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SYNOPSIS

Theoretical and numerical investigations have been 

completed for the solution of the potential theory problem of wave 

scattering by the method of integral equations. It has been 

demonstrated that a distribution of sources over a boundary which is 

distinct from the fluid boundary results in a Fredholm integral 

equation of the first kind with a regular kernel. This is an 

alternative to the conventional integral equation formulations which 

are Fredholm equations of the second kind with singular kernels.

Application of the regular kernel method with a distribution 

of wave sources to the problem of waves interacting with a submerged 

circular obstacle in a two dimensional domain gives numerical results 

which are more accurate than the conventional methods for equivalent 

discretisation schemes. It has been found that the implementation 

of refinements to the discretisation scheme is only occasionally 

beneficial.

The experimental investigation of waves interacting with a 

submerged circular cylinder includes the measurement of the wave 

motion in the near-field and far-field and the measurement of 

pressures on the cylinder surface. The objective of the study is 

to determine whether the linear potential theory predictions are 

in agreement with the measured values. The experimental programme 

was designed to establish the importance of finite wave height and 

the extent to which measurements obtained for steeper waves and 

shallower cylinder submergence depart from the predictions of small 

amplitude theory.



Consideration has been given to the possibility of 

developing an appropriate non-linear theoretical model by reference 

to the alternative methods which are currently being investigated 

and the experimental results obtained in this study.
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CHAPTER 1 INTRODUCTION

1.1 General Introduction

Offshore structures and marine vehicles must be designed 

to withstand the most demanding ocean conditions and to perform 

specific functions under the full range of environmental conditions. 

The theoretical and experimental investigation of wave motion and 

wave structure interaction spans a considerable range of topics and 

contributions to the development and application of the science have 

been made by applied mathematicians, naval architects and engineers 

from a number of disciplines.

The investigation of the motion of gravity waves has been 

studied by the applied mathematician since the nineteenth century 

and currently a variety of wave theories are available. The first 

applications of the classical wave theories to problems of 

engineering significance were concerned with the problem of the motion 

of ships and ever since the naval architect has been a major 

contributor to the development of the theoretical and physical 

understanding of wave structure interaction. More recently

coastal and offshore engineering problems have received considerable 

research attention and the continued exploitation of offshore energy 

resources guarantees that a more complete understanding of wave 

structure interaction will be sought.

A number of mechanisms give rise to wave induced forces 

on fixed structural elements and the particular mechanisms which 

govern are determined by the geometry and location of the element 
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and the size of the element relative to the incident wave field.

For elements with a characteristic dimension which is small compared 

with the incident wave the force imposed is made up of an inertia 

and a drag component with a transverse or lift force. Under these 

conditions the drag and lift forces are due to the existance of an 

oscillating fluid wake. As the relative size of the object 

increases the extent of this wake diminishes and, if the element has 

no sharp corners, eventually vanishes so that the magnitude of the 

drag and lift forces is sufficiently small to be neglected.

If the size of the structural element is large enough to 

deform the ambient wave field the element is subjected to the inertia 

force plus a diffraction force. It is assumed that for such an 

element the drag force may be neglected and a potential theory 

problem formulated. If an oscillating wake is introduced by any 

corners on the element the viscous effects are assumed to be local 

and are excluded from the analysis. The solution of the boundary 

value problem which may be posed for the diffraction or scattered 

wave potential permits the evaluation of the hydrodynamic pressure 

and thus the wave induced force. If additionally the structure is 

in motion a boundary value problem is posed for each degree of 

freedom and the potentials required to complete the analysis are the 

radiation potentials.

A number of alternative methods have been employed to provide 

potential theory formulations and solutions for these problems, but 

with the exception of very simple geometrical configurations no exact 

solutions are available and the solutions required must be obtained by 

numerical means. In recent years the finite element method (f.e.m.) 
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has been applied to obtain solutions for problems in wave hydrodynamics 

but the two methods with a greater tradition in the analysis of wave 

structure interaction are Ursell’s multipole method and the method 

of integral equations both of which require the introduction of fluid 

singularities and the numerical solution of a system of linear 

algebraic equations.

The method of integral equations has been applied in 

a variety of ways and is referred to variously as the source 

distribution method, the boundary integral equation method (B.I.E.M.) 

or the boundary element method (b.e.m.) and the 'Frank Close Fit’ 

method is included in this category. It is now possible to obtain 

the prediction of wave loads on offshore structures and marine 

vehicles by performing a three dimensional analysis and a number of 

computer packages have been developed for commercial use including 

NMIWAVE and MATTHEW. However, the principle method in the 

analysis of marine vehicles is the use of two-dimensional modelling 

with an appropriate strip theory.

A possible limitation of the above mentioned methods is 

concerned with the assumption of small amplitude waves which is 

necessary for the application of linear wave theory. In the ocean 

environment the waves incident upon a structure or vehicle may be 

steep and this has led to the suggestion that the finite amplitude 

of the waves should be accounted for by the development of 

a nonlinear theory for wave diffraction and radiation problems. The 

inclusion of the steady horizontal force based on an analysis of the 

transportation of momentum by gravity waves is straightforward since 
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only the reflected and transmitted wave heights are required and 

these may be obtained from the linear analysis. The evaluation of 

the non-linear oscillatory forces is not simple and while the subject 

has been considered by a number of researchers the only known case for 

which solutions have been obtained is for the vertical circular 

cylinder and this has been achieved by analytical rather than 

numerical means.

Experimental investigations of wave structure interaction 

effects are numerous and have been carried out for a number of 

purposes. For objects which are small compared with the ambient wave 

motion a vast number of model tests have been performed to establish 

the force mechanisms which are significant for a range of problems 

and also to provide data for the application of semi-empirical 

formulae. Many of these tests have been performed for analogous 

problems such as the oscillating cylinder in still water or the fixed 

cylinder in a U-tube and this analogous flow approach,while it suffers 

obvious limitations, has a number of distinct advantages over model 

tests for wave flows: firstly the variable parameters which are used 

to describe the wave motion may be varied independently and secondly 

it is possible to achieve satisfactory Reynolds’ number scaling.

The motivation for model tests for problems in which the 

structural element spans a significant portion of the incident 

wavelength is different and is concerned with the validation of the 

theoretical predictions based on the solution of the potential theory 

problem. In particular the model test has proved particularly 

useful in determining whether and under what circumstances the 

assumptions of small amplitude wave theory and fluid inviscidity
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are inappropriate.

The understanding of wave structure interactions and the 

development of suitable theoretical models which provide the basis 

for reliable design have clearly made great advances in recent decades. 

Much of the work has, however, been concerned with two particular 

types of structure or vehicle, namely the ship hull and the offshore 

platform. The bulk of research has therefore been geared to provide 

information relating to these geometric configurations and generally 

speaking the naval architect has been concerned with a single 

elongated obstacle located in the free surface and the engineer has 

been concerned with different types of structure located on the ocean 

bottom and spanning the entire water depth. More recently activity 

within the offshore industry has demanded the application of the 

established theory and understanding to a new variety of problems. 

Some notable examples are the estimation of wave induced forces on 

the hulls of a new breed of drilling platform, floating breakwaters 

andwave energy devices.

1.2 Introduction to the present study

A study has been made of wave diffraction by a horizontal 

circular cylinder submerged in water of finite depth. The thesis 

includes the results of a theoretical and numerical investigation of 

the application of the integral equation method to obtain the 

solution of wave hydrodynamics problems in a two dimensional 

domain and an experimental investigation designed for the validation 

of the numerical predictions.
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The application of the method of integral equations to obtain 

the solutions of potential theory problem may take a number of alternative 

forms each of which is based on a result due to Green’s theorem. The 

two methods which have been applied most frequently in the solution 

of wave hydrodynamics problems employ a singular solution of an 

associated potential theory problem which is referred to as the 

Green’s function, the wave function or the wave source. The first 

of these methods employs a surface distribution of wave sources and 

double sources and the integral equation is solved to obtain the 

unknown potential. This method has therefore been called the direct 

method to distinguish it from the second method which employs a 

surface distribution of sources only with an initially unknown 

variation of density. In this method application of the kinematic 

boundary condition on the object gives rise to an integral equation 

for the source density function and the solution may then be applied 

to obtain the value of the unknown potential. The second method has 

been called the indirect method.

In this study the solution of the linear diffraction boundary 

value problem by the indirect boundary value problem has been discussed 

in detail. It has been demonstrated that an integral equation may be 

formulated in which the scattered wave velocity potential is expressed 

as a continuous distribution of sources over a fictitious boundary 

outside the fluid domain. This approach in which the kernel of the 

integral equation is regular may not be applied in the direct method.

The formulation of a second-order diffraction boundary 

value problem in integral equation form has been presented and it 

has been demonstrated that the indirect method is to be preferred 
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to the direct method in this case on the basis of efficiency. In 

deriving expressions for the second-order wave profile for the 

diffraction problem it has been shown that two distinct second-order 

corrections must be included. The first is similar to the correction 

in the second-order Stokes wave and is referred to as a fixed second 

order component. The second correction, due entirely to the presence 

of the object, is quite distinct and may be regarded as the inclusion 

of a free wave oscillating at twice the incident wave frequency 

travelling with a wave speed which is independent of the incident wave 

speed.

The numerical investigation has two aspects. The first and 

major aim is to determine whether the regular kernel integral 

equation formulation is amenable to numerical solution and the second 

is to examine the effect of refining the numerical techniques employed 

in the discretisation of the integral equations. A diffraction computer 

program has been written which includes the option of the conventional 

singular kernel method in addition to the regular kernel method and 

results have been presented for both cases for a range of problems. 

The alternative discretisation schemes incorporated in the program 

permit the selection of an assumed constant, linear or quadratic 

variation of source density on an element with a quadrature formula 

of a specified order. The choice of element type and quadrature 

formula have been varied in order to establish the most suitable 

scheme for the particular problems considered.

An experimental programme has been designed and carried

out for the validation of the predictions of small amplitude, 

inviscid theory. In particular the tests have been concerned with a 
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cylinder which is located at small depths of submergence since it is 

for obstacles in this region that the physical mechanisms of wave 

structure interaction are least well understood. The tests have also 

been designed to establish the effects of finite wave height and 

therefore to determine the value of a non-linear solution of the 

diffraction problem for this particular problem.

The experimental programme has been carried out in two 

stages. The first stage is concerned with the comparison of the 

linear diffraction predictions for the wave motion with the 

measurements obtained in the laboratory. The purpose of this work 

was firstly to identify the mechanisms which might be significant in 

inducing a force on the obstacle, secondly to determine whether the 

wave object interaction resulted in any dissipation of wave energy 

and thirdly to establish the order of the free waves identified in 

previous laboratory tests and predicted by second-order diffraction 

theory. The second stage is concerned with the measurement of 

pressure at points on the object boundary and comparison of the 

results with the values predicted by the linear diffraction program.
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CHAPTER 2 LITERATURE SURVEY

2.1 Introduction

The literature devoted to the theoretical and experimental 

investigation of wave motion and wave structure interaction is vast 

and spans a considerable range of topics. A number of comprehensive 

reviews have been written from the perspective of the naval architect 

(Wehausen, 1971 and Odabasi and Hearn, 1977) and the marine engineer 

(Hogben, 1977 and Sarpkaya and Isaacson, 1981) and the scope of 

this literature survey has therefore been restricted to include only 

those articles which are directly relevent to the subject matter of 

this thesis or investigations which include developments and results 

which are of significance to this study.

The evaluation of the forces imposed by waves on the elements 

which comprise an offshore structure is a particularly demanding 

problem requiring drastic simplification of the real sea conditions 

if an approximation to the force is to be obtained. If flow 

separation effects are a feature no mathematical solutions are 

available even for the simplest problems and if diffraction effects 

are significant solutions are only generally possible by means of 

a computer program for an inviscid, linear wave formulation of the 

relevent potential theory problem. The use of semi-empirical 

formulae in the design of offshore structures has therefore proved 

to be advantageous in a number of simplified wave structure 

interaction problems and Morison’s equation with a similar formula 

for the transverse or lift force are basic design tools.
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A considerable range of engineering problems have been 

formulated and solved by means of potential theory. The methods 

which have been chosen for the solution of such problems vary according 

to the type of formulation and exact solutions are only available for 

a limited number of problems so that in many cases a numerical 

solution procedure is required. If the potential theory formulation 

can be rewritten in integral equation form a discretisation procedure 

may be employed to give numerical results. This approach has been 

extensively used for the solution of the wave hydrodynamics 

problems of scattering and radiation and a number of computer programs 

have been written and tested for a range of obstacle configurations.

A major feature of the solution of potential theory problems 

in wave hydrodynamics is the application of a linearised boundary 

condition at the free surface boundary. The assumption of linearity 

is only strictly valid for waves which are of small amplitude and 

therefore the steeper waves encountered under real sea conditions 

are not fully accounted for. This has resulted in the investigation 

of the possibility of extending the potential theory formulation 

and solution to a higher-order.

If the solutions of the potential theory problems for wave 

scattering and radiation are to be used withconfidence in the design 

of offshore structures the physical conditions under which the 

predictions are valid must be established. Many experimental 

studies have been completed for this purpose for different problems 

of engineering significance and in general good agreement with 

the potential theory results is obtained but under certain 
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circumstances it is necessary to include higher-order terms in the 

analysis to achieve satisfactory agreement.

2.2 Semi-Empirical Wave Force Prediction

Experimental studies for obstacles in steady flow have 

indicated that the formation of a wake due to the separation of the 

fluid is a complicated process in which the location of separation 

points is variable for a smooth body contour. The separated flow 

gives rise to a drag force which has been represented by a semi- 

empirical formula in which the coefficient of drag varies with the 

Reynolds’ number. For one dimensional oscillatory flow the 

processes are more difficult since for smooth obstacles the locations 

of the separation points are variable and, for obstacles of any 

shape, vortices formed or partially formed in one half-cycle may 

affect those generated in the subsequent half-cycle. For steady and 

oscillatory flows the forces induced may be evaluated analytically 

by the simulation of separated vortex sheets by discrete vortex 

elements (Graham, 1979). However, for problems in waves there is 

further complication due to the variables associated with the motion 

of vortices which have been shed and it is therefore not surprising 

that no mathematical solution has been obtained and that semi- 

empirical formulae are used. The most widely used formula of this 

type is the so-called Morison equation introduced by Morison, 

O’Brien, Johnson and Schaaf (1950) in response to the demand for a 

design formula for offshore structures in which the verical cylindrical 

pile is the most important structural element. Working on the analogous 

problem of a cylinder submerged under a standing wave Keulegan and
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Carpenter (1958) demonstrated the dependence of the coefficients of 

Morison’s equation upon a period parameter which has since been 

referred to as the Keulegan-Carpenter number.

Subsequent to the introduction of the Morison equation 

framework for the evaluation of wave induced forces on small bodies 

and the correlation of the force coefficients with the Keulegan- 

Carpenter number a considerable number of laboratory investigations 

have been performed to establish values of the empirical coefficients 

which might be employed in the design of offshore structures. Much 

of this work is discussed in the reviews cited above and in general 

is concerned with the vertical circular cylinder or cylinders in 

analogous oscillatory flows. However, the assumption of a uni-

directional but oscillatory velocity vector in wave structure 

interaction problems for small structural elements is not universally 

applicable. For the submerged horizontal circular cylinder these 

conditions only arise for shallow water conditions and for deeper 

water the element responds to a rotating velocity vector which, in 

the limiting case of deep water, has a constant magnitude. 

Koterayama (1979) has performed a series of laboratory tests in 

order to evaluate the coefficients of a slightly modified Morison 

equation for the horizontal and vertical components of the force in 

deep water.

For cylinders in steady and oscillatory flows and for 

vertical cylinders in waves a transverse force occurs which is due 

to asymmetry in the wake. For the case of the vertical circular 

cylinder in waves Bidde (1971) and Isaacson and Maull (1976) 
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have investigated the variation of the lift force with the Keulegan- 

Carpenter number demonstrating the dependence of the force on the form 

of the wake.

If flow separation effects are significant for the submerged 

horizontal circular cylinder use of Morison’s equation for the 

horizontal and vertical components of force excludes any measure of 

the effects of asymmetry in the wake. Using the technique of spectral 

analysis with the results of flow visualisation experiments Maull 

and Norman (1979) demonstrated the importance of the motion of the 

vortices in influencing the magnitude of the force components for a 

horizontal cylinder.

As an alternative to the Morison equation a single force 

coefficient may be employed if viscous effects are negligible. 

Chakrabarti (1973) proposed the use of a single force coefficient 

with the Froude Krylov force for a number of submerged objects of 

synmetry in order that the effects of wave diffraction might be 

included without recourse to a full diffraction analysis be means of 

a computer package.

In it’s original form Morison’s equation does not include 

the effects of finite wave height and it is common practice in design 

to replace the expressions for velocity and acceleration by expressions 

„ 111 *
obtained from a higher-order wave theory (such as Stokes 5 ). inis

procedure lacks any theoretical basis but is regarded as convenient 

in estimating wave loads for design purposes. Lighthill (1979) has 

criticised the use of the Morison equation framework on the grounds
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that it fails to represent properly the mechanisms responsible for 

the wave induced force and demonstrated that the non-linearity 

associated with the finite height of the waves contributes a second- 

order irrotational flow component which is not insignificant for the 

case of the vertical circular cylinder.

Morison, O’Brien, Johnson and Schaaf (1950) assumed that the

interaction of a progressive wave with a cylindrical object extending

from the bottom through the free surface induces a force which may be

expressed as the sum of two components. Assuming quasi-steady

conditions the drag force was taken in a similar form to the steady

flow representation and it was proposed that the drag coefficient

should have substantially the same value as for steady flow. The

inertia force was assumed to be proportional to the accelerative

force exerted on the mass of water displaced by the pile thereby

introducing a second coefficient generally referred to as the

inertia coefficient. This expression may be criticised for a

number of reasons. Perhaps the most obvious criticism is concerned

with the representation of the drag force in a manner which predicts

that this component makes no contribution to the total force at

points in the cycle at which the particle velocity is zero. This is

physically unreasonable for an oscillatory flow since the convection

of vorticity must introduce a history effect which within this framework

would be attributed to inertia effects. However, the results presented

using coefficients derived from the measured moment at points of zero

velocity and acceleration demonstrate good agreement with the measured

moment.
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In spite of a number of shortcomings the Morison equation 

has been adopted almost universally as the representation of wave 

induced forces for circular cylindrical elements for which separation 

effects are significant and since it’s introduction it has been the 

subject of a quite considerable and occasionally mis-directed research 

effort. The majority of studies have been associated with the 

need to establish suitable values of the coefficients for use in 

design and a significant problem is encountered in such work because 

the Reynolds’ number range which occurs under real sea conditions 

cannot be reproduced in wave tests at model scale. Much work has 

therefore been concerned with the evaluation of coefficients for the 

simplified but analogous oscillatory flows produced by oscillation of 

a cylinder in still water or oscillation of the fluid in a U-tube. 

Theselater studies provide valuable information but in isolation might 

be regarded as deficient since they fail to include three dimensional 

effects, non-linear effects and free surface effects. A full account 

of the research into the Morison equation may be obtained by referring 

to Sarpkaya and Isaacson (1981) and a number of the reviews cited 

therein.

One particular study of considerable significance was 

conducted by Keulegan and Carpenter (1958) and since the fluid motion 

in their study is essentially uni-directional and oscillatory this 

work may be catagorised with the oscillating cylinder and U-tube 

experiments performed subsequently. The main result of this paper 

is the demonstration of the dependence of the force coefficients on 

the period parameter. The authors were also able to propose a 

physical explanation of the results obtained suggesting that the 

maximum value of the drag coefficient and the minimum value of the 
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inertia coefficient which occur at approximately the same value of 

the period parameter correspond to the formation and separation of 

a single eddy in each cycle. In the original paper the results 

obtained were not correlated with the Reynolds’number and it was 

concluded that such a correlation did not appear to exist. However, 

it has subsequently been demonstrated that if the results are 

replotted (Sarpkaya, 1976) Reynolds’ number dependence 

is of significance. These replots demonsrate two features of 

particular note. Firstly, the reduction of the drag coefficient with 

ReynoIds’number for any value of the Keulegan-Carpenter number suggests 

that the values of coefficients obtained in tests at lower Reynolds’ 

numbers are not applicable in predicting forces at higher Reynolds’ 

numbers particularly if boundary layer conditions differ between 

model and prototype Reynolds’ number regimes as the results for steady 

flow suggest. The second feature of the replotting relates to the 

variation of the inertia coefficient with Reynolds* number at higher 

values of the Keulegan-Carpenter numbers and this confirms that viscous 

effects are being interpreted incorrectly in the application of the 

Morison equation.

The application of the Morison equation to cylinders of 

different orientation to the particle motion should not be regarded 

as straightforward if fluid separation is significant since the 

behaviour of the wake might be considerably different.

For the horizontal cylinder Koterayama (1979) has evaluated the 

Morison’s equation coefficients in deep water waves so that the 

cylinder responds to a rotating velocity vector of constant magnitude. 

This work is subject to the criticism of laboratory studies 

emphasised above in that the range of Reynolds* numbers is small and 
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of no practical significance for design purposes. However, the study 

is of some value and comparison of results for both the coefficients 

varying with the Keulegan-Carpenter number give smaller values than 

the corresponding results for oscillatory flow and explanations 

based on the convection of vortices might be advanced to account for 

this difference. It would be dangerous to argue that increasing 

the Reynolds’ number for this configuration would lead to a further 

reduction in the drag coefficient since the form of the wake is quite 

different from that which occurs in steady or oscillatory flows.

An unusual feature of the analysis employed by Koterayama 

which is of significance at smaller values of the Keulegan-Carpenter 

number is the subtraction of the velocity component of the diffraction 

forces from the measured forces so that the drag component may be 

evaluated accurately. Since such forces are only of the order of 10Z 

of the drag force this measure may be regarded as unnecessary but does 

indicate another failure of the Morison equation to properly model 

the physics of the interaction.

Koterayama has also correlated the second-order forces with 

the Keulegan-Carpenter number and attributes forces which are as much 

as 302 of the first-order forces to separation effects. This is 

improbable at smaller values of the Keulegan-Carpenter number and an 

alternative explanation must be proposed based on considerations of 

non-linear interaction.

It might also be expected that if the submerged cylinder is 

located at smaller depths below the wave the adequacy of the Morison 

17



equation would be further diminished and the results of these tests 

would cease to be valid particularly for steeper waves since the 

physics of diffraction, inertia and separation effects would all be 

modified.

Bidde (1971) was the first to study transverse forces on a 

cylinder in waves. The measurement of in-line and transverse forces 

with the results of a flow visualisation permit a number of conclusions 

to be drawn concerning the magnitude of the lift force and the mechanics 

which give rise to such forces. The flow visualisation experiments 

demonstrate that a number of so-called eddy shedding regimes may be 

identified and a classification made on the basis of the Keulegan- 

Carpenter number. In view of this relationship between the wake flow 

and the Keulegan-Carpenter number it is not surprising that the ratio 

of lift to longitudinal force correlates with this paremeter. The 

on-set of the lift force is associated with the development of an 

assymmetiic wake and increasing the Keulegan-Carpenter number permits 

the development and separation of increasing numbers of vortices with 

the identification of a Von Karman vortex street at larger values. 

At the very largest values of the Keulegan-Carpenter number extreme 

turbulence is identified due to the interaction of eddies shed in the 

previous half cycle with those being formed and it is for this regime 

that the maximum ratio of lift to longitudinal force occurs reaching 

a value of as much as 60Z. Two important points have been noted by 

Xssacson and Maull (1976) concerning the work of Bidde. Firstly, 

that the Keulegan-Carpenter values are averaged over the depth and 

therefore appear to be smaller than those generally quoted and 

secondly that the turbulence identified for larger values of the
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Keulegan-Carpenter number does not exist and is due to the inadequacy 

of the flow visualisation technique.

It is suggested by Isaacson and Maull (1976) that their 

investigation of the transverse forces on vertical cylinders in waves 

might be considered as an extension of Biddes investigation and 

certainly this study provides a clarification of the main results of 

the earlier study. One important result which was not demonstrated 

in the earlier study was the dependence of the lift force on the 

water depth parameter in addition to the Keulegan-Carpenter number.

This study, reported more fully in the doctoral thesis of 

Isaacson (1974), serves to advance the understanding of the relationship 

between the form of the oscillatory wake and the transverse force 

induced by the fluid motion. The results of a study of an oscillating 

cylinder in still water have been used to determine the eddy shedding 

regimes and to explain the mechanisms which give rise to the oscillation 

of the lift force at different multiples of the frequency of oscillation. 

An important result discovered in this preparatory study is that the 

vortex which most clearly influences the force on the cylinder is that 

vortex which having fully developed has not yet been shed and if this 

eddy is shed it’s influence is reduced. It has also been demonstrated 

that if the flow reverses prior to complete separation, or perhaps 

advanced development of a vortex the dissipation of this vortex 

gives rise to a preferential growth on one side of the cylinder for 

the next half cycle.

For the cylinder in a wave the measurement of the pressure 

distribution on the cylinder at several depths and at different instants 
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was used to demonstrate two features. By comparison of the measured 

pressures with the potential theory predictions and flow visualisation 

results the influence of a single vortex was demonstrated and the 

correlation of the vortex with depth was established.

It was concluded that there is a general agreement among 

the results of the study of transverse forces which show that onset 

of assymetry and therefore lift occurs at a Keulegan-Carpenter 

number of approximately 5.

Although the oscillation of the lift force was noticed to be 

an exact multiple (N+l, where N is the number of eddies shed per cycle) 

of the fundamental wave frequency Isaacson and Maull do not comment 

on the effect of the assymetry, which gives rise to this relationship, 

on the in-line force. A component of the drag force which oscillates 

at twice the fundamental frequency can not be accomodated within the 

framework of the Morison equation but is suggested by the work on 

transverse forces and has been identified for the particular case of 

the submerged horizontal cylinder by Koterayama (1979). The paper 

presented at the Symposium of Wave-Induced Forces on Cylinders, 

Bristol 1978 by Maull and Norman (1979) reports the results of a 

thorough investigation of the vortex induced wave forces on a 

submerged horizontal cylinder. Significant oscillations of both the 

components of the force are recorded at twice the fundamental 

frequency for waves which approach the deep water limit and flow 

visualisation is used to demonstrate how this occurs.

The results of the study of Maull and Norman emphasise the 

variation of the vertical component of the force, referred to as the 
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lift force, with the eccentricity of the partical orbit. It is 

demonstrated that the occurence of a rotational velocity vector 

gives results for both components of the force which differ from 

those obtained for a one dimensional oscillatory flow and these 

differences are explained qualitatively by referring to Blasius* 

equation. It was suggested that additional assymetry in the wake 

due to the rotational nature of the flow is the mechanism responsible 

for the occurrence of this assymetry at a lower number of the 

Keulegan-Carpenter value than in the oscillatory flow problems. For 

a fuller understanding of the viscous induced wave forces on a 

submerged circular cylinder it is suggested that the work of Maull 

and Norman should be extended to include a greater range of the 

Keulegan-Carpenter number and also to include cylinders at small 

depths of immersion where freesurface effects may result in a 

modified flow.

Each of the works cited above in which the forces are 

related to the form of the wake are subject to the same criticism 

that has been levelled at the use of model tests on cylinders in 

waves to provide coefficients for prediction of forces using 

Morison’s equation. This criticism relates to the range of the 

Reynolds’ number for which the tests are carried out and the considerable 

differences in the form of the wake which are suspected for higher 

ranges of Reynolds’ number.

The proposal of an equation with a single coefficient made 

by Chakrabarti (1973) with the associated recommendation of suitable 

coefficients for objects of symmetry resembles the use of Morison’s 

equation with the drag component excluded and is intended for 
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application in cases when diffraction effects are of some significance 

but may be regarded as proportional to the Froude Krylov force. This 

method of approximate prediction is similar to the use of a diffraction 

coefficient which is described in Sarpkaya and Isaacson (1981: 387) 

with the exception that a single coefficient value is recommended 

and that this value of the coefficient is based upon experimental 

data.

For the horizontal circular cylinder Chakrabarti has used

the experimental results of Schiller (1971) to evaluate the horizontal 

and vertical coefficients and then uses these coefficients to 

demonstrate excellent agreement of the proposed theory with the 

same results. The results obtained, in spite of the agreement between 

semi-empirical theory and experiment, are deficient in that they 

have not been tested for a range of data and it is suggested that for 

different values of the water depth parameter the results would vary 

due to the change in the flow about the cylinder. It is also 

questionable whether the results will apply to cylinder located at 

different depths in the wave and it must therefore be concluded 

that the agreement which has been obtained between theory and 

experiment may prove to be superficial.

In the opening address of the BOSS ’79 * conference 

Lighthill (1979) presented an excellent exposition of the different 

physical mechanisms which underly the main methods used for 

estimating wave loads. Having clarified a number of the fundamentals

* Proceedings 2nd International Conf, on the behaviour of off-shore 
structures, BOSS ’79, London.
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of wave structure interaction suggestions of possible improvements in 

estimation techniques were presented. It was emphasised in the lecture 

that non-linear irrotational flow effects must be included if a 

more accurate modelling of wave structure interaction effects is to 

be achieved and that the framework of Morison’s equation is unsuitable 

since it interprets these effects as the result of viscous mechanisms. 

Lighthill identified three distinct sources of non-linear (second-order) 

irrotational flow wave loading. The first, which was demonstrated to 

be more significant for problems in which scattering is significant, 

is associated with the quadratic correction to the velocity potential. 

The other two sources, the dynamic pressure and the finite wave height, 

give rise to significant contributions for the problems for which 

Morison's equation has been traditionally used. This has been 

demonstrated by taking the example of the vertical circular cylinder, 

adding an irrotational flow term to the conventional Morison equation 

and for typical wave data indicating that the conventional and 

suggested estimation techniques require considerably different drag 

coefficients to predict the same total force. This effect may prove 

to be less pronounced for submerged elements such as the horizontal 

cylinder since 80Z of the contribution to the non-linear irrotational 

flow term in Lighthill's example is due to the additional force obtained 

by integrating the pressure to the elevated free surface position. 

This second-order term due to finite wave height acts at the still 

water level and is clearly only relevant for surface piercing cylinders. 

However, for submerged horizontal cylinders additional non-linear effects 

might prove to be significant for small depths of submergence giving 

similar results to those obtained by Lighthill. Such effects should
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be investigated for this problem so that viscous effects are not 

over-emphasised particularly at small Keulegan-Carpenter numbers.

2.3 The Integral Equation Method

The integral equation method is the basis for a considerable 

number of computer programs written for the numerical solution of 

the wave scattering (diffraction) and wave radiation problems of 

hydrodynamics. The original formulations of these problems in 

integral equation form are due to John (1950) and Ursell (1953) 

and these studies prepared the way for the subsequently computed 

numerical solutions which are reviewed at the end of this section.

The integral equation method is a classical method in 

potential theory and has been applied to problems in many branches 

of physics and engineering. For many problems of physical significance 

the exact solution of integral equation formulations are not available 

and therefore the numerical solution techniques introduced by 

Jaswon (1964) and Symm (1964) are particularly valuable tools which 

have been widely used and form the basis of the boundary element 

method. For an account of developments in the application of this 

method Jaswon and Symm (1977), Banerjee and Butterfield (1979) and 

Banerjee and Shaw (1982) should be consulted.

The application of this method involves the assumption 

that a continuous distribution of sources may be assumed to exist 

throughout the domain and over it’s boundary which results in the 

representation of the unknown potential as a distribution of sources 

over the boundary of the domain. A number of studies have been 
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made in which the resulting representation of the potential is due 

to a continuous distribution of sources over an auxiliary or 

fictitious boundary which lies outside the physically significant 

domain. The first of these is due to Oliveira (1968) in which 

solutions are presented for several stress analysis problems.

An alternative formulation in which Green’s boundary formula

is used has been proposed by Patterson and Sheikh (1982). It may 

be demonstrated quite simply that the theoretical formulation employed 

is incorrect which is surprising in view of the good results obtained 

by application of the method which the authors refer to as a regular 

boundary element method. Coates (1982) using the same type of 

formulation as Oliveira applied the separated boundary method to 

obtain solutions for a number of simple potential theory problems and 

concluded that the results obtained are more accurate than the results 

obtained by the methods in which sources are distributed over the 

domain boundary.

The integral equation method has been used extensively in the 

solution of wave hydrodynamics problems to obtain predictions for the 

design of offshore structures. The majority of applications differ 

from the usual way in which the boundary element techniques are used 

because a singular solution, or Green's function, is included in place 

of the simple source. Three recent studies by Hearn and Donati (1981) 

Eatock Taylor (1982) and Hearn, Donati and Mahendran (1982) indicate 

that in spite of the fact that a considerable number of studies have 

been completed for this particular application of the integral equation 

method there are still subsidiary topics which demand fuller consideration 

if the method is to be employed efficiently and reliably. In fact it is 

quite clear that the application of the method for the design of offshore 

structures is not necessarily straightforward and requires an 

appreciation of the effects of different descretisation schemes.
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The formulation of John (1950) for floating bodies in waves 

might be regarded as the combination of two methods of potential 

theory since the integral equation formulation includes the use 

of a Green’s function. In this classical paper any function which 

satisfies the governing differential equation throughout the 

fluid domain and the prescribed boundary conditions at the bottom 

boundary and the free surface of the fluid is referred to as a 

"wave function" and the study is concerned with finding such 

a function which determines the motion of the fluid from the 

conditions on the object and at infinity. The required wave 

function is separated into two components the first of which 

is called the "primary" wave function and corresponds to the 

motion of a wave in the absence of an obstacle and the second 

is a wave function which, having been "caused" by the presence 

of the obstacle, will behave like an outgoing progressive wave 

at large distances from the obstacle.

The Green's function chosen behaves like an outgoing 

progressive cylindrical wave at large distances and is used 

with the wave function which determines the fluid motion in 

the application of Green's theorem. It is the expression of 

the Green's function in series form, introduced by the author, 

which provides more detailed information about the components of 

the wave function. It is demonstrated that the second component 

may be represented as the sum of a "secondary" wave
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component corresponding to the first term

in the series expression of the Green's function and satisfying 

the Sommerfield radiation condition and a "local” wave component 

which vanishes at infinity and is given by the remaining terms of 

the series.

Having analysed the behaviour of the wave function at 

infinity an integral equation formulation is obtained by locating 

the singular point on the obstacle surface. John derives a 

fundamental uniqueness theorem and consequently, for the decomposition 

of the wave function described above, states the theorem: "A wave 

function in uniquely determined by it's primary component and by its 

values or the values of it's normal derivative on the obstacle surface”. 

This uniqueness theorem is only applicable for a floating body with 

prescribed harmonic motion.

The study is carried out for three dimensional motion due

to the interaction of a wave with a bounded obstacle. It is 

pointed out that exactly analogous uniqueness theorems can be 

proved for two dimensional motions and that the same decomposition 

of the wave function is possible. In the two dimensional case the 

secondary wave component can be thought of as consisting of two 

components one which progresses in the direction opposite to the 

primary wave (reflected wave) and one which combines with the 

primary wave to give the transmitted wave.
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Concerning the solution of the integral equation two sources 

of difficulty are identified. The first is associated with the 

existence of eigenfunctions at certain frequencies and the second 

is due to the existence of a strong singularity in the kernel 

for points of intersection of the obstacle and the free surface. 

The second problem makes it difficult to establish the validity of 

the Fredholm theorem for the integral equation but this problem is 

less troublesome for an orthogonal intersection of the surfaces. 

These difficulties occur for the same restricted class of problems 

for which uniqueness was proved but for obstacles which are completely 

submerged there are no essential difficulties in the solution of 

integral equations.

John's study is particularly thorough and the decomposition 

of the wave motion, the integral equation formulation and the 

derivation of a series form for the Green’s function are basic 

to many subsequent studies of wave scattering and radiation. However, 

no solutions are obtained and it would appear that the first solutions 

evaluated for this class of problems are those obtained by Ursell (1953). 

The motivation for this study was the failure, under certain conditions, 

of the multipole method introduced by the same author in an earlier 

paper (Ursell, 1949). The initial integral equation formulation takes 

the same form as that which was presented by John, namely the Green's 

theorem, but the formulation is reduced to a respresentation of 

the required potential as a distribution of sources only and solutions 

are then obtained by an iterative procedure.

The introduction of the method of integral equations to 

obtain numerical solutions for potential theory problems may be 
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attributed to Jaswon (1964) and Symm (1964). The formulation of 

problems using Green’s theorem resembles the integral equation of 

John and it is the numerical procedures introduced in the second 

part of this two part paper that have been used in the computer 

programs written for problems of wave hydrodynamics. Additionally, 

it is these same techniques which form the basis of what has been 

called the boundary element method (b.e.m.).

The paper by Jaswon includes a theoretical study of the 

Fredholm integral equation of the first kind performed with a view 

to it’s numerical exploitation and emphasises the value of the 

Green*8 theorem which is referred to as Green’s boundary formula.

The second paper by Symm explains the numerical discretisation 

techniques required for the solution of integral equations and presents 

results for a number of problems, some of which would not be 

amenable to any other treatment. The considerable flexibility of the 

method is apparent from the results presented for problems in which 

Fredholm’s first equation, Fredholm’s second equation and coupled 

integral equations are exploited to give solutions for problems in 

which the domain geometries are not simple.

The first use of an auxiliary or fictitious boundary which 

is distinct from the boundary of the domain would appear to be by 

Oliveira (1968). The author of this work classifies the method as 

an integral equation method but presents the theory as a matrix 

equation which is derived by the linear superposition of independent 
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elementary solutions. The preliminary testing of the method with 

different locations of the auxiliary boundary indicated some 

failure for a boundary which was remote from the domain boundary 

and therefore the method was subsequently used with the auxiliary 

boundary close to the real boundary. The application of the 

method to several problems and comparison of results firstly with 

those of a finite element analysis and then with the results of 

photoelasticity tests demonstrates that the accuracy achieved is 

satisfactory and it is concluded that this accuracy is achieved 

because the logarithmic singularity of conventional integral 

equation methods is avoided by the use of an auxiliary boundary.

The regular boundary element method introduced by Patterson 

and Sheikh (1982) and applied to the problem of flow past an 

obstacle in an open channel includes an elementary theoretical 

error in the application of Green’s theorem. The mistake occurs 

due to the failure to distinguish between the field point and the 

source point in the derivation of the theory and this results in 

a formulation in which it is required that the boundary conditions 

are applied on the separated boundary. This does not appear to be 

appreciated by the authors and with the separated boundary chosen to 

be very close to the real boundary good results were obtained, 

it mignc De assumed cnac cne successtui numerical solution ot a number 

of test problems is made possible because of the similarity between 

the density variations of the source distributions on the fictitious 

boundary and the variation of the boundary conditions on the problem 

boundary. The regular boundary element method should therefore be regarded 

as an approximate method and it is suggested that any benefits associated 

with the ficititious boundary approach are best sought by distributing 

simple sources only since this method is mathematically correct.

30



Coates (1982) studied the solution of a number of potential 

theory problems by using a distribution of sources on a separate 

fictitious boundary. The first problem solved is an interior 

boundary value problem subject to a Dirichlet condition and before 

testing the separated boundary method the conventional integral 

equation method is shown to give errors which are more significant 

at points on and near the boundary of the domain than for points 

within the interior. Implementation of the separate source method 

for this problem gives a considerable improvement in accuracy 

particularly at points on and near the boundary and this result 

is confirmed by comparison of results with those of Symm (1964) 

for an L-shaped domain. This result is of importance because 

in many problems it is solutions for points on the boundary of 

the domain which are required so that quantities of physical 

significance such as pressures can be evaluated. By repeated solution 

of the exterior Neumann problem of flow past a circular cylinder 

near a plane boundary it is demonstrated that the best location of 

the fictitious boundary is at a sufficient distance from the real 

boundary to eliminate the considerable variation of the kernel 

function due to source node interaction but not too remote because 

this introduces ill-conditioning problems.

Many papers have been published in the last two decades 

reporting results obtained from computer programs written for the 

solution of the problems of wave hydrodynamics by the discretisation 

of alternative integral equation formulations. The 

problems to which this method has been applied are wide
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ranging and include two and three dimensional obstacles 

which may be submerged or located in the free surface and may be 

either fixed or in motion. The testing of the numerical results 

has been equally comprehensive and includes comparison with exact 

solutions if the geometry of the problem permits or results of 

the finite element or multipole methods for other problems.

The earliest applications of the integral equation method 

to these problems all employed an integral equation formulation 

which is based on the representation of the unknown potential as 

a distribution of wave sources or Green’s functions over the obstacle 

boundary. This resembles the final formulation of Ursell (1953) 

which has been mentioned above but the first solutions of this type 

of formulation by the discretisation procedure appear to be due to 

Kim (1965). Similar applications of the method by Frank (1967), 

Garrison and Chow (1972) and Hogben and Standing (1974) followed. 

The method used by Frank has subsequently been referred to by naval 

architects as the close fit method and the program developed by Hogben 

and Standing has since been called NMIWAVE. One interesting 

variation on the close fit method has been published by Maeda (1974) 

in which the problem is solved by making use of stream functions.

The popularity of this method is surprising for two reasons. 

Firstly, because the method requires the solution of an integral 

equation for a function which has no physical significance before 

evaluating the unknown pontential by a back-substitution and 

secondly, because this formulation differs from the formulation

32



presented by John (1950) in which Green’s theorem is employed. 

The Green's theorem formulation in which the unknown potential 

is represented as the sum of a distribution of wave sources 

and double sources yields the required solution directly and 

has been used by Naftzger and Chakrabarti (1979) and Hearn and 

Donati (1980) and the three dimensional program developed by 

Hearn has been called MATTHEW.

A feature of these conventional integral equation methods 

is that under certain conditions the method fails. This is due 

to the existence of eigen values for the homogeneous Fredholm 

equation corresponding to the Fredholm integral equation of the 

second kind and is therefore absent if the separated source 

boundary method is employed since this method requires the solution 

of a Fredholm integral equation of the first kind. In wave 

hydrodynamics problems this phenomenon is referred to as the 

irregular frequency problem and for the vertical circular cylinder 

problem Murphy (1978) has obtained the values at which this effect 

occurs. This breakdown has been encountered by Naftzger and 

Chakrabarti (1979) and Hearn and Donati (1981) and has been avoided 

by use of the separated source boundary by Van Oortmersson (1972) 

and Coates (1982). This is an advantage of secondary importance 

and if the separated source boundary method is to be used in 

preference to the conventional method for any type of problem the 

method must be demonstrated to give an improved accuracy for reduced 

computational effort without any loss of reliability.
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The problems of wave hydrodynamics have also been solved by 

Che application of Green’s theorem with simple sources and double 

sources distributed over the entire boundary of the fluid domain. 

This application of the method initiated by Jaswon (1964) and 

Symm (1964) was first made by Bai and Yeung (1974) and has more 

recently been exploited by Au and Brebbia (1982) and Bird and 

Shepherd (1982). The simple source methods have not however, been 

greatly used and recent work on the solution of these problems 

has employed one of the alternative formulations in which the 

Green’s function is used.

It is convenient to review the papers by Hearn and Donati 

(1981) and Hearn, Donati and Mahendran (1982) together since they 

are both concerned with the application of integral equation methods 

to solve wave hydrodynamics problems for various bodies in motion. 

It is stated that the first of these papers was prepared with the 

intention of making sea-keeping theories more comprehensible to 

the practicing naval architect and, taken with the second paper 

which reports the results of analyses performed in preparation 

for an experimental study of wave energy devices, demonstrates 

Chat the application of the three dimensional integral equation 

method and the two dimensional integral equation method with a 

strip theory is not a straigthforward process.

The first paper reports the application of methods to two 

ships, a warship and a merchant vessel and the study is particularly 

concerned with problems of numerical stability including the 
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occurence of breakdown at irregular frequencies. In discussing 

the application of the two alternative methods it is noted that 

if different discretisations are employed different results will 

be obtained due to the improved representation of the geometry 

or the improved numerical stability of the system of algebraic 

equations. It is also noted that a discretisation may prove to 

be more acceptable for some motions than others. The problem 

of irregular frequencies is also identified by the onset of 

numerical instability but this type of problem can not be averted 

by improving the discretisation and requires a smoothing process 

based on results for frequencies either side of the irregular 

frequency. In the study two irregular frequencies were identified 

in the two dimensional analysis of the merchant vessel.

The second paper includes a hydrodynamic analysis of two 

structures, the rigid body form of the Lancaster Flexible Bag 

and an articulated Cockerell raft system. The difficulties 

encountered emphasise that the utilization of integral equation 

methods in design requires considerable experience and expertise 

and that a greater understanding of possible sources of numerical 

failure is necessary. Results for the rigid structure, which has 

a simple geometry, confirm several simple facts concerning numerical 

stability and discretisation but the analysis of the articulated 

system resulted in considerable numerical instability due to 

discretisation problems in the viscinity of the hinge. Because the 

analysis of the articulated structure requires that all possible 
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configurations of the raft system are considered the three dimensional 

program was extended to permit a simultaneous solution of twenty 

radiation and ten diffraction problems. The program was run 

interactively so that failures might be identified and modifications 

to the discretisation introduced. By this method it was established 

that satisfactory results could only be achieved with a detailed 

discretisation and on comparison with the results of a two 

dimensional analysis the later proved to be unacceptable. In 

concluding the study the authors stated that advanced numerical 

methods when properly applied can be relied upon to provide good 

results but that it is evident that proper application is by 

no means a trivial matter.

In a brief review of the analysis of hydrodynamic loads 

by boundary element methods Eatock Taylor (1982) explains how the 

integral equation method may be used in combination with the finite 

element method. The author calls this the boundary element coupled 

method and it has been referred to elsewhere as a hybrid element 

method. The finite element method is particularly well suited 

to the solution of problems in small domains with complicated 

geometries but is not easily applied to exterior problems in 

which the domain, or part of it, extends to infinity. However, 

the integral equation method in which the Green's function is 

included is ideal for such problems since the conditions at infinity 

are automatically satisfied. It is therefore suggested that this 

method combines the advantages of each of the methods. It is also 

demonstrated that careful choice of the dimensions of the interior 

domain in which the finite element method is used eliminates the 

irregular frequency problem.
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2.4 Non-Linear Analysis of Wave Obstacle Interaction

Analysis of wave obstacle interaction, whether semi- 

empirical or mathematical, has been developed on the assumption that 

the incident wave may be described as a small amplitude periodic 

motion, that any motion is itself of small amplitude and that the 

interaction between the wave and the obstacle is a linear process. 

Viscous effects are, strictly speaking, non-linear but for the 

interaction of waves with obstacles which span a significant portion 

of the wavelength the assumption of an inviscid fluid may for most 

problems be justified. For smaller obstacles flow separation is of 

significance and the drag component in Morison’s equation is non-

linear but is modified to obtain a linear representation.

For wave obstacle interaction under ocean conditions the 

assumption of small amplitude motion is often violated and it is 

therefore important to consider the significance of non-linearity. 

There are two means by which the importance of non-linear effects may 

be established. The first method, which is the subject of this 

section, involves the extension of the theoretical model to a 

higher-order of approximation and this procedure, if possible, gives 

an indication of the theoretical adequacy of the linear solution. 

This theoretical refinement does not however guarantee that the 

mathematical model provides an adequate representation of the physics 

of the problem and the second method involves the use of model tests 

for conditions where non-linear behaviour is expected to diminish 

the validity of the linear solution.
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The mathematical problem associated with progressive 

gravity waves includes a non-linear free surface conditionwhich 

is so intractable that progress is very difficult unless 

simplifying assumptions are made. If wave height is significant 

the reduction of this condition to a linear condition at the still 

water level is inadequate and therefore a number of theoretical 

models have been derived which describe the wave motion in the 

absence of any obstacle. It may be noted that the inclusion of 

finite wave height effects in the Morison’s equation method is 

achieved by using these higher-order wave theories to provide 

expressions for the particle velocity and acceleration. This 

procedure lacks rigour and is a poor model of the physics of interaction 

(Lighthill, 1979) but has proved to be a useful means of extending 

the semi-empirical theory for use in design.

The extension of the theoretical model for the problems 

of wave scattering and wave radiation is particularly demanding and 

has recently been investigated in a number of studies. Some indication 

of the importance of the non-linear free surface condition is 

obtained by reference to the study of Tuck (1965) in which the 

problem of flow past a cylinder submerged at small depths below a 

free surface was investigated. However, the problem for 

progressive gravity waves is quite different and Tuck’s results 

cannot be taken to apply even when problems are geometrically similar.

Higher-order solutions of potential theory wave obstacle 

interaction problems, which are the main subject of this section of 

the literature survey, may be obtained by a formulation which employs 
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the perturbation procedure as used in the Stokes’ wave theory.

By this method the second-order correction to the first approximation 

consists of two components. The first and most easily evaluated 

component is the steady or mean force which has been obtained by 

the multipolemethod (Ogilvie, 1963), the momentum method (Longuet- 

Higgins, 1977) and by the numerical solution of the integral 

equation formulation (Standing, Dacunha and Matten, 1981). This 

component is of physical significance in a wide range of 

engineering problems in which structures are required to be 

anchored. The second component is the oscillatory component 

which fluctuates at twice the frequency of the fundamental oscillation 

and the only problem for which solutions are known to have been 

obtained is for the case of the vertical circular cylinder.

These solutions have been the subject of a series of investigations 

in which attempts have been made to extend the method of MacCamy 

and Fuchs (1954) to obtain second-order solutions and a number of 

mistakes in the various formulations have been identified.

For the same problem of a vertical circular cylinder but 

for shallow water conditions Isaacson (1977a) has obtained solutions 

for the wave scattering problem by application of cnoidal wave theory. 

The results of this study may be taken as an indication that under 

some conditions the results of a sinusoidal diffraction theory may 

prove to be inadequate.

The utilization of well established numerical methods for 

the evaluation of fluctuating second-order quantities has not been 

investigated in spite of the fact that two quite feasible suggestions 

have been made. The first suggestion was made by Salvesen (1974) 
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who in discussing the work of Bai and Yeung (1974) enquired whether 

their methods could be extended with a perturbation scheme to obtain 

non-linear solutions to ship-wave problems. This suggestion has 

not been implemented nor has the suggestion made by Lighthill (1979) 

in which a linear diffraction program would be used to obtain 

non-linear (second-order) solutions by using the principle of 

reciprocity.

A different possibility is that of extending a computational 

wave theory, such as the one developed by Longuet-Higgins and 

Cokelet (1976), to include an obstacle. This method would provide 

a complete non-linear solution and Lau (1983) has obtained 

preliminary solutions which are currently being tested for the 

problem of a fixed circular cylinder submerged in water of finite 

depth.

The motion of progressive gravity waves of finite height 

may be described by a number of theories and a recent review which 

includes many references to studies in this branch of the science 

is included in Sarpkaya and Isaacson (1981). The earliest 

formulation is due to Stokes (1847) who employed a perturbation 

procedure to obtain successively higher-order approximations to 

the exact solution. An account of this approach with the quotation 

of the principal results may be found in Wehausen and Laitone (1960). 

The perturbation procedure is only formally valid for conditions 

which in shallow water place a servere restriction on the wave 

height and therefore the cnoidal wave theory, first developed by 

Korteweg and de Vries (1895), is preferable for waves of finite 

height in the shallow water range.
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A more recent development in the theory of finite height 

waves is the introduction of the stream function theory by Dean (1965). 

This is a numerical method in which a stream function expression is 

introduced which satisfies the governing differential equation and 

the condition on the bottom boundary plus the kinematic free surface 

condition. The dynamic free surface condition is then the only 

condition to be satisfied and this is achieved by an iterative 

procedure.

Another numerical method which has been developed only very 

recently is reported by Longuet-Higgins and Cohelet (1976). In this 

method an integral equation is solved for the normal velocity of 

marked particles in the free surface of the wave and by employing a 

time-stepping procedure the progress of the wave may be followed. 

Excellent agreement of the results of this method for the free surface 

profile with results obtained by Stokes’ series indicate that this 

method is valid for waves of finite height moving with constant form 

but the main value of this method is for the mathematical modelling 

of unsteady waves. Numerical computations have been obtained for 

waves which steepen and overturn and it has been demonstrated that the 

surface remains rounded for time-stepping which continues after the 

overturning of the wave crest. One particularly interesting 

possibility in the application of this method is suggested by the 

authors. This is the possibility of using this method to give an 

insight into the energy and momentum lost in wave breaking and to 

gauge the transfer of momentum from waves to surface currents.

The theoretical study undertaken by Tuck (1965) is 

concerned with the effect of non-linearity at the free surface on 
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flow past a submerged cylinder. Although free surface waves occur 

as a result of the flow past a submerged cylinder this is a different 

class of problem to the geometrically similar problem which is the 

subject of this thesis. However, the similarity is sufficient 

for the results to be of interest and indeed the author introduces 

the study by considering the justification for the assumption of 

linearity in a number of wave problems relevant to the prediction 

of ship motion.

The formulation of a consistent second-order theory in 

which the condition at the free surface is satisfied to this order 

gives results for the force on a cylinder located near the free 

surface which are considerably different from results obtained with 

a linear free surface condition. The results differ by as much as 

a factor of two or three for shallow submergence but the author 

states that this does not imply the inadequacy of linear theoretical 

analysis of ship behaviour. The results of this study should 

however be taken as a warning that non-linear free surface 

effects may be of importance in the mathematical solution of a wide 

variety of wave obstacle interaction problems.

One further important point noted by Tuck concerns the 

relevance of the non-linear solution to the physical flow. The 

study does not include model tests to provide a validation of the 

potential theory results and it is commented that the conditions 

under which non-linear effects become mathematically significant 

are precisely the same as the conditions for which mathematical 

solutions are least likely to be an adequate representation of the 

physics of the flow, even if higher-order approximations to the 

solutions are obtainable.
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Oglivie (1963) evaluated the time-averages of the second- 

order force for circular cylinders submerged in water of infinite 

depth. Results were given for a fixed cylinder in a sinusoidal 

wave, a cylinder forced to oscillate sinusoidally in otherwise calm 

water and a neutrally bouyant cylinder permitted to respond to 

first-order oscillatory forces. The knowledge of the first-order 

potential was sufficient to obtain these mean second-order forces 

and computations were carried out and graphical results presented by 

use of Ursell’s multipole methods For the cylinder in a wave the 

steady horizontal forces are found to be zero but values of the 

steady vertical force are evaluated and plotted^

The prediction of zero mean horizontal force for a 

submerged horizontal circular cylinder in deep water is in agreement 

with the result of an alternative method of mean force evaluation 

explained by Longuet-Higgins (1977). The alternative formula is 

obtained by consideration of the horizontal flux of momentum and 

assuming momentum to be conserved when a wave interacts with a body 

the mean horizontal force is obtained by summing the momentum flux 

of the incident,reflected and transmitted waves. Since the linear 

theory predicts no reflection of waves by a submerged cylinder 

(Dean, 1948 and Ursell, 1950b)but transmission of the incident wave 

with a phase shift the wave scattering process does not result in a 

redistribution of the wave momentum and there is therefore no mean 

force. For more general problems in two dimensions measurement of 

reflection and transmission coefficients or evaluation by a linear 

diffraction theory therefore permits an estimation of the mean force. 

The former option is probably advantageous since the prediction of 

wave reflection and transmission characteristics excludes both the
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possibility of energy absorption or dissipation and the inclusion of 

higher harmonies in the formula.

The linear diffraction computer program NMIWAVE has been 

extended to include the facility for the evaluation of second-order 

drift forces for three dimensional bodies and this work is reported 

by Standing, Dacunha and Matten (1981). Two methods are developed 

and tested by comparison with simple theories (based on transportation 

of momentum), each other and then with the results of specially 

designed experiments.

The first method is the far field method and is based on

the momentum method. Because the diffraction program is an indirect 

formulation, numerical solution of the integral equation for the 

source distribution function permits the evaluation of free surface 

elevation in the far field. It is therefore possible to write 

expressions for the mean forces which include integrals over the obstacle 

surface and may be evaluated quite straightforwardly if the values 

of the source distribution function have been determined at the 

nodal points.

Although the far field method is simpler and much less 

computationally demanding than the second method it may only be used
*

to evaluate second-order mean values in the horizontal plane. The 

near field method may be used to obtain steady values for three 

components of force and three components of the moment. In a general 

formulation of this method six terms must be included to give values 

for the components of force or moment and they may be listed as



1) The additional pressures acting between the structure’s

mean waterline and instantaneous free surface,

2) The integrated second-order dynamic pressure.

3) The change in force due to first-order motions throughout

the pressure field.

4) Hydrostatic pressures acting between the mean waterline and

instantaneous free surface.

5) Changes in the bouyancy force due to second-order motions.

6) A contribution due to the set-down of the regular incident 

wave.

The authors note that the evaluation of the mean force by 

this near field method requires careful location of the fluid 

singularities employed in the numerical model if errors are to be 

avoided for evaluation of the relevent quantities at points near the 

obstacle free surface junction.

The results obtained by both methods have been found to 

agree well with each other and have been confirmed by experiment. 

Comparison with the results obtained by the simple theories, which 

are commonly used for evaluation of mean forces in design of 

mooring systems, indicate that the extended computer program is a 

necessary improvement if mean forces are to be evaluated with 

reasonable accuracy for a range of conditions.
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Extension of the linear diffraction analysis of MacCamy 

and Fuchs (1954) to obtain analytical second-order results for the 

vertical circular cylinder has been the subject of a number of 

investigations in recent years and the various approaches are 

reviewed in the most recent series of papers by Hunt and Baddour 

(1980a, 1980b, 1981). One particular problem which has given rise 

to the suggestion, made by Isaacson (1977b), that no second-order 

solution can be obtained is concerned with the existence of an 

irregularity at the intersection of the free surface and obstacle 

boundaries. Such a conclusion would obviously be re levent to a 

wide class of wave scattering and radiation problems but the 

difficulty has been resolved by Miloh (1980) who presented an 

analysis by which the irregularity is isolated.

Results for this problem computed recently by Hunt and 

Baddour (1982) are indicative of the importance of this study for 

problems which give rise to significant wave scattering. The second- 

order steady and oscillatory force components are evaluated and 

combined with the first-order forces to demonstrate that linear 

theory underestimates the total horizontal force on the cylinder by 

a small amount for small values of the diffraction parameter but by a 

significant amount for larger cylinders„

It must be recognized that if linear diffraction results 

are to be extended to a second-order by the perturbation scheme 

the results will dnly be valid for the same range of waves as the 

Stokes' waves in an unbounded ocean and will therefore not be 

suitable for problems in the shallow water depth range.
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For a vertical circular cylinder located in water of finite 

depth interacting with waves in the shallow water range Isaacson 

(1977a) has obtained results by a cnoidal diffraction theory. 

The results are demonstrated by plotting the ratio of cnoidal force 

prediction to sinusoidal force prediction against the Ursell number, 

which is a measure of wave non-linearity, for a range of the 

diffraction parameter, ka. For longer waves the cnoidal diffraction 

theory predictions are as much as two or three times the sinusoidal 

diffraction theory predictions for waves in which non-linear effects 

are more pronounced. These results are of importance because under 

these conditions the application of the traditionally used techniques 

for evaluation of wave scattering and radiation quantities, which are 

all based on sinusoidal wave theory, do not give adequate results 

for finite height waves. It may therefore be infered that there 

are other problems for which similar results might be obtained and 

that the extension of the linear diffraction theory to a higher-order 

merits further investigation.

For the wave scattering and radiation problems Bai and

Yeung (1974) were the first to apply the finite element method and the 

fundamental singularity method to problems in which the free surface 

extends to infinity. In the discussion of this work Salvesen (1974) 

suggests that the most significant application of the two methods 

may be in solving non-linear body-wave problems. The approach 

suggested would involve the use of a perturbation scheme and it is 

estimated that the 'solution of second-order or third-order problems 

would take approximately the same time as the linear solution whereas 

the evaluation of the second-order solution by the Green’s function 

method may take as much as ten times the time required to compute 

the linear solution.

47



In reply to this suggestion the authors state that both 

methods could quite easily be extended to solve second-order problems 

and that the modifications for use of the methods with a perturbation 

scheme are only minor. As an alternative approach to the non-linear 

problem it was pointed out that a finite element formulation in which 

the exact free surface condition is applied would result in a system 

of non-linear algebraic equations which could be solved by an 

iterative scheme.

It would appear from the literature published since this 

discussion that none of these possibilities have been investigated. 

It may also be noted that the simplicity and computational efficiency 

of the extension of Bai and Yeung’s methods by a perturbation scheme 

has been overstated. In a perturbation scheme the condition at 

the free surface for higher-order solutions is written as a linear 

differential equation which resembles the first-order equation with an 

additional pressure term which is applied over the entire free 

surface. This pressure distribution may be evaluated by knowledge 

of the lower-order solutions and it is the complexity of these 

evaluations and consequently the large demand on computational 

resources which increases the difficulty of this approach.

In considering the second-order problem for a fixed obstacle 

in a wave Lighthill (1979) identified three components in the second- 

order force which have already been stated in this literature survey 

(section 2.2). The dynamic pressure component and the waterline 

component due to finite wave height may be evaluated quite 

straightforwardly in a diffraction analysis but the third component, 

due to the quadratic correction to the velocity potential appears
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z 
at first to require a solution of the second-order problem.

However, Lighthill has demonstrated first by application of the 

reciprocity principle and secondly by application of Green’s theorem 

that the second-order force due to wave scattering may be evaluated 

by solution of a linear radiation problem. No solutions appear 

to have been evaluated by this method in spite of the fact that a 

considerable number of programs are available for the solution of 

the radiation problem which would only require the inclusion of 

additional subroutines for the evaluation of a free surface integral.

An additional possibility for the solution of non-linear 

wave obstacle interaction problems is currently being investigated 

by Lau (1983). This method is similar to the method of Lunguet- 

Higgins and Cokelet (1976) in that the non-linear free surface 

condition is applied on the moving free surface and an integral 

equation is repeatedly solved in the application of a sophisticated 

time-stepping process.

In extending this type of method to include an obstacle 

additional complications are introduced by the necessity to solve the 

integral equation subject to the radiation condition at large 

distances from the obstacle. This has been achieved by solving two 

problems in parallel and since the Laplace equation is linear these 

solutions may be added to give the final solution^ This is not 

however the most difficult aspect of this problem. The passage 

of a wave over a submerged obstacle results in a temporary change 

in wave speed and therefore wavelength which results in the phase 

shift in the transmitted wave. The inclusion of this variation
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of wavelength in the numerical model is the most difficult problem 
s' 

in the application of this method and is essential if meaningful 

results are to be obtained.

2.5 Experimental Validation of Potential Theory Results for Wave

Obstacle Interaction

The linear potential theory formulation of wave scattering 

and radiation problems is well established and numerical solutions 

may be obtained by a variety of computer programs so that the form 

of the wave and the response of the obstacle may be predicted. 

The linear theory requires modification if waves of finite height 

are to be included in an analysis and methods by which the steady 

second-order forces have been calculated were outlined in the 

previous section. It was also explained that it might be possible 

to obtain higher-order oscillatory force values by several different 

methods and it is expected that results will be published in the 

following years which confirm that the suggested methods are 

workable.

If the various theoretical models are to be of practical 

significance it is essential that comparison with experimental 

measurements are obtained for a comprehensive range of problems so 

that the validity of the theory can be established. The various 

features which distinguish between the different problems include 

whether the obstacle is fixed or in motion, whether it is entirely 

submerged or surface piercing and whether the problem is two- or 

three-dimensional. It must be stressed that validation of linear

50



theory results under any one particular set of conditions does not 

necessarily guarantee the validity for a different problem and this 

is particularly true if examination of non-linear effects is 

included in the experimental programme.

If a set of experiments is designed and carried out for 

the validation of the theoretical model the experimental conditions 

must be such that there are no substantial violations of the boundary 

value problem as posed. Such experiments may be distinguished from 

others in which the physical conditions are deliberately chosen to 

be different from those upon which the simplified linear theory is 

based. This second type of study is of particular value in the 

continued absence of any general and complete higher-order theory 

for wave obstacle interaction problems and for any particular 

problem will indicate the limits of validity of the linear theory.

The studies reviewed in this section of the literature 

survey include both types of study and in general good agreement 

is achieved between experimental and theoretical results under 

favourable conditions. Before considering in detail the experimental 

studies which most closely resemble the study reported in this thesis 

a number of additional studies may be mentioned which are concerned 

with the validation of potential theory results by experiment for 

related problems of wave obstacle interaction.

Several ''experimental studies have been conducted to 

determine whether the linear diffraction theory provides satisfactory 

predictions for the force on a surface piercing vertical circular 

cylinder. The most recent publications in which these studies have 
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been reviewed are Sarpkaya and Isaacson (1981) and Coates (1982) 

and a number of general observations can be made concerning the 

results of these studies.

For the vertical circular cylinder it has been suggested 

that diffraction effects become significant if the diameter of the 

cylinder spans more than one-fifth of the wavelength, (D/L>0.2, 

Hogben, 1974). It may therefore be noted that much of the data 

obtained for forces on vertical cylinders is for conditions under which 

the cylinder responds to a purely inertial loading. Examination of 

the force results of Hogben and Standing (1974) and Mogridge and 

Jamieson (1975) reproduced by Sarpkaya and Isaacson indicate that 

the experimental results obtained for waves interacting with a 

cylinder when wave scattering is of significance depart more 

considerably from the theoretical results than those for inertial 

loading. This is an important observation if the linear theory is 

to be used for problems in which diffraction effects do genuinely 

dominate.

Isaacson and Sarpkaya noted that on the basis of all the 

available evidence it may be stated that reasonable agreement between 

theory and experiment is generally obtained and Coates has observed 

that measurements of pressure demonstrate less satisfactory 

agreement than measurements of force. One further feature identified 

by Sarpkaya and Isaacson is that the bulk of the data has been 

obtained for waves^of small steepness and in general the waves do 

not exceed half of the maximum steepness. The available information 

therefore provides good evidence for the value of linear water wave 

theory for this particular problem but does not indicate whether the 
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application of linear theory would provide an adequate modelling 

of interaction with the steeper waves which would be encountered 

under ocean conditions.

A study which perhaps more closely resembles the study 

which is reported in this thesis was conducted by Salvesen (1969). 

The resemblence is found in the submergence of the obstacle at a 

small depth below a free surface. This study has been conducted 

for an obstacle in a steady flow which gives rise to free surface 

waves. The results obtained demonstrate that for a small depth 

of submergence non-linear free surface effects are important and 

the linear theory gives a poor representation of the wave resistance. 

This result can not be directly applied to the problem of the present 

study but may be used as an indication of the importance of free 

surface effects and consequently the necessity for investigation 

of wave obstacle interaction for submerged bodies just below a free 

surface.

A number of important experimental studies have been completed 

for the interaction of waves with a fixed two dimensional obstacle of 

simple geometry and for the generation of waves by the forced 

sinusoidal oscillation of an obstacle. Ursell, Dean and Yu (1960) 

investigated the generation of waves by a piston wave maker and Yu and 

Ursell (1961) performed a similar study for a circular cylinder 

oscillating in the free surface. These studies were stated by the 

authors to provide much needed evidence for the practical values 

of the linearized theory of water waves. A study of similar 

relevence was conducted by Dean and Ursell (1959) for a fixed semi-

immersed circular cylinder in waves and this study has been repeated 
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recently by Martin and Dixon (1983). All these studies are 

important because they permit the examination of linear wave theory 

under controlled conditions. There are, however, important differences 

between each of the above problems and that of submerged horizontal 

circular cylinders in waves.

The author is only aware of three studies in which force 

measurements have been made for fixed submerged circular cylinders in 

waves when inertia or diffraction effects predominate. Chakrabarti 

(1973) reports the experimental study conducted by Schiller (1971) 

for deeply submerged cylinders and these may be interpreted as an 

indication of good agreement between experiment and theory.

The study conducted by Koterayama (1979), which has already been 

considered in this literature survey, also includes results which 

demonstrate good agreement between experiment and theory. The 

cylinder in this study is not so remote from the free surface as in 

the previously cited study but is not close enought to test whether 

free surface effects are important or not. Therefore, the experiments 

conducted by Jeffrey, Richmond, Salter and Taylor (1976) are of 

interest because they include results for forces on cylinders at 

small depths of submergence.

There are two additional publications which include 

experimental studies of wave obstacle interaction for a horizontal 

circular cylinder submerged at small depths below the free surface. 

The doctoral thesis of Dixon (1980) includes measurements of the 

reflection coefficient and a few measurements of the drift force 

for a circular cylinder in and just below the free surface. A more 

comprehensive study of the drift force on a circular cylinder
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submerged below the free surface has. been conducted by Longuet- 

Higgins (.1977) and this study is particularly illuminating because 

quite plausible explanations were proposed to account for the 

discrepancies between theory and experiment.

The experimental study of Ursell, Dean and Yu (1960) is 

the first confirmation of the accuracy of linear wave theory for 

forced motions. The theoretical formulation of the wave motion due 

to a piston-type wave maker is due to Havelock (1929) and the 

expression for the velocity potential is in the form of a local wave 

which vanishes at a distance of a few wavelengths away from the wave 

maker and a harmonic wave travelling away from the wavemaker. The 

experimental procedure was designed to eliminate tank reflections 

and two sets of experiments were completed. The first set of 

results were obtained for waves of small steepness (0.002 < H/L < 0.03) 

and the measurement of wave height indicated an average error of 

3.4% with the measured values lying on a curve below the theoretical 

values. In order to establish the importance of wave steepness 

a second set of experiments were performed for finite height waves. 

This second set of measurements for larger wave steepness 

(0.045 < H/L < 0.048) indicated a systematic discrepancy with the 

measured values being on average 10% below the theoretical ones. 

The authors conclude that the results obtained confirm the validity 

of small amplitude wave theory.

The study completed by Yu and Ursell (1961) for the comparison 

of theoretical and experimental values for the surface waves generated 

by the vertical oscillation of a circular cylinder on water of finite 
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depth was seen by the authors as a sequel to the previously reviewed 

study. The theoretical predictions were obtained by extending 

Ursell’s (1949) multipole method to accommodate waves in finite water 

depths. Experiments were only performed for small amplitude 

oscillations of the cylinder resulting in the generation of waves of 

small steepness only. The discrepancy between theory and experiment 

was again small with experimental values being consistently smaller 

than the theoretical predictions with the magnitude of the error 

being generally less than 5Z of the measured value.

The studies of Dean and Ursell (1959) and Martin and Dixon 

(1983) may be considered in two parts. In the first parts the 

measured values of the horizontal and vertical components of force 

are compared with theory and in the second parts the form of the 

diffracted wave is compared with the theoretical predictions. In 

both studies the multipole method is applied to the problem of waves 

interacting with a fixed semi-immersed circular cylinder to provide 

the theoretical predictions. The earlier study has been completed 

for waves of small steepness so that the boundary conditions of the 

potential theory problem are essentially satisfied with regard to the 

amplitude of the motion. The second study by Dixon has been 

designed to give an indication of the variation of the measured 

values with wave steepness.

Comparison of measured force values with theoretical 

predictions by Dean ^nd Ursell demonstrated good agreement but 

Dixon's results for the variation of wave steepness at a single 

frequency indicate that force values depart significantly from the 

theoretical values for steeper waves. For these measurements the 
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maximum wave steepness is approximately 0.05 and the wave height is 

always less than the cylinder diameter.

For measurements of the reflection coefficient in the 

first of these studies the average difference between theory and 

experiment was 14Z with the measured value always being the smaller. 

The second study also demonstrates significant discrepancies for 

waves of small steepness and the magnitude of the discrepancy does 

not show any consistent variation with wave steepness.

In the study of Dean and Ursell measurements of the transmission 

coefficient were also made and excellent agreement with theory was 

discovered. This indicated a loss of energy in the system with the 

deficit being in the reflected wave. Dean and Ursell suggested two 

mechanisms which account for this loss of energy: the first 

suggestion is that the wave maker oscillation includes higher 

harmonics and the second is that there is the possibility of vorticity 

in the reflection process.

The results reproduced by Chakrabarti (1973) from the study 

of the wave forces on a completely submerged horizontal circular 

cylinder by Schiller (1971) have been obtained for a deeply submerged 

cylinder at a sufficient distance from the bed to avoid inducement 

of higher velocities below the cylinder. The results presented 

for this situation may be interpreted as the response of the 

cylinder to a purely inertial loading because the cylinder is located 

at a depth at which the amplitudes of particle motion have considerably 

decayed even for interaction with waves in finite depths of water. 

Chakrabarti was able to demonstrate good agreement between measured and 
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theoretical values for the vertical component of force with an 

equation which is the same as the expression for the theoretical 

inertia force and good agreement was also obtained for the horizontal 

force by applying a coefficient which increased the inertia force 

prediction by 5Z. It may therefore be concluded that the measured 

values are in close agreement with the theoretical predictions.

The experiments conducted by Koterayama (1979) for the 

interaction of waves with a fixed submerged circular cylinder in deep 

water include a set of results for small values of the Keulegan- 

Carpenter number. These force results have been obtained for 

conditions under which neither separation or wave scattering effects 

are thought to be of significance. The cylinder is located at a depth 

which is sufficiently remote from the free surface to avoid significant 

non-linear free surface effects and therefore the experiments for small 

amplitude waves will indicate whether or not there is agreement with 

the potential theory results.

The results are presented in two alternative but equivalent 

forms both of which indicate that in general good agreement is obtained 

between potential theory and experiment. The first presentation 

shows that the measured inertia coefficients for the horizontal and 

vertical components of force are approximately equal to the theoretical 

value of 2 and the second presentation in which the measured values of 

the horizontal force are compared with the potential theory force 

values demonstrates the same agreement.

It may be noted that for larger values of the diffraction
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parameter there is a significant discrepancy between theory and 

experiment. This discrepancy may be due to the failure of the 

mathematical model to predict forces when wave scattering becomes 

significant and resembles the results for the vertical circular 

cylinder discussed previously.

Analysis of the data collected in these experiments provides 

information concerning the harmonic composition of the force 

components. The results of the analysis demonstrate that there is a 

component which fluctuates at twice the wave frequency which the 

author attributes to viscous effects. This explanation is 

adequate for larger values of the Keulegan-Carpenter number when flow 

separation is of significance but for inertial uave loading these 

fluctuations may be regarded as evidence for non-linear wave obstacle 

interaction.

The tests for waves interacting with a horizontal circular 

cylinder conducted by Jeffrey, Richmond, Salter and Taylor (1976) 

in conjunction with experiments on Salter’s duck do not include a 

comparison between experimental and theoretical values and are 

primarily concerned with the problem of surface piercing bodies. 

However, some experimental results are presented for completely 

submerged bodies and for results obtained at larger values of wave 

steepness the fluctuations of the forces depart from the predicted 

simple harmonic form. It is suggested that theoretical results for 

the experimental data might be obtained by application of a diffraction 

computer program and this would give additional evidence concerning 

the validity of small amplitude wave theory for the problems for
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which the results are obtained,and in particular for the problem of 

the cylinder submerged at small depths below the free surface.

The study conducted by Dixon (1980) for the reflection of 

waves by a circular cylinder in the free surface includes several 

measurements for the case of complete submergence. These results, 

for the cylinder at four different locations, have been obtained 

for waves at three different frequencies and for each frequency wave 

steepness is varied. The measurement technique employed means that 

the measurement of the reflection coefficient, R, includes tank 

reflection and is therefore subject to an error of approximately 

5Z. Because the value of R is generally less than 0.05 the results 

may be taken to indicate that the linear potential theory result of 

no reflection has been confirmed experimentally.

Dixon also presents several measurements of mean force for 

the range of cylinder locations. For the case of a completely 

submerged cylinder the potential theory prediction of zero mean 

horizontal force is not confirmed by the experimental results and it 

is noted that although the magnitude of the discrepancy is small 

compared with the oscillatory forces it is significant for the design 

of mooring systems. The experimental study conducted by Longuet- 

Higgins (1977) is also concerned with the examination of mean forces 

exerted by waves on floating or submerged bodies. The theoretical 

prediction of the mean force is obtained by a formula derived by 

satisfying the principle of momentum conservation and application of 

this formula requires the measurement of incident and reflected wave 

heights. The predicted values, when compared with measurements 
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of the mean force obtained for models of a Cockerell wave raft and 

a Salter ’duck’, demonstrate that the simple theory is valid 

for waves of small steepness. However, for steeper waves the 

theoretical force overestimates the measured value and the author 

conducted a series of model tests on a submerged horizontal circular 

cylinder to determine the extent of the discrepancy and the 

mechanisms which are significant for a range of wave steepnesses.

The experiments for the cylinder with small amplitude 

waves again demonstrates good agreement between theory and experiment 

but for steeper waves the measured force was smaller than the predicted 

value. For the steeper waves the presence of an appreciable second 

harmonic in the transmitted wave was visually identified and the author 

states that the ratio of wave height to local fluid depth and the 

ratio of local particle velocity to wave speed both imply the occurence 

of such non-linear behaviour. A formula for the mean force exerted 

by a wave which included a second harmonic was then derived and tested. 

The new formula predicted the occurence of a reduced force and even a 

negative force for a sufficiently large second harmonic content but the 

tests indicated that this formula accounted for some but not all of 

the reduction or reversal which was identified in the measured mean 

force values.

The agreement between the theory and the measured values was 

less satisfactory for breaking waves. The author suggested that the 

passage of the wave over the cylinder gives rise to a change in the 

mean water level such as that which occurs when waves approach a 

simple beach. The cylinder is therefore considered to act as a 

double beach and if wave ‘set-up’ or ‘set-down’ produce an asymmetric 
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change in hydrostatic pressure above the cylinder a mean horizontal 

force is produced. It is argued that the occurence of wave breaking 

is delayed by the rapid change in depth and always occurs beyond the 

mid point of the cylinder giving rise to a significant wave set-up and 

therefore a mean horizontal force upstream. It is also demonstrated 

that such changes in mean water level give rise to mean vertical forces.

This paper is a unique contribution of the understanding of 

wave induced forces on submerged obstacles since it identifies the 

importance of non-linear effects and suggests how such affects occur.
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CHAPTER 3 - WAVE HYDRODYNAMICS

3.1 Introduction

The governing equations of irrotational motion are presented 

and boundary value problems are formulated and solutions written for 

surface waves. For the sake of clarity much detailed proof and 

derivation is avoided and reference is made to standard texts.

The theory of integral equations is introduced and applied 

to obtain a formulation for the linear diffraction boundary value 

problem. It is demonstrated that the continuous distribution of 

sources or double sources over a fictitious boundary external to the 

fluid domain results in a regular kernel integral equation 

formulation. The singular and regular kernel integral equations 

written for continuous surface distributions of wave sources form 

the basis for the numerical investigations of the following chapters.

The application of the integral equation method to the 

second-order diffraction boundary value problem indicates that the 

problem may prove amenable to a numerical approach.

The chapter closes with the application of Bernoulli’s 

equation to obtain expressions for pressure and free surface 

displacement. The pressures are integrated to obtain expressions 

for forces and the fcee surface displacements in the far field 

are employed to obtain expressions for the reflection and transmission 

coefficients.
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3.2 Potential Theory

The vector field £ ■ (u,v,w) is said to be irrotational if

curl £ ■ V x £ = 0 3.2.1

where V ■ (3/9x, 9/9y, 9/9z).

For a fluid motion characterized by the velocity vector u equation 

3.2.1 is a statement of zero vorticity. A necessary and sufficient 

condition that curl £ • 0 is that we can find a scalar function 

4>(x,y,z) such that

£ - V4> 3.2.2

The fundamental equations of motion for an inviscid, 

incompressible fluid with constant density are the continuity equation

div £ • V • £ » 0 3.2.3

and Euler’s equations which, written in vector notation, are

£t + (£V) • £ - - 1 7<P + PRY) 3.2.4

P

where p is the fluid pressure, p is the fluid density, g is the 

acceleration of gravity and y is the vertical coordinate and is 

positive in the upward direction.

For irrotational motion the substitution £ »

(equation 3.2.2) in the continuity equation (3.2.3) results in the 

Laplace equation

V2$ - 0 3.2.5
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Integration of Euler's equations gives rise to Bernoulli's equation

2 + 4>c + _1 (V4>)2 + gy - F(t) 3.2.6

P 2

in which F(t) is an arbitrary function of time only and may for 

most purposes be absorbed into the velocity potential since the 

gradient of the scalar function is unaffected. Witham (1962) 

indicates that F(t) is important in certain non-linear water wave 

problems.

The Laplace equation and the Bernoulli equation must be 

satisfied at all points in the fluid domain. The particular motion in 

the domain is determined by the conditions imposed on the boundaries.

The kinematic boundary condition for an impermeable surface, 

defined by S(x,y,z,t) - 0, is that the substantial derivative is 

zero

DS » St + u • VS » 0 3.2.7
Dt

The significance of the kinematic boundary condition is that the 

velocity of any point on the impermeable surface must be identical to 

the velocity of the fluid particle adjacent to that point. For a 

boundary with unspecified position and velocity an additional dynamic 

boundary condition is required. If the pressure, p, may be prescribed, 

Bernoulli's equation (3.2.6) is applied on this portion of the fluid 

boundary.

In a properly posed boundary value problem the boundary 

conditions are sufficient to determine the fluid motion uniquely.
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In the subsequent sections the fundamental equations, stated above, 

and introduced comprehensively in Lamb (1932), are applied to surface 

waves. Proofs of uniqueness are cited when available. The remainder 

of the chapter will consider motion of a fluid in a two dimensional 

domain only.

3.3 Surface Waves

Consider the motion of a fluid in two dimensions for a finite 

depth of fluid, h. If the free surface is defined by y = n(x,t), 

the velocity potential 4>(x,y,t) satisfies Laplace’s equation and the 

boundary conditions on <t> are

+ 1 (V<t>)‘
2

2 + gn - o,

> at y » n(x,t) 3.3.1

nt + <t> n - X X ♦ 
y

- o,

y
- 0 at y ■ -h 3.3.2

where the dynamic boundary condition includes the assumption of 

constant pressure on the free surface.

The condition on ♦ at y » n(x,t) is highly non-linear and an 

exact solution of the boundary value problem is not possible. In 

addition the free surface boundary conditions are prescribed at an 

initially unknown location. An approximation to ♦ is therefore 

required which satisfies a modified form of the exact boundary 

value problem.

Assuming small amplitude wave motion the boundary condition 

on <t> at the free surface is linearised. Relocation of the free 
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surface at the still water level results in errors of the same

order as those already neglected. Solution of the linearised 

boundary value problem provides a first approximation to the fluid 

motion.

For waves of finite height a perturbation procedure may be 

employed in which 4> and n are expanded in a perturbation series in some 

parameter e.

<t> ■ + e2^^2^ + £^$(3) + .....

3.3.3 
n - en(1) <■ e2n<2> + e3n<3) +............

It is then assumed that the value of 4>(x,y,t) at the free surface can 

be expressed in terms of a Taylor series expansion about the 

undisturbed position y « 0.

$(x,n,t) - ♦(x.o.t) + ♦ 1 n2(*yy)y=0 ♦ 3.3.4

Algebraic manipulation of equations 3.2.5, 3.3.1 to 3.3.4 and collection

of terms in e, e2,.....  results in the following boundary value

problem

_ 0 for -h < y < 0, (p - 1,2,...) 3.3.5

♦ <*> . 0 

y
on y - -h (p - 1,2,...) 3.3.6

’,tt> + g*y "
0 on y ■ 0, 3.3.7a

♦iP* 1 + $(1) 4/1) on y - 0 3.3.7b
tt 6 y x t - t tty t yy

etc.
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The boundary value problem for is the same as that which is

obtained by assuming small wave amplitude. The inclusion of successive 

terms in the perturbation series results in progressively higher 

order approximations to the exact value of 0.

The method of separation of variables is employed to obtain 

analytical solutions to the boundary value problems. Solutions of the 

successive higher-order problems are found, with additional labour, 

from the solution of the preceding problem. The principle results of 

the first- and second-order problems for progressive waves may be 

written in the form

♦ « mH coshk(h+y) sin(kx-wt)
2k sinh kh

+ 3 u>H2 cosh 2k(h+y) sin2(kx-tot) + 0(c3)

32 sinh**kh

3.3.8

n - H cos(kx—<ot)
2

+ kH2 coshkh (2 + cosh2kh)cos2(kx-ut) + 0(c3)

16 sinh3kh

3.3.9

<j>2

g

- ktanh kh + 0(e3) 3.3.10

where H is the wave height, w the angular frequency and k the wave 

number. Equation 3.3.10 is the dispersion equation and equations 

3.3.8 to 3.3.10 are the equations for a Stokes’ second-order wave.

Finite amplitude wave theory is treated in detail by Wehausen 

and Laitone (1960) who cite the classical papers. Existence of an 

exact solution to which the results of the perturbation analysis 

converge has seldom been demonstrated and the relevant work is 
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discussed by Wehausen and Laitone (1960) who conclude that this 

mathematical shortcoming is of no major significance.

3.4 Singular Solutions

The fundamental solution of Laplace*s equation (3,2,5) for a 

two-dimensional domain may be written

|(x,O - lo8 R 3.4.1
2n

The physical flow represented by this potential is that of a fluid 

source. The point x » (x,y) is referred to as the field point and 

£ • U,n) as the source point and R » |x-£| • The flux outward 

across a circle surrounding the source point £ is

-JI 2ITR - a 3.4.2
3R

where o is a measure of source output which may be positive or 

negative and is referred to as the strength of the source or the source 

density. The source potential is a mathematical concept which requires 

the continual creation or annihilation of fluid. Continuity is 

therefore violated and the motion is physically unacceptable, however, 

the fundamental solution proves valuable in the construction of 

solutions to problems which are not generally amenable to exact 

solution.

x

Muitipolesmay be constructed by placing additional sources in 

the vicinity of the point £ and permitting the distance between the 

sources to vanish. In the current study the simple source and the 

doublet are adequate. The doublet may be written
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3.4.34»(x>£) “ “ V 9 (log R)
2TT as

where 3/8S indicates a space-differentiation in the direction of 

the doublet axis and p is called the doublet moment.

We shall now consider the formulation and solution of the 

linear surface wave problem in which a simple source is located at a 

single point in the fluid domain. The exercise is that of constructing 

a singular solution of Laplace’s equation, i.e. a Green’s function 

G(x, £, t), which satisfies the following conditions

V2G - 0 for - h < y < 0, x + 3.4.4

Gy - 0 on y - -h, 3.4.5

vG+Gy a 0 on y « 0, 3.4.6

where v ■ w2/g,

G - (logR) coswt is regular for -h < y < 0 3.4.7

and for large values of r («x-£),

G represents a diverging wave. 3.4.8

Equation 3.4.8, the radiation condition, is significant in that it 

imposes a uniqueness which would otherwise be absent. The solution 

may be obtained by methods which require the use of complex variables 

or Fourier transforms. Both methods are followed through in Wehausen 

and Laitone, the former for the problem outlined above and the latter 

for the analogous three dimensional problem.

The singular solution, G, refered to by John (1950) as ”a 

wave function corresponding to a wave in a liquid of constant depth h 

issuing from the point (x,y)“ may be written in complex form as
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G(x, £, t) - g(x, o exp (- iwt) 

with g “ g] + ig2 

3.4.9

3.4.10

where

gl * 1 1°8 R + JL iog R2

2R h 2H h

- 1_ PV (p+v)exp(~ph)co8hp(h+y)coshp(h+n)cosp(x-C)
n Jo p(psinhph - vcoshph)

+ exp(-ph) dp 3.4.11

P

g2 ■ - gQ cosk(x - 5) 3.4.12

where R22 “ (x-£)2 + (y+2h + n)2 is the distance between the field 

point and the image of the source point in the bottom boundary 

y » -h and

go “ coshk(y+h)coshk(n+h) 
k vh + 8inh2kh

3.4.13

The integral in equation 3.4.11 is interpreted as a Cauchy principle 

value and the path of integration is indented at the positive real 

root p-'k of the denominator. Thorne (1953) states that "The 

significance of taking an integral other than the principle value is 

to introduce a standing wave at infinity".

An alternative expression for the real part of the Green’s 

function, gj, is derived by John (1950). The source and image 

source potentials are Included in the integral by using identities 

for logarithmic functions and a portion of the integrand is 

represented by its partial fraction expansion. The result is then 

integrated term by term and the expression obtained may be written
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gj - gosink | x—£ | 3.4.14

00

- E 1_ Cj cosc£(y+h)cosc£(.n+h)exp(-ci|x-c|) 
i=l C£

where Cj - C£2 + v2 3.4.15

C£2h + v2h-v

and cpi > 1, are the real positive roots of the equation

ctanch - -v 3.4.16

In addition to the singular solutions derived and stated in 

Wehausen and Laitone (1960) solutions for higher-order singularities 

in two and three dimensions are obtained by Thorne (1953).

3.5 Wave Diffraction

The boundary value problems discussed in the preceding sections 

are for a fluid domain bounded only by the moving free surface and the 

boundary at a depth y ■ -h. In this section we consider the boundary 

value problem for such a domain into which a fixed obstacle, defined by 

rQ(x,y) “ 0» is introduced. The definition sketch is given in figure

Figure 3.5.1 Definition sketch for diffraction problem
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The additional boundary conditions are the kinematic condition on the 

boundary To and the radiation condition.

In order to obtain a second-order diffraction theory we adopt 

the perturbation series equation 3.3,3 and the boundary condition on 

To may then be expressed as

^p) - 0 on ro> (p - 1,2) 3.5.1

where the subscript m indicates the normal gradient on ro. Equation 

3.5.1 with equations 3.3.5 to 3.3.7 and a suitable radiation condition 

compose the boundary value problem for wave diffraction to the second- 

order.

Since Laplace's equation is linear we may express the velocity 

potential 4> as the sum of two potentials

♦ “ *w + *s 3'5’2

where <t>w is the incident wave potential and 4>s is the scattered wave 

potential. The potentials 4>w and <Pg are expanded in a perturbation 

series in e and substituted into the boundary value problem. 4>w, the 

incident wave potential is chosen to be identical to the potential 

stated in equation 3.3.8, therefore the problem is that of finding 

♦s subject to the conditions

8
- 0 for -h < y <0, (p “ 1,2) 3.5.3

♦<p)

sy
- 0 on \ ■ -h, (P “ 1,2) 3.5.4

,(i> + g,<i>

9tt Sy - 0 on y - 0, 3.5.5a
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on y = 0
.7*C1) + 1 +

tt y t — t tty
g

t yy

on
sm wm

r0 (p - 1,2)

and
♦(p) - i k2 *(p)

8 « 8r
for r -*• °° (p = 1L,2)

where r - |x|.

3.5.5b

3.5.6

3.5.7

It may be noted that the lack of linearity in equation 3.5.5b deprives 

us of the opportunity of eliminating the incident wave potential and that 

equation 3.5.7 is the radiation condition for progressive wave motion 

in a two dimensional domain.

The discussion of the non-linear diffraction boundary value 

problem is postponed and we now consider the linear problem. The 

uniqueness problem has been treated in great detail by John (1950) 

who provides a proof which is valid subject to certain geometrical 

restrictions on the obstacle surface, To, namely that r0 intersects 

the free surface perpendicularly. This restriction excludes obstacles 

which are completely submerged. However, for the particular case of 

a circular two dimensional obstacle submerged in water of infinite 

depth Ursell (1950b) has proved uniqueness. John concludes his 

discussion of the uniqueness problem by stating that the absence of 

a general uniqueness proof for the linear wave diffraction boundary 

value problem should not be taken to imply the absence of a solution 

which determines the fluid motion uniquely.

For two dimensional obstacles no analytical solution exists. 

It is therefore necessary to obtain a solution by the application of 

numerical techniques to the problem as stated or to an alternative 

formulation.

74



The first option would be to apply finite element or finite

difference techniques to obtain a solution to the boundary value

problem as stated in equations 3.5.3, 3.5.4, 3.5.5a, 3.5.6 and 3.5.7

with p-1. Since application of the finite element method requires

that the entire fluid domain is discretized consideration must be

given to the application of the radiation condition. It seems that the 

most suitable approach is to apply a hybrid element method in which 

the fluid domain is divided into exterior and interior domains and the 

finite element method is applied in the interior domain and an 

alternative method in the external domain. This direct numerical 

approach may prove advantageous when attempting to solve the second- 

order problem as stated in equations 3.5.3 to 3.5.7.

The second option, with a greater tradition in the solution of 

potential theory problems, involves the introduction of fluid 

singularities. The singularities may be introduced either as a system 

of multipoles at the centre of the obstacle or as continuous surface 

distributions of singularities. The multipole method was applied by 

Ursell (1950a) to the problem for a submerged circular cylinder in water 

of finite depth. The multipoles which vanish at very large distances 

from their location may be chosen to satisfy the free surface and 

bottom boundary conditions. The radiation condition is satisfied by 

inclusion of a suitable harmonic function which satisfies the same 

boundary conditions as the multipoles. The potential is expressed as 

a power series with unknown coefficients which must be determined by 

applying the boundary condition on the surface of the obstacle. Values 

for the coefficients are obtained by solving a system of simultaneous 

linear algebraic equations.
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The multipole method suffers two limitations. Firstly, for 

objects of more complicated geometry, a conformal transformation is 

required to map the object onto an arc of a circle and the method is 

not generally applicable to problems which include more than one 

obstacle. Therefore, the method is best suited to single objects of 

simple geometry. Secondly, the assumptions inherent in the 

formulation do not permit an application of the method to obtain a 

solution to the second-order boundary value problems.

In the subsequent sections the method of integral equations is 

introduced and it is demonstrated that the wave diffraction boundary 

value problem may be rewritten in integral equation form.

3.6 Integral Equations

Many problems in potential theory may be solved by the 

formulation and numerical solution of an integral equation subject to 

certain prescribed boundary conditions. A brief theoretical 

introduction to the Fredholm integral equation is included in appendix 

A.l. In this section we are concerned with the introduction of 

integral equation formulations for potential theory problems in 

hydrodynamics, therefore the scope of this section will be sufficient 

to permit application of the method to a boundary value problem in a 

doubly-connected domain with mixed boundary conditions. It may be 

noted that application pf the method to problems in two dimensional 

domains, may, under certain conditions, introduce difficulties which 

are absent in three dimensional potential theory. These are concerned 

with possible logarithmic behaviour at infinity and the possible 

existence of a f-contour (Jaswon, 1964).



The formulation of an integral equation for the solution of a 

potential theory problem requires the introduction of surface 

distributions of singularities. Lamb (1932:Art 56) stated that the 

singularities of equations 3.4.1 and 3.4.3 may be imagined to be 

continuously distributed over lines, surfaces or volumes. If we 

imagine a singular harmonic function, 4>*, distributed over a 

Liapunov surface, T, with a continuously varying strength, o, then 

the distribution is written

f *o(C)^*(x,£)dr 3.6.1

• r
<P*(x,£) will be referred to as the source potential at the field 

point, x, due to the location of the source at the source point, 

where £ e T. We may also write a similar integral for a double 

layer of sources over T

p
p(£) 31* (>c,£)dr 3.6.2

. r 3n

where p is the density of the double source and 3/3n indicates space-

differentiation in the direction of the double source axis.

We now proceed, in a similar fashion to Lamb (1932: Art 57,58), 

to prove that a potential, may be regarded as due to a distribution 

of single sources, <+> , and double sources, 3<p*/3n, over the boundary of 

the domain, T, or alternatively as a distribution of single or double 

sources only.

For a domain, Q, bounded by a surface, T, in which and ip

are two potential functions, Green’s theorem may be written in the form 

| (<pv2ip - ipv2<p)dn - ($v<P - <pv4>)dr 
r

3.6.3
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The function | is chosen to be harmonic in Q+r and the potential ip 

is chosen as the potential due to a durface distribution of sources 

<b* throughout the domain Q and over the boundary of the domain T, 

where

♦*(x,£) - log|x-£| + <f>* (x,£) 3,6.4

, *
with <j>o a regular harmonic function within fi+r.

We may now write

V2I “ 0 3.6.5

V2** = 2n«(x-£) 3.6.6 

where equation 3.6.5 is Laplace's equation and equation 3.6.6 is

Poisson*8 equation where the Dirac delta function is defined by

6(x~£) - 0 x 3.6.7a

<5 (x-£) “ • x - 3.6.7b

For x / J. we may reduce Green's theorem

$ 9|* dr - 
9n

r

0 - <t>* 94> dr 

9n
Jr

3.6.8

where the change of notation is to aid in distinguishing between the 

gradient of the source axis and a normal to a physical boundary which 

will be introduced later in this section.

The integrals in equation 3.6.8 must now be evaluated with 

consideration for the possible locations of the field point x. If 

the field point is located at a point within the domain equation 3.6.8 

cannot be applied throughout the whole of the domain since 

V2|* / 0 as x * jE. This difficulty is eliminated by describing a 

small circular surface. re, about x as centre (figure 3.6.1a) and the
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integrals in equation 3.6.8 are evaluated over r + T£. Substituting 

for <J>* from equation 3.6.4 equation 3.6.8 is rewritten

where

JL^o* + logR)dr - | 
3n J]

*_a_(*0* + iogR)<irE 
re 3n

R « Ix-£ I. The boundary r,

+ logR) 3£
3n

, *
(*0 +

re

is of

/♦„*

+

dr 3.6.9

logR) 3<fr dr£
3n

th 2TTR and 3/3n (logR) -

~ 3/3R(logR) « - 1/R (where the normal is taken to be positive when 

pointing out of Q). Evaluation of the integral on the righthand 

side of equation 3.6.9 which includes the simple dipole will result in 

a finite limit for e-*O. The integrals for the weaker singularity and 

the functions <j>o* and 3<t>o /3n vanish as e * 0. Equation 3.6.9 may 

now be written

1 $ dr - _1_
2TI Jr 3n 2R

I* 3£ dr » <J>(x) 
r 3n

3.6.10

for x e Q. If 2< is located on the boundary f (figure 3.6.1b) 

Figure 3.6.1 Exclusion of singular point from domain
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a circular arc, r£, is introduced which has a length, 2JTa, where a 

is dependent upon the curvature of the surface T at the point x. 

In this case the integrals over the boundary T must be evaluated in 

the Cauchy principal value sense. The third and final alternative is 

that x is located outside the domain and its boundary in which case 

there is no singular term. Equation 3.6.10 may now be written in a 

more general form

■- ( <t> dr + 1 1* dr = 64>(x) 3.6.11
2n Jr On 2n r 9n

where 6=0 x <- a +r 3.6.12a

6 « a x e r 3.6.12b

6 - 1 x e Q 3.6.12c

ComparisoA with integrals in equation 3.6.1 and 3.6.2 indicates that 

the value of 4> for x e Q + T is given by the sum of two potentials, 

the first is the velocity potential due to a surface distribution of 

sources with a density -34>/3n per unit length and the second is due 

to a surface distribution of double sources with axes normal to the 

surface and density

For a domain which extends to infinity in all directions the 

surface integrals in equation 3.6.11 may be taken to apply to the 

internal boundary alone. The potential due to a dipole vanishes as 

|x-£| becomes large but consideration must be given to the behaviour 

of the logarithmic singularity at infinity. It may be demonstrated 

(Jaswon, 1964) that a potential function exists which is bounded at 

infinity and which includes an additive constant which it is convenient 

to neglect. We also require that <^* is chosen such that the 

remaining integrals vanish.
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We now consider a doubly-connected domain, fl, bounded by

r « Tj + T2. The domains Qj and Q2 fill the remainder of the infinite 

domain with the domain Q2 bounded by a circle of infinite radius centred 

at x which is located in (figure 3.6.2). The potentials 0, <t> 1 and 

02 refer to the domains Q, and Q2 respectively and the normals 

drawn into the domains are 3/3n, 3/3ni and 3/3n2 respectively. Since

x is internal to Q it is therefore external to + Q2 and by application

of equation 3.6.12 we have

l(x) _1_
211

_1_
2n

_1_
2n

30 dr - _1_
3n 2n

301 dr - _1_
3nx 2n

30?dr - _i_
3n2 2H

T1

02 30
3n2 

r2

dr

dr

dr

3.6.13a

3.6.13b

3.6.13c

0

0

r

r r
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By the definitions of the normals on fj andf2 we may substitute 

3/8nj « -3/3n on Tj and 3/3n2 " -3/3n on f2. Addition of equations

3.6.13 gives

1 **_3_(| - 4>i) dr -
2JT pj 3n

1
2n

dr(4> ” 4>i)

n

+ X ♦ X ~ *2) dr - x (I - 12) dr 
2n Jr 3n 2IT 3n

r2

3.6.14

Clearly the same result would be obtained for x e Tj or x e

The functions and $2 are determined by the values of <t> 1, 

9<f>l/3ni and 4>2> 9<#>2/^n2 on the boundaries Tj and T2 respectively. 

If we set « 4> on Tj and $2 “ $ on equation 3.6.14 is reduced to

the form

<t>(x) » x
2n Jr

l*X(l " ♦i>dr + X
3n 2n

4>*X - *2>dr
r2 3n

3.6.15

That is, the potential is determined by a distribution of sources over

r with an unknown density

x ^1) °n n
3n

X (4> “ 4>2>
3n

on T2

3.6.16a

3.6.16b

It is convenient to rewrite equation 3.6.11 in the form 

♦(x) - 1 a(O **(x,ydr

2n J
I

where a denotes the source density function.

3.6.17
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Alternatively, if the normal velocities on and f2 are

chosen such that S^i/Snj ■ -3|/3n on Tj and 3<J>2/9n2 on the reduced

form of equation 3.6.10 is

3.6.18

in which the potential is determined by a distribution of double 

sources over f with unknown density

(0 -- 4>i) on ri 3.6.19a

(4> -- 4*2) on r2 3.6.19b

Equation 3.6.14 is rewritten

4>(x) “ 1 I u(£) dr
2n Jp 3n

3.6.20

It has been shown that the potential function 4>(x) may be 

represented by any one of three integral equations for jc e Tj + 0 + T2* 

However, the domain, 0, considered in the preceding paragraphs with 

associated surface and boundary distributions of sources through the 

domain and over the boundary, T, are abstract mathematical concepts. 

Introduction of a fluid domain, Op, attaches a physical significance to 

the potential function, $>, which may be determined if appropriate 

boundary conditions are prescribed on the physical boundaries of the 

fluid domain, rp. The possible boundary conditions may be classified 

as follows:

4>(x) - 4>(x) , x c rD, 3.6.21a

3| (x) - ii(x),x e rN,
5n 3n

3.6.21b

a(x)|(x) + 8(x)3|(x) + y(x) » 0 , x £ rM, 
" 3n ”

3.6.21c
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where a, B and y are known functions, rp = rD + rN + rM (figure 3.6.3) 

and the over-bar indicates a prescribed value. The first and second 

type of condition are the Dirichlet and Neumann conditions, respectively, 

which are particular cases of the linear relation stated in the third 

equation.

If the physical boundary, rp, is taken to coincide with the 

boundary of the doubly-connected domain, T, an integral equation may 

be formulated for the fluid potential in Qp(Q). This results in a 

coupled integral equation which may be reduced by a suitable choice 

of the regular harmonic function <t>o* .

Figure 3.6.3 Boundary conditions for fluid domain
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3.7 Linear Wave Diffraction

We are now in a position to formulate an integral equation 

for the scattered velocity potential • It is convenient to
s 

express the first-order potential $(l) (= ♦ 1 ) in complex

notation with the superscript supressed , that is

$ exp (- iwt) 3.7.1

where <t> - (4>s + 4>w) 3.7.2

We now proceed to obtain an integral equation representation for the 

spatial potential $ subject to the appropriate boundary conditions as 

stated in equations 3.5.4, 3.5.5a, 3.5.6 and 3.5.7 with p « 1. A 

number of alternative integral equations may be written depending upon 

the source distributions on the domain boundary and the choice of the 

source potential 4>*.

If the integral equation is chosen as a distribution of sources 

and double sources in the form of equation 3.6.11 with x e T it may 

be demonstrated that the solution of the integral equation yields the 

value of <t>_ (x) for x c T which may in turn be used to obtain values of 

4>s(jc) for x e Q. This formulation for the linear wave diffraction was 

employed by Bai and Yeung (1974) who employed distributions of simple 

sources and double sources ($>* ■ log . More recently Naftzger

and Chakrabarti (1979) employed the two dimensional wave function 

written in equations 3.4.9 to 3.4.16 to reduce the integral equation. 

Both alternatives result in a Fredholm integral equation of the second 

kind for which an analytical solution is unavailable. There is a well 

established general theory for integral equations of the second kind, 

however, the classical theory does not, strictly speaking, apply to 
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equations with singular kernels. For equations in which the kernels 

are weakly singular the general theory is taken to apply and a 

numerical solution is sought. Since in these methods the value of the 

unknown potential, 4>s» is evaluated by solution of the integral 

equation as written, the method is often referred to as a direct method.

As an alternative the scattered potential may be written

as a distribution of sources or double sources only in the same form as 

equation 3.6.13 or 3.6.16. The latter proves advantageous for 

problems in which the physical boundary, or a portion of it, is a thin 

impermeable membrane which divides the fluid domain. However, the 

general approach is similar for either distribution and we proceed to 

consider the case of a distribution of sources only.

The diffraction problem does not appear to have been solved 

by a distribution of simple sources or simple doublets only. 

However, for problems in two and three dimensions this type of 

representation with 4>* chosen to be the appropriate Green’s function 

has proved to be most popular. The popularity of this method may 

at first sight appear surprising since the unknown source density 

function must be determined before the physically significant quantities 

may be evaluated. This method is consequently referred to as an indirect 

integral method.

For the two dimensional wave diffraction boundary value 

problem the scattered potential, |s» may be generated by a distribution 

of sources over the boundary I*.

*•M - | o(C)**(x,pdr, X e 0 + r 3.7.3
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Before the boundary conditions may be applied an expression is 

required for the gradient of the potential. If the gradient is 

required at the point x e Q + T in the direction specified by 3/3m 

we may write

( *
2£g(x) - cr(Jj) 3$ (x,pdr, xeQ + T 3.7.4
3m ( p "5m

It must be noted that 3/3m may bear no relationship to the axis of a 

double source. For a point x e Q this representation is adequate, 

however, for x £ T the behaviour of the kernel must be considered for 

x ■* £. The approach adopted is similar to that described previously 

in which a small arc, Te, of length 2Ha, is described about the point 

x “ C The resulting expression for the gradient may be written

34*0 (x) *
3m

f *
a(O 3<> (x,pdr + 6o(x) 

3m
r

3.7.5

where 6-0 x e n 3.7.6a

6 - a x e r 3.7.6b

Application of the boundary conditions (equations 3.5.4,

3.5.5a, 3.5.6, 3.5.7 with p - 1) on the various portion of the fluid

boundary results in the following integral equation formulation. 

Jr r 9*

o - ♦ 1 o a/‘ dr ♦ 6o, X e r ,
3m J p 3m

—* V

0 - *
o 34> dr •«f 6o - ik2 04> dr,

r 3r U)

3.7.7a

3.7.7b

3.7.7c

3.7.7d
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where r = |x—£| and r « rB + Tg + To + rR + rL. (figure 3.7.1). 

Since x e T and Che boundaries Tg, Tg, rR and are straight lines 

0 = a = 1 in equations 3.7.7a, b and d provided x is not at a corner 

point. For x £ To we may in general write 0 « a » | on the 

understanding that there are no corners in r0. However, T is no 

longer a Liapunov surface and consideration must be given to the 

behaviour at corner points.

If is chosen to be the Green’s function written in

equations 3.4.9 to 3.4.16 the conditions 3.7.7a, b and d are automatically 

satisfied and the integral equation reduces to the form

3g dr a
3m 2

3.7.8

The problem for the doubly-connected domain has therefore been reduced 

to an exterior Neumann problem.

Figure 3.7.1 Fluid domain for diffraction problem
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Again the integral equations are Fredholm integral equations

of the second kind, however, equation 3.7.7 or 3.7.8 must be solved 

for the unknown source density function, a, which may then be substituted 

in equation 3.7.3 to determine the potential function <$>s at any point 

x e Q + T.

3.8 Integral Equation Formulations with Regular Kernels

In choosing the physical boundaries of the fluid domain to be 

coincident with the source distribution boundaries and the fluid domain 

to be coincident with the surface distribution of sources each integral 

equation formulated for the linear diffraction problem includes a 

singular kernel. This is a feature of the integral equation method 

for potential theory problems and we may refer to these equations as 

singular kernel integral equations. The equations required to evaluate 

the potential or its gradient at a point within the domain do not 

contain singular kernels and may therefore be referred to as regular 

kernel equations. In this section it is demonstrated that a regular 

kernel integral equation may be formulated for the solution of potential 

theory problems and the method is applied to obtain formulations for 

the linear diffraction problem.

The basis of the regular kernel integral equation is in the 

choice of two distinct domains, the fluid domain Qp, bounded by Fp and 

the fictitious domain Q, bounded by T. The domain fl, as previously, 

has an imagined surface distribution of sources and the boundary, T, 

has an associated line distribution which gives rise to the expressions 

for the potential function written in equations 3.6.11, 3.6.17 and
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3.6.20. The potential function 4>(x) is taken to be regular and 

harmonic throughout the infinite domain and to have physical 

significance attached to it within the fluid domain and on the fluid 

boundary (x, e + rp)* A simPle example of this approach is the 

representation of the motion of a fluid past a circle in the infinite 

domain by the superposition of the uniform flow and doublet potentials. 

The distinction is that the doublet potential is singular at its 

origin but the similarities may be emphasised. Firstly, that the 

boundary condition is satisfied over a particular boundary and secondly 

that physical significance is then attached to this boundary and the 

potential function is taken to represent the fluid motion on the boundary 

and in the region exterior to it.

We now concern ourselves with the possible relationships between 

the physical and fictitious domains. We first consider the two 

dimensional doubly-connected domain as introduced in section 3.6 in 

which the physical domain Qp is located (figure 3.8.1).

The choice of Green’s boundary formula (equation 3.6.11) under 

these circumstances proves unsuitable. Since the field point, x, 

lies within the domain, Q, the value of 8 is set to unity. We might 

therefore attempt to apply the boundary conditions for x c Tp but 

examination of the equation indicates that unless the potential and 

its gradient are prescribed on the fictitious boundary the equation 

is indeterminate. It is therefore clear that this approach only 

results in a suitable formulation if T and Tp are chosen to be 

coincident.
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Figure 3.8.1 Doubly-connected domain containing physical domain

We now pursue a formulation by representing the potential 

function as a distribution of sources only on the understanding that a 

similar argument holds for a distribution of double sources. The 

significance of the choice of domain locations is best indicated by 

prescribing boundary conditions on Tp • rF1 * rF2 to obtain an 

integral equation formulation and the linear diffraction problem is 

therefore re-examined.

It has been demonstrated that the formulation of an integral 

equation in this problem depends not only on the representation of the 

scattered potential in integral form but also on a similar representation 

°f the potential gradient (equations 3.7.3 and 3.7.5). With the 

Physical boundary separated from the fictitious boundary the boundary 

conditions may be applied for the field point on the fluid boundary 
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x e Tp. The kernels in equation 3.7.3 and 3.7.5 are now non-

singular and we therefore set 6 equal to zero. The appropriate 

formulation is therefore implicit in equations 3.7.7 and we may 

rewrite equation 3.7.8 in the more general form

o(£) 3g (x.Odr + Bo(x) 
r 3m

3.8.1

with 8 as specified in equations 3.7.6.

The source distributions are fictitious concepts. We may 

therefore, as an alternative, imagine that for a doubly connected 

domain there is a surface distribution of sources throughout the rest 

of infinite space, + 82* and over the domain boundaries, Tj + T2, 

but not within the domain, 0. The fluid domain, Qp, is again 

located within the fictitious domain, ft (figure 3.8.1).

Under these circumstances the choice of the Green’s boundary 

formula (equation 3.6.11) requires that the constant B is set to zero 

but the method proves to be unsuitable for the same reasons as stated 

above. This is the approach which most closely resembles the ’’regular 

boundary element method” proposed by Patterson and Sheikh (1982).

This alternative relationship between the fluid domain and the 

fictitious domain does not alter the regular kernel integral equation 

formulations stated in equations 3.7.7 and 3.8.1 since the 

representations for the potential (equation 3.7.3) and the potential 

gradient (equation 3.7.5) hold throughout the infinite domain.
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It has now been demonstrated that the regular kernel integral 

equation, generated by the distribution of sources over fictitious 

boundaries external to the domain in which the fluid is contained, 

may be employed in potential theory. In particular the regular 

kernel integral equation formulation for the linear diffraction 

boundary value problem has been stated. The integral equations are 

Fredholm integral equations of the first kind for which no general 

theory is available. However, for a number of problems in which physical 

significance is attached to the potential function, the formulation 

and solution of singular and regular kernel Fredholm equations of 

the first kind has yielded satisfactory results (Symm, 1964;

Oliveira, 1968; Coates, 1982). The regular kernel integral equation 

together with its singular kernel counterpart as stated in equation

3.8.1 forms the basis for the numerical investigations of the 

next chapter.

3.9 Second-Order Diffraction Theory

The second-order diffraction boundary value problem is 

included in equations 3.5.3 to 3.5.7 and this section is concerned 

with the formulation of an integral equation for the problem as 

stated. It has been demonstrated that potential theory problems 

way be formulated as integral equations by representing the unknown 

potential as a distribution of sources and double sources over a 

domain boundary. Alternatively, a formulation is obtained for 

sources or double sources distributed over a boundary which may be 

chosen to coincide with the domain boundary or may be located 

outside the domain. The following formulation is carried out for
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the case of a distribution of sources only but it may be noted that 

any one of the alternative representations might have been chosen. 

The unknown second-order scattered wave potential is given in its 

spatial form by

a (0**(x,O dr 3.9.1

r

where again the boundary T may or may not coincide with the physical 

boundaries of the fluid domain and the gradient at a point is given

by

9m
o(p M* (x.pdr + Ba(x) 

r 9m
3.9.2

where 6 is given in equation 3.7.6.

It is now necessary to apply the boundary conditions on

(2)
4>s to obtain a formulation in the same form as equation 3.7.7.

The equations 3.7.7a and 3.7.7d require no modification since the 

form of the bottom boundary and radiation boundary conditions are 

the same for the first- and second-order problems. The

modification for the statement of the condition on the object boundary 

is simple and it is required only that the incident wave normal

(2) 
velocity 9$>w/9m is replaced by the second-order expression 3<$>w /9m

which may be obtained from the second-term in equation 3.3.8. The 

application of the free surface boundary condition is, however, more 

difficult and this difficulty is associated with the evaluation of 

the right hand side of equation 3.5.5b in which it is necessary to 

include the total potential $(x,t).



The first-order potential is given by equations 3.7.1 and

3.7.2 and therefore if a solution is obtained for the first-order 

boundary value problem stated in equation 3.7.7 the source density 

function may then be applied to obtain the value of the potential 

or potential gradient using equations 3.7.3 and 3.7.5. This approach 

may be extended to include the evaluation of the potential gradients 

included in the right hand side of equation 3.5.5b and if the left 

hand side of equation 3.5.5b is written as the sum of the scattered 

wave and incident wave second-order potentials the equation may be 

rewritten in the general form

92$j2) (x,t) + g 2£s2) (Xjt) “ Q(x>t) 3.9.3

9t2 9y

where Q is obtained by substitution of the expressions given in 

Appendix A.2 in the right hand side of equation 3.5.5b and includes 

the second-order incident wave terms. The function Q will consist 

of a constant term and a term fluctuating at twice the incident wave 

frequency and the second-order scattered wave potential will be of the 

same form, therefore, considering the fluctuating parts only

Q(x,t) - q(x) exp(-2 iwt) 3.9.4

<|/2)(x,t) - </2)(x) exp(-2 iwt) 3.9.5
s — s —

and equation 3.9.3 may be written

3^(2) _ v,(2) . 1 3 9 6

9y 8

where V ■ 4u2 ■ 4v.

8

3.9.7
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It has been demonstrated that the second-order boundary 

condition at the free surface may be reduced to a non-homogenous 

linear differential equation of the same form as the homogenous 

equation in the first-order problem. The final equation in the 

integral equation formulation of the second-order problem may 

therefore be written

1 "
g

-V a|*dr +
r

a 34>*dr + Ba, xers 
T 3y

3.9.8

and equation 3.9.8 together with equations 3.7.7a and d and the 

modified form of equation 3.7.7c constitute the required integral 

equation formulation.

In this case the introduction of the Green’s function

written in equations 3.4.9 to 3.4.16 may prove to be less suitable 

but it must be noted that if this approach is adopted the Green’s 

function will be of the same form but with equation 3.4.9 replaced 

by

G(x,£,t) « g(x,£)exp(-2iwt) 3.9.9

and the value of the wave number, k, determined by solution of the 

dispersion equation in the form

V - ktankh 3.9.10

The appropriate integral equation formulation may then be written

3^^^ ♦ a 3g dr + Ba, xeTo 

3m ' T 3m
3.9.11a0
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1 
g

-V agdT + a 9g dr + Bo, 
3y

xeT— s 3.9.11b

r r

where T may, in this case, be either the boundary To + Tg or a 

geometrically similar boundary outside the fluid domain.

A similar procedure may be followed in order to provide 

a formulation based on the Green’s boundary formula and again this 

type of formulation results in an integral equation which must be 

solved for the required potential itself rather than the source 

density function. However, this alternative introduces additional 

labour in the evaluation of the function q in equation 3.9.6 since 

the number of integrals for the evaluation of the potential gradients 

of the type written in Appendix A.2 is doubled.

3.10 Pressures, Forces and Wave Motion

A vector field is completely described if the potential is 

known at all points within and on the boundaries of the fluid domain. 

The preceding sections provide expressions for the scattered wave 

potential, which, together with the incident wave potential stated 

earlier, describe the motion of the fluid due to interaction with a 

submerged obstacle. Application of Bernoulli’s equation (equation 

3.2.6) permits the evaluation of the hydrodynamic pressure at points 

within the fluid domain and in particular on the boundary of the 

obstacle. Bernoulli’s equation takes the form

p(x,t) - -P 4>t(x,t) -p (V$(x,t))2 3.10.1
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For a linear analysis the potential 4> is given in equation 3.7.1

and substitution in equation 3.10.1 gives

p(x, t) - Re(p(x)exp(-iu)t)) 3.10.2

where p(x) * iu)p<t><3c) 3.10.3

and the total pressure p may be expressed in the same form as equation

3.7.2

p(x) “ PWQP + PsQi) 3.10.4

where pw is the incident wave pressure and ps the scattered wave oressure.

If the pressure on the obstacle is described in this way 

the horizontal and vertical components of force per unit length may 

be obtained by integration over the submerged obstacle boundary. 

The components of the Froude Krylov force, defined as that force 

which would act in the absence of the obstacle boundary, are given by

3.10.5a

3.10.5b

where nx and ny are the direction cosines. The total force

components are given by

3.10.6a

3.10.6b
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Application of Bernoulli’s equation at the still water level

gives an expression for the free surface displacement

n(x,t) - - J. Ot(x»t) - 1 (V4>(x,t))2 3.10.7

g 2g

g

where x « (x,0) and for a linear analysis

n(x>t) » Re (n(x)exp(-iut)) 3.10.8

where n(x) » itu4> ( x ) 3.10.9

and the free surface displacement may be expressed in the form

n “ Gw + ns 3.10.10

where is the incident wave surface displacement and ns is the 

scattered wave surface displacement.

The reflection and transmission coefficients R and T are

given by

n (x,t) - H Re { i exp(i(kx-u)t)) + i R exp(-i(kx + mt))} 3.10.11 
2

n+(x,t) a y Re (i T exp(i(kX“U)t))} 3.10.12

where R and T are complex and and n+ are the free surface 

displacements far upstream and far downstream of the obstacle.

Adopting the form stated in equation 3.10.8 the displacement far 

upstream is written

n”(x) "Hi exp(ikx) +H i R exp(-ikx) 3.10.13
2 7
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where the first term is the incident wave surface displacement,

and by application of equation 3.10.10 

hence

ns^—| i R exp (-ilex)

|n"(x)| ■ H |R|
8 2

3.10.14

3.10.15

The free surface displacement far downstream is given by

n+(x) - H . T exp(ikx)
3.10.16

and by equating 3.10.10 and 3.10.16

" H i t exp(ikx) - a. - ^(T-l)i exp(ikx) 3.10.17
2 2

hence |n+(x)| - H |T-1|
s 2

3.10.18

The reflection and transmission coefficients may therefore be obtained

from the scattered wave free surface displacements.

The second-order horizontal drift force may be stated in

the form

f H » 1 pg I" 1 + 2kh
16 sinh(2kh)J

(1 + R2 - T2)H2 3.10.19

and for the motion of an inviscid fluid the principle of energy 

conservation which may be written

R2 + T2 - 1 3.10.20
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must be satisfied. Therefore the formula for the drift force is

reduced to

fd 1 + 2kh
sinh(2kh)

R2H2 3.10.21i p8

The evaluation of the second-order fluctuating forces requires 

integrations similar to those written in equations 3.10.6 but it 

must be noted that the second-order pressure consists of two 

components. The first component is the dynamic pressure

- p (V4>(1)(x,t))2

2
3.10.22

which may be evaluated from the solution of the first-order problem.

The second component is the pressue due to the second-order potential

3.10.23

If the immersed obstacle is surface piercing an additional 

term is required to account for the finite height of the wave. In 

vertical plane problems this force per unit length is given by

(pg(n-y) + O(e3))dy 3.10.24

- - P£(n(1))2 + 0(e3)

2

- - P + 0(c3)

and the force acts at the still water level, y » 0.
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It has been demonstrated that the pressures on the boundary

°f an immersed or partially immersed obstacle, and therefore the 

components of force, consist of a steady component and components 

fluctuating at the incident wave frequency and at twice the incident 

wave frequency. If the analysis were extended to a higher-order 

additional components would be included fluctuating at higher multiples 

°f the incident wave frequency and of diminishing magnitude.

The second-order Stokes* wave written in equations 3.3.8 to

3.3.10 indicate that a wave motion in the absence of an obstacle is 

made up of components fluctuating at the wave frequency and at twice 

the wave frequency. The introduction of the obstacle modifies the 

wave motion but since the governing equation is linear, the total 

potential is given by the linear superposition of the incident and 

scattered potentials. The total potential will therefore be 

similar to the second-order Stokes’wave but it must be noted that the 

second-order component in this case will consist of two terms. The 

first term must be similar to the Stokes* second-order terms included 

in equations 3.3.8 and 3.3.9 and is characterized by the fact that the 

wave number k is given by equation 3.3.10. The significance of this 

is that the second-order component is ’’locked’* into the first-order 

component and may be referred to as a fixed second-order wave and 

that the wave profile is therefore of constant form. The second-order 

free surface displacement obtained from equation 3.10.7 for a diffracted 

wave is of the form

n( “ “ 1 *(2)(x,t) - 1 (V*<1>(x,t))2 3.10.25

8 2g

and the first term may be written in the form
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) 3.10.26

where the second term is a fixed second-order wave identical to the 

term in the second-order Stokes’ wave. The scattered wave term in 

equation 3.10.26 may be obtained by solution of any one of the 

integral equation formulations discussed in section 3.9 and 

therefore this term will differ from the incident wave term in that 

the dispersion equation to be satisfied is of the form written in 

equation 3.9.10. The wave number, and therefore the wavelength, is 

different from the incident wave value and therefore the second-order 

scattered wave is not locked into the first-order wave and may 

therefore be referred to as a free wave.

The second-order wave motion due to the interaction of a 

wave with an immersed obstacle may be regarded as the superposition 

of two second-order waves, the first being similar to the Stoke’s 

wave and the second having different : dispersive qualities and 

therefore being similar to a linear wave.

103



CHAPTER 4 NUMERICAL ANALYSIS

4.1 Introduction

It has been demonstrated that the velocity potential of a 

fluid motion may be represented by continuous distributions of sources 

over a boundary which is essentially fictitious. If this fictitious 

boundary is chosen to coincide with the physical boundaries of the 

fluid a number of integral equation formulations may be written each 

of which is a Fredholm integral equation of the second kind with a 

singular kernel. The kernels may be chosen to be simple sources or 

Green’s functions and the formulations may be classified as direct or 

indirect integral equation methods. In the direct method the 

potential is expressed as the sum of potentials due to continuous 

distributions of sources and double sources and the integral equation 

is solved to obtain the unknown potential. The indirect method 

requires that the potential is expressed as a continuous distribution 

of sources only or double sources only and the integral equation is 

solved to obtain the unknown source density function before the 

unknown potential may be evaluated.

As an alternative the fictitious boundary may be located 

outside the fluid domain. The resulting integral equation 

formulations are of the first kind and the kernel remains regular over 

the entire fluid boundary as well as within the fluid domain. Again 

the kernel function may be chosen to be a simple source or a Green’s 

function but the direct formulation is inappropriate.
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This chapter is concerned with the numerical solution of

the regular kernel integral equation formulation of the linear 

diffraction boundary value problem for an obstacle in a two 

dimensional domain. The techniques employed are, however, suitable 

for the numerical solution of many potential theory problems and 

Coates (1982) has demonstrated that for certain problems in which an 

exact solution is available the regular kernel method provides more 

accurate results than the conventional singular kernel method. It is 

suggested that the numerical results obtained by Patterson and Sheikh 

(1982) demonstrate the numerical robustness of a ’regular boundary 

element method’ since the boundary conditions are prescribed in an 

approximate manner.

The numerical analysis of an integral equation reduces the 

problem to that of obtaining the solution of a system of linear 

algebraic equations by requiring that the boundary conditions are 

satisfied at a discrete number of points on the boundary of the fluid 

domain and that there is a distribution of a number of discrete 

sources over the fictitious boundary. If the simple source is chosen 

as the kernel of the integral equation the coefficients of the resulting 

system of equations are easily evaluated. However, the system of 

equations required to obtain an adequate solution may prove to be of 

considerable magnitude. Introduction of an appropriate Green’s 

function reduces the boundary value problem since the conditions on 

certain boundaries are automatically satisfied. The order of the 

system of equations is therefore reduced considerably which may be of 

particular value in obtaining numerical solutions for integral 

equations of the first kind with regular kernels since the possibility 

of ill-conditioning is reduced. For the linear wave diffraction 
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problem in a two dimensional domain with a bottom boundary at a 

finite depth the appropriate Green’s function has been written in the 

previous chapter and will be referred to as the wave function. The 

details of the numerical discretisation techniques required to 

evaluate the coefficients of the system of equations are given in 

this chapter along with the details of the numerical evaluation of the 

wave function.

A computer program has been written for the indirect wave 

function formulation of the linear diffraction boundary value problem. 

The solution is obtained and applied to evaluate pressures on the object 

and the horizontal and vertical components of force. The free 

surface displacement is also evaluated and the far-field results are 

employed to give the reflection and transmission coefficients. An 

unfortunate feature of the wave diffraction problem in a two-dimensional 

domain is that no exact solutions exist and program testing may only 

be achieved by comparison of results with predictions obtained by 

numerical means. In order to facilitate comparison of program 

results with previously published work, and to provide theoretical 

values for the experimental study, a circular cylindrical object is 

chosen and as an aid to program testing both the singular and regular 

kernel options have been incorporated.

4.2 The Integral Equation

The numerical solution of the Fredholm integral equations 

is now considered. Alternative numerical formulations are outlined 

and the subroutines written for the compilation and solution of the
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system of equations are described. In the indirect formulation 

adopted in this study the results of solution have no physical 

significance and the testing of these subroutines is bound up with 

the testing of the diffraction computer program.

The discretisation procedure was introduced by Fredholm 

(1903) to demonstrate the existence of solutions for integral equations 

but it was not appreciated that the technique could be applied to 

obtain the solutions of the equations. Symm (1964) indicated that 

for a number of simple potential theory problems the discretisation 

procedure yields satisfactory numerical results. The approach 

adopted by Symm and by many others since has been to divide the 

boundary into a number of elements each with a centrally located 

node at which the appropriate boundary condition must be applied.

The unknown function and the kernel of the integral equation are 

assumed to have a constant value on any element which may be 

regarded as being equivalent to the location of a discrete source 

of unknown strength at each of the nodal points. Having effected 

this discretisation procedure a linear equation may be written for 

each application of the boundary conditions. The system of equations 

may be written in matrix form as

(A - B £)x - b 4.2.1

where, if n is the number of nodes, the kernel matrix A and the 

unit matrix I have dimensions nxn and the known vector lb and 

the unknown vector x have dimensions nxl. The constant B has a 

given value for the Fredholm equation of the second kind and is zero 

for the Fredholm equation of the first kind.
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Discretisation procedures have been successfully applied

to obtain solutions for Fredholm equations of the second kind with 

weakly singular kernels but particular care must be taken for problems 

which are formulated as Fredholm equations of the first kind since the 

resulting system of equations may prove to be ill-conditioned. For 

equations with weakly singular kernels this may not prove significant 

however, if the kernel is an everywhere regular function the problem 

becomes more significant. The matrix equation corresponding to the 

Fredholm equation of the first kind,

A x «= b 4.2.2

is said to be ill-conditioned if a small change in the vector _b 

results in a large change in the solution vector x. For an equation 

which is not too ill-conditioned an iterative procedure may be 

employed which permits the solution to be obtained to full machine 

accuracy.

The ill-conditioning of a system of equations is associated 

with loss of diagonal dominance in the kernel matrix A and accounts 

for the lack of a general theory for Fredholm equations of the first 

kind and for the reluctance of many workers to formulate potential 

theory problems in this form. For the weakly singular kernel diagonal 

dominance is achieved by the discretisation procedure described above 

which accounts for the satisfactory numerical results obtained by 

Symm (1964). It has, however, been found that as the discretisation 

becomes more precise such systems of equations do become ill-conditioned 

since diagonal dominance is insufficiently strong and the dominance 

identified for a coarse discretisation is dissipated within a diagonal 

band.
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For an equation with a regular kernel diagonal dominance 

may never be achieved. However, in the particular type of 

problem with which this study is concerned, it may be possible to 

achieve diagonal dominance by locating the source distribution on a 

boundary which is concentric with the physical boundary and which 

is sufficiently close to ensure a maximum coefficient in the kernel 

matrix, A, for the interaction of corresponding nodes and sources. 

A discretisation for such a problem is indicated in Figure 4.2.1 

for an external problem in the domain Q + To with discrete sources 

located on the boundary T which is not included in ft + rQ.

o Source

--- 1 Element

Figure 4.2.1 Discretisation Scheme for Proposed Method 
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The discretisation is similar to that which has been outlined except 

that it is the source boundary which is divided into elements and the 

position of this boundary is determined by assuming a constant value 

for the ratio of the distances from the chosen origin to corresponding 

node and source locations, denoted by rn and rs respectively. This 

type of method was first successfully adopted by Oliveira (1968) for 

the solution of stress analysis problems.

The discretisation scheme discussed above (and adapted to 

the separate boundary formulation) has been employed in most published 

diffraction programs with the notable exception of the two dimensional 

simple source formulations of Au and Brebbia (1982) and Bird and 

Shepherd (1982) and the three dimensional wave function formulation of 

Coates (1982). Alternative discretisation schemes may be employed to 

compile the system of linear equations in which the numerical assumptions 

are less restrictive.

These alternative schemes originated with the finite element 

method and are often referred to as boundary element methods. The 

advance is achieved by introducing higher-order elements within which 

the unknown function is given by a Lagrangian interpolation. The 

advantage gained by employing such higher-order elements is that the 

same accuracy may be achieved for fewer nodes with a consequent 

reduction in the order of the resulting system of equations. This 

reduction may prove to be of particular significance for systems of 

equations in which ill-conditioning may occur and in general reduces 

the computational requirements for compilation and solution. A 

further numerical refinement which may be included in the numerical 

analysis is that of permitting the kernel function to vary over each 

element. This is equivalent to locating more than one discrete source 
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on an element and requires the introduction of suitable numerical 

quadrature formulae for evaluation of the element integrations.

If a solution to an integral equation is achieved for

any of the above-mentioned discretisation schemes the same schemes 

may be adopted for the evaluation of integrals. An integral 

evaluation may be written in matrix form as

x “ A _b 4.2.3

where in this case x, the unknown vector, is to be obtained by 

multiplication of the kernel matrix, A, compiled by the appropriate 

scheme, by the vector, jb, obtained by solution of the original system 

of equations. In the direct method this permits the evaluation of 

the potential function at points within the domain and in the indirect 

method at points on the boundary and within the domain.

The discretisation employed in the diffraction computer program 

is now considered in more detail. The main concern of this investiga-

tion is to establish whether the system of equations obtained by 

discretisation of the regular kernel integral equation is amenable to 

numerical solution. However, since the program includes the 

conventional singular kernel method the subsequent numerical analysis 

is performed for the Fredholm equation of the second kind. For the 

Fredholm equation of the first kind with a regular kernel the 

equations are obtained by exclusion of the singular term. It is 

emphasised that whichever method is adopted integrations apply to 

the fictitious source boundary.
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The equation to be solved for the wave function formulation 

of the linear diffraction boundary value problem has been written in 

general form in equation 3.8.1. As stated the first step is to 

require that the boundary condition is satisfied at a finite number of 

nodal points, say n. We therefore write

0 “ ilw + + I (2£i»A)°<Odr 4.2.4

3m J T 3m

which is valid for i«l,....n, where 8 is given in 3.7.6. The next 

step is to divide the boundary, T, into a discrete number of elements 

AT. The consequence of this subdivision is to reduce the integral 

equation 4.2.A to a sum of a series of element integrations. We 

write

*

0 * ilw + ♦ ag (xpOctpar 4.2.5
3m ._ 3m

where the repeated index £“l,....q implies summation. The variation 

of the unknown function, o, is approximated on each element by the 

Lagrangian interpolation formula

0(1) - N^OoC^), k«l,... .p 4.2.6

where the repeated index, k, implies summation and (p-1) indicates the 

order of the Lagrange interpolation polynomials, N^. Since the 

interpolation polynomials have the same form on each individual 

element we may write equation 4.2.5 in the form

9g <Xi»A)Nk<I)dr 
Ar£9m

4.2.7
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If the points at which the boundary condition is satisfied are 

referred to as boundary nodes and the points on the elements at 

which the value of o are required are referred to as element nodes 

the order of the polynomials and the number of elements are chosen 

to give an equal number of boundary and element nodes. For the 

Fredholm equation of the second kind the locations of the boundary 

and element nodes are identical but for the regular kernel Fredholm 

equation of the first kind the boundary and element nodes are 

located on two distinct but corresponding boundaries.

The simplest technique for the evaluation of the integrals 

in equation 4.2.7 is to assume that the variation of the kernel 

function, 3g/3m, may be adequately modelled by locating a single 

source at the central point on each element. Evaluation of each 

integral is then reduced to a simple multiplication. If, however, 

the element length is too large for the variation of the kernel
I 

function to be small the integrals may be evaluated by locating a 

number of discrete sources on the element. The integrals may then 

be evaluated by applying a quadrature formula of the type

f+1
I(p) dp - H.I(pj), j«l,....m 4.2.8

, -1

where Hj, the weights, are given for the abscissas pj and the repeated 

index, j, implies summation. For the evaluation of the integrals in 

equations 4.2.7 the abscissas correspond to the locations of the 

discrete sources and equation 4.2.8 written for the local element 

coordinate system must be rewritten for the element within the global 

cartesian coordinate system. Equations 4.2.7 become
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0 “ + Bo <H> + 0(Akt)Hj lJl
9m 9m

4.2.9

where the Jacobian, |j|, effects the transformation from the local 

element coordinate system into the global cartesian system.

Evaluation of each quadrature in turn permits the compilation of a 

matrix equation in the form of equation 4.2.1.

Equations 4.2.9 are a general expression for the discretisation 

scheme employed in the writing of the diffraction program. The detail 

is now considered and a brief description of the subroutines written 

for inclusion in the diffraction program is given.

Since the object chosen for the present study is a circular 

cylinder the elements are chosen as arcs of equal length. The 

program includes the option of constant, linear or quadratic 

variation of source density on the elements and details of the 

Lagrange interpolation formulae are given in Appendix A.3.1. The 

choice of element type results in the location of one, two or three 

nodes on each element.

Simpson’s rule may be regarded as a particular example

of the general quadrature formula written in equation 4.2.8.

Adopting Simpson's rule would require the location of discrete sources 

at the extremes of each element and at an odd number of equally spaced 

points within the element. However, it may prove convenient to 

avoid location of the sources at the extremes or at the centre of the 

element since it is for such points that the interpolation 

Polynomial may have a zero value. The Legendre-Gauss quadrature 
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formula is therefore chosen since it avoids these unsuitable 

features and provides a higher degree of accuracy. Details of the 

formula and its application are found in Appendix A.3.2.

The location of boundary nodes, elements and sources for a 

constant variation of source density on an element and a single point 

quadrature has been given in Figure 4.2.1. Alternative discretisation 

schemes for the circular cylinder with sources located on the 

separate boundary are given in Figure 4.2.2 in which the number of 

sources is chosen to be identical to the number of nodes.

In order to prepare for the assembly of the matrix equation 

the subroutines VARN, GAUSSDAT and COORDS have been written. 

Subroutine GAUSSDAT has been written to set the Gauss weights and 

abscissas for single-point, two-point, three-point and four-point 

quadrature, where the type of quadrature to be set is determined by 

the input to the program. Subroutines VARN and COORDS both require 

the locations of the abscissas on the element. The evaluations of 

the Lagrangian polynomials for each of the abscissas are carried out 

in VARN and the nodal and source coordinates within the global 

cartesian system are generated in COORDS. These subroutines along 

with the other subroutines considered in this section are listed in 

Appendix A.4.

Compilation of the matrix equation also requires evaluation 

of the normal gradient of the spacial part of the incident wave 

potential, $w. It is convenient to obtain the output of the 

diffraction program in non-dimensional form and therefore the 

potential 4>w is expressed in non-dimensional form as
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• Boundary node ElementI------------- 1
o Element node □ Source location

Figure 4.2.2 Linear and Quadratic Elements
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w
<t>w/(gH/2u>) 4.2.10

where <£w = gH cosh k(y+h) exp(ikx)
2ui cosh kh

4.2.11

In non-dimensional form, with the over-bar suppressed, we write

21w “ 9x + llw
3m 3x 8m 3y 3m

4.2.12

where 3<t>w ” i k cosh k(y+h) exp(ikx)
3x cosh kh

4.2.13a

3£w ■ k sinh k(y+h) exp(ikx)
3y cosh kh

4.2.13b

and each of the terms in equation 4.2.9 will therefore have

dimensions L but the integral

o(Og(x,Odr

r

4.2.14

required for the evaluation of pressures and free surface displacements, 

will be non-dimensional. The evaluation of equation 4.2.12 for the 

nodal points on the object boundary gives the complex vector 1b of 

equations 4.2.1 and 4.2.2. The evaluations are carried out in 

subroutine INCWAVE.

The quadratures written in equation 4.2.9 are evaluated in 

either subroutine CSRCDEN or SRCDEN and the result of each quadrature 

is located at the appropriate point in the kernel matrix A. The 

discretisation scheme adopted in subroutine CSRCDEN is that outlined 

at the beginning of this section, namely, constant element variation
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of the source density function and a single source located at the 

element node. The purpose for including CSRCDEN is to provide 

comparison with the higher order elements included in the subroutine 

SCRDEN. Two points must be noted with regard to the assembly of 

the matrix equation in subroutines CSRCDEN and SRCDEN. Firstly, 

for coincidence of the object and source boundaries care must be 

taken in evaluation of the integral of the type written in equation 

4.2.7 when the sources are located on the same element as the 

boundary nodes. It is shown in Appendix A.2.3 that the result of an 

exact integration of 3/9m (log R) for this case is self-cancelling 

and therefore the quadrature for this term may be excluded in the 

assembly of the matrix equation.

The second point to be noted is that the wave function, 

the source density function and the known vector due to the 

incident wave potential normal gradient are complex quantities. 

Equation 4.2.1 may therefore be rewritten by making the substitutions

A » Ai + i A2

x » xj + i x?

_b « bl + i b2

4.2.15a

4.2.15b

4.2.15c

and equation 4.2.1 becomes

(Ai - Bpxi - A2x2 - bi 4.2.16a

(Aj - 0I)x2 ♦ Ajoti “ b2 4.2.16b
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Equations 4.2.16 may be rearranged to eliminate the imaginary part of 

the unknown vector and evaluate the real part and then the imaginary 

part is evaluated by back-substitution. This approach has not, 

however, been adopted in the computer program and the equations 4.2.16 

have been assembled in the same form as equation 4.2.1 which is 

partitioned as

Ai ”
I
I -a2

1
1

£1
=

b

A2 1 Al - BI

1
*2 b2

The subroutine SOLN written for the solution of matrix equation

4.2,17 employs the Gaussian elimination method with pivoting and 

scaling to minimize round-off errors. While it is recognized that 

this is not the most efficient method the choice was made in an 

attempt to preserve the diagonal dominance of the matrices to be 

inverted in the regular kernel Fredholm equation formulation.

The discretisation schemes employed (and the associated 

subroutines) have been described and a flow diagram of this first 

stage of the diffraction program, with subroutines in parenthesis, 

is given in Figure 4.2.3. However, the implementation of these 

operations requires that the kernel function of the integral 

equation is evaluated and the next section is concerned with the 

evaluation of the wave function and its normal gradient on the 

object boundary.
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Figure 4.2.3 Assembly and Solution of Matrix Equation
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4.3 The Wave Function

The evaluation of the wave function and the normal gradient 

of the wave function at the specified nodal points on the object 

boundary due to the location of a fluid singularity at a point on the 

fictitious source distribution boundary is basic to the formulation 

employed in the diffraction program. Each of the alternative 

numerical approaches outlined in the previous section require that a 

discrete number of singularities are located on the source boundary 

and that the Neumann condition on the object boundary is satisfied 

at a discrete number of nodal points. The resulting system of 

linear algebraic equations is written as a matrix equation in which 

the elements of the square matrix are obtained by integration of the 

evaluations of the potential gradients due to the discrete fluid 

singularities. Similar techniques are employed in compiling the 

matrix equation for evaluation of the scattered velocity potential 

for which the potentials due to the singularities are required.

In general we are concerned with an object located in a 

two dimensional fluid domain bounded by the free water surface and 

an impermeable fixed bottom boundary at a specified depth. A 

suitable wave function for such a domain has been written in equations 

3.4.9 to 3.4.16 and we require that the corresponding expressions 

for the normal gradient of the function at a nodal point are written. 

For the spacial wave function, g(2S>O> the normal gradient is written

3g " 3g . 3x + 3g . 9y 4.3.1
3m 3x 3m 3y 3m

where 3/3m indicates the normal gradient on the object boundary at
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the nodal point, x. It must be emphasised that this function is 

distinct from the double source discussed in the previous chapter. 

Adopting the same approach as in section 3.4 we may write the function 

9g/3m in complex form as

dg “ 9&1 + i 2g_2
dm dm dm

4.3.2

The imaginary part in equation 4.3.2 is, in component form

i&2 " -kg0 sin k(x-£)
dx

4.3.3a

dg2 “ kg0 tanhk(y+h)cos k(x-£) 
dy

4.3.3b

and the alternative expressions for dgj/dx, dgi/dy are written in the 

subsequent sub-sections.

The remainder of this section is concerned with the numerical 

evaluation of the wave function and its normal gradient. The 

subroutines are listed in appendix A.5 in the order in which they 

occur in this section and numerical results for test cases are given 

in appendix A.6. The imaginary parts of the wave function and it’s 

normal gradient are evaluated in subroutines IMGRN and IMDGRN 

respectively.

^•3.1 The series form

The series form for the real part of the wave function,
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8 » is written in equations 3.4.14 to 3.4.16. The horizontal

and vertical gradients may therefore be written

3x
4.3.4a

3y
»

where,

00

+ £ C. cos c.(y+h)cos c.(n+h)exp(-c.|x-£|) 
• i 1 X X X1=1

00

+ £ C. sin c.(y+h)cos c.(n+h)exp(-c.|x-$|)
i-1 1 1 1

c. and

J&0
9y

The

4.3.4b

(L are specified in equations 3.4.15 and 3.4.16 and

» v sinh k(y+h)cosh k(n+h) 4.3.5

vh + sinh2kh

evaluation of the series in equations 3.4.14 and 4.3.4

for a point x due to a source at the point £ requires firstly that 

the wave data is specified and secondly that the roots of the 

dispersion equation are evaluated. The diffraction program has 

been written for a wave of unit height and therefore specification 

°f the water depth, h, and the wavelength, L(“ 2n/k), with the 

acceleration due to gravity is adequate for the description of a 

Particular wave.

The subroutine DISP has been written for evaluation of 

the roots of the dispersion equation using the Newton-Raphson 

iterative method and details are given in appendix A.3.4. It is
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also convenient to include within subroutine DISP the evaluation

and storage of the function C. and it may be noted that the function

go has been expressed in an alternative form to equation 3.4.13

gQ ■ _1 Cq cosh cQ(n+h)cosh c (y+h) 
c 
o

4.3.6

where c ■ k and 
o

4.3.7

and the evaluation of C is also contained within DISP. 
o

Examination of the form of the series written in equations 

3.4.14 and 4.3.4 indicates that convergence will depend largely on 

the behaviour of the exponential term. Therefore, for a given 

horizontal separation of the field point ac and the source point £ 

the choice of a maximum number of series terms to be evaluated 

wiU determine the extent of the convergence to the required value 

and for a fixed number of terms the convergence is more complete 

for a larger value of |x-C|• Subroutines GRNSER and DGRNSER contain 

the series evaluations of the functions gj and Sgj/Sm respectively 

to a specified accuracy.

The statement of the series form of the gradient of the 

wave function in equation 4.3.4 £8 adequate for the evaluation of the 

Magnitude of 3gj/3m but not, however, the vector quantity. This 

difficulty is due to the inclusion of the modulus function |x-C| 

which results in the specification of the horizontal component of 
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the gradient as a positive quantity for all (x-£). This feature 

might be avoided by eliminating the modulus and taking the negative 

roots of the dispersion equation for (x-C)<0 in equation 4.3.1 

However, in the program (subroutine DGRNSER) it is convenient to 

avoid this problem by testing (x-£) to establish the relative locations 

of the source and field points and the to impart the correct 

direction.

4.3.2 The Integral Form

The integral equation form of the wave function has been

written in equation 3.4.11 and the horizontal and vertical components

of the normal gradient at a point on the object boundary are

.Ml "
9x

_L (X - e) + 1 (x - E)
2n r2 2n r2

I(y)coshu(y+h)sinp(x-C)dy
4.3.8a

2b.i "
9y

1 <X..~ .!L> + 1 (2h + y + n)
4.3.8b2n R2 2n r2

«•

- 1 PV I(y)8inhy(y+h)C08y(x-$)dy
n

o

where I (u) - (u+y)exp(-yh)coshu(n+h)

psinhyh - vcoshyh

4.3.9
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f(p)dp ” PVPV f(p)dp +

The scheme adopted for the evaluation of the principal value integrals 

in equations 3.4.11 and 4.3.8 closely resembles the method used by 

Monacella (1966). However, it may be noted that alternative 

expressions for the wave function might be written which are equivalent 

to equation 3.4.11 and that this approach has been adopted for 

two dimensional problems by Kim (1965), Frank (1967) and more recently 

by Hearn and Donati (private communication).

For the case of the two dimensional wave function the

decay of the integrand is less rapid than in the analogous three 

dimensional function and it therefore becomes advantageous to 

evaluate the infinite integral in the form

Pmax f(v)du 4.3.9

"J

where f(p) may be taken to represent the integral and in any of the 

equations 3.4.11 or 4.3.8 , pi is the change over value and pmax

is the maximum value of p included in the integration.

The difficulty associated with the evaluation of the

Principal value integral is due to the integrand singularity at 

which becomes obvious when the denominator of Ij is rewritten 

ln the form of the dispersion equation

psinhph - vcoshph ■ coshph(ptanhph - v) 4.3.10

The general scheme for the removal of the singular behaviour is as
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follows. For an Integrand fCp) with a simple pole at p«k the integrand 

may be written as f(y) « g(p)/h(p). The principal value integral may 

then be written

PV
Ml

f(y)dp

o

Ml fUl
f(y)dy -

o ' o

g(k) dp

h’ (k)(u-k)

♦ g(k> log I Mi - k |

h* (k) “k
4.3.11

where the prime denotes differentiation with respect to u.

The subroutines written for the evaluation of the wave 

function and it’s normal gradient by the integral expressions are 

GRNIN and DGRNIN respectively. Subroutine GRNIN calls three 

subroutines, LOGTERM which evaluates the logarithmic term, INTI 

which evaluates the principal value integral and INT3 which 

evaluates the remainder integral. Subroutine DGRNIN is similar and 

calls subroutines DLOGTERM, INT2 and INT4. Subroutines LOGTERM and 

DLOGTERM are straightforward and include measures to avoid singular 

behaviour. The integrations in subroutines INTI, INT2, INT3 and INT4 

are carried out by an iterative form of Simpson’s rule in which the 

interval is divided into successively smaller divisions and tests are 

included to obtain convergence to the required accuracy. Attempts 

have been made to replace the Simpson's rule iterative method with a 

Gauss Lageurre quadrature method for an infinite interval in subroutines 

InT3 and INT4. However, the results were in general inadequate and have 

therefore been abandoned.

127



4.3.3 Evaluation for the Diffraction Program

The diffraction program requires that the wave function and 

the normal gradient of the wave function at points on the object 

boundary are evaluated to a specified accuracy. It is required in 

this case that the accuracy to which the wave function evaluations 

are made is sufficient to guarantee that no errors are introduced 

into the final results of the diffraction program and the results 

of tests performed to determine suitable accuracy limits have been 

included in Appendix A.6. The significance of this requirement 

is that if it is known that no errors are introduced due to the 

wave function evaluations then the variations in the final results 

for a given problem obtained by alternative discretisation schemes 

is due solely to these different numerical techniques.

$r.

The results obtained from wave function testing have also 

been used to determine the conditions under which the series or 

integral evaluation subroutines are to be preferred. The tests 

which have been employed to determine the most suitable 

alternative are based on the tests employed in the series 

evaluations (equations A.6.1 and A.6.2) and these tests require that 

che integral evaluation scheme is chosen if the specified accuracy 

unattainable for a maximum number of terms in the series. Since 

this test may, for a more coarse discretisation, choose the series 

alternative for a source on the same element as the node an 

additional test has been included to ensure that under such 

circumstances the integral alternative is always chosen. The 

aubroutines written to effect these selection tests are GRNFN for
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the wave function and DGRNFN for the normal gradient and a flow diagram 

for the wave function evaluation is given in Figure 4.3.1 in which 

only the subroutine names are given and the corresponding subroutines 

for evaluation of the gradient are given in parenthesis.

4.4 The Diffraction Program

If the matrix equation of the type written in equation 4.2.1 

is solved to obtain the unknown source density function vector a 

matrix evaluation of the same form as equation 4.2.3 may be 

performed to obtain the scattered velocity potential. The matrix 

equation corresponds to the integral equation written in equation 

3.8.1 and the matrix evaluation corresponds to the representation

the scattered potential as a surface distribution of wave 

sources

1
2JI

*
o(€)g(x,Odr

r

4.4.1

The numerical procedure adopted for the assembly of the kernel 

matrix is the same as that adopted for the integral equation and 

therefore equation 4.4.1 may be rewritten

4.4.2

The subroutines GAUSSDAT, VARN and COORDS are therefore also required 

the evaluation of equation 4.4.2 but one feature of the matrix

compilation differs. It has been demonstrated in Appendix A.3.3
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Figure 4.3.1 Wave Function Evaluation
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that for a source on an element the integration of the normal gradient 

of the logarithmic singularity vanishes. In this case the logarithmic 

singularity does not vanish when integrated and is not accurately 

evaluated by a simple quadrature and therefore an exact integration 

is carried out, the details of which are given in Appendix A.3.5.

The results of the analytical integrations are included in subroutine 

ELINT which is listed in Appendix A.7 along with the other subroutines 

described in this section.

The scattered potential <$> is never evaluated since it iss

more meaningful to evaluate the quantities which have physical 

significance, namely the pressure on the object boundary and the free 

surface displacement. Expressions of the same form as equation 

A.4.2 may, by application of Bernoulli’s equation, be written for 

these quantities since

P8(*i) “ iwp ♦fOEi) 4.4.3

30(1 n8(x£) " $8(x£) 4.4.4

8

In the diffraction program the results of evaluating equation 4.4.2 

ate in non-dimensional form and therefore equations 4.4.3 and 4.4.4 

are rewritten

P8<2£1) " i ♦s<S1>

%(*i> ’ 1 *s(xi)

4.4.5

4.4.6
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where the overbar indicates a non’-dimension al quantity and

p (x.)/(pgH/2) 
S '“’I.

4.4.7

n (x.)/(H/2) 
s “1

4.4.8

The subroutines written for the evaluation of equation

4.4.5 and 4.4.6 are named CPRESS, PRESS and CWAVE, WAVE,where as in 

the integral equation subroutines the prefixed letter C indicates 

that a constant element, single source discretisation scheme is 

employed. The pressure evaluation subroutines give the incident wave 

and total wave pressures and the results are integrated in subroutine 

FORCE to obtain the components of the Froude Krylov force and the 

total force as given in equations 3.10.5 and 3.10.6. The integrations 

are achieved by application of Simpson’s rule for which the subroutine 

SIMPSON has been written and it may be noted that this subroutine 

is written specifically for a closed boundary since the initial 

and final interval points are taken to coincide. The subroutine 

FORCE also includes the evaluation of the diffraction coefficients 

which are defined by

4.4.9

The reflection and transmission coefficients might have

been evaluated by application of the relations given in equations 

3*10.14, 3.10.15, 3.10.17 and 3.10.18, however, a more straightforward 

aPproach has been adopted based on the expressions for the wave 
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function at large distances from the source location. The details 

of this procedure are included in Appendix A.3.6 and the subroutines 

written for the implementation of this scheme are CREFL and REFL.

Each of the subroutines mentioned above have been written 

for the evaluation of the results in complex form and therefore for 

each quantity the modulus and the argument of the complex number give 

the maximum amplitude of the fluctuating quantity and its phase. 

A final flow diagram for the diffraction program is given in 

Figure 4.4.1 and the remainder of the chapter is devoted to the testing 

of the program and the theoretical investigation of the diffraction 

prohlem based on numerical predictions. A number of the facilities 

within the diffraction program are not used until the following 

chapter in which the numerical predictions are compared with the 

results of laboratory tests.

4.5 Numerical Results

A test programme has been devised and carried out to 

investigate the numerical solution of the linear diffraction 

boundary value problem by the integral equation method for a 

submerged circular obstacle in water of finite depth. The results 

of these tests, which have been designed for the investigation of 

two distinct problems, are presented in this section.

The primary objective is to determine whether the regular 

kernel integral equation formulation is amenable to numerical solution 

ar*d the secondary objective is to establish whether, for either the
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Figure 4.4.1 Results of Diffraction Program
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regular or singular kernel method, the use of higher-order 

discretisation techniques is advantageous. The study of these two 

problems lias largely been carried out in parallel and the same two 

criteria have been employed to evaluate the suitability of the methods 

for application to obtain solutions for diffraction problems. The 

alternative methods which have been investigated in this series of 

tests may only be accepted as suitable alternatives to the 

conventional methods if firstly they prove to be reliable and 

secondly if the results are obtained by a more computationally 

efficient means.

The regular kernel integral equation formulation has been 

used by Van Oortmerssen (1972) and Coates (1982) for the diffraction 

problem in a three dimensional domain. The results obtained by 

Van Oortmerssen (1972) and later by Boreel (1974) using the same 

numerical model are not compared with solutions which are known to be 

correct for the problems considered and the comparison with 

experimental results suggests that the numerical results might be 

regarded with some suspicion. Coates (1982) has applied the regular 

kernel formulations to obtain predictions for the force on a surface 

piercing circular cylinder in water of constant finite depth. The 

choice of this geometry permits comparison of numerical results with 

the exact solution obtained by the method introduced by Havelock (1940) 

and extended to the problem of wave diffraction in finite water depths 

by MacCamy and Fuchs (1954). The results presented do not appear to 

do justice to the method since disagreement with the exact solution 

way in general be attributed either to errors in the wave function 

evaluation or to the coarse discretisations which have been
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employed. However, it has been demonstrated that the solutions 

obtained are not particularly sensitive to the location of the 

source boundary except when this boundary approaches the object 

boundary.

The majority of published numerical results for wave 

diffraction problems obtained by the integral equation method have 

employed simple discretisation techniques. The numerical 

formulation for “higher-order elements" was given by Bai and Yeung 

(1974) but results were only obtained using the conventional constant 

element method. Eatock Taylor (1982) also presents the required 

numerical formulation for application of higher-order elements but 

results have only been obtained using what are referred to as 

constant source panels.

The aim of refining the numerical discretisation techniques 

is primarily to achieve an increased computational efficiency, 

if the integral equation method is employed for surface distributions 

of simple sources and double sources higher-order elements may be used 

with Gaussian quadrature formulae without much regard to the 

number of Gauss points which are required. However, if the wave 

function is to be used in either the direct or indirect formulation 

increasing the number of Gauss points increases the number of wave 

function evaluations which has a considerable effect on the 

computational resources required to achieve a solution. Therefore, 

if higher-order elements are to be used for such problems it must 

first be demonstrated that the improvement in the numerical modelling 

Permits a more coarse discretisation with a reduction in the total
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number of wave function evaluations.

Numerical results for the solution of a number of diffraction 

and radiation problems in two dimensional domains using simple source 

distributions have been published by Au and Brebbia (1982) and Bird 

and Shepherd (1982). Both works employ higher-order discretisations 

and the later study was initiated by Brebbia, co-author of the first 

paper cited. While successfully applying linear and quadratic 

elements with a four point Gaussian quadrature to obtain solutions 

to three different problems Bird and Shepherd (1982) do not attempt to 

demonstrate that these methods are an improvement to the conventional 

constant element approach. The results presented by Au and Brebbia 

appear a little more instructive since the constant, linear and 

quadratic element results are compared and the number of nodes used 

are specified. The results obtained for a bottom-seated semi-

circular obstruction are taken to indicate that the implementation 

of quadratic elements provides a more rapid convergence to the 

correct solution and it is suggested that this is due to the 

better representation of the geometry of the obstruction. However, 

caution must be exercised in accepting this result since the 

correct solution due to Chakrabarti (1973) is only in fact correct 

for an obstruction submerged in deep water and the results presented 

do not extend into this range but are restricted to waves in water of 

finite depth. Further examination of the results presented gives 

evidence that the numerical results do not converge to the assumed 

correct solution however precise the discretisation and reinterpretation 

°n these grounds might suggest that the accuracy and efficiency of 

the constant element results are not improved upon.
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The only known application of higher-order discretisation 

techniques to a wave function formulation is due to Coates (1982). 

It is indicated that by application of two dimensional quadratic 

elements satisfactory results (less than 1Z error) are obtained for 

56 nodes compared with the 96 used by Hogben and Standing (1974) and 

the 120 used by Garrison and Chow (1972). However, these results 

are again inconclusive since the superior rate of convergence 

obtained may be due to the use of a separate source boundary.

As an initial test for the diffraction program the results 

must be compared with data which is known to be correct. It is 

preferable when testing a numerical method to choose a simple 

geometry for which an exact solution is known and to establish that 

the method and the program written to execute the method achieve 

satisfactory accuracy. For two dimensional problems this approach 

is not possible since no exact solution is available and it therefore 

becomes necessary to compare results with established numerical 

results. In this section the results of the diffraction program 

for the range of element locations and discretisations are first 

compared with the results published by Naftzger and Chakrabarti 

(1979). These comparative tests are intended only to give a first 

impression for the alternative schemes and are followed by a more 

detailed examination. As an additional test results have been 

°btained for the case of a semi-immersed circular obstacle in water 

°f infinite depth and comparison has been made with the results of 

Martin and Dixon (1983). These results are presented in 

Appendix A.8.

138



The results obtained by Naftzger and Chakrabarti for the 

case of a submerged circular obstacle in water of finite depth 

have been achieved using the direct integral equation formulation 

with the same form of the wave function as that which has been 

used in the present study. Two tests have been used to establish 

the accuracy of the results. The first, which is more valid in 

the case of the direct formulation than the indirect, requires a 

check on the conservation of energy in a similar manner to the 

method described in Appendix A.3.6. The second is only valid for

the small portion of the data which approximates to the infinite 

water depth problem for which it has been demonstrated that the results 

do agree well with those of Ogilvie (1963) who used the multipole 

method. The only details of the constant element discretisation 

required to achieve the results presented is that about 100 elements 

are required to give results accurate to within IX but that more 

elements are required if the obstacle is close to the free surface or 

bottom boundary.

The results given in this section are intended to give a 

full comparison of the alternative schemes outlined in this chapter 

and it has been ensured that the results are not obscured by variations 

in the numerical results for the wave function and its normal gradient. 

Initial tests have indicated that the source boundary location parameter 

RAT ■ rs/rn may be set to 0.7 to achieve satisfactory results and 

therefore tests have been performed for this setting before 

investigating the effects of varying RAT. Before presenting the 

tesults it may be noted that in the assembly of the matrix equations 

two different numerical variations are treated. The first is that 

°f the source density function and the program has been written to 
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include assumed constant, linear and quadratic variation and these 

alternatives are often referred to as constant, linear and quadratic 

elements. The second is concerned with the evaluation of the 

integrals on each element and therefore relates to the variation of 

the wave function or the gradient of the wave function over the element. 

The numerical treatment of this second type of variation is determined 

by the choice of quadrature formula and the initial approach has been 

to choose this formula so that the total number of quadrature points 

(sources) is equal to the total number of nodes. The significance of 

this choice is that with a reduction of the element length both types 

of numerical variation will be modelled more closely.

The first set of results presented in Figures 4.5.1 to 

4.5.3 and Tables 4.5.1 to 4.5.3 are obtained by the conventional 

singular kernel indirect integral equation formulation with a constant 

element single source discretisation. The results are presented for 

a range of the parameter ka which in this case must be regarded as 

a diffraction refraction parameter and since the water depth 

Parameter h/a • 2.5 and the cylinder depth parameter y0/a - 1.25 

are set the range of ka includes shallow, intermediate and deep 

water depths. In assessing these results for the horizontal and 

vertical components of force and the reflection coefficient plus those 

results which are presented subsequently two indications of convergence 

way be identified: the proximity of the results to those of 

Naftzger and Chakrabarti and the grouping of the results for the 

different discretisations. For this first set of graphs it is clear 

that the results are better for larger values of the alternative 

water depth parameter h/L.
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For an assumed linear variation of source density the 

results presented in Figures 4.5.4 to 4.5.6 and Tables 4.5.4 to 4.5.6 

give conflicting and therefore inconclusive evidence for the 

horizontal and vertical components of force and the reflection 

coefficient and therefore a more detailed investigation of the 

comparative rates of convergence is required. However, examination 

of the results for an assumed quadratic variation of source density 

given in Figures 4.5.7 to 4.5.9 and Tables 4.5.7 to 4.5.9 are clearly 

less satisfactory than those achieved by the constant and linear 

element discretisations for smaller values of the parameter h/L.

The results for the regular kernel method for the same 

discretisation scheme as was used in Figures 4.5.1 to 4.5.3 have been 

given in Figures 4.5.10 to 4.5.12 and Tables 4.5.10 to 4.5.12. These 

graphs give a preliminary indication that the results obtained by 

this alternative method are not only satisfactory but are superior 

to the results of the conventional singular kernel method. Application 

of the higher-order discretisation techniques to the regular kernel 

method affect the convergence adversely as is demonstrated in Figures 

4.5.13 to 4.5.18 and Tables 4.5.13 to 4.5.18 but in all cases the 

method yields satisfactory results for the more precise discretisation 

schemes.

Examination of the residual values (RES) in Tables 4.5.1 to 

4.5.18 indicates that this measure of energy conservation is no more 

than a useful indicator of the accuracy of the results achieved. 

This test must be viewed with additional caution because it only 

checks the evaluations of the first stage of the program, namely 

the solution stage.
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SOURCES DISTRIBUTED ON CYLINDER BOUNDARY
NO NODES= 12 (CONSTANT ELEMENTS)

ONE-POINT GAUSS QUADRATURE

Processor time=0.0272

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod (Fy) Arg(Fy)

0.10 0.04 0.303 -0.400 0.3E-07 1.337 0.311 0.104 -1.567

0.20 0.08 0.482 -0.319 0.3E-07 2.215 0.537 0.436 -1.537

0.30 0. 12 0. 529 -0.250 0.3E-07 2.511 0.672 0.961 -1.456

0.40 0.16 0.460 -0.177 0.5E-07 2.491 0.747 1.584 -1.302

0.50 0.20 0.304 -0.096 0.IE-07 2.327 0.789 2.079 -1.091
0.60 0.24 0.131 -0.024 0.7E-08 2.109 0.813 2. 246 -0.889
0.70 0.28 0.006 0.024 0.7E-08 1.879 0.826 2.145 -0.751
0.80 0.32 0.060 0.049 0.3E-07 1.656 0.832 1.941 -0.679
0.90 0.36 0.087 0.058 0.6E-07 1.450 0.834 1.726 -0.650
1.00 0.40 0.093 0.058 0.IE-06 1.263 0.830 1.531 -0.647
1.50 0.60 0.078 0.011 0.7E-07 0.609 0.763 0.872 -0.730
2.00 0.80 0.118 -0.046 0.7E-07 0.266 0.653 0.520 -0.799

Table 4.5.1 Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
NO NODES= 16 (CONSTANT ELEMENTS)

ONE-POINT GAUSS QUADRATURE

Processor time-0.0378

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg (Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0.289 -0.404 0.2E-07 1.317 0.297 0.104 -1.567
0.20 0.0-8 0.466 -0.326 0.IE-07 2.181 0. 516 0.427 -1.540
0.30 0.12 0. 516 -0.259 0.2E-07 2.490 0.650 0.931 -1.463
0.40 0.16 0.458 -0.188 0.6E-08 2.485 0.727 1.523 -1.319
0.50 0. 20 0.315 -0.111 0.3E-07 2.333 0.771 1.999 -1.120
0.60 0.24 0.153 -0.042 0.3E-07 2.123 0.797 2.174 -0.928
0.70 0.28 0.034 0.006 0.1E-07 1.900 0.812 2.089 -0.793
0.80 0.32 0.031 0.032 0.IE-06 1.682 0.820 1.896 -0.720
0.90 0.36 0.057 0.042 0.2E-07 1.480 0.823 1.686 -0.691
1.00 0.40 0.061 0.043 0.4E-07 1.297 0.822 1. 490 -0.688
1.50 0.60 0.021 -0.004 0.7E-07 0.660 0.768 0.793 -0.782
2.00 0.80 0.009 -0.064 0.8E-07 0.333 0.681 0.386 -0.881

Table 4.5.2 Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
NO NODES= 32 (CONSTANT ELEMENTS) 

ONE-POINT GAUSS QUADRATURE

Processor timesa0.1157

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0.270 -0.411 0.2E-07 1. 285 0.277 0.105 -1.567

0.20 0.08 0.441 -0.336 0.2E-08 2.121 0.486 0.421 -1.541
0. 30 0.12 0.495 -0.271 0.6E-07 2.442 0.619 0.908 -1.469
0.40 0.16 0.444 -0.202 0.5E-07 2.454 0.698 1.477 -1.334

0.50 0.20 0.314 -0.128 0.1E-07 2.316 0.744 1.941 -1.146
0.60 0.24 0.161 -0.061 0.5E-07 2.116 0.771 2. 129 -0.962
0.70 0.28 0.044 -0.013 0.7E-08 1.898 0.787 2.067 -0.828

0.80 0.32 0.021 0.013 0.1E-07 1.684 0.796 1.890 -0.754

0.90 0.36 0.049 0.025 0.5E-07 1.484 0.800 1.689 -0.722

1.00 0. 40 0.055 0.026 0.6E-07 1.301 0.799 1.499 -0.717
1.50 0.60 0.017 -0.018 0.7E-07 0.653 0.749 0.809 -0.805
2.00 0.80 0.001 -0.076 0.2E-06 0.310 0.666 0. 409 -0.904

Table 4.5.3 Diffraction Results for a Submerged Cylinder
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SOURCES DISTRIBUTED ON CYLINDER BOUNDARY
NO NODES55 12 (LINEAR ELEMENTS)

ONE-POINT GAUSS QUADRATURE

Table 4.5.4 Diffraction Results for a Submerged Cylinder

ka h/L Mod (R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0.332 -0.390 0.6E-08 1. 536 0.343 0.121 -1.566
0.20 0.08 0.519 -0.306 0.IE-07 2.372 0. 578 0. 471 -1.538

0.30 0.12 0. 562 -0.239 0.5E-08 2.615 0.708 1.015 -1.459
0.40 0.16 0.490 -0.171 0.3E-07 2.555 0.774 1.647 -1.310
0.50 0.20 0. 335 -0.098 0.4E-07 2. 369 0.802 2.135 -1.110
0.60 0. 24 0.165 -0.036 0.5E-07 2.141 0.811 2.296 -0.925
0.70 0.28 0.041 0.001 0.7E-08 1.911 0.808 2.197 -0.804

0.80 0. 32 0.027 0.017 0.5E-07 1.694 0.798 1.998 -0.746
0.90 0.36 0.056 0.017 0.5E-07 1.496 0.784 1.788 -0.731
1.00 0.40 0.064 0.008 0.5E-07 1.318 0.767 1.596 -0.741
1.50 0.60 0.029 -0.076 0.7E-07 0.685 0.651 0.928 -0.891
2.00 0.80 0.013 -0.163 0.6E-07 0.334 0.523 0.554 -1.035
Proc<essor time=0. 0328

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
NO NODES55 16 (LINEAR ELEMENTS) 

ONE-POINT GAUSS QUADRATURE

Processor timess0.0440

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0.316 -0.395 0. IE-07 1.483 0.325 0. 117 -1.567
0.20 0.Q8 0.499 -0.313 0.3E-07 2.322 0.555 0.459 -1.538
0.30 0.12 0.545 -0.246 0.2E-07 2.588 0.688 0.991 -1.460
0.40 0.16 0.478 -0.176 0.2E-07 2.547 0.759 1.609 -1.311
0.50 0.20 0. 326 -0.100 0.1E-07 2.372 0.794 2.091 -1.109
0.60 0.24 0.158 -0.035 0. 3E-07 2.149 0.810 2.250 -0.920
0.70 0. 28 0.037 0.007 0.4E-07 1.919 0.815 2.149 -0.793
0.80 0.32 0.029 0.027 0.5E-07 1.700 0.813 1.947 -0.729
0.90 0.36 0.056 0.031 0.3E-07 1.498 0.806 1.732 -0.709
1.00 0. 40 0.061 0.026 0.IE-06 1.317 0.796 1.534 -0.714
1.50 0.60 0.021 -0.044 0.8E-08 0.678 0.707 0.835 -0.843
2. 00 0.80 0.003 -0.120 0.5E-07 0.341 0. 595 0.429 -0.973

Table 4.5.5 Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
NO NODES55 32 (LINEAR ELEMENTS) 

ONE-POINT GAUSS QUADRATURE

Processor time-0.1199

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0.285 -0.406 0.9E-08 1.373 0.293 0.112 -1.567
0.20 0.08 0.461 -0.328 0.1E-07 2.203 0. 510 0.439 -1.540
0.30 0.12 0.513 -0.262 0.7E-08 2.504 0.643 0.944 -1.465
0.40 0.16 0.456 -0.192 0.IE-07 2.496 0.720 1.533 -1.324

0.50 0.20 0.318 -0.117 0.7E-09 2.343 0.763 2.006 -1.131
0. 60 0.24 0.159 -0.049 0.3E-08 2.133 0.787 2.183 -0.943
0.70 0.28 0.040 -0.003 0.5E-07 1.909 0.801 2.104 -0.810
0.80 0.32 0.025 0.022 0.1E-07 1.690 0.807 1.914 -0.739
0.90 0.36 0.052 0.031 0.8E-07 1.487 0.808 1.705 -0.711
1.00 0. 40 0.057 0.031 0.9E-07 1.301 0.805 1.509 -0.708
1.50 0.60 0.017 -0.020 0.9E-07 0.644 0.745 0.806 -0.809
2.00 0.80 0.001 -0.083 0.4E-06 0.298 0.654 0.401 -0.916

Table 4.5.6 Diffraction Results for a Submerged Cylinder
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SOURCES DISTRIBUTED ON CYLINDER BOUNDARY
NO NODES= 12 (QUADRATIC ELEMENTS)

TWO-POINT GAUSS QUADRATURE

Processor time-0.0494

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod (Fy) Arg(Fy)

0.10 0.04 0.395 -0.367 0.3E-07 1.765 0.412 0. 142 1.452

0.20 0.08 0.585 -0.275 0. 2E-07 2. 587 0.667 0.542 -1.570
0.30 0.12 0.606 -0.204 0.IE-07 2.756 0.793 1.167 -1.449
0.40 0.16 0.495 -0.126 0.3E-07 2.639 0.850 1.891 -1.253
0.50 0. 20 0.288 -0.041 0.6E-07 2.413 0.873 2. 392 -1.003
0.60 0.24 0.085 0.027 0.2E-07 2.156 0.877 2.457 -0.791
0.70 0.28 0.045 0.063 0.3E-07 1.906 0.870 2.255 -0.667
0.80 0.32 0.108 0.075 0.7E-07 1.674 0.857 1.993 -0.616
0.90 0.36 0.132 0.072 0.IE-06 1.465 0.840 1.748 -0.608
1.00 0.40 0.135 0.060 0.IE-06 1.278 0.819 1. 536 -0.623
1.50 0.60 0.095 -0.033 0.4E-08 0.618 0.693 0.844 -0.783
2.00 0.80 0.071 -0.126 0.IE-06 0.245 0. 556 0. 486 -0.937

Table 4.5.7 Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
NO NODES53 16 (QUADRATIC ELEMENTS) 

TWO-POINT GAUSS QUADRATURE

Processor timess0.0709

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0.368 -0.378 0.2E-07 1.664 0.381 0. 126 1.535
0. 20 0. Q8 0.561 -0.289 0.8E-08 2. 502 0.630 0.491 -1.550
0. 30 0.12 0.597 -0.219 0.IE-07 2.710 0.762 1. 063 -1.456
0.40 0.16 0.514 -0.145 0. 5E-07 2.621 0.829 1.732 -1.286
0.50 0.20 0.341 -0.063 0.8E-07 2.411 0.862 2. 233 -1.061
0. 60 0.24 0.158 0.006 0.2E-07 2.162 0.878 2.356 -0.857
0.70 0.28 0.035 0.049 0.5E-07 1.912 0.884 2. 207 -0.727
0.80 0.32 0.025 0.068 0.IE-06 1.677 0.884 1.970 -0.666
0.90 0.36 0.045 0.072 0.7E-07 1.462 0.879 1.736 -0.650
1.00 0.40 0.045 0.066 0.IE-06 1. 269 0.871 1. 527 -0.658
1. 50 0.60 0.012 -0.004 0.5E-07 0.608 0.788 0.809 -0.795
2.00 0.80 0.035 -0.082 0.1E-06 0.280 0.674 0.400 -0.927

Table 4.5.8 Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
NO NODES’3 32 (QUADRATIC ELEMENTS) 

TWO-POINT GAUSS QUADRATURE

Processor time«0.1720

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0.302 -0.400 0.4E-09 1.428 0.311 0. 115 -1.566
0. 20 0.08 0.483 -0.319 0.6E-08 2. 261 0. 536 0. 449 -1.538
0.30 0.12 0.531 -0.251 0.IE-07 2. 544 0.671 0.970 -1.460
0.40 0.16 0.468 -0.180 0.4E-08 2.518 0.746 1.580 -1.311

0. 50 0.20 0.318 -0.101 0. 4E-07 2.353 0.789 2.061 -1.106
0.60 0.24 0.151 -0.031 0.5E-07 2.134 0.812 2. 224 -0.910

0.70 0.28 0.031 0.016 0.IE-06 1.903 0.826 2.122 -0.776

0.80 0.32 0.033 0.041 0. IE-07 1.679 0.833 1.916 -0.705
0.90 0.36 0.057 0.050 0.9E-07 1.471 0.835 1.698 -0.678
1.00 0.40 0.060 0.050 0.6E-07 1.282 0.833 1.496 -0.677
1.50 0.60 0.016 -0.001 0.1E-07 0.618 0.775 0. 784 -0.779
2.00 0.80 0.001 -0.033 0.4E-03 0.274 0.689 0.378 -0.889

Table 4.5.9 Diffraction Results for a Submerged Cylinder
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SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS= 0.70*CA
NO NODES= 12 (CONSTANT ELEMENTS)

ONE-POINT GAUSS QUADRATURE

Processor time=0.0165

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod (Fy) Arg(Fy)
0.10 0.04 0.232 -0.423 0.2E-07 1.178 0.237 0.103 -1.568
0.20 0.08 0.388 -0.356 0.6E-09 1.964 0.425 0.401 -1.544
0.30 0.12 0.446 -0.296 0.9E-08 2.309 0.552 0.852 -1.481
0.40 0.16 0.411 -0.233 0.3E-08 2.358 0.631 1.374 -1.363
0.50 0.20 0.302 -0.166 0.IE-07 2.250 0.678 1.813 -1.200
0.60 0.24 0.168 -0.105 0.IE-07 2.073 0.705 2.025 -1.034
0.70 0.28 0.057 -0.060 0.2E-07 1.873 0.720 2.011 -0.908
0.80 0.32 0.011 -0.034 0.5E-08 1.673 0.726 1.875 -0.833
0.90 0.36 0.045 -0.023 0.8E-07 1.483 0.727 1.702 -0.799
1.00 0.40 0.057 -0.021 0.8E-07 1.308 0.724 1.530 -0.790
1.50 0.60 0.042 -0.067 0.IE-07 0.666 0.659 0.884 -0.870
2.00 0.80 0.049 -0.129 0.8E-07 0.308 0.558 0. 511 -0.963

Table 4.5.10 Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS= 0.70*CA 
NO NODES= 16 (CONSTANT ELEMENTS) 

ONE-POINT GAUSS QUADRATURE

Processor time-0.0264

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0.247 -0.418 0.3E-08 1. 238 0.253 0.106 -1.567
0.20 O’. 08 0.410 -0.348 0.2E-07 2.042 0. 451 0. 410 -1.543
0.30 0.12 0.467 -0.285 0.2E-07 2.379 0.581 0. 876 -1.476
0.40 0.16 0.426 -0.220 0.2E-08 2.413 0.661 1.416 -1.351
0.50 0.20 0. 309 -0.149 0.2E-07 2. 292 0.708 1.863 -1.177
0.60 0.24 0.167 -0.085 0.4E-07 2.105 0. 736 2.062 -1.003
0.70 0.28 0.054 -0.038 0.7E-08 1. 897 0.752 2.025 -0.873
0.80 0.32 0.012 -0.011 0.3E-07 1.690 0.761 1.868 -0.797
0.90 0.36 0.042 0.000 0.IE-06 1.495 0.765 1.679 -0.763
1.00 0.40 0.051 0.003 0.9E-07 1.316 0.764 1.495 -0.756
1.50 0.60 0.020 -0.040 0.1E-08 0.671 0.712 0.809 -0.839
2.00 0.80 0.006 -0.099 0.1E-06 0.327 0.627 0.400 -0.938

Table 4.5.11 Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS = 0.70*CA 
NO NODES= 32 (CONSTANT ELEMENTS) 

ONE-POINT GAUSS QUADRATURE

Processor time=0.0939

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0.253 -0.417 0.1E-07 1.257 0.259 0.107 -1.567
0.20 0.08 0.418 -0.345 0.2E-07 2.066 0.459 0.415 -1.543
0.30 0.12 0.474 -0.281 0.1E-07 2.398 0.590 0.887 -1.474
0.40 0.16 0.431 -0.215 0.IE-06 2.426 0.670 1.435 -1.346
0.50 0.20 0.310 -0.144 0.2E-07 2. 301 0.717 1.889 -1.169
0.60 0.24 0.165 -0.078 0.2E-06 2.110 0. 746 2.086 -0.991
0.70 0.28 0.052 -0.031 0.3E-06 1.898 0.763 2.041 -0.859
0.80 0.32 0.014 -0.003 0.5E-09 1.688 0.773 1.878 -0.784
0.90 0.36 0.044 0.009 0.7E-08 1.490 0.777 1.685 -0.750
1.00 0. 40 0.052 0.011 0.IE-06 1.309 0.777 1.499 -0.742
1.50 0.60 0.017 -0.030 0.9E-07 0.655 0.730 0.808 -0.824
2. 00 0.80 0.001 -0.086 0.1E-06 0.305 0.650 0.404 -0.920

Table 4.5.12 Diffraction Results for a Submerged Cylinder
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SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS= 0.70*CA
NO NODES= 12 (LINEAR ELEMENTS)

ONE-POINT GAUSS QUADRATURE

Processor time=0.0155

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0. 272 -0.413 0. IE--02 1.364 0. 278 0.107 1.366
0. 20 0.08 0.667 -0.221 0.7E 00 2. 553 0.716 1.637 -0.538
0.30 0.12 0.443 -0.238 0.5E--01 2. 345 0.693 0.920 -1.455
0.40 0.16 0.262 -0.316 0.4E 00 2.107 0.704 1.790 -0.923
0.50 0.20 0. 344 0.003 0.5E 00 2.295 0. 739 2.220 -1.174
0.60 0.24 0.392 0.002 0.2E 00 2.005 0.869 2.878 -0.767
0.70 0.28 0.376 -0.230 0.1E 02 2.491 1.319 4.485 0. 681
0.80 0.32 0.266 -0.151 0.7E 00 2.284 0.820 3.198 1.487
0.90 0.36 0.305 0.452 0.3E--01 1.706 0.875 1.316 -0.954
1.00 0.40 0.378 0.496 0.8E--01 1.019 0.881 1.854 -0.666
1.50 0.60 0.664 0.130 0.9E 00 0.891 0. 415 1.349 -1.244
2.00 0.80 0.369 -0.325 0.4E 00 0. 306 -0.282 0.717 1.124

Table 4.5.13 Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS= 0.70*CA 
NO NODES= 16 (LINEAR ELEMENTS) 

ONE-POINT GAUSS QUADRATURE

Processor timea0.0256

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0.257 -0.415 0.7E-03 1. 277 0. 264 0.107 -1.566
0. 20 0‘. 08 0.422 -0.341 0.8E-02 2.0§8 0.463 0.434 -1.540
0.30 0.12 0.477 -0.272 0.7E-02 2.442 0.600 0.904 -1.481
0. 40 0.16 0.419 -0.193 0.4E 00 2. 236 0.551 1.158 1.193
0.50 0.20 0.546 -0.293 0.2E 00 2.403 0.473 2.013 -1.202
0.60 0.24 0.158 -0.062 0.3E-01 2. 118 0.750 2.085 -0.967
0.70 0.28 0.127 -0.112 0.7E-02 1.696 1.031 0.738 -0.620
0.80 0.32 0.022 0.353 0.2E 00 1.634 0.839 1.670 -0.733
0.90 0.36 0.224 0.180 0.7E 00 1.755 0.942 2.356 -0.813
1.00 0. 40 0.053 0.147 0.3E-01 1.310 0.795 1.541 -0.717
1.50 0.60 0.058 0.119 0.2E 00 0. 587 0.775 0.866 -0.838
2.00 0.80 0.076 0.120 0.1E 00 0. 324 0.639 0.366 -1.013

Table 4.5.14 Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS= 0.70*CA 
NO NODES= 32 (LINEAR ELEMENTS) 

ONE-POINT GAUSS QUADRATURE

Processor time«0.0940

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0.253 -0.416 0.3E-05 1.257 0.259 0. 107 -1.568
0. 20 0.08 0.418 -0.345 0.6E-04 2.066 0.459 0.415 -1.543
0. 30 0. 12 0. 474 -0.281 0.5E-05 2.398 0.590 0.887 -1.474
0.40 0.16 0.431 -0.215 0.5E-04 2.427 0.670 1.435 -1.346
0.50 0. 20 0.310 -0.144 0.4E-03 2.300 0.718 1.889 -1.169
0.60 0.24 0.165 -0.078 0.1E-03 2.110 0.746 2.086 -0.991
0.70 0.28 0.051 -0.034 0.IE-02 1.898 0.763 2.042 -0.859
0.80 0.32 0.014 -0.001 0.4E-03 1.689 0.773 1.878 -0.784
0.90 0.36 0.044 0.009 0.4E-04 1.490 0. 777 1.685 -0.750
1.00 0. 40 0.052 0.011 0.5E-03 1.309 0.777 1.499 -0.742
1. 50 0.60 0.017 -0.019 0.IE-03 0.655 0.730 0.807 -0.824
2.00 0.80 0.001 0. 189 0.5E-03 0.305 0.651 0. 404 -0.917

Table 4.5.15 Diffraction Results for a Submerged Cylinder
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SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS= 0.70*CA
NO NODES55 12 (QUADRATIC ELEMENTS)

TWO-POINT GAUSS QUADRATURE

Processor time=0.0148

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0.266 -0.397 0.5E--02 1.300 0.298 0.116 1.366
0.20 0.08 0.440 -0.335 0.1E--02 2. 180 0.490 0.432 1.470
0.30 0.12 0.498 -0.267 0.2E--01 2. 459 0.620 0.924 -1.448
0.40 0.16 0.522 0.023 0. IE 00 2.377 0.775 2.030 -1.402
0.50 0.20 0.427 0.446 0.2E 00 1.786 0.646 3.060 -0.770
0.60 0.24 0.100 -0.107 0.3E 00 2.291 0. 727 2.428 -0.687
0.70 0.28 0.24 5 0. 326 0.2E 00 1.921 0.812 2.481 -0.843
0.80 0.32 0.407 -0.365 0.1E 01 2.425 0.893 2. 248 -0.706
0.90 0.36 0.395 0.277 0.2E 00 1.638 0.931 1.247 -0.506
1.00 0.40 0.159 0.258 0.2E 00 1.292 0.844 1.142 -0.654
1.50 0.60 3.605 -0.419 0.3E 02 3.410 -0.858 2.352 -0.514
2.00 0.80 4.426 -0.466 0.2E 02 2. 525 -0.063 4.649 0.959

Table 4.5.16 Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS55 0.70*CA 
NO NODES55 16 (QUADRATIC ELEMENTS) 

TWO-POINT GAUSS QUADRATURE

Processor timess0.0257

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0.270 -0.417 0.5E-02 1.301 0.262 0. 112 1. 505
0.20 0.0.8 0.409 -0.352 0.2E-01 2.094 0.442 0.403 1.520
0.30 0.12 0.497 -0.297 0.IE-02 2.413 0.601 0.878 -1.476
0.40 0.16 0.462 -0.225 0.8E-01 2.454 0.643 1.474 -1.389
0.50 0.20 0.363 -0.089 0.1E 00 2.296 0.743 1.852 -1.220
0.60 0.24 0.204 0.154 0.3E-01 2.061 0.844 1.970 -0.885
0.70 0.28 0.054 0.099 0.4E-01 1.920 0.781 2.016 -0.837
0.80 0.32 0.015 -0.205 0.4E-01 1.680 0.789 1.930 -0.768
0.90 0.36 0.230 0.024 0.1E 00 1.404 0.736 1.554 -0.634
1.00 0.40 0.054 -0.140 0.2E-02 1.327 0.792 1.379 -0.620
1.50 0. 60 0.057 0.037 0.1E 00 0. 527 0.661 1.003 -0.901
2.00 0.80 0.151 0. 343 0.3E-01 0.486 0.940 0.168 -0.519

Table 4.5.17 Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS= 0.70*CA 
NO NODES55 32 (QUADRATIC ELEMENTS) 

TWO-POINT GAUSS QUADRATURE

Processor time550.0942

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.04 0.253 -0.416 0.IE-04 1.257 0.259 0.107 -1.568
0.20 0.08 0.418 -0.345 0.3E-04 2.066 0.459 0.415 -1.543
0.30 0.12 0.474 -0.281 0.1E-03 2. 398 0.590 0.887 -1.474
0.40 0.16 0.431 -0.215 0.9E-04 2. 426 0.670 1.435 -1.346
0.50 0. 20 0. 310 -0.144 0.2E-02 2.300 0.717 1.893 -1.168
0.60 0.24 0.165 -0.078 0.7E-03 2.110 0.746 2.086 -0.991
0. 70 0.28 0.052 -0.027 0.IE-03 1.898 0.763 2.042 -0.859
0.80 0.32 0.015 0.001 0.5E-03 1.688 0.773 1.879 -0.784
0.90 0.36 0.043 0.018 0.IE-02 1.492 0.779 1.684 -0.74 9
1.00 0.40 0.052 0.011 0.IE-02 1.308 0.777 1.498 -0.742
1. 50 0.60 0.017 -0.026 0.5E-03 0.655 0. 731 0. 808 -0.824
2.00 0.80 0.000 -0.242 0.IE-02 0.304 0. 647 0.401 -0.915

Table 4.5.18 Diffraction Results for a Submerged Cylinder
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Each of the tables presented up to this point have 

included the total processor time required for the execution of the 

jobs submitted to obtain the results given. A significant portion of 

the processor time is required for the evaluation of the wave function 

values and therefore increasing the order of the equations increases 

the number of evaluations and therefore the execution time 

considerably. Additionally the time required for the compilation 

and solution of the matrix equations is proportional to the square of 

the matrix dimensions and therefore if any one of the methods tested 

above achieves the same accuracy for a coarser discretisation this 

method promises the most significant improvement in efficiency.

The preliminary indication is that the only possible improvement of 

this type over the conventional singular kernel constant element 

method would be due to the regular kernel constant element method. 

Conclusions of this nature are postponed until after a more 

detailed investigation but it may be noted that even for an equivalent 

discretisation the regular kernel alternative results in an improved 

efficiency which is more marked for higher-order discretisation 

schemes. For the constant element discretisation schemes the saving 

in processor time is in the order of 25% and may be attributed to a 

saving in the evaluation of the wave function values.

In order to provide a more detailed examination of the 

convergence of results achieved by the different methods for this 

geometric configuration three values of the parameter ka have been 

chosen: ka - 0.2 has been chosen because it approaches the shallow 

water range, ka ■ 1.0 because it approaches the deep water range and 

ka - 0.5 as an intermediate value. Evidence from figures 4.5.1 to 

4.5.18 indicates that in general better agreement with the results
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of Naftzger and Chakrabarti and more rapid convergence to this /

solution are obtained for the deeper water problem whichever 

discretisation scheme is used. Results for the components of force 

have been given in Figures 4.5.19 to 4.5.24 and Tables 4.5.19 to 

4.5.24 and each graph includes the full range of schemes employed 

in the previously presented results. It must be emphasised that 

it is not possible to establish a solution which is precisely 

correct and the aim of presenting the results in this form is to 

establish whether the alternative methods give results which are 

in reasonable agreement as the discretisations become more precise 

and to determine whether any of the alternative schemes gives more 

rapid convergence to a "final*1 solution. Each of these graphs and 

those subsequently given in this form include only those results 

which lie within a range of approximately - 10Z of this "final" 

solution.

The first conclusion which may be drawn from these graphs 

which was suspected from those previously presented is that this 

implementation of higher-order variation of source density with 

sources distributed over the object boundary affects convergence 

adversely particularly for the problems in which the presence of the 

fluid bottom is of more significance. These results also demonstrate 

conclusively that the regular kernel integral equation formulation 

is amenable to numerical solution and suggest that the results 

achieved are more accurate and converge to the final solution more 

rapidly than the conventional singular kernel method and this is 

again more relevent for shallower water depths. It may also be 

noted that these results give no evidence of ill-conditioning for 

larger numbers of nodes. The use of higher-order variations of
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source density for elements on the separated source boundary does not / 

have such a detrimental affect as in the case of sources distributed 

on the object boundary, but it would appear again that the assumed 

constant variation of source density is the most reliable numerical 

formulation.

Before concluding that the use of higher-order elements is 

unsuitable for the solution of these problems the use of higher-order 

Gaussian quadrature has been implemented to determine whether the 

loss of accuracy identified in the above results is due to the 

inadequacy of the numerical integration techniques. These results 

are given in Figures 4.5.25 to 4.5.27 and Tables 4.5.25 to 4.5.30 for 

the horizontal component of force only and it may be noted that for 

approximately the same computational effort (based on the number of 

wave function evaluations) the results for the sources distributed on 

the object boundary are poorer than those achieved previously. For 

the sources distributed on the separated boundary the results are also 

less accurate for similar computational effort.

The final tests which have been performed for this 

particular set of data are designed to determine whether or not the 

results are sensitive to the choice of location of the source 

boundary. The higher-order discretisation techniques have not been 

employed in these tests and the results are given in Figures 4.5.28 

to 4.5.30 and Tables 4.5.31 to 4.5.34. On the basis of these graphs 

it would appear that convergence to the final solution is increased 

as the source boundary is moved further from the object boundary. 

In particular the results obtained for RAT « 0.9 are least satisfactory 

at the coarser discretisations for which the solutions have been
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obtained and this may be attributed to the failure of the numerical

quadrature formula when the source is located close to a node.

/

The results obtained for RAT = 0.5 suggest that the regular kernel 

method may be used with an even coarser discretisation than that 

suggested by the results for RAT = 0.7 with a further improvement 

in the computational efficiency, but it is more probable that 

ill-conditioning will occur for sources located on more remote 

separated boundaries.

It has therefore been demonstrated that for this

particular problem the numerical solution of the linear diffraction 

boundary value problem by the integral equation method is achieved 

reliably and most efficiently by the regular kernel formulation using 

a simple discretisation scheme provided the source boundary is 

located at a sufficient distance from the object boundary to eliminate 

errors due to inadequate numerical quadrature.

These conclusions can not however be taken as final 

because the problem which has been tested has a circular cylinder 

located at a fixed depth given by y0/h = 0.5 so that the important 

problem of cylinders located near the still water level has not been 

considered. The tests presented subsequently have been carried out 

for wave and geometric data which resembles the experimental data 

of the next chaper so that the numerical results presented in this 

section may be used to determine the accuracy with which theoretical 

predictions are made for comparison with measured results. This 

data is different from that which has been tested previously for two 

further reasons: firstly, refraction effects are essentially absent 

(h/L =.5) and secondly the cylinder spans only a small portion of the
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SOURCES DISTRIBUTED ON CYLINDER BOUNDARY
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT

ONE-POINT GUASS QUADRATURE
DIFRACTION PARAMETER,ka=0. 2

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(FV)
8 0.495 -0.302 0.2E-08 2.314 0.570 0.474 -1.518

12 0.482 -0.319 0.3E-O7 2.215 0.537 0.436 -1.537
16 0.466 -0.326 0.1E-07 2.181 0.516 0.427 -1.540
24 0.449 -0.333 0.5E-08 2.140 0.495 0.423 -1.541
32 0.441 -0.336 0.2E-O8 2.121 0.486 0.421 -1.541
48 0.433 -0.339 0.7E-08 2.102 0.477 0.419 -1.542
64 0.429 -0.341 0.2E-07 2.093 0.472 0.418 -1.542
80 0.427 -0.341 0.4E-O7 2.087 0.470 0.417 -1.542
96 0.425 -0.342 0.2E-03 2.084 0.468 0.417 -1.542

Table 4.5.19a Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT 

ONE-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER,ka=0.5

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.110 -0.024 0.1E-07 2.424 0.803 2.233 -0.878
12 .0.304 -0.096 0.1E-07 2.327 0.789 2.079 -1.091
16 0.315 -0.111 0.3E-O7 2.333 0.771 1.999 -1.120
24 0.315 -0.123 0.2E-07 2.321 0.753 1.960 -1.138
32 0.314 -0.128 0.1E-07 2.316 0.744 1.941 -1.146
48 0.313 -0.133 0.1E-07 2.311 0.735 1.923 -1.154
64 0.312 -0.136 0.3E-07 2.308 0.730 1.914 -1.158
80 0.312 -0.138 0.5E-07 2.307 0.728 1.909 -1.160
96 0.312 -0.139 0.3E-04 2.306 0.726 1.906 -1.162

Table 4.5.19b Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT 

ONE-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER,ka=l.0

Table 4.5.19c Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.449 0.138 0.2E-06 1.444 0.770 0.992 -0.335

12 0.093 0.058 0.1E-06 1.263 0.830 1.531 -0.647
16 0.061 0.043 0.4E-07 1.297 0.822 1.490 -0.688
24 0.056 0.031 0.4E-07 1.299 0.806 1.498 -0.708
32 0.055 0.026 0.6E-07 1.301 0.799 1.499 -0.717
48 0.054 0.021 0.3E-07 1.304 0.792 1.499 -0.725
64 0.053 0.019 0.1E-06 1.305 0.788 1.499 -0.730

80 0.053 0.017 0.1E-06 1.306 0.786 1.499 -0.732

96 0.053 0.016 0.7E-07 1.306 0.784 1.499 -0.734
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SOURCES DISTRIBUTED ON CYLINDER BOUNDARY
LINEAR VARIATION OF SOURCE DENSITY ON ELEMENT

ONE-POINT’ CLASS QUAERATURE
DIFRACTION PARAMETER, ka=0.2

Table 4.5.20a Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.527 -0.304 0.3E-07 2.449 0.586 0.463 -1.540

12 0.519 -0.306 0.1E-07 2.372 0.578 0.471 -1.538
16 0.499 -0.313 0.3E-07 2.322 0.555 0.459 -1.538
24 0.475 -0.323 0.2E-07 2.246 0.526 0.446 -1.539
32 0.461 -0.328 0.1E-07 2.203 0.510 0.439 -1.540
48 0.447 -0.334 0.2E-07 2.159 0.493 0.431 -1.541
64 0.440 -0.336 0.3E-07 2.136 0.485 0.427 -1.541
80 0.435 -0.338 0.2E-07 2.122 0.480 0.425 -1.542
96 0.432 -0.339 0.2E-07 2.113 0.476 0.423 -1.542

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
LINEAR VARIATION OF SOURCE TENSITY ON ELEMENT 

ONE-POINT CLASS QUAERATURE 
DIFRACTION PARAMETER,ka=0.5

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.348 -0.115 0.5E-07 2.458 0.783- 2.029 -1.144

12 0.335 -0.098 0.4E-07 2.369 0.802 2.135 -1.110
16 0.326 -0.100 0.1E-07 2.372 0.794 2.091 -1.109
24 0.320 -0.110 0.3E-07 2.354 0.776 2.039 -1.121
32 0.318 -0.117 0.7E-09 2.343 0.763 2.006 -1.131
48 0.315 -0.125 0.7E-07 2.331 0.749 1.969 -1.142
64 0.314 -0.129 0.5E-08 2.324 0.742 1.950 -1.148
80 0.313 -0.132 0.1E-06 2.320 0.737 1.938 -1.152
96 0.313 -0.134 0.5E-07 2.317 0.734 1.930 -1.155

Table 4.5.20b Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
LINEAR VARIATION OF SOURCE TENSITY ON ELEMENT 

ONE-POINT CLASS QUAERATURE 
DIFRACTION PARAMETER,ka=l.0

Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.080 -0.051 0.3E-07 1.526 0.666 1.486 -0.825
12 0.064 0.008 0.5E-07 1.318 0.767 1.596 -0.741
16 0.061 0.026 0.1E-06 1.317 0.796 1.534 -0.714
24 0.059 0.032 0.7E-07 1.303 0.806 1.516 -0.705
32 0.057 0.031 0.9E-07 1.301 0.805 1.509 -0.708
48 0.056 0.027 0.3E-07 1.302 0.799 1.504 -0.716
64 0.055 0.024 0.2E-06 1.303 0.795 1.502 -0.721
80 0.054 0.024 0.4E-03 1.305 0.792 1.502 -0.724
96 0.054 0.020 0.6E-07 1.305 0.790 1.501 -0.727

Table 4.5.20c
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SOURCES DISTRIBUTED ON CYLINDER BOUNDARY
QUADRATIC VARIATION OF SOURCE DENSITY ON ELEMENT

TWO-POINT CLASS QUADRATURE
DIFRACTION PARAMETER,ka=0.2

Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.698 -0.238 0.4E-08 2.924 0.799 0.603 1.454
12 0.585 -0.275 0.2E-07 2.587 0.667 0.542 -1.570
16 0.561 -0.289 0.8E-08 2.502 0.630 0.491 -1.550
32 0.483 -0.319 0.6E-08 2.261 0.536 0.449 -1.538
48 0.460 -0.328 0.2E-07 2.190 0.508 0.437 -1.540
64 0.449 -0.333 0.1E-07 2.157 0.495 0.431 -1.540
80 0.442 -0.335 0.2E-07 2.137 0.488 0.427 -1.541
96 0.438 -0.337 0.5E-08 2.124 0.483 0.425 -1.541

Table 4.5.21a

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
QUADRATIC VARIATION OF SOURCE DENSITY ON ELEMENT 

TWO-POINT CLASS QUADRATURE 
DIFRACTION PARAMETER,ka=0.5

Table 4.5.21b

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(py) Arg(Fy)
8 0.489 -0.060 0.5E-07 2.577 0.952 2.300 -1.164

12 0.288 -0.041 0.6E-07 2.413 0.873 2.392 -1.003
16 0.341 -0.063 0.8E-07 2.411 0.862 2.233 -1.061
32 0.318 -0.101 0.4E-07 2.353 0.789 2.061 -1.106
48 0.316 -0.116 0.6E-07 2.334 0.764 1.999 -1.128
64 0.315 -0.123 0.8E-05 2.325 0.752 1.970 -1.139
80 0.314 -0.127 0.8E-05 2.319 0.745 1.952 -1.145
96 0.314 -0.130 0.1E-06 2.316 0.740 1.941 -1.149

Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
QUADRATIC VARIATION OF SOURCE DENSITY ON ELEMENT 

TWO-POINT CLASS QUADRATURE 
DIFRACTION PARAMETER, ka=l. 0

Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.033 -0.007 0.7E-07 1.555 0.800 1.593 -0.819

12 0.135 0.060 0.1E-06 1.278 0.819 1.536 -0.623
16 0.045 0.066 0.1E-06 1.269 0.871 1.527 -0.658
32 0.060 0.050 0.6E-07 1.282 0.833 1.496 -0.677
48 0.058 0.037 0.1E-06 1.290 0.815 1.496 -0.698
64 0.056 0.031 0.4E-07 1.295 0.805 1.496 -0.709
80 0.055 0.027 0.5E-07 1.297 0.800 1.496 -0.715
96 0.055 0.023 0.2E-03 1.299 0.796 1.496 -0.720

Table 4.5.21c
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SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS =0.7*CA
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT

ONE-POINT GUASS QUADRATURE
DIFRACTION PARAMETER,ka-O. 2

Table 4.5.22a

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(FV) Arg(Fy)
8 0.308 -0.385 0.2E-09 1.740 0.338 0.356 -1.546

12 0.388 -0.356 0.6E-09 1.964 0.425 0.401 -1.544
16 0.410 -0.348 0.2E-07 2.042 0.451 0.410 -1.543
24 0.417 -0.345 0.1E-07 2.064 0.459 0.415 -1.543
32 0.418 -0.345 0.2E-07 2.066 0.459 0.415 -1.543
48 0.418 -0.345 0.1E-07 2.066 0.459 0.415 -1.543
64 0.418 -0.345 0.2E-08 2.066 0.459 0.415 -1.543
80 0.430 -0.330 0.5E-01 2.071 0.460 0.426 1.485

Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS =0.7* CA 
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT 

ONE-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER,ka=0.5

Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.251 -0.219 0.3E-07 2.198 0.568 1.553 -1.256

12 0.302 -0.166 0.1E-07 2.250 0.678 1.813 -1.200
16 0.309 -0.149 0.2E-07 2.292 0.708 1.863 -1.177
24 0.310 -0.144 0.2E-07 2.300 0.717 1.887 -1.169
32 0.310 -0.144 0.2E-07 2.301 0.717 1.889 -1.169
48 0.310 -0.144 0.9E-O7 2.301 0.718 1.889 -1.169
64 0.310 -0.144 0.2E-O7 2.301 0.718 1.889 -1.169
80 0.311 -0.144 0.7E-05 2.301 0.718 1.888 -1.169

Table 4.5.22b

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS =0.7*CA 
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT 

ONE-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER, ka=l. 0

Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.142 -0.087 0.1E-06 1.470 0.577 1.311 -0.851
12 0.057 -0.021 0.8E-07 1.308 0.724 1.530 -0.790
16 0.051 0.003 0.9E-07 1.316 0.764 1.495 -0.756
24 0.051 0.011 0.7E-07 1.309 0.776 1.498 -0.743
32 0.052 0.011 0. IE-06 1.309 0.777 1.499 -0.742
48 0.051 0.011 0. IE-04 1.309 0.777 1.499 -0.742
64 0.051 0.011 0.1E-06 1.309 0.777 1.499 -0.742
80 0.051 0.011 0.1E-05 1.309 0.777 1.499 -0.742

Table 4.5.22c
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SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS=0.7*CA
LINEAR VARIATION OF SOURCE DENSITY ON ELEMENT

ONE-POINT GUASS QUADRATURE
DIFRACTION PARAMETER, ka=0.2

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.504 -0.244 0.1E-01 2.545 0.632 0.540 -1.205

12 0.667 -0.221 0.7E 00 2.553 0.716 1.637 -0.538
16 0.422 -0.341 0.8E-02 2.088 0.463 0.434 -1.540
24 0.419 -0.346 0.2E-04 2.067 0.459 0.417 -1.546
32 0.418 -0.345 0.6E-04 2.066 0.459 0.415 -1.543
48 0.418 -0.345 0.5E-07 2.066 0.459 0.415 -1.543
64 0.418 -0.345 0.3E-05 2.066 0.459 0.415 -1.543
80 0.418 -0.345 0.4E-04 2.066 0.459 0.415 -1.543

Table 4.5.23a Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS =0.7* CA 
LINEAR VARIATION OF SOURCE DENSITY ON ELEMENT 

ONE-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER,ka=O. 5

Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.307 0.390 0.2E 00 2.236 0.897 1.360 -0.480
12 0.344 0.003 0.5E 00 2.295 0.739 2.220 -1.174
16 0.546 -0.293 0.2E 00 2.403 0.473 2.013 -1.202
24 0.311 -0.140 0.1E-02 2.301 0.720 1.896 -1.168
32 0.310 -0.144 0.4E-O3 2.300 0.718 1.889 -1.169
48 0.310 -0.144 0.3E-05 2.301 0.718 1.889 -1.169
64 0.310 -0.143 0.2E-04 2.300 0.718 1.888 -1.169
80 0.310 -0.144 0.3E-03 2.301 0.717 1.889 -1.169

Table 4.5.23b

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS =0.7*CA 
LINEAR VARIATION OF SOURCE DENSITY ON ELEMENT 

ONE-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER,ka=l. 0

Table 4.5.23c Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.445 -0.061 0.5E 00 1.178 1.255 0.688 -0.440

12 0.378 0.496 0.8E-01 1.019 0.881 1.854 -0.666
16 0.053 0.147 0.3E-01 1.310 0.795 1.541 -0.717
24 0.043 0.273 0.5E-02 1.321 0.801 1.456 -0.771
32 0.052 0.011 0.5E-O3 1.309 0.777 1.499 -0.742
48 0.052 0.011 0.3E-05 1.309 0.777 1.499 -0.742
64 0.051 0.011 0.5E-O4 1.309 0.777 1.499 -0.742
80 0.052 0.011 0.5E-04 1.309 0.777 1.499 -0.742
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SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS =0.7*CA
QUA CRATIC VARIATION OF SOURCE TENSITY ON ELEMENT

TWO-POINT GJ ASS QUAERATURE
DIFRACTION PARAMETER, k a=0.2

Table 4.5.24a Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)

8 0.619 -0.181 0.2E 00 2.434 0.688 0.833 -1.505

12 0.440 -0.335 0.1E-02 2.180 0.490 0.432 1.470
16 0.409 -0.352 0.2E-01 2.094 0.442 0.403 1.520
24 0.418 -0.345 0.8E-04 2.067 0.460 0.415 -1.545
32 0.418 -0.345 0.3E-O4 2.066 0.459 0.415 -1.543
48 0.418 -0.345 0.4E-05 2.066 0.459 0.415 -1.543
64 0.418 -0.345 0.5E-05 2.066 0.459 0.415 -1.543
80 0.418 -0.345 0.IE-O4 2.066 0.459 0.415 -1.543

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS=0. 7*CA 
QUA CRATIC VARIATION OF SOURCE EENSITY ON ELEMENT 

TWO-POINT GUASS QUAERATURE 
DIFRACTION PARAMETER, ka=0.5

Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.221 0.141 0.4E 00 2.429 0.508 0.982 -1.468
12 '0.427 0.446 0.2E 00 1.786 0.646 3.060 -0.770
16 0.363 -0.089 0.IE 00 2.296 0.743 1.852 -1.220
24 0.594 -0.469 0.5E 00 1.991 0.677 1.271 -1.247
32 0.310 -0.144 0.2E-04 2.300 0.717 1.889 -1.168
48 0.310 -0.144 0.6E-O3 2.301 0.718 1.889 -1.169
64 0.310 -0.144 0.2E-04 2.301 0.718 1.889 -1.169
80 0.310 -0.144 0.2E-05 2.300 0.718 1.889 -1.169

Table 4.5.24b

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS =0.7*CA 
QUA CRATIC VARIATION OF SOURCE TENSITY ON ELEMENT 

TWO-POINT GUASS QUAERATURE 
DIFRACTION PARAMETER,ka=l.0

Diffraction Results for a Submerged cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 1.616 0.382 0.4E 01 1.817 -0.733 1.335 -0.768

12 0.159 0.258 0.2E 00 1.292 0.844 1.142 -0.654
16 0.054 -0.140 0.2E-02 1.327 0.792 1.379 -0.620
24 0.049 0.100 0.7E-02 1.318 0.773 1.474 -0.746
32 0.051 0.011 0.4E-03 1.309 0.777 1.499 -0.742
48 0.051 0.011 O.2E-O4 1.309 0.777 1.499 -0.742
64 0.051 0.011 0. IE-04 1.309 0.777 1.499 -0.742

80 0.051 0.011 0. IE-04 1.308 0.777 1.499 -0.742

Table 4.5.24c
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SOURCES DISTRIBUTED ON CYLINDER BOUNDARY
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT

TWO-POINT GLASS QUADRATURE
DIFRACTION PARAMETER,ka=0.2 I

Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.482 -0.316 0.1E-07 2.339 0.540 0.459 -1.534

12 0.472 -0.323 0.2E-08 2.240 0.523 0.450 -1.539
16 0.460 -0.328 0.3E-07 2.207 0.509 0.439 -1.540
32 0.439 -0.336 0.2E-07 2.137 0.484 0.427 -1.541
48 0.432 -0.339 0.1E-07 2.114 0.476 0.423 -1.542

Table 4.5.25a

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT 

TWO-POINT GLASS QUADRATURE 
DIFRACTION PARAMETER,ka=0.5

Table 4.5.25b Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.259 -0.093 0.7E-07 2.450 0.770 2.064 -1.063

12 0.316 -0.111 0.1E-07 2.347 0.772 2.063 -1.120
16 0.318 -0.118 0.8E-07 2.350 0.762 2.005 -1.132
32 0.314 -0.130 0.2E-09 2.326 0.741 1.951 -1.149
48 0.313 -0.134 0.9E-08 2.318 0.734 1.931 -1.155

%

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT 

TWO-POINT GLASS QUADRATURE 
DIFRACTION PARAMETER,ka=l. 0

Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.243 0.040 0.1E-06 1.478 0.725 1.264 -0.601

12 0.074 0.030 0.1E-06 1.289 0.796 1.555 -0.701
16 0.058 0.029 0.1E-06 1.310 0.801 1.508 -0.711
32 0.055 0.023 0.4E-07 1.305 0.794 1.504 -0.722
48 0.054 0.020 0.7E-07 1.306 0.789 1.502 -0.728

Table 4.5.25c

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
LINEAR VARIATION OF SOURCE DENSITY ON ELEMENT 

TWO-POINT GLASS QUADRATURE 
DIFRACTION PARAMETER,ka=0.2

Table 4.5.26a

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)

8 0.549 -0.289 0.2E-07 2.542 0.622 0.507 -1.530

12 0.530 -0.300 0.1E-07 2.423 0.593 0.484 -1.536

16 0.506 -0.310 0.2E-07 2.354 0.563 0.466 -1.538

32 0.462 -0.327 0.2E-07 2.214 0.511 0.441 -1.540

48 0.447 -0.333 0.5E-O7 2.164 0.494 0.432 -1.541

Diffraction Results for a Submerged Cylinder
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SOURCES DISTRIBUTED ON CYLINDER BOUNDARY
LINEAR VARIATION OF SOURCE DENSITY ON ELEMENT

TWO-POINT GUASS QUADRATURE
DIFRACTION PARAMETER,ka=0.5

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(iy)
8 0.272 -0.067 0.2E-07 2.482 0.818 2.249 -1.028

12 0.324 -0.082 0.3E-07 2.393 0.821 2.210 -1.080
16 0.324 -0.093 0.3E-07 2.390 0.804 2.127 -1.096
32 0.317 -0.115 0.2E-07 2.351 0.766 2.016 -1.128
48 0.315 -0.124 0.5E-08 2.336 0.750 1.975 -1.141

Table 4.5.26b Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
LINEAR VARIATION OF SOURCE DENSITY ON ELEMENT 

TWO-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER,ka=l.0

'Table 4.5.26c

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.207 0.019 0.9E-07 1.493 0.711 1.407 -0.651

12 0.079 0.035 0.7E-07 1.306 0.801 1.586 -0.691
16 0.064 0.040 0.4E-O7 1.312 0.816 1.530 -0.691
32 0.058 0.034 0.6E-07 1.302 0.810 1.511 -0.703
48 0.056 0.028 0.8E-07 1.303 0.802 1.506 -0.713

Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
QUADRATIC VARIATION OF SOURCE DENSITY ON ELEMENT 

FOUR-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER,ka=0.2

Table 4.5.27a Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
12 0.577 -0.275 0.5E-07 2.575 0.662 0.560 -1.564
16 0.564 -0.289 0.2E-07 2.509 0.632 0.483 -1.552
32 0.481 -0.320 0.4E-07 2.256 0.534 0.449 -1.538
48 0.460 -0.328 0.3E-07 2.191 0.508 0.437 -1.540

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
QUADRATIC VARIATION OF SOURCE DENSITY ON ELEMENT 

FOUR-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER, ka=0.5

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
12 0.224 -0.025 0.6E-O7 2.407 0.865 2.496 -0.945
16 0.354 -0.065 0.5E-07 2.416 0.868 2.199 -1.070
32 0.317 -0.101 0.8E-07 2.350 0.787 2.061 -1.106
48 0.316 -0.116 0.9E-07 2.334 0.764 2.000 -1.128

Table 4.5.27b Diffraction Results for a Submerged Cylinder
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SOURCES DISTRIBUTED ON CYLINDER BOUNDARY
QUADRATIC VARIATION OF SOURCE EE NS IT Y ON ELEMENT

FOUR-POINT (DASS QUADRATURE
DIFRACTION PARAMETER,ka=l.0 I

Table 4.5.27c

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
12 0.251 0.082 0.9E-07 1.292 0.794 1.483 -0.530
16 0.013 0.070 0.4E-07 1.259 0.893 1.508 -0.668
32 0.061 0.049 0.8E-07 1.281 0.832 1.496 -0.677
48 0.058 0.037 0.2E-06 1.291 0.815 1.496 -0.698

Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS =0. 7*CA 
CONSTANT VARIATION OF SOURCE LENS IT Y ON ELEMENT

TWO-POINT GLASS QUADRATURE
DIFRACTION PARAMETER, ka =0.2

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.429 -0.337 0.3E-07 2.147 0.478 0.427 -1.537

12 0.422 -0.343 0.2E-O7 2.075 0.465 0.420 -1.542
16 0.419 -0.344 0.8E-08 2.071 0.461 0.415 -1.542
32 0.418 -0.345 0.5E-08 2.066 0.459 0.415 -1.543
48 0.418 -0.345 0.5E-05 2.066 0.459 0.415 -1.543

xTable 4.5.28a Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS =0.7*CA 
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT

TWO-POINT GUASS QUADRATURE
DIFRACTION PARAMETER,ka=0. 5

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.256 -0.125 0.1E-07 2.374 0.718 1.913 -1.112

12 0.307 -0.140 0.2E-07 2.293 0.721 1.920 -1.162
16 0.310 -0.143 0.5E-O7 2.304 0.719 1.890 -1.167
32 0.310 -0.144 0.3E-06 2.301 0.718 1.889 -1.169
48 0.310 -0.144 0.2E-07 2.301 0.718 1.889 -1.169

Table 4.5.28b Diffraction Results for a Submerged Cylinder

SOURCES DISTR IB DIED ON INTERNAL BOUNDARY, RS =0.7* CA 
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT

TWO-POINT GUASS QUADRATURE
DIFRACTION PARAMETER, ka=l. 0

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.212 0.014 0.2E-06 1.456 0.700 1.265 -0.657

12 0.066 0.011 0.9E-07 1.290 0.770 1.529 -0.735
16 0.053 0.011 0.4E-07 1.312 0.777 1.494 -0.741
32 0.051 0.011 0.9E-07 1.309 0.777 1.499 -0.742

48 0.051 0.011 0. IE-06 1.309 0.777 1.499 -0.742

Table 4.5. 28c Diffraction Results for a Submerged Cylinder
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SOURCES DISTRIBUTED ON INTERLAL BOUNEARY, RS =0.7* CA
LINEAR VARIATION OF SOURCE EELS IT Y ON ELEMENT

TWO-POINT GUASS QUAERATURE
DIFRACTION PARAMETER,ka=0.2

Table 4.5.29a

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.382 -0.356 0.4E-08 1.993 0.423 0.400 -1.540

12 0.410 -0.348 0.2E-07 2.034 0.450 0.413 -1.543
16 0.416 -0.346 0.3E-07 2.061 0.457 0.414 -1.543
32 0.418 -0.345 0.1E-07 2.066 0.459 0.415 -1.543
48 0.418 -0.345 0.1E-07 2.066 0.459 0.415 -1.543

Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTER LAL BOUNEARY, RS =0.7*CA 
LINEAR VARIATION OF SOURCE LENS ITY ON ELEMENT 

TWO-POINT GUASS QUAERATURE 
DIFRACTION PARAMETER, ka=0.5

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.256 -0.159 0.2E-07 2.319 0.666 1.780 -1.164

12 0.305 -0.149 0.8E-07 2.278 0.706 1.883 -1.175
16 0.310 -0.145 0.9E-08 2.300 0.715 1.881 -1.171
32 0.310 -0.144 0.7E-06 2.301 0.718 1.889 -1.169
48 0.310 -0.144 0.1E-07 2.301 .0.718 1.889 -1.169

Table 4.5.29b Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNEARY,RS =0.7*CA 
LINEAR VARIATION OF SOURCE EELS IT Y ON ELEMENT 

TWO-POINT GUASS QUAERATURE 
DIFRACTION PARAMETER,ka=1.0

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.191 -0.015 0.1E-06 1.462 0.665 1.277 -0.714

12 0.063 0.002 0.1E-06 1.295 0.757 1.528 -0.751
16 0.052 0.009 0.2E-06 1.313 0.773 1.494 -0.745
32 0.051 0.011 0.1E-06 1.309 0.777 1.499 -0.742
48 0.051 0.011 0.1E-07 1.309 0.777 1.499 -0.742

Table 4.5. 29c Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTER LAL BOUNEARY, RS =0.7*CA 
QUA ERAT IC VARIATION OF SOURCE EENSITY ON ELEMENT

FOUR-POINT GUASS QUAERATURE
DIFRACTION PARAMETER, ka=0.2

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.451 -0.335 0.5E-07 2.193 0.493 0.409 -1.547

12 0.417 -0.344 0.3E-O7 2.062 0.460 0.422 -1.541
16 0.419 -0.344 0.3E-07 2.071 0.461 0.415 -1.543
32 0.418 -0.345 0.2E-08 2.066 0.459 0.415 -1.543
48 0.418 -0.345 0.8E-03 2.067 0.459 0.415 -1.541

Table 4.5.30a Diffraction Results for a Submerged Cylinder
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SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS =0.7*CA 
QUADRATIC VARIATION OF SOURCE DENSITY ON ELEMENT

FOUR-POINT GUASS QUADRATURE
DIFRACTION PARAMETER,ka=0.2

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.367 -0.138 0.3E-07 2.412 0.756 1.834 -1.191

12 0.292 -0.139 0.4E-07 2.287 0.715 1.930 -1.152
16 0.312 -0.143 0.4E-07 2.304 0.719 1.888 -1.169
32 0.310 -0.144 0.5E-07 2.301 0.718 1.889 -1.169
48 0.310 -0.144 0.4E-07 2.301 0.718 1.889 -1.169

Table 4.5.30b Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTER LAL BOUNDARY,RS =0.7*CA 
QUADRATIC VARIATION OF SOURCE DENSITY ON ELEMENT 

FOUR-POINT GUASS QUADRATURE
DIFRACTION PARAMETER, ka=l. 0

Table 4.5.30c

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
8 0.073 0.009 0.6E-07 1.446 0.763 1.383 -0.735

12 0.096 0.016 0.2E-07 1.291 0.763 1.512 -0.712
16 0.049 0.012 0.1E-06 1.311 0.780 1.495 -0.743
32 0.051 0.011 0.1E-06 1.309 0.777 1.499 -0.742
48 0.051 0.011 0.2E-07 1.309 .0.777 1.499 -0.742

Diffraction Results for a Submerged Cylinder
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SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS=O. 9*CA
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT

ONE -POINT GUASS QUADRATURE
DIFRACTION PARAMETER,ka=0.2

Diffraction Itesults for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Ey)

12 0.163 -0.440 0.3E-O8 1.199 0.176 0.266 -1.558

16 0.221 -0.419 0.9E-08 1.399 0.239 0.300 -1.555

24 0.313 -0.385 0.4E-08 1.715 0.341 0.354 -1.549

32 0.368 -0.364 0.1E-07 1.900 0.402 0.386 -1.546

Table 4. 5.31a

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS=O. 9* CA 
COLS TA NT VARIATION OF SOURCE DENSITY ON ELEMENT 

ONE-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER,ka=0.5

Table 4.5.31b Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
12 0.187 -0.340 0.2E-07 1.772 0.345 1.128 -1.414

16 0.232 -0.291 0.2E-07 1.940 0.444 1.296 -1.360
24 0.281 -0.219 0.3E-07 2.141 0.584 1.576 -1.272
32 0.310 -0.145 0.6E-08 2.299 0.716 1.884 -1.170

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS=0.9*CA 
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT 

ONE-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER,ka=l.0

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
12 0.002 -0.234 0.2E-O7 1.299 0.418 1.344 -1.152
16 0.011 -0.166 0.2E-07 1.332 0.520 1.398 -1.040
24 0.032 -0.074 0.4E-07 1.333 0.654 1.470 -0.886
32 0.043 -0.027 0.5E-07 1.323 0.721 1.490 -0.807

Table 4.5.31c Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS=O. 8*CA 
CONSTANT VARIATION OF SOURCE DELS ITY ON ELEMENT 

OLE-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER, ka=0.2

Table 4.5.32a Diffraction Results for a aibmerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)

12 0.314 -0.384 0.1E-07 1.720 0.342 0.358 -1.549

16 0.371 -0.363 0.4E-08 1.911 0.405 0.388 -1.546

24 0.409 -0.348 0.2E-07 2.038 0.449 0.410 -1.543

32 0.416 -0.345 0.7E-08 2.061 0.458 0.414 -1.543
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SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS =0. 8*CA
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT

OLE-POINT GUASS QUADRATURE
DIFRACTION PARAMETER,ka=0.5

Table 4.5.32b Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
12 0.280 -0.220 0.8E-08 2.138 0.582 1.592 -1.273
16 0.301 -0.178 0.2E-07 2.238 0.658 1.744 -1.218
24 0.309 -0.150 0.1E-08 2.290 0.707 1.863 -1.178
32 0.310 -0.145 0.6E-08 2.299 0.716 1.884 -1.170

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS =0.8*CA 
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT 

ONE-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER,ka=l.0

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
12 0.039 -0.083 0.6E-07 1.327 0.636 1.506 -0.896
16 0.043 -0.031 0.9E-O7 1.330 0.715 1.492 -0.813
24 0.050 0.004 0.6E-07 1.313 0.766 1.499 -0.755
32 0.051 0.010 0.4E-07 1.309 0.775 1.499 -0.744

Table 4.5.32c Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTERLAL BOUNDARY, RS =0.6*CA 
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT 

ONE-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER,ka=O.2

Table 4.5.33a Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
12 0.411 -0.347 0.IE-O7 2.037 0.451 0.414 -1.543
16 0.417 -0.345 0.2E-07 2.064 0.458 0.414 -1.543
24 0.409 -0.348 0.2E-O7 2.038 0.449 0.410 -1.543
32 0.418 -0.345 0.2E-07 2.066 0.459 0.415 -1.543

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS =0.6*CA 
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT 

ONE-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER,ka=0.5

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
12 0.306 -0.149 0.4E-07 2.279 0.707 1.884 -1.175
16 0.310 -0.144 0.5E-07 2.301 0.716 1.884 -1.170
24 0.309 -0.150 0.1E-08 2.290 0.707 1.863 -1.178
32 0.310 -0.144 0.3E-07 2.301 0.718 1.889 -1.169

Table 4.5.33b Diffraction Results for a Submerged Cylinder
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SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS =0. 6*CA
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT

ONE-POINT GUASS QUAERATURE
DIFRACTION PARAMETER,ka=l.0

Table 4.5.33c

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
12 0.063 0.001 0.9E-07 1.296 0.755 1.529 -0.753
16 0.053 0.010 0.3E-07 1.313 0.774 1.494 -0.744
24 0.050 0.004 0.6E-07 1.313 0.766 1.499 -0.755
32 0.051 0.011 0.9E-07 1.309 0.777 1.499 -0.742

Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS=O. 5*CA 
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT 

ONE-POINT GUASS QUAERATURE 
DIFRACTION PARAMETER,ka=0.2

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
12 0.416 -0.345 0.2E-07 2.054 0.457 0.417 -1.542
16 0.418 -0.345 0.3E-07 2.066 0.459 0.414 -1.543
24 0.418 -0.345 0.2E-07 2.066 0.459 0.415 -1.543
32 0.418 -0.345 0.6E-07 2.066 0.459 0.415 -1.543

*
Table 4.5.34a Diffraction Results for a Submerged Cylinder

SOURCES DISTRIBUTED ON INIERbAL BOUNDARY, RS =0. 5*CA 
CONSTANT VARIATION OF SOURCE DENS ITY ON ELEMENT 

ONE-POINT GUASS QUAERATURE 
DIFRACTION PARAMETER,ka =0.5

Table 4.5.34b Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
12 0.306 -0.144 0.3E-07 2.286 0.714 1.902 -1.168
16 0.310 -0.144 0.1E-03 2.302 0.717 1.886 -1.169
24 0.310 -0.144 0.7E-08 2.300 0.718 1.889 -1.169
32 0.311 -0.144 0.6E-07 2.301 0.718 1.888 -1.169

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS =0.5*CA 
CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT 

ONE-POINT GUASS QUADRATURE 
DIFRACTION PARAMETER,ka=l.0

Diffraction Results for a Submerged Cylinder

NN Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
12 0.065 0.008 0.2E-06 1.292 0.766 1.527 -0.740
16 0.052 0.011 0.1E-06 1.312 0.776 1.494 -0.742
24 0.052 0.011 0.8E-O7 1.309 0.777 1.500 -0.742
32 0.051 0.011 0.2E-06 1.309 0.778 1.498 -0.742

Table 4.5.34c
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water depth (h/a » 10.1). One wave is chosen so that the 

diffraction parameter is fixed at ka =0.3 and numerical results are 

obtained for two of the cylinder locations for which experimental 

results are obtained, (yo - a)/L ■ 0.05, 0.10.

The results of these numerical tests are presented in 

figures 4.5.31 to 4.5.36 and tables 4.5.36 to 4.5.41. In these graphs 

and tables the values of the diffraction coefficient for the 

horizontal component of force, as defined in equation 4.4.9, is 

obtained for a range of discretisation schemes. In order to obtain 

a comparison of the results for various locations of the source 

boundary the results for different types of element are plotted 

separately. Figures 4.5.31 and 4.5.32 are results obtained for an 

assumed constant variation of source density with one source located 

on each element; figures 4.5.33 and 4.5.34 are for an assumed linear 

variation of source density and again a single source is located on 

each element but for the results for an assumed quadratic variation 

of source density, given in figures 4.5.35 and 4.5.36, two sources 

are located on each element. Each graph includes results for 

RATCrg/rn) " 1-0, 0.9, 0.7 and 0.5.

Previous results indicated that for the same discretisation 

scheme the results obtained for a separate source boundary were 

obtained more rapidly than for sources located on the boundary of the 

obstacle. In order to determine whether this feature is repeated 

for the present results the processor time has been noted for program 

runs with 32 nodes for the two sets of data tested here. The values 

are given in table 4.5.35 and it is observed that although the 

removal of sources from the obstacle boundary does result in a small 
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improvement in efficiency the differences are less pronounced than 

for the previous example.. Efficiency will only therefore be 

significantly improved if the regular kernel option gives a 

consistently more rapid convergence to the final solution than the 

singular kernel method.

Variation of source Processor time
density on element RAT » 1.0 RAT = 0.9 RAT = 0.7 RAT =0.5

Constant .0606 .0520 .0585 .0572

Linear .0539 .0492 .0472 .0457

Quadratic .0773 .0514 .0477 .0458

TabLe 4.5.35 Comparison of program efficiency

The first observation which may be made from the results 

presented in figures 4.5.31 and 4.5.32 and tables 4.5.36 and 4.5.37 

is that the results obtained by the conventional singular kernel 

method with an assumed constant variation of source density have 

not converged to the final solution. The tabulated results do 

indicate that the result is converging slowly as the discretisation 

becomes more precise but results for as many as 96 nodes are poor 

when compared with each of the alternatives tested in this section. 

These results may be compared with those of Naftzger and Chakrabarti 

who commented, without giving details, that for cylinders located 

near the boundaries of the fluid somewhat more than 100 nodes are 

required to obtain a final solution.
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The failure of the conventional method to achieve 

convergence for this problem at the same level of discretisation as 

the alternative schemes makes the more detailed examination of this 

set of results of greater significance. Examination of the results 

for assumed linear and quadratic variations of source density on 

the element with sources located on the obstacle boundary indicates 

that similar results are obtained and that the assumed linear 

variation gives more rapid convergence for both examples. These 

results contradict those of the previously tested example and 

indicate that under certain conditions higher-order elements may be 

employed to improve the numerical model and to achieve solution more 

efficiently than the traditionally used constant element.

The final tests performed for the previous example

(figures 4.5.28 to 4.5.30) indicated that for a greater separation 

of the source boundary from the obstacle boundary a more rapid 

convergence to the final solution is obtained. The results currently 

under consideration confirm this trend, give results which are 

similar for each of the three discretisation schemes and also 

indicate the breakdown of the method for more precise discretisations. 

The breakdowns are somewhat erratic in nature, have only been 

encountered for RAT - .7 and RAT ■ .5 with NN > 48 and are due to 

the occurence of ill-conditioning in the system of algebraic 

equations which is demonstrated by failure to satisfy the energy 

criterion. It is therefore evident that although a separated 

source boundary located near to the obstacle boundary gives slow 

convergence to the final solution this option is the most reliable 

one for more precise discretisations.
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Consideration of the sets of results obtained in this 

numerical study provides evidence to suggest that for submerged 

two dimensional obstacles the regular kernel integral equation 

method is amenable to numerical solution and if used with care will 

provide reliable results more efficiently than the conventional 

singular kernel method with an assumed constant variation of 

source density and a single source located centrally on each 

element. Because the results obtained for the application of 

higher-order elements with sources on the obstacle boundary are 

contradictory and because the choice of element does not greatly 

affect results for separated source boundaries it may also be 

suggested that the implementation of these numerical refinements 

is unnecessary.
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CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT 
ONE-POINT GUASS QUADRATURE

DIFRACTION PARAMETER, kaA. 305 (
CYLINDER DEPTH PARAMETER,(y. -a)/L=0.05

DIFFRACTION COEFFICIENT FOR HORIZONTAL CCMPONENT OF FORCE

Cylinder

NN RAT=1.0 RATA.9 RATA.7 RATA.5
8 3.621 1.485 1.944 2.131

12 1.447 1.631 2.101 2.138
16 0.492 1.768 2.131 2.147

24 0.431 1.952 2.138 2.141

32 0.873 2.052 2.145 2.146

48 1.309 2.127 2.144 2.158

64 1.519 2.137 2.146 2.141
80 1.647 2.139 2.141 3.000

96 1.725 2.140 2.149 2.148

Table 4.5.36 Diffraction Results for a Submerged

CONSTANT VARIATION OF SOURCE DENSITY ON ELEMENT 
ONE-POINT GUASS QUADRATURE 

DIFRACTION PARAMETER, kaA. 305 
CYLINDER DEPTH PARAMETER, (y,-a)/LA. 10 

DIFFRACTION COEFFICIENT FCR HORIZONTAL CCMPONENT OF FORCE

Cylinder

NN RAT=1.0 RATA. 9 RATA. 7 RATA. 5
8 3.332 1.440 1.820 1.976

12 1.357 1.563 1.954 1.982
16 0.470 1.679 1.997 1.991
24 0.389 1.830 1.983 1.985
32 0.800 1.912 1.989 1.990
48 1.207 1.974 1.988 1.868
64 1.403 1.982 1.990 1.980
80 1.522 1.983 1.987 3.000
96 1.585 1.984 1.990 2.161

Table 4.5.37 Diffraction Results for a Submerged

LINEAR VARIATION OF SOURCE DENSITY ON E LEM El 
ONE-POINT GUASS QUADRATURE

DIFRACTION PARAMETER, kaA. 305
CYLINDER DEPTH PARAMETER, (y.-a)/LA. 05

FCR HORIZONTAL COMPONENT OF FORCEDIFFRACTION COEFFICIENT

NN RAT=1.0 RATA. 9 RATA. 7 RATA. 5
8 2.197 4.203 2.352 2.189

12 2.180 3.052 2.184 2.157
16 2.179 2.757 2.149 2.147
24 2.174 2.358 2.146 2.143
32 2.165 2.236 2.144 2.146
48 2.162 2.163 2.101 2.144
64 2.159 2.141 2.144 2.162
80 2.135 2.140 3.065 2.162
96 2.137 2.137 2.124 2.132

Table 4.5.38 Diffraction Results for a Submerged Cylinder
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LINEAR VARIATION OF SOURCE DENSITY ON ELEMENT 
ONE-POINT GUASS QUADRATURE

DIFRACTION PARAMETER,ka=0.305 <
CYLINDER DEPTH PARAMETER, (y.-a) ZLO. 10

DIFFRACTION COEFFICIENT FOR HORIZONTAL COMPONENT OF FORCE

NN RATO. 0 RATO. 9 RATO. 7 RATO. 5
8 2.019 3.588 2.169 2.012

12 2.006 2.686 2.017 1.992
16 2.007 2.475 1.992 1.991
24 2.006 2.159 1.990 1.987
32 2.000 2.063 1.988 1.990
48 1.999 2.004 1.989 1.979
64 1.997 1.985 1.987 6.651
80 1.977 1.984 1.983 1.957

96 1.978 1.982 1.964 3.000

Table 4.5.39 Diffraction Results for a Submerged Cylinder

QUADRATIC VARIATION OF SOURCE DENSITY ON ELEMENT 
TWO-POINT GUASS QUADRATURE 

DIFRACTION PARAMETER,ka=0.305 
CYLINDER DEPTH PARAMETER, (y, -a) AO. 05 

DIFFRACTION COEFFICIENT FOR HORIZONTAL COMPONENT OF FORCE

NN RAT=1.0 RATO. 9 RATO. 7 RATO. 5
8 2.273 5.479 2.409 2.207

12 2.148 3.225 2.195 2.153
16 2.119 2.766 2.031 2.147
24 2.109 2.380 2.139 2.143
32 2.114 2.242 2.145 2.146
48 2.121 2.154 2.144 2.140
64 2.128 2.141 2.143 2.142
80 2.091 2.141 2.160 2.155
96 2.100 2.136 2.873 2.143

Table 4.5.40 Diffraction Results for a Submerged Cylinder

QUADRATIC VARIATION OF SOURCE DENSITY ON ELEMENT
TWO-POINT GUASS QUADRATURE 

DIFRACTION PARAMETER,kaO.305 
CYLINDER DEPTH PARAMETER, (y.-a)/TO• 10 

DIFFRACTION COEFFICIENT FOR HORIZONTAL COMPONENT OF FORCE

Cylinder

NN RAT=1.0 RATO. 9 RATO. 7 RATO. 5
8 2.060 3.697 2.178 2.015

12 1.964 2.846 2.032 1.992
16 1.942 2.483 2.001 1.991
24 1.942 2.178 1.983 1.988
32 1.949 2.068 1.989 1.990
48 1.958 1.995 1.988 1.989
64 1.967 1.984 1.989 1.995
80 1.934 1.985 1.989 2.006
96 1.943 1.980 2.074 3.000

Table 4.5.41 Diffraction Results for a Submerged
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CHAPTER 5 EXPERIMENTAL INVESTIGATION

5.1 Introduction

An experimental study has been performed for the investigation 

of the interaction of regular waves with a horizontal circular 

cylindrical model in a laboratory wave flume. This study is in some 

ways similar to studies which have already been completed (for example 

Longuet-Higgins, 1976 and Koterayama, 1979) but it is thought to be 

the only study in which detailed measurements of the wave motion in 

both the far-field and near-field are obtained for a submerged 

obstacle. This also appears to be the only published study in which 

pressure measurements have been made on the surface of a submerged 

horizontal circular cylinder.

The major purpose of the experimental study is the validation 

of the results of the linear diffraction analysis. The experimental 

programme has been designed by determining the conditions under which 

wave scattering will occur for the range of waves which may be 

generated in the laboratory facility. For the range of waves chosen 

the wave steepness and cylinder location are varied and these variations 

are introduced because increasing wave steepness and reducing cylinder 

submergence both imply a non-linear interaction and therefore suggest 

that measured results may depart from the predictions of a linear 

analysis.

The theory which is being tested in this study, if extended 

to a higher-order of approximation, is characterized by the linear 

summation of values which oscillate at multiples of the wave 
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frequency. The analysis of measurements in this study has therefor^ 

been achieved by making use of the technique of spectral analysis 

to obtain the components in the Fourier series.

5.2 Theoretical Considerations

5.2.1 Dimensional Analysis

A problem with the design of an experimental programme for 

a wave hydrodynamics problem is the large number of variables which 

are inerrelated and affect the measurements which are being studied. 

In the present study the method of dimensional analysis is of value 

for two reasons. Firstly, the results of the dimensional analysis 

may be employed to determine which parameters are sufficient to 

describe the problem completely and therefore which parameter 

variations must be included in the experimental programme and 

secondly the dimensional analysis is required to determine whether 

or not the scaling of model test results is valid.

A dimensional analysis of the problem of wave diffraction by 

a submerged cylindrical obstacle in water of finite depth has been 

given in Appendix A.9. It is clear that there is a certain 

flexibility in the choice of parameters and for the experimental 

study it is convenient to commence with the expression

F “ f(D/L, H/L, h/L, yo/h, Re/^Fr) 5.2.1
PgDHJl
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The first parameter, D/L, is the diffraction parameter 

and is equivalent to the parameter ka( » ttD/L) . For problems in 

water of finite depth this parameter might be referred to as a 

diffraction refraction parameter since the location of the fluid 

bottom will affect the form of the resulting wave motion. This 

parameter may be used to describe the conditions for which wave 

diffraction is a significant feature in wave loading problems and 

the value of D/L >0.2 has been proposed by Hogben (1974) for the 

particular case of the surface piercing vertical circular cylinder. 

However, Martin and Dixon (1983) indicated that this value is 

unsuitable for cylinders located in the free surface since the 

theoretically derived reflection and transmission coefficients predict 

that significant wave scattering will occur at lower values of D/L.

The parameter H/L is the wave steepness parameter and gives 

an indication of the degree of non-linearity of a progressive wave. 

Since no general non-linear diffraction theory is available 

increasing the wave steepness may lead to a significant departure of 

measured values from those which are obtained by the available 

theoretical models.

The water depth parameter h/L describes the extent to 

which the fluid bottom affects wave motion and it is conventional 

to define shallow water depth(h/L < .05), intermediate water depth 

(.05 < h/L < 0.5) and deep water depth (h/L > 0.5) ranges.

A parameter is required which, together with the other 

parameters, describes the location of the obstacle relative to the 

field of motion. The parameter yo/h is a possible choice and 
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y0/L a suitable alternative but the parameter (yo-a)/L has been 

chosen for the present study because it is similar in form to the 

water depth parameter h/L. This parameter then gives an indication 

of the “instantaneous shallow water" region above the cylinder and 

also, together with the wave steepness parameter, H/L, gives an 

alternative indication of the importance of non-linear effects since 

the parameter H/(yo~a) is similar in form to the parameter which is 

used for this purpose in shallow water problems.

The final non-dimensional group Re/^Fr will give a measure 

of the importance of viscous and free surface effects. Problems 

associated with Reynolds’ and Froude scaling are well known and in 

model tests for wave problems it is not possible to obtain dynamic 

similarity for either. However, for wave diffraction problems 

viscous effects are not generally important and the variation of 

results with the Froude number does not appear to have been considered. 

This group is therefore excluded, but because the investigation of 

free surface effects is an important part of the present experimental 

study it is noted that the scaling of model tests to prototype scale 

without achieving Froude similarity may lead to errors.

5.2.2 Linear Diffraction Analysis

For a linear potential theory formulation of the wave 

diffraction problem it is assumed that an inviscid fluid makes only 

small amplitude oscillatory motions. The dimensional equation may 

therefore be reduced to the form

F - f(ka, h/L, (yo-a)/L) 5.2.2
Pga H/2
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where the denominator of the left hand side has been modified to 

agree with the non-dimensional group employed in the diffraction 

program and F is now the force per unit length.

The objective of the experimental study reported in this 

chapter is to validate the results of the diffraction program for 

the particular problem of a submerged horizontal circular cylinder 

and before commencing an account of this study it is important to 

establish an indication of the importance of wave scattering for 

the range of parameters for which the laboratory tests have been 

performed. For some wave diffraction problems the form of the 

diffracted wave may be taken as evidence of wave scattering, however, 

for the circular cylinder submerged in deep water the reflection 

and transmission coefficients have theoretical values of zero and 

unity respectively. Even if the form of the diffracted wave gives 

evidence of wave scattering the choice of a criterion based on 

reflection and transmission coefficient values would exclude local 

diffracted wave effects (John,1950) and therefore could only give a 

partial indication of the importance of diffraction in wave loading.

The use of the diffraction coefficients, as defined in 

equation 4.4.9, provides a better means of determining the onset of, 

or the importance of,wave scattering effects and a dimensional 

equation may be written in the form

Cx - f(ka, h/L, (yo-a)/L). 5.2.3

If h/L is chosen so that the fluid bottom is effectively 

absent the diffraction coefficients will not be modified by the 
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effects of refraction and the coefficient values will be identical 

to the theoretical inertia coefficient results at small values of 

the diffraction parameter. For a circular cylinder the 

theoretical value of the diffraction coefficients at small ka is 

therefore 2.0 and departures from this value indicate that wave 

scattering effects are important.

The diffraction computer program may be used to give the 

diffraction coefficients for the range of data for which the 

experimental study has been conducted and an indication of the 

importance of diffraction effects may therefore be established. 

Application of the diffraction program in this way also provides an 

additional test of the program accuracy by comparison with the 

theoretical inertia coefficient result at small ka.

The experimental results reported in this chapter have been 

obtained for a single cylinder of radius a = .055 m and a range of 

waves in water of depth, h = .555m at three frequencies fo “ 0.977, 

1.172, 1.367 Hz. The value of the diffraction coefficient is 

therefore within the range 0.2 < ka < 0.5. The cylinder is located 

at three depths of submergence for the sets of waves at each 

frequency corresponding to (yQ-a)/L = 0.05, 0.10, 0.15. As an 

indication of the importance of wave scattering for this range of 

data the diffraction computer program has been used to obtain a plot 

of the diffraction coefficients against the diffraction parameter 

by varying the cylinder radius at each of the depths of submergence 

for the frequency fo " 1.172Hz. The results obtained are for a 32 

node linear element discretisation with sources located on a separate 
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source boundary with radius rg = 0.7a. This discretisation scheme 

has been shown in Chapter 4 to give numerical results which are 

within -2Z of the final solution.

The results presented in Figure 5.2.1 demonstrate that at 

the value of the diffraction coefficient corresponding to the 

experimental set up (ka « .305) diffraction effects are of some 

significance particularly at smaller depths of submergence. The 

results for the vertical component of force give values of the 

diffraction coefficient which approach the theoretical inertia 

coefficient value of 2.0 at small ka but the horizontal component 

does not. The computed results obtained at the lower ka values were 

therefore checked by alternative discretization schemes. All numerical 

results obtained are in close agreement with the results plotted 

and it may therefore be necessary to conclude that the numerical model 

gives results at small ka which are in error for this set of data.

5.2.3 Non-Linear Diffraction Analysis

For the submerged horizontal circular cylinder the only 

non-linear forces which have been predicted theoretically are the 

horizontal and vertical components of the second-order steady force. 

For cylinders in deep water linear theory predicts the absence of 

any reflected wave and therefore, by the momentum flux method with 

energy conservation, no horizontal drift force is predicted. For 

waves in finite water depth no theoretical values are known to have 

been evaluated by means other than the momentum flux formula although 

the method adopted by Ogilvie (1963) could be applied. The theoretical 

evaluation of the drift force only requires the knowledge of the first-
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order potential and therefore might be accomplished by the integral 

equation method as well as the multipole method and both of these 

methods would be superior to the momentum flux method because they 

also yield the vertical component of the steady force.

Although no non-linear theoretical results have been 

obtained for the problem of a cylinder submerged in waves it is 

possible to provide a framework for the non-linear interaction by 

referring to the formulation of the second-order boundary value 

problem and by analogy with other wave problems as well as by citing 

the results of experimental studies.

Studies of the importance of non-linear free surface effects 

for the similar problem of a submerged obstacle at small depths in 

a steady flow by Tuck (1965) and Salvesen (1969) provide theoretical 

and experimental evidence to suggest that non-linear conditions 

become increasingly important as the depth of submergence is reduced. 

The second-order diffraction boundary value problem has been 

formulated in Chapter 3 of this thesis and this indicates that pressures 

and therefore forces will occur which oscillate at twice the wave 

frequency. Without computations to provide quantitative evidence it 

is not possible to determine whether these predicted oscillations 

at a higher frequency will give increased total force components. 

However, it may be noted that if the second-order oscillatory 

quantities are going to affect the magnitude of the total components 

of force they must exceed 20Z of the values obtained by a linear 

analysis and that this can be established by experimental means.

The perturbation analysis also indicates that the diffracted wave 

will contain a free wave which oscillates at twice the wave frequency 
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and this free wave has been identified in experiments conducted by 

Longuet-Higgins (1977) who demonstrated that it's presence affects 

the mean force exerted by the wave on a submerged cylinder. The 

only study in which oscillatory second-order forces have been 

measured for the horizontal circular cylinder has been conducted 

by Koterayama (1979) but these results are not a major part of 

his study and only give an indication that non-linear effects are of 

some importance.

If the submerged horizontal circular cylinder is considered 

as a double beach the importance of nonlinear effects is implied. 

For waves of small steepness interacting with a cylinder at small 

depths of submergence the majority of the energy is transmitted through 

the region above the cylinder which might therefore be regarded as 

an instantaneous shallow water region. For increasing wave steepness 

the wave height become significant compared with the local water 

depth and the local partical velocities are a significant fraction of 

the wave speed so that the importance of non-linear effects might be 

suspected. It may be noted at this point that cnoidal diffraction 

results (Isaacson, 1977a) for waves of finite height in shallow water 

gives results which differ from those of sinusoidal wave theory so 

that measured quantities obtained in this experimental study for 

shallow depths of submergence might be expected to depart from the 

results obtained by the linear diffraction computer program.

If waves are sufficiently steep wave breaking will be induced 

by the presence of the cylinder and under such conditions the importance 

of non-linearity is obvious and might be expected to result in 

induced forces which are considerably different from predictions
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obtained by a linear or even a second-order analysis.

5.2.4 Objectives of Experimental Study

The primary purpose of the experimental study is to determine 

whether and under what conditions the results of laboratory tests 

depart from those predicted by the linear wave diffraction analysis. 

The quantities used to test the theoretical results are the spatial 

variation of the wave height upstream and downstream of the cylinder 

and the pressures at four points on the cylinder boundary.

The discussion of the previous sections indicates that

two different effects are expected to give rise to non-linear inter-

action and the experimental programme has therefore been designed 

to include a range of cylinder locations and for each location the wave 

steepness is varied. For waves of small steepness interacting with 

cylinders at larger depths of submergence the assumptions of the linear 

potential theory formulation are essentially satisfied and therefore 

agreement of theory with experiment might be expected. However, if 

wave steepness or local shallow water effects are of significance 

the assumptions of a linear analysis are violated and it is necessary 

to determine the importance of the exclusion of non-linear effects 

from the theoretical model.

In the absence of higher-order theoretical predictions the 

experimental test is the only means of determining the importance of 

non-linear effects. In the context of this thesis the experimental 

results will provide information which will indicate whether the 

218



numerical solution of the second-order formulation will provide 

a suitable refinement to the theoretical model or alternatively 

whether a more complete non-linear potential theory analysis such 

as that due to Lau (1983) is required.

One possible source of departure of the experimental 

results from those of the linear diffraction program which can not 

be accounted for by improvement of the potential theory formulation 

is associated with the occurrence of viscous effects either in the 

interaction with the cylinder or the transmission of the wave. The 

experimental study has therefore been designed to include a test of 

the conservation of energy so that energy losses can be identified.

5.3 Experimental Apparatus and Procedure

5.3.1 Wave Flume, Generator and Beach

Experimental results have been obtained for a horizontal 

circular cylinder located in a glass-sided flume of approximate length 

17m, width 0.75m with an effective maximum water depth of 0.555m. 

The waves are generated by the vertical oscillation of a triangular 

cross-sectioned wedge and absorbed by a three-legged beach at the 

other end of the flume.

Detailed studies of the waves in the flume have been made 

by Coates (1982) and Ellix and Arumugam (1983) and it is therefore 

only necessary to give a brief account here.
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No simple theory is available for this type of generator 

but Coates (1982) applied the linear theory for waves generated 

by the small oscillation of a vertical plane (Havelock, 1929, 

Ursell, Dean and Yu, 1960) to give an indication of the generator 

efficiency. It was concluded that backflow under the wedge results 

in an 18% loss of efficiency based on measured wave height and wedge 

stroke values for a range of waves. This loss of efficiency is 

significant in the present study because it is required that steep 

non-linear waves are generated and it is therefore necessary to 

restrict the range of waves to those which are sufficiently short 

to give a rapid decay of particle motion with depth. This 

restriction minimizes the back flow under the generator but the 

maximum wave steepnesses attainable under stable conditions are no 

greater than 0.1 which is only about two thirds of the maximum wave 

steepness generally expressed as

H/L - 0.142 tanh (kh) 5.3.1

In the theoretical considerations of section 3.10 it was 

demonstrated that the second-order diffraction theory predicts a wave 

motion which is composed of a wave of similar form to the Stokes 

second-order wave and an additional second-order free wave with 

dispersive properties which are independent of the primary motion. 

The formulation which gave rise to this prediction may be applied to 

the problem of bodies in motion of which the oscillating wedge is 

an example and therefore it might be suggested that the free waves 

identified in the above mentioned studies are not as first thought 

due to imperfections in the wedge oscillation but are a result of 

the fluid wedge interaction. Since no results are available for 
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for the theoretical predictions these suggestions can not as yet 

be verified quantitatively.

In a particularly thorough study of the waves generated 

by the wedge Ellix and Arumugam (1983) have employed the fast 

Fourier transform technique to distinguish between the second-order 

free and second-order fixed waves. The free surface oscillations 

at twice the fundamental frequency at a location are separated into 

those which are in phase and those which are in quadrature with the 

fundamental oscillation. By measurement of these components at a 

number of locations over several wavelengths and plotting the results 

the amplitudes of the two distinct waves at this frequency are 

identified. The results for the Stokes second-order wave are in 

reasonable agreement with the theoretical values for a range of waves 

up to a steepness of H/L - 0.06 and the ratio of second-order free 

and fixed wave amplitudes plotted against wave steepness indicates 

that the free wave is more of a feature for long small amplitude waves 

which are not chosen in the present study.

In the time between the two studies referred to in this 

section the absorbing beach was reconstructed to improve the 

dissipative properties and therefore to reduce the reflection of wave 

energy. The beach now consists of three lengths the first extending 

from the bottom of the tank to a '’knee” at an intermediate depth is 

2A4 m long and the second length which extends from this location to 

the still water level is 3.13 m long. For the studies reported in 

this thesis the inclinations of these first two lengths were 7.7° 

and 4.2° respectively and the reflection coefficient is generally 

restricted to less than 3Z and never exceeds 5Z. Energy is
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dissipated by inducing wave breaking as the wave enters shallow water
il

and any remaining energy is either reflected or absorbed by friction 

on the final horizontal section of the beach which 1.26m long.

One feature often misunderstood in wave flume experiments 

is the reflection of waves incident upon the generator. These waves 

which may be the result of reflection from the beach or reflection 

from a model located in the flume are reflected with minimal energy 

loss but, provided that this process is not highly non-linear, the 

only effect of this process is to give a small modification to the 

amplitude and phase of the waves propogating from the wedge<.

It may be concluded that the steeper shorter waves chosen 

for the present study may be described as Stokes second-order waves 

with neglible free wave and reflected wave components.

5.3.2 Measurement of free surface elevation

The oscillation of the free surface at a fixed location is 

measured by using resistance wave probes with a purpose built amplifier 

based on a design developed at the Hydraulics Research Station. The 

probes are calibrated statically before each set of experiments by 

displacing the probe through a sequence of known distances in still 

water and recording the voltage output. Comprehensive initial results 

for this calibration procedure are given in figure 5.3.1 and the excellent 

linearity of the response to changes in immersed length permits a 

less detailed calibration for subsequent tests.

A feature of this measurement system which has only recently
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been appreciated is that the results of a dynamic calibration differ
I 

from those obtained by the equivalent static calibration. This is 

thought to be due to the amplifier characteristics and if ignored 

results in errors in amplitude and phase measurement which are too 

large to be neglected. The present study is only concerned with 

the measurement of free surface displacement and these measurements 

must be made using the results of the static calibration factor 

with a dynamic amplification factor which is both frequency and 

amplitude dependent. All measurements of wave height in this study 

are obtained by the Fast Fourier transform technique, the use of 

which is discussed later. Two points are relevent here: firstly 

the measured amplitude, H^j/2, at the wave frequency, fo, is obtained 

by the empirical equation

H^o* - (1 + 0.0113 fo2’40+ 0.0037 fo2-51log(Hs(fo)))

W
5.3.2

where H_/2 is the scanned wave amplitude obtained by application of s

the static calibration constant obtained by the procedure outlined 

above, and secondly the value of H^j/2 obtained by this means is the 

true wave amplitude provided oscillations at three times the wave 

frequency or higher are negligible.

The calibration equation 5.3.2 has been obtained by fitting 

a curve to a set of data obtained by oscillating a wave probe through 

a known distance in still water and for all tests the measured value 

lies within - 1Z of the value predicted. These results are 

reproduced in figure 5.3.2. Because the range of frequencies and
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wave heights which occur in the experimental study lie within the 

range of frequencies and amplitudes from which equation 5.3.2 is 

derived the equation can be applied with some confidence, however, 

the correction of oscillations at higher frequencies is problematic. 

If the same formula is used it must be extrapolated to smaller 

amplitudes of oscillation than those for which the formula is known 

to apply. In the absence of any alternative this procedure is 

employed but it is noted that the measured amplitudies of oscillation 

at multiples of the wave frequency may be subject to errors of 

unknown magnitude.

5.3.3 Measurement of Pressure

Pressures have been measured using a number of low range 

Bell and Howell transducers (BHL 4054-10, 35 mbar) with a SE Labs 

bridge conditioning unit (SE 995).

The pressure measurements have been obtained for two 

different problems: firstly for a preliminary study of the 

pressure field under a wave in the absence of any obstacle and 

secondly for the study of the pressures on a submerged circular 

cylinder. The transducers have been located outside the wave flume 

on a purpose built rack and therefore two problems must be considered. 

The first is a problem which is absent in the measurement of pressures 

on surface piercing obstacles and is concerned with the possible 

modification of the pressure signal due to the passage of tubing 

from the pressure tapping to the transducer through the moving free 

surface. To avoid this problem, rigidly fixed, small 
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bore metal piping has been used to prevent the amendment of the 

pressure signal. The second problem is common to all 

measurements with a remote pressure transducer and relates to the 

possibility of the damping of the dynamic pressure signal.

Hutchinson (1979) reports that if the length of tubing is restricted 

to lm or less dynamic pressure response is maintained up to 15 Hz. 

In the present study the practical range of frequencies (including 

higher-order oscillations) is well within this limit and preliminary 

experiments with various lengths of tubing gave no evidence of any 

damping.

For a single transducer connected to a pressure tapping by 

a length of tubing the calibration is achieved in situ by introduction 

of a branch of tubing which is open to the atmosphere. Isolation 

of the pressure tapping by clamping the nylon tubing does not affect 

the head of water in the calibtation branch so that the output signal 

from the transducer is also unaffected. With the transducer subject 

to the same static head as for pressure measurement the calibration 

procedure is executed by movement of the branch of tubing through a 

sequence of known vertical distances. For pressure measurement the 

calibration branch is closed to the atmosphere. Typical results of 

detailed calibration tests are given in Figure 5.3.3 for two 

different ranges of pressure.

For the calibration of the four transducers used in the 

measurement of the pressures on the submerged cylinder the procedure 

is identical to that which is described above for the single 

transducer with the exception that the calibration branches are 

connected so that the transducers are calibrated simultaneously.
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For the measurement of pressures under a wave in the 

absence of a cylinder a pressure plate has been constructed. The 

plate has been designed to restrict deformation of the wave motion 

to a minimum and to ensure that any such deformation is restricted 

to regions away from the point of measurement. This is achieved 

by locating a pressure tapping at the centre of a flat circular 

plate of 310mm diameter (approximately 4 x maximum amplitude of 

Particle oscillation) with bevelled edges and all attachments and 

connections located behind the measurement face. A sketch of this 

arrangement is given in figure 5.3.4 which indicates that the pressure 

tubing is braced to the support arm to prevent movement of the 

tubing and possible modification of the pressure signal.

5.3.4 Data Collection and Analysis

The fluctuating voltage signals from the wave probe and 

pressure transducer amplifiers are fed into a scanner module which 

performs an analogue to digitial conversion. The software available 

on the Digital pdp-11 micro computer permits scanning of the signal 

at intervals which are multiples of the mains frequency and the 

data is written to a disc file. The data obtained in this way is 

in binary form and must be converted to decimal form and calibrated 

before analysis.

A number of software packages have been developed for 

scanning, conversion, calibration and analysis of data which 

permit interactive use of the computing facility while performing 

the experiments. All of the analysis in this study has been
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performed on the micro computer but the ’link’ with the university 

main frame computer has been used to obtain graphical output where 

necessary. A flow diagram indicating the various stages in the 

collection and analysis of data is given in figure 5.3.5.

Analysis of the data collected to obtain values for the 

wave height and pressure is achieved by using a fast Fourier transform 

software package mounted on the mico-computer. The method permits 

the evaluation of the coefficients in the Fourier series.

s = ao + ajcoswt + bjsinwt + a2cos2iot + b2sin2ujt +.....  5.3.3

where s is the input signal. The magnitude of the signal at any 

frequency is obtained by the expression

5.3.4

In this study the values of interest are the oscillations at the 

fundamental or wave frequency and at twice this frequency and 

oscillations at higher frequencies are generally negligible. The 

constant coefficient, ao, is potentially a valuable source of 

information for non-linear wave interaction problems but in this 

study the value can not be used. This is because the zero value of 

the voltage output ’drifts’ during the course of the testing so that 

although oscillatory values may be evaluated with confidence the 

measurement of changes in mean values is subject to errors which are 

not much smaller than the quantities to be measured.
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5.3.5 Collection and analysis of experimental data
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The accurate prediction of pressures under a wave by 

linear wave theory or the prediction of pressures on a submerged 

obstacle by the diffraction computer program depends on the 

measurement of the wave height. It is therefore important to obtain 

a precise measurement of the wave travelling in the flume.

If the free surface displacement n is measured at any 

single location the oscillation may consist of a number of components. 

If it is initially assumed that all oscillations at frequencies other 

than the wave frequency may be neglected the problem is reduced 

considerably and only two components must be considered: the 

incident and the reflected wave. The free surface displacement may 

therefore be expressed as

H " Hj (cos(kx - wt + a) + R cos(kx + wt + B)) 5.3.5

I

Il

where Hj is the incident wave height, R the reflection coefficient 

and a and B are phase shifts.

Equation 5.3.5 may be taken as a complete description of 

wave motion in two dimensions because if more than one dispersive 

wave of the same frequency is travelling in the same direction the 

sum of the two waves may be expressed in the same form. This is 

best appreciated by reference to the experimental set up. If the 

oscillation of the wedge gives rise to a wave of height Hj and a 

wave travelling in the direction opposite to this wave is reflected 

at the wedge giving rise to a second wave of height H£ travelling 

in the same direction as the first the sum of these two wave will be
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ft

* Hj cos(kx - tot + a)

2

5.3.6

where Hj2 « (Hj + H2)2((sinaj + sina2)2+(cosai + cosa2)2) 5.3.7a

and tana sinai + sina2 5.3.7b

cosai + cosa2

This is the wave much must be taken as the incident wave and is in 

agreement with equation 5.3.5. If two waves travel in the opposite 

direction, say waves reflected by the beach and an obstacle, the 

same sort of summation occurs and again equation 5.3.5 describes 

completely the reflected wave motion.

It is necessary to employ a method by which the incident wave

height, Hj, and the reflection coefficient, R, can be measured and 

clearly the information provided by a single measurement at a fixed 

location does not provide sufficient information. Goda and Suzuki 

(1976) have reported the use of a method in which the oscillations 

of the free surface at two points separated by a known distance are 

measured and a fast Fourier transform is employed to separate waves 

travelling in opposite directions over a range of frequencies. This 

method has been tested but has been found to give unreliable results.

The method adopted for evaluation of Hj and R takes advantage

of the spatial variation of the free surface displacement. Modification

of equation 5.3.5 is required to demonstrate this feature
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1 ■ Hy (cos(kx + a)cosu>t + sin(kx + a)coswt
2

+ Rcos(kx + B)coswt - R sin(kx + B)sinu>t)

“ Hl ((c°s(kx + a) + Rcos(kx + B))coswt
2

+ (sin(kx + a) - Rsin(kx + B))sinu»t)

“ Ht A(kx)cos(6(kx) - wt)

2

where A2(kx) = 1 + R2 + 2R cos(2kx + a + B)

5.3.8

tan (6(kx)) = sin(kx + a) - Rsin(kx + 3)

cos(kx + a) + Rcos(kx + B)

5.3.9a

5.3.9b

Equation 5.3.8 with equation 5.3.9 indicates that there is a variation

of the first-order wave height along the length of the wave flume and

that the maximum and minimum values are

H 
max

(1 + R) HI

H . 
min

(1 - R)

5.3.10a

5.3.10b

Examination of equation 5.3.9 indicates that there is a sinusoidal 

variation of wave height with a wavelength equal to L/2 and a wave 

height of R Hj. On the basis of these results it is possible to 

evaluate the wave height and the reflection coefficient if the maximum 

and minimum values of the wave height are measured. The relevent 

equations are

Ht - 1 (H + H . ) 5.3.11a
1 -x- max min
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R = H - H .
max min

II + H .
max mm

5.3.11b

ll

One method which has been adopted in some studies for the 

measurement of the wave height and reflection coefficients employs two 

wave probes. The wavelength is measured and then the probes are 

separated by a distance L/4 which is the distance between the 

maximum and minimum wave heights. The two probes are then moved 

until the difference between the two signals is maximised and the 

required values are then obtained by application of equation 3.5.11. 

This method is subject to one minor objection concerning the 

separation of the probes. For steeper waves the wavelength is 

modified and is different from the value obtained by application of the 

linear dispersion equation so that the separation of probes by a 

distance L/4 will not correspond exactly to a separation by half the 

beat wavelength.

The method used in this thesis requires the measurement of the 

oscillation of the free surface with a single probe at a number of 

locations over a distance greater than L/2. The fast Fourier transform 

technique is then applied to obtain a value for the magnitudes of the 

oscillations at the wave frequency and equation 5.3.11 is applied to 

obtain the required values (Hj and R)_. A typical plot of the results 

is given in figure 5.3.6 and it may be noted that this method has 

been chosen because it not only satisfies the requirement that the 

incident wave height is measured accurately, but also permits the 

determination of the magnitudes of the components of the wave which 

oscillate at twice the wave frequency.
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Having determined the magnitude of the incident wave height

it then becomes possible to obtain a prediction of the pressure on 

the surface of a submerged obstacle from the values predicted by the 

diffraction computer program. The theoretical pressure amplitude, 

Pt, is given by

Pt " Hl P
2

5.3.12

where p is the non-dimensional value obtained from the program.

It is emphasised that the linear theory can only predict oscillations

at the wave frequency, fo, and in this study the theoretical 

pressure pt is therefore compared with the amplitude of the measured

pressure oscillation at this frequency. Employing the Fourier series 

as written in equation 5.3.3 the measure pressure amplitude, pm, is 

given by 

/(a/ + b,2) 5.3.13

and this use of the fast Fourier transform technique might be regarded 

as a filtering procedure.

A second value of the use of the fast Fourier transform

technique in measuring the free surface oscillation is that the 

magnitudes of the components of the wave at twice the wave 

frequency may be evaluated. Four components are expected to exist: 

a fixed wave which travels with the main wave, a free wave which 

travels independently of main wave and reflected waves corresponding 

to these two components. The reflected waves may be neglected in 

this study since their magnitude is small and therefore of no physical
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significance but it may be noted that Ellix and Arumugam (1983) 

have used the data provided by the measurement of the free surface 

oscillations at several locations to evaluate the reflected wave 

amplitude at twice the wave frequency.

In the present study there are two problems for which

knowledge of the magnitudes of these components is instructive. 

Firstly, if the fixed and free components at twice the fundamental 

frequency in the indicent wave may be evaluated it may be established 

whether or not the cylinder responds to a monochromatic wave and 

then by comparison of the measured pressure oscillations at the same 

frequency it may be established whether these are due to a non-linear 

interaction or are simply a linear response to the free wave. 

Secondly, the evaluation of the fixed and free second-order 

components in the diffracted wave, which in the case of the horizontal 

cylinder is the transmitted wave, provides useful information for 

comparison with the theoretical second-order formulation of chapter 3.

At any point along the wave flume the oscillation of the free 

surface at twice the wave frequency, H2> maY be expressed in the form

H " H21 cos(2kx - 2 wt + a) + H22 cosCkjx - 2 u>t ♦ 82) 5.3.14 
2

where H21 is the height of the fixed wave and H22 i® the height of 

the free wave, a2 and 82 are phase shifts and k2 satisfies the 

dispersion equation

(2<d )2 ■ k2tanh

8

5.3.15
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Comparison of equations 5.3.14 and equation 5.3.5 indicates that the 

first component on the right hand side is locked into the fluctuation 

of the incident wave at the wave frequency, hence the reference to 

this component as a fixed wave. The technique employed to distinguish 

between the two components at twice the wave frequency requires that 

the data recorded commences exactly at a wave crest in order that the 

amplitude of the oscillation at the wave frequency is given by the 

coefficient aj in equation 5.3.3 with bj ■ 0. Measurement of the 

free surface oscillation at a number of locations along the wave 

flume provides data from which the magnitudes of the fixed and free 

waves may be evaluated. The quadrature component of the oscillation 

at twice the wave frequency (the coefficient b2 in equation 5.3.5) 

gives the spatial variation of the free wave from which the amplitude 

may be obtained. The in-phase component will give approximately 

the same magnitude of spatial variation but this variation will be 

about a mean position which gives the amplitude of the fixed wave. 

These features may be expressed by the formulae

y22 (a2max a2min) b2max

H21 " 1 (a ♦ a . ) 5.
j 4 -j. 2max 2mm

where a and a . are the maximum and minimum values in the 
2max 2mm

spatial variation of the in-phase Fourier component and b is

the maximum value of the quadrature component.
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5.3.5 Test Cylinder

A circular cylindrical model has been constructed for use 

in two sets of experiments. In the first set the diffracted wave is 

measured and in the second set pressures and measured at four locations 

on the cylinder surface. A sketch of the cylinder is given in 

figure 5.3.7 and the following requirements were considered in design 

and construction:

1) The cylinder diameter should be appropriate for testing of 

wave diffraction.

2) The cylinder should be rigidly fixed with the axis parallel 

with the still water level.

3) The supporting rig should permit location of the cylinder at 

any required depth of submergence.

4) The cylinder should span the entire width of the channel.

5) Pressure tappings should be remote from any local disturbances 

due to the passage of tubing through the wave and therefore the tubes 

are located at one end of the cylinder and the tappings are located 

centrally.

6) Pressure tubing should be rigid and must be restrained from 

moving in response to the wave motion. The small bore metal tubing 

is therefore fixed to the support arm.
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5.3.6 Accuracy of Measurements

If a meaningfull comparison is to be made between 

experimental and theoretical results it is necessary to consider the 

possible sources of error in the measurement system. Determination of 

an estimate of the magnitude of the experimental error permits the 

identification of genuine discrepancies between the results of the 

mathematical model and results obtained by measurement. The various 

errors which occur in the measurement system are now considered in turn

Evaluation of calibration factors for the wave probe and 

each of the pressure transducers is a source of small errors. 

Random errors may be identified in the data from which values of the 

calibration factors are obtained (figures 5.3.1 and 5.3.3) but these 

errors, which are in fact small, are only relevent to a consideration 

of the accuracy of the measurement system if they lead to an error 

in evaluation of the calibration factor. The data is sufficient 

to permit a very accurate calibration of the wave probe and all the 

pressure transducers and the assumption of linear response is clearly 

satisfactory.

The only other source of error in the calibration system 

is associated with the failure of the wave probe static calibration 

procedure to provide an accurate factor which may be applied to a 

fluctuating signal. Because this problem is due to the limitations 

of the ’home made’ amplifier it is not anticipated that similar 

problems occur in calibration of the pressure transducers. The 

series of tests performed to determine the variation of the dynamic 
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calibration correction factor indicate that the empirical formula 

provides a good model for oscillations of similar amplitude and 

frequency to those for which measurements have been made.

It may therefore be concluded that significant errors in 

individual measurement of wave height and pressure due to poor 

calibration are unlikely but that small systematic errors are 

inevitable and will contribute to the overall error in the 

measurement system.

A second type of error in the measurements of wave height 

and pressure is associated with the small amount of irregularity 

in the wave motion and in the mechanisms of interaction. Such errors 

are random and are minimized by taking several measures to ensure 

that the final recorded values are a good average representation of 

the amplitudes of the fluctuating quantities. For the wave height 

and pressure amplitude measurements data is recorded for a minimum 

of ten cycles of the wave motion so that application of the fast Fourier 

transform package has an averaging effect. This accounts for the 

good agreement which has been obtained for any repeated measurements. 

The method which is used to evaluate the magnitude of the incident 

wave also results in a reduction in the importance of random errors 

and all pressure measurements are repeated so that the values presented 

in the next section of this chapter are the average of two measurements.

It is also possible that errors are introduced due to the 

use of the results of the fast Fourier transform technique. The 

software has been extensively tested for harmonic data and the 

Possibility of errors is concerned with the releveuce of applying 
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the method to oscillations which depart from the simple harmonic 

form. In order to test the method a number of the measurements 

obtained by the fast Fourier transform technique are compared with 

the peak to peak value obtained from the same data file. Agreement 

was found to be good (±2Z in general) if the data is collected for 

conditions where non-linear effects are small for fluctuations 

of the pressures which include oscillations at multiples of the 

fundamental wave frequency. However, comparisons for pressure 

oscillations recorded when non-linear effects are of significance 

are less satisfactory.

Errors in the measurement system are clearly small and it 

is suggested that the errors which will be incurred are less than 

of the measured values. The measurement of smaller quantities 

may be subject to a greater uncertainty due to the fluctuating 

level of noise within the system but these errors are still small. 

It seems that it is possible to measure quantities which are as 

small as 0.5mm with reasonable accuracy.

5.4 Presentation of Results

5.4.1 Incident wave motion

Before commencing the experimental investigation of waves 

interacting with a submerged horizontal cylinder a set of experiments 

were performed in which the pressure at points in the fluid beneath 

a progressive wave were measured. The purpose of these tests was 

to determine the accuracy with which small amplitude wave theory 
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predicts the pressure field beneath waves of finite height for the 

same range of waves which are employed in the subsequent 

experiments for wave cylinder interaction.

A similar set of experiments has been reported for waves 

in the same wave flume by Coates (1982) who measured the pressure at 

a fixed location 399 mm above the bed of the flume for a water depth 

of 523mm. These experiments used a pressure transducer which was a 

great deal less sensitive than that which has been used in the present 

study and therefore the calibration proved difficult and was noted to 

be a possible source of error. If the results are corrected for 

the dynamic calibration of the wave probes the measured results lie 

within ±10% of the predicted value. The author concluded that in 

view of the possible errors in the measurement procedure (high noise 

levels and calibration difficulties) there is nothing to suggest 

that the linear wave theory is inadequate.

There are two main differences between the study of Coates 

and the present study. The availability of a more sensitive pressure 

transducer gives an improved measurement system and the use of the 

fast Fourier transform technique permits the determination of the 

spectral composition of the pressure signal.

The choice of waves has been governed by a number of 

considerations which may be listed as follows:

1) In order to obtain results for which wave scattering effects 

are significant it is necessary to choose higher frequency waves.

2) In order to minimise the effects of refraction it is 
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necessary to generate waves for h/L >0.5 and because of the limitation 

imposed on the value of the water depth, h, by the flume it is 

required that wavelengths are short and frequencies correspondingly 

high.

3) In order to obtain results for a wide range of wave 

steepness it is necessary to generate waves which are of shorter 

wavelength because it is for these conditions that the efficiency 

of the wedge type generator is maximised.

4) It is convenient to choose a frequency which corresponds 

exactly with the frequency bands at which the fast Fourier 

transform package gives results.

5) It is necessary to generate waves which are of sufficient 

amplitude to permit accurate measurement of pressure and therefore 

the very short waves which may be generated in the flume are 

unsuitable because they are only stable for small wave heights.

The waves which have been used in this study have already 

been described (Section 5.2.2) and the choices largely satisfy the 

requirements outlined above. The waves chosen are higher frequency 

waves but because the maximum water depth in the tank requires that 

L > 1.110m for deep water conditions (h/L>0.5), the lowest frequency 

waves are in water of finite depth (h/L - 0.35). The significance of 

the bottom is not however great and this is demonstrated by 

examination of the particle orbits at the various cylinder locations. 

The minimum value of the ratio of the minor and major axes of the 

elliptical orbit is 0.8 so that there is a close resemblence to the 

circular orbit of a particle in a deep water wave.

249



X
An additional advantage in choosing waves which are in the deep 

water range is that the theoretical pressure value obtained by 

Stokes’ wave theory is correct to the second-order and if this is 

confirmed in the experiments by the absence of pressures oscillating 

at twice the wave frequency then the occurence of any higher 

frequency oscillations in the pressure measurements on the obstacle 

surface must be due to non-linear wave obstacle interaction.

The theoretical pressure amplitude, pt> for waves in water 

of finite depth is given, correct to second-order, by

Pt “ p8 H £osh_k0i__+_jr) cos(kx - wt) 5.4.1
2 cosh kh

+ 3pg H itH 1
2 2L sinh(2kh)

cosh 2k(h + y) 
sinh* kh

cos2(kx - wt)

pg H ttH
2 2L

1 (cosh 2k(h + y) - 1) 
sinh(2kh)

The changes in the steady pressure as given by the third component 

on the right hand side of equation 5.4.1 are not measured in this 

study and computation of the pressure fluctuations at twice the 

wave frequency for the range of waves used in this study indicates 

that theoretical values are very much smaller than any value which can 

be measured. Therefore, the theoretical pressure for comparison 

with measured values is given by the first component on the right 

hand side of equation 5.4.1.

For the study of pressures in the incident wave it is 
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not necessary to obtain a value for the incident wave height, Hj, 

and the local measured wave height, is used to obtain a 

theoretical estimation of the pressure amplitude. This is because 

the pressure fluctuations are in phase with the free surface 

fluctuations and if the local wave height is the sum of an incident 

and a reflected wave the pressure below that point will be due to 

the addition of the pressures for each of the waves.

The results of the tests for a range of waves with 

measurements at a number of depths are presented in table 5.4.1. 

The measured pressure amplitude is denoted by pn and the value S£ 

includes components due to the Stokes’ correction and the free 

wave which cannot be separated by a single measurement. No

measured values of the pressure amplitude at twice the wave frequency 

are given because no values were obtained which could be distinguished 

from the noise on the spectrum and therefore these values are always 

less than 2Z of the measured pressure amplitude at the wave 

frequency.

For the intermediate frequency (fo ■ 1.172) the variation 

°f the measured pressure with depth compared with the theoretical 

variation is presented in figure 5.4.1. Examination of table 5.4.1 

and figure 5.4.1 indicates that small amplitude wave theory gives 

results which for the range of waves tested underestimates the 

Pressure under a wave. It may be noted that agreement is best for 

waves of small steepness and that the discrepancies are often 

8reater than the expected experimental error.
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Z.0
T

H H ±2 Pt Pm Pjn Error
Li 2

(mm)
L H

(mm) (mm)
Pt

(mm)

.15 8.9 .021 .04 3.5 3.9 1.12 0.4

.15 19.4 .046 .07 7.6 7.2 .95 0.4

.15 39.5 .095 .11 15.4 18.0 1.17 2.6

.30 8.5 .020 .05 1.3 1.5 1.16 0.2

.30 19.4 .046 .07 3.0 3.4 1.15 0.4

.30 38.3 .092 .14 5.9 7.2 1.23 1.3

Frequency, f0 » 1.367 Hz Wavelength, L - 0. 835 m

Table 5.4.1a Incident wave pressure measurements

Xo H H 12 Pt Pm 2m Error
L 2 L H Pt

(mm) (mm) (mm) (mm)

.08 17.8 .031 - 10.6 11.4 1.08 0.8

.09 17.7 .031 - 10.0 10.6 1.07 0.6

.10 17.7 .031 - 9.5 10.2 1.08 0.7

.11 7.6 .013 - 3.8 4.1 1.08 0.3

.11 17.6 .031 - 8.9 9.8 1.10 0.9

.11 30.6 .053 .08 15.4 16.6 1.08 1.2

.11 42.9 .076 .17 21.6 24.6 1.14 3.0

.12 17.7 .031 - 8.4 9.2 1.09 0.8

.13 17.7 .031 - 8.0 8.7 1.08 0.7

.14 17.6 .031 - 7.5 8.1 1.08 0.6

.15 17.6 .031 - 7.1 7.8 1.09 0.7

.17 17.6 .031 - 6.2 6.8 1.09 0.6

.19 17.5 .031 - 5.4 5.9 1.09 0.5

.21 17.6 .031 - 4.8 5.2 1.07 0.4

.22 7.6 .013 - 2.0 2.1 1.07 0.1

.22 17.7 .031 - 4.6 4.9 1.07 0.3

.22 30.1 .053 .10 7.8 8.6 1.10 0.8

.22 42.6 .076 .17 11.0 12.5 1.14 1.5

.23 17.6 .031 - 4.2 4.5 1.06 0.3

Prequency» fo - 1.172 Hz Wavelength, L • 1. 132 m
Table 5.• 4.1b Incident wave jpressure measurement:s
Xo
L

H
2

(mm)

H
L

22 
H

Pt

(mm)

Pm

(mm)
Pt

Error

(mm)
.08
AO 14.6 .018 - 9.1 9.5 1.04 0.4• 08
AO 29.6 .037 .09 19.0 19.1 1.01 0.1• 08 48.9 .062 .10 30.5 32.4 1.06 1.9• 16 14.6 .018 - 5.9 6.1 1.04 0.2• 16 29.6 .037 .07 11.9 12.5 1.05 0.6• lb 49.4 .062 .10 19.8 21.5 1.08 1.7

^quency
» 0.977 Hz Wavelength, L - 1. 595 m

Tflble 5.4
•1c Incident wave pr essure measurements
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5.4.2 Reflection and Transmission of Waves

The classical diffraction theory (John, 1950) predicts 

that the total wave motion for waves interacting with a submerged 

obstacle may be regarded as the linear superposition of three 

component motions. The three components are the primary or incident 

wave, the secondary wave and the local wave. For the two dimensional 

problem, which is the subject of this study, the secondary wave 

travels away from the obstacle combining with the primary wave 

downstream of the cylinder to make up the transmitted wave. Upstream 

of the cylinder the secondary wave travels in the opposite direction 

to the primary wave and the waves beat. The form of the local wave 

must be determined by a theoretical analysis and for the present 

problem the diffraction computer program is used to evaluate the 

magnitude, of the free surface oscillations in the vicinity of the 

cylinder as well as in the far-field.

The detailed measurements of the wave motion have been 

obtained at the same frequencies as in the study of pressures on the 

cylinder surface. However, the cylinder locations and wave heights 

are different. The cylinder was located at a single depth for all 

the measurements so that the cylinder depth parameter has values 

0.044 < (yQ-a)/L < 0.084 and the range of wave steepness is 

°«015 < ]|j/L < 0.087. Therefore, although the values of the 

cylinder submergence and wave steepness parameters differ from the 

values which have been set for the study reported in the next section 

there i8 a clear similarity. This means that any physical 

Mechanisms identified in the present study will occur in the 

s,,bsequently reported study and may be of assistance in explaining
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discrepancies between theoretical and experimental pressure 

magnitudes.

In order to determine the form of the wave motion in both 

the far-field and near-field measurements of the free surface 

oscillations at a large number of locations have been obtained for 

ten waves. The fast Fourier transform technique has been employed to 

determine the magnitude of the oscillation at the wave frequency and 

the results have been plotted together with the linear theory 

predictions in figures 5.4.2a - j. Details of the diffracted wave 

are given in table 5.4.2 but before considering the results for wave 

transmission and energy loss which are included in this table a 

detailed examination of the graphical results is made.

The numerical results for the spatial variation of wave 

height demonstrate that the linear theory predictions do take the 

form described by John (1950). The reflected wave is clearest for 

fo ■ 0.977 Hz when finite depth effects are significant (figures 

5.4.2a - c) and all the graphs indicate that the transmitted wave is 

of constant amplitude. The numerical results for fQ “ 1.172 and 

1.367 Hz are in very close agreement with the result of Dean (1948) 

who demonstrated that for a wave in deep water interacting with a 

submerged circular cylinder there is no reflected wave and the 

transmitted wave has the same amplitude as the incident wave.

Theoretical results for the wave motion in the far-field 

due to interaction of waves with submerged obstacles have often been 

obtained but results for wave motion in the near field are less 

numerous. The results presented in figures 5.4.2 indicate that for
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a cylinder located at x ■ 0 there is a local standing wave motion for 

~L < x < L which combines with the progressive wave motion to give 

an increased amplitude of motion above and close to the cylinder. 

This occurence of a standing wave motion might have been proposed by 

a consideration of the possible deformation of the orbital motions 

due to the introduction of a circular obstacle. It would appear 

that this local wave motion becomes more significant for shallower 

cylinder submergence.

To permit a comparison of experimental measurements with 

theoretical predictions a small amplitude wave was generated at each 

of the three frequencies and these results are presented in 

figures 5.4.2a, d and h. The same comparison for steeper waves 

is given in figures 5.4.2b, e and i and the remaining figures 

(5.4.2c, f, g and j) are for steeper waves which give some indication 

of breaking. It must be remembered that all the results presented 

in this manner will be obscured to some extent by the tank 

reflection and the coefficient R has been recorded in table 5.4.2.

There are three aspects of the wave motion which are now 

considered in turn: the agreement between theory and experiment for 

notion in the far-field, the agreement in the near-field and the 

generation of free waves oscillating at multiples of the wave 

frequency.

The consideration of the agreement between theory and 

experiment for motion in the far-field requires two separate 

examinations of the plotted and tabulated results. Firstly the 

form of the reflected wave must be considered and then the form of 

the transmitted wave.
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For each of the waves generated the measurement of the

reflected wave motion is in close agreement with theory. The 

beating of waves is generally quite clear, particularly for the small 

amplitude motions, but it is never possible to identify any small 

amount of cylinder reflection which might occur because of the 

amplitude of the tank reflection.

The value of the transmission coefficient Tp for harmonic

waves oscillating at the fundamental frequency, fQ, have been taken 

from figure 5.4.2 and entered into table 5.4.2. For the small 

amplitude waves agreement with theory is reasonable but agreement for 

steeper waves is less good and particularly poor for some cases when 

wave breaking has been induced. The departure of the transmission 

coefficient from the theoretical value of unity indicates that 

there is an energy loss in the system. The energy loss coefficient 

Pl may be defined as 

5.4.2

where Rj is the cylinder reflection coefficient. Values of the 

energy loss coefficient, entered in table 5.4.2 indicate that 

for small amplitude waves between 5 and 10Z of the energy in the 

system has been dissipated in the wave obstacle interaction. For 

steeper waves the loss is between 7|Z and 11JZ and for the steepest 

waves energy losses are as much as 20Z^

Comparison of local wave measurements with the theoretical 

predictions is difficult for two reasons. The major difficulty 
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is in distinguishing between tank reflection and local wave effects. 

The second difficulty is in the shortage of results very close to the 

cylinder location. It is unfortunately not possible to obtain 

measurements above the cylinder because the wave probes must be 

submerged to half of their length to give a linear response. In 

spite of these difficulties it is possible to identify some 

agreement between theory and experiment for local wave motion.

Agreement is best for small amplitude waves and even for 

steeper waves and breaking waves there is evidence of agreement in 

the local wave motion upstream of the cylinder. However, for steeper 

waves and breaking waves the local wave downstream of the cylinder has 

a smaller amplitude of oscillation than the predicted value.

There is a significant free wave component in the transmitted 

wave. The amplitude of the free wave oscillating at twice the wave 

frequency may be isolated by the method described in section 5.3.4. 

A second harmonic transmission coefficient, T2 is defined by

T2 ’ H22 5.4.3

and the measured values have been entered in table 5.4.2. The value 

of this transmission coefficient is greatest for the steeper waves for 

which breaking has not commenced.

In a similar manner it is possible to define a third harmonic .

transmission coefficient, T3, so that

T3 - s3 5.4.4
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and the values of T3 which have been entered in table 5.4.2 must be

due to free waves generated in the interaction.

The values of the energy loss coefficient, Pj have indicated 

a loss of energy in the system. This result is obtained by a linear 

analysis and it is possible to include the second harmonic free wave 

in the energy analysis to account for the transfer of energy which 

must have taken place in generating this wave. A corrected energy 

loss coefficient ?2 *-s defined by 

P2 = Pl " 5.4.5

where Cgl is the group velocity of the main wave and C
g2

is the group

velocity of the free second harmonic wave.

The correction of the energy loss coefficient does not have a 

significant effect even when the free waves are large and it is 

therefore clear that the transfer of energy to free waves at multiples 

of the wave frequency does not account for the loss of energy in the 

system.

Table 5.4.2 Diffracted Wave Results

fo

(Hz)

(yo"a)

L

Hi /2

(mm)

Hx /L R T1 Pl t 2 P2 t 3

1.367 .084 9.6 .012 .02 .97 .060 .17 .046 .04
1.367 .084 19.7 .047 .04 .96 .076 .23 .049 .09
1.367 .084 36.2 .087 .01 .89 .204 .16 .192 .05
1.172 .062 8.5 .015 .03 .99 .013 .12 .005 .06
1.172 .062 17.6 .031 .02 .96 .078 .20 .059 .04
1.172 .062 30.9 .055 .02 .94 .116 .17 .102 .05
1.172 .062 43.5 .077 .03 .90 .185 .11 .179 .07
0.977 .044 14.8 .019 .03 .97 .055 .16 .043 .08
0.977 .044 28.5 .036 .02 .95 .091 .18 .076 .09
0.977 .044 47.5 .060 .04 .97 .061 .15 .050 .06
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5.4,3 Pressure Measurements on the Cylinder

Results for the pressures at four locations on the 

cylinder surface have been obtained for a range of waves and a range 

of cylinder locations. The pressure tappings are located at quarter 

points on the cylinder half way along the cylinder length (see 

figure 5.3.7). Pressure tapping 1 is located on the side of the 

cylinder facing the beach (downstream face) and pressure tapping 2 

is at the top of the cylinder. Pressure tapping 3 is on the side of 

the cylinder facing the wedge (upstream face) and pressure tapping 4 

is at the bottom of the cylinder.

The values of the cylinder submergence and diffraction 

parameters which have been set for these experiments have been given 

in section 5.2.2. The three values of each parameter make up the 

nine test cases for which results have been obtained. For each of 

the combinations results have been collected for a set of waves of 

varying steepness. The upper limit on the wave steepness is 

set both by the flume capacity and by the need to ensure that 

the cylinder remains submerged for all locations. The lower 

limit is set by the need to maintain pressure oscillations of a 

sufficiently large magnitude to avoid the introduction of errors.

As in the results for wave motion reported in the previous 

section there are occasions when a small amount of breaking can be 

detected in the free surface. This feature has only been observed 

f°r the steeper waves at the shallowest of the cylinder locations.
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The details of the incident wave motion have been recorded 

in table 5.4.3. Values are given for the incident wave amplitude, 

Hj/2 and the wave steepness Hj/L plus the tank reflection coefficient 

R. Table 5.4.3 also includes the results of the analysis of the 

wave motion at multiples of the wave frequency. The agreement 

between the measured amplitude of the fixed wave, H2i/2, fluctuating 

at twice the wave frequency and the Stokes’ second-order correction 

to the free surface displacement, H2t/2, given by equation 3.3.9, is 

excellent over the range of wave steepness. The amplitude of the 

free wave at twice the wave frequency, H22/2, is always smaller 

than the fixed component at this frequency and is never large enough 

to result in measurable pressures on the cylinder. The amplitude 

of the fluctuation of the free surface at three times the wave 

frequency, S3, has also been included in the table and the recorded 

values confirm that the wave height for the oscillations at the wave 

frequency will be in good agreement with the peak to peak value.

The measurements of pressure at the four locations on the 

cylinder are recorded in table 5.4.4. The reference number given in 

the first column is stated to permit the identification of the incident 

wave as given in table 5.4.3. For pressure amplitudes at multiples 

of the wave frequency the absence of entries in the tables indicates 

that the measured quantities are very small and are generally not 

distinguishable from the noise in the measurement system.

To permit an examination of the pressure measurements the 

results given in table 5.4.4 have been plotted in figures 4.5.3 to 

4.5.6. These graphs are in four sets each of which is now considered 

in turn.
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The first set of graphs (figures 5.4.3a - c) gives plots 

of the ratio of measured to theoretical pressure, pm/pt, against wave 

steepness, Hj/L, for the four pressure tapping locations. Each of 

the three graphs in this first set give results for a different 

value of the diffraction parameter and include results for each of 

the different cylinder locations. These graphs will therefore 

indicate the significance of the finite height of waves for shallow 

and deep cylinder submergence. The vertical scales of the graphs in 

each figure vary for the pressure tapping locations which is an 

indication that the extent of departure from the linear theory 

predictions varies with position on the cylinder.

The pressure measurements at pressure tapping locations

1, 2 and 3 demonstrate reasonable agreement between experiment and 

theory for the cylinder locations which are more remote from the 

free surface over the full range of wave steepness. These measurements 

generally lie between -5Z of the theoretical value although the 

discrepancy is sometimes a little greater for the steeper waves.

The differences between theory and experiment are noticably greater 

for the cylinder nearer to the free surface and in this case the 

measured values for small amplitude waves demonstrate poor 

agreement in some instances and the measured values for the steepest 

waves are occasionally very different from the theoretical values. 

The pressure amplitude ratio is very much larger for measurements at 

location 4 over the full range of wave steepness. The greater 

discrepancies at this location for waves of small amplitude may be 

attributed in part to experimental error because the amplitudes of 

oscillations are small. However, the differences for the larger 

amplitude waves is an indication of substantial disagreement between 

theory and experiment.
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The second set of graphs (figures 5.4.4a - c) which are 

presented in this section gives the results for the ratio of the 

pressure amplitude at twice the wave frequency to the measured 

pressure at the wave frequency (P2n/Pm) plotted against wave steepness, 

Hj-/L. Two trends which have been anticipated are confirmed by 

these results: firstly, that the oscillation at twice the wave 

frequency demonstrates a gradual increase with wave steepness at all 

depths of submergence and secondly, that the values of this pressure 

ratio is larger for smaller depths of submergence.

The values of the ratio p2m/pm are <’uite similar for each

of the four pressure tapping locations at any one value of the diffraction 

parameter, ka. The occurence of oscillations at twice the wave 

frequency is itself a departure from a linear theory prediction.

However, these oscillations are only of real significance if they are 

sufficiently large to modify the peak to peak oscillation. The 

Measured amplitudes of oscillation at twice the wave frequency are 

never very much more than 20Z of the fundamental pressure oscillation 

and do not therefore modify the peak to peak value.

The results plotted in figures 5.4.3 and 5.4.4 demonstrate 

clearly that finite wave height and shallow cylinder submergence are 

important effects which cause departure from linear theory predictions. 

To permit a further examination of the pressure results the data 

which has been presented in figures 5.4.3 and 5.4.4 is replotted in 

figures 5.4.5 and 5.4.6. In these figures the quantities pm^Pt an<^ 

P2n/Pm are a8flin plotted against wave steepness, Hj/L but in this 

Case each graph includes the results for a particular value of the 

cylinder submergence parameter, (yo-a)/L. The purpose of this 
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replot is to determine whether there is any identifiable difference 

between the results at different values of the diffraction parameter, 

ka, and also to permit conclusions to be drawn concerning the extent 

of the disagreement between the measured values and the linear 

diffraction theory predictions for each of the cylinder locations.

There is some evidence to suggest that the discrepancies 

between measured and theoretical pressure fluctuations at higher 

values of the diffraction parameter are greater than at lower values. 

This is a little clearer in the results for the two deeper locations 

of the cylinder for which results vary more consistently. It is 

also noticable that the pressure amplitude which oscillates at 

twice the wave frequency is generally a larger proportion of the 

oscillation at the wave frequency for higher values of the diffraction 

parameter at all cylinder locations.

The results obtained for the deepest cylinder submergence 

as plotted in figures 5.4.5a and 5.4.6a demonstrate the validity of 

linear diffraction theory for small amplitude waves interacting with a 

submerged circular cylindrical obstacle. For this cylinder location 

the measured results are consistently larger than theory. At 

pressure tapping location 1 agreement is good over the whole range 

of wave steepness (5Z difference) and for locations 2 and 3 the 

differences are a little larger (10Z for steeper waves). The 

greatest differences between theory and experiment are for location 

4• At this location it is only for small amplitude waves that the 

measured results are within 10Z of linear theory predictions for all 

values of the diffraction parameter.
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The results for the pressure ratio P2m/Pn Plotted in 

figure 5.4.6a and the absence of values for Psnj/PjD in table 5.4.4 

at the deepest cylinder submergence demonstrate that higher frequency 

oscillations will not in general ammend the peak to peak pressure. 

The only exception is for results at the bottom pressure tapping 

and these modifications would be of small magnitude.

For the intermediate value of the cylinder submergence 

parameter results are not greatly dissimilar to those obtained for the 

deepest submergence. However, for the shallowest cylinder submergence 

agreement between theory and experiment is less good. It is important 

to notice that for the largest value of the diffraction parameter 

the linear theory predictions are quite poor even for the smallest 

values of the wave steepness parameter. For steeper waves there is 

significant disagreement between the theoretical and measured pressure 

amplitudes at all locations on the cylinder and the results at the top 

and bottom pressure tapping locations are poorest.

The values of the pressure ratios P2m/Pn and P3m/Pm (figure 

5.4.6c and table 5.4.4) for the shallowest cylinder submergence 

indicate that there are some occasions when pressure oscillations at 

multiples of the wave frequency will modify the peak to peak pressure 

value. This result is only of minor significance because when these 

higher-order pressures are inportant the disagreement between theory 

and pressure is larger and the discrepancies would not have been very 

different if the peak to peak measurement had been presented.

In general it may be concluded that small amplitude wave 

theory gives a good representation of the physics of wave obstacle 
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interact-ion for waves of small steepness at larger depths of 

submergence but that non-linear effects due to the finite height of 

waves result in poor agreement between experiment and theory.

Table 5.4.3a Incident wave characteristics at fQ « 0.98 Hz

Reference 
Number

(yo-°)

L

Hi
2

(mm)

hi
L

R

(Z)

h 2i 
Hl

«2t H22

H2
23
«I

1 0.15 14.0 .018 4 .05 .03 .05 .04
2 0.15 26.1 .033 3 .04 .06 .03 .03
3 0.15 36.0 .046 2 .08 .08 .04 .03
4 0.15 45.3 .059 3 .11 .10 .02 .04
5 0.15 56.1 .072 3 .12 .12 .05 .03
6 0.10 14.4 .018 3 .03 .03 .04
7 0.10 25.7 .033 3 .05 .06 .03
8 0.10 36.6 .047 2 .07 .08 .03 .02
9 0.10 46.1 .059 2 .10 .10 .02 .02

10 0.10 57.2 .072 3 .12 .12 .02 .03
11 0.05 14.5 .019 3 .03 .03 .04
12 0.05 25.7 .033 2 .05 .06 .02
13 0.05 36.6 .047 2 .08
14 0.05 47.0 .060 2 .10
15 0.05 56.9 .073 2 .12
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fable 5.4.3c Incident wave characteristics at fo “ 1.37 Hz

Reference 
Number

(yo”a)

L 2
(mm)

HI

L

R

(Z)

^t

HI

h 22
HI

5

16 0.15 7.9 .014 2 .02
17 0.15 17.4 .031 1 .03 .05
18 0.15 26.4 .046 2 .06 .07 .02
19 0.15 35.4 .062 2 .11 .10 .03 .02
20 0.15 43.5 .077 1 .12 .12 .05 .03
21 0.15 50.2 .088 2 .14 .13 .02 .05
22 0.15 55.8 .098 2 .15 .15 .04 .04
23 0.10 8.3 .015 2 .02
24 0.10 18.4 .032 1 .03 .05
25 0.10 27.3 .048 1 .09 .07 .03 .02
26 0.10 35.0 .062 2 .10 .09 .05 .03
27 0.10 43.5 .077 2 .14 .12 .06 .04
28 0.10 50.2 .088 2 .13 .13 .03 .05
29 0.10 56.7 .100 4 .15 .15 .03 .05
30 0.05 7.7 .013 2 .02
31 0.05 18.5 .033 1 .05 .05 .03 .03
32 0.05 27.1 .048 1 .07 .07 .02 .02
33 0.05 35.6 .063 2 .09 .10 .03 .03
34 0.05 44.2 .078 3 .11 .12 .04 .04
35 0.05 50.6 .089 2 .15 .14 .05 .05
36 0.05 56.8 .100 1 .16 .15 .05 .05

Table 5.4. 3b Incident ’wave characteristics at fo - 1.17 Hz

Reference (yo”a> HI HI R H21 H2t H22 5
Number T 7 r *1 HI HI Hi

(mm) (Z)

37 0.15 9.1 .022 3 .03
38 0.15 15.4 .037 2 .04 .06 .04
39 0.15 20.1 .048 2 .09 .07 .03
40 0.15 25.1 .060 2 .10 .09 .03 .03
41 0.15 29.8 .071 3 .09 .11 .03 .03
42 0.15 34.0 .082 2 .12 .12 .04 .04
43 0.15 37.6 .090 3 .14 .14 .06 .05
44 0.10 9.2 .022 3 .10 .03 .05
45 0.10 15.1 .036 2 .03 .06
46 0.10 19.9 .048 2 .07 .07 .04 .03
47 0.10 24.7 .059 3 .07 .09 .03 .02
48 0.10 30.1 .072 2 .09 .11 .04 .02
49 0.10 34.3 .082 1 .09 .12 .05 .03
50 0.10 38.4 .092 2 .11 .14 .07 .04
51 0.05 9.6 .023 1 .14 .03 .07
52 0.05 14.3 .034 2 .03 .05 .12
53 0.05 20.4 .049 0 .08 .07 .04 .04
54 0.05 26.2 .063 1 .10 .09 .04 .03
55 0.05 30.0 .072 3 .12 .11 .04 .03
56 0.05 34.0 .081 2 .12 .12 .04 .04
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1.I0H Location 1

-------a -------  0.15
-------?------- 0,10
- - * - - 0.05

Figure 5.4.3a Ratio oF measured and theoretical pressure amplitudes
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-------A-------  0.15
------- 7------- 0J0
- - * - - 0.05

Figure 53.3b Ratio oF measured and theoretical pressure amplitudes
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Location I1.10-1

-------a -------  0.15
------- 9------- 0.10
- - * - - 0.05

Figure 5.4.3c Ratio of measured and theoretical pressure amplitudes
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.3_ Location 1

-------*------ 0.15
- --v------  0.10
- - * - - 0.05

Figure 5.4.4a Pressure amplitude at twice the wave Frequency

281



-------a -------  0.15
- —v— - 0.10
- - * - - 0.05

Figure 5.1.4b Pressure amplitude at twice the wave frequency
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0.15
0.10
0.05

Figure 5.4.4c Pressure amplitude at twice the wave Frequency
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Figure 5.4.5a Ratio of measured and theoretical pressure amplitudes
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0.30
0.41

Figure 5.4.5b Ratio oF measured and theoretical pressure amplitudes
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0.30
0.41

Figure 5.4.5c Ratio oF measured and theoretical pressure amplitudes
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.3^ Location 1

0.30
0.41

Figure 5.4.6a Pressure amplitude at twice the wave Frequency
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3„ Location 1

0.30
0.41

Figure 53.6b Pressure amplitude at twice the wave Freauency
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3_ Location 1

. — —9— * . 0,30
- - * - - 0.41

Figure 5.4.6c Pressure amplitude at twice the wave Frequency

289



Reference Pt Pm Pm Error P2m P2m P3m P3m
number

(mm) (nin) Pt (mm) (mm) Pm (mm) Pm

1 5.0 5.2 1.05 0.2
2 9.2 9.5 1.03 0.3
3 12.7 13.2 1.04 0.5
4 16.2 16.8 1.04 0.6 0.7 0.04
5 19.8 19.1 0.97 -0.7 1.9 0.10
6 6.6 6.9 1.04 0.3 0.2 0.03
7 11.8 12.3 1.05 0.5 1.0 0.08
8 16.7 17.1 1.02 0.4 0.9 0.05
9 21.0 21.5 1.02 0.5 2.2 0.10 0.4 0.02

10 26.1 25.4 0.97 -0.7 4.1 0.16 0.5 0.02
11 9.0 9.2 1.03 0.2 0.6 0.07
12 15.9 15.8 1.00 0.1 1.9 0.12 0.5 0.03
13 22.6 21.6 0.95 -1.0 3.2 0.15 0.6 0.03
14 29.0 27.5 0.95 -1.0 4.7 0.17 1.1 0.04
15 35.1 33.7 0.96 -1.4 4.7 0.14 2.0 0.06

Table 5.4.4a Pressure measurements at location 1

Table 5.4.4b Pressure measurements at location 2

Reference Pt Pm Pm Error P2m P£m P3m P3m
number

(mm) (mm) Pt (mm) (mm) Pm (mm) Pm

1 6.7 7.1 1.06 0.4
2 12.4 12.9 1.03 0.5
3 17.1 17.7 1.03 0.6 1.1 0.06
4 21.8 22.6 1.04 0.8 1.6 0.07
5 26.6 26.1 0.98 -0.5 2.1 0.08
6 9.2 9.6 1.04 0.4 0.3 0.03
7 16.4 17.4 1.06 1.0 1.2 0.07
8 23.3 23.8 1.02 0.5 1.2 0.05
9 29.3 29.5 1.01 0.2 2.1 0.07

10 36.3 35.1 0.97 -1.2 3.2 0.09 1.1 0.03
11 13.0 13.7 1.06 0.7 0.5 0.04
12 22.9 23.2 1.01 0.3 1.6 0.07 0.5 0.02
13 32.6 30.2 0.92 -2.4 2.4 0.08 0.9 0.03
14 41.8 36.3 0.87 -5.5 3.6 0.10 1.5 0.04
15 50.6 39.6 0.78 -10.4 5.5 0.14 2.0 0.05

290



Table 5.4.4c Pressure measurements at location 3

Reference Pt Pm Pm Error P2m P2m P3m P3m
number

(mm) (mm) Pt (mm) (mm) Pm (nrn) Pm

1 5.0 5.2 1.03 0.2
2 9.3 9.5 1.02 0.2
3 12.9 13.2 1.03 0.3
4 16.4 17.0 1.04 0.6 0.7 0.04
5 20.0 19.8 0.99 -0.2 1.6 0.08
6 6.7 6.7 1.01 0.0 0.2 0.03
7 11.9 12.5 1.05 0.6 0.8 0.06
8 16.9 17.3 1.03 0.4 0.7 0.04
9 21.2 22.2 1.04 1.0 1.8 0.08

10 26.3 27.4 1.04 1.1 3.0 0.11
11 9.4 9.2 0.98 -0.2 0.3 0.03
12 16.0 16.4 1.02 0.4 1.1 0.07
13 22.8 22.9 1.00 0.1 2.1 0.09
14 29.3 29.3 1.00 0.0 3.5 0.12
15 35.4 36.1 1.02 0.7 5.1 0.14

Reference Pt Pm Pm Error P2m P2m P3m P3m
number

(mm) (mm) Pt (mm) (mm) Pm (mm) Pm

1 3.3 3.5 1.05 0.2
2 6.1 6.4 1.05 0.3
3 8.5 9.1 1.07 0.6 0.7 0.08
4 10.8 11.8 1.09 1.0 1.2 0.10
5 13.2 13.9 1.06 0.7 1.1 0.08
6 4.1 4.2 1.04 0.1 0.2 0.04
7 7.2 7.9 1.09 0.7 0.7 0.09
8 10.3 11.5 1.11 1.2 0.8 0.07
9 12.9 15.5 1.20 2.6 1.4 0.09

10 16.1 19.6 1.22 3.5 1.6 0.08
11 5.2 5.4 1.04 0.2 0.3 0.05
12 9.1 10.5 1.15 1.4 0.7 0.07
13 13.1 16.2 1.24 3.1 1.3 0.08
14 16.7 20.4 1.22 3.7 1.6 0.08 0.4 0.02
15 20.2 25.1 1.24 4.9 1.5 0.06

Table 5.4.4d Pressure measurements at location 4
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Reference pt 
number

Pm

(mm)

Pm

Pt

Error

(mm)

P2m

(mm)

P2m

Pm

P3m

(mm)

P3m

Pm(mm)

16 2.4 2.5 1.03 0.1
17 5.2 5.4 1.04 0.2
18 7.9 8.0 1.02 0.1
19 10.6 10.5 0.99 -0.1 0.6 0.07
20 13.0 12.9 1.00 0.1 1.8 0.14
21 15.0 15.2 1.01 0.2 1.7 0.11
22 16.8 17.2 1.02 0.4 2.8 0.16
23 3.3 3.3 1.00 0.0 0.2 0.05
24 7.4 7.4 0.99 0.0 0.5 0.07
25 11.0 10.8 0.98 -0.2 1.2 0.11
26 14.2 13.6 0.96 -0.6 2.2 0.16
27 17.6 16.9 0.96 -0.7 3.0 0.18
28 20.3 19.3 0.95 -1.0 4.2 0.22
29 22.9 23.9 1.04 1.0 4.1 0.17
30 4.3 4.3 1.00 0.0 0.3 0.08
31 10.4 9.6 0.92 -0.8 1.6 0.17
32 15.1 13.6 0.90 -1.5 2.7 0.20 0.5 0.04
33 20.0 18.5 0.93 -1.5 3.3 0.18 0.9 0.05
34 24.7 22.0 0.89 -2.7 4.8 0.22 1.3 0.06
35 28.2 24.5 0.87 -3.7 5.4 0.22 1.7 0.07
36 31.7 28.6 0.90 -3.1 7.2 0.25 1.1 0.04

Table 5.>4.4e Pressure measurements at location 1

Referem 
number

ce pt

(mm)

Pm

(mm)

Pm

Pt

Error

(mm)

P2m

(mm)

P2m

Pm

P3m

(mm)

P3m

pm

16 3.8 3.9 1.04 0.1
17 8.3 8.6 1.04 0.3
18 12.5 13.0 1.04 0.5 0.9 0.07
19 16.7 17.4 1.04 0.7 1.2 0.07
20 20.6 21.6 1.05 1.0 1.1 0.05
21 23.7 25.4 1.07 1.7 2.0 0.08
22 26.5 29.2 1.10 2.7 2.6 0.09
23 5.4 5.5 1.02 0.1
24 12.0 12.0 1.02 0.2
25 17.7 18.1 1.02 0.4 0.9 0.05
26 22.8 23.8 1.04 1.0 1.4 0.06
27 28.3 27.9 0.99 -0.4 1.4 0.05
28 32.6 32.3 0.99 -0.3 2.6 0.08
29 36.9 38.5 1.04 1.6 8.5 0.22
30 7.1 7.4 1.04 0.3 0.4 0.05
31 17.3 17.2 1.00 0.1 1.5 0.09
32 25.3 23.5 0.93 -1.8 1.9 0.08 1.2 0.05
33 33.2 28.5 0.86 -4.7 3.1 0.11 3.4 0.12
34 41.2 30.5 0.74 -10.7 4.6 0.15 3.7 0.12
35 47.1 31.4 0.67 -15.7 4.7 0.15 2.8 0.09
36 52.9 33.4 0.63 -19.5 3.3 0.10 3.3 0.10

Table 5. 4.4f Pressure measurements at location 2
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Reference pt Pm Pm Error P2m P2m P3m P3m
number

(mm) (mm) Pt (mm) (mm) Pm (mm) Pm

16 2.4 2.5 1.05 0.1
17 5.2 5.5 1.05 0.3
18 7.9 8.3 1.05 0.4
19 10.6 11.1 1.05 0.5 0.6 0.05

20 13.0 14.0 1.07 1.0 0.8 0.06

21 15.1 16.1 1.07 1.0 1.1 0.07

22 16.8 18.7 1.11 1.9 1.9 0.10

23 3.4 3.4 1.02 0.0 0.1 0.04

24 7.5 7.6 1.01 0.1 0.4 0.05

25 11.0 11.4 1.03 0.4 0.8 0.07

26 14.2 15.1 1.06 0.9 1.8 0.12

27 17.6 18.6 1.05 1.0 1.9 0.10

28 20.3 21.9 1.08 1.6 2.6 0.12

29 23.0 25.2 1.10 2.2 3.5 0.14
30 4.3 4.5 1.05 0.2
31 10.4 10.5 1.01 0.1 0.6 0.06
32 15.2 15.3 1.01 0.1 1.4 0.09
33 19.9 20.5 1.03 0.6 2.5 0.12
34 24.7 24.8 1.00 0.1 3.5 0.14
35 28.3 29.3 1.04 1.0 4.4 0.15
36 31.7 33.2 1.05 1.5 6.0 0.18 1.0 0.(

Table 5.>4.4g Pressure measurements at location 3

Reference pt Pm Pm Error P2m P2s P3m P3m
number (mm) (mm) Pt (mm) (mm) Pm (mm) Pm

16 1.1 1.0 0.99 -0.1
17 2.2 2.3 1.01 0.1
18 3.3 3.4 1.02 0.1
19 4.5 4.7 1.04 0.2 0.5 0.11
20 5.5 6.3 1.14 0.8 0.8 0.12
21 6.4 7.6 1.19 0.8 1.2 0.16
22 7.1 8.8 1.24 1.7 0.8 0.09
23 1.3 1.3 0.98 0.0
24 3.0 2.9 0.99 -0.1 0.2 0.07
25 4.4 4.6 1.05 0.2 0.4 0.09
26 5.7 6.4 1.14 0.7 0.5 0.08
27 7.0 9.3 1.33 2.3 1.2 0.13
28 8.1 10.9 1.35 2.8 1.4 0.13
29 9.1 11.9 1.30 2.8 2.0 0.17
30 1.5 1.6 1.02 0.1
31 3.7 4.0 1.06 0.3 0.4 0.09
32 5.5 6.6 1.21 1.1 0.8 0.12
33 7.2 10.2 1.42 3.0 1.5 0.15
34 8.9 13.3 1.50 4.4 1.3 0.10
35 10.2 14.3 1.41 4.1 1.9 0.13
36 11.4 17.0 1.49 5.6 2.0 0.12

Table 5.4.4h Pressure measurements at location 4
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Reference pt 
number

Pm

(mm)

Pm

Pt

Error

(mm)

P2m

(mm)

P2in

Pm

P3m

(mm)

^3m

Pm(ram)

37 2.5 2.5 1.01 0.0
38 4.2 4.3 1.02 0.1 0.2 0.05
39 5.4 5.7 1.05 0.3 0.5 0.08
40 6.8 7.0 1.04 0.2 0.6 0.09
41 8.1 8.1 1.01 0.0 0.9 0.11
42 9.2 9.5 1.04 0.3 0.9 0.09
43 10.2 10.9 1.07 0.7 1.1 0.10
44 3.3 3.5 1.04 0.2
45 5.5 5.6 1.03 0.1 0.4 0.08
46 7.2 7.2 0.99 0.0 0.9 0.12
47 8.9 8.9 1.00 0.0 1.3 0.15
48 10.9 10.5 0.96 -0.4 1.8 0.17
49 12.4 11.9 0.96 -0.5 2.0 0.17
50 13.9 13.4 0.96 -0.5 2.5 0.19
51 4.8 5.2 1.09 0.4 0.8 0.11
52 7.1 7.3 1.02 0.2 1.2 0.16
53 10.1 9.4 0.93 -0.7 1.9 0.20
54 13.1 11.7 0.90 -1.4 2.7 0.23 0.7 0.06
55 14.9 13.3 0.89 -2.6 3.6 0.27 0.8 0.06
56 16.9 18.0 1.06 1.1 2.7 0.15 1.3 0.07

Table 5. 4.4i Pressure measurements at location L

Reference pt Pm

(mm)

Pm

Pt

Error

(mm)

P2m

(mm)

P2m

Pm

P3m

(mm)

P3m

Pm

number
(mm)

37 4.4 4.5 1.03 0.1
38 7.5 7.9 1.06 0.4 0.2 0.03
39 9.7 10.4 1.06 0.7 0.4 0.04
40 12.2 13.3 1.09 1.1 0.7 0.05
41 14.5 15.6 1.07 1.1 1.1 0.07
42 16.6 18.1 1.10 1.5 1.3 0.07
43 18.3 20.6 1.13 2.3 1.6 0.08
44 6.1 6.5 1.07 0.4 0.3 0.05
45 9.9 10.5 1.06 0.6
46 13.1 13.9 1.06 0.8 0.7 0.05
47 16.3 17.7 1.09 1.4 1.1 0.06
48 19.9 21.2 1.07 1.3 1.3 0.06
49 22.6 23.3 1.03 0.7 1.6 0.07
50 25.4 25.2 0.99 -0.2 2.3 0.09
51 9.1 11.2 1.23 2.1 1.2 0.11
52 13.7 15.5 1.13 1.8 1.6 0.10
53 19.4 19.3 0.99 -0.1 2.3 0.12
54 25.1 21.9 0.87 -3.2 3.3 0.15 1.8 0.08
55 28.6 25.6 0.89 -3.0 4.4 0.17 3.3 0.13
56 32.5 23.3 0.72 -9.2 8.4 0.36 4.2 0.18

Table 5.4.4j Pressure measurements at location 2
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Table 5.4.4k Pressure measurements at location 3

Reference pt Pm

(mm)

Pm

Pt

Error

(mm)

P2m

(mm)

P2m

Pm

P3m

(mm)

P3m

Pm
number

(mm)

37 2.5 2.7 1.05 0.2
38 4.2 4.5 1.07 0.3
39 5.4 5.9 1.08 0.5 0.3 0.05
40 6.8 7.5 1.10 0.7 0.4 0.05
41 8.1 8.7 1.08 0.6 0.3 0.04
42 9.2 9.9 1.07 0.7 0.8 0.08
43 10.2 11.6 1.14 1.4 1.2 0.10
44 3.3 3.6 1.08 0.3
45 5.5 5.9 1.08 0.4 0.4 0.06
46 7.2 7.7 1.07 0.5 0.5 0.06
47 8.9 9.8 1.09 0.9 0.7 0.07
48 10.9 11.8 1.08 0.9 0.9 0.08
49 12.4 13.1 1.06 0.7 1.6 0.12
50 13.9 14.8 1.06 0.9 1.6 0.11
51 4.8 5.4 1.13 0.6
52 7.1 7.9 1.11 0.8 0.6 0.08
53 10.1 11.2 1.11 1.1 1.0 0.09
54 13.0 13.9 1.06 0.9 1.7 1.09
55 14.9 16.5 1.11 1.6 2.5 0.15
56 16.9 12.7 0.75 -4.2 3.3 0.26 1.0 0.08

Reference Pt Pm Pm Error P2m P2m P3m P3m
number 11 ' ...... ■

(mm) (mm) Pt (mm) (mm) Pm (mm) Pm

37 0.5 0.6 1.07 0.1
38 0.9 1.0 1.13 0.1
39 1.1 1.3 1.16 0.2
40 1.4 1.6 1.16 0.2 0.4 0.09
41 1.7 2.0 1.26 0.3 0.4 0.26
42 1.9 2.4 1.27 0.5 0.7 0.28
43 2.1 3.0 1.44 0.9 0.6 0.21
44 0.6 .7 1.07 0.1
45 1.0 1.1 1.12 0.1
46 1.3 1.6 1.16 0.3
47 1.7 2.0 1.21 0.3 0.4 0.21
48 2.0 2.5 1.24 0.5 0.7 0.28
49 2.3 3.3 1.43 1.0 0.8 0.23
50 2.6 4.3 1.68 1.7 1.0 0.23
51 0.6 0.9 1.49 0.3 0.2 0.20
52 0.9 1.4 1.61 0.5 0.3 0.24
53 1.3 2.5 1.94 1.2 0.6 0.24
54 1.6 3.8 2.30 2.2 1.0 0.26
55 1.9 5.3 2.87 3.4 1.1 0.21
56 2.1 4.2 1.98 2.1 1.1 0.26

Table 5.4.41 Pressure measurements at location 4
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CHAPTER 6 DISCUSSION

6.1 Introduction

The discussion of the main results of this thesis commences 

with a consideration of the formulation and numerical solution of the 

linear potential theory problem of wave scattering. The numerical 

results which have been obtained in this study by solution of the 

regular kernel integral equation formulation and by the application of 

higher-order discretisation techniques for both the singular and 

regular kernel methods are used to indicate which of the alternative 

integral equation methods and which of the different numerical schemes 

provides the most reliable and efficient means of evaluating the 

response of an obstacle to wave motion.

Detailed numerical results have only been obtained for the 

Particular case of a submerged circular cylinder in a two dimensional 

domain, although some results have been computed for a semi-immersed 

cylinder (Appendix A.8). It is therefore necessary to extend the 

Present study to include a greater range of problems if the potentially 

advantageous regular kernel method is to be regarded as a reliable 

alternative to the established methods. Recommendations are made 

concerning the extension of the test programme.

The validation of potential theory results under controlled 

laboratory conditions is very important if numerical methods are to be 

employed with confidence. The experimental study reported in this thesis 

I'as not beenrestricted to the problem for small amplitude waves and 

296



attempts have been made to determine how well the linear theory 

predicts the physics of wave obstacle interaction for conditions 

when wave height effects are expected to be significant. The 

physical mechanisms which are not accommodated in the linear 

diffraction theory model are considered in an attempt to explain 

discrepancies between theory and experiment.

The discussion of the results of this thesis is concluded 

by considering the possibility of developing non-linear analysis 

methods. The alternative possibilities are discussed with regard 

to the possibility of implementation and then consideration is given 

to the possibility of using these methods to improve the agreement 

between theoretical predictions and the experimental results 

obtained in this study.

b»2 Discussion of Numerical Results

If the potential theory problem of small amplitude waves 

interacting with submerged obstacles is to be solved there are a 

number of alternative numerical schemes which might be employed. 

Tbe finite element method, the multipole method, the integral equation 

methods and hybrid methods have all been used to varying extents 

<md each has peculiar advantages and disadvantages.

If a general formulation is required the multipole method 

w°nld be discarded because for this method the obstacle geometry 

must be a simple two dimensional shape which may be conformally mapped 
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onto a circle. There are difficulties associated with the use of 

the finite element method in exterior domains which reduce the 

usefulness of this method for the type of problem under consideration 

and it would seem that the best use of the finite element method would 

be as part of a hybrid element solution scheme. It is therefore 

reasonable to suggest that the integral equation methods are the most 

suitable for this type of problem and this is supported by the wide-

spread use of these methods in research and design.

If the integral equation methods are to be regarded as the 

cost suitable methods for the numerical solution of wave obstacle 

interaction problems it is relevent to consider which of the various 

formulations is to be preferred. In developing an integral equation 

formulation there are three basic choices which must be made. The 

first choice is concerned with the type of fluid singularity to be used 

and the second choice requires the selection of any one of three 

alternative representations of the unknown scattered wave velocity 

potential. Of the six possible formulations three have been the 

subject of extensive investigations. The earliest solutions were 

published for the wave source indirect formulation and subsequently 

results have appeared for the wave source and the simple source 

direct formulations. Most authors have preferred the wave source 

(Green’s function) formulations because they result in a much smaller 

system of equations and some have preferred the direct formulation. 

This preference is supported as the best of the above-mentioned 

integral equation methods particularly if the principle of energy 

conservation is used to give a check on the solution.
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This thesis includes an investigation of results obtained 

for the alternatives of the third type of choice which is concerned 

with the location of the source distributions. Conventionally the 

formulations have been obtained for sources located on the cylinder 

boundary and the studies which employ a separated source boundary are 

scarce. However, it is possible to obtain indirect formulations 

for simple sources or wave sources located on boundaries which are 

external to the fluid domain.

For a distribution of wave sources over a boundary which is 

inside the obstacle it has been demonstrated that the resulting 

regular kernel integral equation formulation is amenable to numerical 

solution. The results obtained for the particular problem of a 

submerged circular obstacle in a two dimensional domain indicate that 

for a range of waves and a range of cylinder locations the regular 

kernel method is the most efficient scheme. It has been identified 

that the results obtained are sensitive to the location of the ’source 

boundary’ relative to the obstacle boundary and that greater separations 

give more rapid convergence to a final solution as the level of 

discretisation is varied. It has also been identified that for more 

precise discretisations ill-conditioning in the system of algebraic 

equations gives rise to some unreliability. This problem does not 

preclude the suggestion that this method is the most suitable of the 

integral equation methods for the particular problem of waves 

interacting with submerged circular cylinders because more precise 

discretisations are always unnecessary. However, this type of failure 

rcust be investigated further if the method is to be applied to 

Problems which do require more precise discretisation or require the 

solution of larger systems of algebraic equations.
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Before computing the results for the regular kernel method

it was anticipated that the use of higher-order discretisation 

schemes would permit a reduction in the level of discretisation 

giving a reduction in the size of the system of equations. This 

attempt to reduce the possibility of ill-conditioning was 

unsuccessful in that the results obtained with higher-order elements 

in the regular kernel method were never considerably better than the 

results obtained by the simple discretisation scheme. However, as well 

as being unsucessful the attempts proved to be unnecessary because 

the results obtained by the simple scheme proved to be quite adequate.

A secondary purpose for including the higher-order 

discretisation schemes in the computer program was to permit the 

investigation of the suitability of such schemes for use with the 

singular kernel method. No consistent improvement was obtained 

although some results demonstrated considerable improvements when 

compared with results obtained by the simple scheme which has been used 

in nearly all published studies. It is suspected that the occasional 

failure of the higher-order techniques is associated with the gradual 

variation of the quantities which the refinements are intended to 

raodel malting the techniques superfluous and leading to a delay in the 

convergence to the final solution. The modelling of the variation 

°f source density within an element and the variation of the Green’s 

function value on an element must therefore be given proper consideration 

before a choice of discretisation scheme is made. This suggestion 

lilustrates that there has been no detailed study of the possible 

Sources of error due to the simple discretization scheme which 

vould be useful if the limitations are to be better understood.
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There are two ways in which the numerical study reported in 

this thesis might be extended. The first type of extension would 

involve the improvement of the existing computer program by implementing 

some modifications and including a number of additional options and 

the second type would require a considerable extension of the range 

of problems tested.

The improvements which might be made to the computer

program may be listed as follows:

(i) Inclusion of the Green’s function expressions for infinite 

water depth.

(ii) Amendment of the subroutines for the compilation of the 

kernel matrix to permit utilization of symmetry thereby reducing the 

number of Green’s function evaluations.

(iii) Implementing a more efficient solution subroutine which 

employs a series of matrix operations for the solution of two 

simultaneous complex matrix equations in the manner described in 

Chapter 4.

(iv) Inclusion of an iterative procedure in the solution 

subroutine. This iterative procedure assists in the solution of 

slightly ill-conditioned systems of equations.

(v) Extension of the solution subroutine to include a conditioning 

number (Hearn, Donati and Mahendran, 1982), which assists in the 

lcJentification of unsuitable discretisation schemes.
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The extensions of the second type are of greater

importance and the additional investigations recommended are:

(i) The examination of the form of the source density function 

to assist in the choice of relevent discretisation schemes.

(ii) The solution of problems for multiple bodies in two 

dimensional domains in order to determine the significance of 

ill-conditioning schemes for larger systems of equations.

(iii) The solution of problems of various geometries and 

locations in two dimensional domains to examine whether the regular 

kernel integral equation method is suitable for non-circular obstacles 

and also to determine whether or not the higher-order elements 

assist in modelling more difficult obstacle geometries. Particular 

consideration should be given to the solution of problems in which the 

discretised boundary includes corners.

(iv) The solution of three dimensional problems of various 

geometries and locations to supplement the results of Coates (1982) for 

the problem of a surface piercing circular cylinder in water of finite 

depth.

(v) The extension of the program to include evaluation of the 

radiation potentials for each degree of freedom and evaluation of the 

added mass and damping coefficients. It is anticipated that the 

results obtained for the body in motion by the regular kernel method 

w*ll also be obtained for reduced computational requirements. This 

should be confirmed for the range of problems outlined above.
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This recommended programme of tests is quite extensive but is 

obviously very necessary if the regular kernel integral equation method 

is to be used with confidence for the solution of wave obstacle 

interaction problems. Even if the regular kernel method is found 

to be unsuitable for more demanding problems it may be convenient to 

include the regular kernel option in a program so that it is 

possible to obtain solutions at the ’irregular frequencies’ for 

obstacles of simple geometry in the free surface. It may be noted 

that the modifications to established computer programs which would 

be required for the implementation of the regular kernel method are 

only minor.

In concluding this section of the discussion it is noted 

that the regular kernel integral equation results in significant 

savings in computer core and time requirements. This method is 

therefore potentially very useful for more demanding problems of 

analysis because the savings may prove to be much greater. The most 

trivial example of increased reduction in computer requirements would 

be the repeated use of the two dimensional model with a strip theory 

and the most obvious example would be the application of the method 

to the analysis of three dimensional problems.

6.3 Discussion of Experimental Results

It must be remembered that in attempting to improve the 

numerical methods employed for the solution of the potential theory 

problems of wave hydrodynamics, the aim of the engineer is not to 
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obtain solutions to a high degree of accuracy but rather to establish 

methods which ensure that a specified accuracy is achieved for a 

reduced demand on computational resources.

For submerged obstacles in a two dimensional domain there 

are a variety of robust numerical methods which may be used to provide 

accurate predictions of physically significant quantities. These 

methods may be used to obtain solutions which are accurate in the sense 

that they are in close agreement with the true solution of the boundary 

value problems as posed. It is stressed that these results are 

only likely to be an accurate representation of the physics of the 

problem if the physical conditions closely resemble the boundary 

conditions of the mathematical model.

An obvious departure of the physical conditions from the 

conditions assumed in the formulation of the boundary value problem 

is due to waves of finite height interacting with an obstacle. The 

extent of the departure is of engineering significance because waves 

in the ocean are often of considerable steepness whereas the only 

design tools available for the solution of wave scattering or radiation 

problems are based on the assumption of small amplitude motion.

It has also been anticipated that the physical conditions 

will differ from the mathematical conditions for obstacles located 

at small depths below the free surface. This is because finite wave 

height is of greater significance in the local shallow water region 

above the obstacle.

304



Before giving detailed consideration to the experimental 

results obtained in this study the importance of experimental study 

in engineering research is emphasised. The available computer 

programs permit evaluation of potential theory results for objects 

of any geometry at any location within the wave field. However, 

experimental results for the various problems may, as a result 

of different physical mechanisms, depart from the predicted values 

by a different amount. This point is best illustrated by reference 

to the studies of Dean and Ursell (1960) and Yu and Ursell (1961) 

for the semi-immersed circular cylinder. The first study was 

performed for regular waves interacting with a fixed cylinder and 

the second for the vertical oscillation of the cylinder in otherwsie 

calm water and the discrepancy between theoretical and experimental 

values for wave height were different for the two problems. This is 

a little surprising because the object geometry is identical in both 

problems and it is noted that the difference in the discrepancy may 

prove to be greater if the amplitudes of motion are larger. It is 

therefore clear that if any of the numerical methods are to be used 

with confidence in engineering design there must be substantial 

experimental evidence to demonstrate the validity of the linear boundary 

value problem for the particular physical problem. This not only 

requires extensive collection of data for small amplitude wave 

obstacle interaction but should include investigation of important 

features such as finite wave height, currents and modification of 

waves, and therefore of wave obstacle interaction, due to wind.

The experimental results for the diffraction of waves due 

to interaction with a submerged horizontal circular cylinder have been 

obtained for small depths of submergence only. It has been found 
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that linear theory predictions are in good agreement with experimental 

measurements for small amplitude wave motion and that the theoretical 

result of no reflection for deep water waves is confirmed for small 

amplitude and finite amplitude waves. However, the amplitude of 

the transmitted wave and its harmonic composition are very different 

from the theoretical prediction when finite height waves interact with 

the cylinder.

The most significant result is the reduction in the 

amplitude of oscillation of the transmitted finite height wave. The 

measurement of the local wave motion just downstream of the cylinder 

demonstrates the greatest reduction and there is then an increase in 

the amplitude further downstream. A free wave oscillating at twice 

the wave frequency has been identified in the transmitted wave but this 

does not account for the energy deficit in the system. It is therefore 

clear that the loss of energy which is demonstrated by the reduced 

wave height in the far-field transmitted wave must be due to the 

occurrence of viscous effects. One viscous mechanism which is easily 

identified and which must be responsible for a large proportion of the 

energy dissipation is the spilling of the wave surface which occurs 

just after the wave crest has passed the cylinder. However, wave 

breaking does not provide a complete explanation for the energy 

deficit because losses are also identified for the steep waves which 

are transmitted without any distortion of the wave crest.

The local reduction in the amplitude of the wave motion 

downstream of the cylinder is not easily explained because of the 

partial recovery of wave amplitude which is identified in the far-field 
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motion. It is suggested that two local effects might explain this 

apparent loss and then recovery of energy. The first possible 

explanation is that the loss in the amplitude of oscillation occurs 

because the energy is sustaining a change in mean water level and the 

second possibility is that there is a local increase in wave velocity 

so that a greater proportion of the wave energy is being transported 

as kinetic energy.

The existence of a free wave oscillating at twice the wave 

frequency in the transmitted wave is of interest because it provides 

some experimental confirmation for the second-order diffraction 

analysis (sections 3.9 and 3.10). Computation of a second-order 

transmission coefficient would permit quantitative comparison with the 

experimental results and for waves of intermediate steepness (before 

breaking becomes significant) might provide for a reasonable estimation 

of the magnitude of the mean force (Longuet-Higgins, 1977).

Comparison of the measured pressure oscillations at the 

wave frequency with the results of the linear theory diffraction 

computer program establishes that for the interaction of finite height 

waves with a submerged circular cylinder located just below the free 

surface the agreement beween experiment and theory is poor. The 

results for the measurements of the diffracted wave motion and the 

pressure < under the wave in the absence of the cylinder are of 

assistance when attempts are made to explain why these differences 

occur.

The conditions when the measured pressures disagree with 

theory are very similar to the conditions when the wave motion departs 
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from the theoretical form. The inducement of high particle 

velocities in the local shallow water region above the cylinder, 

the reduced amplitude of oscillation downstream of the cylinder and 

the failure to sustain the local standing wave motion and the occurrence 

of wave breaking for the steepest waves are mechanisms which might 

be responsible for the departure of the measured results from the 

theoretical predictions. The consistent theoretical underestimation 

of pressures which was identifies in the pressure measurements below 

the wave are not always so evident in the measurements of pressure 

on the cylinder. It is suggested that this may be partly due to 

the loss of energy in the system.

The occurrence of pressure oscillations at twice the wave 

frequency is in agreement with the second-order analysis which was 

outlined towards the end of chapter 3, (sections 3.9 and 3.10). It 

may therefore be possible to obtain theoretical results which 

demonstrate agreement with the measured values but this line of 

further investigation is inappropriate. This is because in the 

presenty study the oscillations are not large enough to affect the 

peak to peak pressure oscillations and also because the major 

discrepancy between theory and experiment are in the amplitudes of 

the pressure and free surface oscillations at the wave frequency.

There are a number of extensions to this particular 

experimental study of wave obstacle interaction which may be of value. 

In all of the suggested extensions which follow the collection of 

results for a range of wave steepnesses and cylinder locations should 

be continued because a greater understanding of non-linear interaction 

is required.
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It is suggested that pressure measurements should be 

collected for a wider range of values of the diffraction parameter. 

This could be achieved both by the construction of additional test 

cylinders of different diameters and by increasing the range of wave 

frequency for tests with the existing cylinder. The aim of extending 

the experimental study in this way is to establish how well the 

mathematical model represents the physics of wave scattering. 

Results cited in the literature survey (section 2.j) and the 

experimental results obtained in this study appear to demonstrate that 

good agreement between theory and experiment is obtained when diffraction 

effects are small or when the loading is entirely inertial but that 

as diffraction effects become more significant the discrepancy between 

theory and experiment increases.

An additional reason for this first type of extension would

be to determine whether or not fluid separation effects become 

significant at the same time as wave scattering effects. Preliminary 

calculations and tests demonstrate that this is possible for cylinders 

at very small depths of submergence even if the Keulegan-Carpenter 

number is small because the very much higher velocities which are 

induced above the cylinder may result in separation downstream of 

the cylinder. The presence of a wake may be established by 

obtaining pressure measurements at a large number of locations on a 

single cross-section and comparison of the measured pressure 

distribution with the theoretical distribution at a number of 

instants in a period will permit identification of the development 

of a fluid wake.
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The measurement of pressure at four locations on the cylinder 

has proved sufficient for the present study since it has permitted 

comparison between theory and experiment to establish the importance 

of wave nonlinearity and small cylinder submergence. Although several 

studies have already been completed for the measurement of forces on 

submerged horizontal circular cylinders in waves, it is suggested 

that additional force measurements should be obtained for a range of 

cylinder locations and wave steepnesses. In some of the suggested 

studies which follow force measurements may prove to be preferable 

to pressure measurements because they give a more general impression 

of the agreement between experiment and theory. However, pressure 

measurements may be of assistance in identification of the mechanisms 

responsible for the discrepancies so that the best procedure would 

be to collect a large amount of force data supplemented by more 

detailed pressure measurements when larger discrepancies occur.

In the present study the deformation of the incident waves 

as they pass over the ’double beach* has proved to be of importance 

when cylinder submergence is small. For smaller cylinders located 

near the free surface there are visually identifiable deformations 

of the free surface. It is therefore suggested that wave obstacle 

interaction should be investigated for cylinders which are subject to 

inertia and drag loading when located near the free surface. It 

would be surprising if force predictions obtained by Morison’s 

equation with coefficient values obtained from experiments at larger 

depths of submergence (Koterayama f 1979) provide a good representation 

for the measured force when finite height free surface effects are 

large. It is less likely that coefficient values derived from
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oscillatory flow tests will provide accurate predictions.

For shallow cylinder submergence the considerable difference 

between the predicted and measured wave motion just downstream of 

the cylinder suggests that if two bodies are separated by a small 

distance the departure from theory for force and pressure 

measurement may be great. It would be of interest to perform a 

study which is similar to the one reported in this thesis for two 

cylinders.

The experimental study which has been performed has not only 

attempted to provide for the validation of linear wave theory for 

small amplitude waves but has sought to investigate the importance of 

phenomena of engineering significance. The remaining suggestions for 

the extension of the experimental study are all concerned with 

providing conditions which resemble ocean conditions more closely.

The investigation of the effects of currents would be 

worthwhile and in this case it would be possible to modify the 

theoretical model. Investigation of wind effects would also be of 

interest but there is no simple extension of the theoretical model 

for this type of problem. The final suggestion is that interaction 

of irregular waves with submerged obstacles should be studied 

particularly when non-linear effects are known to be important 

for monochromatic waves.
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6.4 Discussion of Higher-Order Theory

The necessity for a higher-order numerical solution is 

demonstrated by the failure of the linear theory to predict the 

experimental results in this study and will be of importance in a 

number of different problems when wave steepness and local shallow 

water effects become significant. Higher-order theory will also be 

necessary if accurate numerical modelling is required for ship-

motion problems when the amplitude of oscillation of the body 

becomes large.

There appear to be two alternative approches in the 

development of a non-linear theory for wave obstacle interaction 

problems. The first resembles the Stokes* wave formulation and if 

numerical solutions can be computed this method would provide 

second-order solutions for wave diffraction and radiation 

problems. The second approach employs a time-stepping procedure 

in which the development of the free surface is followed. The 

results obtained by this time-stepping method have been referred to as 

numerically exact solutions because the complete non-linear boundary 

condition is applied at the moving free surface.

There are two different methods which may yield numerical 

solutions for the second-order wave obstacle interaction problem. 

The most complete approach is the one which has been presented in this 

thesis (sections 3.9 and 3.10) and it is suggested that the improved 

efficiency which may be achieved by application of the regular 

kernel integral equation method makes the numerical solution of 

the second-order boundary value problem a less formidable task.
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The alternative method adopts the approach suggested by Lighthill 

(1979) in which the second-order force on a fixed obstacle is 

evaluated by solving a linear radiation problem and evaluating 

an integral over the free surface. The advantage of Lighthill’s 

method is that the second-order potential does not need to be 

evaluated.

It has been demonstrated that the second-order boundary 

value problem predicts that wave obstacle interaction gives rise to 

wave and pressure oscillations at twice the fundamental frequency. 

This has been confirmed experimentally but is not of great 

significance in the present study because the amplitudes of these 

oscillations are not sufficiently large to be of importance. 

Further, for the steeper waves interacting with a cylinder located 

near the free surface the discrepancy between experiment and theory 

would not be reduced by this type of theoretical refinement because 

it is the amplitudes of the fundamental oscillations of the free 

surface and the pressure which demonstrate poor agreement with 

theory.

Although the second-order theory is of little value for the 

range of experimental data covered in this study it may be of value 

for a different range of data and may be suitable for solution of 

ship-motion problems. It is suggested that results of a second- 

order theory may prove to be adequate for any obstacle geometry 

or location for which local shallow water effects are absent because 

it is these effects which give rise to the large discrepancies 

between experiment and theory for submerged horizontal cylinders.
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If accurate numerical modelling of wave obstacle interaction 

is required for obstacles submerged just below the free surface the 

time-stepping methods are the only possibility. Recent developments 

in the application of these methods are reported by Vinje, 

Maogang and Brevig (1982) and Lau (1983). The methods are potentially 

very useful because they permit modelling of steep waves and 

breaking waves but a considerable amount of further investigation 

is required before it can be concluded that these numerical methods 

provide an accurate prediction of the physics of wave obstacle 

interaction.



CHAPTER 7 CONCLUSIONS

The integral equation formulations of potential theory 

problems have been considered and have been applied to the particular 

problem of small amplitude waves interacting with submerged obstacles 

in a two dimensional domain. Conventionally the integral equation 

formulations for wave obstacle interaction are the result of 

fictitious distributions of fluid singularities throughout the 

fluid domain and over its boundaries. The outcome of this abstact 

procedure is that the velocity potential of the unknown motion is 

represented by a distribution of sources over the boundary of the 

fluid domain. The extent of this boundary is often reduced by 

choice of an appropriate Green’s function but each of the various 

formulations results in a formulation which is a Fredholm equation 

of the second kind with a singular kernel.

It has been demonstrated that if the fictitious distribution 

of sources is extended to include a portion of the infinite domain 

which is external to the fluid domain the resulting formulation 

is a Fredholm equation of the first kind with a regular kernel. 

For the problem of wave scattering by submerged obstacles this 

alternative formulation may be regarded conceptually as the generation 

of the scattered wave motion by the continuous distribution of fluid 

singularities over a boundary which lies outside the fluid domain. 

The regular kernel integral equation obtained in this manner is 

an indirect formulation and it has been demonstrated that direct 

iormulations always give integral equations with singular kernels.
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The numerical solution of indirect integral equation 

formulations has been investigated by solving a series of test 

problems by the singular and regular kernel methods. The integral 

equation which was chosen for numerical analysis included the 

'wave function’ and the problem was therefore reduced to the 

discretisation of integral equations and integrals on the boundary 

of the obstacle or on a separate ’source boundary*. The numerical 

techniques which have been used most often in the solution of 

integral equations of this type are simple and methods have been 

described which involve the refinement of the discretisation procedure 

and may therefore result in an improved efficiency in solution.

Results obtained by using the simple discretisation 

procedure have demonstrated that the regular kernel integral equation 

formulation is amenable to numerical solution and that for the problems 

tested this method is generally more efficient and occasionally 

very much more efficient than the conventionally employed singular 

kernel method. It is important to note that the efficiency and 

reliability of the method are sensitive to the location of the source 

boundary and it is concluded that the most rapid convergence to 

the final solution is obtained for source distributions which are 

located on boundaries which are remote from the obstacle boundary 

but that the results obtained for such distributions are unreliable 

for more precise discretisations due to ill-conditioning in the system 

of algebraic equations.

The regular kernel integral equation method is a potentially 

advantageous alternative to the conventional singular kernel integral 
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equation methods. The results of this study together with results 

obtained in earlier studies demonstrate that for a given level of 

discretisation the regular kernel method provides more accurate 

results than the singular kernel method. Therefore, if results are 

required to a specified accuracy the use of the regular kernel method 

permits a reduction in the level of discretisation which results in an 

improvement in computational efficiency. For the problems tested 

ill-conditioning has only been identified for unnecessarily fine 

discretisations and does not therefore diminish the usefulness of 

the regular kernel method.

For the regular kernel method the results obtained by 

application of the higher-order discretisation techniques never 

indicated any marked improvement in efficiency. There were 

however some occasions when the use of the higher-order techniques 

gave improved convergence to the final solution for the singular 

kernel methods but for other examples the method indicated that 

the techniques are detrimental to efficiency. It is concluded 

that the application of higher-order elements is not well understood 

and that further investigations are required to determine their 

usefulness.

The experimental study was designed to permit validation of 

the linear potential theory results for small amplitude waves 

interacting with a submerged horizontal circular cylinder and to 

examine the extent to which the measured results depart from the 

theoretical predictions when non-linear effects due to finite wave 

height and shallow cylinder submergence become important.
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The measurements obtained for the wave motion indicate that 

the linear diffraction theory provides a good representation of the 

physical motion due to interaction when wave steepness is small. 

Even when wave steepness is large the linear potential theory result 

of no reflection holds but the transmitted wave does not agree with 

theory and demonstrates a loss of energy in the system. Free 

waves oscillating at multiples of the fundamental frequency are 

generated by the wave cylinder interaction but analysis demonstrates 

that this energy transfer is small and does not account for the lost 

energy. This energy loss is greatest when wave breaking is induced 

but other mechanisms are also responsible for the dissipation.

Theoretical and experimental results for the wave motion in 

the near-field have also been presented and again agreement is 

reasonable for small amplitude waves but deteriorates as wave steepness 

increases and is particularly poor when wave breaking occurs.

Comparison of pressure measurements with linear theory 

predictions indicates that there is good agreement for small amplitude 

waves when the cylinder is located at larger depths of submergence. 

When wave steepness or local shallow water effects become significant 

the pressure measurements do not agree so well and agreement is 

particularly poor for the steepest waves at the shallowest 

submergence.

The results of the experimental study demonstrate the value 

of the linear diffraction theory for the prediction of physically 

significant quantities for the interaction of monochromatic small 

318



amplitude waves with a submerged horizontal circular cylinder.

Wave steepness and local shallow water effects result in 

discrepancies between and experiment and theory which are often very 

large and these results indicate that the theoretical model must be 

extended to a higher order if the physics of wave cylinder interaction 

is to be accurately modelled.
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APPENDIX A.l THE FREDHOLM INTEGRAL EQUATION

Many excellent texts have been written in which the theory 

of integral equations is comprehensively treated and this appendix is 

intended only to introduce the subject and to define the terms used 

in the text of the thesis. The interested reader should refer to 

Petrovskii (1957) or Smithies (1958) for a full account.

The integral equation is one in which the unknown function

occurs under the integral sign. The equation

a(x)4>(x) + f(x) “ K(x,O4>(Odr 
r

A.1.1

is an integral equation in the function 4>(jj), where a(x), f(x) and

K(x_,O are known functions and |(O is to be determined. T is a 

region of the plane and x«x,y is a point of T. The equation is

linear and K(x,O is referred to as the kernel. Provided a(x) never 

vanishes equation A.1.1 may be written

$(x) - K(x,Ol(Odr + f(x) 
r

A.1.2

which is a Fredholm equation of the second kind and if f(x) ■ 0 this

equation is said to be homogenous. If the function a(x) - 0 in

equation A.1.1

f(x) K(x»_C)4>(Odr A.1.3

and equation A.1.3 is a Fredholm equation of the first kind.
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The classical Fredholm theory is concerned with equations 

of the second kind and no general theory for equations of the first 

kind is available. The theory is concerned with equation A.1.2 written 

in the form

*(x) = X | K(x,5)*(Odr + *(x)
A.1.4

and the basic concept is to regard equation A.1.4 as the limiting 

form of a finite system of linear equations in a finite number of 

variables. This is Fredholm’s (1903) celebrated discretisation 

scheme which, incidentially, forms the basis for the solution of 

such equations. This was not, however, appreciated at the time of 

introduction and the purpose was to establish a theory for the 

integral equation by carrying over the known theorems about linear 

algebraic equations.

Of the Fredholm theorems it is sufficient here to state 

only the first which reads

Either the given non-homogenous integral equation of the 

second kind has one and only one solution for every 

function f(x), or the corresponding homogenous equation 

has at least one non-trivial solution, that is one that 

is not identically zero.

The significance of this theorem is that under certain circumstances 

an integral equation formulation of a potential theory problem has no 

solution. This does not mean that no solution to the problem exists, 

but that the integral equation is, in such cases, an unsuitable 

formulation. It may be noted that the occurrence of such a breakdown 

is, in practice, rare.
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The classical Fredholm theory is, strictly speaking, only 

applicable for non-singular kernels. However, if the kernel is 

weakly singular the Fredholm theory may be applied if the integral 

operator remains non-singular. This situation bears a certain 

similarity to the definition of a Cauchy principal value integral. 

In the text of the thesis we are concerned with a Fredholm equation 

of the first kind with a non-singular or regular kernel and a Fredholm 

equation of the second kind with a logarithmic singularity in the 

kernel. The corresponding systems of linear algebraic equations may 

therefore be written, in matrix form, as

(A - a _I)x » b A. 1.5

where A is the kernel matrix, JL is the unit matrix, b is a vector 

containing known values and x is the unknown vector. The constant 

a is zero for the Fredholm equation of the first kind and is given 

for equations of the second kind.
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APPENDIX A.2 DETAILS OF THE SECOND-ORDER INTEGRAL EQUATION FORMULATION

The following equations are required for the application of

the boundary condition at the free surface in the integral equation

formulation of the second-order diffraction boundary value problem.

o(O4>*(x,Ot)dr A.2.1

a£(1)(x,t)

3x
o(O d£*(x,£,t)dr +Bo(x)exp(-iu)t) A. 2.2

3x

a»(1)(x,t)

3y
o(0 3»*(x,p t)dT +Ba()c)exp(-iu)t) A.2.3

3y

924>(1 (x, t)

3x3t
- iw

a/l>(x,t)

3x
A.2.4

92*(1)(x,t) - iu)

3y3t
af ;(x,t)
5y

A.2.5

a»(l)(x,t)

at
- iw A.2.6

a3»(1) (x,t)

3y3t2
(■iu)2 3i(1)

ay
(x, t) A.2.7

»*♦<*> (x,t)

ay2 ay2

(x, t) o(p a2**(x,Gt)dr A.2.8

3y2

where 4>*(x,_§,t) - $*(x,£)exp(-iwt) A.2.9

and no singular term arises in equation A.2.8 since the singularity 
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is stronger and causes the integration over a serai-circle to 

vanish.
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APPENDIX A.3 NUMERICAL DETAILS

A.3.1 Lagrangian Interpolation and Boundary Elements

The aim of interpolation in classical numerical analysis is 

to evaluate the value of a function at certain points within an 

interval when the value of the function is known at a number of 

tabular points. The many sophisticated interpolation techniques 

which have been developed are now generally redundant due to the 

advent of the digital computer since it is usually more convenient to 

evaluate the function directly. It is, however, occasionally 

advantageous to employ simple interpolation techniques.

The finite element and boundary element methods developed

in recent years for the numerical solution of differential and 

integral equations respectively, require that the governing equations 

and the boundary conditions are satisfied at a finite number of 

nodal points on a number of elements. The elements are obtained 

by subdivision of the original volume, area or line and it is often 

advantageous to choose elements with more than one node since this 

avoids the necessity for a more precise subdivision of the original 

domain or boundary. Each element may therefore be regarded as 

analogous to the tabular problems for which interpolation techniques 

have been developed with the distinction that the values of the 

function at the nodal or tabular points are initially unknown.

The interpolation techniques are therefore first employed not to 

evaluate the value of the function but to describe the variation of 

the function within each element. However, once the problem has
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been constructed and solved to obtain the values of the unknown 

function at the nodal points the interpolation techniques may be 

employed in a more conventional manner to obtain the values of the 

required function at points throughout the domain.

The problem which is the subject of the text of the thesis 

is reduced to a one-dimensional problem and the boundary elements 

are simple lines. Since the object is circular the boundary elements, 

whether coincident with the cylinder boundary or not, are arcs of 

a circle. In this and subsequent appendices an element coordinate 

system is employed and the results given must therefore be transformed 

into the cartesian coordinate system before they are employed in the 

assembly of the required matrix equations.

A representation for the variation of a function f(C) within 

an element A£ is required. The basis of interpolation is to replace 

the function, f, by an approximation to it denoted by h(C) where

h(c) » Nk(Of(Ck) * E(C). k-1,.... ,n A.3.1

where Ck are the nodal or tabular points and the repeated index 

implies summation. Since the values of the functions h and f are 

required to be identical at the nodal points so that E(c) - 0

M'p ■ ejk j»k » 1,.....,n A.3.2

where 6., is the Kronecker 
jk

delta defined by

6.. - 1 
Jk

j - k, A.3.3a

6.. - 0 
Jk

j 1* k. A.3.3b
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The polynomials (4) are given by

NRU) “ (C “ C1)..... (C ~ ~ 4k+l)......(4 - 4n) A. 3.4

Uk“ ..... <Ck~ ^k-lX^k- Ck+l)......<4k“ Cn>

and are referred to as the Lagrangian interpolation polynomials.

The interpolation polynomials employed in the writing 

of the diffraction program are for two or three nodal points per 

element, (n«2 and n»3). The variation of the unknown function is 

therefore approximated by either a linear or a quadratic function 

within the element since equation A.3.4 gives a polynomial of order 

(n-1). For n»2 equation A.3.1 is written

h(4) » (4 - 42)fUx) * (4 - Cl)f(C2>

(41- 42) (42- 41)

and for n»3

h(c) - (4 - 42)(4 - 43) f (4i) + (4 - 4i) (4 - 43) f(42)

(41- 42)(41~ 43) (42" 41)(42“ 43)

+ (4 - 41)(4 - 42) f(43)

(43“ 41)(43“ 42)

A.3.5

If the element AC is given by -1 < C < 1 equations A.3.5 

and A.3.6 may be written

h(c) - (C-l)f(4i) ♦ (4+l)f(42) A.3.7a
2 2

h(4) - 4(4-l)f(4i) + (4*l)(4-l)f(42) ♦ C(4*l)f(C3) A.3.7b
2 2

and equation A.3.7 is employed in subroutine VARN.
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A.3.2 Legendre-Gauss Quadrature

The general form for a quadrature formula within the 

interval a < p < b is

I(y) dp = Hj I(pj) + E , j=l,....n A.3.8

■ a

where the repeated index implies summation. An equation of this type

might be derived by integration of the Lagrangian interpolation formula

given in equation A.3.1. This procedure is not carried out but

indicates that the error E can be made zero for n abscissas 

n weights, Hj, if the polynomial is chosen to be of order 2n-l.

and

The

degree of this polynomial may then be referred to as the order of 

accuracy of the quadrature formula.

The quadrature formula employed in the diffraction program

is the Legendre-Gauss quadrature formula so-called because the 

abscissas are chosen to be the zeros of the Legendre polynomial

or order n. The Legendre-Gauss formula is written for an interval

-1 < |i < ♦ I

I(u)dp - Hjl(pj) A.3.9

and the values of the abscissas and weights for n < 4 is given 

in Table A.3.1.
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n Abscissas pj Weights

2 ±0.577350 1

3 0 0.888889
±0.774597 0.555556

4 ±0.538469 0.652145
±0.906180 0.347855

Table A.3.1 Quadrature Data

In the main text of the thesis it has been stated that the 

abscissas of the Guassian quadrature correspond to the points at which 

a number of discrete sources are located. This is conceptually 

convenient but might be regarded in an alternative manner. If it is 

assumed that a continuous distribution of sources is located on 

each individual element, the choice of the order of the quadrature 

formula determines whether this source distribution is to be 

represented by a constant, linear, quadratic or higher-order variation. 

The order of the variation is identical to the number of quadrature 

points and therefore the statement that the source variation within 

each element is quadratic is equivalent to stating that two discrete 

sources are located on each element.

The interval for which the quadrature formula is stated is 

identical to the "element" interval chosen for equation

A.3.7 and therefore the evaluation of the integrals in equation 4.2.9 

is straightforward provided the source point coordinates, , are 

specified to correspond with the abscissas, p j. It may be noted 

that since the elements are arcs of a circle the Jacobian |j| is not 

required and the transformation of equations A.3.7 and A.3.9 

into the global cartesian coordinate system is complete if an element 

length factor is included and the nodal labeling is transformed.

329



A.3.3 Integration of the normal gradient of the logarithmic 

singularity

The integral to be considered may be identified as a 

component of the integral written in equation 4.2.7 and is of the 

form

3 log |x - £| . Nr (p dr A.3.10

If equation A.3.10 is rewritten for an element coordinate system 

similar to that adopted in the previous sections of this appendix

and if the nodal point x is chosen to coincide with the origin of

this coordinate system there are two locations of the nodal point

which are significant. The first is the central location indicated

in Figure A.3.la and in this case equation A.3.10 is rewritten in

the form

where

hence

r+1
_3_
3m

-1

3
3m

-1

j.

y

log

log

N(y)dy

N(y)dy

3 log y . 3y
3m 3m

1.

y

A.3.11

A.3.12

A.3.13

P .

P

where the integral must be evaluated in the Cauchy principal value 

sense. This central location of the node is significant if either 

a constant or quadratic variation of source density is assumed on the 

330



element. Since in both cases the interpolation function N is an 

even function within the chosen coordinate system and the function 

1/M is odd the integrand must be an odd function and the result of the 

integral A.3.13 zero.

The second choice of nodal location is a point at the end

of an element and is indicated in Figure A.3.lb

-4------------------- 1----=>-
0 +1

(a) (b)

I---------------------------------*-------------------------------- 1—
-2 0 +2 u

(C)

Figure A.3.1 Nodal Locations on an Element

In this case, with the evaluation of the gradient as in equation

A.3.12, equation A.3.10 must be rewritten

[~c, f+2
lirn - N'(u)du + lim I 1 N(u)du A.3.15
e-K> J.f ]£ y 
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where the element configuration is indicated in Figure A.3.1c and 

the interpolation function N’ refers to the additional element.

The integration in equation A.3.15 is again a Cauchy principal value 

integral and examination of the interpolation functions in equations 

A.3.7a and A.3.7b indicates that the interpolation functions give an 

even function so that the integral vanishes.

It must be emphasised that these integral results only apply 

to the cases in which the nodal point and the source distribution occur 

on the same element and therefore do not apply when the source boundary 

is separated from the physical boundary.

A. 3.4 Numerical Solution of the Dispersion Equation

The dispersion equation for progressive gravity waves in 

water of finite depth, h, may be written in the form

m tanh (mh) » v A.3.16

where m are the required roots. The real roots of the equation are

+
m ■ - k, where k is the wave number which may be evaluated directly 

from the data supplied to the program. The imaginary roots are 

obtained by making the substitution m ■ ic and equation A.3.16 is 

written

ic tanh (ich) - v A.3.17

and the identity tanh(i9) ■ itan(6) gives
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c tan (ch) « -v A.3.18

which is identical to equation 3.4.16. The roots of the dispersion

equation are then completely expressed by

A.3.19

where cQ “ k. In evaluating the wave function and the gradient of 

the wave function by the series expressions the positive roots of the 

dispersion equation are taken and since the series is to be truncated 

only a finite number of roots are to be evaluated.

Equation A.3.18 has been solved by applying the Newton- 

Raphson iterative method in the following manner. The Newton-Raphson 

formula may be expressed in the form

Cn+1 " Cn " f<Cn) A. 3.20

£’(%>

where the prime denotes differentiation, the suffix indicates 

successive approximations to the root and

f(c) - c tan(ch) + v

Therefore,

f’(c) - cosech2(ch) * tan(ch)

and after a little algebra

cn+1 - 2cn2h - 2vco»2(cnh)

sin(2cnh) + 2cnh

A.3.21

A.3.22

A.3.23

333



It is now required that suitable trial values are chosen and that 

the required roots of equation A.3.18 are obtained to a specified 

accuracy.

The choice of trial values is best demonstrated by

rewriting equation A.3.21 in the form

f(c) ■ tan(ch) + v 
c

A.3.24

If the components of f(c) are plotted (Figure A.3.2) the points of

Figure A.3.2 Roots of Dispersion Equation

intersection indicate the values of the roots of equation A.3.18 and 

it is clear that

c((2i - 1)0/2, (2i + 1)0/2), A.3.25
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For the first root the trial value is taken to be (n/2 + e) where e 

is a small positive value chosen to ensure that (n/2 + e) < C1 , 

thereby guaranteeing convergence to the root. Each successive 

root is greater than the previous root by (H + 6) where 6 is a 

small positive value and the itn root is obtained by applying the 

Newton-Raphson formula (equation A.3.23) with a trial value 

(c. i + FI). For each evaluation iteration proceeds until the 

required accuracy is achieved.

The computation of this iterative procedure is contained 

within subroutine DISP.

A.3.5 Integration of logarithmic singularity

The procedure of this section closely resembles that which 

has been adopted in section A.3.3 for the normal gradient of the 

logarithmic singularity. The integrals to be considered for the 

possible nodal location which arise in assuming constant, linear or 

quadratic variation of source density may be written in the general 

form

r
log Ijk - £| . Nk(pdr A.3.26

Ar

and the particular integrals in question are those for which x and £ 

both lie within AT.

Each integral of this type must be evaluated analytically for

inclusion in the diffraction program since a numerical integration of
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these integrals would yield poor results. The first integral to 

be evaluated is for the case of an assumed constant variation of

source density on the element and 

system coincides with the central 

A.3.la with the exception that it 

introduce the element length, £, 

The interpolation function N^(k » 

element and the required integral

+ £/2

log u dy

■- 1/2

the origin of the local coordinate 

node as illustrated in Figure 

is more convenient in this case to 

which gives an interval (—Jt/2, 1/2).

1) has the value of unity over the 

is of the form

A.3.26

This integral together with each of the integrals introduced in this 

section must be evaluated in the Cauchy principal value sense and for 

integrals in which the node is centrally located it is convenient to 

evaluate the integral over half of the element. The integral

evaluation of A.3.26 is as follows

J

+ 1

-1

log u du ■ lim 
e-*O

+1/2

log u du

lim 
c-O

£

lim 
e-*O

ri/2
du

E

- I log(l/2)

- l(log(l/2) ♦ 1/2) A.3.27

2

- 2

For the assumed linear variation of source density, two
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integrals must be evaluated one for each of the interpolation

functions which are given by

NT = (1 - y/£), N2 - y/1 A.3.28

The two integrals and their results may be written

'I
lim (1 - y/£)log y dy » 1 log 1-31
t-*0 I 2 4

lim I log y dy » 1 log I- £
e-H) J £ t 7 4

A.3.29a

A.3.29b

and evaluation of the results of these integrals is similar to the 

evaluation given in A.3.27.

The interpolation functions for the assumed quadratic 

variation of source density take different forms depending on the 

location of the node and therefore the location of the origin of 

the local coordinate system. For a node located at the end of 

the element the interpolation functions are written

Ni - (1 - 2y/£)(1 - y/fc), A.3.30a

N2 - 4M(1 - y/£)/£ A.3.30b

N3 - p(2y/£ - l)/t A.3.30c

and the integrals to be evaluated with the results are
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lim
£+0

■ e

(1 - 2p/&)(1 - p/£)log p dp = £ log £ - 17 £
6 36

A.3.31a

(4p(l - p/£)/£)log p dp = 2£ log £ - 5 £
3 9

A.3,31b

lim
£->O

•£
(p(2p/£ - l)/£)log p dp ■ I log £ + £

6 36
J e

A.3.31c

For a centrally located node the interpolation functions are

N, - 2(u/£)2 - (u/t)

N2 - 1-4 (u/1)2

N3 - 2(u/t)2 + (u/l)

A.3.32a

A.3.32b

A.3.32c

and as stated above it is convenient to evaluate the integrals over

half of the element and these integrals with the results are

f*/2
lira (2(u/l)2 - (u/D)log u dy - fc(5/6 - log(£/2))/24

£■*0
E

A.3.33a

lim 
e-*O

ft/2
(1 - 4(u/£)2)log u dp - I(61og(l/2)-8)/18 A.3.33b

ri/2
lira (2(u/l)2 + (u/D)log u du - i(51og(l/2)-13/6)/24

c>0
£ 

A.3.33c

and the results for integration over the whole element are obtained

by adding the results of equations A.3.33a and A.3.33c to obtain

the integrals which include the interpolation functions Nj and N3 
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and doubling the result of equation A.3.33b for the integral which 

includes N2. This approach might at first appear incorrect or at 

best inconsistent but is justified by the fact that the origin of 

the local coordinate system may in this case be regarded as the 

origin of a source so that the above equations in u are strictly 

speaking equations in |p|.

The results of this appendix are evaluated by the diffraction 

program in subroutine ELINT and it may be noted that the results for 

sources at the ends of the element are doubled to account for the 

contribution from the source distributions on each of the adjacent 

elements.

The methods employed for integral evaluation in this 

appendix have all been discussed for a straight element. The methods 

explained and the results obtained may in the special case of a 

circular cylinder be applied directly since this is equivalent to 

evaluating the integrals within the polar coordinate system with it’s 

origin at the centre of the cylinder. This would also be the case if

a more general object geometry had been chosen and only constant or 

linear variation of source density were to be assumed. However, if 

a quadratic variation is assumed the curvature of the element must 

be included in the evaluations, that is, the Jacobian (included in 

the expression given in equation 4.2.9) must be incorporated in the 

integrand. The Jacobian is given by

dT - |j| dp A.3.34 

A.3.35
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where dr is a small increment of length in the cartesian coordinate 

system and du a small increment of length within the element coordinate 

system. The significance of this transformation is that for more 

general curved surfaces the results of equations A.3.31 and A.3.33 

can not be used and a numerical quadrature must be performed. If 

this is che case the numerical quadrature formula to be used is one 

in which the weights and abscissas automatically take into 

consideration the logarithmic singularity.

A.3.6 Evaluation of the reflection and transmission coefficients

Expressions for the free surface displacement have been 

given in section 3.10 and the relationship between the reflection 

coefficient R, the transmission coefficient T and the scattered wave 

free surface displacement has been demonstrated. In this appendix 

expressions for the reflection and transmission coefficients have 

been derived by introducing an expression for the wave function 

for large separations of the source and field points.

The expression for the wave function is not different from 

that which has been given in section 3.4 and is obtained from 

equations 3.4.10, 3.4.12, 3.4.13 and 3.4.14. Examination of 

equation 3.4.14 indicates that the series decays with increasing 

separation of the source point _£ and the field point x and may 

therefore be regarded as a local wave which will vanish for 

sufficiently large values of |x - . This may be expressed by

writing the wave function in the form
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lim g(x,O = ~go(y,n)(i exp(±ik(x-O)) 
x->±®

A.3.36

where go is as given in equation 3.4.13.

The total free surface displacement has been given in 

equations 3.10.8 and 3.10.9 but it is advantageous in computational 

work to employ non-dimensional values for the free surface displacement 

and the potential function. The non-dimensional free surface 

displacement n is therefore given by

n(x,t) ■ n (x,t) ■ ip(x)exp(-iwt) A.3.37
H/2

where <p * p/(gH/2o) is the non-dimensional total velocity potential.

Expressing the non-dimensional potential as the sum of incident and 

scattered components

n(x,t) - i (<f>w(x) + $s<x))exp(-iwt)
A.3.38

where ♦„<i> - i exp(ikx) A.3.39

f
and a(£)g(x,£)dr A.3.40

r

Substitution of equations A.3.39 and A.3.40 in A.3.38 with the

result for the wave function given in equation A.3.40 gives

after a little algebra the results

n* “ i(l ♦ Ii) exp(i(kx -wt)) A.3.41a

n “ ■ i(exp(i(kx -wt)) ♦ l2exp(-i(kx ♦wt))) A.3.41b
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where n4 and n~ are the non-dimensional free surface displacements 

far upstream and far downstream of the obstacle and

Il - - ogQ exp(-ik£)dr

• r

A. 3.42a

ogQ exp(ik£)dr A.3.42b

Comparison of equations A.3.41 and A.3.42 with equations 3.10.11 and

3.10.12 gives the following expressions for the complex quantities

R and T

R - I2 A.3.43a

T - Ix + 1 A.3.43b

This scheme forms the basis of subroutines CREFL and REFL

which employ the same discretisation schemes as the subroutines

CSRCDEN and SRCDEN. The results

|R|2 + |T|2 - 1 A.3.44a

and |Arg(R) - Arg(T)| ■ (n/2) modulo H A.3.44b

which have been proved by Newman (1975) have been incorporated in 

the subroutines and provide a useful check on the solution of the 

integral equation for the source density function.

r
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APPENDIX A. 4 INTEGRAL EQUATION SUBROUTINES

This appendix contains the listings of the subroutines

required for the compilation and numerical solution of the integral 

equation. The subroutines have been written to accommodate a 

number of alternative discretisation schemes and the source 

distribution boundary may be chosen either to coincide with the 

object boundary or to be positioned outside the fluid domain. These 

listings iorm the first part of the diffraction program and many of 

the values set are also required for the evaluation of the wave function 

values and evaluation of the•pressure, force and free surface values.

The following variable names have been used in the diffraction

program subroutines. Wherever possible variable names are chosen 

to coincide with the symbols employed in the text of the thesis but 

the use of mnemonics is frequently necessary

CA Cylinder radius, rn.

EL Element length, AT.

GRAV Acceleration of gravity, g.

TROUT Test value to determine the final form of wave function.

NE Number of elements, q.

NN Number of nodes, n.

NNEL Number of nodes per element, p.

NQ Number of sources, m x q.

NQEL Number of sources per element, m.

NTESTEL Test value to identify location of node on element for

quadratic variation of source density.
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diffraction program.

NVARN Test value to distinguish between constant and linear 

variation of source density.

PI Il - 3.1416

RAT Ratio of source boundary radius, rg, and object boundary 

radius, rQ. (RAT « rs/rn)»

TESTRAT Test value to determine whether source and object boundaries 

are coincident or not.

V V = U)2/g.

WD Water depth, h.

WK Wave number, k.

WL Wavelength, L.

YO Depth of cylinder axis, yQ.

The following arrays have been declared for use in the

A(2n,2n) Kernel matrix, A (equation 4.2.1)

AN(p,m) Interpolation function values at abscissas.

C(2n,l) Vector containing incident wave potential gradient 94>w/3m.

CHI(mxq) Source point coordinates,

ETA(mxq) Source point coordinates, n.

F(2n,l) Vector containing source density function after solution 

of matrix equation

GP(m) Gauss abscissas

GW(rn) Gauss weights

TH(n) Angle denoting direction of normal gradient at nodal 

points, x.

XN (n) Nodal point coordinate, x.

YN(n) Nodal point coordinate, y.
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APPENDIX A.5 WAVE FUNCTION EVALUATION SUBROUTINES

This appendix contains listings of the subroutines written 

for the evaluation of the real and imaginary parts of the wave 

function and the normal gradient of the wave function on the object 

boundary. The following variable names have been used and are 

additional to those identified in Appendix A.4.

ACCI,ACCIXY Accuracy test values for integral evaluations.

ACCS,ACCSXY Accuracy test values for series evaluations.

C Variable in integration, y.

CONI - kh cosh(kh) + (1 - vh)sinh(kh)

CON2 - (n + h)

CON3 » (y + h)

CON04 - (x - €)

CON4 - I« - d

CLIM(-2.5k) Maximum value in interval for principal value integral

CMAX Maximum value in interval for remainder integral,

DG1.DG2 Real and imaginary parts of normal gradient of wave 

function 9gj/9m and 9g2/9m.

G1,G2 Real and imaginary parts of wave function gi and g2.

HI Length of interval for Simpson's rule.

NCR Number of roots of dispersion equation evaluated.

NHI Number of intervals in Simpson’s rule evaluation.

NHIM Maximum number of intervals permitted

PVI,PVIX,PVIY Results of principal value integrals

QI,QIX,QIY Results of remainder integrals

RILOG,RLOG,RILOGX,R1LOGY,RLOGX,RLOGY,RLOGN--------- — ~ J — — J - - -- y-- —

Logarithmic terms.
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The following arrays have also been assigned:

CK(NCK) Roots of dispersion equation

Cl(NCK) = C| (equations 4.3.4 and 3.4.16).
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APPENDIX A.6 WAVE FUNCTION EVALUATIONS

The wave function evaluation subroutines have been written 

for inclusion in the diffraction program and therefore the 

numerical results have been tested for the same data that has been 

used to test the diffraction program. The published results of 

Naftzger and Chakrabarti (1979) for a submerged circular cylinder 

in water of finite depth and Martin and Dixon (1983) for a semi-

immersed circular cylinder in water of infinite depth have been used 

in this thesis for comparison purposes but if the test data is 

chosen to cover a sufficient range of waves it is sufficient to 

test the wave function evaluation for the submerged case only.

A definition sketch for the submerged circular cylinder is given in 

Figure A.6.1 and the evaluations are tested for a range of waves 

with the variation described by the non-dimensional group ka where 

k is the wave number ( k ■ 2n/L) and a the cylinder radius.

The parameters chosen by Naftzger and Chakrabarti (1979) 

to describe the diffraction refraction problem completely are the 

water depth parameter, h/a, the cylinder depth parameter y0/a and the 

diffraction parameter ka. The water depth and the cylinder depth 

parameters have been set at h/a ■ 2.5 and yo/a “ 1.25 for these 

tests and the diffraction parameter has been varied over a range 

(0.2 < ka < 2.0) which includes the shallow water depth range 

(h/L < 0.05), the intermediate water depth range (0.05 < h/L < 0.5) 

and the deep water depth range (h/L > 0.5).

The wave function test program has been written in a similar 

form to the diffraction program and nodal and source coordinates are 
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generated within the program. The results given in this appendix 

have been obtained for a ninety-six node linear discretisation 

with a single source located centrally on each element and the 

node and source locations are specified in accordance with 

Figure A.6.2. The test data has been designed to establish the 

accuracy with which the alternative wave function evaluations are 

made for a range of source node locations (x,O and the results of 

the tests may therefore be regarded as applicable to a coarse 

discretisation or a distribution of sources on a separate boundary. 

A range of wave data has been chosen ka ■ 0.2, 0.5, 1.0, 1.5, 2.0 

and results have been obtained for two nodal points for small, 

intermediate and large source node separation (i“13, j«13,17,29,49, 

i-61, j-61,49,25).

The first set of wave function tests are for the series 

evaluations obtained by subroutines GRNSER and DGRNSER. The 

convergence test has been constructed so that the part of the function 

which decays is compared with a specified test value. For the 

evaluation of the wave function (Gl) the expression

1 C{ exp(- c£ |x - Ci ) A.6.1

ci

is compared with the value of ACCS and for the evaluation of the 

gradient (DG1) the expression

C£ exp(- c^ |x - C| ) A.6.2

is compared with the value of ACCSXY. The number of terms which must
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Figure A.6.2 Node and Source Locations
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be included in the series to satisfy the tests for the wave function 

and it’s gradient are NS and NSXY respectively.

The results for the test for a range of ACCS and ACCSXY

are given in table A.6.1 and it is clear that there is a direct 

relationship between the accuracy test values and the extent to which 

the answers have converged. The accuracy test value determines that 

the evaluation is correct to a certain number of decimal places and 

for the wave function and it’s gradient a convergence to the third 

decimal place will guarantee that the results of the diffraction 

program will not be subject to error due to the evaluations. The 

test results indicate that values of ACCS ■ 0.0001 and ACCSXY - 0.00001 

are sufficient for this purpose.

The results of these tests also indicate that the number 

of terms which must be included to obtain the required accuracy is 

dependent entirely upon the horizontal separation of the source and 

nodal points and this feature has been used as the basis for the 

choice between a series or integral evaluation in the diffraction 

program.

Three tests have been constructed to determine the accuracy 

with which integral evaluations are made. The purpose of the first 

test is to determine the extent of the interval for which the second 

integration must be performed. In this test an approximate area 

ratio is compared with the specified accuracy test values (ACCI, ACCIXY) 

and a value of u is set when the test is satisfied. The second 
max

test, which for convenience employs the same test values, determines 

whether the results of the iterative Simpson’s rule have converged 
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to the required accuracy and the third test gives a maximum number of 

terms (NHIM) for which the iterative procedure is to continue.

This final test is a precautionary measure designed to avoid 

excessive computational labour.

Preliminary tests have indicated that the total number of 

evaluations over the interval (0,p ) is minimised if the interval
’max

for the principal value integral is chosen as (0,2.5k) and the results 

of tests performed under these conditions are given in tables A.6.2 

and A.6.3. In evaluating the wave function it is necessary to include 

double precision since failure to do so results in incorrect 

evaluations for ka < 0.7 (in this problem). Double precision has 

therefore been employed throughout the diffraction program except when 

inclusion results in an unacceptable increase in the program 

memory requirement.

Comparison of the results of tables A.6.2 and A.6.3 with 

the corresponding series evaluations given in table A.6.1 indicates 

that there is general agreement and that the integral evaluation 

provides a result which is correct to the third decimal place 

for accuracy test values of ACCI ■ ACCIXY ■ 0.0001 and NHIM ■ 64 

with the additional test value NHIM appearing to be of little 

significance*for the settings used.

The computational efficiency for the wave function 

evaluations is directly related to the number of terras required 

in the series or the number of intervals required in the integral 

evaluation. While an exact comparison is not possible based 

simply on the values NSXY and (NHIM1 ♦ NHIM2) from tables A.6.1, 
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A.6.2 and A.6.3 an approximate comparison indicates that the 

integral evaluation is best suited for the smaller source node 

separations and the series evaluation for the larger. Further 

examination of tables A.6.2 and A.6.3 indicates that the number of 

intervals to obtain the required accuracy and the length of the 

interval for integration are larger for the source located near 

the free surface for any particular value of ka and that for the 

same location the number of intervals and the interval for 

integration are larger for shallower water.

In order to demonstrate the behaviour of the integrand 

for the integral evaluations a number of plots have been made and 

are given in Figure A.6.3. The numerical results corresponding to 

each of the graphs are contained in tables A.6.2 and A.6.3 and the 

functions FI, FIX and FIY are the integrands of equations 3.4.11 

and 4.3.8 and the functions VI, VIX and VIY correspond to the 

modified integrands due to treatment for singular behaviour as given 

in equation 4.3.11. The main feature of the graphs is that the 

singular behaviour of the integrands FI, FIX and FIY has clearly 

been removed. The graphs also indicate the trends which have been 

identified for the length of the interval in tables A.6.2 and A.6.3 where 

the C/WK axis is equivalent to p/k. It is clear that the interval 

is larger for shallower water depths and for the source location 

nearer to the free surface. This trend continues if the source 

location is moved nearer towards the free surface and may therefore 

be expected to be larger for the case of the semi-immersed cylinder. 

However, this does not effect the accuracy of the evaluations unless 

the length of the interval gives arguments of hyperbolic or 
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exponential functions which are too large for computation in which 

case the program run will cease. This has been avoided in the 

integral subroutines INT3 and INT4 by imposing a maximum interval 

length of 50k. In the evaluation of results for the semi-immersed 

cylinder given in Appendix A.8 it has been found that a maximum 

interval length of 10k must be artificially imposed but the errors 

introduced are not considered to be significant.
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0 . 2 0
0 . 0 4
0 . 0 8

D I F F R A C T I O N  P A R A M E T E R  ( 2 * P I * C A / W L )
C Y L I N D E R  E E P T H  P A R A M E T E R  ( Y O / W L )
W A T E R  C E P T H  P A R A M E T E R  ( W D / W L )

I J A C C S N S G L A C C S X Y N S X Y D G 1

1 3 1 3 0 . 1 E - 0 1 2 0 - 0 . 4 2 7 0 E 0 0 0 . 1 E - 0 1 6 9 0 . 1 1 2 4 E  0 0

1 3 1 3 0 . I E - 0 2 5 9 - 0 . 4 7 0 9 E 0 0 0 . 1 E - 0 2 1 4 7 - 0 . 1 0 8 4 E - 0 1

1 3 1 3 0 . I E - 0 3 1 1 4 - 0 . 4 6 5 2 E 0 0 0 . 1 E - 0 3 2 2 4 - 0 . 8 9 0 9 E - 0 3

1 3 1 3 0 . I E - 0 4 1 7 7 - O . 4 6 4 4 E 0 0 0 . 1 E - 0 4 3 0 2 - 0 . 8 7 2 1 E - 0 3

1 3 1 3 0 . 1 E - 0 5 2 4 4 - O . 4 6 4 4 E 0 0 0 . 1 E - 0 5 3 8 0 - 0 . 9 7 9 6 E - 0 3

1 3 1 4 0 . 1 E - 0 1 1 3 - 0 . 2 9 6 0 E 0 0 0 . 1 E - 0 1 2 3 0 . 4 0 0 9 E - 0 1

1 3 1 4 0 . 1 E - 0 2 2 9 - 0 . 2 9 7 6 E 0 0 0 . 1 E - 0 2 4 8 - 0 . 3 3 4 3 E - 0 2

1 3 1 4 0 . 1 E - 0 3 4 8 - 0 . 2 9 4 8 E 0 0 0 . 1 E - 0 3 7 4 - 0 . 6 1 0 8 E - 0 3

1 3 1 4 0 . I E - 0 4 6 9 - O . 2 9 4 7 E 0 0 0 . 1 E - 0 4 9 9 - O . 4 2 7 6 E - O 3

1 3 1 4 0 . 1 E - 0 5 9 1 - 0 . 2 9 4 8 E 0 0 0 . 1 E - 0 5 1 2 4 - 0 . 4 7 0 0 E - 0 3

1 3 1 5 0 . 1 E - 0 1 1 0 - 0 . 2 1 6 3 E 0 0 0 . 1 E - 0 1 1 4 0 . 2 3 6 9 E - 0 1

1 3 1 5 0 . 1 E - 0 2 2 0 - 0 . 2 1 9 6 E 0 0 0 . 1 E - 0 2 2 9 - 0 . 6 1 0 8 E - 0 3

1 3 1 5 0 . 1 E - 0 3 3 1 - O . 2 1 7 9 E 0 0 0 . 1 E - O 3 4 4 0 . 2 7 3 0 E - 0 3

1 3 1 5 0 . 1 E - 0 4 4 4 - 0 . 2 1 7 9 E 0 0 0 . 1 E - 0 4 5 8 0 . 4 3 8 4 E - 0 3

1 3 1 5 0 . 1 E - 0 5 5 7 - O . 2 1 7 9 E 0 0 0 . 1 E - 0 5 7 3 0 . 4 1 1 4 E - O 3

1 3 1 6 0 . 1 E - 0 1 8 - 0 . 1 7 3 8 E 0 0 0 . 1 E - 0 1 1 0 0 . 1 5 6 1 E - 0 1

1 3 1 6 0 . 1 E - 0 2 , 1 5 - O . 1 6 9 4 E 0 0 0 . 1 E - O 2 2 1 0 . 9 6 9 6 E - 0 3

1 3 1 6 0 . 1 E - 0 3 2 4 - 0 . 1 6 7 9 E 0 0 0 . 1 E - 0 3 3 1 0 . 1 5 2 5 E - 0 2

1 3 1 6 0 . 1 E - 0 4 3 2 - 0 . 1 6 7 8 E 0 0 0 . I E - 0 4 4 1 0 . 1 7 2 1 E - 0 2

1 3 1 6 0 . 1 E - 0 5 4 1 - 0 . 1 6 7 8 E 0 0 0 . 1 E - 0 5 5 1 0 . 1 7 1 3 E - 0 2

1 3 1 7 0 . 1 E - 0 1 7 - 0 . 1 3 0 3 E 0 0 0 . 1 E - 0 1 8 0 . 2 1 8 9 E - 0 1

1 3 1 7 0 . 1 E - 0 2 1 3 - O . 1 3 1 3 E 0 0 0 . 1 E - 0 2 1 6 0 . 3 1 3 7 E - 0 2

1 3 1 7 0 . 1 E - 0 3 1 9 - 0 . 1 3 0 2 E 0 0 0 . 1 E - 0 3 2 4 0 . 3 3 5 9 E - 0 2

1 3 1 7 0 . 1 E - 0 4 2 6 - 0 . 1 3 0 1 E 0 0 0 . 1 E - 0 4 3 2 0 . 3 4 4 5 E - 0 2

1 3 1 7 0 . 1 E - 0 5 3 3 - 0 . 1 3 0 1 E 0 0 0 . 1 E - O 5 3 9 0 . 3 4 4 6 E - 0 2

1 3 2 5 0 . 1 E - 0 1 4 0 . 6 5 4 1 E - 0 1 0 . 1 E - 0 1 4 0 . 2 5 3 4 E - 0 1

1 3 2 5 0 . 1 E - 0 2 6 0 . 6 7 7 1 E - 0 1 0 . 1 E - 0 2 6 0 . 2 2 4 2 E - 0 1

1 3 2 5 0 . 1 E - 0 3 8 0 . 6 7 6 5 E - 0 1 0 . 1 E - O 3 9 0 . 2 2 3 6 E - O 1

1 3 2 5 0 . 1 E - 0 4 1 0 0 . 6 7 6 7 E - 0 1 0 . 1 E - 0 4 1 1 0 . 2 2 3 I E - 0 1

1 3 2 5 0 . 1 E - 0 5 1 3 0 . 6 7 6 8 E - 0 1 0 . 1 E - 0 5 1 4 0 . 2 2 3 1 E - 0 1

1 3 4 9 0 . 1 E - 0 1 3 0 . 3 4 3 9 E 0 0 0 . 1 E - O 1 2 0 . 2 7 9 9 E - 0 1

1 3 4 9 0 . 1 E - 0 2 4 0 . 3 4 4 3 E 0 0 0 . 1 E - 0 2 4 0 . 2 8 5 4 E - O 1

1 3 4 9 0 . 1 E - 0 3 5 0 . 3 4 4 3 E 0 0 0 . 1 E - O 3 5 0 . 2 8 5 3 E - 0 1

1 3 4 9 0 . 1 E - 0 4 6 0 . 3 4 4 3 E 0 0 0 . 1 E - 0 4 6 0 . 2 8 5 2 E - 0 1

1 3 4 9 0 . 1 E - 0 5 7 0 . 3 4 4 3 E 0 0 0 . 1 E - 0 5 7 0 . 2 8 5 2 E - 0 1

6 1 6 1 0 . 1 E - 0 1 2 0 - 0 . 4 5 2 0 E 0 0 0 . 1 E - 0 1 6 9 0 . 1 1 2 5 E  0 0

6 1 6 1 0 . 1 E - 0 2 5 9 - 0 . 4 9 6 1 E 0 0 0 . 1 E - O 2 1 4 7 - 0 . 1 2 1 9 E - 0 1

6 1 6 1 0 . 1 E - 0 3 1 1 4 - 0 . 4 9 0 5 E 0 0 0 . 1 E - 0 3 2 2 4 - 0 . 1 9 6 2 E - 0 2

6 1 6 1 0 . 1 E - 0 4 1 7 7 - O . 4 8 9 6 E 0 0 0 . 1 E - 0 4 3 0 2 - 0 . 1 9 8 4 E - 0 2

6 1 6 1 0 . 1 E - 0 5 2 4 4 - O . 4 8 9 7 E 0 0 0 . 1 E - 0 5 3 8 0 - 0 . 2 0 8 6 E - 0 2

6 1 4 9 0 . 1 F - 0 1 7 0  .  7 4 2 1 E - 0 1 0 . 1 E - 0 1 7 0 . 9 9 7 8 E - 0 2

6 1 4 9 0 . 1 E - 0 2 1 1 0 . 6 9 1 2 E - 0 1 0 . I E - 0 2 1 3 0 . 2 9 4 8 E - 0 2

6 1 4 9 0 . 1 E - 0 3 1 6 0 . 6 9 9 0 E - 0 1 0 . 1 E - O 3 1 9 0 . 2 3 6 0 E - 0 2

6 1 4 9 0 . 1 E - 0 4 2 2 0 . 6 9 8 8 E - 0 1 0 . 1 E - 0 4 2 6 0 . 2 3 8 9 E - O 2

6 1 4 9 0 . 1 E - 0 5 2 7 0 . 6 9 8 8 E - 0 1 0 . 1 E - 0 5 3 2 0 . 2 3 9 2 E - 0 2

6 1 2 5 0 . 1 E - O 1 4 0 . 2 3 8 8 E 0 0 0 . 1 E - O 1 4 0 . 1 6 2 2 E - 0 1

6 1 2 5 0 . 1 E - O 2 6 0 . 2 3 7 3 E 0 0 0 . 1 E - 0 2 7 0 . 1 8 6 5 E - 0 1

6 1 2 5 0 . 1 E - 0 3 9 0 . 2 3 7 3 E 0 0 0 . 1 E - 0 3 9 0 . 1 8 7 1 E - 0 1

6 1 2 5 0 . 1 E - 0 4 1 1 0  .  2 3 7 3 E 0 0 0 . 1 E - O 4 1 2 0 . 1 8 6 7 E - 0 1

6 1 2 5 0 . 1 E - 0 5 1 4 0  .  2 3 7 3 E 0 0 0 . 1 E - 0 5 1 5 0 . 1 8 6 7 E - 0 1
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0 . 5 0
0 . 1 0
0 . 2 0

D I F F R A C T I O N  P A R A M E T E R  ( 2 * P I * C A / W L )
C Y L I N D E R  L E P T H  P A R A M E T E R  ( Y O / W L )
W A T E R  D E P T H  P A R A M E T E R  ( W D / W L )

I J A C C S b S G 1 A C C S X Y N S X Y D G 1

1 3 1 3 0 . 1 E - 0 1 2 0 - 0 . 3 8 1 1 E  0 0 0 . 1 E - 0 1 6 9 0 . 1 1 6 1 E  0 0

1 3 1 3 0 . 1 E - 0 2 5 9 - 0 . 4 2 4 9 E  0 0 0 . 1 E - 0 2 1 4 7 - O . 7 1 3 1 E - O 2

1 3 1 3 0 . 1 E - 0 3 1 1 4 - O . 4 1 9 2 E  0 0 0 . 1 E - 0 3 2 2 4 0 . 2 8 1 4 E - 0 2

1 3 1 3 0 . 1 E - 0 4 1 7 7 - 0 . 4 1 8 3 E  0 0 0 . 1 E - O 4 3 0 2 0 . 2 8 3 3 E - 0 2

1 3 1 3 0 . 1 E - 0 5 2 4 4 - O . 4 1 8 4 E  0 0 0 . 1 E - O 5 3 8 0 0 . 2 7 2 6 E - 0 2

1 3 1 4 0 . 1 E - O 1 1 3 - 0 . 2 4 8 6 E  0 0 0 . 1 E - O 1 2 3 0 . 4 3 5 9 E - 0 1

1 3 1 4 0 . 1 E - 0 2 2 9 - 0 . 2 5 0 2 E  0 0 0 . 1 E - O 2 4 8 0 . 2 2 1 3 E - 0 3

1 3 1 4 0 . 1 E - 0 3 4 8 - 0 . 2 4 7 5 E  0 0 0 . 1 E - 0 3 7 4 0 . 2 9 5 7 E - 0 2

1 3 1 4 0 . 1 E - 0 4 6 9 - 0 . 2 4 7 4 E  0 0 0 . 1 E - O 4 9 9 0 . 3 1 4 0 E - 0 2

1 3 1 4 0 .  I E - 0 5 9 1 - O . 2 4 7 4 E  0 0 0 . 1 E - 0 5 1 2 4 0 . 3 0 9 8 E - 0 2

1 3 1 5 0 . 1 E - 0 1 1 0 - 0 . 1 6 7 5 E  0 0 0 . 1 E - 0 1 1 4 0 . 2 7 1 6 E - 0 1

1 3 1 5 0 . 1 E - 0 2 2 0 - 0 . 1 7 0 9 E  0 0 0 . 1 E - 0 2 2 9 0 . 2 9 6 3 E - 0 2

1 3 1 5 0 . 1 E - 0 3 3 1 - O . 1 6 9 3 E  0 0 0 . 1 E - 0 3 4 4 0 . 3 8 5 2 E - 0 2

1 3 1 5 0 . 1 E - 0 4 4 4 - O . 1 6 9 3 E  0 0 0 . 1 E - 0 4 5 8 0 . 4 0 1 8 E - 0 2

1 3 1 5 0 . 1 E - 0 5 5 7 - O . 1 6 9 3 E  0 0 0 . 1 E - O 5 7 3 0 . 3 9 9 1 E - 0 2

1 3 1 6 0 . 1 E - 0 1 8 - 0 . 1 2 3 9 E  0 0 0 . 1 E - 0 1 1 0 0 . 1 9 3 1 E - 0 1

1 3 1 6 0 .  I E - 0 2 1 5 - O . 1 1 9 4 E  0 0 0 .  I E - 0 2 2 1 0 . 4 7 3 1 E - 0 2

1 3 1 6 0 . 1 E - 0 3 2 4 - O . 1 1 7 9 E  0 0 0 . 1 E - 0 3 3 1 0 . 5 2 8 3 E - 0 2

1 3 1 6 0 . 1 E - 0 4 3 2 - O . 1 1 7 8 E  0 0 0 . 1 E - 0 4 4 1 0 . 5 4 8 0 E - 0 2

1 3 1 6 0 . 1 E - 0 5 4 1 - 0 . 1 1 7 8 E  0 0 0 . 1 E - O 5 5 1 0  .  5 4  7  2 E - 0 2

1 3 1 7 0 . 1 E - 0 1 7 - 0 . 7 9 0 4 E - 0 1 0 . 1 E - O 1 8 0 . 2 6 0 3 E - 0 1

1 3 1 7 0 . 1 E - 0 2 1 3 - 0 . 7 9 7 6 E - 0 1 0 . 1 E - 0 2 1 6 0 . 7 2 5 1 E - 0 2

1 3 1 7 0 . 1 E - 0 3 1 9 - O . 7 8 6 3 E - O 1 0 . 1 E - O 3 2 4 0 . 7 4 7 3 E - 0 2

1 3 1 7 0 . 1 E - 0 4 2 6 - 0 . 7 8 5 4 E - 0 1 0 .  I E - 0 4 3 2 0 . 7 5 5 9 E - 0 2

1 3 1 7 0 . 1 E - 0 5 3 3 - 0 . 7 8 5 5 E - 0 1 0 . 1 E - 0 5 3 9 0 . 7 5 6 0 E - 0 2

1 3 2 5 0 . 1 E - O 1 4 0 . 1 3 5 5 E  0 0 0 . 1 E - O 1 4 0 . 3 5 7 8 E - 0 1

1 3 2 5 0 . 1 E - 0 2 6 0 . 1 3 7 8 E  0 0 0 . 1 E - 0 2 6 0 . 3 3 1 3 E - 0 1

1 3 2 5 0 . 1 E - 0 3 8 0 . 1 3 7 7 E  0 0 0 . 1 E - 0 3 9 0 . 3 3 0 8 E - 0 1

1 3 2 5 0 . 1 E - 0 4 1 0 0 . 1 3 7 8 E  0 0 0 . 1 E - 0 4 1 1 O . 3 3 O 3 E - O 1

1 3 2 5 0 . 1 E - 0 5 1 3 0 . 1 3 7 8 E  0 0 0 . 1 E - O 5 1 4 O . 3 3 O 3 E - O 1

1 3 4 9 0 . 1 E - O 1 3 0 . 3 2 6 1 E  0 0 0 . 1 E - 0 1 3 O . 3 3 7 6 E - O 1

1 3 4 9 0 . 1 E - 0 2 4 0 . 3 2 6 3 E  0 0 0 . 1 E - O 2 4 0 . 3 4 5 1 E - 0 1

1 3 4 9 0 . 1 E - 0 3 5 0 . 3 2 6 3 E  0 0 0 . 1 E - O 3 5 0 .  3 4 4 8 E - 0 1

1 3 4 9 0 . 1 E - 0 4 6 0 . 3 2 6 3 E  0 0 0 . 1 E - 0 4 6 0 . 3 4 4 7 E - 0 1

1 3 4 9 0 . 1 E - 0 5 7 0 . 3 2 6 3 E  0 0 0 . 1 E - 0 5 7 0 .  3 4 4 7 E - 0 1

6 1 6 1 0 . 1 E - 0 1 2 0 - 0 . 5 2 5 8 E  0 0 0 . 1 E - 0 1 6 9 0 . 1 0 9 3 E  0 0

6 1 6 1 0 . 1 E - 0 2 5 9 - 0 . 5 7 0 1 E  0 0 0 . 1 E - 0 2 1 4 7 - O . 1 5 3 8 E - O 1

6 1 6 1 0 .  I E - 0 3 1 1 4 - 0 . 5 6 4 4 E  0 0 0 . 1 E - 0 3 2 2 4 - 0 . 5 1 5 0 E - 0 2

6 1 6 1 0 . 1 E - 0 4 1 7 7 - 0 . 5 6 3 6 E  0 0 0 . 1 E - O 4 3 0 2 - O . 5 1 7 3 E - O 2

6 1 6 1 0 . 1 E - O 5 2 4 4 - 0 . 5 6 3 7 E  0 0 0 . 1 E - 0 5 3 8 0 - O . 5 2 7 4 E - O 2

6 1 4 9 0 . 1 E - O 1 7 0 . 2 4 8 7 E - 0 1 0 . 1 E - 0 1 7 0 . 8 6 9 6 E - O 2

6 1 4 9 0 . 1 E - 0 2 1 1 0 . 1 9 7 0 E - 0 1 0 . 1 E - 0 2 1 3 0 . 1 5 7 6 E - 0 2

6 1 4 9 0 . 1 E - 0 3 1 6 0 . 2 0 4 9 E - 0 1 0 . 1 E - 0 3 1 9 0 . 9 8 5 5 E - 0 3

6 1 4 9 0 . 1 E - 0 4 2 2 0 . 2 0 4 7 E - 0 1 0 . 1 E - O 4 2 6 0 . 1 0 1 4 E - 0 2

6 1 4 9 0 . 1 E - O 5 2 7 0 . 2 0 4 7 E - 0 1 0 . 1 E - O 5 3 2 0 . 1 0 1 8 E - 0 2

6 1 2 5 0 . 1 E - O 1 4 0 . 2 5 8 5 E  0 0 0 . 1 E - O 1 4 0 . 1 1 8 0 E - 0 1

6 1 2 5 0 . 1 E - O 2 6 0 . 2 5 7 2 E  0 0 0 . 1 E - O 2 7 0 . 1 4 0 2 E - 0 1

6 1 2 5 0 . 1 E - O 3 9 0 . 2 5 7 2 E  0 0 0 . 1 E - O 3 9 0 . 1 4 0 9 E - 0 1

6 1 2 5 0 . 1 E - O 4 1 1 0 . 2 5 7 2 E  0 0 0 . 1 E - O 4 1 2 0 . 1 4 0 4 E - 0 1

6 1 2 5 0 . 1 E - O 5 1 4 0 . 2 5 7 2 E  0 0 0 . 1 E - 0 5 1 5 0 . 1 4 0 4 E - 0 1

T a bl e  A. 6. 1 b S e ri e s E v al u ati o n  of  w a v e  F u n cti o n  V al u e s
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DIFFRACTION PARAMETER (2*PI*CA/WL)
CYLINDER DEPTH PARAMETER (YO/WL)
WATER DEPTH PARAMETER (WD/WL)

1.00
0.20
0.40

I J ACCS NS G1 ACCSXY NSXY DG1
13 13 0.1E-01 20 -O.2972E 00 0.1E-01 69 0.1353E 00
13 13 0.1E-02 59 -0.3409E 00 0.1E-02 147 0.1209E-01
13 13 0.1E-03 114 -0.3352E 00 0.1E-03 224 0.2204E-01
13 13 0.1E-04 177 -O.3344E 00 0.1E-04 302 0.2206E-01
13 13 0.1E-05 244 -O.3345E 00 0.1E-05 380 0.2195E-01
13 14 0.1E-01 13 -O.1579E 00 0.1E-01 23 0.6261E-01
13 14 0.1E-02 29 -O.1598E 00 0.1E-02 48 0.1934E-O1
13 14 0.1E-03 48 -O.1570E 00 0.1E-03 74 0.2208E-01
13 14 0.1E-04 69 -O.1569E 00 0.1E-04 99 0.2226E-01
13 14 0.1E-05 91 -0.1570E 00 0.1E-05 124 0.2222E-01
13 15 0.1E-01 10 -0.7D69E-01 0.1E-01 14 0.4615E-01
13 15 0.1E-02 20 -O.74 43E-O1 0.1E-02 29 0.2213E-01
13 15 0.1E-03 31 -0.7276E-01 0.1E-03 44 0.2303E-01
13 15 0.1E-04 44 -0.7275E-01 0.1E-04 58 0.2320E-01
13 15 0.1E-05 57 -0.7277E-01 0. IE-05 73 0.2317E-01
13 16 0.1E-01 8 -0.2198E-01 0.1E-01 10 0.3868E-01
13 16 0.1E-02 15 -0.1726E-01 0.1E-02 21 0.2416E-01
13 16 0.1E-03 ■ 24 -O.1578E-O1 0.1E-03 31 0.2471E-01
13 16 0.1E-04 32 -0.1570E-01 0.1E-04 41 0.2491E-01
13 16 0.1E-05 41 -O.1573E-O1 0.1E-05 51 0.2490E-01
13 17 0.1E-01 7 0. 2772E-01 0.1E-01 8 0.4593E-01
13 17 0.1E-02 13 0.2749E-O1 0.1E-02 16 0.2713E-01
13 17 0.1E-03 19 0.2865E-01 0.1E-O3 24 0.2736E-01
13 17 0.1E-04 26 0.2873E-O1 0.1E-04 32 0.2744E-O1
13 17 0. IE-05 33 0.2872E-01 0.1E-05 39 0.2744E-01
13 25 0.1E-01 4 0.2620E 00 0.1E-01 4 0.6012E-01
13 25 0.1E-02 6 0.2641E 00 0.1E-02 6 0.5804E-01
13 25 0.1E-03 8 0.2639E 00 0.1E-03 9 0.5799E-01
13 25 0.1E-04 10 0.2639E 00 0.1E-04 11 0.5794E-01
13 25 0.1E-05 13 0. 2640E 00 0.1E-05 14 0.5794E-01
13 49 0.1E-01 3 0.1774E 00 0.1E-01 3 0.2165E-01
13 49 0.1E--02 4 0.1771E 00 0.1E-02 4 0.2269E-01
13 49 0.1E-O3 5 0.1771E 00 0.1E-03 5 0.2266E-01
13 49 0.1E-04 6 0.1771E 00 0.1E-04 6 0.2264E-01
13 49 0.1E-05 7 0.1771E 00 0.1E-O5 7 0.2264E-01
61 61 0.1E-01 20 -O.6726E 00 0.1E-01 69 0.1064E 00
61 61 0.1E-02 59 -O.7169E 00 0. IE-02 147 -0.1831E-01
61 61 0. IE-03 114 -O.7113E 00 0.1E-03 224 -0.8080E-02
61 61 0.1E-04 177 -0.7104E 00 0.1E-04 302 -0.8102E-02
61 61 0.1E-O5 244 -O.7105E 00 0.1E-05 380 -0.8204E-02
61 49 0.1E-O1 7 -O.9842E-O1 0.1E-01 7 0.7248E-02
61 49 0.1E-02 11 -0.1037E 00 0.1E-02 13 -0.1534E-04
61 49 0.1E-O3 16 -0.1029E 00 0.1E-03 19 -0.6106E-03
61 •19 0.1E-04 22 -0.1029E 00 0.1E-04 26 -0.5821E-03
61 49 0.1E-O5 27 -0.1029E 00 0.1E-05 32 -0.5783E-03
61 25 0.1E-01 4 0.2085E 00 0.1E-01 4 -0.2481E-02
61 25 0.1E-O2 6 0.2074E 00 0.1E-O2 7 -0.6720E-03
61 25 0.1E-03 9 0.2075E 00 0.1E-03 9 -0.5999E-03
61 25 0.1E-04 11 0.2075E 00 0.1E-04 12 -0.64 86E-03
61 25 0.1E-05 14 0.2075E 00 0.1E-05 15 -0.6497E-03

Table A.6.1c Series Evaluation of Wave Function Values
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1 . 5 0
0 . 3 0
0 . 6 0

D I F F R A C T I O N  P A R A M E T E R  ( 2 * P I * C A / W L )
C Y L I N D E R  D E P T H  P A R A M E T E R  ( Y O / W L )
W A T E R  D E P T H  P A R A M E T E R  ( W D / W L )

I J A C C S N S G 1 A C C S X Y N S X Y D G 1

1 3 1 3 0 . 1 E - 0 1 2 0 - O . 2 8 6 3 E  0 0 0 . 1 E - O 1 6 9 0 . 1 5 2 4 E  0 0

1 3 1 3 0 . 1 E - O 2 5 9 - O . 3 2 9 9 E  0 0 0 . 1 E - 0 2 1 4 7 0 . 2 9 2 6 E - 0 1

1 3 1 3 0 . 1 E - 0 3 1 1 4 - 0 . 3 2 4 2 E  0 0 0 . 1 E - O 3 2 2 4 0 . 3 9 2 0 E - 0 1

1 3 1 3 0 . 1 E - 0 4 1 7 7 - O . 3 2 3 3 E  0 0 0 . 1 E - 0 4 3 0 2 0 . 3 9 2 2 E - 0 1

1 3 1 3 0 . 1 E - 0 5 2 4 4 - 0 . 3 2 3 4 E  0 0 0 . 1 E - 0 5 3 8 0 0 . 3 9 1 1 E - 0 1

1 3 1 4 0 . 1 E - O 1 1 3 - 0 . 1 4 1 1 E  0 0 0 . 1 E - 0 1 2 3 0 . 7 9 5 9 E - 0 1

1 3 1 4 0 . 1 E - 0 2 2 9 - 0 . 1 4 3 0 E  0 0 0 . I E - 0 2 4 8 0 . 3 6 4 2 E - 0 1

1 3 1 4 0 . 1 E - 0 3 4 8 - 0 . 1 4 0 3 E  0 0 0 . 1 E - 0 3 7 4 0 . 3 9 1 7 E - O 1

1 3 1 4 0 . 1 E - 0 4 6 9 - O . 1 4 0 2 E  0 0 0 . 1 E - 0 4 9 9 0 . 3 9 3 5 E - 0 1

1 3 1 4 0 . 1 E - 0 5 9 1 - 0 . 1 4 0 2 E  0 0 0 . 1 E - 0 5 1 2 4 0 . 3 9 3 1 E - 0 1

1 3 1 5 0 . 1 E - 0 1 1 0 - O . 4 8 6 7 E - O 1 0 . 1 E - 0 1 1 4 0 . 6 2 8 8 E - 0 1

1 3 1 5 0 . 1 E - 0 2 2 0 - 0 . 5 2 6 3 E - 0 1 0 . 1 E - 0 2 2 9 0 . 3 9 0 2 E - 0 1

1 3 1 5 0 . 1 E - 0 3 3 1 - 0 .  5 0 9 7 E - 0 1 0 . 1 E - 0 3 4 4 0 . 3 9 9 3 E - O 1

1 3 1 5 0 . 1 E - 0 4 4 4 - 0 . 5 0 9 6 E - 0 1 0 . 1 E - 0 4 5 8 0 . 4 0 0 9 E - 0 1

1 3 1 5 0 . 1 E - 0 5 5 7 - O . 5 0 9 8 E - O I 0 . 1 E - 0 5 7 3 0 . 4 0 0 7 E - 0 1

1 3 1 6 0 . 1 E - 0 1 8 0 . 4 0 0 0 E - 0 2 0 . I E - O 1 1 0 0 . 5 5 2 5 E - 0 1

1 3 1 6 0 . 1 E - 0 2 1 5 0 . 8 8 5 0 E - 0 2 0 . 1 E - 0 2 2 1 0 . 4 0 7 7 E - 0 1

1 3 1 6 0 . 1 E - 0 3 - 2 4 0 . 1 0 3 1 E - 0 1 0 . I E - 0 3 3 1 0 . 4 1 3 1 E - 0 1

1 3 1 6 0 . 1 E - 0 4 3 2 0 . 1 0 3 9 E - 0 1 0 . 1 E - 0 4 4 1 0 . 4 1 5 1 E - 0 1

1 3 1 6 0 . 1 E - 0 5 4 1 0 . 1 0 3 7 E - 0 1 0 . 1 E - 0 5 5 1 0 . 4 1 5 0 E - 0 1

1 3 1 7 0 . 1 E - 0 1 7 0 . 5 6 7 2 E - 0 1 0 . 1 E - 0 1 8 0 . 6 2 1 0 E - 0 1

1 3 1 7 0 . 1 E - 0 2 1 3 0 . 5 6 9 6 E - O 1 0 . 1 E - 0 2 1 6 0 . 4 3 3 4 E - O 1

1 3 1 7 0 . 1 E - 0 3 1 9 0 . 5 8 1 4 E - 0 1 0 . 1 E - O 3 2 4 0 . 4 3 5 6 E - 0 1

1 3 1 7 0 . 1 E - 0 4 2 6 0 . 5 8 2 3 E - 0 1 0 . 1 E - 0 4 3 2 0 . 4 3 6 5 E - 0 1

1 3 1 7 0 . 1 E - 0 5 3 3 0 . 5 8 2 2 E - O 1 0 . 1 E - 0 5 3 9 0 . 4 3 6 5 E - 0 1

1 3 2 5 0 . 1 E - 0 1 4 0 . 2 6 8 8 E  0 0 0 . 1 E - 0 1 4 0 . 6 3 0 4 E - 0 1

1 3 2 5 0 . 1 E - 0 2 6 0 . 2 7 0 4 E  0 0 0 . I E - 0 2 6 0 . 6 1 5 8 E - 0 1

1 3 2 5 0 . 1 E - 0 3 8 0 . 2 7 0 3 E  0 0 0 . 1 E - 0 3 9 0 . 6 1 5 2 E - 0 1

1 3 2 5 0 . 1 E - 0 4 1 0 0 . 2 7 0 3 E  0 0 0 . 1 E - 0 4 1 1 0 . 6 1 4 7 E - 0 1

1 3 2 5 0 . 1 E - 0 5 1 3 0 . 2 7 0 3 E  0 0 0 . 1 E - 0 5 1 4 0 . 6 1 4 7 E - 0 1

1 3 4 9 0 . 1 E - 0 1 3 0 . 4 0 4 2 E - 0 1 0 . 1 E - O 1 3 0 . 4 1 8 4 E - 0 2

1 3 4 9 0 . 1 E - 0 2 4 0 . 3 9 5 2 E - 0 1 0 . 1 E - O 2 4 0 . 5 4 8 0 E - 0 2

1 3 4 9 0 . 1 E - 0 3 5 0 . 3 9 5 8 E - 0 1 0 . I E - 0 3 5 0 . 5 4 3 0 E - 0 2

1 3 4 9 0 . 1 E - 0 4 6 0 . 3 9 5 9 E - 0 1 0 . 1 E - 0 4 6 0 . 5 4 1 7 E - 0 2

1 3 4 9 0 . 1 E - 0 5 7 0 . 3 9 5 9 E - 0 1 0 . 1 E - 0 5 7 0 . 5 4 1 7 E - 0 2

6 1 6 1 0 . 1 E - 0 1 2 0 - 0 . 7 4 8 7 E  0 0 0 . 1 E - 0 1 6 9 0 . 1 0 6 9 E  0 0

6 1 6 1 0 . I E - 0 2 5 9 - 0 . 7 9 3 1 E  0 0 0 . 1 E - 0 2 1 4 7 - 0 . 1 7 8 5 E - 0 1

6 1 6 1 0 . 1 E - 0 3 1 1 4 - 0 . 7 8 7 4 E  0 0 0 . 1 E - 0 3 2 2 4 - 0 . 7 6 2 4 E - 0 2

6 1 6 1 0 . 1 E - O 4 1 7 7 - 0 . 7 E 6 6 E  0 0 0 . 1 E - 0 4 3 0 2 - 0 . 7 6 4 6 E - 0 2

6 1 6 1 0 . 1 E - 0 5 2 4 4 - 0 . 7 6 6 7 E  0 0 0 . 1 E - 0 5 3 8 0 - 0 . 7 7 4 8 E - 0 2

6 1 4 9 0 . 1 E - 0 1 7 - 0 . 1 7 7 6 E  0 0 0 . 1 E - 0 1 7 0 . 7 4 7 9 E - O 2

6 1 4 9 0 . 1 E - 0 2 1 1 - 0 . 1 8 3 0 E  0 0 0 . 1 E - O 2 1 3 0 . 9 2 9 6 E - 0 4

6 1 4 9 0 . 1 E - 0 3 1 6 - 0 . 1 8 2 2 E  0 0 0 . 1 E - 0 3 1 9 - 0 . 5 0 6 0 E - 0 3

6 1 4 9 0 . 1 E - 0 4 2 2 - 0 . 1 8 2 2 E  0 0 0 . 1 E - 0 4 2 6 - 0 . 4 7 7 7 E - 0 3

6 1 4 9 0 . 1 E - 0 5 2 7 - O . 1 8 2 2 E  0 0 0 . 1 E - O 5 3 2 - 0 . 4 7 3 9 E - 0 3

6 1 2 5 0 . 1 E - O 1 5 0 . 1 2 1 3 E  0 0 0 . 1 E - 0 1 4 - 0 . 8 3 4 0 E - 0 2

6 1 2 5 0 . 1 E - 0 2 7 0 . 1 2 1 7 E  0 0 0 . 1 E - 0 2 7 - 0 . 6 9 5 7 E - 0 2

6 1 2 5 0 . 1 E - 0 3 9 0 . 1 2 1 5 E  0 0 0 . 1 E - O 3 9 - 0 . 6 8 8 0 E - 0 2

6 1 2 5 0 . 1 E - 0 4 1 1 0 . 1 2 1 6 E  0 0 0 . 1 E - 0 4 1 2 - 0 . 6 9 3 1 E - 0 2

6 1 2 5 0 . 1 E - 0 5 1 4 0 . 1 2 1 6 E  0 0 0 . I E - 0 5 1 5 - O . 6 9 3 2 E - O 2
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DIFFRACTION PARAMETER (2*PI*CA/WL)
CYLINDER DEPTH PARAMETER (YO/WL)
WATER EEPTH PARAMETER (WD/WL)

2.00
0.40
0.80

I J ACCS 16 G1 ACCSXY NSXY DG1
13 13 0.1E-01 20 -0.3111E 00 0.1E-01 69 0.1613E 00
13 13 0.1E-02 59 -0.3546E 00 0.1E-02 147 0.3816E-01
13 13 0.1E-03 114 -O.3489E 00 0.1E-03 224 0.4810E-01
13 13 0.1E-04 177 -0.3480E 00 0.1E-04 302 0.4812E-01
13 13 0.1E-05 244 -0.3481E 00 0.1E-05 380 0.4801E-01
13 14 0.1E-01 13 -0.1627E 00 0. IE-01 23 0.8819E-01
13 14 0.1E-02 29 -0.1648E 00 0.1E-02 48 0.4512E-01
13 14 0.1E-03 48 -0.1621E 00 0.1E-03 74 0.4787E-01
13 14 0.1E-04 69 -0.1620E 00 0.1E-04 99 0.4805E-01
13 14 0.1E-05 91 -0.1620E 00 0.1E-05 124 0.4801E-01
13 15 0.1E-01 10 -0.6787E-01 0.1E-O1 14 0.7096E-01
13 15 0.1E-02 20 -0.7202E-01 0.1E-02 29 0.4725E-01
13 15 0.1E-03 31 -0.7037E-01 0.1E-03 44 0.4817E-01
13 15 0.1E-04 44 -0.7036E-01 0.1E-04 58 0.4834E-01
13 15 0.1E-05 57 -0.7038E-01 0.1E-05 73 0.4831E-01
13 16 0.1E-01 8 -0.1376E-01 0.1E-01 10 0.6275E-01
13 16 0.1E-02 15 -0.8820E-02 0.1E-02 21 0.4828E-01
13 16 0.1E-03 • 24 -0.7375E-02 0.1E-03 31 0.4882E-01
13 16 0.1E-04 32 -0.7300E-02 0.1E-04 41 0.4902E-01
13 16 0.1E-05 41 -O.7322E-O2 0.1E-05 51 0.4901E-01
13 17 0.1E-01 7 0.3937E-O1 0.1E-01 8 0.6848E-01
13 17 0.1E-02 13 0.4007E-01 0.1E-02 16 0.4981E-01
13 17 0.1E-03 19 0.4128E-01 0.1E-03 24 0.5003E-01
13 17 0.1E-O4 26 0.4136E-01 0.1E-04 32 0. 5012E-01
13 17 0.1E-05 33 0.4136E-01 0.1E-05 39 0.5012E-01
13 25 0.1E-01 4 0.2097E 00 0.1E-01 4 0.4654E-01
13 25 0.1E-02 6 0.2107E 00 0.1E-02 6 0.4573E-01
13 25 0.1E-03 8 0.2105E 00 0.1E-03 9 0.4565E-01
13 25 0.1E-04 10 0.2105E 00 0.1E-04 11 0.4560E-01
13 25 0.1E-05 13 0.2105E 00 0.1E-05 14 0.4560E-01
13 49 0.1E-01 3 -0.1207E-01 0. IE-01 3 0.1946E-02
13 49 0.1E-02 4 -0.1354E-01 0. IE-02 4 0.3442E-02
13 49 0.1E-03 5 -0.1346E-01 0.1E-03 5 0.3378E-O2
13 49 0.1E-04 6 -0.1344E-01 0.1E-04 6 0.3365E-02
13 49 0.1E-05 7 -0.1344E-01 0.1E-05 7 0.3365E-02
61 61 0.1E-O1 20 -O.7825E 00 0.1E-01 69 0.1075E 00
61 61 0.1E-02 59 -0.8269E 00 0.1E-02 147 -0.1723E-01
61 61 0.1E-03 114 -0.8213E 00 0.1E-03 224 -0.7001E-02
61 61 0.1E-04 177 -0.8204E 00 0.1E-04 302 -0.7024E-02
61 61 0.1E-O5 244 -0.8205E 00 0. IE-05 380 -0.7125E-02
61 49 0.1E-01 7 -0.2162E 00 0. IE-01 7 0.7933E-02
61 49 0.1E-02 11 -O.2217E 00 0.1E-02 13 0.4369E-03
61 49 0.1E-03 16 -0.2209E 00 0.1E-03 19 -0.1657E-03
61 49 0.1E-04 22 -0.2209E 00 0.1E-04 26 -0.1375E-03
61 49 0.1E-O5 27 -0.2209E 00 0.1E-05 32 -0.1336E-03
61 25 0.1E-01 5 0.6674E-01 0.1E-01 4 -0.7148E-02
61 25 0.1E-02 7 0.6691E-01 0.IE-02 7 -0.6197E-02
61 25 0.1E-O3 9 0.6679E-01 0. IE-03 9 -0.6113E-02
61 25 0.1E-04 11 0.6680E-01 0. IE-04 12 -0.6167E-02
61 25 0.1E-05 14 0.6681E-01 0. IE-05 15 -0.6168E-02

Table -A. 6.1e Series Evaluation of Wave Function Values
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D I F F R A C T I O N  P A R A M E T E R  ( 2 * P I * C A / W L )
C Y L I N D E R  D E P T H  P A R A M E T E R  ( Y O / W L )
W A T E R  D E P T H  P A R A M E T E R  ( W D / W L )

0 . 2 0
0 . 0 4
0 . 0 8

I J A C C I X Y N H I M N H I 1 N H I 2 C M A X D G 1
1 3 1 3 0 . 1 E  0 0 1 6 1 1 5 . 0 0 . 6 1 5 0 E - 0 2

1 3 1 3 0 . 1 E - 0 1 3 2 2 2 7 . 5 0 . 3 0 0 2 E - 0 2
1 3 1 3 0 . 1 E - 0 2 6 4 2 4 1 7 . 5 - 0 . 6 1 1 7 E - 0 3
1 3 1 3 0 . 1 E - 0 3 1 2 8 4 3 2 2 7 . 5 - 0 . 9 1 9 4 E - 0 3
1 3 1 3 0 . 1 E - 0 4 2 5 6 8 6 4 4 0 . 0 - 0 . 9 6 4 3 E - 0 3
1 3 1 4 0 . 1 E  0 0 1 6 2 1 5 . 0 0 . 6 3 4 8 E - 0 2
1 3 1 4 0 . 1 E - 0 1 3 2 2 2 1 2 . 5 0 . 5 5 0 0 E - 0 3
1 3 1 4 0 . 1 E - 0 2 6 4 4 1 6 2 2 . 5 - 0 . 3 5 8 1 E - 0 3
1 3 1 4 0 . 1 E - 0 3 1 2 8 8 3 2 3 5 . 0 - 0 . 4 6 4 3 E - 0 3
1 3 1 4 0 . 1 E - 0 4 2 5 6 1 6 1 2 8 4 5 . 0 - 0 . 4 6 7 7 E - 0 3
1 3 1 5 0 . 1 E  0 0 1 6 2 1 5 . 0 0 . 6 6 6 9 E - 0 2
1 3 1 5 0 . 1 E - 0 1 3 2 2 4 1 5 . 0 0 . 8 2 8 1 E - 0 3

1 3 1 5 0 . 1 E - 0 2 6 4 4 1 6 2 7 . 5 0 . 4 0 3 1 E - 0 3

1 3 1 5 0 . 1 E - 0 3 1 2 8 8 6 4 3 7 . 5 0 . 4 0 5 8 E - 0 3

1 3 1 5 0 . 1 E - 0 4 2 5 6 1 6 1 2 8 5 0 . 0 0 . 4 1 0 1 E - 0 3

1 3 1 6 0 . 1 E  0 0 1 6 2 2 7 . 5 0 . 4 2 8 6 E - 0 2

1 3 1 6 0 . 1 E - 0 1 3 2 2 4 1 7 . 5 0 . 1 6 1 3 E - 0 2
1 3 1 6 0 . 1 E - 0 2 6 4 4 1 6 2 7 . 5 0 . 1 6 4 4 E - 0 2

1 3 1 6 0 . 1 E - O 3 ' 1 2 8 8 6 4 4 0 . 0 0 . 1 7 0 0 E - 0 2

1 3 1 6 0 . 1 E - O 4 2 5 6 1 6 1 2 8 5 2 . 5 0 . 1 7 1  I E - 0 2

1 3 1 7 0 . 1 E  0 0 1 6 2 2 7 . 5 0 . 4 9 8 4 E - 0 2
1 3 1 7 0 . 1 E - O 1 3 2 2 8 2 0 . 0 0 . 3 1 0 8 E - 0 2
1 3 1 7 0 . 1 E - O 2 6 4 4 3 2 3 0 . 0 0 . 3 3 4 3 E - 0 2
1 3 1 7 0 . 1 E - O 3 1 2 8 8 6 4 4 2 . 5 0 . 3 4 3 1 E - 0 2
1 3 1 7 0 . 1 E - O 4 2 5 6 1 6 2 5 6 5 7 . 5 0 . 3 4 4 4 E - 0 2

1 3 2 5 0 . 1 E  0 0 1 6 2 2 1 2 . 5 0 . 1 8 4 6 E - 0 1

1 3 2 5 0 . 1 E - 0 1 3 2 2 1 6 3 0 . 0 0 . 2 2 5 4 E - 0 1
1 3 2 5 0 . 1 E - 0 2 6 4 8 6 4 4 7 . 5 0  .  2 2 3 0 E - 0 1
1 3 2 5 0 . 1 E - 0 3 1 2 8 1 6 1 2 8 5 5 . 0 0 . 2 2 3 L E - 0 1

1 3 2 5 0 . 1 E - 0 4 2 5 6 1 6 2 5 6 6 2 . 5 0 . 2 2 3  I E - 0 1

1 3 4 9 0 . 1 E  0 0 1 6 2 4 1 0 . 0 0 . 2 8 5 9 E - 0 1

1 3 4 9 0 . 1 E - 0 1 3 2 4 8 1 5 . 0 0 . 2 8 5 6 E - 0 1

1 3 4 9 0 . 1 E - 0 2 6 4 8 3 2 2 2 . 5 0 . 2 8 5 1 E - 0 1

1 3 4 9 0 . 1 E - 0 3 1 2 8 1 6 1 2 8 3 0 . 0 0 . 2 8 5 2 E - 0 1

1 3 4 9 0 . 1 E - 0 4 2 5 6 3 2 2 5 6 3 5 . 0 0 . 2 8 5 2 E - 0 1

6 1 6 1 0 . 1 E  0 0 1 6 1 1 5 . 0 - 0 . 2 2 0 5 E - 0 2

6 1 6 1 0 . 1 E - 0 1 3 2 1 1 5 . 0 - 0 . 2 2 0 5 E - 0 2

6 1 6 1 0 . 1 E - 0 2 6 4 2 2 7 . 5 - 0 . 2 0 8 6 E - 0 2

6 1 1 0 . 1 E - 0 3 1 2 8 4 4 1 0 . 0 - 0 . 2 0 7 4 E - 0 2

6 1 6 1 0 . 1 E - 0 4 2 5 6 8 1 6 1 2 . 5 - 0 . 2 0 7 5 E - 0 2

6 1 4 9 0 . 1 E  0 0 1 6 2 1 5 . 0 0 . 2 3 2 5 E - 0 2

6 1 4 9 0 . 1 E - 0 1 3 2 2 2 1 0 . 0 0 . 2 4 0 2 E - 0 2

6 1 4 9 0 . 1 E - 0 2 6 4 4 8 1 2 . 5 0 . 2 3 9 3 E - 0 2

6 1 4 9 0 . 1 E - 0 3 1 2 8 8 3 2 1 7 . 5 0 . 2 3 9 3 E - 0 2

6 1 4 9 0 . 1 E - 0 4 2 5 6 1 6 6 4 2 0 . 0 0 .  2 3 9 3 E - 0 2

6 1 2 5 0 . 1 E  0 0 1 6 2 2 1 0 . 0 0 . 1 8 6 3 E - 0 1

6 1 2 5 0 . 1 E - 0 1 3 2 2 8 1 5 . 0 0 . 1 8 6 6 E - 0 1

6 1 2 5 0 . 1 E - 0 2 6 4 8 3 2 2 0 . 0 0 . 1 8 6 7 E - 0 1

6 1 2 5 0 . 1 E - 0 3 1 2 8 1 6 6 4 2 2 . 5 0 . 1 8 6 7 E - 0 1

6 1 2 5 0 . 1 E - 0 4 2 5 6 1 6 1 2 8 3 0 . 0 0 . 1 8 6 7 E - 0 1
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D I F F R A C T I O N  P A R A M E T E R  ( 2 * P I * C A / W L )
C Y L I N D E R  E E P T H  P A R A M E T E R  ( Y O / W L )
W A T E R  E E P T H  P A R A M E T E R  ( W D / W L )

0 . 5 0
0 . 1 0
0 . 2 0

I J A C CI X Y N H I M Mill N H I 2 C M A X  D G 1
1 3 1 3 0 . 1 E  0 0 1 6 1 1 5 . 0  0 . 3 9 6 5 E - 0 2
1 3 1 3 0 . 1 E - 0 1 3 2 2 2 7 . 5  0 . 3 0 2 0 E - 0 2
1 3 1 3 0 . 1 E - 0 2 6 4 4 4 1 0 . 0  0 . 2 8 0 2 E - 0 2
1 3 1 3 0 . 1 E - 0 3 1 2 8 8 1 6 1 5 . 0  0 . 2 7 4 3 E - 0 2
1 3 1 3 0 . 1 E - 0 4 2 5 6 1 6 3 2 2 0 . 0  0 . 2 7 3 8 E - O 2
1 3 1 4 0 . 1 E  0 0 1 6 2 1 5 . 0  0 . 4 4 6 6 E - O 2
1 3 1 4 0 . 1 E - 0 1 3 2 2 2 1 0 . 0  0 . 2 9 1 5 E - O 2
1 3 1 4 0 . 1 E - 0 2 6 4 4 8 1 2 . 5  0 . 3 1 0 6 E - 0 2
1 3 1 4 0 . 1 E - 0 3 1 2 8 8 3 2 1 7 . 5  0 . 3 1 C 0 E - O 2
1 3 1 4 0 . 1 E - 0 4 2 5 6 1 6 6 4 2 2 . 5  0 . 3 1 C 0 E - O 2
1 3 1 5 0 . 1 E  0 0 1 6 2 2 7 . 5  0 . 4 0 6 9 E - 0 2
1 3 1 5 0 . 1 E - 0 1 3 2 4 4 1 0 . 0  0 . 3 9 7 3 E - 0 2
1 3 1 5 0 . 1 E - 0 2 6 4 8 1 6 1 5 . 0  0 . 3 9 8 4 E - 0 2
1 3 1 5 0 . 1 E - O 3 1 2 8 8 3 2 2 0 . 0  0 . 3 9 8 9 E - 0 2
1 3 1 5 0 . 1 E - 0 4 2 5 6 1 6 6 4 2 2 . 5  0 . 3 9 9 0 E - 0 2
1 3 1 6 0 . 1 E  0 0 1 6 2 2 7 .  5  0 . 5 3 C 8 E - 0 2
1 3 1 6 0 . 1 E - 0 1 3 2 4 4 1 0 . 0  0 . 5 3 5 5 E - 0 2
1 3 1 6 0 . 1 E - 0 2  • 6 4 8 1 6 1 5 . 0  0  .  5 4 5 1 E - 0 2
1 3 1 6 0 . 1 E - 0 3 1 2 8 1 6 3 2 2 0 . 0  0 . 5 4 6 8 E - O 2
1 3 1 6 0 . 1 E - 0 4 2 5 6 1 6 1 2 8 2 5 . 0  0  .  5 4 7 1 E - 0 2
1 3 1 7 0 . 1 E  0 0 1 6 2 2 7 . 5  0 .  7 0 6 3 E - 0 2
1 3 1 7 0 . 1 E - 0 1 3 2 4 4 1 0 . 0  0 . 7 3 1 2 E - 0 2
1 3 1 7 0 . 1 E - 0 2 6 4 8 1 6 1 7 . 5  0 .  7 5 4 5 E - 0 2
1 3 1 7 0 . 1 E - 0 3 1 2 8 1 6 3 2 2 0 . 0  0 . 7 5 5 5 E - 0 2
1 3 1 7 0 . 1 E - 0 4 2 5 6 1 6 1 2 8 2 7 . 5  0 . 7 5 5 9 E - 0 2
1 3 2 5 0 . 1 E  0 0 1 6 2 4 1 2 . 5  0 . 3 3 1 7 E - 0 1
1 3 2 5 0 . 1 E - 0 1 3 2 4 1 6 1 5 . 0  0 . 3 3 C 8 E - 0 1
1 3 2 5 0 . 1 E - 0 2 6 4 8 3 2 2 2 . 5  0 . 3 3 C 2 E - O 1
1 3 2 5 0 . 1 E - 0 3 1 2 8 1 6 1 2 8 2 7 . 5  0 . 3 3 0 3 E - 0 1
1 3 2 5 0 . 1 E - 0 4 2 5 6 3 2 2 5 6 3 2 . 5  0 . 3 3 0 3 E - 0 1
1 3 4 9 0 . 1 E  0 0 1 6 2 2 7 . 5  0 . 3 4 5 2 E - 0 1
1 3 4 9 0 . 1 E - 0 1 3 2 4 8 1 0 . 0  0 . 3 4 4 7 E - O 1
1 3 4 9 0 . 1 E - 0 2 6 4 8 1 6 1 2 . 5  0 .  3 4 4 7 E - 0 1
1 3 4 9 0 . 1 E - 0 3 1 2 8 1 6 6 4 1 5 . 0  0 . 3 4 4 7 E - 0 1
1 3 4 9 0 . 1 E - 0 4 2 5 6 3 2 1 2 8 1 7 . 5  0 . 3 4 4 7 E - 0 1
6 1 6 1 0 . 1 E  0 0 1 6 1 1 5 . 0  - 0 . 5 1 9 4 E - 0 2
6 1 6 1 0 .  I E - 0 1 3 2 2 1 5 . 0  - 0 . 5 2 5 5 E - 0 2
6 1 6 1 0 . 1 E - 0 2 6 4 2 1 5 . 0  - 0 . 5 2 5 5 E - 0 2
6 1 6 1 0 . 1 E - 0 3 1 2 8 4 4 7 . 5  - 0 . 5 2 6 2 E - 0 2
6 1 6 1 0 .  I E - 0 4 2 5 6 8 8 7 . 5  - 0 . 5 2 6 2 E - 0 2
6 1 4 9 0 . 1 E  0 0 1 6 2 1 5 . 0  0 . 1 0 2 4 E - 0 2
6 1 4 9 0 . 1 E - 0 1 3 2 2 2 7 . 5  0 . 1 0 2 4 E - 0 2
6 1 4 9 0 . 1 E - 0 2 6 4 4 4 7 . 5  0 . 1 0 1 9 E - 0 2
6 1 4 9 0 . 1 E - 0 3 1 2 8 8 1 6 1 0 . 0  0 . 1 0 1 8 E - 0 2
6 1 4 9 0 . 1 E - 0 4 2 5 6 1 6 3 2 1 0 . 0  0 . 1 0 1 8 E - 0 2
6 1 2 5 0 . 1 E  0 0 1 6 2 2 7 . 5  0 . 1 4 1 1 E - O 1
6 1 2 5 0 . 1 E - O 1 3 2 4 8 1 0 . 0  0 . 1 4 0 4 E - 0 1
6 1 2 5 0 . 1 E - 0 2 6 4 8 1 6 1 0 . 0  0 . 1 4 0 4 E - 0 1
6 1 2 5 0 . 1 E - 0 3 1 2 8 1 6 3 2 1 2 . 5  0 . 1 4 0 4 E - 0 1
6 1 2 5 0 . 1 E - O 4 2 5 6 3 2 6 4 1 5 . 0  0 . 1 4 0 4 E - 0 1
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D I F F R A C T I O N  P A R A M E T E R  ( 2 * P I * C A / W L )  1 . 0 0
C Y L I N D E R  D E P T H  P A R A M E T E R  ( Y O / W L )  0 . 2 0
W A T E R  D E P T H  P A R A M E T E R  ( W D / W L )  0 . 4 0

I J A C C I X Y N H I M M i l l N H I 2 C M A X  D G 1

1 3 1 3 0 . 1 E  0 0 1 6 1 1 5 . 0  0 . 1 9 5 2 E - 0 1

1 3 1 3 0 . 1 E - 0 1 3 2 4 1 5 . 0  0 . 2 1 9 2 E - 0 1

1 3 1 3 0 . 1 E - 0 2 6 4 8 4 7 . 5  0 . 2 1 9 6 E - 0 1

1 3 1 3 0 . 1 E - 0 3 1 2 8 1 6 8 1 0 . 0  0 . 2 1 9 6 E - 0 1

1 3 1 3 0 . 1 E - 0 4 2 5 6 3 2 3 2 1 2 . 5  0 . 2 1 9 6 E - 0 1

1 3 1 4 0 . 1 E  0 0 1 6 2 1 5 . 0  0 . 2 1 7 8 E - 0 1

1 3 1 4 0 . 1 E - 0 1 3 2 4 2 7 . 5  0 . 2 2 0 8 E - 0 1

1 3 1 4 0 . 1 E - 0 2 6 4 1 6 8 1 0 . 0  0  .  2 2 2 2 E - 0 1

1 3 1 4 0 . 1 E - 0 3 1 2 8 1 6 1 6 1 2 . 5  0 . 2 2 2 2 E - 0 1

1 3 1 4 0 . 1 E - 0 4 2 5 6 3 2 3 2 1 2 . 5  0 . 2 2 2 2 E - 0 1

1 3 1 5 0 . 1 E  0 0 1 6 2 1 5 . 0  0 . 2 2 6 8 E - 0 1

1 3 1 5 0 . 1 E - 0 1 3 2 8 2 7 . 5  0 . 2 3 0 6 E - 0 1

1 3 1 5 0 . 1 E - O 2 6 4 1 6 8 1 0 . 0  0  .  2 3  1  7 E - 0 1

1 3 1 5 0 . 1 E - 0 3 1 2 8 3 2 3 2 1 2 . 5  0 . 2 3 1 7 E - 0 1

1 3 1 5 0 . 1 E - 0 4 2 5 6 3 2 6 4 1 5 . 0  0 . 2 3 1 7 E - 0 1

1 3 1 6 0 . 1 E  0 0 1 6 2 1 5 . 0  0 . 2 4 3 1 E - 0 1

1 3 1 6 0 . 1 E - 0 1 3 2 8 4 7 . 5  0 . 2 4 8 6 E - 0 1

1 3 1 6 0 . 1 E - 0 2 6 4 1 6 8 1 0 . 0  0 . 2 4 8 9 E - 0 1

1 3 1 6 0 . 1 E - 0 3 1 2 8 3 2 3 2 1 2 .  5  0 . 2 4 9 0 E - 0 1

1 3 1 6 0 . 1 E - 0 4 2 5 6 6 4 6 4 1 5 . 0  0 . 2 4 9 0 E - 0 1

1 3 1 7 0 . 1 E  0 0 1 6 4 1 7 . 5  0 . 2 6 7 5 E - 0 1

1 3 1 7 0 . 1 E - 0 1 3 2 8 4 7 . 5  0 . 2 7 3 9 E - 0 1

1 3 1 7 0 . 1 E - 0 2 6 4 1 6 1 6 1 0 . 0  0 . 2 7 4 4 E - 0 1

1 3 1 7 0 . 1 E - 0 3 1 2 8 3 2 3 2 1 2 . 5  0 . 2 7 4 4 E - 0 1

1 3 1 7 0 . 1 E - 0 4 2 5 6 6 4 6 4 1 5 . 0  0 . 2 7 4 4 E - 0 1

1 3 2 5 0 . 1 E  0 0 1 6 2 2 7 . 5  0 . 5 7 8 1 E - 0 1

1 3 2 5 0 . 1 E - 0 1 3 2 8 8 1 0 . 0  0 . 5 7 9 3 E - 0 1

1 3 2 5 0 . 1 E - 0 2 6 4 1 6 1 6 1 2 .  5  0 . 5 7 9 4 E - 0 1

1 3 2 5 0 . 1 E - 0 3 1 2 8 3 2 6 4 1 5 . 0  0 . 5 7 9 4 E - 0 1

1 3 2 5 0 . 1 E - 0 4 2 5 6 6 4 1 2 8 1 7 . 5  0 . 5 7 9 4 E - 0 1

1 3 4 9 0 . 1 E  0 0 1 6 4 1 5 . 0  0 . 2 2 7 4 E - 0 1

1 3 4 9 0 . 1 E - 0 1 3 2 8 4 7 . 5  0 . 2 2 6 6 E - 0 1

1 3 4 9 0 . 1 E - 0 2 6 4 1 6 8 7 . 5  0  .  2 2  6 4 E - 0 1

1 3 4 9 0 . 1 E - 0 3 1 2 8 3 2 3 2 1 0 . 0  0 . 2 2 6 4 E - 0 1

1 3 4 9 0 . 1 E - 0 4 2 5 6 3 2 3 2 1 0 . 0  0 . 2 2 6 4 E - 0 1

6 1 6 1 0 . 1 E  0 0 1 6 1 1 5 . 0  - 0 . 6 5 4 0 E - 0 2

6 1 6 1 0 . 1 E - O 1 3 2 4 1 5 . 0  - 0 . 8 1 8 9 E - 0 2

6 1 6 1 0 . 1 E - 0 2 6 4 8 1 5 . 0  - 0 . 8 1 9 1 E - 0 2

6 1 6 1 0 . 1 E - 0 3 1 2 8 8 1 5 . 0  - 0 . 8 1 9 1 E - 0 2

6 1 6 1 0 . 1 E - 0 4 2 5 6 1 6 1 5 . 0  - 0 . 8 1 9 2 E - 0 2

6 1 4 9 0 . 1 E  0 0 1 6 4 1 5 . 0  - 0 . 5 7 5 5 E - 0 3

6 1 4 9 0 . 1 E - 0 1 3 2 8 1 5 . 0  - O . 5 7 7 6 E - 0 3

6 1 4 9 0 . 1 E - 0 2 6 4 8 1 7 . 5  - O . 5 7 7 6 E - O 3

6 1 4 9 0 . 1 E - 0 3 1 2 8 1 6 8 7  .  5  - 0 . 5 7 8 0 E - 0 3

6 1 4 9 0 . 1 E - O 4 2 5 6 3 2 1 6 7 . 5  - 0 . 5 7 8 0 E - 0 3

6 1 2 5 0 . 1 E  0 0 1 6 4 1 5 . 0  - 0 . 5 9 0 4 E - 0 3

6 1 2 5 0 . 1 E - 0 1 3 2 8 4 7 . 5  - 0 . 6 4 3 9 E - 0 3

6 1 2 5 0 . 1 E - O 2 6 4 1 6 8 7  .  5  - 0 . 6 4 9 2 E - 0 3

6 1 2 5 0 . 1 E - O 3 1 2 8 3 2 1 6 7 . 5  - O . 6 4 9 6 E - O 3

6 1 2 5 0 . 1 E - 0 4 2 5 6 6 4 6 4 1 0 . 0  - 0 . 6 4 9 6 E - 0 3

T a bl e  A.  6. 2 c I nt e g r al E v al u ati o n  of  W a v e  F u n cti o n  V al u e s
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DIFFRACTION PARAMETER (2*PI*CA/WL) 1.50
CYLINDER EEPTH PARAMETER (YO/WL) 0.30
WATER EEFTH PARAMETER (WD/WL) 0.60

I J ACCIXY NHIM Mill NHI2 CMAX DG1
13 13 0. IE 00 16 2 1 5.0 0.3743E-01
13 13 0.1E-01 32 8 1 5.0 0.3904E-01
13 13 0.IE-O2 64 16 2 7.5 0.3905E-01
13 13 0. IE-03 128 32 8 7.5 0.3912E-01
13 13 0.1E-04 256 32 16 10.0 0.3913E-01
13 14 0. IE 00 16 4 1 5.0 0.3903E-01
13 14 0.1E-01 32 8 1 7.5 0.3E90E-01
13 14 0.IE-02 64 16 4 7.5 0.3930E-01
13 14 0.1E-03 128 32 16 10.0 0.3931E-01
13 14 0. IE-04 256 64 32 10.0 0.3931E-01
13 15 0.1E 00 16 4 1 5.0 0.3979E-01
13 15 0.1E-01 32 8 2 7.5 0.3998E-01
13 15 0.1E-02 64 16 8 7.5 0.4006E-01
13 15 0.1E-03 128 32 16 10.0 0.4007E-01
13 15 0.1E-04 256 64 32 10.0 0.4007E-01
13 16 0.1E 00 16 4 1 5.0 0.4123E-01
13 16 0.1E-01 32 8 2 7.5 0.4143E-01
13 16 0.1E-02 64 16 8 7.5 0.4150E-01
13 16 0.IE-03 128 32 16 10.0 0.4150E-01
13 16 0.1E-04 256 64 64 12.5 0.4150E-01
13 17 0.1E 00 16 4 1 5.0 0.4337E-01
13 17 0.1E-01 32 8 4 7.5 0.4363E-01
13 17 0.1E-02 64 16 8 10.0 0.4365E-01
13 17 0.1E-03 128 32 16 10.0 0.4365E-01
13 17 0.1E-04 256 64 64 12.5 0.4365E-01
13 25 0.1E 00 16 4 1 7.5 0.6345E-01
13 25 0.1E-01 32 16 4 7.5 0.6148E-01
13 25 0.1E-02 64 32 16 10.0 0.6147E-01
13 25 0. IE-03 128 32 32 12.5 0.6147E-01
13 25 0.1E-O4 256 64 64 15.0 0.6147E-01
13 49 0.1E 00 16 8 1 5.0 0 . 54 04E-02
13 49 0.1E-01 32 16 1 7.5 0.5361E-02
13 49 0.1E-O2 64 16 8 7.5 0.5417E-02
13 49 0.1E-03 128 32 16 7.5 0.5417E-02
13 49 0.1E-04 256 64 16 7.5 0.5417E-02
61 61 0.1E 00 16 1 1 5.0 -0.5114E-02
61 61 0.1E-O1 32 1 1 5.0 -O.5114E-O2
61 61 0.1E-02 64 8 1 5.0 -O.7736E-O2

61 61 0. IE-03 128 16 1 5.0 -0.7736E-02
61 61 0.1E-04 256 16 1 5.0 -0.7736E-02
61 49 0.1E 00 16 8 1 5.0 -0.4729E-03
61 49 0.1E-01 32 8 1 5.0 -0.4729E-03
61 49 0.1E-02 64 16 1 5.0 -0.4735E-O3
61 49 0.1E-03 128 32 1 5.0 -0.4736E-03
61 49 0.1E-04 256 64 4 7.5 -0.4735E-03
61 25 0.1E 00 16 4 1 5.0 -O.6817E-O2

61 25 0.1E-01 32 8 1 5.0 -0.6919E-02

61 25 0.1E-02 64 16 2 7.5 -0.6930E-02

61 25 0.1E-03 128 32 8 7.5 -0.6932E-02

61 25 0.1E-04 256 64 16 7.5 -0.6932E-02

Table A. 6.2d Integral Evaluation of Wave Function Values
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DIFFRACTION PARAMETER (2*PI*CA/WL)
CYLINDER CEPTH PARAMETER (YO/WL)
WATER DEPTH PARAMETER (WD/WL)

2.00
0.40
0.80

I J ACCIXY NHIM Mill NHI2 CMAX DG1
13 13 0. IE 00 16 2 1 5.0 0.4430E-01
13 13 0.1E-O1 32 8 1 5.0 0.4793E-01
13 13 0.1E-02 64 16 1 7.5 0.4784E-01
13 13 0.1E-03 128 32 4 7.5 0.4802E-01
13 13 0.1E-O4 256 64 16 7.5 0.4803E-01
13 14 0.1E 00 16 4 1 5.0 0.4739E-01
13 14 0.1E-01 32 16 1 5.0 0.4797E-01
13 14 0.1E-02 64 32 4 7.5 0.4801E-01
13 14 0.1E-O3 128 32 8 7.5 0.4801E-01
13 14 0. IE-04 256 64 32 10.0 0.4801E-01
13 15 0.1E 00 16 4 1 5.0 0.4773E-01
13 15 0.1E-01 32 16 1 5.0 0.4828E-01
13 15 0.1E-O2 64 32 4 7.5 0.4831E-01
13 15 0.1E-03 128 64 8 7.5 0.4831E-01
13 15 0.1E-04 256 64 32 10.0 0.4831E-01
13 16 0.1E 00 16 4 1 5.0 0.4846E-01
13 16 0.1E-01 32 16 1 7.5 0.4898E-01
13 16 0.1E-02 64 32 4 7.5 0.4900E-01
13 16 0.1E-03 128 64 16 7.5 0.4901E-01
13 16 0.1E-04 256 64 32 10.0 0.4901E-01
13 17 0.1E 00 16 4 1 5.0 0.4961E-01
13 17 0.1E-01 32 16 2 7.5 0 . 5011E-01
13 17 0.1E-02 64 32 8 7.5 0.5012E-01
1 J 17 0.1E-03 128 64 16 10.0 0.5C12E-01
13 17 0.1E-04 256 64 32 10.0 0.5012E-01
13 25 0.1E 00 16 4 1 5.0 0.4558E-01
13 25 0.1E-01 32 8 4 7.5 0.4560E-01
13 25 0.1E-02 64 32 8 7.5 0.4560E-01
13 25 0.1E-03 128 32 32 10.0 0.4560E-01
13 25 0.1E-04 256 64 64 12.5 0.4560E-01
13 49 0.1E 00 16 16 1 5.0 0.3390E-02
13 49 0.1E-01 32 32 1 5.0 0.3371E-02
13 49 0.1E-O2 64 32 2 7.5 0.3369E-O2
13 49 0.1E-03 128 64 8 7.5 0.3365E-02
13 49 0.1E-04 256 64 32 7.5 0.3365E-02
61 61 0. IE 00 16 1 1 5.0 -0.4541E-02
61 61 0. IE-01 32 1 1 5.0 -0.4541E-02
61 61 0.1E-O2 64 16 1 5.0 -0.7113E-02
61 61 0.1E-03 128 16 1 5.0 -0.7113E-02
61 61 0. IE-04 256 32 1 5.0 -0.7113E-02
61 49 0.1E 00 16 8 1 5.0 -0.1292E-03
61 49 0.1E-O1 32 16 1 5.0 -O.1331E-O3
61 49 0.1E-02 64 32 1 5.0 -0.1332E-03
61 49 0.1E-03 128 32 1 5.0 -0.1332E-03
61 49 0.1E-04 256 64 1 5.0 -O.1332E-O3
61 25 0.1E 00 16 8 1 5.0 -0.6135E-02
61 25 0.1E-01 32 16 1 5.0 -0.6166E-02
61 25 0.1E-02 64 32 1 5.0 -O.6168E-O2
61 25 0.1E-03 128 64 2 7.5 -0.6168E-02
61 25 0.1E-04 256 64 8 7.5 -0.6168E-02

Table A. 6. 2e Integral Evaluation of Wave Function Values
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DIFFRACTION PARAMETER (2*PI*CA/WL) 0.20
CYLINDER EEPTH PARAMETER (YO/WL) 0.04
WATER EEPTH PARAMETER (WD/WL) 0.08

I J ACC I J® IM NHI1 NHI2 CMAX G1
13 13 0.1E-01 16 4 8 10.0 -0.4571E 00
13 13 0.1E-02 32 8 32 17.5 -O.4637E 00
13 13 0.1E-03 64 16 64 25.0 -0.4644E 00
13 13 0.1E-04 128 32 128 32.5 -0.4644E 00
13 13 0.1E-O5 256 32 256 42.5 -0.4644E 00
13 14 0.1E-01 16 4 8 12.5 -0.2910E 00
13 14 0.1E-02 32 8 32 17.5 -0. 2938E 00
13 14 0.1E-03 64 16 64 25.0 -0.2946E 00
13 14 0.1E-04 128 32 128 35.0 -0.2948E 00
13 14 0.1E-05 256 32 256 45.0 -O. 2948E 00
13 15 0.1E-01 16 4 8 12.5 -0.2139E 00
13 15 0.1E-02 32 8 32 17.5 -0.2169E 00
13 15 0.1E-03 64 16 64 27.5 -0.2179E 00
13 15 0.1E-04 128 32 128 35.0 -0.2179E 00
13 15 0.1E-05 256 32 256 45.0 -0.2179E 00
13 16 0.1E-O1 16 4 8 12.5 -0.1638E 00
13 16 0.1E-02 32 8 32 20.0 -0.1675E 00
13 16 0.1E-O3- 64 16 64 27.5 -0.1678E 00
13 16 0.1E-04 128 32 128 35.0 -0.1678E 00
13 16 0.1E-05 256 32 256 42.5 -0.1678E 00
13 17 0.1E-01 16 4 8 12.5 -0.1263E 00
13 17 0.1E-02 32 8 32 20.0 -0.1299E 00
13 17 0.1E-03 64 16 64 27.5 -0.1301E 00
13 17 0.1E-04 128 32 128 35.0 -O.1301E 00
13 17 0.1E-05 256 32 256 40.0 -0.1301E 00
13 25 0.1E-O1 16 4 8 12.5 0.6238E-01
13 25 0.1E-02 32 8 32 15.0 0.6395E-01
13 25 0.1E-03 64 16 64 32.5 0.6768E-01
13 25 0.1E-04 128 32 128 37.5 0.6772E-01
13 25 0.1E-05 256 32 256 55.0 0.6768E-01
13 49 0.1E-01 16 4 8 10.0 0.3442E 00
13 49 0.1E-02 32 8 16 10.0 0.3442E 00
13 49 0.1E-03 64 16 64 17.5 0.3443E 00
13 49 0.1E-04 128 32 128 25.0 0.3443E 00

13 49 0.1E-05 256 32 256 27.5 0.3443E 00
61 61 0.1E-01 16 4 4 7.5 -0.4881E 00
61 61 0.1E-02 32 8 16 12.5 -0.4896E 00
61 61 0.1E-03 64 16 32 15.0 -O.4897E 00
61 61 0.1E-O4 128 16 128 20.0 -0.4897E 00
61 61 0.1E-05 256 32 256 22.5 -0.4897E 00
61 49 0.1E-01 16 4 8 10.0 0.7028E-01
61 49 0.1E-02 32 8 16 12.5 0.6996E-01
61 49 0.1E-03 64 16 64 17.5 0.6988E-01
61 49 0.1E-04 128 32 128 20.0 0.6988E-01
61 49 0.1E-O5 256 32 256 25.0 0.6988E-01
61 25 0.1E-01 16 4 8 10.0 0.2377E 00
61 25 0.1E-O2 32 8 16 12.5 0 . 2373E 00
61 25 0.1E-03 64 16 64 17.5 0.2373E 00
61 25 0. IE-04 128 32 128 20.0 0.2373E 00
61 25 0.1E-05 256 32 256 20.0 0 . 2373E 00

Table A. 6. 3a Integral Evaluation of Wave Function Values
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D I F F R A C T I O N  P A R A M E T E R  ( 2 * P I * C A / W L )  0 - 5 0
C Y L  I N T E R  E E P T H  P A R A M E T E R  ( Y O / W L )  0 . 1 0
W A T E R  E E P T H  P A R A M E T E R  ( W D / W L )  0 . 2 0

I J A C C  I N H I M Mill N H I 2 C M A X G 1

1 3 1 3 0 . 1 E - 0 1 1 6 2 4 7 . 5 - O . 4 1 7 6 E  0 0

1 3 1 3 0 . I E - 0 2 3 2 4 8 1 0 . 0 - 0 . 4 I 8 3 E  0 0

1 3 1 3 0 . 1 E - 0 3 6 4 8 3 2 1 5 . 0 - O . 4 1 8 4 E  0 0

1 3 1 3 0 . 1 E - 0 4 1 2 8 1 6 6 4 1 7 . 5 - 0 . 4 I 8 4 E  0 0

1 3 1 3 0 . I E - 0 5 2 5 6 3 2 1 2 8 2 2 . 5 - 0 . 4 1 8 4 E  0 0

1 3 1 4 0 . 1 E - 0 1 1 6 2 4 7 . 5 - 0 . 2 4 6 5 E  0 0

1 3 1 4 0 . 1 E - 0 2 3 2 4 1 6 1 2 . 5 - 0 .  2 4  7 4 E  0 0

1 3 1 4 0 . 1 E - 0 3 6 4 8 3 2 1 5 . 0 - O .  2 4 7 4 E  0 0

1 3 1 4 0 . 1 E - O 4 1 2 8 1 6 1 2 8 2 0 . 0 - 0 . 2 4  7 4 E  0 0

1 3 1 4 0 . 1 E - 0 5 2 5 6 3 2 2 5 6 2 2 . 5 - O . 2 4  7 4 E  0 0

1 3 1 5 0 . 1 E - 0 1 1 6 2 4 1 0 . 0 - 0 . 1 6 9 4 E  0 0

1 3 1 5 0 . 1 E - 0 2 3 2 4 1 6 1 2 . 5 - 0 . 1 6 9 2 E  0 0

1 3 1 5 0 . 1 E - 0 3 6 4 8 3 2 1 5 . 0 - 0 . 1 6 9 3 E  0 0

1 3 1 5 0 . 1 E - O 4 1 2 8 1 6 1 2 8 2 0 . 0 - 0 . 1 6 9 3 E  0 0

1 3 1 5 0 . 1 E - 0 5 2 5 6 3 2 2 5 6 2 2 . 5 - O . 1 6 9 3 E  0 0

1 3 1 6 0 . 1 E - 0 1 1 6 2 8 1 0 . 0 - O . 1 1 7 5 E  0 0

1 3 1 6 0 . 1 E - 0 2 3 2 4 1 6 1 2 . 5 - 0 . 1 1 7 8 E  0 0

1 3 1 6 0 . 1 E - 0 3 6 4 8 3 2 1 5 . 0 - 0 . 1 1 7 8 E  0 0

1 3 1 6 0 . 1 E - 0 4 1 2 8 1 6 1 2 8 1 7 . 5 - O . 1 1 7 8 E  0 0

1 3 1 6 0 . 1 E - O 5 2 5 6 3 2 2 5 6 2 0 . 0 - 0 . 1 1 7 8 E  0 0

1 3 1 7 0 . 1 E - 0 1 1 6 2 8 1 0 . 0 - O . 7 8 3 5 E - O 1

1 3 1 7 0 . 1 E - 0 2 3 2 4 1 6 1 2 . 5 - 0 . 7 8 5 5 E - 0 1

1 3 1 7 0 . 1 E - 0 3 6 4 8 3 2 1 5 . 0 - 0 . 7 8 5 6 E - 0 1

1 3 1 7 0 . 1 E - 0 4 1 2 8 1 6 1 2 8 1 7 . 5 - 0 . 7 8 5 6 E - 0 1

1  J 1 7 0 . 1 E - 0 5 2 5 6 3 2 2 5 6 2 5 . 0 - 0 . 7 6 5 5 E - 0 1

1 3 2 5 0 . 1 E - 0 1 1 6 2 4 7 . 5 0 . 1 3 5 8 E  0 0

1 3 2 5 0 . 1 E - O 2 3 2 4 3 2 1 5 . 0 0 . 1 3 7 8 E  0 0

1 3 2 5 0 . 1 E - 0 3 6 4 8 6 4 1 7 . 5 0 . 1 3 7 8 E  0 0

1 3 2 5 0 . 1 E - 0 4 1 2 8 1 6 1 2 8 2 2 . 5 0 . 1 3 7 8 E  0 0

1 3 2 5 0 . 1 E - 0 5 2 5 6 3 2 2 5 6 2 5 . 0 0 . 1 3 7 8 E  0 0

1 3 4 9 0 . 1 E - O 1 1 6 4 2 5 . 0 0 . 3 2 6 4 E  0 0

1 3 4 9 0 . 1 E - O 2 3 2 8 8 7 . 5 0 . 3 2 6 3 E  0 0

1 3 4 9 0 . 1 E - 0 3 6 4 1 6 3 2 1 2 . 5 0 . 3 2 6 3 E  0 0

1 3 4 9 0 . 1 E - 0 4 1 2 8 1 6 6 4 1 2 . 5 0 . 3 2 6 3 E  0 0

1 3 4 9 0 . 1 E - 0 5 2 5 6 3 2 1 2 8 1 5 . 0 0 . 3 2 6 3 E  0 0

6 1 6 1 0 . 1 E - 0 1 1 6 4 1 7 . 5 - 0 . 5 6 5 9 E  0 0

6 1 6 1 0 . 1 E - 0 2 3 2 8 4 7 . 5 - 0 . 5 6 3 7 E  0 0

6 1 6 1 0 . I E - 0 3 6 4 8 1 6 1 0 . 0 - 0 . 5 6 3 7 E  0 0

6 1 6 1 0 . 1 E - O 4 1 2 8 1 6 3 2 1 0 . 0 - O . 5 6 3 7 E  0 0

6 1 6 1 0 . 1 E - 0 5 2 5 6 3 2 6 4 1 2 . 5 - 0 . 5 6 3 7 E  0 0

6 1 4 9 0 . 1 E - 0 1 1 6 4 2 7 . 5 0 . 2 0 0 2 E - 0 1

6 1 4 9 0 . 1 E - O 2 3 2 8 8 7 . 5 0 . 2 0 4 7 E - 0 1

6 1 4 9 0 . 1 E - O 3 6 4 8 1 6 1 0 . 0 0 . 2 0 4 7 E - 0 1

6 1 4 9 0 . 1 E - 0 4 1 2 8 1 6 6 4 1 2 . 5 0 . 2 0 4 7 E - 0 1

6 1 4 9 0 . 1 E - 0 5 2 5 6 3 2 6 4 1 2 . 5 0 . 2 0 4 7 E - 0 1

6 1 2 5 0 . 1 E - 0 1 1 6 2 4 7 . 5 0 . 2 5 7 5 E  0 0

6 1 2 5 0 . 1 E - 0 2 3 2 8 8 7 . 5 0 . 2 5 7 2 E  0 0

6 1 2 5 0 . 1 E - O 3 6 4 1 6 1 6 1 0 . 0 0 . 2 5 7 2 E  0 0

6 1 2 5 0 . 1 E - 0 4 1 2 8 1 6 3 2 1 0 . 0 0 . 2 5 7 2 E  0 0

6 1 2 5 0 . 1 E - 0 5 2 5 6 3 2 1 2 8 1 2 . 5 0 . 2 5 7 2 E  0 0

T a bl e  A.  6. 3 b I nt e g r al E v al u ati o n  of  W a v e  F u n cti o n  V al u e s
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D I F F R A C T I O N  P A R A M E T E R  ( 2 * P I * C A / W L )  1 . 0 0
C Y L I N D E R  D E P T H  P A R A M E T E R  ( Y O / W L )  0 . 2 0
W A T E R  D E P T H  P A R A M E T E R  ( W D / W L )  0 . 4 0

I J A C C  I Mi  I M Mill N HI 2 C M A X G 1

1 3 1 3 0 . 1 E - 0 1 1 6 4 2 7 . 5 - 0 . 3 3 5 3 E  0 0

1 3 1 3 0 .  I E - 0 2 3 2 8 4 7 . 5 - 0 . 3 3 4 5 E  0 0

1 3 1 3 0 . 1 E - 0 3 6 4 1 6 1 6 1 0 . 0 - 0 . 3 3 4 5 E  0 0

1 3 1 3 0 . 1 E - 0 4 1 2 8 3 2 3 2 1 2 . 5 - O . 3 3 4 5 E  0 0

1 3 1 3 0 .  I E - 0 5 2 5 6 6 4 6 4 1 2 . 5 - 0 . 3 3 4 5 E  0 0
1 3 1 4 0 . 1 E - 0 1 1 6 4 2 7 . 5 - O . 1 5 7 8 E  0 0

1 3 1 4 0 . 1 E - 0 2 3 2 8 8 7 . 5 - 0 . 1 5 7 0 E  0 0

1 3 1 4 0 . 1 E - 0 3 6 4 1 6 1 6 1 0 . 0 - 0 . 1 5 7 0 E  0 0
1 3 1 4 0 . 1 E - 0 4 1 2 8 3 2 6 4 1 2 . 5 - 0 . 1 5 7 0 E  0 0

1 3 1 4 0 . 1 E - 0 5 2 5 6 6 4 1 2 8 1 5 . 0 - 0 . 1 5 7 0 E  0 0

1 3 1 5 0 . 1 E - 0 1 1 6 4 2 7 . 5 - 0 . 7 3  6 9 E - 0 1

1 3 1 5 0 . 1 E - 0 2 3 2 8 8 7 . 5 - 0 . 7 2 7 9 E - 0 1

1 3 1 5 0 . 1 E - 0 3 6 4 1 6 1 6 1 0 . 0 - 0 . 7 2 7 7 E - 0 1

1 3 1 5 0 . 1 E - O 4 1 2 8 3 2 6 4 1 2 . 5 - 0 . 7 2 7 7 E - 0 1

1 3 1 5 0 . 1 E - 0 5 2 5 6 6 4 1 2 8 1 5 . 0 - 0 . 7 2 7 7 E - 0 1
1 3 1 6 0 . 1 E - 0 1 1 6 4 4 7 . 5 - 0 . 1 6 1 1 E - 0 1
1 3 1 6 0 . 1 E - 0 2 3 2 8 8 1 0 . 0 - 0 . 1 5 7 7 E - 0 1

1 3 1 6 0 . 1 E - 0 3 - 6 4 1 6 1 6 1 0 . 0 - 0 . 1 5 7 3 E - 0 1

1 3 1 6 0 . 1 E - 0 4 1 2 8 3 2 6 4 1 2 . 5 - 0 . 1 5 7 3 E - 0 1

1 3 1 6 0 . 1 E - 0 5 2 5 6 6 4 1 2 8 1 5 . 0 - 0 . 1 5 7 3 E - 0 1

1 3 1 7 0 . 1 E - 0 1 1 6 4 4 7 . 5 0 . 2 8 3 1 E - 0 1

1 3 1 7 0 . 1 E - 0 2 3 2 8 8 7 . 5 0 . 2 8 6 8 E - 0 1

1 3 1 7 0 . 1 E - 0 3 6 4 1 6 1 6 1 0 . 0 0 . 2 8 7 2 E - 0 1

1 3 1 7 0 . 1 E - 0 4 1 2 8 3 2 6 4 1 2 . 5 0 . 2 8 7 2 E - 0 1

1 3 1 7 0 . 1 E - 0 5 2 5 6 6 4 1 2 8 1 5 . 0 0 . 2 8 7 2 E - 0 1

1 3 2 5 0 . 1 E - 0 1 1 6 4 2 7 . 5 0 . 2 6 3 2 E  0 0

1 3 2 5 0 . 1 E - 0 2 3 2 8 8 1 0 . 0 0 . 2 6 3 9 E  0 0

1 3 2 5 0 . 1 E - 0 3 6 4 1 6 3 2 1 2 . 5 0 . 2 6 4 0 E  0 0

1 3 2 5 0 . 1 E - 0 4 1 2 8 3 2 6 4 1 5 . 0 0 . 2 6 4 0 E  0 0

1 3 2 5 0 . 1 E - 0 5 2 5 6 6 4 1 2 8 1 7 . 5 0 . 2 6 4 0 E  0 0

1 3 4 9 0 . 1 E - 0 1 1 6 8 1 5 . 0 0 . 1 7 7 4 E  0 0

1 3 4 9 0 . 1 E - O 2 3 2 1 6 8 7 . 5 0 . 1 7 7 1 E  0 0

1 3 4 9 0 . 1 E - 0 3 6 4 3 2 1 6 7 . 5 0 . 1 7 7 1 E  0 0

1 3 4 9 0 . 1 E - 0 4 1 2 8 3 2 3 2 1 0 . 0 0 . 1 7 7 1 E  0 0

1 3 4 9 0 . 1 E - 0 5 2 5 6 6 4 6 4 1 0 . 0 0 . 1 7 7 1 E  0 0

6 1 6 1 0 . 1 E - O 1 1 6 8 1 5 . 0 - 0 . 7 1 0 5 E  0 0

6 1 6 1 0 . 1 E - 0 2 3 2 8 1 5 . 0 - 0 . 7 1 0 5 E  0 0

6 1 6 1 0 . 1 E - 0 3 6 4 1 6 4 7 . 5 - 0 . 7 1 0 5 E  0 0

6 1 6 1 0 . 1 E - 0 4 1 2 8 3 2 8 7 . 5 - 0 . 7 1 0 5 E  0 0

6 1 6 1 0 .  I E - 0 5 2 5 6 6 4 1 6 7 . 5 - 0 . 7 1 0 5 E  0 0

6 ) 4 9 0 . 1 E - 0 1 1 6 8 1 5 . 0 - 0 . 1 0 3 0 E  0 0

6 1 4 9 0 . 1 E - 0 2 3 2 8 1 7 . 5 - 0 . 1 0 3 1 E  0 0

6 1 4 9 0 . 1 E - 0 3 6 4 1 6 8 7 . 5 - 0 . 1 0 2 9 E  0 0

6 1 4 9 0 . 1 E - 0 4 1 2 8 3 2 1 6 7 . 5 - 0 . 1 0 2 9 E  0 0

6 1 4 9 0 . 1 E - 0 5 2 5 6 6 4 3 2 1 0 . 0 - 0 . 1 0 2 9 E  0 0

6 1 2 5 0 . 1 E - 0 1 1 6 4 1 5 . 0 0 . 2 0 7 5 E  0 0

6 1 2 5 0 . 1 E - 0 2 3 2 8 1 5 . 0 0 . 2 0 7 4 E  0 0

6 1 2 5 0 . 1 E - 0 3 6 4 1 6 8 7 . 5 0 . 2 0 7 5 E  0 0

6 1 2 5 0 . 1 E - 0 4 1 2 8 3 2 1 6 7 . 5 0 . 2 0 7 5 E  0 0

6 1 2 5 0 . 1 E - 0 5 2 5 6 6 4 3 2 1 0 . 0 0 . 2 0 7 5 E  0 0

T a bl e  A.  6. 3 c I nt e g r al E v al u ati o n  of  w a v e  F u n cti o n  V al u e s
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D I F F R A C T I O N  P A R A M E T E R  ( 2 * P I * C A / W L )
C Y L I N D E R  D E P T H  P A R A M E T E R  ( Y O / W L )
W A T E R  E E P T H  P A R A M E T E R  ( W D / W L )

1 . 5 0
0 . 3 0
0 . 6 0

I J A C C  I Mi  I M Mill N HI 2 C M A X G 1

1 3 1 3 0 . 1 E - 0 1 1 6 8 1 5 . 0 - 0 . 3 2 3 7 E  0 0

1 3 1 3 0 . 1 E - 0 2 3 2 1 6 4 7 . 5 - 0 . 3 2 3 5 E  0 0

1 1 3 0 . I E - 0 3 6 4 3 2 8 7 . 5 - 0 . 3 2 3 4 E  0 0

1 3 1 3 0 . 1 E - 0 4 1 2 8 6 4 3 2 1 0 . 0 - 0 . 3 2 3 4 E  0 0

1 3 1 3 0 . 1 E - 0 5 2 5 6 1 2 8 6 4 1 0 . 0 - 0 . 3 2 3 4 E  0 0

1 3 1 4 0 . 1 E - 0 1 1 6 8 1 5 . 0 - 0 . 1 4 0 6 E  0 0

1 3 1 4 0 . I E - 0 2 3 2 1 6 4 7 . 5 - 0 . 1 4 0 3 E  0 0

1 3 1 4 0 . 1 E - O 3 6 4 3 2 8 7 . 5 - 0 . 1 4 0 2 E  0 0

1 3 1 4 0 . 1 E - 0 4 1 2 8 6 4 3 2 1 0 . 0 - 0 . 1 4 0 2 E  0 0

1 3 1 4 0 . 1 E - 0 5 2 5 6 1 2 8 6 4 1 0 . 0 - 0 . 1 4 0 2 E  0 0

1 3 1 5 0 . 1 E - 0 1 1 6 8 1 7 . 5 - O . 5 2 4 3 E - O 1

1 3 1 5 0 . 1 E - 0 2 3 2 1 6 4 7 . 5 - 0 . 5 1 0 2 E - 0 1

1 3 1 5 0 . 1 E - 0 3 6 4 3 2 8 7 . 5 - 0 . 5 0 9 8 E - 0 1

1 3 1 5 0 . 1 E - 0 4 1 2 8 6 4 3 2 1 0 . 0 - 0 . 5 0 9 8 E - 0 1

1 3 1 5 0 . 1 E - 0 5 2 5 6 1 2 8 6 4 1 0 . 0 - 0 . 5 0 9 8 E - 0 1

1 3 1 6 0 . 1 E - 0 1 1 6 8 1 7 . 5 0 . 8 8 6 2 E - 0 2

1 3 1 6 0 . 1 E - 0 2 3 2 1 6 4 7 . 5 0 . 1 0 3 2 E - 0 1

1 3 1 6 0 . 1 E - 0 3 6 4 3 2 8 7 . 5 0 . 1 0 3 6 E - 0 1

1 3 1 6 0 . 1 E - 0 4 1 2 8 6 4 3 2 1 0 . 0 0 . 1 0 3 7 E - 0 1

1 3 1 6 0 . 1 E - 0 5 2 5 6 1 2 8 6 4 1 2 . 5 0 . 1 0 3 7 E - 0 1

1 3 1 7 0 . 1 E - 0 1 1 6 8 1 7 . 5 0 . 5 6 7 2 E - 0 1

1 3 1 7 0 . I E - 0 2 3 2 1 6 4 7 . 5 0 . 5 8 1 7 E - 0 1

1 3 1 7 0 . 1 E - O 3 6 4 3 2 8 7 . 5 0 . 5 8 2 1 E - 0 1

1 3 1 7 0 . 1 E - 0 4 1 2 8 6 4 3 2 1 0 . 0 0  .  5 8 2 2 E - 0 1

1 3 1 7 0 . 1 E - 0 5 2 5 6 1 2 8 6 4 1 2 . 5 0 . 5 8 2 2 E - 0 1

1 3 2 5 0 . 1 E - 0 1 1 6 8 2 7 . 5 0 . 2 7 0 3 E  0 0

1 3 2 5 0 . 1 E - 0 2 3 2 1 6 4 7 . 5 0 . 2 7 0 3 E  0 0

1 3 2 5 0 . 1 E - 0 3 6 4 3 2 8 1 0 . 0 0 . 2 7 0 3 E  0 0

1 3 2 5 0 . 1 E - O 4 1 2 8 6 4 1 6 1 0 . 0 0 . 2 7 0 3 E  0 0

1 3 2 5 0 . 1 E - 0 5 2 5 6 1 2 8 3 2 1 2 . 5 0 . 2 7 0 3 E  0 0

1 3 4 9 0 . 1 E - 0 1 1 6 1 6 1 5 . 0 0 . 3 9 6 5 E - 0 1

1 3 4 9 0 . 1 E - O 2 3 2 3 2 8 7 . 5 0 . 3 9 6 0 E - 0 1

1 3 4 9 0 . 1 E - 0 3 6 4 6 4 1 6 7 . 5 0 . 3 9 5 9 E - O 1

1 3 4 9 0 . 1 E - 0 4 1 2 8 1 2 8 1 6 7 . 5 0 . 3 9 5 9 E - 0 1

1 3 4 9 0 . 1 E - 0 5 2 5 6 2 5 6 3 2 1 0 . 0 0 . 3 9 5 9 E - 0 1

6 1 6 1 0 . I E - 0 1 1 6 8 1 5 . 0 - 0 . 7 8 6 6 E  0 0

6 1 6 1 0 . 1 E - 0 2 3 2 1 6 1 5 . 0 - 0 . 7 8 6 7 E  0 0

6 1 6 1 0 . 1 E - 0 3 6 4 3 2 1 5 . 0 - O . 7 8 6 7 E  0 0

6 1 6 1 0 . 1 E - 0 4 1 2 8 6 4 2 7 . 5 - 0 . 7 8 6 7 E  0 0

6 1 6 1 0 . 1 E - 0 5 2 5 6 6 4 8 7 . 5 - 0 . 7 8 6 7 E  0 0

6 1 4 9 0 . 1 E - 0 1 1 6 1 6 1 5 . 0 - 0 . 1 8 2 1 E  0 0

6 1 4 9 0 . 1 E - 0 2 3 2 1 6 1 5 . 0 - 0 . 1 8 2 2 E  0 0

6 1 4 9 0 . 1 E - 0 3 6 4 3 2 1 5 . 0 - 0 . 1 8 2 2 E  0 0

6 1 4 9 0 . 1 E - 0 4 1 2 8 6 4 4 7 . 5 - 0 . 1 8 2 2 E  0 0

6 1 4 9 0 . 1 E - O 5 2 5 6 1 2 8 1 6 7 . 5 - 0 . 1 8 2 2 E  0 0

6 1 2 5 0 . 1 E - 0 1 1 6 8 1 5 . 0 0 . 1 2 1 6 E  0 0

6 1 2 5 0 . 1 E - O 2 3 2 8 1 5 . 0 0 . 1 2 1 6 E  0 0

6 1 2 5 0 . 1 E - 0 3 6 4 3 2 2 7 . 5 0 . 1 2 1 6 E  0 0

6 ) 2 5 0 . 1 E - 0 4 1 2 8 3 2 8 7 . 5 0 . 1 2 1 6 E  0 0

6 1 2 5 0 . 1 E - 0 5 2 5 6 6 4 1 6 7 . 5 0 . 1 2 1 6 E  0 0

T a b l e  A .  6 .  3 d I n t e g r a l  E v a l u a t i o n  o f  W a v e  F u n c t i o n  V a l u e s
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D I F F R A C T I O N  P A R A M E T E R  ( 2 * P I * C A / W L )
C Y L I N D E R  D E P T H  P A R A M E T E R  ( Y O / W L )

W A T E R  D E P T H  P A R A M E T E R  ( W D / W L )

2 . 0 0
0 . 4 0
0 . 8 0

I J A C C  I N H I M N H I 1 N H I 2 C M A X G 1
1 3 1 3 0 . 1 E - 0 1 1 6 1 6 1 5 . 0 - 0 . 3 4 8 5 E  0 0
1 3 1 3 0 . 1 E - O 2 3 2 1 6 1 7 . 5 - 0 . 3 4 8 5 E  0 0
1 3 1 3 0 . 1 E - 0 3 6 4 3 2 8 7 . 5 - 0 . 3 4 8 1 E  0 0
1 3 1 3 0 . 1 E - 0 4 1 2 8 6 4 1 6 7 . 5 - 0 . 3 4 8 1 E  0 0
1 3 1 3 0 . 1 E - O 5 2 5 6 1 2 8 3 2 1 0 . 0 - 0 . 3 4 8 1 E  0 0
1 3 1 4 0 . 1 E - 0 1 1 6 1 6 1 5 . 0 - 0 . 1 6 2 4 E  0 0
1 3 1 4 0 . 1 E - 0 2 3 2 1 6 2 7 . 5 - 0 . 1 6 2 2 E  0 0
1 3 1 4 0 . 1 E - 0 3 6 4 3 2 8 7 . 5 - 0 . 1 6 2 0 E  0 0
1 3 1 4 0 . 1 E - 0 4 1 2 8 6 4 1 6 7 . 5 - 0 . 1 6 2 0 E  0 0
1 3 1 4 0 . 1 E - 0 5 2 5 6 1 2 8 3 2 1 0 . 0 - 0 . 1 6 2 0 E  0 0

1 3 1 5 0 . 1 E - 0 1 1 6 1 6 1 5 . 0 - 0 . 7 0 8 1 E - 0 1
1 3 1 5 0 . 1 E - 0 2 3 2 3 2 2 7 . 5 - 0 . 7 0 5 1 E - 0 1
1 3 1 5 0 . 1 E - 0 3 6 4 3 2 8 7 . 5 - 0 . 7 0 3 8 E - 0 1
1 3 1 5 0 . 1 E - 0 4 1 2 8 6 4 1 6 7 . 5 - 0  .  7 0 3 8 E - 0 1
1 3 1 5 0 . 1 E - 0 5 2 5 6 1 2 8 6 4 1 0 . 0 - 0 . 7 0 3 8 E - 0 1

1 3 1 6 0 . 1 E - 0 1 1 6 1 6 1 5 . 0 - 0 . 7 7 ~ l E - 0 2

1 3 1 6 0 . 1 E - 0 2 3 2 3 2 4 7 . 5 - 0 . 7 3 6 0 E - 0 2

1 3 1 6 0 . 1 E - 0 3 6 4 3 2 8 7 . 5 - 0 . 7 3 2 5 E - 0 2

1 3 1 6 0 . 1 E - 0 4 1 2 8 6 4 1 6 7 . 5 - 0 . 7 3 2 2 E - 0 2

1 3 1 6 0 . 1 E - O 5 2 5 6 1 2 8 6 4 1 0 . 0 - 0 . 7 3  2  2 E - 0 2

1 3 1 7 0 . 1 E - 0 1 1 6 1 6 1 5 . 0 0 . 4 0 9 0 E - 0 1
1 3 1 7 0 . 1 E - O 2 3 2 3 2 2 7 . 5 0 . 4 1 2 3 E - 0 1

1 3 1 7 0 . 1 E - 0 3 6 4 3 2 8 7 . 5 0 . 4 1 3 5 E - 0 1
1 3 1 7 0 . 1 E - O 4 1 2 8 6 4 3 2 1 0 . 0 0 . 4 1 3 6 E - 0 1
1 3 1 7 0 . 1 E - 0 5 2 5 6 1 2 8 6 4 1 0 . 0 0 . 4 1 3 6 E - 0 1
1 3 2 5 0 . 1 E - 0 1 1 6 1 6 1 5 . 0 0 . 2 1 C 5 E  0 0
1 3 2 5 0 . 1 E - 0 2 3 2 3 2 8 7 . 5 0 . 2 1 0 5 E  0 0
1 3 2 5 0 . 1 E - 0 3 6 4 3 2 8 7 . 5 0 . 2 1 C 5 E  0 0
1 3 2 5 0 . 1 E - 0 4 1 2 8 6 4 3 2 1 0 . 0 0 . 2 1 C 5 E  0 0

1 3 2 5 0 . 1 E - 0 5 2 5 6 1 2 8 6 4 1 0 . 0 0 . 2 1 0 5 E  0 0
1 3 4 9 0 . 1 E - 0 1 1 6 1 6 1 5 . 0 - 0 . 1 3 1 7 E - 0 1
1 3 4 9 0 . 1 E - 0 2 3 2 3 2 1 5 . 0 - 0 . 1 3 4 2 E - 0 1

1 3 4 9 0 . 1 E - 0 3 6 4 6 4 4 7 . 5 - 0 . 1 3 4 4 E - 0 1

1 3 4 9 0 . 1 E - 0 4 1 2 8 1 2 8 1 6 7 . 5 - O . 1 3 4 4 E - O 1

1 3 4 9 0 . 1 E - O 5 2 5 6 2 5 6 3 2 7 . 5 - 0 . 1 3 4 4 E - 0 1

6 1 6 1 0 . 1 E - 0 1 1 6 1 6 1 5 . 0 - 0 . 8 2 C 2 E  0 0

6 1 6 1 0 . 1 E - 0 2 3 2 3 2 1 5 . 0 - 0 . 8 2 0 5 E  0 0

6 1 6 1 0 . I E - 0 3 6 4 3 2 1 5 . 0 - 0 . 8 2 0 5 E  0 0

6 1 6 1 0 . I E - 0 4 1 2 8 6 4 1 5 . 0 - 0 . 8 2 0 5 E  0 0
6 1 6 1 0 . 1 F - O 5 2 5 6 1 2 8 1 5 . 0 - 0 . 8 2 C 5 E  0 0
6 1 4 9 0 . 1 E - 0 1 1 6 1 6 1 5 . 0 - 0 . 2 2 C 7 E  0 0
6 1 4 9 0 . 1 E - 0 2 3 2 3 2 1 5 . 0 - 0 . 2 2 0 9 E  0 0
6 1 4 9 0 . 1 E - 0 3 6 4 6 4 1 5 . 0 - 0 . 2 2 0 9 E  0 0
6 1 4 9 0 . 1 E - 0 4 1 2 8 6 4 1 5 . 0 - 0 . 2 2 0 9 E  0 0
6 1 4 9 0 . 1 E - 0 5 2 5 6 1 2 8 2 7 . 5 - 0 . 2 2 0 9 E  0 0
6 1 2 5 0 . 1 E - 0 1 1 6 8 1 5 . 0 0 . 6 6 8 5 E - 0 1
6 1 2 5 0 . 1 E - 0 2 3 2 1 6 1 5 . 0 0 . 6 6 8 1 E - 0 1
6 1 2 5 0 . 1 E - 0 3 6 4 3 2 1 5 . 0 0 . 6 6 8 1 E - 0 1
6 1 2 5 0 . 1 E - 0 4 1 2 8 6 4 2 7 . 5 0 . 6 6 8 1 E - 0 1
6 1 2 5 0 . 1 E - O 5 2 5 6 1 2 8 8 7 . 5 0 . 6 6 8 1 E - 0 1

T a bl e  A.  6. 3 e I nt e g r al E V al u ati o n  of  w a v e  F u n cti o n  V al u e s
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OWK

C/WK

C/VK

Diffraction Parameter (2xPIxCA/WL) 
Cylinder Depth Parameter <Y0/WL) 
Vater Depth Parameter (WD^WL)

Number of Nodes=96 Nodal point,1=13

.20

.04
.08

Source point,J=I3

figure *.6.3a Numerical Integration
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OWK

C/WK

OiFFraction Parameter (2xPlxCAzVL)
Cylinder Depth Parameter (Y0/WL)
Vater Depth Parameter (VQ/VL)

Nuaber oF Nodes-% Nodal pointJ-13

1.00
.20
.40

Soiree point»J-13

Figure A.6.3b Numerical Integration
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C/WK

OWK

C/YK

OiFFraction Parameter (2xP!xCA,VL) 
CyLnder Depth Parameter (V0/VL) 
Voter Depth Parameter (tfkVl)

2.00
J0
.80

Number oF Nodes-96 Nodal po*nt»I-I3 Source point,J=I3

Figure A.6.3c Numerical Integration
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c/Wk

Diffraction Parameter (2xPIxCA/VL)
Cylinder Oepth Parameter (T0/WL)
Vater Depth Parameter (VO'VL)

Nuaber of Nodes-% Nodal pointJ-6I

.20

.04

.08

Source pointJ-61

Figure A.6.3d Nuierical Integration
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OWK

C/WK

Diffraction Parameter (2xPIxCVWl) 
Cylinder Depth Parameter (t0/WL) 
Water Depth Parameter (WD'WL)

Number of Nodes-96 Nodal point,1'61

1.00 
.20
.40

Source point,J-61

Figure A.6.3e Numerical Integral on
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c/wk

Diffraction Parameter (2xPIxCA/KL) 2.00
Cylinder Depth Parameter (T0/VL) .40
Vater Depth Parameter (flWL) .80

Number of Node$-% Nodal point,! -61 Source point,J-61

Figure A.6.3f Numerical Integration
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APPENDIX A. 7 PRESSURE, FORCE AND WAVE SUBROUTINES

This appendix includes a listing of the main segment of

the diffraction program and the subroutine DATA written to read data 

from a prepared file plus the subroutines referred to in section 4.4 

of the thesis.

The variable names which have not been included in the

previous appendices are

BETAR,BETAT Arguments of complex reflection and transmission 

coefficients, R,T.

be tax .betay Arguments of complex total force components, f ,f .
X y

CX.CY Horizontal and vertical diffraction coefficients, Cx,Cy

El Results of analytic integration of logarithmic 

singularity for constant variation of source density.

EI1,EI2 Results of analytic integration of logarithmic singularity 

for linear variation of source density.

fx ,fy Moduli of complex total force components, fv,f . x y

fxw .fyw Moduli of complex Froude Krylov force components, 

fkX’£ky*

GQ1 to GQ5 Results of analytic integration of logarithmic 

singularity for quadratic variation of source density.

PA Modulus of complex total pressure on object boundary, p.

PW Modulus of complex incident wave pressure on object 

boundary, pw.

R Modulus of complex reflection coefficient, R.

RES Residual to determine whether the principle of energy 

conservation is satisfied RES ■ 1 - R2 - T2.
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T Modulus of complex transmission complex, T.

A number of the previously declared arrays are 

allocated new values in this part of the diffraction program and the 

new assignments are

A(2n,2n) Matrix A in matrix evaluation equation (equation 4.2.3) 

C(2n,l) Vector containing scattered wave and incident wave

pressures, ps and pw, in turn.

The arrays declared in this section of the program 

which have not been required previously are

BETASP(ns),BETASN(ns) Arguments of complex free surface 

displacements, n+ and n .
s s

BETATP(ns),BETATN(ns) Arguments of complex free surface

displacements, n and n •

YSP(ns),YSN(ns) Moduli of complex free surface

displacements, n and n •s s

YTP(ns),YTN(ns) Moduli of complex free surface

displacements, n and n .

where ns is the number of points at which the quantities are to be 

evaluated. It may be noted that the subroutine SGRNFN has been 

called in subroutines WAVE and CWAVE, this subroutine is, with the 

exception of very minor differences, the same as subroutine GRNFN 

and is therefore not listed.
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APPENDIX A.8 THE SEMI-IMMERSED CIRCULAR CYLINDER

As an additional test for the numerical solution of the 

regular kernel integral equation formulation of the linear wave 

diffraction problem the diffraction program has been used to obtain 

results for the case of the semi-immersed circular cylinder. These 

additional tests are valuable for a number of reasons. Firstly it 

is possible that with the object located in the free surface the problem 

may prove to be more numerically demanding, secondly the geometry of 

this problem more closely resembles that of ship problems and, 

thirdly, results have been published for this problem in tabular form.

Martin and Dixon (1983) have applied Ursell’s multipole method 

to obtain numerical solutions for the semi-immersed circular cylinder 

in water of infinite depth. Results have been given in tabular form 

for four complex quantities: the horizontal and vertical components 

of force F and F and the reflection and transmission coefficients
x y

R and T.

Results have been obtained using the diffraction program 

for the same range of the diffraction parameter, ka, as in the testing 

of the submerged obstacle but in these tests the water depth 

parameter, kh, has been fixed to give deep water over the whole range 

of ka. The effects of refraction have therefore been eliminated. 

It has been found that the evaluation of the integral form of the 

wave function can only be achieved if the interval is restricted 

to (0,10k) but tests in which the series evaluation was preferred 

have demonstrated that this does not affect the accuracy of the 

results.
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The geometry of this problem introduces a number of 

discretisation difficulties which are absent for the submerged 

cylinder problem. These difficulties are concerned with the 

introduction of higher order elements and in particular with the 

elements at the cylinder free surface junction each of which has a 

“free" node. This should not lead to any numerical problems but 

requires that several minor modifications are made to the diffraction 

program to include the results of the analytical integrations for 

sources on elements at the correct addresses in the matrix if 

higher-order elements are to be employed. These amendements do 

not, however, alter the general form of the program and the listings 

are therefore not given.

The modified form of the diffraction program has been 

used to obtain results for this problem using assumed constant and 

assumed linear distribution of source density on each element with a 

single source located centrally on each element. Results for the 

horizontal and vertical components of force and reflection coefficient 

for a distribution of wave functions on the cylinder boundary are 

given in Figures A.8.1 to A.8.6 and the corresponding results for 

sources distributed over a boundary located on a concentric semi-

circle with radius rfl ■ 0.7rn are given in Figures A.8.7 to A.8.12. 

The results given by Martin and Dixon are reproduced in table A.8.1 

and the results used to plot Figures A.8.1 to A.8.12 are recorded in 

Tables A.3.2 to A.8.13.

The results obtained for the singular kernel constant 

element method demonstrate good agreement with the results of Martin 

and Dixon and also rapid convergence to the final solutions for coarse 
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discretisations over the full range of ka. Implementation of the 

linear element method with sources located on the source boundary 

does not give markedly different results but results at certain ka 

give an indication of reduced accuracy. These results are therefore 

in general agreement with those presented in section 4.5.

Location of the source boundary outside the fluid domain 

with a constant element discretisation gives poor results for the 

horizontal force at lower ka but with this exception results are 

in better agreement with the results of Martin and Dixon than those 

obtained by the singular kernel method. The results obtained by 

the regular kernel method with linear elements are poor for the full 

range of discretisation and this trend is different from that 

identified in the submerged cyliner problem as reported in section 

4.5. It may be noted that the poorest results are often due to 

the most precise disretisations and therefore that the problem is 

associated with the ill-conditioning of the system of equations.

With regard to the efficiency these results do not 

indicate that the regular kernel method offers the opportunity of 

employing a coarser discretisation and the comparison of the execution 

times included in the tables indicate that the savings identified in 

section 4.5 are not so significant for the semi-immersed cylinder.

However, the results given in this appendix so confirm the 

results of section 4.5 in that the regular kernel integral equation 

provides satisfactory results for a constant element discretisation. 

One advantage of the regular kernel method which is relevent for 

surface piercing cylinders but not for submerged bodies is that 
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since the Fredholm integral equation is of the first kind the 

difficulties due to the breakdown of the integral equation method 

at frequencies which correspond to eigen values of the homogenous 

equation are not encountered.

ka Mod(R) Mod(Fx) Mod(Fy)
0.1 0.194 0.317 1.651
0.2 0.396 0.627 1.470
0.3 0.586 0.888 1.335
0.4 0.737 1.065 1.224
0.5 0.-840 1.156 1.129
0.6 0.905 1.186 1.046
0.7 0.943 1.180 0.971
0.8 0.965 1.154 0.905
0.9 0.978 1.121 0.844
1.0 0.986 1.108 0.789
2.0 1.000 0.777 0.436

Results obtained by Martin and Dixon (1983) using the multipole 
method for waves in fluid of infinite depth.

Table A.8.1 Diffraction Results for a Semi-immersed Cylinder
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SOURCES DISTRIBUTED ON CYLINDER BOUNDARY
ND NODES = 12 (CONSTANT ELEMENTS)

ONE-POINT (A USS QUADRATURE

Table A.8.2 Diffraction Results for a Semi-immersed Cylinder

ka h/L Mod(R)i Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.75 0.206 0.455 0.3-09 0.322 0.033 1.641 1.396
0.20 0.75 0.409 0.438 0.3E-09 0.647 0.113 1.457 1.262
0.30 0.75 0.600 0.431 0.6E-08 0.917 0.214 1.317 1.141
0.40 0.75 0.751 0.425 0.3E-08 1.094 0.306 1.204 1.028
0.50 0.75 0.851 0.410 0.8E-08 1.181 0.368 1.107 0.920
0.60 0.75 0.913 0.386 0.3-07 1.205 0.395 1.023 0.816
0.70 0.75 0.948 0.352 0.3-07 1.193 0.392 0.949 0.715
0.80 0.75 0.969 0.312 0.3E-07 1.163 0.365 0.883 0.615
0.90 0.75 0.981 0.266 0.3-07 1.125 0.321 0.823 0.516
1.00 0.75 0.988 0.217 0.3E-08 1.084 0.264 0.768 0.417
1.50 0.75 0.999 -0.064 0.3-06 0.897 -0.120 0.547 -0.082
2.00 0.75 0.998 -0.343 0.3-08 0.753 -0.571 0.547 -0.507
Processor time^O. 0317

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
ND NODES = 16 (CONSTANT ELEMENTS) 

ONE-POINT (AUSS QUADRATURE

Processor time=0.0635

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.75 0.205 0.455 0.3-08 0.320 0.032 1.641 1.397
0.20 0.75 0.406 0.438 0.5E-08 0.642 0.112 1.458 1.264
0.30 0.75 0.597 0.432 0. IE-07 0.910 0.212 1.320 1.143
0.40 0.75 0.747 0.425 0.7E-09 1.087 0.304 1.207 1.031
0.50 0.75 0.849 0.411 0.3E-08 1.176 0.367 1.111 0.924
0.60 0.75 0.911 0.387 0.3-07 1.201 0.395 1.027 0.821
0.70 0.75 0.947 0.354 0.5E-10 1.191 0.393 0.953 0.720
0.80 0.75 0.968 0.314 0.3E-09 1.162 0.367 0.887 0.621
0.90 0.75 0.980 0.269 0.4E-07 1.125 0.324 0.828 0.522
1.00 0.75 0.988 0.220 0.3-08 1.085 0.268 0.774 0.424
1.50 0.75 0.999 -0.060 0.3-07 0.902 -0.114 0.559 -0.073
2.00 0.75 0.997 -0.337 0.3E-07 0.762 -0.565 0.518 -0.494

Table A.8.3 Diffraction Results for a Semi-immersed Cylinder

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
ND NODES® 32 (CONSTANT ELEMENTS) 

ONE-POINT GAUSS QUADRATURE

Processor time«0.2224

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(iy) Arg(Fy)
0.10 0.75 0.202 0.455 0.4E-08 0.317 0.032 1.641 1.399
0.20 0.75 0.403 0.438 0.4E-04 0.635 o.no 1.460 1.267
0.30 0.75 0.592 0.432 0.1E-07 0.900 0.210 1.324 1.147
0.40 0.75 0.742 0.425 0.3-07 1.077 0.301 1.212 1.035
0.50 0.75 0.844 0.412 0.3-07 1.167 0.364 1.117 0.929
0.60 0.75 0.907 0.388 0.3E-07 1.195 0.393 1.034 0.827
0.70 0.75 0.944 0.356 0.5E-07 1.186 0.392 0.961 0.727
0.80 0.75 0.966 0.317 0.4E-07 1.159 0.367 0.895 0.628
0.90 0.75 0.979 0.272 0.1E-07 1.124 0.325 0.836 0.531
1.00 0.75 0.987 0.224 0.3E-07 1.085 0.270 0.783 0.434
1.50 0.75 0.999 -0.053 0.3E-07 0.907 -0.108 0.577 -0.057
2.00 0.75 0.998 -0.334 0.3-06 0.772 -0.558 0.486 -0.492

Table A. 8. 4 Diffraction Results for a Semi-immersed Cylinder
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SOURCES DISTRIBUTED ON CYLINDER BOUNDARY
NO NODES= 13 (LINEAR ELEMENTS)

ONE-POINT GAUSS QUADRATURE

Processor time=0.0392

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.75 0.209 0.454 0.2E-08 0.326 0.034 1.635 1.394
0.20 0.75 0.416 0.438 0.5E-08 0.651 0.116 1.454 1.259
0.30 0.75 0.610 0.432 0.4E-08 0.921 0.222 1.318 1.137
0.40 0.75 0.762 0.427 0.2]-07 1.098 0.318 1.205 1.023
0.50 0.75 0.862 0.413 0.4E-08 1.184 0.383 1.108 0.915
0.60 0.75 0.922 0.389 0.5E-08 1.207 0.413 1.023 0.810
0.70 0.75 0.956 0.356 0.1E-07 1.194 0.411 0.948 0.708
0.80 0.75 0.975 0.316 0.2E-07 1.164 0.385 0.879 0.608
0.90 0.75 0.986 0.270 0.2E-07 1.127 0.341 0.817 0.507
1.00 0.75 0.992 0.221 0.1E-07 1.087 0.285 0.765 0.410
1.50 0.75 1.000 -0.069 0.5E-07 0.908 -0.099 0.509 -0.118
2.00 0.75 0.980 -0.287 0.7E-05 0.773 -0.552 0.659 -0.350

Table A.8.5 Diffraction Results for a Semi-immersed Cylinder

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
NO NODES = 17 (LINEAR ELEMENTS)

ONE-POINT GAUSS QUAERATURE

Table A.8.6 Diffraction Results for a Semi-immersed Cylinder

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.75 0.207 0.455 0.2E-09 0.323 0.033 1.637 1.395
0.20 0.75 0.412 0.438 0.1E-07 0.646 0.115 1.457 1.261
0.30 0.75 0.605 0.432 0.2E-08 0.914 0.219 1.320 1.139
0.40 0.75 0.756 0.426 0.9E-O8 1.091 0.313 1.209 1.026
0.50 0.75 0.857 0.413 0.2E-07 1.178 0.378 1.113 0.919
0.60 0.75 0.918 0.389 0.2E-07 1.202 0.407 1.027 0.815
0.70 0.75 0.953 0.356 0.1E-07 1.191 0.405 0.952 0.713
0.80 0.75 0.973 0.316 0.3E-07 1.162 0.380 0.885 0.613
0.90 0.75 0.984 0.271 0.6E-08 1.125 0.336 0.824 0.514
1.00 0.75 0.991 0.221 0.5E-07 1.086 0.280 0.768 0.414
1.50 0.75 1.000 -0.066 0.5E-08 0.908 -0.103 0.529 -0.106
2.00 0.75 0.985 -0.299 0.4E-O7 0.775 -0.556 0.605 -0.384
Processor time=0. 0648

SOURCES DISTRIBUTED ON CYLINDER BOUNDARY 
NO NODES = 33 (LINEAR ELEMENTS) 

ObE-POINT GAUSS QUAERATURE

Processor time=0.2401

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg (Ex) Mod(Fy) Arg(Fy)
0.10 0.75 0.204 0.455 0.1E-08 0.319 0.032 1.640 1.398
0.20 0.75 0.406 0.438 0.7E-09 0.638 0.112 1.460 1.265
0.30 0.75 0.597 0.432 0.1E-07 0.903 0.213 1.325 1.144
0.40 0.75 0.747 0.426 0.3E-07 1.079 0.306 1.214 1.032
0.50 0.75 0.849 0.412 0.2E-07 1.168 0.369 1.119 0.926
0.60 0.75 0.911 0.389 0.1E-07 1.195 0.398 1.036 0.823
0.70 0.75 0.948 0.356 0.1E-07 1.186 0.397 0.962 0.722
0.80 0.75 0.969 0.317 0.5E-07 1.159 0.372 0.897 0.623
0.90 0.75 0.981 0.272 0.2E-O7 1.123 0.330 0.837 0.525
1.00 0.75 0.988 0.223 0.3E-07 1.085 0.274 0.783 0.427
1.50 0.75 1.000 -0.058 0.2E-O7 0.909 -0.106 0.560 -0.078
2.00 0.75 0.994 -0.319 0.1E-09 0.777 -0.558 0.534 -0.444

Table A.8.7 Diffraction Results for a Semi-immersed Cylinder
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SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS= 0.70*CA
ND ND EES = 12 (CONSTANT ELEMENTS)

OLE-POINT CAUSS QUAERATURE

Processor time=0.0331

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.75 0.210 0.463 0.4E-08 0.394 0.048 1.654 1.407
0.20 0.75 0.413 0.454 0.1E-07 0.734 0.141 1.479 1.286
0.30 0.75 0.601 0.445 0.3E-07 0.959 0.236 1.339 1.162
0.40 0.75 0.736 0.425 0.3E-07 1.068 0.296 1.225 1.039
0.50 0.75 0.838 0.409 0.1E-07 1.152 0.354 1.130 0.932
0.60 0.75 0.902 0.386 0.2E-08 1.180 0.383 1.048 0.830
0.70 0.75 0.940 0.354 0.1E-07 1.173 0.382 0.976 0.730
0.80 0.75 0.963 0.315 0.3E-08 1.148 0.358 0.911 0.631
0.90 0.75 0.976 0.271 0.2E-07 1.113 0.316 0.853 0.534
1.00 0.75 0.985 0.222 0.2E-08 1.076 0.261 0.801 0.437
1.50 0.75 0.997 -0.051 0.8E-07 0.900 -0.117 0.604 -0.045
2.00 0.75 0.999 -0.349 0.4E-07 0.767 -0.567 0.478 -0.530

Table A.8.8 Diffraction Results for a Semi-immersed Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS= 0.70*CA 
ND ND EES = 16 (CONSTANT ELEMENTS)

ONE-POINT GAUSS QUAERATURE

Processor time=0.0635

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.75 0.208 0.466 0.6E-08 0.406 0.051 1.656 1.413
0.20 0.75 0.414 0.457 0.5E-08 0.750 0.146 1.479 1.291
0.30 0.75 0.600 0.447 0.6E-07 0.967 0.239 1.339 1.166
0.40 0.75 0.737 0.427 0.8E-08 1.073 0.299 1.223 1.042
0.50 0.75 0.838 0.411 0.2E-07 1.156 0.357 1.128 0.933
0.60 0.75 0.902 0.387 0.2E-07 1.184 0.385 1.046 0.831
0.70 0.75 0.940 0.355 0.4E-07 1.177 0.384 0.973 0.731
0.80 0.75 0.963 0.316 0.1E-07 1.151 0.361 0.908 0.633
0.90 0.75 0.976 0.272 0. IE-07 1.117 0.319 0.850 0.536
1.00 0.75 0.985 0.224 0.3E-07 1.080 0.265 0.798 0.440
1.50 0.75 0.997 -0.048 0.2E-06 0.904 -0.112 0.600 -0.041
2.00 0.75 0.999 -0.345 0.5E-07 0.771 -0.560 0.473 -0.525

Table A.8.9 Diffraction Results for a Semi-immersed Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS= 0.70*CA 
ND ND EES - 32 (CONSTANT ELEMENTS) 

ONE-POINT GAUSS QUADRATURE

Processor time«0.2269
Table A.8.10 Diffraction Results for a Semi-immersed Cylinder

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.75 0.207 0.469 0.7E-06 0.419 0.056 1.660 1.418
0.20 0.75 0.417 0.465 0.6E-07 0.790 0.160 1.482 1.301
0.30 0.75 0.607 0.465 0.1E-O5 1.035 0.271 1.344 1.190
0.40 0.75 0.736 0.428 0.2E-O7 1.078 0.301 1.222 1.044
0.50 0.75 0.912 0.422 0.2E-03 1.197 0.451 1.161 0.875
0.60 0.75 0.902 0.388 0.2E-06 1.187 0.387 1.044 0.833
0.70 0.75 0.941 0.356 0.1E-05 1.180 0.386 0.971 0.733
0.80 0.75 0.963 0.318 0.6E-06 1.155 0.363 0.907 0.635
0.90 0.75 0.977 0.274 0.8E-04 1.121 0.322 0.848 0.538
1.00 0.75 0.985 0.226 0.5E-06 1.084 0.267 0.795 0.442
1.50 0.75 0.998 -0.046 0.4E-06 0.908 -0.107 0.596 -0.037
2.00 0.75 0.999 -0.342 0.2E-05 0.776 -0.554 0.469 -0.519
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SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS= 0.70*CA
ND NODES = 13 (LINEAR ELEMENTS)

ONE-POINT GALES QUADRATURE

Processor time=0.0355

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.75 0.249 0.460 0.5E-02 0.413 0.114 1.667 1.432
0.20 0.75 0.416 0.467 0.4E-02 0.814 0.165 1.482 1.306
0.30 0.75 0.613 0.442 0.5E-01 0.970 0.200 1.360 1.134
0.40 0.75 0.731 0.431 0. IE-01 1.087 0.285 1.226 1.060
0.50 0.75 0.850 0.417 0.7E-03 1.154 0.382 1.122 0.927
0.60 0.75 0.892 0.381 0.6E-01 1.200 0.404 1.002 0.838
0.70 0.75 0.967 0.360 0.3E-01 1.195 0.393 0.953 0.738
0.80 0.75 1.010 0.299 0.6E-01 1.204 0.363 0.877 0.606
0.90 0.75 1.021 0.242 0.1E 00 1.112 0.251 0.835 0.488
1.00 0.75 1.013 0.246 0.5E-01 1.091 0.284 0.821 0.510
1.50 0.75 0.950 -0.013 0.8E-01 0.838 -0.091 0.560 -0.010
2.00 0.75 1.012 -0.319 0.3E-01 0.756 -0.485 0.498 -0.481

Table A.8.11 Diffraction Results for a Semi-immersed Cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY, RS= 0.70*CA 
ND NODES= 17 (LINEAR ELEMENTS)

ONE-POINT GAUSS QUADRATURE

Processor time=0.0607

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.75 0.207 0.476 0.5E-02 0.464 0.085 1.665 1.429
0.20 0.75 0.409 0.440 0.3E-01 0.733 0.068 1.469 1.294
0.30 0.75 0.594 0.446 0.3E-02 0.951 0.236 1.337 1.164
0.40 0.75 0.757 0.426 0.5E-01 1.077 0.291 1.220 1.046
0.50 0.75 0.850 0.410 0.2E-01 1.150 0.356 1.130 0.923
0.60 0.75 0.797 0.436 0.2E 00 1.155 0.583 0.977 0.820
0.70 0.75 1.026 0.382 0.2E 00 1.233 0.415 1.027 0.764
0.80 0.75 0.955 0.322 0.2E-01 1.154 0.373 0.900 0.642
0.90 0.75 0.981 0.274 0.9E-O2 1.119 0.325 0.840 0.541
1.00 0.75 1.004 0.228 0.4E-01 1.090 0.251 0.796 0.466
1.50 0.75 1.000 -0.043 0.9E-03 0.910 -0.089 0.603 -0.053
2.00 0.75 1.000 -0.327 0.2E-02 0.759 -0.520 0.474 -0.492

Table A.8.12 Diffraction Results for a Semi-immersed cylinder

SOURCES DISTRIBUTED ON INTERNAL BOUNDARY,RS- 0.70*CA 
ND NODES= 33 (LINEAR ELEMENTS) 

ONE-POINT GALES QUADRATURE

Processor t^6=0.2516

Table A.8.13 Diffraction Results for a Semi-immersed Cylinder

ka h/L Mod(R) Arg(R) RES Mod(Fx) Arg(Fx) Mod(Fy) Arg(Fy)
0.10 0.75 0.209 0.478 0.8E-02 0.442 0.069 1.667 1.421
0.20 0.75 0.406 0.454 0.4E-02 0.756 0.140 1.478 1.289
0.30 0.75 0.602 0.457 0.4E-04 1.005 0.256 1.341 1.180
0.40 0.75 0.732 0.439 0.5E-02 1.098 0.319 1.224 1.063

0.50 0.75 1.078 -0.484 0.2E 00 3.478 0.591 1.121 0.945
0.60 0.75 0.794 0.366 0.4E-01 0.841 0.227 1.048 0.896

0.70 0.75 4.969 0.255 0.3E 02 5.711 0.778 2.904 0.908
0.80 0.75 0.965 0.323 0.2E-02 1.160 0.400 0.870 0.634
0.90 0.75 1.009 0.279 0.6E-01 1.145 0.327 0.909 0.520
1.00 0.75 0.990 0.234 0.2E-01 1.075 0.312 0.803 0.456
1.50 0.75 1.264 -0.110 0.8E 00 1.115 -0.528 0.452 0.065
2.00 0.75 1.133 -0.384 0.3E 00 1.343 -0.455 0.582 -0.895
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APPENDIX A.9 DIMENSIONAL ANALYSIS

This appendix contains the details of a dimensional analysis 

of the diffraction problem for a two dimensional obstacle of 

characteristic dimension, D, at a depth yQ. For wave motion in water 

of finite depth four independent variables are sufficient to 

describe the motion completely and the choices made in this analysis 

are the wave height H, the wavelength, L, the water depth, h and 

the acceleration of gravity, g. The final variables which must be 

included are the fluid density and kinematic viscosity.

The force, F, per unit length, £, may be expressed as

F » f(p,v,D,yo,H,L,h,g)
t

A.9.1

The force per unit length may then be expressed in series form by

F
I

A.9.2

where C is a constant and a,b,c,d,e,f,i and j are indices. It is 

required that equation A.9.2 is balanced dimensionally and by 

inserting the dimensions of each variable an equation in the three 

primary dimensions mass M, length L and time T is obtained.

(MLT_2L_1) - (ML-3)a(L2T-1)b(L)C(L)d(L)e(L)fa)l(LT_2)j-2-1
A.9.3

Collecting the indices of M, L and T three equations are obtained
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1 - afor M A.9.4a

for L 0 ■ -3a +2b+c+d+e+f+i+j A.9.4b

2 = - b - jfor T A.9.4c

Elimination of the indices a,b & j in equation A.9.2 by substituting

from equations A.9.4 gives

A.9.5

which after a little algebra reduces to

A.9.6

From equation A.9.6 it is clear that the non-dimensional force may

be expressed in the form F/(£pgDH) but in determining the non-dimensional 

groups which may be obtained from the right hand side some choice may 

be exercised. Five non-dimensional groups are to be obtained from 

the right hand side of equation A.9.6 and the groups chosen are 

the diffraction parameter D/L, the cylinder depth parameter yQ/h, the 

wave steepness parameter, H/L and the water depth parameter h/L. 

Rearrangement of equation A.9.6 to obtain the required groupings 

gives 

£ - ECpgDH(D/L)C“1”f (y /h)d"‘f(H/L)e“1“f(h/L)21”f(v“2/3Lg1/3)4f

I
A.9.7
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If alternative groupings had been chosen for the water depth or 

cylinder depth parameter the final non-dimensional number

-2/3 1/3
(v Lg ) remains unchanged„ This non-dimensional number may be 

written as

1/3 (L /gL/v)2/3
A.9.8

and introduction of a characteristic velocity U indicates that this 

group is the ratio of two non-dimensional groups 

v

UL I U

v /gL

A.9.9

where the numerator is the Reynolds number and the denominator is 

the square root of the Froude number. Finally the non-dimensional 

force may be expressed as

F - f(D/L, yo/h, H/L, h/L, Re/^"r) A.9.10

JlpgDH

It may bo noted that if diffraction effects are expected to be small 

and the effects of flow separation significant the diffraction 

parameter, D/L, may be replaced by the Keulegan/Carpenter number, K. 

However, in general a dimensional analysis for objects which are 

small compared with the incident wavelength commences with the choice 

of different independent variables and the results is quite different 

and may be quoted in the form

F - f(K, Re, yo/D, H/L, h/L) A.9.11

tpDUmz/2
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APPENDIX A.10 NOMENCLATURE

This appendix contains a list of the main symbols which

are used in the text of the thesis. Any additional symbols which are

used in the appendices are defined where they first occur.

<1 
<1

Kernel matrix

b

Real and imaginary kernel matrices

Radius of circular cylinder

Coefficients in Fourier series

Vector containing known quantities in matrix equation

bn

Real and imaginary parts of b

Coefficients in Fourier series

Component of series form of Green’s functionCi

Horizontal and vertical components of the diffraction 
coefficient

Cgl

°g2

Group velocity of wave

Group velocity of free wave oscillating at twice the 
wave frequency

D

Real positive roots of dispersion equation

Diameter of circular cylinder

F Force

Arbitrary function of timeF(t)

Fr Froude number

£O Fundamental frequency of wave

£(m) Integrand of principal value integral

£d Second-order drift force

fkx*fky Components of Froude-Krylov force

Horizontal and vertical components of force
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i - ZT

G(x,£,t) Green’s function

g Acceleration of gravity

g(u) Component of integrand of principal value integrand

g(x,£) Spatial component of Green’s function

So Component of Green’s function

Sl,g2 Real and imaginary parts of spatial component of 
Green’s function

H Wave height

HI Incident wave height

Hi Weights in quadrature formula

Hm Measured wave height

HS Scanned wave height

H21 Wave height of ’’fixed” second harmonic wave

h 22 Wave height of "free" second harmonic wave

H2t Theoretical wave height of "fixed" second harmonic wave

h Water depth

h(u) Component of integrand of principal value integral

j: Unit matrix

I(u) Component of integrand in principal value integral

i“l.... n Nodal numbering system

|J| Jacobian

j“i,....m Numbering system for sources on element

k - 2tt/L Wave number

k2 Solution of dispersion equation for free second 
harmonic wave

k“l,..».p Numbering system for nodes on an element

L Wavelength

L Primary dimension of length

£ Length of circular cylinder



q Element numbering system

M Primary dimension of mass

m Number of sources per element

m(3/3x, /3y) “ 3/3m) Normal gradient on obstacle boundary at
nodal location

Nk(O Lagrangian interpolation function of order k

n Number of nodes in discretisation

n ■ (3/3x, 3/3y) “ 3/3n Normal gradient on obstacle boundary at 
source loaction

nx,ny Direction cosines for evaluation of forces

Pl Energy loss coefficient

P2 Energy 
second

loss coefficient corrected to account for free 
harmonic wave

P Pressure

P Superfix indicating order of function in perturbation 
analysis

P Number of nodes per element

pm Measured pressure amplitude

P2m Measured pressure amplitude at twice the wave frequency

P3m Measured 
frequency

pressure amplitude at three times the wave

Ps Scattered wave pressure amplitude

Pt Theoretical pressure amplitude

Pw Incident wave pressure amplitude

Q(x,t) Right hand side of second-order free 
boundary condition

surface

q(x) Spatial component of Q(x,t)

q Number of elements in discretisation scheme

R Reflection coefficient

R Tank reflection coefficient

R1 Cylinder reflection coefficient for a wave oscillating 
at fundamental frequency
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Reynolds’ number

R=|x-£l 

RAT-rs/rn 

r-|x-£| 

rn 

rs

q /a 2 + > i 
srran * nn

T

T

T1

T2

T3

(x.y)

lx
 lx |

x

1. *2

y0 

r(x) 

ro<i> 

re 

rF 

«(x-O

c 

e 

n(x,t)

% 

%

v

Radius of obstacle of circular geometry

Radius of source boundary

Amplitude of oscillation at frequency nfQ

Primary dimension of time

Transmission coefficient

Transmission coefficient for a wave oscillating 
at the fundamental frequency

Second-harmonic transmission coefficient

Third-harmonic transmission coefficient

Time variable

Cartesian coordinates of field point

Unknown vector in matrix equation

Real and imaginary part of unknown matrix

Depth of cylinder axis below still water level

Source boundary

Obstacle boundary

Small circular boundary around field point

Fluid boundary

Dirac delta function

Perturbation series parameter

Radius of small circle about field point

Free surface displacement

Free surface displacement of scattered wave

Free surface displacement of incident wave

Doublet moment
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V - U)2/g

p Local element coordinate system

u Variable in principal value integral

£ “ u,n) Source point

P Fluid density

0 Source density

O(x) Source density function

4>(x,t)“4>(x)e lut Velocity potential

(><, t) 00 c 1 t Scattered wave velocity potential

^w(5t>t)"4>w(x)e1Wt Incident wave velocity potential

♦*(^
Singular harmonic function

Regular harmonic function

Xx) Potential function

fl Domain

°F Fluid domain

to - 2nfo Angular frequency
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