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Peter Popov, Senior Member of IEEE 

 

All models are wrong, some are useful. 

George Box, a British Statistician 

 

Abstract — This paper deals with the Bayesian safety 

assessment of autonomous vehicles (AV) conducted via 

driving AVs on the public roads, often referred to as 

“driving to safety.” A key safety measure is the 

probability of catastrophic failure (i.e., a road accident) 

per mile of driving (pfm), assumed a random variable. 

We argue that a Bayesian prediction based on a 

univariate (“black-box”) probabilistic model has an 

intrinsic deficiency: it cannot accommodate the variation 

of pfm due to changing road conditions, which in turn 

may affect significantly the predicted pfm and may lead 

to optimistic predictions.  

A multivariate probabilistic model is developed to 

overcome this limitation of the univariate model. Using a 

set of contrived examples the predictions of the 

multivariate model are compared with those derived with 

univariate models. Our results provide an intriguing 

insight that even when AV driving does not lead to 

accidents at all, the pfm predictions with the multivariate 

model may be more pessimistic than the assumed prior, 

and those derived with a black-box model, including the 

predictions using the recently developed “conservative 

Bayesian inference”.  

The multivariate Bayesian safety assessment can be 

applied to autonomous vehicles and to other complex 

intelligent systems such as robots, UAVs, etc., where the 

operating conditions vary. 

 

Index Terms— Autonomous vehicle, Bayesian inference, 

“driving to safety,” Safety Assessment  

1. INTRODUCTION 

Autonomous vehicles (AVs)1 and other intelligent 

systems, which rely on machine learning (ML) or artificial 

intelligence (AI) for some of its functionality (e.g., 

perception, planning, etc.), have challenged many mature 

methods for safety assessment developed over the years for 

software-based cyber-physical systems (CPS). A noticeable 

recent example is the concept of “driving to safety”, 
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formulated in [2], which is used to assess the AV safety from 

data collected during driving an AV on the public roads. [2] 

and other related studies demonstrated that the amount of AV 

driving required for an AV to demonstrate levels of safety 

comparable with the safety of man-driven vehicles is very 

high (in excess of 10s of millions of miles), an observation 

which motivated the search for alternative methods for AV 

safety assessment, e.g. scenario – based testing. 

The findings in [2] have been picked up by research teams 

in the UK, which led to the development of the 

“Conservative Bayesian Inference (CBI)”. As the name 

suggests, CBI solves the “driving to safety” problem 

conservatively. Conservatism is defined precisely [3] and is 

summarized in section 3.2 below. The essence of the 

approach is that conservatism in predicting the confidence 

that an AV has reached a target value of pfm is sought over 

the space of all prior distributions of pfm (treated as a random 

variable) which satisfy a given prior confidence in the chosen 

target value of pfm.  

1.1. Abbreviations 

A number of publications, e.g., [4, 5], deal with CBI 

assuming that no accidents are observed in operation. Some 

other studies, e.g. [6], refined CBI for the cases with 

observed accidents. Being able to apply a safety assessment 

method to observations with accidents is important as the 

current AVs are far from being able to run millions of miles 

(kilometers) without an accident due to the limitations of the 

AV technology. Empirical data from AV road testing suggest 

that the current AVs do fail quite frequently [7]. Some more 

specific studies, e.g. [8], suggest that the state-of-the-art in 

object recognition solutions (an essential part of an  AV 

perception) have very modest probability of successful 

object detection of ~80% only. Likewise, the “safety 

monitors”, the mechanisms deployed in an AV to guarantee 

safety in situations when some components of the AV stack 

fail, are also far from being perfect [9]. Given the modest 

level of reliability of key components for an AV such as 

perception and safety monitors would suggest that one 

should not be surprised by regular AV accidents. 

Abbreviations 

ODD – Operational Design Domain [3] defines the 

operating conditions for which an AV safety claim applies. 

1 In this paper we adopt the term “autonomous vehicles (AV).” The 

theory we develop would apply to Level 4 and Level 5 defined by SAE [1] 
for “automated driving systems (ADS)” with a complex set of driving tasks 

performed in sophisticated operational environments. Autonomous vehicles 

are seen as a broad category of vehicles including ADS as defined in [1], but 

also other types of vehicles, e.g. the unmanned autonomous vehicles (UAV), 

robots, etc.  
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ODD consists of a set of explicitly defined operating 

conditions. 

OC – an operating condition, an abstraction used to define 

an ODD. Typically, the operating conditions are linked to i) 

the AV driving conditions (e.g., on the motorway vs. in 

rural/urban area), and to ii) weather conditions (sunny, rainy, 

snow, etc.).  

OCi – the i-th operating condition of an ODD. 

pfm – probability of failure/accident per mile of driving. A 

measure of safety used in the “driving to safety” approach.  

pfmi –probability of failure/accident per mile, conditional 

on the mile being driven in operating condition OCi. 

P(OCi) – probability of an AV driving a randomly chosen 

mile in OCi. 

1.2. Notations 

X – r.v. random variable 

𝑓𝑥(∙) - probability density function of the r.v. X 

Θ - r.v. representing pfm 

Θ𝑖 - r.v. representing pfmi 

Ψ𝑖 - r.v. representing P(OCi) 

𝑓𝜃(∙) - probability density function of  

𝑓𝜃𝑖
(∙) - probability density function of i 

𝐸[] - expected values of  

𝐸[𝑖] - expected value of i 

𝑓𝜓𝑖
(∙) - probability density function of i 

𝐸[𝜓𝑖] - expected value of i 

𝑓𝑥(∙) ∗ 𝑓𝑦(∙) - the convolution of the probability density 

functions of two independently distributed random variables, 

X and Y 

Dir(x1, x2, …, x𝑛;a1, …, an) – the Dirichlet distribution of 

non-negative random variables X1, X2, …, X𝑛 

Beta(x;, ) – a Beta distribution of the r.v. X with 

parameters  and .  

𝐿(𝑁, 𝑟|𝑥) – the likelihood of observing r failures in N 

miles of driving, given the values of pfm is x (i.e., pfm = x) 

2. MOTIVATION FOR THE PAPER 

While univariate Bayesian predictions have been 

extensively used in the past, e.g., to predict the probability of 

failure on demand of safety critical systems, including the 

“ultra reliable” ones [10], doubts have been voiced over the 

years about the adequacy of the univariate prediction models 

in favor of multivariate counterparts [11], [12, 13] and more 

recently [14]. With a univariate reliability prediction, the 

system under assessment is modelled as a black-box and any 

details about the system (e.g., its architecture) are ignored in 

the assessment. A multivariate inference, instead relies on a 

more detailed model of either the system or of its operational 

environment, which allows the assessor to capture important 

details, e.g. the use of redundancy in the system architecture, 

or the existence of distinctly different operating conditions 

which affect the system reliability and/or the reliability of 

some of its components, e.g. [15] and [16]. In the context of 

AV “driven to safety”, the use of a univariate inference 

seems particularly problematic as it does not explicitly deal 

with the fact that the N miles processed by the Bayesian 

inference may be driven in quite different operating 

conditions. Two extreme examples of this would be: i) 

during road tests an AV is driven in “easy conditions” only, 

e.g., on a motorway with a light traffic, or ii) an AV is driven 

in difficult conditions for atypically lengthy periods of time. 

Intuitively, the likelihood of an accident in the first case 

seems lower, and may be much lower, than in the second 

case. A “driving to safety” argument based on a single 

measure of interest such as pfm, implicitly assumes that the 

risk of an accident can be assumed the same for all miles, 

irrespective of the operating conditions under which the 

miles are driven. This assumption is clearly implausible. A 

weaker argument in favor of a univariate inference often 

referred to is that the driving conditions for which the 

observations are collected are “typical”, and that the 

operating conditions anticipated in the future remain 

stochastically the same as the conditions for which the 

observations have been collected and a safety claim – made.  

Such stochastic similarity, however, is merely a strong 

assumption, which is difficult to justify and even more 

difficult to enforce.  

The community dealing with the AV safety assessment 

recognized that making a safety claim for conditions which 

are difficult to foresee is problematic. To confine this 

difficulty, the concept of the Operational Design Domain 

(ODD) [3] has been adopted. ODD includes a set of distinctly 

different operating conditions (OCs) linked to different 

aspects of the AV operational environment, e.g., the weather, 

the intensity of the traffic, time of day, etc. The terms ODD 

was introduced by SAE 3016J [1] for level 3 – 5 of AVs in 

recognition of the fact that safety is impossible to justify for 

an arbitrary operating condition; ODD defines the set of 

operating conditions for which an AV safety claim applies. 

Further details on ODD are provided in [3, 17, 18] which 

spell out practical ways of defining distinctly different 

operating conditions, mapping them to ranges of values of 

attributes and to constraints, defined in an ODD 

specification, together with mechanisms of monitoring the 

operating condition an AV is in at any point in time. For 

monitoring OpenODD defines the concept of “Current 

Operational Domian (COD)”, seen a snapshot of all sensor 

readings installed in an AV. The AV is expected to update 

COD regularly, which will allow it to detect the OC the AV 

is in, including if the AV is outside the ODD boundaries. A 

safety claim made for a given ODD will only apply to the 

OCs included in the ODD. Any accidents that have occurred 

in conditions “outside the ODD (OoODD)” would not 

compromise a safety claim.  

If we accept that a safety claim is based on a specific 

ODD, then driving to safety assessment should account for 

the fact that the necessary N miles of driving to safety will 

be split between the OCs included in the ODD. Different 

operating conditions OCs would imply: i) the likelihood of 

OCs may vary - some OCs are more likely to occur in 

operation than others and the OCs likelihoods may change 

over time, and ii) the likelihood of an accident may also vary 

between the OCs. Extensive evidence of this variation exists, 

e.g. from [19]: the crashes reported for AVs differ 

remarkably between different operating conditions linked to 

the weather at the time of crashes.  
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None of the two effects of the OCs on AV safety, however, 

seems accounted for in the univariate models used with 

“driving to safety”. Accounting for these effects is the focus 

of this paper.  

The paper makes the following contributions: 

1. We develop a new method for safety assessment, based 

on a multivariate Bayesian assessment, which allows us 

to account for the uncertainties in both the “operational 

profile2” in which AV is used and the risks from 

accidents in the different operating conditions.  

2. On contrived examples we demonstrate that the 

proposed Bayesian inference procedure outperforms the 

univariate ones and captures important aspects, which 

remain “invisible” for inferences based on a univariate 

model.  

3. We demonstrate a serious deficiency of the univariate 

Bayesian inference used in the calculations of pfm. On 

contrived examples we show that the univariate 

Bayesian predictions, including those based on CBI, 

may be optimistic. 

The paper is organized as follows. In section 3 a formal 

problem statement is provided. Section 4 presents our results 

– using several contrived examples. In section 5 we discuss 

the implications of our findings and threats to their validity. 

In section 6 we survey the related research, not mentioned in 

the previous sections. In Section 7 we draw conclusions and 

outline directions for future research. 

3. PROBLEM STATEMENT 

Now we formulate the problem of AV safety assessment 

as a problem of Bayesian inference. 

Consider that the measure of AV safety is the probability 

of catastrophic failure per mile of driving, pfm, as proposed 

in [2]. Assume further that the probability of observing an 

accident within a mile is not affected by the preceding miles 

driven by the AV. In other words, we assume that observing 

successive miles of driving can be modelled mathematically 

as a Bernoulli trial [20] of selection of miles at random with 

replacement from the population of miles using pfm as the 

parameter of the Bernoulli trial. 

Let us further assume that pfm is a random variable, , 

with a probability density function, 𝑓𝜃(∙), which captures the 

uncertainty about the value of pfm. 𝑓𝜃(∙) is typically 

considered a measure of “epistemic uncertainty,” related to 

the assessor’s knowledge (belief) about the value of pfm. 

3.1. Black-box inference 

Given a prior distribution 𝑓𝜃(∙) and observing an AV 

drives additional N miles of which r miles are with accidents 

(r ≤ N), one can derive the posterior distribution of  using 

the Bayes formula:  

𝑓𝜃
𝐵𝐵(𝑥|𝑁, 𝑟) =

𝑓𝜃(𝑥)×𝐿(𝑁, 𝑟|𝑥)

∫ 𝑓𝜃(𝑥)×𝐿(𝑁, 𝑟|𝑥)𝑑
1

𝑥=0 𝑥
  (1) 

 
2 Operational profile is a well-known concept in safety and reliability 

engineering, which we introduce formally later.  
3 All figures are included in the Appendix with much greater resolution. 
4 [6] provides further details on the relationship between x1 and x3, the 

other model parameters, and the observations, some are given in Figure 1.  

This is the simplest Bayesian inference, which relies on a 

“black-box” model about . The black-box model assumes 

that all miles on the road are “similar,” i.e., there is no reason 

to consider variation of pfm over different road conditions, 

an assumption, which ignores the impact of operating 

conditions on pfm.  

3.2. Conservative Bayesian inference (CBI) 

We briefly introduce CBI using [6]. The key idea of this 

special case black-box inference is that rather than asking a 

Bayesian assessor to provide a complete prior distribution for 

the measure(s) of interest, 𝑓𝜃(∙), as we do in section 3.3, the 

assessor is asked to provide a much less detailed info. The 

minimal info required in [6] is limited to a few numbers: the 

prior confidence 𝜃 in a reliability/safety target 𝜖, e.g. a 

specific value of pfm, and the lower bound on the 

reliability/safety, pL < 𝜖, which is theoretically possible given 

the hardware unreliability of the AV. pL may be several 

orders of magnitude smaller than 𝜖. Then conservative 

posterior confidence in any value of pmf will be obtained 

using a two-point prior distribution as shown in Figure 13 

below for different observations (without and with 

accidents). 

 
Figure 1. An illustration of CBI. A two-point prior distribution is 

used with the probability mass concentrated at points x1 and x3 

shown in red in the figure. The posterior distribution will continue 

to be a two – point distribution with the probability mass 

concentrated at the same points x1 and x3 as in the prior. 

Depending on the observations (r = 0 or r > 0 accidents) 

in N (r ≤ N) miles of driving, the two – point prior 

distribution would guarantee a conservative prediction of 

𝑃(𝑋 ≤ 𝑝|𝑟, 𝑁) if the following prior is selected:  

𝑃(𝑋 = 𝑥) = 𝜃𝟏𝒙>𝒙𝟏
+ (1 − 𝜃)𝟏𝒙>𝒙𝟑

   (2) 

where 𝑝𝐿 ≤ 𝑥1 ≤ 𝜖 ≤ 𝑥3 and the values 𝑥1 and 𝑥3 depend 

on the model parameters (𝑝𝐿 , 𝜖, 𝜃) and on the observations, r 

and N4. The notation 𝟏𝒙>𝒙𝟏
 refers to the “unit step function” 

(also known as Heaviside step function) and denotes the fact 

that the function takes a value 0 for values of the argument x 

≤ x1, and value 1 for argument x > x1. 

The posterior probability 𝑃(𝑋 ≤ 𝑝|𝑟, 𝑁) is computed 

using the parameters listed above using the formula: 

𝑃(𝑋 ≤ 𝑝|𝑟, 𝑁) =
𝑥1

𝑘(1−𝑥1)𝑁−𝑟𝜃

𝑥1
𝑘(1−𝑥1)𝑁−𝑟𝜃+𝑥3

𝑘(1−𝑥3)𝑁−𝑟(1−𝜃)
𝟏𝒑>𝝐   (3) 

The probability mass in the second point of the posterior 

distribution is easy to compute as 1 – 𝑃(𝑋 ≤ 𝑝|𝑟, 𝑁). 

3.3. White-box inference5 

The concept of Operational Design Domain (ODD) [3], 

briefly introduced above, captures the idea that risks of a road 

5 The term “white-box” is used often in different contexts, e.g., in 
software testing “white box” signifies that the tester has access to the source 

code of the tested software. A tester with access to the source code can plan 

and execute testing differently from a tester without such access who would 

treat the software as a “black-box.” Our use of “white-box” is quite different, 

yet there are similarities in the sense that in both contexts “white-box” 
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accidents may vary with the operating conditions. An ODD 

can be seen as a partition of different operating (road) 

conditions, OCs, as follows:  

OC = {OC1, OC2, …, OCm} such that iff i  j then OCi  

OCj = . An illustration of an AV driving through different 

OCs is given in Figure 2 below.  
Figure 2. An 

illustration of ODD as 

a partition of 

operating conditions 

{OC1, … OCn}. Each 

OCi is characterised 

by the probability of 

accident per mile of 

driving, pfmi, conditional on OCi. A vehicle (shown as a blue 

rectangle on the top left of the figure) follows a “trajectory,” which 

in the example starts in OC1, crosses OC3, OC2, OC4, OC5, OC3, 

back to OC5 and finishes in OC4. 

Let us assume that each OCi includes a “homogeneous” 

set of miles and the selection of miles can be modelled as a 

Bernoulli trial with a parameter pfmi and that pfmi may vary 

across OCs, (i = 1, 2, …, n).  

Under the assumptions made so far, our recently 

developed model [15], which builds on the work by Adams 

[16], lands itself well to dealing with the problem at hand. 

Below we recall the essence of this double-stochastic 

multivariate model, which works as follows: 

- Let 𝑃(𝑂𝐶𝑖) be the probability of selecting at random a 

mile from partition OCi. The probabilities 𝑃(𝑂𝐶𝑖) define 

a distribution over the set OC, i.e., ∑ 𝑃(𝑂𝐶𝑖)
𝑛
𝑖=1 = 1. 

- Let Θ1, Θ2, … , Θ𝑛 be the random variables used to 

capture the uncertainty about the values of pfmi in the 

different OCs and 𝑓𝜃𝑖
(∙) be their respective probability 

density functions. Let 𝑓𝜃1,𝜃2,…,𝜃𝑛
(𝜃1, 𝜃2, … , 𝜃𝑛) be the 

joint distribution of Θ1, Θ2, … , Θ𝑛. 

To simplify the analysis, we make an additional 

assumption that Θ1, Θ2, … , Θ𝑛 are independently distributed 

random variables. In other words, we assume that changes of 

𝑓𝜃𝑖
(∙)  do not affect 𝑓𝜃𝑗

(∙), 𝑖 ≠ 𝑗. 

Later in the paper (Section 5, threats to validity) we 

discuss ways of relaxing both assumptions made above: that 

a Bernoulli trial should be used, and that Θ𝑖 should be 

independently distributed random variables.  

𝑃(𝑂𝐶𝑖), the probabilities of selecting a mile from 𝑂𝐶𝑖, 

may vary over time or be subject to epistemic uncertainty, 

which we capture by treating 𝑃(𝑂𝐶𝑖) as a random variable, 

Ψ𝑖, with a probability density function 𝑓𝜓𝑖
(∙). Since the 

operating conditions form a partition over the space of miles 

within ODD, the constraint ∑ Ψ𝑖
𝑛
𝑖=1 = 1 applies: a mile with 

certainty will be selected from one of the partitions. If a mile 

does not belong to any of the operational conditions included 

in an ODD, then an OoODD event should be detected.   

We now express the joint distribution f𝜓1,𝜓2,…𝜓𝑛
(𝜓1, 

𝜓2,…, 𝜓n), which captures the epistemic uncertainty 

associated with the selection of a mile from the space of all 

 
means access to details, which are not available under ”black-box” 

arrangements:  in testing the additional details are related to the source code 

of software, while in the case of “white-box” model used for Bayesian 

miles that belong to ODD. A suitable multivariate 

distribution which can be used here is the Dirichlet 

distribution, which satisfies the constraint ∑ Ψ𝑖
𝑛
𝑖=1 = 1. The 

Dirichlet distribution with n variates, Ψ𝑖…,Ψ𝑛 is defined as 

follows [21]: 

Dir(𝜓1, 𝜓2,…, 𝜓n;α)≡f𝜓1,𝜓2,…𝜓𝑛
(𝜓1, 𝜓2,…, 𝜓n;a1, …, an)   

        =
Γ(∑ ai

n
i=1 )

∏ Γ(ai)
n
i=1

[∏ 𝜓i
ai-1n-1

i=1 ][1- ∑ 𝜓i
n-1
i=1 ]

an-1
   (4) 

where α is a vector a1, …, an and defines the parameters of 

the Dirichlet distribution.  

If we denote: 𝐴 = ∑ 𝑎𝑗
𝑛
𝑗=1 , then the moments of the 

variates of the Dirichlet distribution can be expressed as: 

𝐸[Ψ𝑖] =
𝑎𝑖

𝐴
,  

𝑉𝑎𝑟(Ψ𝑖) =
𝑎𝑖(𝐴−𝑎𝑖)

𝐴2(1+𝐴)
,  

𝐶𝑜𝑣(Ψ𝑖 , Ψ𝑗) =
−𝑎𝑖𝑎𝑗

𝐴2(1+𝐴)
, 𝑗 ≠ 𝑖, j 

The marginal distribution [20] of each variate, Ψ𝑖, of the 

Dirichlet distribution is a Beta distribution, Beta(𝜓;ai, A-ai), 

[21]. 

Now, consider the case of an ODD with probabilities of 

the OCs known with certainty, i.e., 𝑃(𝑂𝐶1) = 𝜓1, 𝑃(𝑂𝐶2) =
𝜓2, …  𝑃(𝑂𝐶𝑛) = 𝜓𝑛, where 𝜓𝑖  (𝑖 = 1, … 𝑛) are known 

constants. The random variable Θ, which represents the pfm 

on a randomly chosen mile (irrespective of the operating 

condition it belongs to) is then the weighted sum of the 

random variables 𝛩i, weights being the probabilities 

𝜓1, 𝜓2, … , 𝜓𝑛, respectively.  

Θ𝜓1,𝜓2,…,𝜓𝑛
=  ∑ Θ𝑖𝜓𝑖

𝑛
𝑖=1    (5) 

We have already assumed that Θ𝑖 are independently 

distributed random variables. Note that the products, 

Θ𝑖
𝜓𝑖 = Θ𝑖𝜓𝑖 , are then themselves independently distributed 

random variables. Let us denote the probability density 

functions of Θ𝑖
𝜓𝑖 as 𝑓𝜃𝜓𝑖

(𝑥). Then 𝑓𝜃𝜓𝑖
(𝑥) can be derived 

from 𝑓𝜃𝑖
(∙) using a standard transformation:  

𝑓𝜃𝜓𝑖
(𝑥) =

1

|𝜓𝑖|
𝑓𝜃𝑖

(
𝑥

𝜓𝑖
)    (6) 

Now we can express the probability density function of 

Θ𝜓1,𝜓2,…,𝜓𝑛
 as follows:  

𝑓𝜃|𝜓1,𝜓2,…𝜓𝑛
(𝑥|Ψ1 = 𝜓1, Ψ2 = 𝜓2, … , Ψ𝑛 = 𝜓𝑛) =

𝑓𝜃𝜓1
(𝑥) ∗ 𝑓𝜃𝜓2

(𝑥) ∗ … ∗ 𝑓𝜃𝜓𝑛
(𝑥)   (7) 

where the “*” sign in (7) above indicates a convolution of 

the respective probability density functions 𝑓𝜃𝜓𝑖
(𝑥).  

Finally, we can now remove the condition that the 

operational profile (captured by Ψ1 = 𝜓1, Ψ2 = 𝜓2, … , Ψ𝑛 =
𝜓𝑛) is known with certainty using the joint distribution 

f𝜓1,𝜓2,…𝜓𝑛
(𝜓1, 𝜓2,…, 𝜓n) and derive the marginal 

distribution: 

𝑓𝜃
𝑊𝐵(𝑥)

=  ∫ 𝑓𝜃|𝜓1,𝜓2,…𝜓𝑛
(𝑥|𝜓1, 𝜓2, … , 𝜓𝑛)f𝜓1,𝜓2,…𝜓𝑛

(𝜓1, 𝜓2,…, 

𝜓n;a1, …, an)𝑑𝜓1𝜓𝑥2 … 𝑑𝜓𝑛 = 

= ∫[𝑓𝜃𝜓1
(𝑥) ∗ 𝑓𝜃𝜓2

(𝑥) ∗ … ∗ 𝑓𝜃𝜓𝑛
(𝑥)×f𝜓1,𝜓2,…𝜓𝑛

(𝜓1, 

𝜓2,…, 𝜓n)]𝑑𝜓1𝑑𝜓2 … 𝑑𝜓𝑛                  (8) 

inference we have access to a detailed description of the ODD assumed in 

the safety assessment of AV. 
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The integration in the last expression (8) is done with 

respect to all dimensions 𝜓1, 𝜓2 … 𝜓𝑛 of the ODD. One can 

see that (8) provides us with the marginal distribution of the 

system pfm (i.e. of the probability of an accident on a mile 

selected from a randomly chosen operating condition) and 

accounts for the epistemic uncertainty of both the operational 

profile – this is captured by the joint distribution 

f𝜓1,𝜓2,…𝜓𝑛
(𝜓1, 𝜓2,…, 𝜓n) – and the distributions 𝑓𝜃𝑖

(𝑥) of the  

conditional probabilities pfmi in each partition. Clearly, 

𝑓𝜃𝑖
(𝑥) will affect the convolution, 𝑓𝜃𝜓1

(𝑥) ∗ 𝑓𝜃𝜓2
(𝑥) ∗ … ∗

𝑓𝜃𝜓𝑛
(𝑥), representing the distribution of the sum Θ𝜓1,𝜓2,…,𝜓𝑛

 

expressed by (7).  

We labelled (8) with “WB” (𝑓𝜃
𝑊𝐵(𝑥)) to signify the fact 

that this marginal distribution is derived using an inference 

relying on a “white-box” model accounting for both the 

ODD and how likely the AV is to have an accident in each 

of its operating conditions.  

𝑓𝜃
𝑊𝐵(𝑥), can be used differently. Apart from allowing for 

computing the moments, e.g., the expected value of the 

system pfm, one can compute the risk that the true probability 

of failure per mile can turn out to be badly wrong (e.g., 

exceed a given threshold, T), by looking at the tail of the 

distribution of system pfm: 

𝑃(Θ ≥ 𝑇) = ∫ 𝑓𝜃
𝑊𝐵(𝑥)𝑑𝑥

1

𝑇
     

Let us now consider how new operational evidence from 

driving an AV would affect the marginal distribution 

𝑓𝜃
𝑊𝐵(𝑥). Let us consider that we have collected new 

observations about AV performances in the form {(N1, r1), 

(N2, r2), …, (Nn, rn)} of miles driven, Ni, and accidents 

observed, ri, 0   ri  Ni, in each of the operating conditions, 

OCi. Bayesian inference can be conducted in several steps: 

- Step 1: Update the uncertainty related to the operational 

profile, f𝜓1,𝜓2,…𝜓𝑛
(𝜓1, 𝜓2,…, 𝜓n|𝑁1, 𝑁2, … , 𝑁𝑛). Note that 

the updated operational profile is not affected by the 

number of accidents, ri, observed in OCs. The posterior 

distribution only depends on the number of miles driven in 

different OCs. If we capture the operational profile 

uncertainty using a Dirichlet distribution, 

Dir(α)≡Dir(𝜓1, 𝜓2,…, 𝜓n;α), then the new observations 

{(N1, r1), (N2, r2), …, (Nn, rn)} will lead to 

a new Dirichlet distribution Dir(α𝒑𝒐𝒔𝒕), 

which is derived from Dir(α) by a simple 

modification of the parameters of the 

Dirichlet distribution: 

Dir(α𝒑𝒐𝒔𝒕)=Dir(𝜓1, 𝜓2,…, 𝜓n;𝛼1 +
𝑁1, 𝛼2 + 𝑁2, … , 𝛼𝑛 + 𝑁𝑛)  (9) 

- Step 2: The conditional distributions, 

𝑓𝜃𝑖
(𝑥|𝑁𝑖 , 𝑟𝑖) characterizing the updated 

uncertainty about pfmi will be updated to 

reflect the newly received data by 

conducting Bayesian inferences on the 

distributions of pfmi in each of OCi as 

follows: 

𝑓𝜃𝑖
(𝑥|𝑁𝑖 , 𝑟𝑖) =

𝑓𝜃𝑖
(𝑥)×𝐿(𝑁𝑖 , 𝑟𝑖 |𝑥)

∫ 𝑓𝜃𝑖
(𝑥)×𝐿(𝑁𝑖 , 𝑟𝑖 |𝑥)𝑑

1
𝑥=0 𝑥

  (10) 

(10) is identical to (1) except that we use the conditional 

priors 𝑓𝜃𝑖
(𝑥) and the observations (𝑁𝑖 , 𝑟𝑖) collected for the 

respective partitions, OCi. If the prior 𝑓𝜃𝑖
(𝑥) is a Beta 

distribution, 𝐵𝑒𝑡𝑎(𝑥; 𝛼, 𝛽), then the posterior distribution 

will be also a Beta distribution, 𝐵𝑒𝑡𝑎(𝑥; 𝛼 + 𝑟𝑖 , 𝛽 + 𝑁𝑖 −
 𝑟𝑖). Note that the updated conditional distribution 

𝑓𝜃𝑖
(𝑥|𝑁𝑖 , 𝑟𝑖) is affected by both the number of miles, Ni, 

and the number of failures, ri, observed in the respective 

operating condition OCi. This is the case since we have 

assumed that the observations in OCi only affect Θ𝑖 but do 

not affect any other Θ𝑗.  

- Step 3: Derive 𝑓𝜃𝜓𝑖
(𝑥|𝑁𝑖 , 𝑟𝑖) from 𝑓𝜃𝑖

(𝑥|𝑁𝑖 , 𝑟𝑖) using (6). 

- Step 4: Using the distributions updated in Step 1 and Step 

2 above we apply (8) and derive the marginal distribution, 

𝑓
𝜃

𝑊𝐵𝑝𝑜𝑠𝑡(𝑥|𝑁1, 𝑟1, 𝑁2, 𝑟2, … , 𝑁𝑛, 𝑟𝑛), of the system pfm as 

follows:  

𝑓
𝜃

𝑊𝐵𝑝𝑜𝑠𝑡(𝑥|𝑁1, 𝑟1, 𝑁2, 𝑟2, … , 𝑁𝑛, 𝑟𝑛) = 

 ∫[𝑓𝜃𝜓1
(𝑥|𝑁1, 𝑟1) ∗ 𝑓𝜃𝜓2

(𝑥|𝑁2, 𝑟2) ∗ … ∗

𝑓𝜃𝜓𝑛
(𝑥|𝑁𝑛, 𝑟𝑛)]Dir(α𝒑𝒐𝒔𝒕)𝑑𝑥1𝑑𝑥2 … 𝑑𝑥𝑛      (11) 

We call the last expression a “white-box” posterior 

distribution of the system pfm. 

Steps 1 – 4 can be repeated with any new observations that 

become available. Consider batches of observations 

collected in “epochs”, e1, e2, … en. The posterior 

distributions 𝐷𝑖𝑟𝑒𝑗(α𝒑𝒐𝒔𝒕) and 𝑓
𝜃𝑖

𝑒𝑗(𝑥|𝑁𝑖 , 𝑟𝑖) derived with the 

observations {(𝑁1

𝑒𝑗
, 𝑟1

𝑒𝑗
), (𝑁𝑛

𝑒𝑗
, 𝑟𝑛

𝑒𝑗
), … , (𝑁𝑛

𝑒𝑗
, 𝑟𝑛

𝑒𝑗
)} collected 

within epoch ej, will become prior(s) for the inference in 

epoch ej+1 which, in turn will use the observations 

{(𝑁1

𝑒𝑗+1
, 𝑟1

𝑒𝑗+1
), (𝑁𝑛

𝑒𝑗+1
, 𝑟𝑛

𝑒𝑗+1
), … , (𝑁𝑛

𝑒𝑗+1
, 𝑟𝑛

𝑒𝑗+1
)}, collected 

within epoch ej+1,  etc.  

3.4. Black-box vs. white-box inference 

In the previous subsections, 3.1 and 3.3, we defined two 

alternative ways of computing the posterior distribution of 

the system pfm: i) using a black-box model, which relies on 

(1), and ii) using a white-box model, which relies on (9), (10) 

and (11). The differences between the two inference 

procedures and of the marginal posterior distributions of the 

system pfm resulting from them are summarized in Figure 3. 

Figure 3. An illustration of the black-box and the white-box 

Bayesian inference, and how the posterior distributions of system 

pfm in both cases is derived and compared.  
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The black-box and the white-box inferences are clearly 

quite different. They require different levels of detail in 

defining the prior distributions and of collected observations. 

But how significant are the differences between the predicted 

marginal posteriors obtained with the two models? Can we 

establish systematic relationships, e.g., that the black-box 

predictions of system pfm are stochastically ordered (either 

pessimistic or optimistic) when compared with the white – 

box predictions? Answering this question is the focus of the 

rest of the paper. 

Before we move to quantifying the difference between the 

predictions with the two inferences, let us discuss the 

conditions which will make the comparison fair.  

Let us recap that we have:  

- a fully defined white-box model, which includes: i) a 

multivariate distribution of the operational usage (e.g., 

captured as a Dirichlet distribution), and ii) a set of 

distributions 𝑓𝜃𝑖
(𝑥) of the conditional pfmi in all operating 

conditions (e.g., captured as Beta distributions), and 

- observations from driving an AV, which are recorded with 

the level of details required by the white-box model, i.e., 

in the format (N1, r1), (N2, r2), …, (Nn, rn) of the number of 

miles driven and the number of miles with accidents 

observed in each operating condition, respectively.  

From the white-box prior (i.e., from the multivariate 

distribution of the operational profile f𝜓1,𝜓2,…𝜓𝑛
(𝜓1, 𝜓2,…, 

𝜓n) and the set of marginal distributions, 𝑓𝜃𝑖
(∙) using (8) one 

could derive the marginal distribution of system pfm, 

𝑓𝜃
𝐵𝐵(𝑥).   

The detailed observations (N1, r1), (N2, r2), …, (Nn, rn) 

could be aggregated in two sums: 𝑁 = ∑ 𝑁𝑖
𝑛
𝑖=1  and 𝑟 =

∑ 𝑟𝑖
𝑛
𝑖=1 . Using (1) with the prior distribution 𝑓𝜃

𝐵𝐵(𝑥) and with 

(𝑁, 𝑟) a black-box posterior 𝑓
𝜃

𝐵𝐵𝑝𝑜𝑠𝑡(𝑥|𝑁, 𝑟) of system pfm 

(i.e., pfmBB) can be computed.  

In parallel with the black-box inference, a white-box 

inference can be conducted, too. The white-box joint 

distribution assumed at the start of the process, is used as the 

prior for the white-box inference. The observations 
{(𝑁1, 𝑟1), (𝑁2, 𝑟2), … (𝑁𝑛, 𝑛)} will now be used without any 

aggregation and will lead to a marginal posterior 

𝑓𝜃
𝑊𝐵(𝑥|𝑁1, 𝑟1, 𝑁2, 𝑟2, … , 𝑁𝑛 , 𝑟𝑛). In this process (9), (10) and 

(11) will be used. Once  𝑓𝜃
𝑊𝐵(𝑥|𝑁1, 𝑟1, 𝑁2, 𝑟2, … , 𝑁𝑛, 𝑟𝑛) is 

computed, it can be compared with 𝑓
𝜃

𝐵𝐵𝑝𝑜𝑠𝑡(𝑥|𝑁, 𝑟). Clearly, 

any difference between 𝑓
𝜃

𝐵𝐵𝑝𝑜𝑠𝑡 (𝑥|𝑁, 𝑟) and 

𝑓𝜃
𝑊𝐵(𝑥|𝑁1, 𝑟1, 𝑁2, 𝑟2, … , 𝑁𝑛 , 𝑟𝑛) will be due entirely to the 

model used in the inference: the priors are consistent (as the 

marginal distributions of system pfm in both cases are 

identical) and the observations used in the inferences are 

identical (Ni, ri are aggregated with the black-box 

inferences).  

 
6 Using Beta distributions is not essential for the method. If a different 

type of distribution is used for the conditional pfmi the inference will rely on 

numeric methods to compute the posterior distributions. Essential for the 

4. CONTRIVED EXAMPLES 

Let us now study the difference between the Bayesian 

predictions obtained with a black-box and white-box models, 

respectively, using several contrived examples.  

Let us assume that an ODD is used which splits the “space 

of road conditions” into five non-overlapping operating 

conditions (partitions) OC1, OC2, OC3, OC4, and OC5. Let us 

further assume that the distributions of the conditional pfmi 

are defined as Beta distributions with the following 

parameters6: 

𝑓𝜃1
(𝑥) ≡ 𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 299), 𝑓𝜃2

(𝑥) ≡ 𝐵𝑒𝑡𝑎(𝛼 =

2, 𝛽 = 800), 𝑓𝜃3
(𝑥) ≡ 𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 1500), 𝑓𝜃4

(𝑥) ≡

𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 1000), 𝑓𝜃5
(𝑥) ≡ 𝐵𝑒𝑡𝑎(𝛼 = 1, 𝛽 = 400). 

The parameters of the Beta distributions are chosen to 

illustrate the possibility that OCs may differ both in terms of 

expected pfmi value and in terms of the uncertainty in the 

values of the conditional pfmi in the respective OCs.  

TABLE 1 below defines three different operational 

profiles, OP1, OP2 and OP3, for which the probabilities 

P(OC1), P(OC2), …, P(OC5) are assumed known with 

certainty. The three profiles are visibly different: Profile 1 

and Profile 2 differ in the values of the probabilities P(OC1) 

and P(OC3), which are swapped. The probabilities of the 

other 3 OCs of Profile 1 and Profile 2 are identical. In Profile 

3 all OCs are equally likely, i.e., the AV would drive an equal 

proportion of miles in each OC.  

TABLE 1 

DEFINITION OF THREE OPERATIONAL PROFILES, NO 

UNCERTAINTY. 
Profile P(OC1) P(OC2) P(OC3) P(OC4) P(OC5) 

Profile 1 0.1 0.2 0.4 0.25 0.05 

Profile 2 0.4 0.2 0.1 0.25 0.05 

Profile 3 0.2 0.2 0.2 0.2 0.2 

The effect of the operational profile on the distribution of 

the system pfm is illustrated in the bottom right graph of 

Figure 47.  

 
Figure 4. Illustration of the impact of the operational profile on 

system pfm. The same set of distributions of the conditional 

probabilities pfmi lead to visibly different system pfm for Profile 1, 

Profile 2, and Profile 3.  

The system is most reliable under Profile 1 and is least 

illustrations is only the assumption that the respective conditional 

probabilities are independently distributed random variables.  
7 MATLAB scripts used in the examples are available at: 

 https://publications.city.ac.uk/viewobject.html?cid=1&id=338211  

https://publications.city.ac.uk/viewobject.html?cid=1&id=338211
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reliable under Profile 2. With Profile 3 the system reliability 

is in between Profile 1 and Profile 2. This ordering is not 

surprising – under Profile 1 the AV would spend 40% driving 

in OC1, where the conditional probability of failure is the 

worst (the highest). Under Profile 2 instead the AV would 

spend 40% of driving in the partition where the AV is most 

reliable. Finally, with Profile 3 – the AV spends equal 

number of miles in all OCs and is less affected than under 

Profile 1 by the proportion of driving in OC1 with worst 

reliability. In other words, the proposed method of deriving 

the distribution of the marginal pfm appears plausible and 

captures well our expectations to see the operational profile 

affecting visibly the system’s pfm.  

4.1. Example 1: Impact of the Operational profile 

uncertainty on pfm.  

Let us now introduce uncertainty to the operational profile 

by assuming that it is captured by a Dirichlet distribution 

with the following parameters: 

 Dir(𝜓1, 𝜓2,…, 𝜓n;α) ≡ Dir(𝜓1, 𝜓2,…, 𝜓n;α1 =
10, α2 = 10, α3 = 40, α4 = 30, α5 = 10) 

This distribution suggests that OC3 is the most likely 

operational condition (with expected probability of driving a 

mile in OC3 of 0.4 (40/ (10+10+40+30+10) = 40/100). OC4 

is the second most likely operational condition with the 

expected value of the probability of driving a mile in it of 0.3 

(30/100). The remaining three operating conditions – OC1, 

OC2 and OC5 are equally likely with expected values of the 

probability of driving a mile in each of them 0.1 (10/100). 

Assuming that the prior distributions of the conditional pfmi 

are Beta distributions, with parameters as defined at the start 

of section 4, we can now compute the prior distribution of 

the system pfm, shown in Figure 5. 

 
Figure 5. Prior distributions: conditional probabilities of failure, 

𝑓𝜃𝑖
(𝑥), and the marginal distribution of the probability of system 

failure under the assumed operational profile Dir(𝜓1, 𝜓2,…, 
𝜓n;𝛼1 = 10, 𝛼2 = 10, 𝛼3 = 40, 𝛼4 = 30, 𝛼5 = 10).   

We chose the parameters so that: i) they model OCs with 

different likelihoods, and ii) the likelihood of accident varies 

between OCs. OC1 is one of the least likely operating 

conditions. Its impact on the probability of system failure is 

lower than the impact of OC3 and OC4. The probabilities pfmi 

also vary between the driving conditions. OC1 has the worst 

conditional probability of accident. 

4.2. Example 2: Comparison of the black-box and 

white-box model predictions of system pfm 

Now let us consider the situation with 5 identical AVs 

(i.e., of the same type and model of AV). Each of the AVs 

(AV1 … AV5) is assumed to have driven 100 additional 

miles. The observations collected by the fleet of 5 AVs, thus, 

are 500 miles (the sum of the miles driven by all AVs). 

TABLE 2 shows two similar scenarios with observations of 

500 miles in total in each.  

In Observation 1 none of the AVs experienced any 

accidents. In observation 2 AV3 observed two accidents – 

one in OC1 and one in OC2. The other vehicles (AV1, AV2, 

AV4 and AV5) did not observe any accidents. We chose the 

counts of miles driven in Observation 1 and Observation 2 to 

be identical for all AVs.  

Now let us look at the impact of the model (black-box or 

white-box) used in the Bayesian inference applied by the AV 

vendor to the observations collected by the AV fleet (AV1, 

…, AV5) in different scenarios. 

TABLE 2 

OBSERVATIONS BY AV1 … AV5. 

 
The prior distributions, 𝑓𝜃𝑖

(𝑥), of the conditional 

probabilities of failure, in OC1, … OC5 are as defined in the 

previous examples above. For the operational profile we use 

a Dirichlet distribution:  

Dir(𝜓1, 𝜓2,…, 𝜓n;α1 = 10, α2 = 10, α3 = 40, α4 =
30, α5 = 10).  

Figure 6 plots the prior and posterior distributions of the 

conditional probabilities of failure in OC1, … OC5, and of the 

marginal distribution of system pfm with the data from all 5 

AVs (which in the figure are referred to as “fleet data”) using 

a Bayesian inference with a black-box (BB) and a white-box 

(WB) models, respectively. The top three plots illustrate the 

results with Observation 1 (i.e., when no AV observed any 

accidents). The bottom three plots show the predictions with 

Observation 2 (AV3 observed a failure while driven in OC1 

and in OC2). The posterior distributions with both 

observations are labelled “fleet data”.  

The differences between the prediction with the white-box 

and the black-box models and quite visible for both 

Observation 1 and Observation 2. In both cases the tails of 

the posterior distributions obtained with the white-box model 

are “thicker.” In other words, the white-box predictions 

suggest that larger values of the system pfm are more likely 

than the black-box predictions suggest, i.e., the white-box 

predictions are more conservative.  

What is even more surprising is the comparison with the 

prior distributions of the system pfm. With both observations 

the black-box predictions are more optimistic than the prior, 

while the white-box predictions are more pessimistic than the 

prior. The conservatism in the white-box predictions is 

 AV ID N1 r1 N2 r2 N3 r3 N4 r4 N5 r5 Total 

O
b
se

rv
at

io
n
 1

 AV1 7 0 9 0 45 0 30 0 9 0 100 

AV2 10 0 45 0 30 0 8 0 7 0 100 

AV3 45 0 30 0 7 0 9 0 9 0 100 

AV4 20 0 20 0 20 0 20 0 20 0 100 

AV5 45 0 19 0 7 0 9 0 20 0 100 

O
b
se

rv
at

io
n
 2

 AV1 7 0 9 0 45 0 30 0 9 0 100 

AV2 10 0 45 0 30 0 8 0 7 0 100 

AV3 45 1 30 1 7 0 9 0 9 0 100 

AV4 20 0 20 0 20 0 20 0 20 0 100 

AV5 45 0 19 0 7 0 9 0 20 0 100 

Vendor 127 1 123 1 109 0 76 0 65 0 500 
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indeed surprising, especially for Observation 1 as in this case 

no failures were observed. Despite the good news with 

Observation 1 that none of the AVs experienced an accident, 

the white-box predictions by the vendor are worse than the 

prior. The same pattern is retained for Observation 2 (when 

AV3 experienced two accidents). 

 
Figure 6. Effect of the model used in Bayesian inference on 

Vendor’s predictions of the distributions of conditional pfm in OCs 

and of the marginal pfm.  

The conservatism of the white-box predictions, even with 

no observed accidents, seems odd. Intuitively, we would 

expect the “good news” that no accidents have been observed 

in 500 additional miles driven by the fleet of AVs, to make 

us more optimistic about the AV fleet safety and to see that 

the posterior distribution of the system pfm shifts a 

probability mass towards the smaller values of system pfm. 

The black-box predictions support this intuition not only for 

Observation 1, but also for Observation 2. 

The “mystery” about the white-box predictions, however, 

is easy to explain by looking at how the operational profile 

has changed as a result of the additional observations (of 500 

miles driven by the AVs). The last rows of TABLE 2 for 

Observation 1 and Observation 2 show the number of 

additional miles driven in by all AVs in each of the OC1, … 

OC5. These are 127, 123, 109, 76 and 65, respectively, for 

both observations. These counts imply that the posterior 

“operational profile on average” (i.e., for the entire AV fleet), 

used in the calculations of the posterior distribution of 

system pfm (11), has changed from: 

Dir(𝜓1, 𝜓2,…, 𝜓n;𝛼1 = 10, 𝛼2 = 10, 𝛼3 = 40, 𝛼4 = 30, 𝛼5

= 10) 

to  

Dir(𝜓1, 𝜓2,…, 𝜓n;𝛼1 = 10 + 127, 𝛼2 = 10 + 123, 𝛼3

= 40 + 109, 𝛼4 = 30 + 76, 𝛼5

= 10 + 65) = 

Dir(𝜓1, 𝜓2,…, 𝜓n;𝛼1 = 137, 𝛼2 = 133, 𝛼3 = 149, 𝛼4

= 106, 𝛼5 = 75) 

The weights of OC1 and OC2 in the posterior operational 

profile changed significantly and are now closer to the 

weight of OC3. Indeed, the expected probability that a 

randomly chosen mile will be selected from OC1 and OC2 is 

137/600 and 133/600, respectively, which is close to the 

expected probability of selecting a mile from OC3, which 

would be 149/600. Prior to the additional observations OC1, 

being the worst operating condition (the expected 

conditional pfm1 in this operating condition was the highest 

among all 5 operating conditions) was quite unlikely with 

only 10% chance that a “randomly chosen mile” will come 

from OC1. After the additional 500 miles driven, however, 

the weight of OC1 has visibly increased to over 22% on 

average. What is the impact of the additional miles driven on 

the belief about the OC1 being the worst OC, i.e., on 

𝑓𝜃1
(𝑥|𝑁1 = 123, 𝑟1 = 0)? The impact on 𝑓𝜃i

(𝑥|𝑁𝑖 , 𝑟𝑖) in 

OC1,…, OC5 is summarized in TABLE 3.  

TABLE 3 

DETAILED ANALYSIS OF THE IMPACT OF ADDITIONAL 500 

MILES (OBSERVATION 1) DRIVEN BY THE AVS ON THE 

DISTRIBUTIONS OF THE CONDITIONAL PFMS IN OC1, …, OC5. 
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ID (N, r) 

OC1 Beta(2,299) 0.0066 1 (127,0) Beta(2,326) 0.0047 

2 (127,1) Beta(3,325) 0.0070 

OC2 Beta(2,800) 0.0025 
 

1 (123,0) Beta(2,923) 0.0022 

2 (123,1) Beta(3,922) 0.0032 

OC3 Beta(2,1500) 0.0013 1 (109,0) Beta(2,1609) 0.0012 

2 (109,0) Beta(3, 1609) 0.0012 

OC4 Beta(2,1000) 0.0020 1 (76,0) Beta(2,1076) 0.0019 

2 (76,0) Beta(2,1076) 0.0019 

OC5 Beta(1,400) 0.0025 1 (65,0) Beta(1,465) 0.0022 

2 (65,0) Beta(1,465) 0.0022 

It is evident from the table that the conditional pfm1 

remains the worst of all OCs: the additional miles driven 

reduced slightly the expected value of pfm1 in OC1 for 

Observation 1, while it gets marginally worse with 

Observation 2. Figure 6 provides the posterior distribution of 

the conditional pfm1, 𝑓𝜃1
(𝑥|𝑁1 = 123, 𝑟1 = 0). Thus, 

although the observations, and especially Observation 1 

(with no accidents), are a “good news” indeed, it seems that 

this good news has not changed (for the better) the 

conditional pfm1 enough to cancel out the fact that, after the 
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additional 500 miles, OC1, which has now become more 

likely, would affect more significantly the system pfm. The 

distribution of the system pfm is affected by both the 

distribution characterizing the operational profile and the 

distributions of the conditional pfms in OC1, …, OC5. The 

good news of no accidents marginally changed pfm1 and pfm2 

(and the other OCs, of course) but at the same time, the 

weight of OC1 has increased significantly (from 10% before 

the additional observations to ~22.8%).  

It is worth emphasizing that the black-box model would 

not react to changes of the operational profile at all. Under 

the black-box inference all miles are treated equally ignoring 

the impact that the observations may have on the posterior 

operational profile. As a result, “mysteries” like the one 

reported above, would remain “invisible” for predictions 

derived with a black-box model. This example, although 

contrived, raises doubts about the credibility of predictions 

obtained with a black-box prediction model.  

4.3. Comparison with CBI 

In this subsection we provide a comparison between the 

predictions derived with CBI and the two inferences using 

complete prior distributions defined in sub-section 4.2 – the 

black-box and the white-box predictions with the fleet data.  

Let us define the CBI parameters as follows: 𝑝𝐿 = 10−5, 
𝜖 = 10−3. The last parameter needed in the inference, 𝜃, was 

computed from the marginal prior pdf for the examples used 

in sub-section 4.2. For 𝜖 = 10−3 the value of 𝜃 = 0.0283. 

The second point of the two-point prior distribution with 

probability mass > 0 for Observation 1 (no failures) would 

be 𝑝 = 10−3. We repeated the computations also for 𝑝 = 2 

× 10−3 and for 𝑝 = 3 × 10−3. The values of 𝜃 for these two 

cases are 𝜃(𝑝 = 2 × 10−3) = 0.4121, and 𝜃(𝑝 = 3 × 

10−3) = 0.8214, respectively. 

TABLE 4 illustrates the difference between the 

predictions obtained with CBI and with the full prior 

distributions. The confidences 𝑃𝐶𝐵𝐼(𝑋 ≤ 𝑝|𝑁 = 500, 𝑟 = 0) 

and 𝑃𝐶𝐵𝐼(𝑋 ≤ 𝑝|𝑁 = 500, 𝑟 = 2), derived for Observation 1 

and Observation 2, respectively,  are shown together with the 

corresponding confidences, 𝑃𝐵𝐵(𝑋 ≤ 𝑝|500,0) and 

𝑃𝐵𝐵(𝑋 ≤ 𝑝|500,2), and 𝑃𝑊𝐵(𝑋 ≤ 𝑝|𝑁1 = 127, 𝑟1 =
0, 𝑁2 = 123, 𝑟2 = 0, 𝑁3 = 109, 𝑟3 = 0, 𝑁4 = 76, 𝑟4 =
0, 𝑁5 = 65, 𝑟5 = 0) and 𝑃𝑊𝐵(𝑋 ≤ 𝑝|𝑁1 = 127, 𝑟1 =
1, 𝑁2 = 123, 𝑟2 = 1, 𝑁3 = 109, 𝑟3 = 0, 𝑁4 = 76, 𝑟4 =
0, 𝑁5 = 65, 𝑟5 = 0), derived with the respective black-box 

and white box inferences, relying on the full prior 

distributions.  

A couple of observations can be made about the posterior 

probability 𝑃𝐶𝐵𝐼(𝑋 ≤ 𝑝|N = 500, r = 0). Clearly it is not 

conservative when compared with the predictions derived 

with the other models. The CBI prediction for the target (𝜖) 

is more optimistic than the prediction obtained with the 

white-box model. The values of 

𝑃𝐶𝐵𝐼(𝑋 ≤ 𝑝|N = 500, r = 0) equal 0.283 and equals 0.023 

for the white-box prediction model. The predictions with the 

black-box model are significantly more optimistic (0.0537) 

than the CBI prediction computed for x1 = x3.  

We note that CBI predictions are no worse than the prior, 

which is to be expected from any black-box inference 

including the one using a complete distribution with no 

failures. As we pointed out above, however, the white – box 

predictions for this set of observations are more conservative 

than the prior, due to the changed operational profile after the 

500 miles of operation.  

TABLE 4 

COMPARISON OF CBI PREDICTIONS WITH THE 

PREDICTIONS DERIVED WITH FULL PRIOR DISTRIBUTIONS. 
CBI model 
parameters 

𝑝𝐿 = 10−5 𝜖 𝜃 𝑃(𝑝
≤ 0.002) 

𝑃(𝑝
≤ 0.003) 

CBI (black-
box) cdf 

0 10−3 0.0283 0.4121 0.8214 

 
Posterior confidence (observation 1: r1=0, n1 = 500), 𝑃(𝑋 ≤ 𝑝|n2, r2) 

 𝜖 (x1) 𝑝 (x3) =
𝜖  

𝑝  (x3)
= 2 × 𝜖 

𝑝  (x3) =
3 × 𝜖  

CBI (black-box) cdf 10−3 0.0283 0.5363 0.9260 

Black-box (with full 
prior) cdf 

 0.0537 0.5603 0.9124 

White-box (with full 
prior) cdf 

 0.023 0.3607 0.7633 

Posterior confidence (observation 2: r1=2, n1 = 500), 𝑃(𝑋 ≤ 𝑝|n2, r2) 

 x1 =  𝑝𝑙 x3 = 𝑘/𝑛  𝑝 = 0.001 𝑝 = 0.002  

CBI (black-box) cdf 0.00001 0.004 1.333 × 10-6 3.208 × 10-5 

Black-box (with full 
prior) cdf 

  0.0537 0.5603 

White-box (with full 
prior) cdf 

  0.0219 0.3362 

We computed also the posteriors for p = 0.002 and p = 

0.003, for which 𝜃 (derived from the prior distribution, 

computed in previous examples) takes significantly higher 

values: 𝑃(𝑝 ≤ 0.002) = 0.4121 and 𝑃(𝑝 ≤ 0.003) =
0.8214. The predictions obtained with the white-box model 

are again more conservative than the ones derived with CBI. 

Interestingly, CBI predictions about 𝑝  (x3) = 3 × 𝜖 are 

more optimistic than the predictions with the black-box 

model, although the difference is small.  
Finally, we computed the CBI predictions for the case with 

two failures observed in 500 miles (Observation 2) for two 

targets 𝑃(𝑋 ≤ 0.001|500,2) and 𝑃(𝑋 ≤ 0.002|500,2). 

These are shown in the bottom of TABLE 4. Note how 

dramatically the predicted CBI probabilities changed 

following the observation of only two failures in 500 miles 

in comparison with the predictions obtained with the black – 

box and the white – box, respectively, both using a complete 

prior probability distribution. The CBI predicted 

probabilities are several orders of magnitude smaller (i.e., 

more conservative) than those with the other two models. 

The CBI predictions with Observation 2 are drastically 

different from the CBI predictions with Observation 1, even 

though the difference between Observation 1 and 

Observation 2 are only two accidents.  

We can confirm that the CBI predictions for Observation 

2 are indeed conservative, but the degree of conservatism is 

extreme (in comparison with the other models – white – box 

and black – box, which rely on a complete prior distribution). 

CBI seems extremely sensitive to the number of observed 

accidents, even if very few accidents are observed. 

These observations, although limited, indicate that the 

particular CBI, based on a black-box inference: i) does not 

guarantee conservative predictions in comparison with the 

predictions of the white – box model described above, and ii) 

the degree of conservatism of CBI for cases with observed 
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accidents may be very significant indeed. In our view, these 

two observations, each in their own way, raise questions 

about the usefulness of CBI for practical assessment.  

5. DISCUSSION AND THREATS TO VALIDITY 

The results from the contrived examples demonstrate that 

the effect of the chosen model – black-box or white-box – on 

Bayesian predictions of system pfm may be quite significant. 

We summarize the key observations next.  

The black-box (univariate) probabilistic models used for 

safety assessment of AV have intrinsic limitations, among 

them the fact that changes of the operational profile which 

may occur during the lifetime of an AV (or a fleet of AV) are 

not accounted for at all by black-box models. Ignoring 

changes of the operational profile may be justified for a large 

fleet of AVs where the “operational profile on average” may 

be expected to stay stable. The “operational profile on 

average” at initial stages of AV deployment, however, is 

unlikely to be stable. For instance, counting the miles of 

driving only during AV testing on the public roads without 

reference to the operating conditions these miles have been 

driven, leaves the possibility that the AV would be 

extensively tested on a subset of operating conditions while 

testing of some other operating conditions would be very 

limited or even non-existent (e.g. the so called “rare 

circumstances” [22]). If this is the case, the operational 

profile in testing may turn out to be quite different from the 

operational profile post deployment. If this is the case, a 

claim of satisfactory AV safety based on the testing results 

may not stand post deployment due to the differences in the 

operational profile. This situation will remain invisible with 

inferences based on black – box models (including CBI). 

This limitation of the black-box models may be fixed, of 

course, by using additional measurements to capture the 

testing profile, e.g. taking up the ideas of SPI (safety 

performance indicators) suggested in [23]. If SPI (or any 

alternative way of recording the operational profile), 

however, is to be used, then why not make use of these 

detailed data in the inference itself?  

Another limitation of the black-box inference is that the 

inference results (i.e., safety claim) and indeed the 

observations the inference is based upon cannot be 

extrapolated to a different operational environment. This 

criticism applies to CBI predictions, too. This limitation is 

significant as it implies that a safety assessment based on a 

black-box model may need to be repeated for any new 

operational environment.  

Multivariate probabilistic models, which account for a 

variable operational environment, bring the following 

advantages: 

- Allow one to conduct inference, which is in tune with the 

needs of AV safety assessment of both a fleet of AVs or 

individual AVs. 

- Force the assessors to collect operational data, which is 

suitable for porting the results from a safety assessment to 

a new operational profile which may differ significantly 

from the profile for which data has been collected and the 

white-box inference applied. Thus, if a new operational 

profile indicates that some of the operating conditions 

require more extensive evidence of good safety, these 

operating conditions will be the only ones which will 

require further road testing, thus reducing the cost of 

safety assessment for the new operational profile.  

- Serve the needs of AV vendors and of the individual AVs, 

which are quite different. An intriguing possibility exists 

with the proposed white-box inference to be not merely 

applied to the individual AVs (using their own 

observations), but also making it possible for the 

observations (miles driven and accidents observed) 

collected by the entire fleet of deployed AVs to be shared 

among the AVs and thus allow each individual AV to learn 

and reduce the uncertainty about pfmi in different OCs 

much faster (than couniting on own observation only). 

Indeed, the volume of observations from many thousands 

of AV instances will be much more extensive than the 

observations collected by a single AV instance. This 

possibility to share observations among AV instances was 

left outside the scope of the paper and has been developed 

in a separate article [24].  

We demonstrate that the black-box inference may lead to 

more optimistic predictions than the predictions obtained 

with the multivariate (white-box) model even when no 

accidents are observed. Our findings cast doubts about the 

conservatism of CBI, too, as we have shown that when no 

failures are observed the CBI predictions may be more 

optimistic than the predictions derived using the proposed 

white-box model. In the context of safety assessment, the 

optimistic predictions with a black-box model, are 

particularly worrisome, raising doubts about the suitability 

of black-box predictions for AV safety assessment. 

Any black-box model is clearly different from the white-

box model we developed in this paper. The proposed white 

– box model assumes that the random variables i 

representing the conditional pfmi in OCs are independently 

distributed random variables. This is a strong assumption 

which needs validation. The black-box models, being 

different models, surely implicitly imply a form of 

dependence between i. What form does this dependence 

take? Informally, the black-box model seems to imply that 

i are updated simultaneously irrespective of the operating 

condition from which data has been observed. Let us assume 

that an AV is driven a few miles in OCi, (Ni, ri). Let us think 

of a white-box model with dependencies between i. We can 

further assume that this new white-box model uses (Ni, ri) to 

update not only 𝑓𝜃𝑖
(∙ |𝑁𝑖 , 𝑟𝑖), but also all other 𝑓𝜃𝑗

(∙

|𝑁𝑖 , 𝑟𝑖), 𝑗 ≠ 𝑖 as if (Ni, ri) were observed in all other 

partitions, too. It is trivial to show that with such a form of 

dependence, the white – box model will have a marginal 

distribution of system pfm identical to the pfm predicted with 

a black-box inference. In other words, a black-box model 

implies an extreme form of dependence between i. While a 

form of dependence between i may be needed, the extreme 

form implied by the black-box model would be difficult to 

justify.  

Among the threats to validity of our results we would like 

to discuss the assumptions which are essential in the 

proposed multivariate Bayesian inference: 
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- The conditional probabilities pfmi are modelled as 

independently distributed random variables, i for i = 

1,…, n. This assumption seems plausible but may in fact 

be difficult to justify [25]. The problem is not new and has 

been discussed in the past, e.g., [26] took the view that a 

failure/accident could be traced to a root cause (i.e., a 

fault), which can be triggered in more than one operating 

condition, thus promoting the idea that beliefs about the 

conditional probabilities pfmi should be captured by 

dependent random variable. [27] looked at the impact on 

reliability of a software system, which consists of two 

parallel components, which may fail non-independently 

(e.g., simultaneously), and accounts for non-independence 

of the respective component reliability measures (treated 

as random variables). Technically, the independence 

assumption we rely upon, can be relaxed, e.g., by using 

suitably chosen Copulas8 to capture the dependencies 

between the random variables i for i = 1,…, n. Scoping a 

credible procedure to elicit the parameters of these 

Copulas, however, is outside the scope of this paper. We 

intend to look at this problem in our future work.  

- We assume that the AV operational profile is captured 

adequately by a Dirichlet distribution. Although this type 

of multivariate distribution has been used by many9 in the 

past and, more importantly, seems quite plausible for the 

problem at hand, it may in some circumstances be 

inadequate. A promising alternative way of modelling the 

operational profile would be using state-based models, 

e.g., Markov and semi-Markov ones, in which the 

operating conditions (OC1, …, OCn), defined for a given 

ODD, appear as states of a state-based model of the 

operational profile, e.g. as we have done in own recent 

work [28].  

- Finally, in this paper we relied on the prior work by others 

[2] and model the success/accident per mile of driving as a 

Bernoulli trial. Clearly the successive miles of driving may 

not be quite like a Bernoulli trial, although the recent work 

[29] provides a rationale to relax the assumption of 

independence between success/accidents of successive 

miles of driving. An alternative approach in modelling AV 

driving would be to consider the duration (in miles) in the 

same operating condition of ODD and model the AV 

driving as a trajectory via different OCs (as we have shown 

in Figure 2 above). We took this approach in recent studies 

[28, 30]. Such a model of AV driving may reveal a 

different insight. We intend to develop this alternative 

model of driving in detail in our future research.  

6. RELATED RESEARCH  

In passing we already mentioned several relevant papers. 

Here we discuss other examples of related research. 

Bayesian inference for software reliability assessment has 

attracted significant interest over the years. Most of the 

publications take a “black-box” view, but there have been 

examples taking a “white-box” view in the sense we use it in 

 
8 Copulas are a specific way of modelling the dependence between 

random variables. For further details the interested reader is advised to check 

https://en.wikipedia.org/wiki/Copula_(probability_theory).    

this paper. We will briefly summarize these works next. 

The work by Keith Miller et al. [11] is probably the first 

example in which the results from software “partition 

testing” have been used to demonstrate how software 

reliability can be estimated accounting for the results from 

partition testing. The authors focus their work on the 

expected value of the marginal probability of failure on 

demand although in the process they apply Bayesian 

inference to derive the distributions of the probabilities of 

failure conditional on partitions. This work is somewhat 

similar to the approach taken here, but does not account for 

the uncertainty in the operational profile as is done in our 

work.  

While the work by Miller et al. [11] introduced Bayesian 

inference to deal with partition testing, several authors used 

multi-variate inference to deal with failures of component-

based software. For instance, Kubal et al. [31] developed a 

proposal for estimating the probability of failure of a 

software system from the probabilities of failure of the 

software components used in the system. The method is 

based on Bayesian assessment of the probability of failure of 

components, assumed to fail independently. The 

implications of this strong independence assumption was 

later criticized in own work [32], which demonstrated that 

the assertion made by Kubal et al. in [31] that their method 

leads to “conservative” predictions of the probability of 

system failure are unjustified.  

The problem of assessing reliability of component-based 

software using Bayesian inference was discussed also in [33] 

and a method of dealing with the complexity of multivariate 

inference, especially in defining a credible prior, is tackled 

by developing a hierarchical model of inference which relies 

on partial views. These views are formed by a subset of 

variates used in the full system model. Using views breaks 

the multivariate inference into manageable parts and the 

multivariate inference itself becomes computationally more 

tractable without having to rely on conjugate priors as is 

often done. The method relies on techniques developed by 

others, such as u-plot and prequential likelihood [34], to 

control the accuracy of the predictions as the predictions 

derived with the views and propagated through the inference 

hierarchy are subjects to prediction errors.  

A two-stage Bayesian inference has attracted some 

interest, e.g. [35, 36], in which the rates of failure of a system 

(e.g. a plant) are subject to uncertainty, captured by a 

probability distribution, the parameters of which are also 

uncertain and captured by “hyperparameters”. If historical 

data is available about the failures of the plant, the 

hyperparameters are gradually learnt, thus reducing the 

uncertainty in them. This approach is conceptually similar to 

the two-stage inference presented in this paper. However, 

there are significant differences, too. The prior works are 

interested in the parameter of a Poisson process – the failures 

are instances of this process – with a single parameter (), 

which is a random value characterized by a distribution (the 

second stage of the model). In our work accidents occur from 

9 https://en.wikipedia.org/wiki/Dirichlet_distribution#Bayesian_models  

https://en.wikipedia.org/wiki/Copula_(probability_theory)
https://en.wikipedia.org/wiki/Dirichlet_distribution#Bayesian_models
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a more complex stochastic process which includes multiple 

“operating conditions.” We are interested in the marginal 

probability of accident/failure not in the epistemic 

uncertainty of hyperparameters characterizing  as is done in 

the prior work.  

As mentioned in the introduction, CBI has attracted 

significant interest in the last few years. Most of the CBI 

development applies to a broader class of ultra-reliable 

software-based systems. CBI is a way of simplifying 

Bayesian reasoning without risking errors that would 

overestimate safety) [5, 29]. CBI builds on the long history 

of Bayesian reliability assessment,  applied to software-

based safety – critical systems, e.g., [10], [11]. A variation of 

the idea of CBI has been then developed for more refined AV 

related scenarios of practical interest, e.g., dealing with 

several epochs of observations, which may occur between 

different releases of AVs [4]: release i has seen Ni miles of 

operation, release i+1 – Ni+1 miles, etc. The issue in such 

studies then becomes – how one should use in epoch i+1 the 

results from the safety assessment achieved for an AV driven 

up to and including epoch i. 

An interesting quantitative methodology for constructing 

an ODD with statistical data and risk tolerance is presented 

in [37].  

Another interesting risk decomposition methodology to 

derive SOTIF requirements for perception using a 

combination of models (Markov, Bayesian, etc.) is presented 

in [38].  

Extensive literature exists on the use of state-based models 

to capture the operational profile of software subjected to 

operations testing. An authoritative reference is [39].   

7. CONCLUSION AND FUTURE RESEARCH 

We presented a critical review of the use of black-box 

(univariate) probabilistic models for Bayesian safety 

assessment of AVs. More specifically, we looked at 

Bayesian inference used to predict the distribution of the 

probability of accident per mile of driving using data from 

AV test driving on public roads. Our main result is 

demonstrating, via contrived examples, that univariate 

models are deficient and their use for safety assessment 

should probably be avoided. The limitations of predictions 

based on black-box models are of two kinds: 

- AV safety assessment must deal explicitly with the 

driving conditions (operational profile) which offer 

different risks of road accidents. Ignoring these 

differences is conceptually flawed and may lead to 

wrong conclusions. While operational profile is 

routinely assumed fixed (i.e., unchanging over time) 

with many safety-critical systems (e.g., nuclear plants, 

transport systems such as railway, etc.) the operational 

profile of AVs is intrinsically changeable, especially 

when it comes to individual AV instances. Using 

predictions at initial stages of AV development to 

compute the miles needed to achieve high confidence in 

 
10 The number of testing scenarios needed for safety justification is rarely 

discussed, but if this approach to safety justification is to be more “cost - 

effective” than driving to safety, it seems that the expectation is that a 

ultra-high AV reliability is particularly sensitive to the 

profile of AV testing. Ignoring the testing profile may 

lead to unjustified conclusions. There are two specific 

aspects worth emphasizing: The AV vendors may be 

tempted to deploy statistical methods to demonstrate that 

the AV is sufficiently safe. However, a testing profile 

which is not aligned with the anticipated operational 

profile may be misleading. Substantial amounts of miles 

in “easy” operating conditions do not necessarily 

demonstrate that the AV is ready to be deployed on the 

public roads especially if the AV has not been tested 

sufficiently well on “difficult road conditions” (or “rare 

conditions”).  

- The current suggestions for “scenario-based testing” 

build an argument of AV safety, which does not rely on 

statistics, but suggests that a relatively small number of 

real testing scenarios10 can be used to generate a large 

set of synthetic scenarios, which in turn would be 

sufficient to demonstrate AV safety. This argument, 

widely adopted by industry, and seemingly supported by 

some regulators [40], has two deficiencies: i) statistical 

confidence in a claim of sufficient safety seems ignored 

which makes it difficult/impossible to translate the 

safety claim to anticipated losses (including loss of 

human life), and ii) it seems to imply implicitly that a 

limited number of scenarios would be sufficient to cover 

the risks on the roads. Such claims are in our view simply 

unjustifiable. It seems to us that the results observed in 

scenario-based testing need to be interpreted using 

stochastic reasoning adopting the ideas presented in this 

paper, or proposed by others, e.g. [41]. 

- A side effect from our main result, which has been 

discussed by others in the past, including by ourselves 

[14], is that applying optimization to Bayesian inference 

aka CBI using a deficient univariate model is also 

problematic. The conclusions from such optimizations, 

too, should be taken with a degree of skepticism.  

In the previous section we already identified a few areas 

for future development to address some of the recognized 

threats to the validity of our work and findings, among them: 

i) relaxing the reliance on Bernoulli trial as an adequate 

model of selecting miles from each operating condition. We 

will instead explore the use of stochastic state-based models 

[24, 30] for this purpose, ii) assuming that the distributions 

of the conditional pfms in operating conditions are 

independently distributed random variables, and iii) 

alternative models of the operational profile, for which in this 

paper we use the Dirichlet distribution 

The nature of the multivariate inference developed in this 

paper is such that it allows for the uncertainty about the 

operational profile and of the conditional probabilities of 

accident per mile of driving, pfms, to be updated using 

different observations. We already highlighted in Section 5 

the possibility for an AV instance to use own observations of 

miles driven to update the uncertainty about the operational 

profile, while the uncertainty about the conditional 

relatively small number of test scenarios, selected smartly, will be sufficient 

to demonstrate safety.  
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probabilities of accident pfms may use aggregated data 

(miles driven and accidents observed in operating conditions 

collected by a fleet of AVs of the same type. This idea has 

been scoped in [24] and will be developed further in our 

future work. 

In the introduction we mentioned in passing that a safety 

claim, linked implicitly to a given ODD, faces additional 

problems: i) recognizing when an AV is getting “out-of-

ODD (OoODD)”, and ii) making sure that the AV response 

to such an event, e.g., stopping the AV at earliest 

opportunity, is implemented with sufficiently high integrity 

so as not to compromise the overall safety claim. Both 

detecting OoODD itself and the implemented response to a 

detected OoODD, may be subject to failure. A complete 

safety analysis should account for failures of OoODD-

related function(s), too [42]. These are important aspects of 

AV safety assessment, which we intend to address in the 

future.  

Finally, we used contrived examples to illustrate the 

limitations of an inference based on a black-box model, and 

the benefits from the proposed multivariate inference. We 

were unable to illustrate our new theory using “field data” 

collected from real AV. To the best of our knowledge, such 

data is not available in the public domain although extensive 

databases with accident data are maintained by the national 

authorities dealing with road safety, e.g. [19]. We expect that 

our findings might be of interest not only to the research 

community but to the automotive industry, too. Such an 

interest may trigger effort on collecting field data with the 

level of details required by the proposed new multivariate 

inference procedure. We intend to seek actively an 

engagement from industry and expect in the near future to be 

able to apply the new inference procedure to “field data”.  
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