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Skip Hash: A Fast Ordered Map Via Software
Transactional Memory

Anonymous Author(s)

Abstract—Scalable ordered maps must ensure that range
queries, which operate over many consecutive keys, provide
intuitive semantics (e.g., linearizability) without degrading the
performance of concurrent insertions and removals. These goals
are difficult to achieve simultaneously when concurrent data
structures are built using only locks and compare-and-swap
objects. However, recent innovations in software transactional
memory (STM) allow programmers to assume that multi-word
atomic operations can be fast and simple.

This paper introduces the skip hash, which uses STM to
combine a skip list and a hash map behind a single ordered map
abstraction, resulting in O(1) overhead for most operations. The
skip hash makes use of a novel range query manager—again
leveraging STM—to achieve fast, linearizable range queries that
do not inhibit scalability. In performance evaluation, we show
that the skip hash outperforms the state of the art in almost
all cases. This places the skip hash in the uncommon position
of being both exceedingly fast and exceedingly simple, which
demonstrates that designing novel STM-based data structures is
a promising direction for future research.

Index Terms—Synchronization, Concurrent Data Structures,
Range Queries, Software Transactional Memory

I. INTRODUCTION

Ordered maps are one of the most fundamental data struc-
tures for modern data-intensive applications. These data struc-
tures implement elemental operations for creating, updating,
clearing, and querying associations between keys and values.
They also support point query operations such as floor,
ceil, pred, and succ, which find the closest key in the map
that is ≤, ≥, <, or > a given key, respectively. Finally, they
support range query operations, which gather all key/value
pairs whose keys fall within a range specified by [l, r].

Applications must employ many threads to process large
amounts of data quickly, and so they must use ordered maps
that scale well. However, it is challenging to implement
efficient range queries that provide a reasonable correctness
property (e.g., linearizability [1]). Consider an execution his-
tory in which one thread executes range(l, r) while other
threads repeatedly try to insert and remove keys between l
and r. If the range query does not block these elemental
operations, then how can it ensure that its result corresponds
to the map’s state at some single point in time?

Prior work has largely coalesced around two ideas. The
first employs optimistic synchronization techniques [2] so
that elemental operations do not induce artificial contention
when reading data structure nodes. The second attaches some
manner of versioning to map entries, so that range queries
can operate over a “frozen” version of the data structure while
concurrent elemental operations update a “fresh” copy.

The key insight in this paper is that modern software trans-
actional memory (STM) systems have become surprisingly ef-
ficient [3]–[7]. This is important, because STM simplifies two
common synchronization behaviors: (B1) modifying several
locations as a single, indivisible operation and (B2) performing
an action only if some variable remains unchanged throughout
that action’s duration.

In this paper we design a map from scratch using STM
as its primary synchronization mechanism, to show that STM
enables new approaches to concurrent data structure design
that are simple and perform extremely well. Our first observa-
tion is that B1 lets us compose a hash map with a doubly
linked skip list. We call this data structure a “skip hash.”
The skip hash scales well, has O(1) complexity for most
elemental operations, and is easy to verify. However, it is
prone to starvation for long-running range queries. We remedy
this by introducing a new mechanism for coordinating range
queries and elemental operations. This mechanism adds O(1)
overhead to elemental operations (typically only a single read,
leveraging B2). However, it has high contention when range
queries are small or many removals execute concurrently with
a range query. Therefore, we employ a fast-path/slow-path
strategy [8], so that the range query coordinator is only used
as a fallback, alleviating this contention.

On standard microbenchmarks, the skip hash outperforms
the current state of the art on almost all configurations, often
by a large margin. In addition, since the skip hash uses
STM, its implementation is free from complex and error-prone
synchronization. Furthermore, STM makes it trivial for the
skip hash to support complex key and value types larger than
one memory word in size.

This paper makes the following contributions:
• We show that composing data structures with STM can

provide high performance while retaining key benefits
of STM, such as easy reasoning about correctness and
support for complex data types.

• We further show that the transactional composition allows
concurrent data structures to easily achieve asymptotic
improvements that would be difficult to achieve with
traditional techniques.

• Finally, we introduce a technique for efficient range
queries, based on a novel use of STM.

These results suggest that STM should have a prominent place
in future concurrent data structure research and practice.

The remainder of this paper is organized as follows. In
Section II, we discuss related work in range queries and STM.
In Section III, we present a simple design for a composite



data structure that supports elemental operations. Next, in
Section IV, we extend this design to support linearizable range
operations. Then, in Section V, we evaluate an implementation
of this design, and show that it performs competitively with
the state of the art. Finally, Sections VI and VII discuss future
work and conclude.

II. RELATED WORK

A. Range Queries

One of the main advantages of ordered maps is their ability
to efficiently support range queries. There is a significant body
of work on how to implement these queries in a concurrent
setting [9]–[15], including a recent focus on aggregate range
queries [16]–[18]. Early works in this area often relied on
restarting a range query when a concurrent update occurred.
One particularly relevant study [19] used STM for this pur-
pose. However, at the time, STM implementations were nei-
ther highly efficient nor expressive, which limited scalability,
especially in experiments with a high update rate.

Arbel and Brown utilized an epoch-based reclamation
(EBR) scheme in their range queries [10]. The key idea is
to assign a timestamp to each range query, enabling it to
determine whether an element existed before it began. The
main challenge arises with removal operations, as a needed
element may be missed by the traversal if it is concurrently
removed. Their technique leveraged EBR, in which removed
elements are temporarily stored in a “limbo set,” to detect
overlooked elements after the range query completed. This
concept is, in a sense, the inverse of our design, in which
removal of elements is delegated to range queries, thereby
avoiding a search through the limbo set.

The approach in most other prior work, such as vCAS [11]
and Bundling [13], is based on Multi-Version Concurrency
Control (MVCC). In these methods, updates to a data structure
do not overwrite the previous versions of updated elements,
links, etc. Since space overheads can grow significantly,
custom garbage-collection-like mechanisms are then used to
reclaim versions when they are no longer useful. One work that
follows this approach [12] is particularly interesting because
it uses hash-tries as the foundation instead of the usual
ordered sets. However, the issue with hash tries and similar
structures [12], [20]–[23] is that they can only support range
queries if the key itself is used as the hash. This is not always
feasible and can result in an unbalanced structure. Among
these works, [23] employs an idea similar to ours, using a
hash map as a cache, but in a different context.

B. Modern STM Systems

TM was originally proposed as a technique for simplifying
the creation of concurrent data structures [24], [25]. While
there was considerable effort to expand TM’s scope so that it
could serve as the foundation of a full-fledged programming
model [26], there have always been arguments that it should be
thought of as merely an “implementation technique” [27]. This
has two main benefits. First, when programmers can constrain
the scope of the TM, they can guarantee that transactional data

is never accessed outside of transactions. The resulting trans-
actional semantics [28] avoid “privatization” overheads [29].
Second, if programmers are allowed to know about the TM’s
internal implementation, they can employ many low-level
optimizations [30] to reduce latency.

In recent years, several STM systems have explored this
design space, including TinySTM [7], MCMS [4], Lock-
Free Locks [31], PathCAS [3], exoTM [6], and the slow
clock STM [32]. While these systems differ with regard to
the progress guarantees they offer, they coalesce around the
following design principles:

• STM algorithms based on ownership records (orecs) [33],
[34] scale best for map data structures.

• The use of a global clock within the STM algorithm [33]
need not be a significant bottleneck [32], [35], [36].

• Acquiring orecs upon first write access [34], [37], [38]
and leveraging undo logging results in the lowest latency.

• Static read-only transactions can be optimized to negligi-
ble overhead [33].

• Orecs should be co-located with the objects they protect,
not kept in a separate table [3], [4], [6], [39].

• Programmers should optimize instrumentation for const
fields and use specialized API calls to avoid redundant
logging [40]–[42].

• STM instrumentation should be in-lined into the pro-
gram [3], [32], [43].

Finally, these works have collectively shown that STM can be
fast, even without hardware acceleration. This is important,
since HTM is prone to security vulnerabilities and perfor-
mance pathologies. Fortunately, in this paper we find that STM
can enable very fast concurrent data structures.

III. A FAST ORDERED MAP

The best-performing lock-free map implementations use
compare-and-swap objects [44]–[47]. To simplify linearization
arguments, these maps are singly linked. That is, nodes in
tree-based maps tend not to have parent pointers, and nodes
in skip lists tend not to have predecessor pointers. However,
STM makes it straightforward to implement double-linking
and to access multiple data structures in a single, indivisible
operation. Given these benefits of STM, Figure 1 defines the
skip hash as the composition of a doubly linked skip list that
maps keys to values, and a closed-addressing hash table that
maps keys to skip list nodes.

The skip list is implemented as a sequence of n objects of
type sl_node (line 1). Each contains a key/value pair (k, v),
a height h, and a “tower” consisting of h pairs of pointers.
Upon each node’s insertion, h is generated using a geometric
distribution with p = 1/2 in the range [1,m] where m ≥
lg n. The skip list has m levels, where each level l represents
a doubly linked list whose traversal “skips” all nodes where
h ≤ l. Sentinel head and tail nodes (lines 9–10) of height m,
with keys ⊥ and ⊤ respectively, bookend the skip list.

The skip hash is designed with the invariant that the set
of keys present in the skip list and hash map is identical at
all times. The use of this property asymptotically accelerates



1 type sl_node<K, V> # A node in the skip list
2 const key: K # The (immutable) key
3 val: V # The associated value
4 const height: u8 # Height of "neighbors" (min 1)
5 # Array of predecessor/successor links at each level
6 neighbors: Array<(sl_node<K, V>, sl_node<K, V>)>
7

8 type skiplist<K, V>
9 head: sl_node<K, V> # Sentinel nodes initially stitched

10 tail: sl_node<K, V> # together at all levels
11

12 type skip_hash<K, V>
13 map: hashmap<K, sl_node<K, V>>
14 sl: skiplist<K, V>
15

16 func lookup(k: K) -> Option<V>:
17 atomic:
18 # If the key is present, the map routes to the node
19 let n = map.get(k)
20 if (!n) return None else return n.val
21

22 func remove(k: K) -> bool:
23 atomic:
24 # If the key is not present, stop at map lookup
25 let n = map.get(k)
26 if (!n) return false
27 # Otherwise remove from the map, and leverage
28 # double-linking to avoid skip list traversal
29 map.remove(k)
30 n.unstitch()
31 return true
32

33 func insert(k: K, v: V) -> bool:
34 atomic:
35 # O(1) if the key is already present
36 if (map.get(k)) return false
37 # O(log n) with optimized skip list insert,
38 # because k is necessarily absent
39 let new_node = sl.insert_optimized(k, v)
40 # Finally, update the map to reference the new node
41 map.insert(k, new_node)
42 return true
43

44 func ceil(k: K) -> K: # Find smallest key >= k
45 atomic:
46 if (map.get(k)) return k # O(1) if key present
47 return sl.succ(k).key # O(log n) otherwise
48

49 func succ(k: K) -> K: # Find smallest key > k
50 atomic:
51 let node = map.get(k)
52 if (node) return node.neighbors[0].second.key
53 return sl.succ(k).key

Fig. 1: Transactional Composition of an Unordered Map and
Skip List

several skip list operations. Furthermore, we assume without
loss of generality that all hash map operations are O(1).
Therefore, we observe that lookup(k) (line 16) is always
O(1), consisting of a map lookup and then at most one
additional read. When k is absent, remove(k) is also O(1),
returning immediately after the failed map lookup (line 26).
The same logic explains why insert(k) (line 33) and point
queries are all O(1) when k is present. This can be seen in
ceil(k) (line 44) and succ(k) (line 49); floor(k) and
pred(k) can be implemented similarly.

When k is present, remove(k) avoids an O(log n) skip
list traversal by using the map to find the node with key k
(line 25). Since the skip list is doubly linked, the predecessor
and successor at each level can be located in O(1) time, so
unstitching any one level has constant overhead. The expected

height of a randomly selected node is 1/p = 2, so the average
complexity is O(1), with a worst case of O(log n).

Thus, the only operations that cannot avoid an O(log n)
skip list traversal are insert(k) and the four point queries,
and only when when k is absent. Point queries then per-
form O(1) additional reads, and insert() performs up to
O(log n) writes. However, the expected height is O(1), like
with remove(); and since the key is guaranteed to be absent,
the skip list insertion logic can be optimized (line 39). Note
that the presence of predecessor pointers doubles the number
of writes compared to a singly linked skip list.

To summarize, STM lets us implement the map interface
by composing two data structures. The resulting data structure
avoids skip list traversal in most cases, and thus the majority
of its operations only perform a constant number of reads and
(expected) writes.

Since the skip hash uses a modern STM as described in Sec-
tion II, its ability to scale hinges on the probability of concur-
rent operations accessing the same datum simultaneously, with
at least one performing a write. Because transactions in a skip
hash must validate after performing a write, they have a larger
contention window than a skip list implemented with lock-
free or optimistic locking techniques. There is a surprising
caveat, however: remove() operations do not read any skip
list node that they do not also write. Therefore, remove()
is not vulnerable to the sorts of artificial aborts that TM
is known to induce. The only situation where unnecessary
conflicts can arise, then, is between pairs of insertions. Our
evaluation shows that this is not a significant concern.

IV. SUPPORTING RANGE QUERIES

Given our use of STM, the simplest implementation of a
linearizable range query is to execute the entire query as a
single transaction. This approach avoids introducing additional
global synchronization metadata, so range queries will only
conflict with concurrent overlapping insertions and removals.
Such conflicts should be uncommon in low-skew workloads
where the data structure is highly populated, updates are rare,
or range queries are short. In workloads where conflicts are
more common, however, STM-based range queries may re-
quire many attempts to succeed. This can significantly degrade
performance or even lead to the sort of starvation that cannot
be solved through traditional contention management [48].

Therefore, we introduce a new object in this section: the
range query coordinator (RQC). The RQC assigns version
numbers to range queries and skip list nodes. These versions
allow a range query to ignore nodes inserted after or removed
before it began. We can then execute a range query as a
sequence of transactions, each of which accesses a small
number of consecutive skip list nodes.

While this approach does not alter the implementation of
lookup() and only trivially changes insert(), it creates
a new burden for remove(): While a node can be “logically
removed” through the use of version numbers, it cannot be
unstitched if a concurrent range query needs it. Therefore,
we introduce the concept of “safe nodes”, which cannot be



unstitched during an in-flight range query and which can serve
as boundary points for a range query’s transactions. We also
introduce a deferral mechanism through which remove()
delegates unstitching to an in-flight range query. While del-
egation only adds O(1) overhead, it can increase contention.
We reduce contention via a fast-path strategy: Every range
query first tries to complete along the fast path—finishing the
entire query in a single transaction—before falling back to
the slow path. On the slow path, it uses one transaction to
acquire a unique version number, a sequence of transactions
to access the pairs in the map, and then a finalizing transaction.
By keeping transactions short, the range query is thus able to
avoid contention and make progress.

A. An Abstract Coordinator

The foundation of our slow path is the RQC, which has two
obligations. First, it produces monotonically increasing version
numbers which order slow-path range queries with respect
to successful insertions and removals. Second, it determines
when it is safe to unstitch and reclaim logically deleted nodes.
It does this through an interface of consisting of four methods:

• on_range() – Registers a new slow-path range query
and assigns a unique version number to it.

• on_update() – Reports the most recent range’s ver-
sion number to the calling insert() or remove().

• after_remove(sl_node) – Unstitches and reclaims
a logically deleted skip list node immediately if safe;
otherwise, schedules it for deferred removal.

• after_range(ver) – Marks the range query with
version number ver complete. May also unstitch and
reclaim nodes whose removal was deferred by concurrent
calls to after_remove().

B. Logical Deletion

We augment the sl_node type with two new fields.
n.i_time is an immutable value that records the version
number of last range query that began before n’s insertion.
n.r_time is initially None, indicating n is logically present.
To logically delete n, this field is set to the most recent range
query’s version. n may remain “physically” linked into the
skip list for some time afterwards to allow it to be processed
by that range query and/or its predecessors. For any other
purpose, n is considered to be absent from the data structure.

While nodes may remain in the skip list for some time
after their logical deletion, they are removed from the hash
map immediately. This provides a powerful invariant: The
hash map always reflects the current logical state of the
data structure. This means no changes are needed to the
lookup() operation. When point queries do not find their
operand in the map and therefore must perform a lookup in
the skip list, they require a single-line edit to check r_time
and ensure they do not return a logically deleted node. The
insert() and remove() operations require slightly more
invasive changes, which are shown in Figure 2.

Leveraging the invariant described above, remove(k)
begins by querying the map for a node with key k (line 3).

1 func remove(k: K) -> bool:
2 atomic:
3 let n = map.get(k)
4 if (!n) return false # Failed; key absent
5 map.remove(k)
6 n.r_time = rqc.on_update() # Logically delete
7 rqc.after_remove(n)
8 return true
9

10 func insert(k: K, v: V) -> bool:
11 atomic:
12 let n = map.get(k)
13 if (n) return false # Failed; key already present
14 # The key may be present in the skip list,
15 # but only in a logically deleted node
16 let new_node = sl.insert_after_logical_deletes(k, v)
17 new_node.i_time = rqc.on_update()
18 map.insert(k, rqc)
19 return true

Fig. 2: Elemental operations of a skip hash augmented with a
range query coordinator.

If k is absent from the map, the operation completes and
returns false (line 4). Otherwise, the operation removes
the node from the map to maintain the invariant (line 5) and
logically deletes the node by setting r_time to the current
version number, as reported by on_update() (line 6). At
this point, subsequent elemental operations will not find the
key, and concurrent range queries will use the node’s version
number to decide whether to process it. All that remains is
to unstitch and reclaim the node. This is accomplished via
after_remove(n), which may choose to delegate clean-
up to an ongoing range query (line 7).

Relative to Figure 1, insert(k) changes in two ways.
When the hash map indicates that k is absent, the operation
uses on_update() to initialize the new node’s i_time
(line 17). Additionally, the logic used to insert that node into
the skip list must be modified slightly, because one or more
logically deleted nodes with key k may still be present in the
skip list. So, instead of completing as a failed insertion upon
finding the key present in the skip list, it will instead insert
the new node after any logically deleted nodes with key k.

C. Safe Nodes

In Figure 2, insert() and remove() can modify the
skip list at all times. While TM handles any conflicts that occur
during a transaction, slow-path range queries must tolerate
skip list changes when they are between transactions. Suppose
an ongoing slow-path range query R commits a transaction
partway through its range and stops on some node n. If a
concurrent remove() operation deletes n, this could result
in R accessing freed memory or other erroneous behavior.
To prevent this, we ensure that slow-path range queries only
stop on safe nodes—nodes guaranteed not to be unstitched or
reclaimed during their execution.

For a query R on range (l,r) with version number ver
to be correct, it must process every node in its processing set,
defined as every node n with the following properties:

1) l ≤ n.key ≤ r (i.e., n’s key is in R’s range)
2) n.i_time < ver (i.e., n was inserted before R began)



3) n.r_time = None ∨ n.r_time ≥ ver (i.e., n was
not deleted before R began)

For R to linearize, n must remain in the skip list until R has
progressed past it. We adopt a stricter condition that requires
less inter-thread communication: n cannot be removed until R
completes. Thus, every node in R’s processing set is also a safe
node where R can stop between transactions. Additionally, any
node n which violates condition (1) but satisfies conditions
(2)1 and (3) is also considered safe, despite being outside of
the processing set. Lastly, as the head and tail sentinels are
never removed from the skip list, they are considered safe.

For any removed node n, if n is needed by an ongoing
slow-path range query R, the RQC defers n’s removal until
R’s invocation of after_range() at the earliest. In doing
so, the RQC ensures that n is safe for R. This is why the RQC
is responsible for unstitching and reclaiming nodes.

As soon as a range query R commits a transaction in which
it called on_range(), the set of safe nodes for R is fixed—
no nodes can enter or leave it. Any newly inserted node will
have i_time > ver, violating condition (2). Any removed
safe node will have its r_time change from None to a
value ≥ ver, preserving condition (3). Thus a range query
does not need to access every node in its processing set in a
single transaction. Instead, it can split its operation into several
transactions, each beginning and ending on a safe node.

D. Implementing the Range() Operation

The full range() algorithm is presented in Figure 3.
range(l,r) takes two keys representing the bounds of the
range (line 2). First, the algorithm tries the fast path a few
times (line 4). In our implementation, we set FAST_PATH-
_TRIES to 3. If that threshold is exceeded, it falls back to
the slow path (line 7).

1) Fast Path: range_fast() (line 15) attempts to exe-
cute the range query as a single transaction. It does not need to
worry about safe nodes and is not assigned a version number,
so its logic is relatively simple. We use atomic(try-
_once) to indicate that the transaction should not retry if
it aborts (line 16). This lets the caller fall back to the slow
path after FAST_PATH_TRIES attempts fail.

The fast path first uses the point query sl.ceil(l) to find
the first logically present node at or after the start of the range
(line 18).2 It then scans the skip list, copying the keys and
values of all logically present nodes (line 20) until it reaches
a node beyond the end of the range (possibly sl.tail).

2) Slow Path: The slow path is more complex. First, a
transaction is used to initialize the range query (line 7). In
addition to finding the start node using sl.ceil(l), it
also calls rqc.on_range(). This informs the RQC of its
existence and gets a version number, ver. Doing both tasks
in one transaction ensures that start will be a safe node.

1The RQC may immediately unstitch nodes inserted after the most recent
range query, so a node that violates condition (2) is not necessarily safe.

2We say “at or after the start of the range” rather than “within the range”
because it is possible that there are no nodes within the range.

1 # Process all nodes with a key in the range [l, r]
2 func range(l: K, r: K) -> Set<(K,V)>:
3 # Try the fast path a few times
4 for i in 0 .. FAST_PATH_TRIES:
5 let set = range_fast(l, r)
6 if (set != None) return set
7 atomic: # Fall back to slow path
8 let start = ceil(l)
9 let ver = rqc.on_range()

10 let set = range_slow(start, r, ver)
11 rqc.after_range(ver)
12 return set
13

14 # Try to complete a fast-path range op
15 func range_fast(l: K, r: K) -> Option<Set<(K,V)>>:
16 atomic(try_once): # does not retry on conflict
17 let set = {}
18 let n = sl.ceil(l)
19 while n.key <= r:
20 if (n.r_time == None) set.add((n.key, n.val))
21 let n = n.neighbors[0].second
22 return set
23 return None
24

25 # Process nodes in range for a slow-path range query
26 func range_slow(n: sl_node, r: K, v: u64) -> Set<(K,V)>:
27 let set = {}
28 # this atomic block won’t undo changes to n/set
29 atomic(no_local_undo):
30 while n.key <= r:
31 let next = next_safe(n, v)
32 set.add((n.key, n.val))
33 n = next
34 return set
35

36 # Find the next safe node after n for RQC value ver
37 func next_safe(n: sl_node, ver: u64) -> sl_node<K,V>:
38 let n = n.neighbors[0].second
39 while !is_safe(n, ver) n = n.neighbors[0].second
40 return n
41

42 # Determine if the given node is safe
43 func is_safe(n: sl_node, ver: u64) -> bool:
44 if (n == sl.head || n == sl.tail) return true
45 if (n.i_time >= ver) return false
46 return (n.r_time == None || n.r_time >= ver)

Fig. 3: Range query implementation

After this setup is complete, range_slow() (line 26)
is responsible for collecting key/value pairs. The variables
set and n record the progress of the range query—the
set of collected pairs and the current node, respectively. We
use the syntax atomic(no_local_undo) to indicate that
the STM should not roll back modifications to these local
variables upon transaction abort (line 29). Due to the fact that
range_slow() does not roll back these local variables or
modify any shared variables, it is able to keep all progress
up to the point where the transaction aborted—thus turning
aborts into unplanned early commits. Furthermore, n is only
ever set to a safe node, so transactions are always able to start
where the last one ended. The somewhat verbose syntax on
lines 30–33 employs the clearly defined abort points of STM
to ensure no key/value pair is inserted into the set twice.
next_safe() (line 37) traverses the bottom level of

the skip list until it finds the next safe node after n.
Since sl.tail is always safe, such a node always exists.
is_safe() (line 43) determines if a node is safe for a given
range query, using the criteria from Section IV-C.

On line 11 the slow-path range query informs the RQC



1 type rqc # The RQC implementation
2 counter: u64 # Counter for generating version numbers
3 range_ops: LinkedList<range_op>
4

5 type range_op # Metadata about a slow-path range op
6 const ver: u64 # Version number of the range op
7 deferred: LinkedList<sl_node> # Nodes to remove
8

9 # Inform the RQC about a slow-path range query
10 func on_range() -> u64:
11 range_ops.append(new range_op(++counter, []))
12 return counter
13

14 # Get a version number for insertion/removal time
15 func on_update() -> u64:
16 return counter
17

18 # Give a node to the RQC for removal when safe
19 func after_remove(n: sl_node):
20 atomic:
21 let tail = range_ops.tail() # Returns null if empty
22 if !tail || n.i_time >= tail.ver:
23 n.unstitch() # Safe to remove immediately
24 delete n
25 else:
26 tail.deferred.append(n) # Defer removal
27

28 # Clean up after a slow-path range op
29 func after_range(ver: u64):
30 let removals = [] # Nodes to remove immediately
31 atomic:
32 let op = range_ops.find(ver) # Find by version num.
33 let pred = range_ops.pred(op) # Point query
34 range_ops.remove(op)
35 if (!pred): # Take responsibility for removing now
36 removals = op.deferred
37 else: # Defer removals further
38 pred.deferred.append_all(op.deferred)
39 delete op
40 for n in removals: # Remove the deferred nodes
41 atomic:
42 n.unstitch()

Fig. 4: A concrete implementation of the range query coordi-
nator.

that it is complete by calling rqc.after_range(). This
tells the RQC that it no longer needs its safe nodes, which
may trigger the unstitching and reclamation of nodes whose
removal was previously deferred.

E. Implementing the Range Query Coordinator

Figure 4 presents a concrete implementation of the RQC.
The RQC itself (line 1) has two fields: counter, a 64-bit
integer for generating version numbers; and range_ops, a
doubly linked list of all ongoing slow-path range queries. The
list contains objects of type range_op (line 5), which consist
of two fields: a version number (ver) and a set of logically
deleted nodes whose removal has been deferred until after the
range query is complete (deferred).

The simplest algorithm would assign a unique version
number to each operation, but counter risks becoming a
contention hotspot, with every write to it potentially caus-
ing aborts for concurrent transactions that interacted with
it. Instead, we only increment the counter for range queries
(on_range(), line 11). Elemental operations reuse the most
recent range query’s version number (on_update(), line
16), thus ordering themselves after it. on_range() also
appends a new range_op object to the list.

While consecutive range queries could also share version
numbers, we did not see any benefit to doing so: Short range
queries should complete on the fast path without accessing
the RQC, and long range queries should perform enough real
work that their RQC increments should not contend.

In after_remove() (line 19), the RQC assumes respon-
sibility for unstitching and deleting a logically removed node
n. First, it checks if the removal can be done immediately
(line 22). It can do so if either range_ops is empty or n
was inserted after the most recent ongoing slow-path range
query Rlast. Otherwise, n is a safe node for Rlast, so n is
added to its deferred list (line 26).

The most complex logic is in after_range() (line 29).
First, the range_op representing the finishing range query is
removed from the list (line 34). Then, deferred removals must
be handled. There are two scenarios here. (1) If the removed
range_op is the oldest one (the head of range_ops), then
the nodes in deferred can now be safely unstitched and
reclaimed (lines 36, 40–42). (2) However, if a range_op with
an earlier version number still exists, one of its safe nodes may
be in deferred. The potential benefit of scanning the entries
in deferred and comparing their removal times to the
remaining range_ops’ versions is not worth the overhead.
Instead, the removal of all of these nodes is deferred further
by adding them to the predecessor’s deferred list, via an
O(1) list append operation. (line 38) Since these nodes are
being passed backward, not forward, every node is guaranteed
to be reclaimed eventually.

When many removals run concurrently with a slow-path
range query R, insertions into R’s deferred list can become
a contention bottleneck. By virtue of the above mechanism, it
is safe to delegate unstitching and reclaiming a range query’s
safe node to a later range query. We leverage this fact by
keeping a buffer of removed nodes for each thread. We can
then modify line 26 in after_range() to instead push
the node into that thread’s buffer. When the buffer is full
(size 32 in our implementation), the thread checks if there are
any active slow-path range queries. If not, it can immediately
unstitch and reclaim all entries. Otherwise, it transfers the
entire buffer to the most recent range query’s deferred list
via an O(1) append operation.

F. Correctness

Here we briefly outline the properties that would underpin
a correctness proof. First, we observe that each elemental and
point query operation executes as a single transaction. Thus as
long as each would be correct in a sequential implementation,
they are all correct in a concurrent execution. Next, we note
that a fast-path range query works correctly because it is
also a single transaction. The node found by ceil will not
be unstitched, nor can nodes within the range be added or
removed, without causing the entire range query to abort.

The correctness of a slow-path range query R is more
complex. The first atomic step uses ceil to find a logically
present node and then increments the version number. This en-
sures that the node will not be unstitched before R completes.



This is also R’s linearization point. Then, R only pauses at
nodes that cannot be unstitched until after it completes. The
unstitching of an unsafe node while R is accessing it would
cause a transaction abort, causing R to retry from the last safe
node. Since all the unstitched nodes have a removal time less
than the version number of our range query, the query will not
miss any necessary nodes. Finally, the i_time field ensures
that the range query does not include nodes inserted after its
linearization point.

V. EVALUATION

In this section, we compare the performance of the skip hash
against a set of ordered map implementations that represent
the current state of the art. These include a binary search
tree and skip list based on the versioned compare-and-swap
(vCAS) technique [11], and a skip list that uses bundled
references [13]. We also considered variants of these three
maps that utilize a hardware timestamp counter instead of
a shared memory counter, using the x86 rdtscp instruc-
tion [49]. This eliminates a known contention bottleneck for
vCAS and bundling. This optimization improves performance
in all evaluated workloads, and so we have excluded the
non-optimized variants of these maps from all charts. Lastly,
in workloads consisting entirely of elemental operations, we
evaluate a hashmap and doubly linked skip list that do not
support range queries, implemented using STM.3

A. Experimental Setup

All experiments were conducted on a system running
Ubuntu 22.04 with 180 GB of RAM and two Intel Xeon
Platinum 8160 CPUs running at 2.10 GHz. Each CPU has
24 cores, for a total of 48 cores and 96 hardware threads. For
all maps evaluated, threads were pinned to cores in the same
way. The first 24 threads were pinned to unique cores on a
single CPU; the next 24 threads were pinned to the second
thread on those cores; and the last 48 threads were distributed
in the same manner on the second CPU. Thus, in all charts,
symmetric multithreading is not a factor for data points up
through 24 threads, and non-uniform memory access (NUMA)
latency is not a factor up through 48 threads.

We used the evaluation framework from [49], which already
included support for the vCAS and bundling-based data struc-
tures, as well as their rdtscp-enhanced variants. The default
behavior of this framework is that worker threads perform
lookups, insertions, removals, and range queries in proportions
that vary by workload. Keys and values were both represented
as signed 64-bit integers. In this paper, we report results for a
key universe of 106. In experiments with larger universes, the
trends are the same, but the separation between the skip hash
and other data structures is more pronounced, particularly for
elemental operations.

Before each experiment, each map was pre-filled with half
of the keys in the universe, resulting in a population of 5 ·105.
Elemental operations chose keys uniformly at random from the

3More experiments are available in the supplementary material [50].

universe. Range queries did the same to choose l and computed
r by adding a fixed range length determined by the particular
workload. They then copied all keys and values within that
range into a pre-allocated buffer. In all workloads, update
operations were evenly split between insertions and removals,
so that the population of the data structure remained roughly
constant at all times with high probability. This also meant
that all elemental operations were equally likely to succeed as
fail, and each range query was expected to process (r − l)/2
entries. Unless stated otherwise, the range length was 100 keys
(as in [13], [49]), for an expected 50 entries processed. All
benchmark and map code was written in C++ and compiled
with g++ version 12.3.0 using flags -O3 -std=c++20. All
experiments used the jemalloc [51] allocator. All data points
are the average of five 3-second trials. Error bars are omitted,
because we did not observe significant variance.

In the experiments, we considered three implementations
of the skip hash: one where all range queries use the fast
path, one where they all use the slow path, and one where
they fall back to the slow path after three fast-path failures.
Following common guidance that hash tables perform best
when about 70% full and that prime hash table sizes are
advantageous [52], we configured each skip hash’s hash table
to consist of 714, 341 buckets. This number was chosen due to
being the smallest prime that yields a hash table utilization rate
≤ 70% for the expected population. Keys were hashed using
std::hash. For the skip hash and skip lists, the tower height
was set to 20, as 220 is slightly greater than 106.

The STM implementation used in the skip hash, skip list,
and hash map is exoTM [6]. As we expect conflicts to be
rare, we chose the eager (undo) algorithm without timestamp
extension. This is expected to have the lowest latency, but also
the highest writer abort overhead of any STM algorithm in the
exoTM framework. Our charts present results for an rdtscp-
based clock [36]. We also tested the gv1 and gv5 logical
clocks [33], [35]. Gv1 scaled poorly for the skip hash’s small
transactions, while gv5 and the slow clock suffered in slow-
path experiments, where our RQC implementation violates the
assumptions that underpin their designs.

B. Analysis

Figure 5 presents throughput as the thread count is varied
from 1 up to the maximum hardware thread count in a mi-
crobenchmark with various workloads. We begin by discussing
workloads that perform a single operation in isolation to
evaluate the raw performance of those operations.

1) Isolated Workloads: In a workload consisting of 100%
lookup operations (Figure 5a), the skip hash scales to the
maximum thread count and achieves a > 2× speedup over all
data structures except the hash map, which does not support
range queries. This is because the lookup() operation is
O(1) for the skip hash and hash map, as opposed to O(log n)
for skip lists and BSTs. Furthermore, our STM implementation
does not experience aborts in this read-only workload. We also
observe that the STM skip list outperforms skip lists with
more complex synchronization mechanisms, which confirms



Skip-hash (Fast Only)
Skip-hash (Slow Only)

Skip-hash (Two-Path)
BST (vCAS, RDTSCP)

Skip list (vCAS, RDTSCP)
Skip list (Bundled, RDTSCP)

Skip List (STM)
Hash Map (STM)

1 24 48 72 96
0

50

100

150

200

(a) 100% lookup

1 24 48 72 96
0

50

100

150

(b) 100% update

1 24 48 72 96
0

5

10

15

(c) 100% range

1 24 48 72 96
0

20

40

60

80

(d) 80% lookup, 10% update, 10% range

1 24 48 72 96
0

10

20

30

(e) 80% update, 20% range

1 24 48 72 96
0

20

40

(f) 1% lookup, 98% update, 1% range

Fig. 5: Comparison of skip hash performance versus state-of-the-art ordered maps, with varying mixtures of lookup, update,
and range operations. The x-axis represents thread count, and the y-axis represents throughput as millions of operations per
second. All range queries were of length 100, thus processing 50 keys on average.

the claim that modern STM can be fast, and shows the benefit
of composing a hash map and skip list.

Next, in Figure 5b, we evaluate the performance of update
operations (an equal mix of insertions and removals). The
throughput of the skip hash drops due to the additional
overhead of stitching and unstitching (and rare transaction
aborts). However, it maintains a significant lead over all data
structures save the hash map, as hash acceleration allows the
skip hash to avoid O(log n) skip list searches for all operations
except successful insertions. Furthermore, we see that the slow
path mechanism does not introduce significant overhead when
it is not in use. Note that in these charts and many that follow, a
small performance dip occurs for some maps after 48 threads,
due to the cross-chip memory traffic.

Lastly, we evaluate the performance of range queries of
length 100 in Figure 5c. Note that in this figure, the y-axis rep-
resents completed range queries, not the total number of nodes
accessed. As this is a read-only workload, no transactions will
abort, so the two-path variant will complete all range queries
on the fast path, thus avoiding any contention on the RQC.
Therefore, the fast-only and two-path skip hashes are able to
outperform all other data structures by a significant margin.
However, the slow-only skip hash suffers from contention on
the RQC, leading to performance degradation. Allowing range
queries to reuse version numbers would not help much, as they

would still contend when inserting into range_ops. This
behavior is a consequence of the small range size. We study
it further in Section V-B3.

2) Mixed Workloads: The main difficulty with range
queries is not running them in isolation—which can be done
without any special mechanism—but keeping them both lin-
earizable and performant in the face of concurrent updates.
Therefore, in Figures 5d–5f, we evaluate workloads that do
both. As before, range queries access 50 elements on average.

For each workload in this section, worker threads choose
what type of operation to do at random, based on a distribution
specified by that workload. For this reason, it does not make
sense to separate throughput by operation type.

First, Figure 5d shows throughput as thread count is varied
for a workload with a 10% updates and 10% range queries.
The fast-only and two-path skip hashes maintain a moderate
lead over the vCAS BST and a > 2× speedup over all other
data structures. The difference in performance results from a
small fraction of range queries needing more than 3 attempts
to complete as a single STM transaction. In the fast-only
algorithm, these additional attempts are made and succeed.
In the two-path algorithm, the slow path is chosen instead,
resulting in higher latency.

In Figure 5e, each thread performs 80% update operations
and 20% range queries. Since each range query counts as



one operation, all numbers are significantly lower than in the
previous chart. However, the general trends are otherwise the
same: Increasing the update ratio does not impact fast-path
range queries, but slow-path range queries continue to suffer.
We profiled this overhead, and found that it was a result of
two factors. First, slow-path range queries were competing
to attain version numbers. Second, removal operations were
aborting due to contention as they tried to delegate unstitching
to in-flight range queries.

Lastly, in Figure 5f, we consider a workload with a much
greater proportion of update operations per range query (98
instead of 4). This change greatly increases the probability a
given range query will be aborted by a concurrent update, but
reduces contention on global metadata on the slow path. The
slow-path throughput improves significantly but not enough to
be competitive. Apart from that, all trends are the same. We
found that remove operations are not as common a source of
aborts, but the slow-path range queries were still competing to
acquire version numbers. In short, we conclude that our RQC
mechanism is a bottleneck for short-running range queries due
to interactions with concurrent range queries, not concurrent
removals. However, the two-path approach all but eliminates
the need for a slow path for this kind of workload.

3) Varying Range Query Size: From the above discussion,
it may seem that there is no utility in having a slow path.
Recall, however, that starvation is a well-known problem for
long-running read-only transactions [48], and in the previous
section, range queries were short. To understand how range
query length affects performance of the evaluated maps, we
conducted an experiment in which we varied that parameter
rather than the thread count. Thread count was held constant at
48, split evenly into 24 update-only threads and 24 range-only
threads, with all threads on one socket.

Figure 6 shows the results of this experiment. Since differ-
ent operation types are performed by different threads, their
throughput can vary independently, so the figure consists of
two charts. The upper chart depicts update throughput in
millions of operations per second, as before. The lower chart
measures the performance of range queries but, instead of
counting the number of range queries performed, it shows
how many key/value pairs were processed. This improves
readability at large range lengths.

The throughput of update operations remains almost con-
stant across range lengths for most maps. For the skip hashes
with fast-only and two-path range queries, their performance
remains consistent and significantly faster than all data struc-
tures. The only surprise in this figure is for the slow-only skip
hash. Here, we observe that elemental throughput improves
for ranges of length ≥ 29, eventually matching the peak
throughput achieved by the other skip hashes.

The chart showing range throughput, on the other hand,
is not flat. All evaluated maps improve in performance from
24 to 210, because they amortize the boundary overheads of
a range query over a greater number of elements accessed.
That is, all evaluated maps have some overhead involved in
setting up and/or tearing down a range query. As range queries

0

5

10

15

20

24 26 28 210 212 214 216
0

100

200

El
em

en
ta
l

Ra
ng
e

Fig. 6: Experiments with 24 update-only and 24 range-only
threads as range query length varies. Top: update throughput
(in millions of ops/sec). Bottom: range query throughput (in
millions of nodes processed/sec).

Range Length 210 211 212 213 214

Abort Rate 1.07 1.34 2.66 22.8 ∞

TABLE I: Aborts per successful range query in a fast-path-
only skip hash, by range length.

become longer, they are able to spend a proportionately greater
time processing nodes. The performance of prior work plateaus
once the length of the range queries becomes large enough
to make this overhead irrelevant. However, the performance
of the fast-path skip hash degrades rapidly for range queries
starting at 211. This is after the point at which slow-path range
query performance improved, and so the two-path skip hash is
able to use the slow-path after three failed fast-path attempts.

Table I reports the average number of aborts per successful
range query as a function of the range query size in the
fast-only variant. We see a precipitous increase in aborts as
the query size increases until, at a range size of 214, no
range query is able to complete. These aborts require some
explanation. Recall that read-only STM transactions only abort
if (1) they encounter an element that was updated after they
began, and (2) they cannot prove that everything they read
before that encounter is unchanged. In our highly optimized
implementation of read-only transactions, there is no support
for disproving condition (2). So then, when a fast-path range
transaction encounters a modification that occurred after it
began, it cannot prove that it can linearize, so it aborts.
Were we to enable condition (2), latency would increase for



all range queries, but in a uniform workload the expected
impact would only be a factor of two improvement in range
size before the same abort frequency occurs. In short, long-
running fast-path range queries do not have an easy way to
avoid starvation. Fortunately, even our crude mechanism for
transitioning to the slow path alleviates most of this overhead.
Note that this experiment motivates transitioning to the slow
path earlier, while previous experiments favored moving to
the slow path later. Should practitioners choose to use the skip
hash, we recommend they explore more nuanced strategies for
switching to the slow path.

VI. FUTURE WORK

In the short term, we plan to study whether a hardware clock
could avoid contention on RQC metadata. We hypothesize
that integrating techniques developed by Grimes et al. [49]
into the RQC could eliminate the contention we observed for
short slow-path range queries. As a second direction, since our
work has shown that low-level STM implementation details do
matter, there may be yet-undiscovered optimizations specific
to STM-based data structure design.

In the medium term, we intend to study better heuristics for
transitioning range queries from the fast path to the slow path.
Our current technique does not leverage any knowledge of the
workload, nor does it allow the programmer to provide any
input. In our microbenchmarks, it is trivial to craft policies
that track with the best skip hash variant at any range size by
leveraging such information. However, we chose not to present
such configurations, since we are not yet convinced that such
policies would be easy to create for real-world workloads.
Further study is needed.

Another important research opportunity relates to organizing
data to increase locality for range queries. Recently, Blelloch
and Wei introduced an extension to vCAS that supports storing
many key/value pairs in each node (i.e., a B-Tree) [53]. This
can improve long-running range queries, by reducing cache
misses. Similar locality-improving techniques have not been
explored for STM data structures. Our initial analysis has
concluded that the skip hash could be adapted to achieve
similar improvements in range query performance, but more
work is needed if the technique is to generalize to a broader
class of STM-based data structures.

Lastly, we recognize that the skip hash’s asymptotic com-
plexity and low number of memory accesses per operation
make it an appealing candidate for distributed and persistent
memory systems. These systems have higher average memory
access latencies than traditional shared memory multiproces-
sors, so reducing the number of memory accesses is essential
to achieving good performance. This will, of course, neces-
sitate a renewed focus on distributed and/or persistent STM,
particularly one that incorporates assumptions analogous to
those that resulted in the fast STM systems that facilitated
this research.

VII. CONCLUSIONS

In this paper, we introduced the skip hash, which uses
modern software transactional memory (STM) to compose a
closed-addressing hash map with a doubly linked skip list.
The resulting data structure has O(1) complexity for most
operations, resulting in exceptional throughput for elemental
and point-query methods. By virtue of its use of STM, the
skip hash easily supports linearizable range queries, but these
risk starvation for high-contention workloads. To overcome
this problem, we introduced a lightweight versioning technique
that allows linearizable range queries to ignore values added
after they linearized, and that also defers reclamation of
logically deleted nodes that they may still need.

In experimental evaluation, we saw that the skip hash
outperformed the state of the art in almost every workload
configuration, and often by a large margin. We also showed
that our fast-path/slow-path mechanism is effective in prevent-
ing starvation for long-running range queries.

The skip hash design is unconventional, both in its use of
double-linking and in the way it composes data structures.
However, its implementation is not complicated: the entire data
structure requires under 1000 lines of code. These properties
are a direct consequence of our decision to treat fast STM
as a given, and assume that atomic multi-word transactions
would “just work”. In short, using STM simplified our design,
implementation, and verification tasks.
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