilbert transform is not appropriate for a general solution to the Fredholm equation
due to the high errors at function discontinuities, it remains the case that for applications where we are
solely interested in a function value away from any jumps this may be an appropriate method to use.
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FIG. 3. Numerical and analytical f (x) using the sinc-based fast Hilbert transform with an exponential filter. The parameter p
describes the order of the filter.
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FIG. 4. Numerical and analytical f (x) using the sinc-based fast Hilbert transform with an exponential filter, focussing on the
discontinuity at x = 0. The parameter p describes the order of the filter.

6.1.2 Sign-based fast Hilbert transform method As an alternative to the sinc-based fast Hilbert trans-
form, we examine the method of Rino (1970) and Henery (1974), which was used also by Fusai et al.
(2016). It is based on the simple relationship between the Hilbert transform and the Fourier transform
given in Eq. (2.21).
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FIG. 5. Error between the numerical and analytical calculation of f (x) using the sinc-based fast Hilbert transform with an expo-
nential filter. The parameter p describes the order of the filter. The scale has been chosen to display the error away from the
discontinuities of f (x).

The results for the Gaussian test case are shown in Figures 6–8; f is the analytic solution, fsgn0
and fVor are the numerical solutions obtained with the Wiener-Hopf iterative method using the fast
Hilbert transform implemented with the symmetric sign function, the latter in the Voronin variant. It
is immediately apparent from Figure 6 that neither implementation suffers from the overshoot that was
seen using the sinc-based fast Hilbert transform. However, looking at the discontinuity more closely in
Figure 7, we can see that we will have a peak error at a single state-space grid point as the numerical
solution increases to the final value of f (x) more slowly than the analytic function. However, unlike the
sinc-based function, where the extent of the oscillations depends not only on the filter, but also the shape
the function used, we can state here that as long as the value of x is at least one grid step away from
the discontinuity, the answer will be unaffected by the peak error. It is also interesting to note that the
error is symmetrical around the discontinuity when the iterative Wiener-Hopf method is used, but not
with the Voronin variant. This difference is likely to account for the better performance seen in Figure 8
compared to Figure 9. These display the error results away from the discontinuity and we can see that,
although there is some variation in the error across x, the results for both methods are superior to those
for the sinc-based fast Hilbert transform.

Although it is important to observe the functions which are calculated numerically, when assessing
the performance of the numerical methods, the error convergence with CPU time and number of grid
points N is also important. We measured this at 10%, 50% and 90% of the range between a and b;
results for the Gaussian test case are shown in Figures 10–11.

The fastest converging method is the Wiener-Hopf iterative method using the sign-based fast Hilbert
transform, achieving an error of O(1/N2). The other methods exhibited O(1/N) error convergence,
with the method using the sinc-based fast Hilbert transform with spectral filter achieving better absolute
error performance versus N but converging with CPU time almost identically to the quadrature method.
The O(1/N) convergence achieved with the sinc-based fast Hilbert transform is consistent with the error
bound described by Stenger (1993) for a function with a first order discontinuity, while the O(1/N2)
convergence seen for the sign-based variant is consistent with that reported by Fusai et al. (2016).
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FIG. 6. Numerical and analytical f (x) using the FFT based method with a symmetrical sign function.
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FIG. 7. Numerical and analytical f (x) using the FFT based method with a symmetrical sign function, focussing on the disconti-
nuity at x = 0.

6.2 Results for Cauchy and Laplace test cases

Figures 12–15 compare the results for the test cases in Sections 5.2 and 5.3 for the iterative Wiener-Hopf
method with the sinc- and sign-based fast Hilbert transform methods; in the figures these are labelled
fsinc and fsgn. We also compare the performance of the iterative Voronin method with the symmetrical
sign function, labelled fVor. An 8th order exponential filter was used with the sinc-based fast Hilbert
transform to counteract the oscillations, as described in Section 6.1.1. As a benchmark we include
results from 4th order Newton-Cotes quadrature with a preconditioner (Press et al., 2007; Fusai et al.,
2012), labelled fq, which was the previous state of the art; using a Gaussian quadrature would imply
to lose the Toeplitz structure of the matrix that is due to the convolution nature of the problem. The
results for the Cauchy and Laplace test cases are consistent with those for the Gaussian test case; the use
of the sinc-based fast Hilbert transform results in an overshoot at the function discontinuities and the
sign-based method results in a spot error at function discontinuities. We also notice that the quadrature
method has a spot error at the discontinuity, but this effects a smaller range of x than our new numerical
methods. The reason for this smaller range is that the Fourier-based methods need a truncation in state
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FIG. 8. Error of the numerical calculation of f (x) for the new iterative Wiener-Hopf method using the sign-based fast Hilbert
transform. The scale has been chosen to display the error away from the discontinuities of f (x). The error is calculated by
comparing the numerical calculation to the analytic solution.
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FIG. 9. Error of the numerical calculation of f (x) for the Voronin method using the sign-based fast Hilbert transform. The scale
has been chosen to display the error away from the discontinuities of f (x). The error is calculated by comparing the numerical
calculation to the analytic solution.

space at ±4(b−a) in order to avoid wrap-round effects. In contrast, the range of x for quadrature only
needs truncation at the integration limits a and b.

We also measured the error convergence with the Cauchy and Laplace test cases and the results are
shown in Figures 16–19. These confirm the findings with the Gaussian test case in Section 5.1 which
showed that the best performing method is the new iterative solution to the Wiener-Hopf equation with
the Hilbert transform implemented using the FFT with the symmetrical sign function.
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FIG. 10. Error convergence of the numerical methods against N with the Gaussian test case.
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FIG. 11. Error convergence of the numerical methods against CPU time with the Gaussian test case.
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FIG. 12. Numerical and analytical f (x) with the Cauchy test case.
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FIG. 13. Numerical and analytical f (x) with the Cauchy test case focussing on the first discontinuity.
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FIG. 14. Numerical and analytical f (x) with the Laplace test case.
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FIG. 15. Numerical and analytical f (x) with the Laplace test case focussing on the first discontinuity.
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FIG. 16. Error convergence of the numerical methods against N with the Cauchy test case.
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FIG. 17. Error convergence of the numerical methods against CPU time with the Cauchy test case.
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FIG. 18. Error convergence of the numerical methods against N with the Laplace test case.
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FIG. 19. Error convergence of the numerical methods against CPU time with the Laplace test case.
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7. Conclusion

We developped numerical methods based on the FFT to solve convolution integral equations on a semi-
infinite interval (Wiener-Hopf equation) or on a finite interval (Fredholm equation). We improved a
previous method for the Wiener-Hopf equation based on the FFT and projection operators (Rino, 1970;
Henery, 1974) by expressing the required Wiener-Hopf factorisation through a Hilbert transform via
the Plemelj-Sokhotsky relations. This allowed us to compute the Hilbert transform with an accurate
and efficient numerical method based on a sinc functions expansion and the FFT (Stenger, 1993, 2011),
reducing the total number of required FFTs from 7 to 5. We further enhanced the error convergence
using a spectral filter (Vandeven, 1991; Gottlieb & Shu, 1997). We resolved issues of a previous iterative
extension to the Fredholm equation (Henery, 1977). Moreover, we devised a variant of our method
inspired by the matrix factorisation approach of Voronin (2004).

We carried out extensive numerical tests on the Fredholm equation of the second kind using three
kernels and provide operational open-source code. We implemented our new iterative Wiener-Hopf
method with the sinc- or sign-based fast Hilbert transform, the latter also with the variant inspired by
Voronin’s matrix factorisation. For benchmark, we implemented a 4th order Newton-Cotes quadrature
(Press et al., 2007; King, 2009) with preconditioner (Fusai et al., 2012).

Unlike an earlier application in option pricing with exponential convergence of a weighted average
error, the iterative Wiener-Hopf method with the sinc-based fast Hilbert transform does not turn out opti-
mal for a general solution of the Fredholm equation, having O(1/N) convergence with the number of
FFT grid points N and high errors close to the function discontinuities; this can be explained with the dif-
ferent requirements of the two problems, as here the solution over the whole interval is required. Instead,
the iterative Wiener-Hopf method with the sign-based fast Hilbert transform has O(1/N2) convergence
and therefore performs better than its sinc-based sibling, the quadrature method from the literature and
the iterative method based on Voronin’s partial solution, whose convergence is O(1/N) even with the
sign-based fast Hilbert transform. So in terms of error convergence, the iterative Wiener-Hopf method
with the sign-based fast Hilbert transform reveals the new state of the art for the numerical solution of
general Fredholm equations, achieving double the convergence speed of the known 4th order quadrature
method.

The other aspect which we must compare for the different methods is the peak error at a discontinuity
of f (x) as shown in Figures 13 and 15. This error is wider for the Wiener-Hopf method than for the
quadrature method because a wider x range is required to avoid the wrap-around or aliasing effect of
Fourier transform methods. Therefore, if an accurate answer close to a discontinuity is required, the
quadrature method may be best. However, the excellent CPU time versus error performance shown
in Figures 11, 17 and 19 recommends using the Wiener-Hopf method with the sign-based fast Hilbert
transform and a larger grid size to yield the required accuracy close to discontinuities.
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