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SYNOPSIS

This study is concerned with the applications of the 

boundary element method to solve time dependent problems in two 

dimensions. The applications involve ground water flow problems, 

free surface flow problems, heat conduction problems and numerical 

modelling of periodic waves in particular.

The basic derivation of the boundary integral equation is 

reviewed within the framework of classical potential theory. 

Integral equations may be derived from (a) an indirect formulation; 

(b) a direct formulation; or (c) by the weighted residual technique. 

Numerical procedures for the solution of integral equations are 

discussed, involving constant, linear or quadratic variation for the 

potential function and its normal derivative along discretised 

elements on the boundary. A formulation for the solution of 

transient potential problems is then derived by the weighted 

residual technique.

The basic boundary element technique is employed to model 

different types of periodic wave profiles, and more importantly, the 

progressive waves. This approach resembles the work of Longuet- 

Higgins and Cokelet on numerical computation of steep surface water 

waves. Numerical procedures for the time stepping method are 

discussed in detail. With a fixed horizontal circular cylinder 

introduced in the flow domain, pressures and forces on the cylinder 

are evaluated and compared with experimental measurements.

Computer programs incorporating the above work were

developed with illustrated examples throughout this study



CHAPTER 1 - INTRODUCTION

With the advent of high speed computers, most engineering 

problems that may be represented by differential equations are 

solved by means of a numerical technique, e.g. finite difference or 

finite element method. The boundary element method is being 

increasingly used in solving various engineering problems and 

currently, several topics of applications are being actively 

researched, e.g. fluid flow problems, heat transfer problems and 

transient potential problems. Essentially, the boundary element 

method transforms the differential equation of the problem into an 

integral equation which becomes a surface integral for three 

dimensional problems and a line integral for two dimensional 

problems. Therefore, the dimension of the problem is reduced by 

one. Due to the fact that discretisation occurs only on the 

boundary, the number of algebraic equations to be solved is reduced. 

But the overall matrix is fully populated.

This study is concerned with the applications of the 

boundary element method for the solution of time dependent problems, 

with emphasis on the simulation of periodic waves. Time dependent 

problems in this context involve the diffusion equation and the 

Laplace’s equation whose solution is time stepped. Application of 

the boundary element method to Laplace's equation is shown in 

Brebbia (1978), but it does not involve time stepping. Application 

of the boundary element method to the diffusion equation has been 

covered in Brebbia and Wrobel (1979).
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The capabilities and limitations of existing formulations 

of the Laplace’s equation and the diffusion equation have been 

studied by implementing computer programs and monitoring the 

numerical behaviour. Applications include ground water flow 

problems, free surface flow problems and transient potential 

problems (chapter 4). The confidence thus obtained is useful in 

extending the range of application to the simulation of periodic 

waves.

The numerical simulation of progressive wave motion has 

been carried out successfully by Longuet-Higgins and Cokelet (1976), 

based on potential theory and conformal mapping technique. Integral 

equations are written for the wave profile and the solution obtained 

is then time stepped. A similar concept is to be investigated using 

the boundary element method, but no conformal mapping technique is 

involved.

The present work starts by reviewing, in chapter 2, the 

literature on classical potential theory, the boundary element 

method and the existing technique on the simulation of periodic 

waves.

Chapter 3 shows how a problem governed by Laplace's 

equation (with prescribed boundary conditions) can be recast into 

an integral equation which, through a limiting process, produces a 

boundary integral equation relating only the boundary values. Both 

the indirect and the direct formulations of the boundary element 

method are discussed. The weighted residual technique is then 

employed to formulate a (direct) integral equation equivalent to the 

diffusion equation with prescribed boundary and initial conditions.

2



Numerical formulations for the solution of the boundary 

integral equation equivalent to Laplace’s equation are discussed in 

chapter 4. It is shown how several features such as free surface 

boundary conditions, non-homogeneity, orthotropy and anisotropy can 

be included in the formulation. Results of their applications are 

presented. Numerical solutions to the time-dependent boundary 

integral equation equivalent to the diffusion equation are obtained 

through the use of time-dependent fundamental solutions. A time-

stepping technique allows the time integrals in the boundary 

integral equation to be carried out analytically for time 

interpolation functions of any order. The remaining space integrals 

are computed numerically, apart from the singular ones. Two- 

dimensional problems are treated with comparison of numerical 

results with published analytical results.

Chapter 5 describes the theoretical basis of the 

application of the boundary element method to unsteady wave problems 

which require modification of the matrix equation to suit the 

appropriate boundary conditions. Time stepping technique by the 

Runge-Kutta method and the Adam-Bashforth-Molton method are 

discussed. Equations used for the evaluation of pressures and 

forces on an internal object are shown. The checks for accuracy of 

the computed wave profile are made through the use of the principles 

of the conservation of mass and the conservation of energy.

Numerical formulation of the boundary integral equation 

method to the simulation of surface waves are discussed in detail 

in chapter 6. Again, it involves a time stepping procedure. An 

area of achievement in this application is the evaluation of forces 

3



and pressures on an object placed under the wave. Computer programs 

incorporating these procedures are also shown. Test problems and 

case studies are carried out and discussed parametrically. Further 

comparisons of results with experimental measurements show the 

validity of the technique.

On the basis of comparisons of results on case studies 

with experimental measurements, the proposed technique on the 

application of the boundary element method to progressive wave 

problems is discussed in chapter 7.

Finally, chapter 8 draws the conclusions of this study and 

suggests improvements to the proposed technique.

All programs were written in FORTRAN, on the Honeywell

Dual Level 66/60 computer of The City University. One exceptional 

program 'BEMWl' (Appendix A.12), which performs the simulation of 

periodic waves, was developed on the CDC7600 at the University of 

London Canputer Centre.
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CHAPTER 2 - LITERATURE SURVEY

Historically,the application of integral equations to 

formulate the fundamental boundary-value problems of potential 

theory dates back to 1905, when Fredholm demonstrated the existence 

of solutions to such equations., on the basis of a discretisation 

procedure. Due to the difficulty of finding analytical solutions, 

the use of integral equations has, to a great extent, been limited 

to theoretical investigations of existence and uniqueness to 

solutions of problems of mathematical physics. However, the 

advent of high speed digital computers made it possible to implement 

discretisation procedures algebraically and so enabled numerical 

solutions to be readily achieved.

Eredholm integral equations follow from the representation 

of harmonic potentials by simple-layer or double-layer potentials 

and set up the foundations of the so-called indirect boundary 

element method. Integral equations are set up involving the known 

boundary conditions and fictitious singular sources which are 

distributed on the boundary of the fictitious region at an initially 

unknown density. These equations may be discretised and solved 

numerically by using some approximate methods. The required solution 

variables at any internal field point may then be obtained by 

back-substitution of source densities into the integral equations.

Integral equations can' alternatively be formulated 

through the application of Green’s third identity (Kellogg, 1954). 

which represents a harmonic function as the superposition of 

simple-layer and double-layer potentials. Taking the field 

point to the boundary, an integral equation relating only boundary 

5



values and normal derivatives of the harmonic function is obtained. 

This technique is referred to as the direct boundary element method 

which provides values of the solution variables on the Bonndary in 

terms of the known boundary data.

More recently, it was. demonstrated that the same integral 

relationships can be obtained through weighted residual considerations 

(Brebbia, 1978)* Basically, a problem to be solved is mathematically 

described by its governing equations and corresponding boundary 

conditions. These equations are solved using some approximate 

methods, which transform them into algebraic relationships. This 

is done by using discrete elements for the spatial discretisation 

and discrete number of steps for the discretisation in timpT In 

this way, it becomes easier to relate and combine the boundary element 

method with other numerical technique^ such as the finite element method, 

as well as to extend it for the analysis of problems governed by more 

complex partial differential equations, including non-linearities.

Jaswon (1965) and. Symm (1965) presented a numerical 

technique to solve Fredholm boundary integral equations. The 

technique consists of discretising the boundary into a series of 

small segments (elements), assuming that the source density 

remains constant within each segment. The discretised equation is 

applied to a number of particular points (nodes) in each element, 

and the influence coefficients are computed approximately using 

Simpson’s rule. Exception is made for the singular coefficients 

resulting from the self-influence of each element, which are 

computed either analytically or by the summation of the off- 

diagonal coefficients plus the free term. This produces a system 

of linear algebraic equations which can be solved computationally

6



by a direct method, e.g. Gaussian elimination.

Applying such a technique, they obtained accurate solutions 

for simple two-dimensional Neumann or Dirichlet problems, e.g. the 

L-shaped domain with a Dirichlet boundary condition. They also 

proposed a more general numerical formulation for solving mixed 

boundary-value problems through the application of Green’s 

third identity, which yields a boundary integral equation where 

boundary values and normal derivatives of a physical variable play 

the role of the fictitious source densities. Results using this 

formulation are reported by Symm (1965)*

The.basic idea of integral equation procedures to solve 

problems with homogeneous anisotropic zones of arbitrary shape and 

different material properties was first given by Butterfield and 

Tomlin (1972). The technique was later extended by Brebbia (1978) 

to solve non-homogeneous problems by the boundary element method. The 

non-homogeneous domain was divided into different homogeneous zones. 

The interfaces between adjoining zones were assumed to satisfy 

both the equilibrium and compatibility conditions. The final 

system of equations obtained was banded as opposed to the fully 

populated matrix in the original boundary element method.

The application of boundary element method to orthotropic 

problems was discussed in Brebbia and Chang (1979). Problems of 

this sort generally require the technique of zoning. A practical 

example was given on seepage under a dam with two sheet-pile walls 

and different permeabilities in the horizontal and vertical directions. 

Spurious results on the interface under the sheet pile were not 

accounted for.

7



The problem on seepage under a dam is a typical example of 

fluid flow problems where the domain is confined by the fixed 

boundaries. But there are also fluid flow problems with variable 

boundary surfaces. The location of free surface in porous media was 

first mentioned by Liggett (1977a) who used the boundary integral 

equation method to obtain equations for the location of discrete 

points on the free surface. An initial guess of free surface is 

necessary to produce the controlled domain. The final location of the 

free surface is obtained by an iterative process. The domain boundary 

is divided into five parts: (1) upstream face; (2) free surface; 

(3) seepage surface; (4) downstream face and (5) bottom surface. The 

same problem was later investigated by Brebbia and Wrobel (1979) who 

divided the boundary into four parts: (1) upstream face; (2) bottom 

surface; (3) downstream face and (4) free surface. Both approaches 

claimed results agreed very well with analytical solution. The effect 

of different seepage surface assumptions are investigated in chapter 

4.

The above iterative technique resembles those employed in 

transient potential problems which are in general time dependent. 

Rizzo and Shippy (1970) applied a Laplace transform to remove the time 

dependence in the governing equation of transient potential problems. 

The transformed problem is then solved by the boundary element method. 

Once the equations are solved in the transformed space, the original 

variable involving the time dependence may be recovered by inverting 

the transformation numerically. Using this approach, the time 

dependence of the problem is temporarily removed.

Chang et al (1973) studied the time-dependent fundamental

8



solutions associated with heat conduction in isotropic and 

anisotropic media. The discretisation of the integral equation 

was carried out using ’space and time’ piecewise constant values 

for the variables. This approach was later extended by Wrobel 

and Brebbia (1979) to solve complex temperature problems. Their 

results were further improved by Fernandes and Pina (1983) who 

suggested that accurate solutions required a consistent choice 

of time step and spatial discretisation.

Another alternative integral approach for the solution 

of transient potential problems is the coupled boundary element- 

finite difference method proposed by Brebbia and Walker (1980). 

In this formulation, the problem is solved at each time interval 

and the time derivative is approximated in a step by step finite 

difference scheme.

One of the advantages of using a time dependent 

fundamental solution is that it precludes the need for any finite 

differences on the time derivative and produces an accurate and 

efficient solution especially when higher order space and -hima 

interpolation functions are employed.

Having reviewed the solution techniques to the location 

of free surface flow problems in porous media and the transient 

potential problems, the following is devoted to discussion on 

the solution of periodic wave problems. The location of wave 

surfaces varies with time.

The problems of wave hydrodynamics have been solved 

by the application of Green's theorem with simple sources and 

9



double sources distributed over the entire boundary of the fluid 

domain. Depending upon the properties of the fundamental solution 

chosen, wave problems with a submerged or floating object may be 

solved by the following two integral equation approaches. In the 

first approach, the fundamental solution satisfies the governing 

equation and all boundary conditions except that on the object 

surface. Therefore the only boundary is the object. In the second 

approach, the fundamental solution satisfies only the governing 

equation. All the boundary conditions, including the one on the 

object, will have to be satisfied by the integral equation. 

Numerical details on the first approach may be found in Mei (1978) 

and Lacey (1983). The following methods to be reviewed are based 

on the second approach.

Numerical solutions to diffraction problems with a 

floating or submerged body have been obtained by Bai and Yeung (1974). 

Their method is based on integral equation theory which involves 

the fundamental source function, 1/y for three dimensional 

problems or log(l/y ) for two dimensional problems. Green’s 

second identity is applied to a continuous potential function (j) 

and the fundamental source function. The normal derivative of (j) 

is either known or expressible in terms of (j) itself. The 

fluid domain is then truncated by a radiation boundary taken to a 

finite distance. Integral equations are written in terms of (j) 

and the fundamental source function. The resulting equation 

is then solved by the method of discretisation. Results of 

velocity potential, added-mass and damping coefficients may then 

be obtained for problems of a semi-submerged circular cylinder

10



heaving in a deep fluid. Their results agreed well with other 

methods, e.g. the finite element method, except for the behaviour 

of the added-mass coefficient at low frequency in water of 

finite depth.

The application of the boundary element method to compute 

wave forces on submerged or floating offshore structures of 

arbitrary shape in two dimensions was investigated by Au and 

Brebbia (1982). The formulation was carried out by the weighted 

resi Huai, technique on the scatter potential, 0$, which was 

expressed in terms of a linear wave theory potential without 

obstruction. The integral equations were satisfied subject to the 

bottom, free surfa.ne, obstruction and radiation boundary conditions, 

a~nH were expressed in terms of or the derivative of .

The wave surface was assumed to be a horizontal straight line. 

Therefore, their analysis is not of time stepping nature and is 

similar to that of Bai and Yeung (1974)• Results of wave forces on 

submerged half-cylinders were presented and compared with other 

published solutions. Added—mass and damping coefficients of 

a heaving half-submerged cylinder were also presented.

Isaacson (1982) investigated a numerical method for 

calculating the interaction of steep (non-linear) ocean waves 

with large fixed or floating vertical structures of arbitrary 

shape. The interaction is treated as a transient problem with 

known initial conditions corresponding to still water in the 

vicinity of the structure and a prescribed incident waveform 

approaching it. The development of the flow, together with the 

associated fluid forces and structural motions, are obtained by 
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a time-stepping procedure in which the flow at each time step 

is calculated by an integral equation method based on Green’s 

theorem. Comparison of results with available solutions for the 

cases of both linear and solitary wave diffraction around a fixed 

surface-piercing vertical circular cylinder were discussed.

Au and Brebbia (1983a) presented the application of the 

boundary element method for computing wave forces on offshore 

structures of constant section throughout the depth of water. 

Examples studied include the vertical circular cylinder, the 

square caisson and the elliptical cylinder. The comparison of 

their results against analytical or experimental solutions validate the 

use of the boundary element method to study wave diffraction.

Further application of the boundary element method to determine the 

wave forces on large three dimensional offshore structures can be 

found in Au and Brebbia (1985b).

Salmon et al (1980) applied the boundary integral equation 

method to transient wave problems. Their wave profile is linearized 

and therefore, the boundary condition on the wave surface is applied 

at the equilibrium free surface rather than at the actual free 

surface. Their radiation boundary is assumed vertical so that the 

ra.di a t i nn boundary condition takes the form as below, for non- 

dispersive waves:

(2.1)

The above radiation boundary condition was applied successfully 

in the problems of piston wave generation. The method was 

further extended to solve three-dimensional, linearized,

12



transient water wave problems, (Lennon, Liu and. Liggett, 1982).

The techniques described, above for wave hydrodynamics 

are effectively time-ind.epend.ent problems. For the numerical 

simulation of progressive wave, Longuet-Higgins and. Cokelet 

(1976, 1978) developed, a numerical technique for solving periodic 

two-aiTnpnsinnal deep water breaking wave problems. This method is 

based on potential theory and a conformal mapping of the physical 

plane inside a closed contour in the mapped plane. A Fredholm 

integral equation of the first kind is obtained for the velocity 

normal to the free surface. The equation of motion is then 

solved for the normal velocity in this mapped plane. By employing 

a time-stepping technique, the progress of the wave may be 

followed, and after a sufficiently long time, the wave profile 

develops a saw-toothed appearance. However, by applying a 

5-point or 7-point smoothing formula to the wave profile every 

5 or 10 time steps, excellent agreement is obtained between the 

wave profile after one period and the initial starting profile 

obtained by a perturbation technique developed by Schwartz (1974)» 

The implication is that they have proved the wave is travelling 

without change of shape. Numerical results have also been obtained 

for waves which steepen and overturn at the wave crest.

Vinje and Brevig (1980) developed a similar numerical 

technique to that of Longuet-Higgins and Cokelet (1976) to simulate 

breaking waves. The fluid is taken to be of finite depth and the 

computations are carried out in the physical plane. In the authors 

opinion, the introduction of a submerged cylinder may be included 

in the program, (Vinje and Brevig, 1981)* Th® stream function 

along the free surface and the velocity potential (t) on the 
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"bed are determined from a Fredholm integral equation of the 

second kind. The integral equation is approximated using two 

point Lagrangian polynomials (i.e. linear interpolation). The 

method is remarkably stable, and no numerical instability was 

reported in any of the calculations. This method is also capable of 

modelling an overturning wave. Extreme wave forces on a submerged 

fixed or moving cylinder were obtained based on Vinje and Brevig’s 

technique, (Brevig, Greenhow and Vinje, 1981). Given the same.

number of nodal points, this method is therefore computationally 

less expensive than the method of Longuet-Higgins and Cokelet 

(1976), except that additional nodal points are required along 

the bed.

Both methods assume that the flow is two-dimensional 

and periodic in the horizontal coordinate (the period is chosen 

to be ). The fluid is assumed to be inviscid and incompressible 

and the motion irrotational. McIver and Peregrine (1981) carried 

out a comparison on the two methods on waves that were starting to 

break. They concluded that both methods agreed very well and were 

capable of giving good results even when a large overhanging jet 

had formed.

In view of the above assumptions, similar to those made 

on potential flow problems which are solved by the boundary element 

method, application of the boundary element method to simulate surface 

wave problems becomes the major task of the present work. It 

will involve relating d) and -5on the domain boundary (including the 
T

free surface) through integral equations. The flow domain will 

be of finite depth and evaluation of on the free surface by the 

boundary integral equation method is carried out without domain 

transformation. Once the simulation has proved to be valid, a fixed 
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obstacle is then introduced in the flow domain to allow forces 

and pressures to be evaluated.

Jeffrey et al (197&) have recorded some experimental 

measurements of surge and heave forces induced on a fixed 

horizontal circular cylinder in a laboratory wave tank in their 

wave energy project. Lacey (1985) has conducted experimental 

measurements of pressures at quarter points on a horizontal 

circular cylinder under a progressive wave. Therefore, it will 

be worthwhile to assess the validity of the proposed technique 

by comparing the theoretically calculated pressures and forces 

with those experimental measurements.
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CHAPTER 5 - BOUNDARY INTEGRAL EQUATION METHOD

3*1 Introduction

This chapter shows the formulations of a problem governed 

by a partial differential equation with prescribed boundary 

conditinn.q into an integral equation relating boundary data.

The basic formulation is illustrated in section 3.2 by 

using the partial differential equation, namely Laplace’s equation. 

Harmoni n functions in a domain satisfy Laplace’s equation and may 

be represented as simple-layer potentials (section 3*3) double-

layer potentials (section 3*4), generated by hypothetical source 

density distributions on the boundary. The potentials thus 

generated constitute an indirect formulation, which will be 

discussed in section 3*5*

Section 3.6 shows that integral equations may be obtained 

through the application of Green’s identities to harmonic functions. 

This becomes the direct formulation of the boundary integral 

equation technique. An alternative approach to obtain the same 

integral relationships can be derived through the weighted residual 

formnl a+.inn in section 3*7* The weighted residual approach is 

further extended in sub-section 3*7*2 to include formulation of 

integral equations for time dependent problems governed by the 

diffusion equation.

Each of the alternative formulations results in a

Eredholm integral equation of the first or second kind.
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3.2 Elements of Potential Theory

The basic elements of classical potential theory that

are related to the present study will be briefly reviewed (Jaswon 

and Symm, 1977). The most rigorous approach to the potential theory 

formulation was done by Kellogg (1954).

The potential at a field point p, with vector p , due to 

a unit simple source at a point , with vector , with reference 

to a set of coordinate axes, is defined as:

in three dimensions (3.2.1a)

in two dimensions (3.2.1b)

where | ? ~ J | = j % - £ | | TL (X j Q>) “ X \ J j (5.2.2)

and - 2 for two dimensions

c<= 5 for three dimensions

The potentials in (3.2.1) are continuous functions of p,

differentiable to all orders, and satisfy Laplace’s equation:

V^(p^)= o (3.2.3)

everywhere except at the source point
v

(see Appendix A.2).
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(3.2.4)

where § is the Dirac

properties that:

delta function centred upon and has the

£(p -fi) =1f 0 where (3.2.5a)

v I U '/Xi where (3.2.5b)

+

1 (3.2.5c)

In a gravitational field, the potential is called a 

Newtonian potential which may be generated by a discrete 

distribution of simple sources of intensities ,...,

located at points respectively. The potential at

p becomes:

A/
w(p) =ZZ '$(P> $i) (3.2.6)

1=1

This potential is also a continuous function of p, differentiable to 

second order , everywhere except when p coincides with one of the 

source points , for i = 1, 2,..., f\/ . Similarly, it satisfies 

Poisson’s equation:

2 N z x
Vu(p)=-4i[IZZSfp-^)-oi (3.2.7)

i=l ~ —

The above limitation on singular behaviour has its physical 

importance when the solution domain of Laplace’s equation contains 

a singular point, e.g. a source or a sink.
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3.3 Simple-Layer Potential

Newtonian potentials may be generated by various types 

of distribution of sources, of which the surface distribution of 

simple sources and surface distribution of double sources play 

an important role in classical potential theory.

This section is devoted to discussing the properties of 

potential generated by surface distribution of simple sources. 

The potential generated by the surface distribution of double 

sources will be discussed in the next section. Other types of 

distributions can be found in Jaswon and Symm (1977), Kellogg 

(1954).

of density (Tj^) at

Let denote a finite domain bounded by a smooth 

regular surface T and denote an infinite region exterior 

to . Let there be a continuous distribution of simple sources

This distribution generates the simple-

layer potential S at any point p of the form:

96 r

p €_0-t or

S(p) =pr(!p

r (3.5.1)

pwhere and (j, are such that specifies a field

point and specifies a source point. ^(p»^) is identical to the

p

one in equations(3•2.1) in two or three dimensions.
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The potential in (3.3.1) is continuous everywhere, 

differentiable to the second order and satisfies Laplace’s 

equation. It is therefore a harmonic function, everywhere 

except at F . Provided that CT satisfies a Holder condition 

(Kellogg, 1954) at p € F , the potential would be continuous 

as the field point passes through the surface, i.e.

(3.3.2)

Although S remains continuous at F , its normal 

derivative is discontinuous (Smirnov, 1964). On the boundary at 

p , there exist two distinct normals, one on either side of P . It is 

assumed that these two normals have equal status, i.e.

both increase moving away from F. The results for the interior 

normal derivative of S at p is given by Jaswon and Symm (1977):

= 5 P’Vr (5-5-5a)

and for the exterior normal derivative:

^=Se'(p)=J<r^)g'(p4)dr^)-^<7-(p)5 p^er (5.5.5b)

where </ = 1 for two dimensional problems and cZ - 2 for three

dimensional problems. 3^P>^ and imply that the interior

and exterior normal derivative operations take place at p keeping 

fixed, respectively:

(5.5.4a)

(3.5.4b)
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Since ffPp^ remains continuous as j> crosses r , it follows that:

9i'CP^ + fr'Cp'^ = 0 (5.3.5)

and therefore

Si'(p) + Sjp) = -lot ^a-(p') > P e r
(3.3.6)

which exhibits a discontinuity of -2c' <7~(p') between the inward

and outward derivatives at p 6 P .

Fig. 3,3.1 Inward and outward normal directions

jTl e
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3.4 Double-Layer Potential

In a vector field, two simple sources, of opposite sign, 

separated by a small distance £ will become a dipole source or 

double source as £ approaches zero.

Let there be a continuous distribution of double sources 

over P (not necessarily closed) of density at jep. The

double-layer potential generated by this distribution is given by:

= y 5 (5.4.1)

r P&CL: or

where g (p, <j)/ stands for the interior normal derivative of at

leeping p fixed.

The double-layer potential is continuous and differentiable 

to the second order, and satisfies Laplace’s equation. It is there-

fore a harmonic function, everywhere except at F .

When p approaches P along the normal at p on P , from 

either the interior fl c or the exterior n e , it follows that:

lim, VJ(pi) = VJCf) + (3.4.2a)

lim U(pe) = VJ(P) - c/rj /*([>') (3.4.2b)
Pe^P r 7

where </=1 for 2-dimensional problems and </= 2 for 5-dimensional 

problems.

Pt > pe are Points on the normals respectively emanating

from p on P .
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Differentiating equations (5.4.2) gives:

lim j. lim - 0 > p,4 e r
P<-*F P<-’? M rt>

which illustrates the normal derivatives are continuous at

By putting yx = and letting P be a closed surface, Jaswon and

Symm (1977) demonstrates that a jump exists in the formulations

at a field point p moving from interior to exterior (interior

formulae) or from exterior to interior (exterior formulae). The

equations are quoted here for completeness.

Interior formulae:

wq >) = f gCp.^X' = -2 > p e nc (3.4.4a)

W(70 = J 0(P’$\' / i > p e r (3.4.4b)

W (p) - f fl = 0 > d e £1# (3.4.4c)

Exterior formulae:

=Jp XP'fa = ■> p eQ-i (3.4.5a)

WQ>) = Jr %(p’&dr<^ > peT (3.4.5b)

w(p) =f 3CP‘&= 0 > p e -P--^ (3.4.5c)
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3»5 Indirect Formulation

A function (p is said to be harmonic within a domain P-- , 

bounded by a closed surface P , if it satisfies the following 

conditions:

a) (f) is continuous in P. + F ,

b) (f) is differentiable to at least the second order in P- ,

c) (j) satisfies Laplace’s equation in P. ,

vV = O (3.5.1)

Since every Newtonian potential is a harmonic function, 

it follows that the potentials S and W in equations (3.5.1) and 

(3*4.1) are harmonic and satisfy Laplace’s equation in -P‘L .

These two equations form the basis for the indirect 

formulation in classical potential theory. It is assumed that 

the potentials are generated by continuous source distribution on 

the boundary with prescribed boundary conditions which are known 

a priori. It is therefore an integral formulation for the unknown 

source intensity. These equations may be discretised and solved 

numerically , and potentials and their derivatives may’ be obtained 

anywhere in 11 by back-substitution of sources into equations 

(3.3.1) and (3.4.1).

To obtain an integral equation for the solution of Neumann 

problem, where the potential derivatives (f)- on the boundary P are 

given, may be expressed as a simple-layer potential:

^p)= (3.5.2)

where 7" is a source density to be determined.

3 (p ,cl) is the Newtonian potential (3-2.1)^and is sometimes
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called the fundamental solution to Laplace’s equation.

Taking the derivative of (3*5.2) in the direction of 

inward normal to F as p is taken to the boundary yields :

=Jp 7 (5-%3)

where = 1 for 2-dimensional problems and o/=2 for 3“*<iimensional 

problems.

This constitutes a Fredholm integral equation of the 

second kind for (T in terms of as the unknown appears both 

outside and inside the integral. According to Fredholm theory, 

a solution of (5.5.3) exists if the Gauss condition (equation 

(A.2.15))is satisfied, and the solution ia unique only up to 

an arbitrary additive constant. Once the system of algebraic 

equations is solved, values of at any interior or exterior 

boundary point can be calculated by using (3*5.2). Numerical 

examples can be found in Symm (19$3) and Jaswon and Symm (1977).

For the solution of Dirichlet problem, where (f> is 

prescribed on the boundary F , one may express (/> as (1) a 

simple-layer potential with unknown density (T or (2) a double-

layer potential with unknown density yA .

For the first case, takes the form of equation (3-3.2), 

i.e.

’ P'^e^ (5-5-4)

which is a Fredholm integral equation of the first kind, as the 

unknown 7“ appears only inside the integral. values at any

25



location may be uniquely obtained from equation (5»3.1)> once the

source density O'" is solved.

For the second case, <p takes the form of equation 

(5*4.1), i.e.

Taki ng into account the jump by —</#/<( p) at p <SjP , in accordance 

with (5.4.2a), yields the boundary relation:

This constitutes a Fredholm integral equation of the

using equation (5»5«5).

of • When is solved on the 

computed everywhere in or £2 e by

The difference in the above two approaches lies mainly 

in the numerical formulation of the system of algebraic equations, 

obtained after discretisation. The pressence of the term outside 

the integral, for an equation of the second kind, ensures that 

the overall matrix will be diagonally dominant. An equation of the 

first kind with a non-singular kernel may be difficult to solve, 

being essentially ill-conditioned. However, in the present case, 

the singularity of the kernel ensures diagonal dominance in the 

system matrix and the problem is in general well conditioned.

Numerical solution of equation (5*5.4) can be found in

Jaswon and Symm (1977) and Symm (19&5)*

5
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5.6 Direct Formulation

A conceptual disadvantage of the indirect formulation is

the introduction of source densities in the integral equations. The

solution f°r or involves a two stage process: 1) solution

to obtain the source densities which usually bear no physical 

relation to the problem; 2) back substitution of source densities 

to obtain d> or .
T dH

However, the two stage process can be reduced to one 

stage by using Green’s formula, where Cp , over P play the

role of source densities which generate , throughout XI . This 

technique is the so-called ’Direct Formulation' of the boundary 

element method.

Given two different functions,^ and r with continuous 

first and second derivatives in region XI; . From Green’s second 

identity, (Appendix A.5, equation A.J.6) and noting that the direction 

of the normal is changed from outward to inward (l\), for compatibility;

are harmonic functions in XI; , then

V2 $ = o • 2 - O

and the left hand side of (5.6.1) vanishes, so yielding Green’s 

reciprocal formula:

(3.6.2)
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If <p is a harmonic function in Cl[ and is the fundamental solution:

= 3(P'V

which satisfies Poisson’s equation

vV =

(3.6.3)

(3.6.4)

where p is the field point and 0, acts as a unit source point on 

the boundary.

From the properties of Dirac delta function, equations(5.2. 5), 

the left hand side of (3.6-1) becomes:

p &pp-i (3.6.5)

Substituting equations (3.6.3)> (3.6.5) into (5.6.1) gives:

> S 6 F > P £ (5*6.6)

which is the Green’s formula for potential <f) (p) inside the domain 

and provides a fundamental link between the theory of harmonic 

function and potential theory.
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However, according to the uniqueness theorems (Moon and

Spencer, 1961), either or (/)' alone essentially suffices to 

determine in •

<^) and (j/ must be known on P in (3.6.6) to enable the 

evaluation of ^(p) at p<=Qt’. That implies the Green’s formula requires 

more boundary information than would be available in any well posed 

boundary value problem. An improvement to (3.6.6) is to move the 

field point p to lie on P , so that it can solve a boundary value 

problem.

In moving the point p to the boundary, the simple-layer 

potential remains continuous but the double-layer potential jumps 

by an amount type of boundary under consideration.

is an internal angle at point p, i.e. the angle in £2- between

the tangents to P on either side of p and in the case of smooth 

boundary, A = -27[ . Equation (3.6.6) then becomes:

Equation (3.6.7) is the so-called Green’s boundary

formula which forms the basis of the direct boundary integral

squation method. A further jump of -2 7[ (p) occurs for smooth

boundary when p lies in the exterior domain, i.e.



Thia can be treated as a particular case of (5.6.2), since both 

functions (b andq(p,a) are harmonic outside

Given fb' ~ $>'over V (interior Neumann problem), equation 

(3.6.7) becomes an integral equation of the second kind for <d> in 

terms of d)' :

r . r (3.6.9)

This only has a solution if 0 satisfies the Gauss condition
‘ 6

(Appendix A.2) :

(5.6.10)

= A + k

That means in interior Neumann problems, the solution d> is 

unique up to an arbitrary additive constant (k).

Given over P (interior Dirichlet problem),

equation (5*6.7) becomes an integral equation of the first kind 

for (/> interms of (f) :

> p ,a e r (3.6.11)
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Equation (5.6.11) has a unique solution, which automatically 

satisfies the Gauss condition.

Given (f) - (ft on a part P, of P and

on the complementary part , where P = p( + [P , a mixed boundary

value problem is imposed. The solution is unique from the

Uniqueness Theorems (Moon and Spencer 1961).

Equation (5*6.7) becomes for a smooth boundary:

-2r[(p(p) 

r

or

~2 7/ <f> ( p)

= 2 p)

n

and '' are the known values.where (£)

Hence the unknowns (£> and are on the left hand side of the 

equation which can then be solved by Gaussian elimination.

The mixed boundary value problems constitute most of

the cases that the boundary integral equation method is applied 

successfully to obtain solutions.

An advantage of the direct formulation over the indirect

one is that the restriction for the boundary surface to be a Liapunov

(smooth) one can be relaxed, thus allowing surfaces with corners to

X
be included.
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3*7 Weighted Residual Formulation

The Green’s boundary formula or the direct boundary 

integral equation method can alternatively be derived by the weighted 

Residual consideration (Brebbia, 1978)*

The idea of the weighted residual technique is based on the 

procedn-rea for approximating numerically the solution of a set of 

differential equations of the form:

= p in XT (3.7.1)

where is the operator which when operating on some function p 

produces another function, say p, with a given set of boundary 

conditions.

The operator can be of differential or integral type.

The function ^6 is found by approximating a set of functions, 

such that;

= ST fit (3.7.2)

I-/

where are nndetermined parameters and axe a set of

’trial’ functions chosen beforehand. The are often chosen

to be linearly independent.

It is required that these functions satisfy all the 

given boundary conditions of the problem and when substituting 

equations (5.7.2) into (3.7.1), the left hand side of (3.7.1) would 

be different from zero or produce an error function G. , which is
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called the residual,

i.e.

e = V V - p =£ o (3.7.3)

(2) Neumann conditions : — on

It is obvious that € is equal to zero for the exact 

solution but not for the approximate solutions. The residual or e 

is then forced to become zero, in the average sense, by setting 

weighted integrals of the residual equal to zero with the idea of 

orthogonalization:

€ dx - O ( = 1»2.... N (3.7.4)

where id; is a set of linearly independent weighting functions.

The solutions will converge towards the exact solution as N increases.

5.7.1 Steady Potential Problems

Paving given the fundamental idea of the weighted residual 

technique, an approximate solution is required for the problem 

governed by Laplace’s equation;

V2<^C<£) = O ■, (3.7.1.1)

with the corresponding boundary conditions:

(3.7.1.2a)

(3.7.1.2b)

(1) Dirichlet conditions :

X
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where F, and P are part of the total boundary F and such

that:

= n + n
Substituting an approximate function for </> into equations (3*7*1»1)

and (3.7.1.2) produce errors such that:

€ = ?' /ty + 0

£, = / o

£2 = 0

in n (5.7.1.3a)

on r, (3.7.1.3b)

on
r—1

1 2 (3.7.i.3o)

The errors must be made as small as possible over the

domain and on the boundary by the above technique •

The distribution of the error functions, £ , E( and Ez

can be carried out by multiplying them by a weighting function QFp>?}
I u 

and integrating over the domain and boundary respectively, i.e.

-ci r.
or

J ftp.3) = f(pF6'rF
XL

-/ W (5.7.1.4)

where p is the field point and is the source point, and 

takes the value of equations(3*2.1). . represents the

outward normal derivative in this technique.
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Applying Green’s first identity to the integral over £1 in (3.7.1.4) 

gives:

(5-7.1-5)

p r.

where indicial notation indicating summation has been used.

Applying Green’s first identity to the integral over £1 again in

F^om equation (3.6.4):

v2^Cp,^ = -4-nSCp-p (3.7.1.7)

and so :

'to. ~~

= -4T[4>(p) (3.7.1.8)
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Substituting equations (3.7.1.8 )into (3.7.1.6)gives:

47r^ (3.7.1.9)

where the field point p lies inside the domain and the source point 

locates on the boundary.

When comparing the above equation with (3.6.6) a difference 

in sign occurs on the ri^it hand side of the equations. This is due 

io the assumption made for the normal derivatives: the direct 

aPproach takes the inward normal and the weighted residual approach 

iakes the outward normal. Both assumptions are equally valid and 

ihere is no advantage on one over the other.

When the point p is taken to the boundary and accounting 

the jump in the first integral yields the more general boundary 

integral equation:

where C (p) is a constant depending upon the type of boundary under

consideration.

Two different procedures can be used to calculate the 

Value of the coefficient C: one is through the physical consideration 

ihat a constant potential applied over a closed domain produces 

no flux (i.e. <p = 0 ), which is the one used throughout the 

studies and will be discussed in detail in the next chapter; the 



other is obtained through geometry configuration where C (p) equals to 

the internal angle of the boundary at p (see Fig. 3.7.1.1):

= TJ + (9t — <92 (5.7.1.11)

where Q and & are the angles between the outward normal and X 

a-rj a for elements 1 and 2. respectively.

For an internal point p, C (p) becomes where

p< = 1 for 2-dimensional problems and = 2 for 3-dimensional 

problems.

In a well-posed boundary value problem only half of the 

boundary variables in (3.7.1.10)are prescribed. This equation can 

be employed in order to obtain the unknown boundary data. In 

chapter 4, a numerical scheme to solve this boundary integral equation 

will be presented. Then, values of the function (ft at any internal 

point p can be calculated by equation (3.7.1.1O).The derivatives of

(j) at p (with Cartesian coordinates Zj(p), j - 1,2,3), if 

required, can be computed by differentiating equation (3.7.1.1O),i.e.

Mg). (3-7.1.12)

j = l,2,3

3.7.1.1 Internal angle of the hound a-ry at
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3*7*2 Transient Potential Problems

The foregoing deals with the boundary integral equation 

technique applied to problems governed by Laplace’s equation. This 

section extends the weighted residual technique to study solutions 

to the diffusion equation;

o (3.7.2.1)

with boundary conditions:

on pj at time (5.7.2.2a)

= = on at time zt (3.7.2.2b)

804 initial conditions:

given at X = in fl (3.7.2.3)o

The coefficient |< in equation (5.7.2.1) has different 

interpretations according to the physical problem concerned, and 

is assumed to be constant in space and in time.
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difference technique to replace the time derivative in equation 

(3.7.2.1).. Details of the two existing methods are referred to 

Rizzo and Shippy (1970), Brebbia and Wrobel (1979)-

As the problem is now time dependent, the equation will 

be integrated with relation to time and the weighting expression, 

similar to equation (3»7«1*4)«

>T _ .

Jr2

TnS (p^/t.T)^ cLt (3.7.2.4)

where Xo is the initial time and T is the final time.

n is the outward normal and 3 ( P » % » X , T ) becomes the 

time dependent fundamental solution of the form(Morse and Feshbach, 

1953 ; Carslaw and Jaeger, 1959): 

1
(4nk(T-<exp

-f(M)

4K(T-*)
H (T-*) (3.7.2.5)

where cZ is the number of spatial dimensions of the problem, e.g.

o< = 2 for two-dimensional problems.

H (T“ X) is the Heaviside function which becomes zero 

for X >T . This condition is known as the causality condition 

(Morse and Feshbach, 1953)*



*=*<> ix c*, .

- f 9*(H> at

(J.7.2.6)

t=A© r

The fundamental solution possess the following" properties:

k v'g*Cp<^ _ (5.7.2-7)

and

Um

O for p
>c for p = a

(3.7.2.8)

(3.7.2.9)

Substituting equations (3«7»2.7), (3»7*2.9) into (3*7*2.6) gives 

the expression for the solution of diffusion equation for an 

internal point p:

/-T r
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Taking the point p in the above equation to the boundary and 

accounting for the jump of the left hand side integral yields the 

boundary integral equation;

X=7

Ctp)^p,T) + K

,*-T

(5-7.2.11)

where £ (p) is a function of the internal angle on the boundary at p.

Since the time variation of functions (^ and (j) is not 

^wn a priori, a time-stepping technique has to be introduced for 

numerical solution of equation (5.7*2.11).

Two different time-stepping methods 

^•Qto the numerical solution technique: the first 

s'fceP as a new problem so the solutions inside the 

time step j , are used as the 

3+1 ; the

starts at time

ComPuted at intermediate steps.

solution is reached.

second considers the

, so values of

can be incorporated

treats each time

domain, evaluated

initial condition for time step

time integration process always

4 at internal points need not

As —* oc , a steady state
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CHAPTER 4 - NUMERICAL FORMULATIONS AND SOLUTIONS OF

PROBLEMS IN CHAPTER 5

4.1 Introduction

This chapter deals with the numerical solution of the 

boundary integral equations relating velocity potential and 

its derivative (/> over the boundary P,

The general approach involves the reduction of infinite 

degrees of freedom, and to a finite set. The boundary is 

discretised by N nodal points with L elements of straight lines 

or curves. The contour integration is then performed by using a 

numerical quadrature scheme with the points, I , I =1,2,...,

/V , acting successively as origins for sources or sinks. A/ 

algebraic equations are then obtained with N knowns and N 

unknowns in a well-posed boundary value problem. This system of 

equations is solved by using Gaussian elimination. Once the 

solutions on the boundary are known, values of (p and their derivatives 

in X and tf directions at any internal point can then be calculated.

Section 4.2 examines the above approach in steady potential 

problems with different types of function variations along boundary 

elements. Although constant and linear variations were studied and 

discussed in the author’s undergraduate project (Lau, 1980), it is 

repeated here for completeness.

When a problem involves domain consisting of several 

different homogeneous zones, or where solution becomes unstable 

due to singularity problems, section 4.5 illustrates how integral 
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equations can be written for each individual zone. Each set of 

equations is then linked up through compatibility and equilibrium 

conditions on the common boundaries between zones.

The technique is further extended to solve domain 

problems with orthotropy and anisotropy in section 4.4; free 

surface flow problems in section 4.5; and- transient potential 

problems in section 4.6.

The first boundary element program written for potential 

problems in this study was with linear variation along elements 

(Program lBEMLVB1/in Appendix A.12). It was initially developed 

in the author's undergraduate project (Lau, 1980). The present 

version is updated with (i) evaluations of potential derivative 

and its direction at internal points, (ii) restructuring of computational 

procedure far better efficiency. A flow chart with algorithm 

for program'bEMLYB/is shown in Appendix A. 11.

Computer programs incorporating the above technique are 

listed in Appendix A.12. Although programs were written to 

solve two dimensional problems only, its idea may be extended 

to solve three dimensional problems.
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4.2 Steady Potential Problems

For steady potential problems, boundary integral equations 

were derived through classical potential theory and the weighted residual 

technique, and both approaches ended up with equations of the same 

form excepting the.' sign which depends on assumption made in taking the 

normal derivative inward or outward. Both approaches were programmed 

and gave the same results, with the signs taken into consideration. 

Therefore, the outward normal is chosen, unless specified, for 

the numerical interpretation of the boundary integral equation 

for steady potential problems, repeated here for clarity;

r -

The boundary T is discretised into elements. Each

element is defined by a set of nodal coordinates and a set of 

nodal values of potential and derivative , depending upon 

the number of nodal points on that element. Therefore the coordinates 

and the functions (j> and (j) at any point within an element j 

can be expressed in terms of some suitable interpolation functions 

and the nodal properties as follows;

*4=^5 A/Jl) 
yj = ^1 M ty*

(4.2.2a)

(4.2.2b)

(4.2.3a)

(4.2.3b)
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where J equals the number of nodal points on element J .

is some intrinsic system of coordinates such that 'g = -1 at

one end of an element and = 1 at the other end (see fig. 4.2.1.1).

The boundary is assumed to be discretised into L elements with

A/ nodes. The substitution of equations(4.2.5) into (4.2.1) 

yields, for each nodal point l :

Since the interpolation functions l\l^ are usually

expressed in terms of some intrinsic system of coordinates, it is 

necessary to transform the integral boundary clT from the

global Cartesian system of coordinates, say in (x,y) plane, to the 

intrinsic system of coordinates, say in plane. This is achieved

by using a Jacobian function defined as:

'4

(4.2.5)

z+

Hence dT in equation (4.2.4) is replaced by with

the limits = -1 to = 1. The evaluation of | is obtained 

by expressing the geometry of the element in terms of the coordinates 

defining the element j and the interpolation functions through 

equations(4.2.2).

If the expressions for /SA are known, 4*- and -4^- 

can be evaluated for a particular value or Gauss length J 80 | J 

may be calculated.

In matrix notation, equation (4.2.4) is expressed as:

(4.2.6)
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w h e r e

g*  (i ^) dr t

c 3 =f  3‘(i n J ^ G  =  f yr o [ g ® «|l Tl^ 4
J n  - ■

( 4 . 2 . 7 a )

( 4 . 2 . 7 b )

E q u a t i o n s ( 4 . 2 . 7 )  a r e  v e r y  g e n e r a l  e x p r e s s i o n s .  T h e  a c t u a l  v a l u e s  

t h a t  g o  i n t o  H , j  0 T  G l j  d e p e n d  o n  t h e  n u m b e r  o f  n o d a l  p o i n t s  

o n  e l e m e n t  j , a n d  w i l l  b e  d i s c u s s e d  i n  t h e  f o l l o w i n g  s u b - s e c t i o n s .

( Cj

t o  f o r m

i s  a  d i a g o n a l  m a t r i x  w h i c h  m a y  b e  i n c o r p o r a t e d  i n t o  

[ H i j ]  »  i - e -

H L l  ~  H i t C i i  ( 4 . 2 . 8 )

a n d  t h e r e f o r e

( «j( «
F o r  t h e  p a r t i c u l a r  c a s e s ,  H - ^  a n d  f e e

( 4 . 2 . 9 )

d u e  t o  t h e  p r e s e n c e

o f  s i n g u l a r i t y ,  t h e  i n t e g r a l s  w i l l  b e  e v a l u a t e d  a n a l y t i c a l l y .

F o r  a  p a r t ^ c u l a r  n o d e  1 — 5 ,  e q u a t i o n  ( 4 . 2 . 9 )  w o u l d  l o o k  l i k e :

✓ > 1
9  9  9

9  9 9  9

H 3 1 H 3 2 H +i  H w  ♦  • • H j n

[ A]
9

^ 3 1  ^ 3 3

' <
<k

9  9  9 A r • • •

9  9  9 • 9 9 9 •
9  9  9 • • • * 9

9 9  9 9 • • •

9  9  9
( b
1 %

• • • 6'
' N J

A s  d i s c u s s e d  e a r l i e r  i n  s e c t i o n  J . 7 a  s i m p l e  a p p r o a c h

t o  e v a l u a t e  t h e  d i a g o n a l  m a t r i x [ C q J i n  ( 4 . 2 . 6 ) ,  o r  i n d e e d  t h e  

d i a g o n a l  m a t r i x  i n  w  i n  ( 4 . 2 . 9 ) ,  i s  t o  a p p l y  a  u n i f o r m  p o t e n t i a l  

t o  t h e  w h o l e  b o u n d a r y .  T h e  p o t e n t i a l  d e r i v a t i v e  m u s t  t h e n  b e  z e r o  

a n d  e q u a t i o n  ( 4 . 2 . 9 )  r e d u c e s  t o ,  a s s u m i n g  ( j ) ^ i s  a  u n i t  p o t e n t i a l ;

4 6



0

Hence, the sum of all the

ought to be zero, and the

can be computed as:

Since either

set of equations

in matrix form :

where [A]

w
tn

(4.2.10)

coefficients of matrix [H J in a row 

coefficients on the leading diagonal

(4.2.11)

or <jt>Z

can be solved for

is

the

known at each node, the

N unknowns after re-ordering

a fully populated matrix of order N x 

contains the unknowns or

is obtained by multiplying the known (/)

with the appropriate coefficients in the matrices [nJ orf^-j] 

in (4.2.9).

is

(4.2.12)

N .

)

or p'

Equation (4.2.12) is then solved by Gaussian elimination.

Once the value of and (p on the whole boundary

are known, the values of in the x-direction and in the

y -direction, at any interior point, can be calculated using

equations (4.2.1) or (4.2.4), i.e.

L

rJ
rJ (4.2.15a)

h
(4.2.15b)
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Since becomes 1 for an internal point completely

surrounded by the boundary.

The direction of potential derivative 0 is obtained

from:

0 = (4-2.14)

Different orders of approximation can be used to describe 

the boundary geometry, the potential and its normal derivative 

along an element, depending upon the behaviour of the boundary 

concerned. The nodes where the unknown values are required will 

depend upon the type of approximation used. If the boundary is 

approximated by straight line elements with constant variation , 

the nodes are taken to be in the middle of each interval (Fig. 

4.2.1a) and the functions (p and (p are assumed to be constant 

along that element. If the boundary is approximated by straight 

line elements with linear variation, the nodes are taken to be at 

the intersection between two elements (Fig. 4.2.1b). The functions 

and (J) are assumed to vary linearly. In both cases, the 

number of nodes is equal to the number of elements.

Quadratic elements (Fig. 4.2.1c) can also be used to discretise

i i >
the boundary with quadratic variation for the functions <p and tp 

An extra mid-element node is needed in the computation. Therefore, 

the number of nodes would not be equal to the number of elements.
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End points of straight 
line elements

element j

es and 
coincide

mid-node

extreme-nodes

(c) Elementswith quadratic variation

Fig. 4.2.1 Different types of boundary elements
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Matrix equations for constant, linear and quadratic 

variations are shown in the next three sub-sections. But expressions 

used for computing purposes are illustrated for constant or

linear variation only.

As demonstrated in the next chapter, linear variation along 

straight line elements are used throughout the major part of the 

programming analysis.

4.2.1 Constant Variation

Special care has to be taken when using constant variation 

because the coordinates used to define element length are different from 

the nodal coordinates where the solutions are required. In general, 

nodal coordinates are taken to be the midpoint of an element, i.e. 

for an element j with prescribed coordinates ( Xj1 , ) at end 1

and ( Zj2 ’th 2 ) end nodal coordinates for

element j will be:

\ Xjz (4.2.1.1a)

~(4.2.1.1b)

The coordinates ( Xj , ) at any point on element J can be expressed

in terms of the linear interpolation functions and the coordinates 

at end 1 and end 2, as follows:

A//?) ^ji (4.2.1.2a)

(4.2.1.2b) 
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where 5 is the intrinsic coordinate (Fig. 4*2.1.1) such that:

_ X
3 Ai/2 (4.2.1.3)

and the interpolation functions become (Fig. 4.2.1.2):

— 5 ) (4.2.1.4a)

A//l) = 4^1 + '^ (4.2.1.4b)

The prescribed functions or 0 will be associated with

the nodal point (not the end points) of element j and assumed

constant along the element. So, in equation (4.2.3), =1 and

hence : 1

(4.2.1.5)

In order to evaluate the Jacobian function, | TI »

equation (4.2.1.2a) is written out in full and differentiated with 

respect to :

+ Td + ?)X^

= ~"2"= ~2”C^jz-^ji) (4.2.1.6a)

Similarly, for equation (4.2.1.2b):

(4.2.1.6b)

Substituting the above results into equation (4.2.5) gives:

ui= * y^i) J= ~2 (4.2.1.7)

So, the Jacobian |T| for constant variation equals half the 

length of element j »
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X

l=-i

Fig. 4.2.1.1 Intrinsic coordinate system

element jEnd 1

J=-l 1=0
End 2

1=1

Pig. 4.2.1.2 Linear interpolation functions

52



The integrals in equations (4.2.7) are evaluated numerically

using Gaussian quadrature scheme. With X = 1, /V* = 1 and

-i k = l ' iK

Qij = f Q ' I = 2Z In “2^
-\ k-l

(4.2.1.8a)

(4.2.1.8b)

where M is the number of Gauss points used on element j.

QWk is the Gauss weight associated with Gauss point k..

is the perpendicular distance from nodal point i to the 

tangent of element j.

/j is the length of element j.

For the diagonal terms H-j and Qq , the integrals become 

singular and have to be evaluated analytically in the Cauchy principal 

value sense. That implies a small segment of length 28 around the 

singular point excluded from the integration and then the limit of 

E—is taken. Hjj is zero due to the orthogonality of Y along 

element i and its normal n (i.e. 0). Therefore, equals to

C^and is evaluated through (4.2.11). From appendix A.5 , is shown 

to be:

(4.2-1.9)
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4.2.2 Linear Variation

The nodes are now considered to be at the ends of an 

element or where two straight line elements meet (Fig. 4.2.1b). 

Therefore, nodal coordinates are the same as element coordinates. 

Equations (4.2.1.2), (4.2.1.5) and (4.2.1.4) are applicable to obtain 

coordinates of a point on element j and hence the Jacobian function , 

13"|, remains the same as for the constant case.

Prescribed values of (j) or ft are at the nodal points, 

assuming varying linearly within each element. Therefore, values of 

(j) and ft at any point on element j may be defined by equations 

(4.2.5) with X = 2 , i.e.

(4.2.2.1a)

(4.2.2.1b)

where ft and /V2 have the same expressions as (4.2.1.4). The expressions 

for and (J'tj then become:
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where Jtj have the same meaning as for constant

variation .

From equations (4.2.2.2), it can be seen that the first 

integral accounts for the contribution of element j at node j 

(i.e. end 1 of element j) and the second integral accounts for the 

contribution from element j-1 at node j (i*e. end 2 of element j-1). 

This is due to the fact that for linear variation , node j lies 

at the intersection of elements j and j-1.

For the diagonal terms, Hu again equals zero and hence

Hci obtained through equation (4.2.11). The evaluation of

is shown in Appendix A.5 and it has the following form:

(Jit = -W lnf^)-/,5 j C-Ci-l) (4.2.2.J) 

where A‘ is the length of element l.

Again, it can be seen that coefficients in equation (4.2.2.5) 

involve contributions from elements1-1 as well as i, as compared to 

equation (4.2.1,9) which only involves a contribution from element ( 

containing nodal point 1.

element j^/"element j-1

i
(End 2)j-i

(End 1)j

i + 1

(End 2)j

(End l)M

Fig. 4.2.2.1
5

Contributions from neighbouring elements to node j
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4.2.5 Quadratic Variation

The nodes considered in this case are not only at the 

end intersections of elements but also an additional node located 

in the middle of an element or somewhere between the end nodes 

(see Fig. 4.2.1c). Therefore 'ft = 5 in equation (4.2.5). As for 

the linear variation , element coordinates are the same as the nodal 

coordinates. Both the coordinates and functions and vary 

quadratically within each element. At any point on an element, its 

coordinates and functions may be defined in terms of its nodal values 

and the interpolation functions for an element j as:

(4.2.5.1a)

i/j ^) = M f?) 1)

+ AOfc +
<&(1) =

(4.2.5.1b)

(4.2.5.2a)

(4.2.5.2b)

where 5 is an intrinic coordinate and has the same expression as 

equation (4.2.1.5), i.e.

«=_£_ (4.2.5.5)

5 4/2
The interpolation functions become (see Fig. 4.2.5.1):

Fig. 4.2.5.1 Quadratic Variation
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(4.2.5.4b)

(4.2.5.4c)

Substituting equations (4.2.5.4) into (4.2.5.1) and after differentiation 

gives:

d. X _ 
■*$- + 5(^71+ \)5 —*ja) (4.2.5.5a)

ch ft, - i/jt_------- + ?(^i+ (4.2.5.5b)
With 5 equals to a Gauss length chosen, |J|is obtained by:

(4.2.5.6)

The equivalent expressions for H;j and 60 in equations

(4.2.7) for quadratic variation are given by, y = 5 in this case:

for end-nodal points :

(4.2.5.7a)



for mid-nodal point:

Hf = (4.2.5.8a)
J t dr> Jj
-1

? ,1
f^ij =J ^5 (4.2.3.8b)

-1

It is interesting to see that equations (4.2.J.7) have two 

integral terms similar to (4.2.2.2) for linear variation , and equations 

(4.2.5.8) have only one integral contribution from its own element, 

similar to (4.2.1.8) for constant variation • This reaffirms the fact that 

a node located between two elements will have contributions from

both elements but a node within an element will only have a 

contribution from its own element.

The Hit coefficients may again be obtained through equation

(4.2.11) while the terms are of the form:

for end-nodal points:

I

+ -j-+ ^5 (4.2.3.9a)

for mid-nodal point:

Gii = f (ln M 0 ~ ’g’M d 5 (4.2.3.9b)

Since the Jacobian function involves J terms in it, the 

integral terms in Qu become difficult to be evaluated analytically 

and may be solved by using a logarithmic Gaussian quadrature formula 

(Brebbia, 1978).
5
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4.5 Combination of Zones

In many practical problems it may be necessary to divide 

the domain into several zones, (Erebbia, 1978; Brebbia and Walker, 

1980). This may be due to : (1) a non-homogeneous body constituted 

of several homogeneous zones with different physical properties;

(2) bodies of irregular shape where re-entrant corners or singular 

behaviour occur . Integral equation will first be written for 

each zone and then linked together through compatibility and 

equilibrium conditions on the common boundary between the zones.

Consider for instance the case of a two-dimensional domain, 

divided into three different zones, andP-s (see Fig. 4.5.1)

and the whole domain H is:

n = n, (4.5.1)

The outer boundaries are denoted by P on £1, ; Q as the first 

part and R as the second part on £lz ; R on . The interfaces

Fig. 4.5.1 Division of domain
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between the three zones will be called and • Integral

equations will be obtained over each zone independently. The node 

numbering system will be anti-clockwise in each zone (see direction 

of arrows in Fig. 4*5*”0*

Let LX represents potential & and (3 represents potential

derivative (p , the integral equation in matrix form (4*2.9) becomes,

for zone 1:

fl 1s! f 1 *1

H u
I <

T Q1
r uG (4*5*2)

are on the interface considering that it belongs to zone

Similarly, for zone 2, the equation in matrix form becomes:

(4*5*5)

where LA* and Q1 are on the first part of the external surface of 

zone 2, i.e. F2 , U and Q are on the second part of the external

2 -
surface of zone 2 i.e. 1 2 are on ^n^er^ace fit »

2 z-'i2
considering it belongs to zone 2. and QI2 are on the interface

considering it belongs to zone 2.

60



F o r  z o n e  3 ,  t h e  n i a t r i x  f o r m  i s :

H A  H 5 ' = i m </ o,;
k  J

l <
k  ✓.

k
w h e r e  U 3  a n d  Q *  a r e  o n  t h e  e x t e r n a l  s u r f a c e  o f  z o n e  3 . M i x  a n d

3  n
Q ^ 2  a r e  o n  t h e  i n t e r f a c e  [ ^ 2  , c o n s i d e r i n g  t h a t b e l o n g s  t o  z o n e  3 .

T h e  i n t e r f a c e s  m a y  b e  t r e a t e d  a s  i m a g i n a r y  b o u n d a r i e s  w h i c h  

m a y  n o t  e x i s t  i n  t h e  o r i g i n a l  p r o b l e m .  T h e r e f o r e  U .  a n d  &  o n  t h e  

i n t e r f a c e s  a r e  u n k n o w n s .  A d d i t i o n a l  e q u a t i o n s  a r e  n e e d e d  t o  e n a b l e  

t h e  p r o b l e m  t o  b e  s o l v e d .  T w o  c o n d i t i o n s  m u s t  b e  s a t i s f i e d  o n  t h e  

i n t e r f a c e s .  T h e y  a r e :

( 1 )  t h e  c o n d i t i o n  o f  c o m p a t i b i l i t y :

1 2
i . e .  =  l i i i

( 2 )  t h e  c o n d i t i o n  o f  e q u i l i b r i u m  ;

o 1  2

Q 1 1  =  ~  Q u
2  3

Q i  2  ~  ~ ~

( 4 * 3 * 5 a )

( 4 . 3 . 5 b )

( 4 . 3 . 6 a )

( 4 . 3 . 6 b )

R e a r r a n g i n g  e q u a t i o n  ( 4 . 3 * 2 )  y i e l d s :

( 4 - 3 - 7 )

Q x U

Uii

S u b s t i t u t i n g  e q u a t i o n s  ( 4 . 5 . 5 )  a n d  ( 4 . 5 . 6 )  i n t o  ( 4 - 5 - 5 )  a n d  a f t e r  

r e a r r a n g i n g  t h e  n o d a l  e q u a t i o n s  o n  t h e  c o m m o n  b o u n d a r y

d u e  t o  o p p o s i t e  n o d e  n u m b e r i n g ,  ( s e e  F i g .  4 . 3 . 1  o r  F i g .  4 . 3 . 6 )  g i v e s :
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(4.3.8)

The above substitution and re-arrangement of the equations

on the common boundary are repeated in equation (4.5.4) and

hence:

(4.3.9)

Combining equations (4.3*7)» (4-3.8) and (4-3-9) produces:

or

0 0 0 u = G1! Gx: -Hn' O
I 1

■ 0 i
1 0 0 0

H2 H1 0 u! 0 J “Gii -Hu' G Gti -Hxt 0
0 0 H3

<
u2

r 1 1
0 0 0 10X 1 *

1
°i<

ce
S /

h ]{u ] = [a ]{ X

o
0

Assuming the external boundaries are prescribed with potential tA , 

and hence contains all the unknowns. Equation (4.5.11) can

further be reduced to :

(a]{x }={b} (4.3.12)

where
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This system of equations is similar to (4.2.12) except 

that the matrix [Al becomes banded, as shown in (4.3.10). This 

banded matrix will make the boundary integral equation method more 

attractive not only to reduce the behaviour of the singularity if 

it exists in the problem but also to reduce the computing time in 

the formation of matrices [ H] and [Q] and the solution routine. 

The band width of [A] relies on the maximum size of a block matrix, 

or in other words, the number of nodes on the boundary and on the 

common boundary in a zone. If the number of boundary nodes is fixed 

in a problem, the smaller the number of nodes on the boundary and 

the common boundary in a zone, the smaller the band width in the 

matrix [ A ]. This is usually done by dividing the problem domain 

into as many zones as possible. The resultant matrix, even though 

it remains non-symmetric, becomes banded. Therefore, it is 

computationally economical to solve.

In the case where part of the boundaries are prescribed 

with potential derivatives Q , say in zone 1, then the <3 values 

on the right of equation (4.3.2) would interchange with the 

corresponding U values on the left. The corresponding columns of 

matrices in [H] and [ G ] are also interchanged with the reversal 

of signs.

Although three zones were used for the above derivation, 

the technique can be applied to problems with infinite number of 

zones by taking equations (4.3.2) for the first zone, (4.3.4) for 

the last zone concerned, and repeating equation (4.3.3) for the 

intermediate zones.

63



Example 4.3.1

The following example demonstrates the credibility of the 

technique of combination of zones. It is a problem on seepage under 

a dam with a vertical cut-off wall. This problem was originally set 

up and solved by the finite element method, conducted by Coates 

(1977), a result of which is shown in Fig. 4.3.2. Although it is not 

an exact solution, it is still useful to compare the solution obtained 

by the boundary element technique against the well developed finite 

element result.

The boundary conditions for the problem are shown in Fig. 

4.3.3:

= 100 on upstream side of the dam

(f) - Q on downstream side of the dam

(j) = 0 on all other boundaries

The dimension of the domain was also taken from Coates 

(1977): the horizontal length of flow domain being 12 units; the 

vertical depth being 8 units; the depth of cut-off wall being 2 units. 

The thickness of the cut-off wall may vary from 1/10 to 1/1000 of a 

unit, but in this example, 1/1000 of a unit was chosen.

The problem was first solved by program ’BEMLVB1’, which is 

a boundary element program for one zone domain with linear variation 

along elements. The domain was discretised into 34 elements by 34 

nodes (see Fig. 4.3.4). The split node system is adopted at locations 

where the boundary conditions change from one type to another. The 

separation is 1/1000 of a unit in horizontal and vertical 

directions.
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23 internal points were also allocated over the domain to determine 

the overall variation of (p values. The result of at each node 

is shown in Fig. 4.3*5 * from which the (p values at nodes 

opposite to each other on the cut-off wall are identical. The 

results at internal points under the dam are poor as well, when 

compared with the finite element results in Fig. 4.3.2 . This 

is because the cut-off wall resembles a re-entrant Conner where 

its tip represents a singular point. One might say the nodes are 

too close to each other and hence the matrix equations become singular 

or at least weak.

The problem was solved again by another program ’ BEMA3Z’, 

which in addition to the functions in ’BEMLVBV, also can cope with 

multi-zoned domain problemsand orthotropic problems. The orthotropic 

problemswill be discussed in the next section. Therefore, the 

domain in this example was divided into two zones with a common

boundary vertically underneath the cut-off wall. Zone 1 was discretised 

by 22 nodes and zone 2 by 23 nodes. 5 nodes were on the common 

boundary (See Fig. 4.3.6). The distance between nodes on the common 

boundary was not equal. In fact, element lengths were decreasing towards 

the tip of the cut-off wall. Theoretically, the singular point 

at the tip had been removed by the common boundary or at least its 

strength of singularity had been reduced. This idea is similar to 

that discussed by Liggett (1977b),who suggested higher number of 

points on singular element modelled better the behaviour of <j) 

at singular point.

The result of at each node for the two zones is shown 

in Fig. 4.3*7 , from which values on the cut-off wall are well 

behaved. Values of at internal points under the dam are comparable 

to those obtained by the finite element method in Fig. 4.^.2.

65



Fig. 4.5.2 A sketch of (f> values obtained by finite element method

(after Coates, 1977)

Fig. 4.5.3 Boundary conditions for example 4*5*1
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pig. 4.5.4 A sketch of node numbers and internal point numbers

Fig. 4*5*5 A sketch of p values by boundary element method treating 

domain as one zone
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Fig. 4. 3*7 A sketch of values by boundary element method with

domain divided into two zones
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Fig. 4.3.8 shows the variation of (f) on the upstream and 

the downstream side of the dam by the ’one zone’ and 'two zones’ 

approaches. The results of <$> are as expected from the 'two zones' 

approach, but they differ from the 'one zone' approach. Fig. 4.3.9 

shows the variation of </> values around the cut-off wall and the 

underside of the dam. It is obvious that the values resulting 

from the 'two zones' approach are very much well behaved.

Fig. y values on downstream and upstream faces of

dam by zoning and without zoning
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4.4 Orthotropic Problems

The Laplace’s equation in (5.2.3) describes potential

problems assuming the medium concerned is homogeneous and isotropic.

This section looks into problems with orthotropic medium in two dimensions.

Laplace’s equation still governs but with permeability taken into

consideration.

In an orthotropic medium, if the directions of orthotropy

do not coincide with the coordinate axes, as illustrated in Fig.

4.4.1, the coordinate axes (x,y) must be rotated to such an extent 

that they coincide with the directions of orthotropy (X,Y)* The 

equations for transferring axes are as follows:

X= X cos + y sincX

Y ~ X cos 6 + y sin £ 

(4.4.1a)

(4.4.1b)

where 0/ and p are angles as shown in Fig. 4*4.1

Pig. 4.4.1 Directions of orthotrophy X ♦ Y
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The generalised form of Darcy’s law, for orthotropic

problems, is:

ax (4.4.2a)

(4.4.2b)

where cp represents the total head decreasing in the directions of 

discharge velocities, t( and V, in X and Y directions respectively.

kx and Ay are the permeabilities in the directions of orthotropy, 

( see Fig. 4.4.1 ).

From Appendix A.6, the continuity equation in two-dimensions

is shown to be:

+ ~ (4.4.5)ax ay u
Substituting equations (4.4.2) into (4.4.5) yields:

(4.4.4)

(4.4.5)

(4.4.6)

Equation (4.4.5) is the equivalent Laplace’s equation for 

isotropic medium in X^ - Y plane. Equation (4.4.6) defines a 

scale factor which can be applied in the /-direction to transform

A 
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a given orthotropic flow domain into a fictitious isotropic flow 

domain (Lambe and Whitman, 1969), where solutions may be obtained 

through similar procedure described in section 4.2 . The equivalent 

coefficient of permeability applying to the transformed section, 

referred to as the equivalent isotropic coefficient is:

where ke is called the effective permeability of the transformed section.

Hence the fundamental solution to equation (4.4*5) is of the

form, in two dimensions:

(4.4.8)

where p and a, are points on the X* - Y plane.

The integral equation (4.2.1) remains the same form except the

term C(p) becomes W>A< .

But the change would not affect equation (4.2.9) since Hu terms 

are evaluated through equation (4.2.11).

Once the results have been computed for the transformed

section, results for the natural section can be obtained by applying

the inverse of the scaling factor. The transformation in X - direction may 

equally be made in the Y-di^ection.
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The above approach may be applied to anisotropic problems, 

details of which can be found in Wrobel (l98l);Chang et al (1975). 

Numerical results for orthotropic problems are presented in Brebbia 

and Chang(l979) and for anisotropic problems in Chang et al (1975).

Example 4.4.1

The example shown in Brebbia and Chang (1979), 'the flow under a 

dam with two different orthotropic strata, was taken while the 

program 'BEMA5Z* was under developing stage. Fig. 44.2 gives 

the results of (ft and equipotential lines in the flow domain, 

from program 'BEMA5Z*. Linear variation is assumed along elements.

The results are very similar to that obtained in Brebbia and Chang 

(1979) with constant variation along elements. In Fig. 4.4.2 one 

of the Rvalues on the common boundary between equipotential lines 

17 and 15 is spurious. The cause of its occurence have been searched 

for, but still remains unknown.

4.5 Free Surface Flow Problems

The previous section dealt with orthotropic problems

where fluid flows through saturated, confined, porous media governed 

by Darcy1 s law. Integral equations are then written for the 

transformed domain and solved for the unknownsf which are finally 

converted back to the natural domain.

This section discusses the same problems but with unconfined 

fluid flow in which Darcy’s law and Laplace's equation still apply. 

The additional boundary condition is on the free surface where 

the following conditions apply:
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(1) the potential head is equal to the elevation head, y, of the

fluid from a fixed reference datums

(4.5.1)

(2) no flux across the free surface :

(4.5.2)

For seepage flow problems, the conditions on all boundaries are 

as shown in Fig. (4.5.1).

Since the actual free surface location is not known a 

priori, an iterative method will be used to locate the surface until 

the above conditions are fulfilled.

An initial guess of location , is assumed for the free 

surface. The integral equation (4.4.9) is set up and solved for (/> 

applying condition (4.5*2) on the surface. The calculated potential, 

at every nodal point on the free surface is then compared 

against its elevation. If the difference between the two values, 

(f)c - , is greater than a specified tolerance, this difference

or a fraction of this difference is algebracially added to the 

elevation of the nodal point, and a new iteration is carried out, 

i.e.

(4.5.5)

where 0 < k 1

X
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Apart from the free surface, the location of other bound-

aries and their conditions are fixed throughout the iterations. 

One may make use of these fixed properties and divide the domain 

into two zones: zone 1 contains the fixed boundaries and a common 

boundary: zone 2 contains the moving free surface and the common 

boundary (see Fig. 4.5.1). The initial guess of free surface haB to 

be above the common boundary. The matrices [Hj and for zone 

1 are identical for every iteration, so they will only be set up 

once and stored for other iterations. In addition to the computing 

time saved in zone 1, the overall matrix [A] in equations (4.2.12) 

or (4.5.12) will have the advantage of being banded, (see section 

4.5).

Fig. 4.5-1 Division of domain and boundary conditions in free 
surface flow problems

Example 4.5*1

Examples of free surface flow problems can be found in 

Liggett (1977a); Brebbia and Wrobel (1979). The idealisation 

of the free surface flow problems is the main difference in the 

two approaches.

Liggett (1977a) proposed a seepage surface existed in

setting up the numerical model. Therefore the entire boundary was 
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divided into five parts: impervious bottom surface; downstream face; 

seepage surface; free surface and upstream face. Brebbia and Wrobel 

(1979) assumed the boundary to be divided into four parts: 

impervious bottom surface; downstream face; free surface and 

upstream face. The boundary condition on the seepage surface is 

</> = y .

The initial guess of free surface was a curve in Liggett's 

approach and a straight line in Brebbia and Wrobel's approach. 

Although the two types of initial guess of free surface would 

converge to the exact location after some number of iterations, the 

convergence would enhance with a sensible guess of free surface. 

Clearly, Liggett's numerical model is more appropriate to a physical 

model of free surface flow.

For the same rate of convergence, the author carried out 

the two approaches with the straight line initial guess of free 

surface. The dimension of the model was taken from that in Brebbia 

and Wrobel (1979). There were 17 nodes on the straight line free 

surface for the two models, but Liggett's model had an extra 4 nodes 

on the seepage surface, (see Figs. 4.5.2). The problems were run in 

program 'BEMFS1' with the constant k= 1.0 and 0.5. The program 

'BEMFS1' was obtained by modifying program 'BEMLVB1'. Therefore, 

one zone domain was assumed with linear variation along elements.

For k = 1.0, when convergence had been achieved, Brebbia 

and Wrobel's model developed a kink at the so-called free surface 

and the seepage surface intersection (see Fig.4.5.3). This kink was 

eliminated with k = 0.5, (see Fig. 4.5.4). Liggett's model 

developed a smooth surface at the intersection for both k = 1-0 and k 

= 0.5 (see Figs. 4.5.3 and 4.5.4). The constant k affects
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Fig. 4.5.2a A sketch of node numbers on free surface flow problem 

using Liggett's approach
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the rate of convergence and an optimum k value must be determined if 

the best rate of convergence is to be achieved.

4.6 Transient Potential Problems

This section studies the numerical solutions of the transient 

potential problems, in two-dimensions, governed by the diffusion 

equation (5.7.2.1) with boundary conditions (5.7.2.2) and an initial 

condition (5.7.2.5). The corresponding time-dependent boundary 

integral equation is of the form (5.7.2.11), repeated here for 

convenience:

5 P4 (4.6.1)

The boundary F is discretised into straight line elements 

with either constant or linear variation for the functions^ and <p 

along an element. The coordinates and associated (f) and values 

at any point on an element for constant or linear variation are 

obtained in the same way as for the steady potential problems 

discussed in section 4*2 ..

The integral over-O. in equation (4.6.1) requires the 

domain to be divided into cells, similar to those used in the finite 

element method (see Fig. 4.6.1).- In order to achieve efficiency 

in programming, boundary nodes should also constitute part of the 

cell’s nodal points. Since element coordinates are different from 

nodal coordinates for constant variation on the boundary (see 
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section 4.2.1), extra effort to compute values for cell nodal 

points on the boundary are undesirable and subject to instability. 

Linear variation was used in programming analysis and therefore 

the numerical interpretation of equation (4.6.1) to be given below 

will only be considered for the case of linear variation . The 

case of quadratic variation may be found in Wrobel (198I).

If the boundary P is discretised into Nelements with N 

nodes, the domain 11 is divided into Lc triangular or rectangular 

cells, and assuming and (j) are constant over the time integral

cell nodes

J
1
U - --1r

1—•—1--- .----------------

element node

Fig. 4.6.1

Fig. 4.6.2

Discretisations of domain and boundary with constant 
variation on the boundary

-------------- -------

—zCPll nndps and

L. -I L J L
/ element nodes 

r coincide on ther 1 ■----------4r -1r-------- ■<
boundary

1------------1------------------- - ‘-

■-------

------- -

Discretisations of domain and boundary with 1 i n^a-r 
variation on the boundary
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from to £z t the integral equation (4.6.1) becomes;

I (4.6.2)

/rt£
The fundamental solution g*(p,<j,t,£2) is given by (3.7.2.5),

in two-dimensions:

-r'(P'%) ~ (4.6.3)

4KMx-;t)

and after differentiation along the outward normal:

>

/

(4.6.4)

where yp is the perpendicular distance from nodal point p to the 

tangent of element <J.

The complexity of the fundamental solution necessitates

series expansions and an exponential integral function to enable the

time integral to be evaluated analytically. The time integral 

in —£z) thus becomes:

A
---—--- exp

. 4K(4x-A)’

2n K r‘Cp.%>
■exp

4K(42-4)

-I-Vp.h
4KU1-*i)

(4.6.5)
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For the time integral in <f an appropriate

change of variable is needed with

x = 1^1
* 4K(%-;O (4.6.6)

and the time integral becomes:

r

47) K
1

exp
4K(^-4)

'K e'A f“
------dxt — -

2
Y

J

4t ) K
(4-6.7)

where Ei(a) is the exponential-integral function, 

evaluated by the following series:

which can be

Ei (a) = -C£ (4.6.8)

Ceis the Euler's constant and:

Cf= 0.57721566 (4.6.9)

It is noted that when t = ± ;

Ei = 0 (4.6.10)

The series in equation (4.6.8), although convergent

for all values of a, is not suitable for computation when (X is 

large ([dl> 8) as it will require a great number of terms in the

5
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calculations. To overcome this difficulty, the following asymptotic

expansion series can be used (Brebbia and Wrobel, 1979)*

h= 1

(4.6.11)

Since equation (4.6.11) is an asymptotic series, that 

means the series would converge and then diverge as n towards 

infinity. Care must be taken in evaluating the series and the 

following shows the technique applicable to ensure convergence.

Equation (4.6.11) can be re-written in full as:

(4.6.12) 

the 1st term x

the 3^d term equals the 2nd term x

square bracket terms are

term, when the series is

for the (n + 1)called the multiplier

convergent, the multiplier would be less

than 1, and vice versa. So, the magnitude of the multiplier may be 

tested and if it is bigger than 1 in the nth term, the sum of the

"th.
series would be up to and including the (n - 1 ) term which is the 

smallest in magnitude in the whole series. The error induced in the 

series should be less than the term.

Since linear variation is assumed over the boundary

elements, and (p in (4.6.2) take the form of (4.2.3) with ^=2.

85



Substituting equations (4.2.3), (4.6.5), (4.6.7) and (4.6.10) into 

(4.6.2) yields, for boundary point I :

(4.6.13)

The remaining integrals in the above equation are carried 

out numerically over each space. The integration over the domain 

is performed by dividing it into triangular cells and using 

Hammer’s quadrature scheme (Brebbia, 1978). In matrix notation, 

equation (4*6.13) is written as:
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have the same meaning as for constant variation

(4.2.1.8).

is the area of triangular element m.

is the number of Gauss points used in triangular element m.

WTk is the Gauss weight at Gauss point k.

Yik is the distance between nodal point i and Gauss point k.

Matrix can be included into to form

(4-6.15)

H” is obtained by applying unit potential to the domain

so that:

Hft=-EZH{j + Pi

For Gel term, expression (4.6.8) is used for

(4.6.16)

Ei(a) and

from Appendix A.5, equation A.5.12, Cfti becomes:

(2n+l)(2n+2>-n-n_>
(4.6.17)

4
where R =---- --------

4K(A-*i)

With specified boundary conditions and initial condition, equation

(4.6.15) is further reduced to:
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(a]{4-(b) (4.6.18)

which can be solved by Gaussian elimination.

Once all the (j) and (ft values on the boundary at X = tz

are known, the value at triangular cell’s nodal points inside

the boundary may be computed through(4.6.15)with C; = 1.

The (f) values obtained at t = t2 can be treated as

an initial condition for the next time interval, say t2 to t3 .

When the initial and final times are specified, say from t a to 

th , one might carry out the computation by n steps with ££ = 

or in one big step from tQ to , (Brebbia and Wrobel 1979). .

Example 4.6.1

A computer program called ’ BEMTDLV] ’ for transient potential 

problems was written.The program listing is shown in Appendix A.12. 

Linear variation is assumed along boundary elements, and triangular 

cells are adopted for discretisation of the domain. An example 

taken from Brebbia and Wrobel (1979) was used for the development 

of the program.

Again, it is a case of mixed boundary conditions on a 

rectangular plate with two insulated opposite sides and the two others 

subject to a uniform unit temperature (see Fig. 4.6.5).
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Internal temperatures at time t = 1.0 sec and 5 sec along

AB were obtained and shown in Fig. (4.6.4). The difference between 

the exact solutions of Carslaw and Jaeger (1959) and those by the 

boundary element method are similar to those obtained by Brebbia and 

Wrobel (1979). Although they did not mention any numerical 

deficiency, it was later pointed out by Fernandes and Pina (1982).

More numerical examples may be found in Fernandes and Pina 

(1982), who studied the influence of different numerical evaluation 

of the resulting integrals. A consistent choice of the time step 

and the spatial discretisation were discussed.

insulated
zzzzz z zz z z z / Z/zz Zz // // //" ft///// / //////ZZzZZ/ZZZzZzz/ZZ/ZZZ/ZZZ// ////Az

I

03 
-P A B

co
temp(init)^=0

/77777777777777777777Vr77777T77777T777T7777

Fig. 4*6.5 Boundary conditions for transient potential

problem
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CHAPTER 5 - APPLICATION OF THE BOUNDARY ELEMENT METHOD

TO UNSTEADY WAVE PROBLEMS

5.1 Introduction

This chapter shows how the boundary integral equation 

method is applied to follow closely the pattern of wave profiles 

that exist in a laboratory wave tank.

A periodic wave profile, either progressive or standing, 

is assumed with the initial profile set up by a sine wave. The 

boundary conditions on the wave surface will be of non-linear type. 

The initial profile is prescribed with values which are obtained 

from the expression for (f) for linear wave theory assuming that the 

initial profile is a sine wave. Higher order wave theory may also 

be used for the initial wave conditions.

The length of domain is taken to be a wavelength or a 

multiple of wavelengths apart, so that the boundary conditions on 

the two vertical boundaries are identical in magnitude. The bottom 

boundary is assumed to be impermeable (i.e. = 0 ).

The assumptions and basic equations used in the numerical 

simulation of a wave are given in section 5.2. It is for the 

purpose of showing the close resemblance between the theoretical 

model used for the linear wave theory derivation and the one used 

in the numerical simulation. Section 5.3 illustrates how the matrix 

equation is modified for the wave problems. Section 5.4 describes 

how the profile is moved to the next time step.
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In the case where an object is introduced in the flow 

domain, pressures and forces are induced* The details of evaluating 

wave loadings will be discussed in section 5*5* Means of estimating 

the accuracy of the proposed technique have also been included in 

section 5*6.

5.2 Assumptions and Basic Equations

To formulate a wave theory, whether linear or non-linear, 

the governing differential equation of motion is set up with 

certain assumptions being made concerning the equation of motion. 

Boundary conditions are applied and the equations are solved. The 

formulation will be carried out in terms of the velocity potential <f> . 

The assumptions and boundary conditions described below are 

applicable to both the theoretical model for linear wave theory 

derivation and the numerical model for the boundary integral 

equation technique.

The following assumptions are made within the flow 

domain (see Fig. 5.2.1).

(a) Irrotational flow - the forces on a particular element are in 

equilibrium condition. Thus velocity 

potential (f) exists and satisfies Laplace’s equation (see 

Appendix A.6, equation A.6.5):
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(b) Incompressible flow - the fluid is considered to be homogeneous, 

that is, of constant density. Hence when considering an 

element, the mass of water entering is equal to the mass of 

water leaving that element.

(c) The particle velocities (1X , Vs) are small in comparison with 

the wave velocity, C i.e.

IX < < C and V<< C (5-2.2)

(d) Pressure difference due to air between wave trough and wave

crest is negligible.

(e) The wave profile assumes the equation' of simple harmonic

motion;

COS ~ £ )

= &cos ) sin )

for periodic wave (5.2.3a)

for standing wave (5.2.3b) 

where

is the vertical displacement of any point on the wave surface.

from mean water level.

d is the wave amplitude.

4 is

O~ is

the

the

wave number f = 2 IT /wavelength J , 

radian wave frequency £ = 27[/Period (T)] .

t is the time.

€ is the phase angle.

(f) The wave amplitude, a, is small in comparison with the water 

depth, (X •

(g) The channel bed is horizontal, and of uniform depth,d.
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(h) Infinite crest length (i.e. two dimensional wave).

(i) Negligible viscosity.

(j) No underlying currents and surface tension to be negligible.

8

Fig. 5.2.1 Symbols used in flow domain
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Before moving on to the boundary conditions of the flow domain

in Fig. 5.2.1, it is useful to specify the term ’Radiation 

Condition* in this study. Waves being generated in water of a 

specified depth and infinite horizontal extent require a radiation 

condition to be applied at infinity. Physically, this condition 

requires that the generated waves must propagate away from the 

generation region. For three-dimensional water waves the mathematical 

expression for the general radiation boundary condition is: is

bounded as Y —> oc ; where Y is equal to the distance from the 

centre of the generation area. In numerical computations,the 

infinite domain is truncated by the use of computational boundaries. 

A condition that transmits the waves into or out of the solution 

region without reflection must be applied at the computational 

boundaries. For a two-dimensional wave moving in the positive x- 

direction, the radiation condition becomes:

The boundary conditions are prescribed as follows:

(i) the horizontal bed is a streamline with no flow across it. Thus 

the vertical component of the particle velocity is zero at depth 

3 = -d, i.e.

ay (5.2.5)
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(ii) the conditions on the two vertical sides are treated as 

unspecified.

(iii) the conditions on the free surface profile consist of two 

parts:

1. linearized kinematic boundary condition:

(5.2.6)

2. linearized dynamic boundary condition, obtained from the

Bernoulli's equation (A.6.6) assuming constant pressure and

+ 31 = 0

or

n =
-1

at (5.2.7)

9 M

Since the vertical component of particle velocity is expressed as: 

H ay

and from equation (5.2.7): 

_ -1 aV _
9 3^

the following equation is derived



To obtain the solution of Laplace’s Equation (5.2.1), the following 

form for q> is assumed:

(5.2.8)

Differentiating with respect to y gives:

4±= [aay u
sin(-&x - (7"X -6 ) (5.2.9)

From the boundary condition (5.2.5) :

sin (.'kx- rt - e) = <9 (5.2.10)

Hence

A r> 1 -rxAe = Be - -j-D (say)

(5.2.11a)

(5.2.11b)

Substituting equations(5.2.11) into (5.2.8) yields:

e + e

or

cosh-^^+y)- sinf'fex-cT/t (5.2.12)

• sinf " <T t

From equations(5.2.7) and (5.2.5), differentiating cjb with respect 

to t gives:

“T“- = -D(T cosh ^(^ + Q) cos (^z-(rX-e)^a-cos (^x-crX-e)
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Simplifying gives:

D = ------- -------  (5.2.15)
cosh ^(^r|)

Substituting equations (5.2.15) into (5-2.12) yields the expression 

for in linear wave theory :

= .sin^X-^X-e) (5.2.14)
' 0~ cosh

Equation (5.2.14) together with equation (5.2.5) are

used as initial conditions for the numerical simulation of a wave 

by the boundary integral equation method. Expressions for higher 

order wave theory may also be used as initial conditions. The 

corresponding equations to (5.2.5) and (5.2.14) for second, third 

and fifth order wave theories are given in Appendix A.7.

The wave velocity, or phase velocity, C, is given by the

equation:

=_£l = J£Ltanh 21£ = pA_ tanUZLAA14 27 A V 27 A / (5.2.15)

Since the initial wave profile is evaluated at t = 0, equations 

(5.2.5) and (5.2.14) simplify to:

= 61 cos (£ x - G) (5.2.16a)

cosh^(iy^)

cosh (fief)
• sin (Ax — 6 ) (5.2.16b)

which are the equations used in the computer program *BEMW1* •
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5*5 Modification of the Matrix Equation

As can be seen from the boundary conditions in section

5.2, the conditions on the two vertical sides must satisfy the 

radiation condition which may be unspecified. Thus, additional 

information is needed in order to solve a set of integral 

equations.

Since the wave to be analysed is periodic, one may make 

use of the periodicity and set the length of domain equal to one 

wavelength or a multiple of wavelengths. Then the values of potential 

(ft will be identical on the two vertical boundaries (compatibility 

condition), whereas the values for the derivative <$>' will have the 

same magnitude but of opposite sign (equilibrium condition), i.e.

( Fig. 5.5.1)

F2 = = $ (5.5.1a)

F2=”C = (5.5.ib)

The integral equation applicable to the wave problem is 

still of the same form as equation (4.2.1). The matrix equation 

will have to be modified to incorporate conditions (5.5.1). For 

generality, consider the domain shown in Fig. (5*5.1)» and assumming 

the whole boundary, C , is divided into five parts, denoted by Q, Fl , 

n , G ■ and G ’ i.e.

r = r1+p2+G + r4 + r5 (5.5.2)



the matrix equation (4.2.9) would become, in partition matrix form:

(5.5.3)

Fig. 5.5.1 Flow domain with fixed object inside

Hp I Hr; H
i i P4 j
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The boundary condition on an object inside the flow domain is;

(5.3.5)

Therefore, the column matrix on the left hand side of 

equation (5.3*4) are known and those on the right hand side are 

unknown, the system of equationscan be reduced to the form of 

equation (4.2.12), i.e.

(A]W={F) (5.3.6) 

which can be solved by Gaussian elimination.

The associated boundary conditions for progressive and

standing waves are repeated here for completeness, referred to Fig.

5.3*1.

(a) Progressive wave :

cosh {A(*J+cQ]

cosh
sin(-$X- £ ) on

Compatibility condition:

on G and

Equilibrium condition :

A
on r2 and 1;

$>'- = 0 on r5

(5.3.7a)

(5.3.7b)

(5.3.7c)

(5.3.7d)

(5-3.7e)
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(b) Standing wave *.

<f> = o on Q (5.3.8a)

(b - cosh^(y+d)
cos($x) cob (<r ± +e)°nQ (5.3.8b)

? " <r cosh (£ol)

(j>'= 0 on and (5.3.8c)

(t> = 0 on 17 (5-3.8d)

It is noted that the equations for on are of first 

order. Higher order equations may also be used (Appendix A.7). The 

non-dimensionalisation of the above equations is shown in Appendix A.8.

5.4 Prediction of Wave Profile and Time Stepping Technique

The formulation described so far is considered as a 

boundary value problem with the wave profile taken instantaneously. 

No allowance has been made for the wave to move. This section will 

discuss the approach for allowing the wave profile evolving with 

time, similar to the technique applied successfully by Longuet- 

Higgins and Cokelet (1976).

Since the position of a particle on the wave surface is

a function of time as well as space, i.e. x, y and £. The rate of

change following the motion is expressed by using the Stokes 

derivative —— , defined as in two dimensions (Kinsman, 1965):

ax

V <j> -V (5.4.1)

102



where IA and V are particle velocities in the X and y directions, 

respectively. <f> is the velocity potential.

By using the Stokes derivative, the following describes

how the velocity potential and the position of individual fluid particles 

change as the wave moves.

By setting the constant C to zero in equation (A.6.6), the

unsteady Bernoulli’s equation becomes:

h p + -^ (?$>') + yy - ° (5.4.2)

where is the pressure acting along the free surface of the wave.

Combining equations (5.4.1) and (5.4.2) gives:

21_=_^L +

= -

33

where u + v

(5.4.5)

Equation (5.4.5) is the dynamical boundary condition applied to 

the wave surface.

By the definitions of Stokes derivative and velocity

potential, Longuet-Higgins and Cokelet (1976) showed that:

?x _ _
Dt (5.4.4a)

(5.4.4b)
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which are the kinematic boundary conditions applied to the wave 

surface.

Since 0 is the direct result of a boundary integral

equation on the wave surface, and -r may be determined by the

position of fluid particles and its velocity potential, both of 

which are given, equations (5*4.3) and (5.4.4) are rewritten as 

follows:

Dx 3^ . • a= —-1— cos A — sin A

008 /3

(5.4.5a)

(5.4.5b)

(5.4.5c)

wave surface

Fig. 5*4*1 Tangential and normal directions to a particle on 
wave surface
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where is the angle between the horizontal and the positive S 

axis.

Equations (5.4.5a) and (5.4.5b) shows how the position of

a fluid particle changes with time, and equation (5.4.5c) shows 

how its velocity potential changes as the wave moves.

The evaluations of cos 8 and sin ft necessitate the length

S along the wave surface, Q , to be known first. Each nodal 

point on is associated with a unique value of S, X and y. A 

three point Lagrangian polynomial fit was thought to be capable of 

handling these evaluations; but it was found later that the Lagrangian 

technique was very crude and inapplicable if it was to cater for an 

overturning wave profile.

Longuet-Higgins and Cokelet (1976) also had the same

problem when the free surface was transformed into a closed contour

C, on which each point had a unique value of S, and the points 

are not equally spaced with regard to s.To overcome this problem, 

they introduced a new parameter, p, uniquely defined as the point- 

or node number. The arc length S was then obtained by fitting 

periodic cubic splines between X and p; 9 and p. Both X and

9 are polar coordinates of a point on C.

In view of the success obtained by introducing the parameter,p

the same principle is employed in this case. Periodic cubic splines

are fitted between

expressed as:

l  X-27fp and p; y and p; (ft and p to obtain ■ -+27J; 

respectively. The distance at point p = j, Sj, is

and p; y and
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(5-4.6)

where

(5.4.7)

The integration is carried out by Simpson’s rule (see Apendix A.10), 

with local error of the order ,

One may note that X-2^ p is used for the periodic spline

fit instead of X. This is because the periodic spline curve requires

the ordinate fend slope of the first and last nodes to be the same.

For point j, cos A and sin £ are calculated as:

(5.4.8a)

(5.4.3b)

and

W (5-4J

Assuming the time step, ££ , being small, the changes in 

X, y and <j> may be obtained from the following equations:

Sx =
s3 =Ja_ s*

(5.4.9a)

(5.4.9b)
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(5.4.9o)

and the new position at the beginning of loop (j + 1) becomes:

= U(j)+ Sy

^(M)= 4b +

(5.4.10a)

(5.4.10b)

(5.4.10c)

Although equations (5.4.9) are of first order, the error 

induced in ^X , and &41 roust be kept to a minimum if the wave 

profile is to remain in shape for a substantial length of time 

or number of loops.

A fourth-order Adam -Bashforth-Moulton scheme is used 

for the majority of time stepping (Acton, 1970). It is a predictor-

corrector method, local error being 0( Stf.

If a first order ordinary differential equation is of the 

form:

(5-4.11)

the predictor equation is:

!//p= do + 24 ~ (5-4. 12)
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and the corrector equation is:

y>c= y<,+-24’0^+1<i^-^+£) (5.4.15)

The subscripts "p" and "c” in the above equations refer 

to predicted and corrected values, and the subscripts -3, -2, -1, 

0, 1, refer to the time steps► The y terms in equations (5.4.12) 

and (5.4.13) may be substituted by X and .

The method takes the time derivatives at the current time

step, 0 , and three previous time steps, -1, -2, -3 to predict a

By the same procedure, the

, are obtained

fed into equation (5.4.13) to find X ,

All predicted values are then used to solve for the 

integral equations by the boundary element method. Hence,for 

X , Lj and (f) are obtained from equation (5.4.12). These values are 

y and 

step, i.e. Xlc , y/c andcj)^ respectively. Having found these, J 

is calculated and the cycle begins again. It can be seen that the 

integral equations are solved twice in each time step.

at the new time

Since the Adam-Bashforth-Moulton method requires information 

at three previous time steps, a fourth-order Runge-Kutta technique 

is used to take the first three steps from the initial conditions 

or when the numerical accuracy is not achieved and the time step 

length is halved (Gerald,1970). Such a method discards all 

information above previous time steps and takes four mini steps 
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forward in time from the current time step. A weighted average of 

these is then used to calculate the functions

at the new time step. The equation used is:

</( = Mo + 2 kb+ 2kc + 2 )

where

Aa= St

kt = St ■ -f (t, + -^£t,

kc = St ■ / (tc+ ^+-^-kb)

kd = S,t ■ /(£»■+ St , tf, -+■ kc)

(5.4.14)

(5.4.15a)

(5.4.15b)

(5.4.15c)

(5.4.15a)

The Runge-Kutta method requires four evaluations of

the integral equations per time step and is thus twice as time-

consuming as the Adam-Bashforth-Moulton method. The local error 

term for the fourth-order Runge-Kutta method is 0($£.); the global error
4-

would be about 0(££) .

5.5 Pressures and Forces on an Internal Object

When a stationary object is introduced into the flow

domain, wave loadings are then induced on the object. The boundary

condition on the object is, in general:

(5.5.1)

assuming the object boundary is impermeable.
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The velocity potential, j) , is then obtained when the

boundary integral equations are solved. Once is known on the

object boundary, non-linear pressure may then be calculated from the

Bernoulli’s equation (5.4.2):

(5.5.2)
hydrodynamic 
pressure

? 1
) = LA + 1/ which can be worked

out at any point inside the domain.

Since the hydrostatic pressure is fixed by the location

of the object, it is only the pressures induced by the wave, i.e. the

hydrodynamic pressures that are of interest in the analysis. The

actual equation used in the computation then becomes:

(5.5.5)

The

polynomials•

method chosen to evaluate —is the Lagrangian
<7 A

A parabola is fitted through three values of d over

^1-1 ’ ^i-1 » /(, )three consecutive times (i.e

point. Its gradient (——) is then calculated at 
dX.

(p and £ values of the last two time steps on

at a particular

time £.

the object or

/

at any internal point are required to be stored in a

matrix set up for this purpose. The gradient ( —— 
31

)

be obtained at time and

Both horizontal and vertical forces exerted on

may also

the object

by the wave are obtained through integration of pressures around 
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the object, i.e.

FxU)=J-PCt) Cose-rdB (5.5.4a)

F30O=j-PGt) Sinf) ■ Yd& (5.5.4b)

where Y and Q are polar coordinates of a point on the object, and 

the integrations are carried out by Simpson’s rule.

The evaluations of pressures and forces are in non- 

dimensional forms. Expression of pressures in millimetres may then be 

obtained by multiplying the appropriate dimensional constant by 

the non-dimensional pressure. The forces may also be normalised by 

the term where H is the wave height and Y is a dimension

, e.g. radius, of the object.

5.6 Checks of Accuracy

Most of the numerical computations involving iteration 

technique would require some kind of checks on computed solutions, 

in case results become divergent instead of convergent. In the 

wave program ’BEMW1’, a very basic check is employed, which is:

\<t>\ or |<f| < 50 (5-6.1)

The above condition may not be justified mathematically 

but it seems reasonable to make that assumption since the 

computations of (ji and <p are in non-dimensional forms. Once the 

above condition is not satisfied, the execution would come to a
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halt. Otherwise, solutions become infinite

Apart from the above intuitive check, four other checks

can be made on the numerical solutions.

The first one is a check on the Gauss condition.

Letting u= (ft , equation (A.3.8) becomes:

(5-6.2)

From equation (5.3.2), the boundary f1 may be divided into 

five parts, and from the boundary conditions of equation (5.3*7) 

or (5.3.8), equation (5.6.2) can be reduced to:

(5.6.3)

where represents the free surface of the wave.

Equation (5.6«3) implies that the total outflow through the wave surface,Q, 

should be zero. The amount that the resulting answer differs from 

zero is an indication of the accuracy of i) on the wave surface.

Conservations of mass and energy should theoretically be

maintained throughout, but this cannot be guaranteed due to 

truncation and rounding off errors. It is still useful to monitor 

them as the calculations progress, so that information may be 

extracted in relation to the behaviour of an unsteady water wave 

using the proposed integral equation technique.

The conservation of mass implies the total flow area 
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under the wave surface in the flow domain remains constant. In 

other words, the mean water level, y , should remain constant 

if mass is conserved, since its wavelength , A » remains constant:

(5.6.4)

0

The kinetic energy, Ke , and potential energy, pe ,

are expressed as (Longuet-Higgins and Cokelet ,1976):

pe
0

(5.6.5)

(5.6.6)

From the boundary conditions of equation (5.5.7) or (5.3.3), i.e.

$' = 0

j> = o

on n

(from equation 5.5*7)

(from equation 5.5*8) 

on Q.

the expression for kinetic energy is reduced to:

Ke = -2^- J $•</>' dr (5.6.7)
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When no pressure forcing is being applied, at the free surface, the 

total energy :

Te = Ke + Pe (5.6.8)

must be constant.

As discussed in section (5*4 ), the above integrations are 

conducted through the point number parameter, p, with Simpson’s 

rule. Hence, equations (5.6.5), (5-6.4), (5-6.6) and (5-6.7) will 

be written ass

<2=JP
l3

(5.6.9a)

(5.6.9b)

(5.6.9c)

(5-6.9d)
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CHAPTER 6 - NUMERICAL COMPUTATIONS AND RESULTS

OF PROBLEMS IN CHAPTER 5

6.1 Introduction

This chapter serves two purposes: firstly, the development of 

wave program ’BEMW1’ which has been written to perform the simulation 

of periodic waves is described; and secondly, the proposed method of 

carrying out test problems, case studies and comparison with solutions 

obtained by other sources is assessed. The program was written 

according to the theory presented, regardless of the properties and 

approximation of different types of wave. Nevertheless, the limitation 

of the proposed technique will be explored in this chapter.

Section 6.2 briefly outlines the program 'BEMWl' with a 

simplified flow chart and a description of its structure. It is 

described mainly in terms of subroutines, which will further be dealt 

with under four sub-sections. The input format, order of equations 

used and setting up of data will be discussed in sub-section 6.2.1. 

The fundamental theory of the boundary element technique incorporated 

into the wave program is coded in a subroutine called ’BEM’. Its 

modification to suit wave modelling will be discussed in sub-section 

6.2.2. The coding of the time-stepping technique, selection of time 

step, spacing of nodal points on the surface and its stability will be 

covered in sub-section 6.2.3. Sub-section 6.2.4 presents equations for 

evaluation of pressures and forces on obstacle or pressures at internal 

points.
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Section 6.3 is devoted to discussing the evolution of 

numerical technique for program 'BEMWl’ through test problems on 

progressive waves without an obstacle. A typical result for the 

standing wave case is also shown with additional plots for the 

variations of energy and mean water level, and related phenomena. 

Section 6.4 moves on to test problems of progressive waves with the 

introduction of a horizontal circular object into the flow domain. 

Section 6.5 presents results based on experimental data extracted from 

Lacey, 1983. The main aim of the comparison with experimental results 

is the validation of the results of the proposed technique.

The program ’BEMWl' has been tested under the following 

conditons:

(1) Linear variation along elements.

(2) Standing and progressive waves.

(3) When an object is introduced in the progressive wave, the 

boundary conditions on the two vertical side boundaries, 

G and I4 ,are not specified, (see section 6.4)

(4) Linear, second, and third order equations for the evaluations 

of the wave profile and its velocity potential.

(5) Periodic cubic spline as numerical curve fitting.

At the initial stage, the program ’BEMWl' was developed using 

the Honeywell 66/60 level computer at the computer centre of The City 

University. Due to the limited capacity of the Honeywell machine, and 

a large number of students running programs during term time, the 

central processor of the machine was heavily loaded. A large job, in 

general, would have to wait for several hours on a batch queue before 

it was executed. A large job usually involves storage 
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of 52 K bytes or more and the run time is more than 0.1 of an hour. 

Owing to the nature of the proposed technique involving iterations, 

a more powerful computer was felt necessary for the task. Therefore, 

a major part of program development were carried out using the 

CDC76OO computer at the University of London Computer Centre.

The program ' BEMW1 ’ could still be run on the Honeywell computer 

when it was not heavily loaded, e.g. during holidays, and the 

number of iterations involved in a particular job was within the 

run time capacity of the Honeywell computer.
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6.2 Description of program ’BEMWl’

Based on the technique proposed in chapter 5, a computer 

program was written in Fortran language for the solution of two 

dimensional unsteady wave problems using linear variation along 

boundary elements.

The following gives an outline of program ’BEMWl’ in terms 

of subroutines shown in the simplified flow chart in Fig. 6.2.1. 

The subroutines are substantial and will require further detailed 

explanation in the following sub-sections, especially those which 

presented difficulties during the course of program development. 

Subroutines DRAW, GRAPH and FXFYPT are for plotting graphs and wave 

profiles only. Therefore, they will not appear in Fig. 6.2.1 or in 

any discussion. There are subroutines which were used at the 

beginning of the program development but later on found un-suitable. 

They remain in the program listing in Appendix A. 12. There are some 

other small subroutines which are elementary and will not be 

discussed (e.g. evaluation of length of element, shifting of end 

nodal points in the wave profile). The description given here will 

follow the steps listed out in the simplified flow-chart in Fig. 

6.2.1. The names used in the flow-chart have the following 

representation:

LOOPS = Number of loops to be executed

NLOOP = Loop counter

NNI = Number of nodes on internal boundary

NI = Number of internal points

NCT = Loop counter for each fresh or surface redistribution

= Velocity potential

d> = Potential derivative .
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Fig. 6.2.1 Simplified flow chart for 'BEMWl^

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

STEP S

STEP 9

STEP 10

STEP 11

STEP 12

STEP 13

STEP 14

STEP 15

STEP 16
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Structure of the program 'BEMW1'

(1) All input data, e.g. geometry, order of equations for (p and 

wave profile, wavelength, wave height, etc. are read in STEP 

2, (subroutine INPUT), and written out in STEP 3, (sub. WRIT).

(2) The distance between nodes on the surface profile are checked 

against a specified limit. If the distance drops below the limit, 

redistribution of points along the X-axis is carried out in STEP

4 (sub. DSCHK).

(3) A smoothing technique (section 6.3) option may be applied by 

specifying a fixed number of steps (e.g. 5 or 10 steps) for its 

repetition when necessary in STEP 5.

(4) The boundary element method is applied in STEP 6 to the flow 

domain at the beginning of each time step to obtain values of (p 

which are necessary for a check on the time step in STEP 7.

(5) STEP 6 performs the Courant condition on the time step, .

(6) STEP 8 determines whether an internal object is present. If

it is, pressures and forces on the object will be calculated in 

STEP 9 (sub. PREFOR).

(7) STEP 10 determines whether results at internal points are 

required. If so, velocity potentials and pressures will be 

calculated in STEP 11.

(8) In STEP 12, NOT is used to store the number of times a time

step has been used. If NCT 3, the wave profile is moved by the 

Runge-Kutta method. If NCT > 3, the Adam-Bashforth-Moulton method 

is then used to predict the next wave profile in STEP 13.

(9) Before moving on to the next loop, two checks are carried

out in STEP 14. The first is to check whether absolute value of 

<p or ((/is bigger than 50. If this occurs, the program is called 

to a halt because the solution is in a divergent behaviour.
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The second is to check whether the counter for loops has reached the 

specified number of loops in the input data. If either of the two 

checks is satisfied, it will print out the last result in sub. 

RESULT before the execution is stopped automatically.

6.2.1 Input Format - Subroutine INPUT

In the wave program, 'BEMW1’, the fluid domain is enclosed 

by an external boundary fl and, an internal boundary ff , if 

present. The external boundary is further divided into smaller 

parts depending on the boundary conditions and shape of domain. In 

a typical wave problem, the external boundary is divided into four 

parts, / Il / fl and fl r (see Fig. 6.2.1.1), such that:

1? - n + r2 + Tj + n <6.2.d

In general, ri represents an impermeable horizontal bed; fl 

and fl represent the two vertical barriers; fl represents the

The boundary condition associated with each part is:

=0 on ff (6.2.2a)

= prescribed value on fl (6.2.2b)

=0 or unspecified on fl and fl (6.2.2c)

depending on the type of problem sought

free surface.

2 n

The internal boundary, fl , depicts the shape of structure

in the flow field, e.g. a horizontal circular cylinder, with the

following boundary condition:

(6.2.2d)
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If the boundary fj is discretised by M1 nodes, and similarly 

Q by M2; Q by M3; by M4, the total number of nodes on the 

external boundary becomes:

NNE = M1 + M2 + M3 + M4 (6.2.5)

As will be explained later, it is necessary that M2 be equal to M4.

If the internal boundary is discretised by NNI nodes,

the total number of nodes on the boundaries would become:

NN = NNE + NNI (6.2.4)

For constant or linear variation along an element, the

total number of nodes is equal to the total number of elements, i.e.

NE = NN (6.2.5)

But if quadratic variation along an element is used, the 

number of nodes will not be equal to the number of elements (see 

section 4*2).

The coordinates of nodal points (X,Y) on the external 

boundary are generated by specifying the starting position (XF,YF) 

and finishing position (XL,YL) on each boundary and the number of

"thnodes (NX(l)) on the 1 boundary. The coordinates of nodal 

points on the internal boundary, in the case of a circular cylinder, 

are generated by specifying the centre of cylinder (XCENTB, YCENTB), 

its radius (RADIND) and the number of nodes (NNl) on the cylinder.
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The node numbers on the ends of the elements are generated within

the program automatically, so as to keep input to a minimum.

For linear and constant variations:

NEN(I,1) specifies the node No. at the beginning of element I.

NEN(l,2) specifies the node No. at the end of element I.

For quadratic variation :

NEN(l,l) specifies the node No. at the beginning of element I.

NEN(l,2) specifies the middle node No. of element I.

NEN(l,5) specifies the node No. at the end of element I.

The type of variation along an element is designated by the parameter 

(NVARY) with:

NVARY = 1 for constant variation (6.2.6a)

NV ARY = 2 for linear variation (6.2.6b)

NVARY = 5 £&? quadratic variation (6.2.6c)

As mentioned in section 6.1, although an automatic node 

numbering system has catered for constant, linear and quadratic 

variations, other parts of the program, originally developed with 

linear variation, have not been amended accordingly. So, throughout 

the analysis, the program ’EEMW1* is operational with linear variation 

only. It is, of course, possible to convert the entire program to 

include constant and quadratic variations along boundary elements.

In ,BEMW1», it was initially attempted to solve for 

different types of wave, specified by the parameter (NTW) with:

5
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NTW = 1 for progressive wave cases. (6.2.7a)

(6.2.7b)NTW = 2 for standing wave cases.

NTW = 5 for wave generated from rest, similar to

an instant when a wave generator is switched

on,in a calm wave channel. (6,2.7c)

NTW = 4 for solitrary wave cases. (6.2.7d)

Due to the time limit in the present studies, the program is only 

capable of solving progressive and standing wave problems.

The expressions for the free surface profile, , and velocity 

potential, (j) , may be of linear theory or higher order equations.

The program has included expressions for both KJ and for 1st, 

2nd, 3rd or 5th order equations. The parameter specifying the 

order of equation is given by:

NORDER = 1 for 1st order theory

NORDER = 2 for 2nd order theory

NORDER = 3 for 3rd order theory

NORDER = 5 for 5th order theory

(6.2.8a)

(6.2.8b)

(6.2.8c)

(6.2.8d)

The equations used for 1st order theory are shown in 

section 5*2., i.e. equations (5.2.16a) for and equation (5.2.16b) 

for (j) , with (5.2.15) for the phase velocity. The corresponding

higher order expressions are listed in Appendix A.7. With the 

conditions of wave profile specified (i.e. wavelength , wave height 

and water depth), the computations for and are straight forward 

for 1st, 2nd or 3rd order theory. But in the 3rd order theory, the 

evaluation of wave amplitude from wave height requires Newton-Raphson's 

iterative process. For the 5th order theory, the constants in expressions 

for velocity potential and wave profile are typed in as input data 
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obtained from tables provided in Skjelbreia and Hendrickson (1961). 

Newton-Raphson’s method is also employed in computing the term 

in equation (A.7.13) in Appendix A.7.

Once the X coordinates on the wave surface have been set 

up, the actual y coordinates and (p values on the wave surface 

are then calculated in subroutine PW1 for progressive wave problems 

or SW1 for standing wave problems. Both y and $ values on the 

surface may therefore be set to zero in the input data.

When the y coordinates on the wave surface have been 

calculated, the nodal coordinates on the two vertical side boundaries, 

Q and , may have to be readjusted in geometric proportion 

according to the change in ij coordinate from zero position at the end 

points of the wave surface. This is because the initial coordinates 

on the sides assume the end points of wave profile at still water 

level or y = 0 (see Fig. 6.2.1.1). The shifting of the above nodes are 

carried out in subroutine MOVE, which can actually shift nodes in 

both X and cj directions, as may be the case when a progressive 

wave moves in space.

Various curve fitting procedures have been attempted in 

the course of development of the program, e.g. Lagrangian polynomial, 

spline fitting. They are identified by specifying the parameter 

(NTCF) with:

NTCF = 1 for Lagrangian polynomial (6.2.9a)

NTCF = 2 for cubic spline (6.2.9b)

NTCF = 5 for periodic spline (6.2.9c)
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The program was initially developed by using Lagrangian 

polynomial curve fitting with points ’borrowed’ from either end of 

the free surface. The number of points borrowed is indicated by 

the parameter (NTP). For example, NTP = 2 means two points are 

borrowed from either end except the end points. The borrowing operation 

is carried out in subroutine SHIFT. But for cubic or periodic spline 

curve fitting, no points need to be borrowed from either end ,

hence NTP = 0.

The desired number of loops to be executed in a typical 

run might be specified by the parameter (LOOPS). During the course 

of analysis, LOOPS was assigned a value of 500* In order to reduce 

computing time to a minimum level, the number of gauss points 

(NGP) used was set to 2.

For the progressive wave problems, provision is made for the 

pressure forcing function on the wave profile, the amplitude of which 

is specified by the parameter PAMPD.

As soon as coordinates are set up on the boundary and 

all the data are read from a data file, non-dimensionalisation, 

as described in Appendix A.8 is carried out, so that results thus 

obtained may be presented in non-dimensional form.

The type of boundary condition for node number, I,

(i.e. whether or or unspecified) is stored in matrix NFLG(l) 

where:
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NFLG(I) = 1 represents q) specified at node I (6.2.10a)

NFLG(I) = 2 represents specified at node I (6.2.10b)

NFLG(I) = 5 represents no boundary condition 
on the out-flow vertical boundary

at node I (6.2.10c)

NFLG(I) = 4 represents no 
on the in-flow

boundary condition 
vertical boundary

at node I (6.2.10d)

The actual value of the boundary condition is stored in matrix

VAL(I,J) where J = NFLG(l) for element I. So, with NFLG(l) equal 

to 5 or 4, VAL(l,J) equal to zero.

The rectangular coordinate system is defined as shown 

in Fig. 6.2.1.1, with origin at still water level and cj-axis 

directed positive upwards. The wave is assumed to travel in the 

positive X -direction in water of constant depth. The node numbering 

sequence is anti-clockwise on the external boundary and clockwise 

on the internal boundary (see Fig. 6.4«1O)«

Fig. 6.2.1.1 Division of fluid boundaries
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6.2.2 Boundary Element Routine - Subroutine BEM

The boundary element subroutine employed in program

’BEMW1* was basically taken from program ’BEMLVB1*, and then modified 

to suit wave problems. The following describes the modifications 

implemented in sub. BEM , and also those considered during the 

development but found unsuitable.

Referring back to section 5«3> the compatibility and

equilibrium conditions (5.5.1) were used on the two vertical side

boundaries, P and of Fig. 6.2.2.1, if a progressive wave problem

to be solved. Therefore, the solutions of derivative onwas

the two sides would have the same magnitude but opposite sign. Since

periodic spline curve was used in the numerical stepping

process, it required the first and last node of wave surface to

have the same ordinate and slope and be a wavelength apart. In

view of the periodic spline requirement and the outcome of the

equilibrium condition (5.5.1b), the author delibrately defined the

top of the two vertical side boundaries, nodes 10 and 20 on and

possible outward

Fig. 6.2.2.1 Example of boundary discretisation with node number

and outward normal direction

a
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11 and 19, (see Fig. 6.2.2.1). It was hoped that the above procedure 

would enable nodes 11 and 19 to be exempted from the equilibrium 

condition and resulted with values being the same in magnitude

and direction.

When the integral equations were solved from the initial

wave profile and conditions, nodes 11 and 19 resulted with values 

being the same in magnitude but with different signs. It seemed that 

the equilibrium condition still applied to nodes 11 and 19 even 

though they did not belong to the two vertical boundaries. It is 

understood that the above boundary element theory assumes <b as being 

along the outward normal to the boundary. If the domain boundary was 

investigated more closely, ’ a problem existed at a corner node 

where the actual outward normal was not clearly defined, 

(see Fig. 6.2.2.1). For example, node 11 in Fig. 6.2.2.1, belongs 

to two elements. Their outward normals are in different directions. 

Although one may take the vectorial sum as the mean of the two outward 

normals, this procedure invariably induces numerical instability 

once the wave has moved several time steps.

To overcome the difficulties arising from the corners

at both end of the wave surface, the author made use of the periodic 

spline to fit a curve between, for example, node 18 and the 

corresponding position of node 18 to the right of node 11, discarding 

node 11 and its associated value obtained from the boundary element 

method. Once the periodic spline curve is fitted between the node 

numbers p and the values of , whose outward normals are related 

to the wave profile only, the values of (j)' at node 11 along the 

outward normal of the wave may easily be interpolated. The (f) values 
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at node 19 will then be obtained. The above curve fitting and 

interpolation procedures were written in subroutine PHIDF.

If no boundary conditions are prescribed on the two 

vertical sides, e.g. in progressive waves, and the compatibility and 

equilibrium conditions are assumed, subroutine REVER will 

re-arrange the corresponding equations on the two sides before 

Gaussian elimination being applied, as discussed in section 4.3*

For standing wave problems, the two vertical sides may 

be considered as solid boundaries, i.e.

= 0 (6.2.2.1)

and subroutine REVER is not needed to obtain a Solution.

Subroutine PHIDF will not be required to interpolate 4* values 

at the ends of wave surface since the end nodes on wave surface may 

move in the vertical direction only (see Fig. 6.J.11).
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6.2.3 Time Stepping Technique - Subroutines RKM ; ABMM

Once the unknowns in a wave problem are solved in subroutine 

BEM at time fc , the profile may then be moved to the new position. 

Section 5.4 discussed the two numerical schemes to be employed in the 

program. Euler's predictor-corrector method and the central 

difference scheme were attempted at an early stage of the program 

development, but later found to be inefficient in this study.

For the first three loops of every new time step size, a 

fourth-order Runge-Kutta technique (sub. RKM) is used to provide the 

new wave position. Each Runge-Kutta step requires four mini steps to 

predict end-of-mini step wave position and hence sub. BEM is executed 

four times. The first end-of-mini step wave profile, equation 

(5.4.15a) is obtained by sub. RKM1, after the boundary unknowns are 

solved in sub. BEM. The second end-of-mini step wave position is 

obtained from the first end-of-mini step wave position, and so on 

until equation (5.4.15d) is completed in sub. RKM3 which will give the 

final position of the wave surface in that time step.

If NCT is bigger than 3, the wave profile is then moved by 

the Adam-Bashforth-Moulton technique, in which sub. BEM is executed 

twice: the first execution is for the predictor equation (5.4.12) and 

the second execution is for the corrector equation (5.4.13), which 

will give the corrected wave profile position. Therefore, the 

computing time per time step in the Adam-Bashforth-Moulton method is 

half of that needed in the Runge-Kutta method. The sole purpose of 

using the Runge-Kutta method is to generate the information for the 

three time steps required in the execution of the Adam-Bashforth- 

Moulton technique.
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6.2.4 Evaluations of Pressure and Force - Subroutines PREFOR ; INTPF

The evaluations of pressure and force at nodes on an 

internal object are carried out in sub. PREFOR . Sub. INTPF only 

evaluates pressure at internal points in the flow domain.

According to equation (5.5.3), the pressure at a node on an 

object or at an internal point is calculated in sub. PRESS . -—j--

is obtained directly from sub. BEM . is worked out by fitting a

parabola to three consecutive time steps to work out the slope at the 

current time step. Once the pressures at nodes on an object are 

obtained, the horizontal and vertical components of force, in non- 

dimensional or normalised form, fN , may be evaluated through 

Simpson’s rule in sub. SIMPV :

FN= F/^gr-y- (6.2.4.0)

where p is the density of the wave fluid

g is the acceleration due to gravity

Y is the radius of the submerged cylinder

is the wave height

in equation (5.5.3) is evaluated through:

instead, of

(6.2.4.1a)

(6.2.4.1b)

>d)
known on the internal object and —-7— 

do

spline between

.since —1— is

calculated, by fitting a periodic

is

and.0
arc length , s , on the object.
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6.3 Test Problems of Periodic Waves without an Obstacle

During the development of the wave program 'BEMWl’, 

various problems were encountered in the behaviour of the wave 

predicted by the proposed technique. The problems became more 

complicated when an object was introduced into the flow domain. It 

is best to concentrate, at this stage, on the understanding of the 

behaviour of the periodic wave running freely on its own without any 

obstacle. The next section will discuss the effect of a circular 

object placed under a progressive wave. The data used in the test 

problems may be treated as arbitrary, and Table 6.3.1 shows the wave 

parameter used in each problem. The domain boundary is discretised 

by 38 nodes, of which 17 nodes are allocated on the wave surface. 

The length of domain is set to one wavelength. The basic dimension 

of the flow domain is a one unit square. When the water depth and 

wavelength are specified in a typical wave problem, the domain will 

be stretched to the dimension of water depth and wavelength 

specified before the wave profile is generated.

For many numerical methods, the time step length in a time 

stepping technique is determined by stability considerations, of 

which the Courant condition is commonly used and expressed as:

-is-<4- (6-3j)
where = time step length

zSS = element size

C = wave velocity
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If M3 represents the number of nodes on a wave surface 

with wavelength A , the element size projected onto the X -axis, 

becomes:

From equation (6.3.1)» the time step length, At » is 

related to AS (or AX ) through the wave velocity C , and must 

be chosen carefully so that it is small enough to give the desired 

accuracy and stability and large enough to be efficient in computing 

time.

Longuet-Higgins and Cokelet (1976) adopted a time step 

criterion similar to that of Chan and Street (1970). Their time 

step,A £ , is restricted so that at each step no fluid particle is 

allowed to move more than the minimum arc-length from a particle 

to its nearest neighbour in the transformed plane.

The same principle has been applied in this study and

equation (6«3*1) is modified to:

nw (6.3.5)

where ( ASm,n )• is the minimum arc-length between j and its 

neighbour in the X -y plane.

Equation 6.3.3 had been implemented into the program 

"BEMW1" in sub. DTCHK, but it did not prolong the existance nor 

improve the stability of the wave profiles. The interpretation of 

C as the particle velocity in either the horizontal or tangential 
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direction to the particle at the wave surface had also been 

attempted. Again their inclusion did not improve the stability of 

the wave profiles. Its applicability in the work of Longuet-Higgins 

and Cokelet (1976) was probably due to the wave being transformed 

into a closed loop in the £ plane.

The inapplicability of equation (6.3.3) in this study may 

be explained by the following. When the wave profile has gone 

through a sufficient number of time steps, there is a tendency of 

the nodal points to concentrate near regions of shape curvature 

(wave crest) and space out at the wave trough, as happened in the 

Longuet-Higgins and Cokelet (1976) and the Vinje and Brevig (1980) 

procedures. Since AZ depends on the minimum distance between two 

adjacent nodes (equation 6.3.3), a situation would occur such that 

after a sufficient number of time steps, would be reduced to an 

extent that the wave seems not to be moving at all. When this 

situation occurs, one suggestion is to redistribute the nodal points 

on the wave surface equally in the X-direction. From equation 

(6.3.3), a new time step is calculated based on the new distribution 

of nodal points.

The above postulation has also been implemented in the 

wave program 'BEMW1' in sub. DSCHK. The redistribution was carried 

out with a periodic spline curve fitting routine on every 10 or 20 

time steps. The results thus obtained indicated that the 

redistribution of nodes on the surface did not inprove the stability 

or overall result for the wave profile.
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An alternative method to determine the time step is to 

relate A/t with wave steepness and wave period such that steeper 

wave moves in smaller time step, i.e.

Wave period ( T )
Ai ----------------------

Wave steepness ( )
(6.5-4)

Equation (6.3.4) only calculates the initial time step and does not 

provide any check on the time step length as the wave advances.

An initial assessment of the order of magnitude for A/t has 

been made and Table 6.3.1 shows that different time step lengths lead 

to the occurence of instability at different times. By comparing 

the results between test problems 6.5.1; 6.5.2; 6.5.5; 6.5.4 and 

6.5.5, the rate of growth of instability, per unit time, was 

dependent upon the time step length calculated, and there is a 

threshold figure beyond which smaller time step would not reduce 

instability nor increase the duration of wave motion. That confirms 

a time step length chosen must not be too small to be inefficient 

in computing time, and not too big to induce instability. It also 

reaffirms that check on time step length is not necessary once the 

initial time step is determined.

After a comprehensive analysis of equation (6.5.4), the

following equation has been established:

T (6.5.5)

The constant, K , was determined on the basis that extreme values

of wave steepness would result in a reasonable time step length, 

5
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and therefore K =500,000 was found to be an optimum figure to 

give accuracy as well as efficiency in computing time. The above 

figure was used throughout the case study in section 6.5.

Test problems 6.5.2 and 6.5.8 clearly demonstrate that 

the smaller the wave steepness, the bigger the time step length and
>

the duration of wave movement would also be longer.

One of the forms of instability that can be observed from 

Figs. 6.3.2 and 6.3.4 is that two nodal points to the right of the wave 

surface move towards each other after one period, and finally lead 

to instability and blow up at about £ = 1.4T . The cause of the 

instability may be due to the modelling of the boundary conditions 

at the ends of the wave surface.

In the numerical computational work conducted by Longuet- 

Higgins and Cokelet (1976). their computed wave profile, after 

about one period, developed a saw-toothed appearance. They removed 

this type of instability by applying a 5-point or 7-point smoothing 

formula to the profile after every 5 or 10 steps.

Although the instability that occured in this study did not

appear to be saw-toothed, it was still hoped that the application 

of smoothing formula would reduce the instability in the wave 

profile. The formula used in ’ BEMW1' was only the 5-point formula:
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This smoothing technique has been carried out on wave profiles of 

test problems 6.3.9 every 10 time steps. By comparing Fig. 6.3.4 

and 6.3.9 , it is concluded that the smoothing technique does reduce 

the instability and prolong the duration of the wave movement by 

about 35% in this type of test problems.

One of the basic assumptions made in section 5.2 was that 

the wave profile assumed the equation of simple harmonic motion, 

i.e.:

= a-cos ( Ax- ) (6.3.7)

which is a first order equation and acceptable to model finite 

an^litude waves but not steep waves ( H/A > 0.07). When the 

modelled profile has started from the initial condition, it will 

have the tendency to alter its shape towards a real wave, i.e. peak 

at the crest and flatten out at the trough. The change in shape 

then follows with the relative wave height being altered to a bigger 

value. From Figs. 6.3.2 the wave height has increased by 20% after 

1 period. By the same arguement, a wave profile with wave steepness h /a 
= 0.1 would try to break after 0.6 of a period, (see Fig. 6.3.10).

The exact nature of this behaviour remains unknown.

From Figs. 6.3.10, one may immediately discover that the 

proposed technique could not cope with a breaking wave. The reason 

behind this incapability may be explained by the well known 

behaviour of re-entrant corners, as discussed in chapter 4. When 

a wave profile attempts to break, a re-entrant corner immediately 

develops such that the solution in the region of wave breaking is 

subjected to numerical instability which occurs well before the 

expected wave breaking.
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Longuet-Higgins and Cokelet (1976) obtained their initial set 

of data for a symmetric, progressive wave of finite amplitude in deep 

water by using the perturbation technique developed by Schwartz (1974) 

. It is a very accurate method of computing the wave profile, based 

on Stokes’s expansion. They demonstrated that their numerical wave 

profile after one period compared favourably with the profile of a 

steady wave calculated from Stokes’s series.

Due to the difference in data specification between Longuet-

Higgins and Cokelet's approach and the present study, higher order wave 

equations for and (p were tried to see if that would retain constant 

wave steepness throughout the wave motion. 1st , 2nd and 3rd order 

equations were carried out and their results are shown in Figs. 6.3.2, 

6.3.6r 6.3.7 respectively. From these figures, the percentage increase 

in wave height for the 2nd order wave was about 10% and for the 3rd 

order wave, the wave height remained the same. It must be pointed out 

that the initial wave heights for the 1st , 2nd and 3rd order equations 

were the same. It is therefore concluded that for a steep wave, higher 

order equations for the initial wave profile are desirable, but it 

would not reduce the instability nor allow the wave to run for a longer 

duration.

Finally, test problem 6.3.11 for a standing wave without an 

obstacle have also been carried out and the result is shown in Figs. 

6.3.11. The profile ran up to £= 2.342T, and then stopped because 

the number of loops specified was achieved. A plot of the variations 

between kinetic energy and potential energy is shown in Fig. 6.3.lid. 

Total energy increases gradually as the wave moves. Variation of 

with time is plotted for an end node of the wave profile. It can be 

seen that — behaves very well in a periodic manner.
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6.4 Test Problems of Progressive Waves with an Obstacle

When an object is introduced into the flow domain, the

radiation conditions on the two vertical sides remain to be satisfied, 

but the (j) in equation (5.2.4) may be defined as:

s (6.4.1)

where the subscript I refers to the incident wave and S refers to the 

scattered wave. The compatibility and equilibrium conditions (5.3.1) 

may not be true under these circumstances.

Test problems of an unsteady progressive wave with an

obstacle are reported in this section. The domain of analysis is 

shown in Fig. 6.4.10. The external boundary is discretised by 38 

nodes of which 17 nodes are located on the wave surface. A horizontal 

circular cylinder is chosen as the obstacle which is discretised by 

12 nodes.

Salmon et al (1980) applied the radiation boundary condition

successfully in problems of piston wave generation, which is only one 

type of transient wave problem. However, they assumed that the 

dominating frequency of the disturbance was in the range of long waves 

in shallow water so that the wave speed C is proportional to water 

depth d . Smith (1974) proposed that reflections from the boundary 

of a model may be eliminated by adding together the solutions of the 

Dirichlet and Neumann problems. That involves solving the boundary 

value problem with vertical side boundaries assigned with <£ equal to a 

constant as a Dirichlet problem and then with = 0 as a Neumann
d n

problem. An average of the two solutions is taken to obtain a 

condition of no reflection.
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The concept introduced by Smith was theoretically acceptable 

and therefore implemented in the program 'BEMW1' to solve test problem 

6.4.1 (see Table 6.4.1). It was compared against unspecified boundary 

condition approach on the two vertical sides (section 5.3) on test 

problem 6.4.2. Fig. 6.4.1 shows the results with Smith’s approach and 

Figs. 6.4.2 show the results with the unspecified boundary condition 

approach. It can be seen that the wave solved with Smith's approach 

blew up relatively earlier than that by the unspecified boundary 

condition approach. The wave was disturbed heavily by the Neumann

id?
boundary condition = 0 . Another disadvantage with Smith's 

approach is that for every time step, the boundary integral equation 

will be solved twice and hence the computing time will be double that 

for the unspecified boundary condition approach. Even though the 

unspecified boundary condition approach could not be justified 

theoretically, it was used to obtain induced wave forces and pressures 

on a fixed horizontal circular cylinder introduced in the flow domain 

in the next section.

The introduction of an object is assumed to be located 

midway between the two vertical side boundaries, Q and , 

throughout this study, see Fig. 6.4.10. Since the wave profile is 

obtained by evaluating equation (5.2.16) with the phase angle, € , 

set to any arbitrary value which, together with the object, will have 

an impact on the duration of the wave movement. From test problems 

6.4.3 , 6.4.4, 6.4.5, and 6.4.6 in Table 6.4.1, the phase angle, e , 

at 180°gives a slightly better starting position to achieve the 

longest duration of wave movement than 6 at 90°. That means the 

cylinder position is best placed about half a wave length behind the 

wave trough.
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Figs. 6.4.3c; 6.4.4f; 6.4.5c and 6.4.6c show the graphs of

mean water level (Ymean), total outflow through surface (Qsum), 

kinetic energy (K.E.), potential energy (P.E.), total energy (T.E.)

and against non-dimensional time axis. They were evaluated 

according to equations (5.6.9). The mean water level was zero to 

start with and then increased gradually as the wave advanced. Since

start with and then the total mass increased as the wave advanced. 

The kinetic energy and potential energy were fairly stable over the 

wave's movement. Even then, a small amount of energy increase may be

noticed from the total energy graph. is a plot of (p values at 

node 16 which is at one end of the wave surface, (see Fig. 6.4.10).

The result oscillated in a periodic manner.

Figs. 6.4.3d, 6.4.4g, 6.4.5e and 6.4.6d show the graphs of

forces and pressures on the cylinder. The horizontal component (Fxn) 

and vertical component (Fyn) of force at the centre of the cylinder 

are expressed in normalised form [ The pressures are

expressed in millimetres. Point 1, 2, 3 and 4 have the positions on 

the cylinder as shown in Fig. 6.4.11. The accuracy of the forces and 

pressures on the cylinder will be discussed later.

It might be noted that the ordinate axes for the above

(auxiliary) graphs differ from each other. It is caused by the method 

of calculating the axis scale which takes a root mean square value of 

all available data in each type, in that particular run. When a wave 

is about to blow up, the data might become enormous and hence the root 

mean square value would become large. If one ignores the data 

generated during the blow up period, the axis scale would be reduced 
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to an extent that the auxiliary graphs would be more precisely 

plotted.

Test problem 6.4.7 was a repeat run for test problem 6.4.5 

with a smoothing formula applied to the wave profile every 10 loops. 

Figs. 6.4.7 clearly indicate that the wave profile with the submerged 

cylinder in the flow was prolonged by about 15%. But the curves for 

forces and pressures (see Fig. 6.4.7e) are not as smooth as those 

without smoothing (see Fig. 6.4.5d). This may be caused by the 

numerical error present in equation (6.3.6). Therefore, smoothing is 

not the ultimate solution to remove numerical instability inherent in 

the proposed technique.

Jeffrey et al (1976) had carried out experimental 

measurement of forces on a horizontal circular cylinder. Some of 

their wave characteristics, cylinder diameters and depths of 

submergence are similar to the above problems tested. Therefore, it 

will be useful to use their experimental data to test the proposed 

technique. Forces computed by the boundary element method may then 

be compared with their measured results.

The wave characteristic chosen for the comparison are shown 

in Table 6.4.1 --- test problems 6.4.8. and 6.4.9. The computed

forces are presented in graphical form in Figs. 6.4.8f and 6.4.9e. 

Dimensional forces may be obtained by multiplying the value measured 

on the ordinate axis scale (in non-dimensional form) by pgr. The 

magnitudes of wave forces at the crest and trough behave in a

164



diverging manner. The comparisons are given in Table 6.4.3* 

Figs. 6.4.12 and 6.4*13 show the pattern of force variations 

for both measured and theoretical results. The initial 

theoretical force amplitudes are more than double the measured 

values in Jeffrey et al (1976). The mean theoretical force 

amplitudes are about three times bigger than the measured values. 

The overestimation was caused by the cylinder being placed too 

closed to the wave surface; (Jo- X)/?\ = O.OO64 for test problem

6.4.8 and (jo-/)/A = 0.0041 for test problem 6.4*9* From

Figs. 6.4*8b and 6.4*9b, the wave profiles touch the top region 

of the cylinder and hence numerical instability follows.

From Figs. 6.4*8f and 6.4*9©, oscillations in force

and pressure values took place in the middle of the run. Their 

occurences correspond to the wave trough being above the cylinder. 

This leads to nodes on the wave profile and on the cylinder to 

be too close to each other, and therefore numerical instability 

follows. The instability was weak in the sense that the forces 

and pressures recovered, once the wave trough passed over the 

cylinder. Termination of the two runs were due to the number of 

loops specified being reached.
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Table 6.4.3 Comparisons of forces between measured and 
theoretical results

TEST 
PROBLEM

HORIZONTAL FORCE, Fx <N/m) VERTICAL FORCE, Fy <N/m)

JEFFREY 
et al , 
<1976)

THEORETICAL JEFFREY 
et al , 
<1976)

THEORETICAL

INITIAL MEAN INITIAL MEAN

6.4.8 1.80 4. 17 6.61 1. 13 5.47 7.22

6.4.9 1.50 3.02 3.62 0.88 4. 18 6.00
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Fig. 6.4.10 Example of boundary discretisation with node 

numbers on domain of unsteady wave with a 

fixed horizontal circular cylinder

Fig. 6.4.11 Location of point numbers for pressure evaluation
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Fig. 6.4.12a Graphical representation of the comparison of horizontal 
forces between theoretical (BEM) and measured (Jeffrey 
et al, 1976) results (test problem 6.4.8)
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Fig. 6.4.12b Graphical representation of the comparison of vertical 
forces between theoretical (BEM) and measured (Jeffrey 
et al, 1976) results (test problem 6.4.8)
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Fig. 6.4.13a Graphical representation of the comparison of horizontal 
forces between theoretical (HEM) and measured (Jeffrey 
et al, 1976) results (test problem 6.4.9)
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Fig. 6.4.13b Graphical representation of the comparison of vertical 
forces between theoretical (BEM) and measured (Jeffrey 
et al, 1976) results (test problem 6.4.9)
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6.5 Case Studies of Experimental Results

The previous two sections discussed the limitations 

and reliability of the proposed technique. This section explores 

further,the accuracy of the method by comparing pressure results 

with experimental measurements which were carried out by Lacey 

(1985) in a wave tank at the Department of Civil Engineering, 

The City University.

The experimental results obtained were for a single 

cylinder of radius, Y = 0.055® and a range of waves, in water of 

depth, d = 0.555m, at three frequencies £o = 0.977♦ 1.172 

and 1.567 Hz. The value of the diffraction parameter is therefore 

within the range 0.2 < kr < 0.5. The cylinder is located at 

three depths of submergence for the sets of waves at each frequency 

corresponding to )/\ = 0.05, 0.10 and O.15. The details

of the incident wave motion are given in Table 6.5.l(a-c). It 

covers the intermediate water depth (0.05 C 0*5) and deep

water depth ( c4//\ > 0.5) ranges. ( - Y )/ A describes the

location of the obstacle and thus gives an indication of the 

instantaneous shallow water region above the cylinder. Both 

parameters give an indication of the importance of non-linear effect.

Wave profiles and auxiliary graphs for some of the 56 

cases are presented in Appendix A. 15. In a broad sense,

the duration of wave movement is inversely proportional to wave 

height and directly proportional to the depth of submergence of 

the horizontal circular cylinder. Duration of wave movement

of up to 6 periods is recorded in the small amplitude wave case 25.

200



The major source of failure occurred in the wave profile, where two 

nodes on the downstream side moved towards each other to produce a 

re-entrant boundary which finally led to the couplete failure 

(numerical instability), as discussed in section 6.3. This type of 

failure occurred for all cases of depths of submergence and 

frequencies. Cases 1, 6, 11, 37, 44 and 51 did not show any 

failure, because the number of loops specified in the runs had been 

reached before the failure mode developed.

The depths of submergence of the cylinder may affect the 

shape of wave profile depending upon the water depth in the wave 

trough region above the cylinder. As for the cases of («J0- r)/A = 

0.15 and 0.10, the wave profiles in the region above the cylinder 

remained in-shape. But for the cases of (y0- r)/A = 0.05, the depth 

of water in the wave trough region above the cylinder became too 

shallow so that the existence of the cylinder had a significant 

impact on the shape of the wave profile. The in-coming wave seemed 

to stumble over the cylinder and flatten out. The disturbed profile 

continued to move until a re-entrant boundary developed which 

resulted in complete failure due to numerical instability. For the 

wave steepness, H/A > 0.1, as in case 36, a plunging wave developed 

soon after the wave trough hit the cylinder, see Figs. A. 13.36. A 

small amount of breaking was detected for the steeper waves, at the 

shallowest of the cylinder locations, during the experimental 

measurements.

The pressure amplitudes, together with their occurence in 

time for each case, have been extracted from the computer outputs. 

They are presented in Table 6.5.2(a-f). Points 1, 2, 3, and 4 refer 

to quarter positions on the cylinder in clockwise direction, see
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Fig.6.5.1. Their positions are identical to the positions of 

pressure tapping in the experiments, whose numbering sequence are 

in the anti-clockwise direction, see Fig. 6.5.2. In this study, 

point 1 is situated on the side of the cylinder on the downstream 

face, and point 2 is at the bottom of the cylinder. Point 3 is on 

the side of the cylinder on the upstream face and point 4 is on the 

top of the cylinder.

From Table 6.5.2 or the pressure graphs in Figs. A. 13.1 - 

A.13.56 , the pressure variations do not behave like a sine or 

cosine curve although the initial wave profile assumes simple 

harmonic motion. Positive pressure amplitudes do not equal the 

negative pressure amplitudes. Once a re-entrant boundary developed 

on the wave profile, the calculated pressure values fluctuated in 

a disordered manner until total failure occurred. In general, the 

pressure amplitudes behave in a periodically divergent manner with 

the magnitudes shifting rigidly upward (see Fig. A. 13.1). The 

pressure graphs show clearly that pressures at point 2 and point 4 

are in-phase and pressures at point 1 and point 3 and out-of-phase.

Since the durations of wave movement vary according to 

their wave characteristic and their pressure amplitudes diverge in 

all cases, mean values of pressure amplitude are calculated using 

a trapezoidal formula. The ratios of measured pressure, from Lacey 

(1983), to the theoretical mean pressure are then obtained for all 

cases. It is also of interest to obtain the ratios of measured 

pressure to the first available or initial theoretical pressure. 

Both ratios are presented in Table 6.5.3 (a-1). In order to allow 

comparisons with Lacey's theoretical results, several sets of graphs 

(Figs. 6.5.3 - 6.5.4) have been drawn according to the format used 
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by Lacey whose relevant graphs are reproduced here for completeness 

(Figs. 6.5.7). The first set of graphs (Figs. 6.5.3a-c) are plotted 

with initial theoretical pressure ratio, Pm/Pti, against wave 

steepness H/X for four pressure points. The second set of graphs 

(Figs. 6.5.4a-c) are plotted with mean theoretical pressure ratio, 

Pm/Ptm , against wave steepness H/\ for four pressure points. Each 

of the three graphs in both sets give results for a different value 

of the diffraction parameter and include results for each of the 

different cylinder locations. These graphs will indicate the 

significance of the finite wave height for different cylinder 

submergence. Scale axes for different points are identical to 

Lacey's presentation to give an indication that the extent of 

departure from the linear theory predictions varies with the 

positions on the cylinder.

For kr = 0.22, the initial theoretical results are very 

much similar to Lacey's theoretical results whereas the mean 

theoretical results agree very well with measured values for small 

wave steepness but they are under-estimated for steeper waves by 

about 5% at points 1 and 3, and 10% at points 2 and 4.

For kr = 0.305, the initial theoretical pressures at all 

points are under-estimated at large wave steepness: 5% at point 1; 

50% at point 2; 10% at point 3 and 30% at point 4. The mean 

theoretical pressures fluctuate more than the initial theoretical 

pressures with over-estimation at small wave steepness and under-

estimation at large wave steepness. The larger discrepancy at point 

2 (bottom of the cylinder) might be attributed in part to 

experimental error because the amplitudes of oscillation are small.

203



For kr = O.41 the initial theoretical pressures again 

resemble Lacey’s theoretical pressures except at point 4 where 

the experimental measured values are about 50% higher than the 

initial theoretical values. The mean theoretical pressures 

reduce the difference at point 4 to about 15%. The pressures 

at point 1 are on average 5% higher than the measured values for the 

initial theoretical pressure but it becomes 5% lower for the mean 

theoretical pressures. At point 5 both initial and mean theoretical 

pressures are 10% lower than the measured values. Under-esimation 

also applies to point 2 which is about 10% for initial pressures 

and 25% for mean pressures.

The graphs have also been replotted to group them 

according to the format used by Lacey (reproduced here as Figs. 

6.5.8). Figs. 6.5.5 shows the set of graphs for initial theoretical 

pressure ratio against cylinder submergence parameter. Fig.6.5.6 

shows the set of graphs for mean theoretical pressure ratio 

against cylinder submergence parameter. The purpose of the 

replot is to identify the difference between experimental measurements 

and theoretical predictions for each of the cylinder locations.

At the deepest and intermediate submergences, the acc-

uracy of the results of theoretical pressures decrease as wave 

steepness increases. But the fluctuation of initial theoretical 

pressure results are smaller than that of mean theoretical pressure 

results. At the shallowest submergemce, since the cylinder is 

nearer to the wave surface, the fluctuations of both initial and 

mean theoretical pressure results are quite poor even for the 

sma.11 ps-E values of the wave steepness parameter. For steeper waves, 

there is significant disagreement between the theoretical and 

experimental pressure amplitudes at all locations on the cylinder.
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Components of horizontal and vertical forces on the 

circular cylinder have also been evaluated through equations 5.5.4 

for all cases. They are also presented in graphical form. Since 

they are obtained through calculated pressure results, their 

behaviour resembles those for the pressure amplitudes.

Lacey (1983) has produced values of diffraction 

coefficient, Cx, for two sets of depth of submergence for cylinder 

with variable wave height and fixed wave length (see Fig. 6.5.9). 

Since the diffraction coefficient is a non-dimensional term, related 

to the corresponding wave condition and cylinder position, it may 

therefore be used to calculate horizontal force on the circular 

cylinder based on the linear diffraction theory.

Table 6.5.4 shows the magnitude of forces, expressed in 

Newton per metre, and their ratios of calculated value from 

diffraction theory to the theoretical horizontal force. Again, 

initial and mean forces have the same layout as for the coirparison 

of pressure amplitudes. The ratios are reproduced in graphical form 

(see Figs. 6.5.10), from which variation of mean forces ratio is 

about ± 30% whereas the variation of initial force ratio remains at 

about +8% for ( y0 - Y )/ A = 0.10 and +20% for ( yo - r )/A 

=0.05. The calculated forces are based on linear diffraction theory 

whose results are unreliable for finite wave steepness. It may be 

concluded that the proposed technique behaves linearly for initial 

interpretations and becomes non- linear over the whole execution.
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CASE No. Yo
< rn)

<Yo-r>/A H
Cm)

H/X H/d

1 . 294 . 150 . 828 .018 . 505
2 . 294 . 150 . 052 . 033 . 094
3 . 294 . 150 . 072 . 046 . 130
4 ’ . 294 . 150 . 091 . 059 . 163
5 . 294 . 150 .112 .072 . 202
6 .215 . 100 .029 .018 . 052
7 .215 . 100 .051 . 033 . 093
8 .215 . 100 . 073 . 047 . 132
9 .215 . 100 . 922 . 059 . 166

10 .215 . 100 . 114 . 072 . 206
1 1 . 135 . 050 . 029 .019 . 052
12 . 135 . 050 . 051 . 033 . 093
13 . 135 .050 . 073 . 047 . 132
14 . 135 .050 . 894 . 060 . 169
15 . 135 . 050 . 114 . 073 . 205

Table 6.5.1a Inc i de n t w au e c h ar ac t e r i s t i c s at fo = 0.98 Hz

CASE No. Yo
< rn )

< Yo-r > / a H
< rn >

Hz A Hzd

16 . 225 . 150 .016 .014 . 029
17 .225 . 150 . 035 . 031 . 063
18 . 225 . 150 . 053 . 046 . 095
19 . 225 . 150 . 071 . 062 ,128
20 . 225 . 150 . 087 .077 . 157
21 . 225 . 150 . 100 . 088 .181
9 9 . 225 . 150 . 112 . 098 . 201
23 . 168 . 100 .017 .015 . 030
24 . 168 . 100 . 037 . 032 . 066
25 . 168 . 100 . 055 . 048 . 098
26 . 168 . 100 . 070 . 062 . 126
27 . 168 . 100 . 087 . 077 . 157
28 . 168 . 100 . 100 . 088 .181
29 . 168 . 100 . 113 . 100 . 204
30 . 112 . 050 .015 .013 . 028
31 . 112 . 050 . 037 . 033 . 067
32 . 112 . 050 . 054 . 048 . 098
33 . 112 . 050 . 071 .063 . 128
34 . 112 . 050 . 088 . 078 . 159
35 . 112 . 050 .101 . 089 . 182
36, . 112 . 050 . 114 . 100 . 205

Table 6.5.1b Inc i d e n t w au e c h ar ac t e r i s t i c s at t; = 1.17 Hz
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Table 6.5.1c Incident wave characteristics at f0 =

CASE No. Yo
< rn >

H 
< m>

H/A H/d

37 . 180 . 150 .018 . 022 . 033
38 . 180 . 150 . 031 . 037 . 056
39 . 180 . 150 . 040 . 048 . 072
48 . 180 . 150 . 050 . 060 . 091
41 . 180 . 150 . 060 . 071 . 107
42 . 180 . 150 . 068 . 082 . 123
43 . 180 .150 .075 . 090 . 136
44 . 139 . 100 .018 . 022 . 033
45 . 139 . 100 . 030 . 036 . 054
46 . 139 . 100 . 040 . 048 . 072
47 . 139 . 100 . 049 . 059 . 089
48 . 139 . 100 . 060 . 072 . 109
49 . 139 . 100 . 069 . 082 . 124
50 . 139 . 100 . 077 .092 . 138
51 . 097 . 050 .019 . 023 . 035
52 .097 .050 .029 . 034 . 052
53 . 097 . 050 . 041 . 049 . 074
54 . 097 .050 . 052 .063 . 094
55 . 097 . 050 . 060 . 072 . 108
56 . 097 . 050 . 068 . 081. . 123

1.37 Hz
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CASE 
NUMBER

POINT 1 POINT 2 POINT 3 POINT 4

TIME
T1 

( sec >

PRESSURE 
Pl 

(mm)

TIME 
T2 

(sec >

PRESSURE 
P2 

(mm)

TIME 
T3 

(sec )

PRESSURE 
P3 

(mm)

TIME
T4 

(sec )

PRESSURE 
P4

< mm)

1 .317 +4.980 .248 +3.195 . 186 +4.931 . 248 +6.329
.813 -4.836 .744 -3.374 .682 -4.965 . 744 -6.825

1.316 +5.829 1.247 +3.846 1. 185 +5.725 1.247 +7.256
1.798 -4.111 1.729 -2.580 1.660 -4.360 1.729 -6.326
2.381 +7.046 2.246 +5.033 2.170 +6.937 2.232 +8.466
2.777 -2.284 2.701 -1.060 2.646 -3.078 2.715 -4.806
3.300 +9.000 3.238 +6.924 3. 162 +9.076 3.224 +10.589

2 .313 +9.273 .252 +5.734 . 182 +9.155 . 242 +11.355
. 807 -8.926 .737 -6.530 .676 -9.314 . 747 -13.130

1.312 +11.813 1.262 +7.588 1. 181 +11.305 1.251 +13.919
1.776 -5.364 1.695 -3.132 1.635 -6.807 1.706 -10.689
2.291 +16.067 2.251 +11.786 2. 160 +15.564 2.220 +18.049

3 .309 +12.695 .249 +7.632 . 180 +12.553 . 241 +15.098
. 808 -11.926 .730 -9.036 .679 -12.627 . 748 -18.187

1.315 +17.230 1.272 +10.956 1 . 186 +15.909 1.255 +19.244

4 .306 +15.884 . 245 +9.293 . 184 +15.728 . 237 +18.361
.797 -14.655 .728 -11.434 . 674 -15.680 . 743 -22.836

1.318 +24.100 1.295 +15.609 1. 180 +20.895 1.256 +25.876

5 . 303 +19.565 . 248 +11.080 . 179 +19.418 . 234 +21.855
. 785 -17.750 .723 -14.248 . 668 -19.146 . 737 -28.342

6 .313 +6.598 .251 +3.945 . 183 +6.528 . 251 +8.511
. 822 -6.465 . 747 -4.314 . 686 -6.648 . 754 -9.537

1.318 +7.666 1.257 +4.661 1. 189 +7.576 1.250 +9.761
1.807 -5.811 1.732 -3.524 1.664 -6.088 1.732 -9.197
2.310 +8.861 2.249 +5.905 2. 174 +8.774 2.235 +10.904
2.792 -3.786 2.711 -1.922 2.656 -4.780 2.731 -7.545
3.302 +11.007 3.247 +7.913 3. 166 +11.332 3.227 +13.472

7 .315 +11.768 .254 +6.737 . 183 +11.593 . 244 +14.512
.824 -11.409 .742 -8.052 .681 -11.921 . 753 -17.623

1.312 +14.656 1.261 +8.576 1. 190 +14.269 1.251 +17.633
1.790 -8.413 1.709 -5.015 1.637 -9.868 1.719 -16.131
2.288 +18.405 2.248 +12.492 2. 156 +18.218 2.217 +21.366
2.705 -.993 2.654 + .572 2.614 -5.539 2.685 -10.427

8 .307 +16.619 .247 +9.139 . 187 +16.371 . 239 +19.635
.818 -15.631 . 741 -11.569 .682 -16.605 . 750 -25.176

1.312 +21.792 1.270 +12.459 1. 185 +20.641 1.253 +24.654

Table 6.5.2a Maximum pressure amplitude at various times
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CASE 
NUMBER

POINT 1 POINT 2 POINT 3 POINT 4

TIME 
T1 

(sec )

PRESSURE 
Pl 

(mm)

TIME 
T2 

(sec)

PRESSURE 
P2 

(mm)

TIME 
T3 

(sec )

PRESSURE 
P3 

( mm )

TIME
T4 

(sec)

PRESSURE
P4 

( mm )

9 . 304 +20.793 .251 +11.037 . 182 +20.519 .235 +23.660
.813 -19.140 .737 -14.690 . 676 -20.562 . 752 -31.849

1.306 +29.734 1.291 +17.196 1. 177 +26.786 1.253 +31.315

10 .293 +25.633 . 245 +13.046 . 177 +25.345 . 232 +27.876
.804 -23.077 .729 -18.381 .675 -25.107 .750 -39.567

1 1 .318 +8.717 . 250 +4.914 . 190 +8.628 .257 +11.211
. 839 -8.672 .751 -5.685 . 691 -9.068 .772 -13.622

1.327 +10.283 1.266 +5.709 1. 192 +10.168 1.252 +13.125
1.828 -8.098 1.747 -4.961 1.672 -8.551 1.753 -13.363
2.315 +11.103 2.268 +6.952 2. 187 +10.973 2.248 +13.616
2.830 -6.010 2.742 -3.362 2.688 -7.330 2.762 -11.770

12 .315 +15.467 .254 +8.231 . 193 +15.193 . 254 +18.637
. 844 -15.001 .753 -10.728 .702 -16.189 .773 -25.177

1.322 +19.291 1.261 +10.029 1. 190 +18.965 1.251 +22.926
1.821 -12.445 1.729 -7.994 1.637 -14.204 1.749 -25.380
2.299 +21.677 2.258 +13.361 2. 176 +21.881 2.217 +25.398
2.787 -7.957 2.685 -5.129 2.644 -13. 113 2.746 -21.423
3.285 +24.353 3.234 +14.979 3. 143 +27.630 3.204 +32.840

13 .307 +22.309 . 250 +10.953 . 191 +21.516 .251 +24.595
.853 -19.400 . 738 -14.921 .705 -22.000 .783 -37.353

1.315 +28.357 1.292 +14.139 1 . 192 +26.969 1.260 +31.166

14 . 301 +27.791 .248 +13.326 . 180 +27.294 .241 +29.761
.857 -24.899 .745 -19.773 .669 -27.564 .820 -49.216

1.301 +37.573 1.294 +17.967 1. 173 +35.315 1.248 +38.671

15 .294 +33.391 .246 +15.230 . 185 +32.865 .232 +33.846
.827 -28.342 .738 -25.247 .684 -34.995 .759 -56.325

16 .340 +2.460 .263 +1.052 . 170 +2.400 .247 +3.669
.850 -2.480 . 742 -1.090 .665 -2.490 . 757 -4.016

1.344 + 3. 110 1.267 +1.442 1.159 +2.951 1.252 +4.435
1.839 -2.239 1.731 -.663 1.638 -2.258 1.746 -3.999
2.349 +4.041 2.272 +2.205 2. 164 +3.800 2.241 +5.414
2.828 -1.291 2.704 + .219 2.627 -1.620 2.735 -3.346
3.353 +5.517 3.276 +3.459 3. 153 +5.300 3.245 +7.064
3.802 + .226 3.663 +1.684 3.601 -.709 3.709 -2.419
4.327 +7.584 4.296 +5.410 4. 126 +7.396 4.219 +9.239
4.775 +2.897 4.574 +3.797 4.574 + .954 4.667 -.391

Table 6.5.2b Maximum pressure amplitude at various times
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CASE 
NUMBER

POINT 1 POINT 2 POINT 3 POINT 4

TIME 
T1 

(sec )

PRESSURE 
Pl 

(mm)

TIME
T2 

(sec )

PRESSURE 
P2 

(mm)

TIME
T3 

(sec )

PRESSURE 
P3 

(mm)

TIME
T4

< sec )

PRESSURE 
P4 

(mm)

17 . 344 +5.321 . 250 +2.204 . 156 +5.210 .250 +7.702
. 843 -5.016 .739 -2.297 .656 -5.258 . 750 -8.656

1.354 +7.357 1.281 +3.619 1. 166 +6.748 1.260 +9.718
1.812 -1.875 2.322 +7.441 1.604 -3.078 1.718 -6.397

18 .338 +7.988 . 254 +3.203 . 161 +7.838 .245 +11.202
. 837 -7.185 . 727 -3.440 . 642 -7.796 . 744 -13.072

1.353 +12.745 1.327 +6.835 1. 167 +10.828 1.260 +15.181

19 .329 +10.641 .256 +4.136 . 161 +10.454 . 241 +14.426
. 825 -9.243 .715 -4.592 .642 -10.276 .737 -17.500

26 . 323 +13.029 .250 +4.924 . 158 +12.804 . 231 +17.108
. 803 -10.833 .705 -5.643 . 626 -12.511 . 738 -21.481

21 .319 +15.010 .257 +5.552 . 153 +14.754 . 227 +19.184
.791 -11.772 .699 -6.551 .619 -14.404 . 736 -24.712

22 .314 +16.694 . 256 +6.069 . 157 +16.378 . 227 +20.829

23 .347 +3.450 .256 +1.421 . 151 +3.357 . 256 +5.119
. 859 -3.519 . 754 -1.525 . 663 -3.540 .769 -5.829

1.357 +4.329 1.266 +1.860 1. 176 +4.125 1.266 +6.217
1.854 -3.354 1.749 -1.093 1.658 -3.336 1.764 -5.961
2.352 +5.309 2.277 +2.711 2. 171 +5.022 2.262 +7.194
2.850 -2.293 2.729 -. 156 2.654 -2.738 2.759 -5.326
3.377 +7.042 3.287 +4.063 3. 166 +6.917 3.257 +9.378
3.830 -.851 3.694 +1.350 3.618 -1.970 3.724 -4.554
4.342 +9.109 4.312 +6.120 4. 146 +9.166 4.237 + 11.640
4.779 + 1.855 4.689 +3.722 4.598 -.286 4.719 -2.508

24 .334 +7.506 .253 +2.962 . 162 +7.345 .253 +10.639
.861 -7.150 . 749 -3.308 .658 -7.505 . 759 -12.755

1.357 +10.050 1.286 +4.485 1. 175 +9.389 1.256 +13.346
1.833 -3.718 1.691 + .072 1.610 -5.247 1.732 -10.648
2.339 +14.048 2.319 +8.640 2. 147 +13.287 2.228 +17.235

25 .333 +11.034 .249 +4.181 . 158 +10.792 . 241 +14.967
.856 -10.012 .740 -4.910 .648 -10.852 . 756 -18.940

1.347 +16.415 1.330 +7.847 1 . 164 +14.485 1.255 +19.802

Table 6.5.2c Maximum pressure amplitude at various times
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CASE 
NUMBER

POINT 1 POINT 2 POINT 3 POINT 4

TIME 
T1

< sec )

PRESSURE 
Pl 

(mm)

TIME 
T2 

(sec)

PRESSURE 
P2 

( mm )

TIME
T3 

(sec >

PRESSURE
P3

( mm >

TIME
T4 

(sec )

PRESSURE
P4

( mm )

26 . 323 +14.048 . 250 +5.142 . 162 +13.759 . 235 +18.339
. 844 -12.295 .727 -6.326 . 646 -13.694 .764 -24.351

27 . 323 +17.357 .257 +6.114 . 158 +17.026 . 231 +21.695
.836 -14.506 .718 -7.926 . 639 -16.743 .757 -30.233

28 .313 +19.971 . 257 +6.829 . 159 +19.596 .227 +24.089
. 846 -16.181 .711 -9.165 .619 -19.137 .760 -34.763

29 .311 +22.522 . 265 +7.494 . 156 +22.101 .219 +26.225

30 . 360 +4.251 . 250 +1.698 . 172 +4.198 . 282 +6.290
. 892 -4.488 .767 -1.889 . 673 -4.565 .783 -7.873

1.377 +5.493 1.284 +2.095 1. 174 +5.203 1.268 +7.916
1.894 -4.498 1.769 -1.618 1.675 -4.439 1.784 -8.133
2.379 +6.053 2.317 +2.895 2. 191 +5.673 2.270 +8.052
2.927 -3.894 2.771 -.970 2.692 -4.295 2.818 -8.443
3.428 +8.021 3.303 +3.716 3.209 +8.050 3.318 +11.523
3.866 -3.249 3.741 -.361 3.694 -3.846 3.819 -6.166

31 . 343 +10.062 . 252 +3.765 . 172 +9.868 . 263 +13.714
.899 -9.560 .757 -4.613 .677 -10.305 . 798 -18.694

1.363 +13.332 1.303 +5.033 1 . 182 +12.603 1.262 +17.541
1.878 -6.619 1.717 -1.573 1.626 -8.572 1.777 -17.871
2.343 +15.089 2.323 +7.733 2. 161 +15.124 2.242 +19.714
2.848 -4.846 2.696 -1.093 2.676 -8.967 2.777 -16.707

32 . 334 +14.610 .250 +5.191 . 167 +14.299 .250 +18.694
.893 -13.062 . 743 -6.699 .651 -14.699 .801 -29.801

1.352 +20.136 1.352 +7.792 1 . 168 +18.707 1.252 +24.565

33 .328 +19.019 .255 +6.427 . 167 +18.624 .240 +22.911
.917 -16.346 . 735 -9.479 . 677 -19.765 .750 -33.410

34 .314 +23.402 . 255 +7.511 . 163 +22.978 . 229 +26.572
.810 -18.137 . 758 -12.317 .738 -24.349 .817 -50.979

35 .311 +26.646 . 256 +8.221 . 165 +26.206 .220 +28.948
. 843 -20.656 . 745 -13.483 .592 -25.327 .812 -61.084

Table 6.5.2d Maximum pressure amplitude at various times
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CASE 
NUMBER

POINT 1 POINT 2 POINT 3 POINT 4

TIME
T1

< sec )

PRESSURE 
Pl 

(mm)

TIME
T2 

(sec >

PRESSURE 
P2 

( mm )

TIME
T3 

(sec )

PRESSURE 
P3 

(mm)

TIME 
T4 

(sec )

PRESSURE 
P4 

( mm )

36 .305 +29.791 . 265 +8.843 . 161 +29.344 .213 +30.990
. 830 -23.447 .755 -14.343 . 599 -29.995 . 732 -58.254

37 .377 +2.550 . 254 + .587 . 130 +2.485 .254 +4.240
. 878 -2.306 .730 -.452 .618 -2.434 . 754 -4.478

1.391 +3.531 1.311 +1.255 1 . 138 +3.162 1.261 +5.191
1.867 -.988 1.669 + .881 1.589 -1.388 1.744 -3.428

38 . 371 +4.310 .257 + .957 . 133 +4.183 . 247 +6.968
. 875 -3.737 .713 -.742 .618 -4. 118 . 751 -7.722

39 . 366 +5.594 .258 +1.220 . 133 +5.434 . 241 +8.855
. 874 -4.598 .699 -.921 . 607 -5.290 . 749 -10.006

40 . 365 +7.064 .268 +1.579 . 134 +6.801 .238 +10.795
. 841 -4.412 . 648 -.863 . 596 -6.465 .745 -12.056

41 . 355 +8.225 . 267 +1.745 . 130 +8.007 . 239 +12.458
. 854 -5.963 .663 -1.354 . 595 -7.750 . 745 -14.675

42 . 352 +9.626 .288 +2.185 . 128 +9.191 . 237 +13.991

43 . 353 +10.689 . 286 +2.447 . 134 +10.171 . 231 +15.212

44 . 381 +3.446 .258 + .766 . 129 +3.368 .258 +5.637
. 898 -3.223 .738 -.652 .627 -3.370 . 769 -6.308

1.402 +4.594 1.316 +1.411 1 . 144 +4.190 1.273 +6.891
1.894 -1.953 1.710 + .709 1.605 -2.330 1.759 -5.348

45 . 374 +5.659 . 259 +1.212 . 134 +5.492 . 250 +8.919
.902 -5.097 .730 -1.080 .624 -5.525 . 768 -10.600

46 . 368 +7.410 .259 +1.552 . 134 +7.190 .243 +11.344
.895 -6.326 .711 -1.388 .619 -7.157 .769 -13.922

47 . 360 +9.157 .263 +1.878 . 135 +8.880 . 240 +13.605
.893 -7.418 .698 -1.714 . 608 -8.783 . 766 -17.253

Table 6.5.2e Maximum pressure amplitude at various times
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Table 6.5.2-f Maximum pressure amplitude at various times

CASE 
NUMBER

POINT 1 POINT 2 POINT 3 POINT 4

TIME 
T1 

(sec )

PRESSURE 
Pl 

(mm)

TIME 
T2 

(sec )

PRESSURE 
P2 

(mm)

TIME
T3

< sec >

PRESSURE 
P3 

(mm)

TIME
T4 

(sec )

PRESSURE 
P4 

(mm)

48 . 354 +11.111 . 265 +2.234 . 136 +10.775 . 238 +15.953
. 891 -8.407 .680 -2.124 .598 -10.640 . 768 -20.938

49 .350 +12.625 .268 +2.507 . 134 +12.254 . 229 +17.657
.873 -8.946 . 669 -2.500 .592 -12.158 . 771 -23.690

50 . 343 +14.113 .277 +2.784 . 132 +13.692 . 223 +19.218
. 728 -7.012 . 668 -3.004 . 590 -13.773 . 734 -25.578

51 . 391 +4.740 . 247 +1.014 . 138 +4.712 . 271 +7.546
.945 -4.543 .746 -.919 . 638 -4.846 .813 -9.659

1.421 +6.386 1.385 +1.581 1 . 156 +5.845 1.282 +9.619
1.951 -3.201 1.764 + .475 1.631 -3.660 1.794 -8.299

52 .385 +7.108 . 256 +1.455 . 138 +6.973 . 266 +10.757
.967 -6.488 . 740 -1.428 . 631 -7.235 . 809 -14.740

53 .372 +10.081 .256 +1.980 . 140 +9.834 . 256 +14.378
. 958 -8.398 .719 -2.233 . 636 -10.248 . 834 -23.618

54 .364 +12.858 . 270 +2.443 . 138 +12.521 . 241 +17.419
.969 -10.287 .736 -3.063 .619 -12.751 . 773 -26.471

55 . 354 +14.653 . 272 +2.730 . 143 +14.270 . 232 +19.223
.994 -11.589 . 756 -3.442 .593 -14.459 .817 -35.536

56 .352 +16.522 .275 +3.023 . 141 + 16. 113 . 230 +20.986
. 864 -10.719 .685 -3.870 .582 -16.791 . 870 -42.170
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Table 6.5.3a Comparison of pressure amplitude at. point 1

CASE 
NUMBER

PRESSURE (mm) PRESSURE RATIO

MEASURED

(Pm)

THEORE TICAL

(Pm/Pti) (Pm/Pt m)
INITIAL 
(Pt i >

MEAN 
(Ptm)

1 5.260 4.980 5. 183 1.044 1.003
2 9.500 9.273 9.693 1.024 .980
3 13.200 12.695 13.444 1.040 .982
4 16.800 15.884 17.324 1.058 . 970
5 19.100 19.565 18.657 . 976 1.024
6 6.900 6.598 6.898 1.046 1.000
7 12.300 11.768 11.853 1.045 1.038
8 17.100 16.619 17.418 1.029 .982
9 21.500 20.793 22.202 1.034 . 968

10 25.400 25.633 24.355 . 991 1.043
11 9.200 8.717 9. 104 1.055 1.011
12 15.800 15.467 16.047 1.022 . 985
13 21.600 22.309 22.366 . 968 .966
14 27.500 27.791 28.790 . 990 . 955
15 33.700 33.391 30.866 1.009 1.092

CASE 
NUMBER

PRESSURE (mm) PRESSURE RATIO

MEASURED

(Pm)

THEORE TICAL

(Pm/Pt i) (Pm/Pt m)
INITIAL 
(Pt i )

MEAN 
(Ptm)

1 3.500 3. 195 3.492 1.096 1.002
2 6. 400 5.734 6.502 1.116 .984
3 9. 100 7.632 9. 165 1. 192 . 993 .
4 11.800 9.293 11.942 1.270 .988
5 13.900 11.080 12.664 1.254 1.098
6 4.200 3.945 4.376 1.065 .960
7 7.900 6.737 7.443 1. 173 1.061
8 11.500 9. 139 11.184 1.258 1.028
9 15.500 1 1.037 14.403 1.404 1.076

10 19.600 13.046 15.714 1.502 1.247
11 5.400 4.914 5.489 1.099 . 984
12 10.500 8.231 9.808 1.276 1.071
13 16.200 10.953 13.734 1.479 1 . 180
14 20.400 13.326 17.710 1.531 1 . 152
15 25.100 15.230 20.239 1.648 1.240

Table 6.5.3b Comparison of pressure amplitude at point 2
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Table 6.5.3c Comparison of pressure amplitude at point 3

CASE 
NUMBER

PRESSURE (mm) PRESSURE RATIO

MEASURED

(Pm)

THEORE TICAL

(Pm/Pt i ) (Pm/Pt m)
INITIAL 
(Pt i )

MEAN 
(Ptm)

1 5.20© 4.931 5.345 1.055 . 973
2 9.500 9. 155 9.947 1.038 . 955
3 13.200 12.553 13.429 1.052 . 983
4 17.000 15.728 16.996 1.081 1.000
5 19.800 19.418 19.282 1.020 1.027
6 6.700 6.528 7. 133 1.026 . 939
7 12.500 11.593 12.568 1.078 . 995
8 17.300 16.371 17.556 1.057 . 985
9 22.200 20.519 22.107 1.082 1.004

10 27.400 25.345 25.226 1.081 1.086
11 9.200 8.628 9.348 1.066 . 984
12 16.400 15.193 17.627 1.079 . 930
13 22.900 21.516 23.121 1.064 . 990
14 29.300 27.294 29.434 1.073 . 995
15 36.100 32.865 33.930 1.098 1.064

CASE 
NUMBER

PRESSURE (mm) PRESSURE RATIO

MEASURED

(Pm)

THEORE TICAL

(Pm/Pt i ) (P m / P t m)
INITIAL 
(Pt i )

MEAN 
(Ptm)

1 7. 100 6.329 7.023 1. 122 1.011
2 12.900 11.355 * 13.110 1 . 136 . 984
3 17.700 15.098 17.639 1 . 172 1.003
4 22.600 18.361 22.277 1.231 1.014
5 26.100 21.855 25.098 1 . 194 1.040
6 9.600 8.511 9.656 1. 128 . 994
7 17.400 14.512 17.044 1 . 199 1.021
8 23.800 19.635 23.660 1.212 1.006
9 29.500 23.660 29.668 1.247 . 994

10 35.100 27.876 33.721 1.259 1.041
11 13.700 11.211 13.043 1.222 1.050
12 23.200 18.637 24.340 1.245 . 953
13 30.200 24.595 32.617 1.228 . 926
14 36.300 29.761 41.716 1.220 . 870
15 39.600 33.846 45.085 1 . 170 . 878

Table 6.5.3d Comparison of pressure amplitude at point 4
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Table 6.5.3e Comparison of pressure amplitude at- point 1

CASE 
NUMBER

PRESSURE (mm) PRESSURE RATIO

MEASURED

(Pm)

THEORE TICAL

(Pm/Pt i ) (Pm/Pt m)
INITIAL
(Pt i )

MEAN 
(Ptm)

16 2.500 2.460 2.869 1.016 . 871
17 5.400 5.321 5.324 1.015 1.014
18 8.000 7.988 8.776 1.002 .912
19 10.500 10.641 9.942 . 987 1.056
20 12.900 13.029 11.931 .990 1.081
21 15.200 15.010 13.391 1.013 1 . 135
22 17.200 16.694 16.694 1.030 1.030
23 3.300 3.450 4.067 . 957 .811
24 7.400 7.506 7.924 .986 . 934
25 10.800 11.034 11.868 . 979 .910
26 13.600 14.048 13.172 . 968 1.033
27 16.900 17.357 15.932 . 974 1.061
28 19.300 19.971 18.076 .966 1.068
29 23.900 22.522 22.522 1.061 1.061
30 4.300 4.251 5. 171 1.012 . 832
31 9.600 10.062 10.411 . 954 . 922
32 13.600 14.610 15.218 .931 .894
33 18.500 19.019 17.682 . 973 1.046
34 22.000 23.402 20.770 . 940 1.059
35 24.500 26.646 23.651 .919 1.036
36 28.600 29.791 26.619 . 960 1.074

PRESSURE (mm)CASE 
NUMBER

MEASURED

(Pm)

16 1.000
17 2.300
18 3.400
19 4.700
20 6.300
21 7.600
22 8.800
23 1.300
24 2.900
25 4.600
26 6.400
27 9.300
28 10.900
29 11.900
30 1.600
31 4.000
32 6.600
33 10.200
34 13.300
35 14.300
36 17.000

THEORE TICAL

INITIAL MEAN
(Pt i ) (Ptm)

1.052 1.221
2.204 2.373
3.203 4.229
4.136 4.364
4.924 5.284
5.552 6.051
6.069 6.069
1.421 1.670
2.962 3.380
4.181 5.462
5. 142 5.734
6.114 7.020
6.829 7.997
7.494 7.494
1.698 2.030
3.765 4.276
5. 191 6.595
6.427 7.953
7.511 9.914
8.221 10.852
8.843 11.593

PRESSURE RATIO

(Pm/Pt i ) (Pm/Pt m)

. 951 .819
1.044 . 969
1.062 .804
1.136 1.077
1.279 1 . 192
1.369 1.256
1.450 1.450
.915 . 779
.979 .858

1. 100 . 842
1.245 1.116
1.521 1.325
1.596 1.363
1.588 1.588

. 942 .788
1.062 . 935
1.271 1.001
1.587 1.283
1.771 1.342
1.739 1.318
1.922 1.466

Table 6.5.3f Comparison of pressure amplitude at point 2
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Table 6.5.3g Comparison of pressure amplitude at point 3

CASE 
NUMBER

PRESSURE (mm) PRESSURE RATIO

MEASURED

(Pm)

THEORE TICAL

(Pm/Pt i) (Pm/Pt m)
INITIAL 
(Pt i )

MEAN 
(Ptm)

16 2.500 2.400 3.028 1.042 . 826
17 5.500 5.210 5.383 1.056 1.022
18 8.300 7.838 8.564 1.059 . 969
19 11.100 10.454 10.365 1.062 1.071
20 14.000 12.804 12.658 1.093 1. 106
21 16.100 14.754 14.579 1.091 1. 104
22 18.700 16.378 16.378 1. 142 1. 142
23 3.400 3.357 4.293 1.013 .792
24 7.600 7.345 8.114 1.035 . 937
25 1 1.400 10.792 11.745 1.056 .971
26 15.100 13.759 13.726 1.097 1 . 100
27 18.600 17.026 16.885 1.092 1. 102
28 21.900 19.596 19.366 1.118 1. 131
29 25.200 22.101 22.101 1.140 1. 140
30 4.500 4. 198 5. 178 1.072 . 869
31 10.500 9.868 11.204 1.064 . 937
32 15.300 14.299 15.601 1.070 . 981
33 20.500 18.624 19.194 1 . 101 1.068
34 24.800 22.978 23.663 1.079 1.048
35 29.300 26.206 25.766 1.118 1 . 137
36 33.200 29.344 29.669 1 . 131 1.119

CASE 
NUMBER

PRESSURE (mm) PRESSURE RATIO

MEASURED

(Pm)

THEORE TICAL

(Pm/Pt i) (Pm/Pt m)
INITIAL 
(Pt i )

I 
i

I 
i

i 
i

i 
z: s 

I
1 

O
C 

♦> 
1

1 
U
J O

. 
1

1 
-E

2 -s 
1

1 
1

1 
1

1 
1

16 3.900 3.669 4.662 1.063 .836
17 8.600 7.702 8.474 1.117 1.015
18 13.000 11.202 13.132 1 . 161 . 990
19 17.400 14.426 15.963 1.206 1.090
20 21.600 17.108 19.295 1.263 1.119
21 25.400 19.184 21.948 1.324 1. 157
22 29.200 20.829 20.829 1.402 1.402
23 5.500 5. 119 6.657 1.075 . 826
24 12.200 10.639 12.671 1. 147 .963
25 18.100 14.967 18.162 1.209 . 997
26 23.800 18.339 21.345 1.298 1.115
27 27.900 21.695 25.964 1.286 1.075
28 32.300 24.089 29.426 1.341 1.098
29 38.500 26.225 26.225 1.468 1.468
30 7.400 6.290 8.310 1.177 . 891
31 17.200 13.714 17.806 1.254 .966
32 23.500 18.694 25.715 1.257 .914
33 28.500 22.911 28.161 1.244 1.012
34 30.500 26.572 38.776 1. 148 .787
35 31.400 28.948 45.016 1.085 .698
36 33.400 30.990 44.622 1.078 .749

Table 6.5.3h Comparison of pressure amplitude at point 4
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PRESSURE (mm)CASE 
NUMBER

MEASURED

(Pm)

37 2.500
38 4.300
39 5.700
40 7.000
41 8. 100
42 9.500
43 10.900
44 3.500
45 5.600
46 7.200
47 8.900
48 10.500
49 11.900
50 13.400
51 5.200
52 7.300
53 9.400
54 11.700
55 13.300
56 18.000

PRESSURE RATIO

THEORE TICRL

INITIAL MEAN
(Pt i ) (Ptm)

2.550 2.535
4.310 4.023
5.594 5.096
7.064 5.738
8.225 7.094
9.626 9.626

10.689 10.689
3.446 3.505
5.659 5. 378
7.410 6.868
9. 157 8.288

11.111 9.759
12.625 10.785
14.113 10.563
4.740 4.966
7. 108 6.798

10.081 9.239
12.858 11.572
14.653 13.121
16.522 13.620

(Pm/Pt i) (Pm/Pt m)

.981 . 986

. 998 1.069
1.019 1.119

. 991 1.220

. 985 1. 142

.987 .987
1.020 1.020
1.016 .998

. 990 1.041

.972 1.048

.972 1.074

. 945 1.076

. 943 1 . 103

. 949 1.269
1.097 1.047
1.027 1.074

. 932 1.017

.910 1.011

. 908 1.014
1.089 1.322

Table 6.5.3i Comparison of pressure amplitude at point 1

CASE 
NUMBER

PRESSURE (mm) PRESSURE RATIO

MEASURED

(Pm)

THEORE TICAL

(Pm/Pt i ) (Pm/Pt m)
INITIAL 
(Pt i )

MEAN 
(Ptm)

37 . 600 .587 .520 1.021 1. 154
38 1.000 . 957 .850 .1.045 1. 177
39 1.300 1.220 1.070 1.066 1.215
40 1.600 1.579 1.221 1.014 1.311
41 2.000 1.745 1.549 1. 146 1.291
42 2.400 2. 185 2. 185 1.098 1.098
43 3.000 2.447 2.447 1.226 1.226
44 .700 .766 .697 .913 1.004
45 1. 100 1.212 1 . 146 . 908 . 960
46 1.600 1.552 1.470 , 1.031 1.088
47 2.000 1.878 1.796 1.065 1.114
48 2.500 2.234 2. 179 1.119 1. 147
49 3.300 2.507 2.504 1.316 1.318
50 4.300 2.784 2.894 1.545 1.486
51 .900 1.014 .923 . 888 .975
52 1.400 1.455 1.441 .962 .971
53 2.500 1.980 2. 107 1.263 1. 187
54 3.800 2.443 2.753 1.555 1.380
55 5.300 2.730 3.086 1.941 1.717
56 4.200 3.023 3.446 1.389 1.219

Table 6.5.3j Comparison of pressure amplitude at point 2
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Table 6.5.3k Comparison of pressure amplitude at point 3

CASE 
NUMBER

PRESSURE (mm) PRESSURE RATIO

MEASURED

(Pm)

THEORE TICAL

(Pm/Pt i) (Pm/Pt m)
INITIAL 
(Pt i )

MEAN 
(Ptm)

37 2.700 2.485 2.511 1.086 1.075
38 4.500 4. 183 4. 150 1.076 1.084
39 5.900 5.434 5.362 1.086 1. 10©
40 7.500 6.801 6.633 1.103 1.131
41 8.700 8.007 7.879 1.087 1. 104
42 9.900 9. 191 9. 191 1.077 1.077
43 11.600 10.171 10.171 1.141 1.141
44 3.600 3.368 3.470 1.069 1.038
45 5.900 5.492 5.508 1.074 1.071
46 7.700 7. 190 7. 173 1.071 1.073
47 9.800 8.880 8.831 1 . 104 1.110
48 11.800 10.775 10.707 1.095 1 . 102
49 13.100 12.254 12.206 1.069 1.073
50 14.800 13.692 13.733 1.081 1.078
51 5.400 4.712 4.959 1 . 146 1.089
52 7.900 6.973 7. 104 1 . 133 1.112
53 11.200 9.834 10.041 1 . 139 1.115
54 13.900 12.521 12.636 1.110 1.100
55 16.500 14.270 14.365 1 . 156 1 . 149
56 12.700 16.113 16.452 . 788 . 772

CASE 
NUMBER

PRESSURE (mm) PRESSURE RATIO

MEASURED

(Pm)

THEORE TICAL

(Pm/Pt i ) (Pm/Pt m)
INITIAL 
(Pt i )

MEAN 
(Pt m)

37 4.500 4.240 4.501 1.061 1.000
38 7.900 6.968 7.345 1. 134 1.076
39 10.400 8.855 9.430 1. 175 1. 103
40 13.300 10.795 11.425 1.232 1 . 164
41 15.600 12.458 13.567 1.252 1. 150
42 18.100 13.991 13.991 1.294 1.294
43 20.600 15.212 15.212 1.354 1.354
44 6.500 5.637 6.230 1 . 153 1.043
45 10.500 8.919 9.759 1 . 177 1.076
46 13.900 11.344 12.633 1.225 1 . 100
47 17.700 13.605 15.429 1.301 1 . 147
48 21.200 15.953 18.446 1.329 1. 149
49 23.300 17.657 20.673 1.320 1 . 127
50 25.200 19.218 22.398 1.311 1. 125
51 11.200 7.546 9.067 1.484 1.235
52 15.500 10.757 12.748 1.441 1.216
53 19.300 14.378 18.994 1.342 1.016
54 21.900 17.419 21.945 1.257 .998
55 25.600 19.223 27.379 1.332 . 935
56 23.300 20.986 31.578 1.110 . 738

Table 6.5.31 Comparison of pressure amplitude at point 4
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Table 6.5.4 Comparison of horizontal force amplitude

CASE 
IUMBER

HORIZONTAL FORCE <N/m) FORCE RATIO

CALCULATED 
FROM 

LACEY,1983 
(Fxm)

THEORE TICAL

(Fxm/Fxt i) < Fxm/Fxt m)
INITIAL
< Fxt i )

MEAN
< Fxt m)

23 3.379 3. 155 4.576 1.071 . 738

24 7.490 7.037 8. 116 1.064 .923

25 11.113 10.456 11.603 1.063 . 958

26 14.247 13.241 13.567 1.076 1.050

27 17.707 16.697 16.978 1.061 1.043

28 20.434 19.295 18.680 1.059 1.094

29 23.080 21.588 20.686 1.069 1.116

39 4.587 3.861 5. 181 1. 188 . 885

31 11.021 9.324 11.591 1 . 182 . 951

32 16.145 13.659 16.004 1. 182 1.009

33 21.209 17.961 17.236 1. 181 1.230

34 26.332 22.307 20.879 1 . 180 1.261

35 30.145 25.554 23.582 1. 180 1.278

36 33.839 28.720 25.945 1. 178 1.304
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4

Fig. 6.5.1 Point number used in this study

Fig. 6.5.2 Location number in Lacey, 1985
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1.1 Point 1
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•••*••• -0.05

Fig. 6.5»3a (initial) pressureRatio of measured and theoretical
amplitudes
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Ratio of measured and theoretical (initial) pressure
amplitudes
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Point 1
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Fig. ,6.5.3c Ratio of measured and theoretical (initial) 
pressure amplitudes
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Point 4

Ratio of 
pressure

— 0. 15 
-•0.10 
•*0.05

measured and theoretical (mean)
amplitudes
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Pm/Ptm

Point 1

Pm/Ptm

1.1

Pm/Ptm

Pm/Ptm

kr = 0.J0 H/X

(y0 - *)/X

------- e 0.15 
-------v 0>10
••••*•• -0.05

Fig. 6.5.4b Ratio of measured and theoretical (mean)
pressure amplitudes
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Pm/Ptm

-------e-------0.15 
-------V----0.10
••••*•• 0.05

Fig. 6.5.4c Ratio of measured and theoretical (mean)

pressure amplitudes
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Pm/Pti

-------e 0.22 
-------V 0,30
••••*•••-0.41

Fig. 6.5.5a Ratio of measured and theoretical (initial)
pressure amplitudes
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------- e------- 0.22 
-------V---0.30
••••#•••-0.41

Fig. 6.5.5^ Ratio of measured and theoretical (initial)
pressure amplitudes
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------- e-------0.22
-------v — .0,30
•••*••-0.41

Fig. 6.5.5c Ratio of measured and theoretical (initial)

pressure amplitudes
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-------e------ 0.22
-------V------0.30
•••*•••-0.41

Fig. 6.5.6a Ratio of measured, and theoretical (mean)

pressure amplitudes
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Pm/Ptm

Pm/Ptm

Fig. 6.5.6b Ratio of measured and theoretical (mean) 
pressure amplitudes
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l.J5r Point 3

Point 2
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kr
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Fig. 6.5.6c Ratio of measured and theoretical (mean)

pressure amplitudes
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Figure 6.5.7a Ratio oF measured and theoretical pressure amplitudes

(after LACEY, 1985)
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Figure 6.5.7b- Ratio oF measured and theoretical pressure amplitudes
(after LACEY, 1985)
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Figure 6.5.7<, Ratio oF measured and theoretical pressure amplitudes
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Figure 6.-5.8F. Ratio of measured and theoretical pressure amplitudes
(after LACEY, 1985)
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Figure 6.5.8c Ratio oF measured and theoretical pressure amplitudes
(after LACEY, 1985)
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Fxm/Fxti

Fig. 6.5.10a Horizontal (initial) force amplitude ratio for case No. 25-36 
(kr= 0.30)

Fxm/Fxtm

Fig. 6.5.10b Horizontal (mean) force amplitude ratio for case No. 23-36 
(kr = 0.30)
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CHAPTER 7 - DISCUSSION

With regard to the form of the wave profile, after running 

for one period from the initial sine wave profile, the shape of the 

wave begins to be more peaked at the crest and flatter in the trough 

of the wave. The wave form is similar but not exactly identical to 

a wave form obtained by the perturbation technique developed by

Schwartz (1974), as opposed to the excellent result claimed by

Longuet-Higgins and Cokelet (1976). The main difference between the 

two techniques may be that Longuet-Higgins and Cokelet employed the 

perturbation technique developed by Schwartz (1974) to evaluate 

their initial wave profile alone. They have proved that the wave 

travels without change of form. Therefore, there is a possibility 

that the proposed technique is not as accurate as the one developed 

by Longuet-Higgins and Cokelet. At least, thei F vertical side 

boundary conditions and corner problems are eliminated by the 

conformal transformation. But the proposed method has proved that 

for small amplitude waves, the technique would allow the wave to 

travel more than six periods.

One of the fundamental sources of numerical instability in 

the proposed technique is due to the corners of the wave surface, 

where two nodes move towards each other until a re-entrant boundary 

exists. The inability to model a plunging wave is due to the re-

entrant boundary developed on the wave surface. Again, the approach 

by Longuet-Higgins and Cokelet has eliminated the re-entrant 

boundary by conformal transformation.
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The pressures obtained by the proposed technique on the 

fixed horizontal circular cylinder are not in good agreement with 

the experimental measurements for steeper waves. But the 

experimental results may be subject to the disturbance of the free 

surface and viscous effect on the cylinder. Good agreement is shown 

for small amplitude waves and when the cylinder is well away from 

the free surface. Due to the inability to model plunging waves, 

when the cylinder is in shallow submergence, the pressure results 

would not agree well with the experimental measurements. The poor 

comparison of forces between the proposed technique and those, 

obtained by Jeffrey et al (1976) is caused by the cylinder being 

placed too closed to the surface. Good agreement is shown on forces 

between the proposed technique and those obtained by Lacey (1983). 

Results for forces and pressures might be inproved if the fixed 

horizontal circular cylinder is placed half a wavelength behind the 

wave trough.

Longuet-Higgins and Cokelet (1976) have shown energy 

variation in time for waves with pressure amplitude applied at the 

wave surface. Vinge and Brevig (1980) showed the variation in time 

of the total energy of the deep-water waves and of their components, 

i.e. kinetic and potential energy. Their total energy is almost 

constant in time, except at the very end of the calculation where 

the total energy drops. Even though they have shown their energy 

variations, it is difficult to compare their results with the energy 

variations from the case studies. From their graphs, the wave moved 

about 0.75 of a period and then stopped. From Figs. A.13.1 - 

A. 13.56, the energy variations in time are all fairly constant,
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except that the total energy increases gradually at the end of the 

wave movement. The durations of the wave movement in these cases 

range from over 6 periods for small amplitude waves to 0.55 of a 

period for finite amplitude waves.

Another area of concern which might contribute some 

numerical inaccuracy is that shown by Ogilvie (1963) who 

demonstrated that when a wave passed over an object, a phase lag 

would exist between the incident and transmitted waves. The phase 

lag leads to a difference in wavelengths on the wave before and 

after passing the object. Calculations have been carried out and 

show that for the wave characteristic in case 34, the phase lag 

is 10 which is equivalent to a difference in wavelengths of 63mm. 

For the wave characteristic in case 56, the phase lag is 16.6° 

which is equivalent to a phase difference of 77.3mm. These 

differences may contribute some error which the proposed method has 

not accounted for.

When a wave problem is to be solved using the proposed 

technique, there are three factors which play a significant role in 

determining the accuracy of the solution. The first factor is the 

wave characteristic. Although the method uses non-linear boundary 

conditions on the wave surface, numerical instability increases with 

increasing wave steepness. The second factor is the number of nodes 

used on the boundaries, especially on the wave surface. Even though 

this comparison has not been shown in the previous chapter, the 

execution time is proportional to the square of the total number of 

nodes used at the boundaries. The third factor relates to the 
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introduction of an object into the flow domain. The smaller the 

depth of submergence of the object, the sooner the numerical 

instability occurs on the wave profile.

The disadvantage of the proposed technique, or even the 

techniques proposed by Longuet-Higgins and Cokelet (1976) and Vinje 

and Brevig (1980), is that the domain will repeat itself infinitely. 

That means if the wave profile has an object in the flow domain, the 

object will repeat itself an infinite number of times with the same 

wave profile above it. Hence the method can not be applied to a 

realistic problem, for example, a horizontal cylinder under wave 

profiles in a wave tank. An immediate answer would be to have a 

domain with 5 to 10 wavelengths along the length of domain, so that 

the influence of vertical side boundaries on the cylinder is 

reduced, or ultimately to replace the in-flow vertical side boundary 

conditions with the numerical modelling of wave generator and the 

out-flow vertical boundary conditions with the numerical modelling 

of wave absorber.
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CHAPTER 8 - CONCLUSION AND RECOMMENDATIONS

FOR FURTHER RESEARCH WORK

The aim of the present study has been achieved by showing 

the applications of the boundary element method to ground water flow 

problems, free surface flow problems, orthotropic problems, heat 

conduction problems and more extensively to the simulation of 

progressive and standing wave problems.

The basic formulation of the boundary element method has 

been presented in chapter 3. It mainly consists of dividing only 

the boundary of the domain into a series of elements as opposed to 

the division of the whole domain in the finite element method (with 

the exception of the application to transient potential problems). 

Therefore a smaller system of algebraic equations is obtained and 

a considerable reduction in the data required to solve a problem can 

be achieved. The accuracy of solutions by the boundary element 

method is comparable to those obtained by the finite element method.

Existing techniques for the application of the boundary 

element method to time dependent problems have been studied. The 

results of the four examples given in chapter 4 validate the 

programs written in this study. Accuracy of the solution technique 

for rigid domain problems with re-entrant corners may be improved 

through the division of the domain into zones, as illustrated in 

example 4.3.1 - seepage under a dam with vertical cut-off wall. 

Ccxnparison of the boundary idealisations in the free surface flow 

solution procedure of Liggett (1977a) and Brebbia and Wrobel (1979), 
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indicates that results may be improved by the inclusion of the 

seepage surface and a constant, k , to control the rate of 

convergence. Two values were assigned to the constant, k = 1.0 and k 

= 0.5. It was found that k = 0.5 gave a smoother free surface at 

the downstream face. The examples for orthotropic and heat 

conduction problems show the degree of numerical accuracy achieved 

in their original work.

The major achievement of the present work is the numerical 

simulation of periodic waves (i.e. progressive or standing) and the 

evaluation of pressures and forces on an internal object introduced 

into the flow domain.

The technique of applying the boundary element method to 

simulate periodic waves has been developed in chapter 5, together 

with the evaluation of pressures and forces on an internal object. 

Basically, the method involves solving integral equations along the 

fluid boundary, at each time step, to determine the spatial 

dependence of the motion at the wave surface. The wave profile is 

represented by the positions of wave particles. At each instant of 

time, boundary integral equations are set up and solved for the 

unknowns on the boundary. The positions of the wave particles are 

then advanced by a time stepping technique. Pressures and forces 

on an internal object may be evaluated at each time step.

A comparison of the wave profile after running for one or 

two periods with exact solution is not an easy task. The following 

points may be identified to support the validity of the application 
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of the boundary element method to simulate periodic waves with small 

wave steepness. Firstly, the technique would allow the wave to 

travel more than six periods for small amplitude waves and, 

secondly, the pressures obtained on the fixed horizontal cylinder 

are in good agreement with the experimental measurements for small 

amplitude waves when the cylinder is well away from the free 

surface. (Numerical instability occurs when the cylinder is placed 

too close to the wave surface.)

The majority of wave profile failures in the case studies 

originate at the corner of the wave surface where two nodes moved 

towards each other until a re-entrant boundary developd. The larger 

the wave steepness in the wave problem, the sooner the failure 

occurs. Therefore, investigation into the corner problem of the 

wave surface is recommended for improvement of the proposed 

technique.

One of the disadvantages of the technique is that the 

cylinder cannot be treated as partly submerged in the wave surface, 

which is within the capability of the technique by Vinje and Brevig 

(1980). Even if the cylinder is fully submerged, the crown of the 

cylinder must be well below the level where the trough of the wave 

lies.

The development of a re-entrant boundary is clearly a 

numerical obstacle for the wave to become plunging. Chapter 4 has 

clearly demonstrated that the re-entrant corner in example 4.3.1 can 

be eliminated by the technique of zoning. But it has not been
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adopted in the unsteady wave problems. The reason is that example

4.3.1 involves a rigid domain where the re-entrant corner is 

explicit. In the case of unsteady wave problems the re-entrant 

corner does not exist when a problem was set up. One has no 

knowledge of where on the wave surface it will occur. Obviously, 

the re-entrant corner problem in a non-rigid domain is an area for 

further research.

Another area for the improvement of the proposed technique 

is the numerical modelling of proper radiation boundary conditions 

on the two vertical side boundaries. A more realistic approach 

would be the numerical modelling of the wave generator and absorber 

on the two vertical side boundaries to simulate a numerical wave 

tank.
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APPENDIX A.1 THE DIVERGENCE THEOREM

If a vector field and the divergence of f :

a-rf* continuous over the regular region PY and its boundary P , 

the Divergence theorem may then be stated as (Kellogg, 1954)•

(A.1.2)

where is the component of the vector field in the direction of 

the outward normal to the boundary T .

Equation (A.1 .2) may be rewritten in full as:

a. r

where , i2 and £$ are the direction cosines of the outward normal to P - 

The conditions for this theorem to be true are that the integrals 

of and through O. exist and the region to be regular

in the sense defined by Kellogg (1954)» who stated that a regular 

region of space is a bounded closed region whose boundary is a 

closed regular surface.
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APPENDIX A .2 FUNDAMENTAL SOLUTION AND GAUSS FLUX THEOREM

It is best to start from basic principle to prove that a 

function , , involving -1- in three-dimensional problems, or In ( y )

in two -dimr 1onal problems, may be a solution to Laplace’s equation:

0 (A. 2.1)

Let ( , %3), denoted by , be the coordinates of

a point p in space, and Y, its distance from the origin $,(see Fig.A.2.1):

YZ= X1+ + X" = Xi Xi (A.2.2)

Tn di rial notation indicating summation has been used in the above 

pq-na-Hnn and will be used when appropriate. Differentiating equation 

(A.2.2) yields:

2Y = 2X;

ar Xc

Y

Therefore,

3/1') _ a /1 \ _ -Xc
v r/ y2

(a.2.3)

(A.2.4)
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Differentiating equation (A.2.4) again gives:

Hence, a solution of Laplace’s equation in three dimensions

except at the origin.

In ( Y ) may also be proved with the above approach to

be a solution of Laplace’s equation in two dimensions.

Now, consider the flux of the gradient of
1

(~y~) through

a sphere [J . Y is the distance between point p , inside the

sphere, and the origin, , which is treated as a source point

lying outside , (see Fig. A.2.1). By applying

Fig. A.2.1 A point p inside a sphere in Cartesian- coordinate 

system
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the Divergence theorem (see Appendix A.1) to the flux of

2
the gradient of (—^-), equation (A•1.5) becomes:

(A.2.6)

where is the direction cosine of the outward normal and :

(A.2.7)

From equation (A.2.5) :

_n_

therefore,

Equation (A.2.9) is true provided that Y is different from zero 

at all points on or within •

When p coincides with the origin, , i.e. the source 

point, the fundamental solution will satisfy the Poisson’s equation:

=-4t { SW (a .2.10)

Under this situation, the region of integration is modified by 

constructing a small sphere of radius £ , having the origin as 

centre (see Fig. A.2.2). In the region between and Q ,

the function-^—satisfies the Divergence theorem, since -Cl ^does
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not contain any source point and thus equation (A.1.5) becomes:

where denotes the direction cosines of the outward normals from 

region _Q which will be outward from 0. over and inward over .

From equations (A.2.7) and (A.2.8), equation (A.2.11) is reduced to:

Since V and KI are in the same direction, the last integral of 

equation (A.2.12) can be evaluated as:

(A.2.15)

Equation (A.2.12) then becomes:

These results, equations (A.2.9) and (A.2.14), constitute the

Gauss flux theorem or Gauss condition which states that : If T is 

a closed regular surface and is the source point located at the 

origin, then, 

in three-dimensions:

a an
for (fr outside p (A.2.15a)

for a inside P (A.2.15b)
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and similarly in two-dimensions

for outside P 

for g. inside P

(A.2.l6a)

(A.2.16b)

along the outward normal.

Fig. A.2.2 A singular point, , excluded from the region

by a small sphere
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APPENDIX A. 3 GREEN’S THEOREMS

Let IX, and V be two different functions defined in 

a closed regular region, £1 , in space. Both functions are 

continuously differentiable in ££ and have continuous partial 

derivatives of the second order in £1 . Then, the Divergence 

theorem in Appendix A.1 holds for £1 with the vector field:

F = V-W

or Xf-V^L, y<== . ?F=V-|v- (a-5-1)

r JX

Equation (A.2.2) becomes:

where indicial notation indicating summation has been used, 

represents the direction cosines of the outward normal n to T and :

0 dlA _ M __ <)X
L dx-L ^y \

(A.3.3)

which is the differentiation of U along the outward normal H .

Equation (A.3*2) becomes:

(A.3.4)

which is generally known as Green’s first identity.
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Similarly, by interchanging the roles of LA and V

in equation (A.3.1), the following equation may be obtained:

r
2 Wi K

(A.5.5)

rj

Noting that :

M W

and subtracting equation (A.3.4)

() i i.

from (A.3.5) gives:

(A.5.6)

which is known as Green’s second identity for the two functions LA

and V in a closed regular region -O- with boundary P and the normal 

is directed outward from J~' .

If LA and V are harmonic and continuously differentiable 

in the closed regular region PL , then the Green’s second identity 

becomes:

-v 0

r
(A.3.7)

If LA is harmonic and continuously differentiable in LL , 

and V is assigned a constant value to it, say, \] - 1, then the 

Green’s first identity (A.3.4) reduces to the Gauss condition (A.2.15a):

f_|Kap= 0 
Jr

(A.5.8)
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APPENDIX A.4 EVALUATION OF

The fundamental solution two dimensions is

given by:

^*7p,<p = in | p-^| = In (Y) (A.4.1)

It is assumed that \ u can be resolved into radial and tangential 
an

directions, Y and (see Fig. A.4.1). Therefore,

—13--- — --- COS (/ 4-----13--- cos &
()Y\ % Y d £

(A.4.2)

Since 4* is a function of Y along the radial direction only;

(A.4.5)

and therefore,
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A P P E N D I X  A . 5 E X A C T  I N T E G R A T I O N S  O F  G ( (

T h e  e x a c t  i n t e g r a t i o n s  o f  G * t i  t e r m s  f o r  c o nst a nt or  li n e ar 

v a r i a t i o n  f o r  b o t h  s t e a d y  a n d  t r a n s i e n t  p o t e n t i a l  p r o b l e m s  a r e  

c a r r i e d  o u t  i n  t h e  C a u c h y  p r i n c i p a l  v a l u e  s e n c e .

( a )  S t e a d y  p o t e n t i a l  p r o b l e m s

i . C o n s t a n t  v a r i a t i o n  ( s e e  F i g .  A . 5 . 1 )  ‘

V  l n( Yj - Y t 
k

2;
1

+

>✓ *

=  2' -f- - £  - m ( E) - £ ( A . 5 . 1 )

w i t h  £  - * O f r o m  L ’ H o p i t a l  r u l e ;

li m

✓  ' S

€  • i n ( £) =  0
( A . 5 . 2 )

T h e r e f o r e ,

Gii ( A . 5 . 5 )

£( 1)  6 g < o) *  £( Z)

%  -I
Y i

—

e l e m e n t  t

F i g .  A . 5 . 1  E x a c t  i n t e g r a t i o n  f o r  c o n s t a n t  v a r i a t i o n

2 6 0



ii. Linear variation

Since node I lies between elements i and i-1 

following interpolation functions are needed 

evaluation:

rA for element I 

for element L-i

the

for the

(A.5.4a)

(A.5.4b)

and

j A

T’C Y

= A. in(£t) _ e. m(£) + -Amg) -1 r - ii

From

lim

4Zi

Y2 

.4^-1,

£

ii-1

L’Hopital rule, with the limit £ —* 0 :

Therefore, the expression of becomes:

(A.5.5)

(A.5.6)

(A.5.7)

= 0

£

1
Y

261



(b) Transient potential problems

i. Linear variation

The same principle for linear variation of steady potential

problems can be ultilised here, i.e.

(A.5.8)

where and behave the expressions of eqnations (A.5.4):

Ei H = -C£-In ~7~7.
n=l

a= Ry2

R = -

(A.5.9a)

(A.5.9b)

(A.5.9c)

Substituting equations (A.5.9) into the first integral in 

equation (A.5.8) yields:

2 z <■

p/1Ei(a]ap =j(l-£)|-c£-in|R/|+
Q e-?o

which is simplified to:

Ay

(A.5.10)

Similarly, for the second integral of equation (A.5.8):

^)Ei[a]J[r=-^(1-CE-ln|R^0+f;
H-i

n 2^+1 
R h-i

(2n+2)-n-n!
(A.5.11)

Therefore, equation (A.5.8) becomes:

n-l n 2n+l C-i) R A 
(2n+l)(2n+2).n-n!

(A.5.12)
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APPENDIX A.6 BASIC HYDRODYNAMICS FOR TWO DIMENSIONAL FLOW

(1) Incompressible flow

Consider an element of fluid of unit dimensions, as

shown in Fig. A.6.1, the horizontal and vertical inflow velocities 

are U. and V respectively.

For incompressible flow, the density of fluid is constant:

Mass of fluid inflow = Mass of fluid outflow

u. + \r = u. + 3x

Hence:

51A + 51/ =
3x (A.6.1)

Equation (A.6.1) is the well known continuity equation.

(2) Stream function ,lvFn

A stream function,, is defined such that:

Substituting equations (A.6.2 ) into (A.6.1) yields:

(A.6.2a)

(A.6.2b)

(A.6.5)
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Hence the stream function satisfies the continuity equation.

(5) Velocity potential ** **

A velocity potential is defined such that:

(A.6.4a)

(A.6.4b)

Substituting equations (A.6.4) into (A.6.1) gives:

dx1

vV = 0or
(A.6.5)

Equation (A.6.5) is the well known Laplace’s equation.

(4) Bernoulli’s equation

Since the flow of an inviscid fluid is generally 

irrotational,but may be unsteady, the Bernoulli’s equation 

unsteady irrotational flows is shown to be (Newman, 1980)*

=C(t)

“ +9y

where fl is the pressure.

p is the fluid density.

0 is the acceleration due to gravity.

for

(A.6.6)
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C(£) is a constant independent of 

depend on time.

is the particle velocity.

space coordinates but may

U and V are the particle velocities in x and y directions

respectively, (see Fig. A.6.1).

Fig. A.6.1 An element of fluid
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APPENDIX A.7 HIGHER ORDER WAVE THEORIES

Wehausen and. Laitone (i960) assumed that the velocity

potential , wave profile , and wave velocity C could be 

expandPd in a perturbation series in some parameter: 

e = a k (A.7.1)

(A.7.2a)

(A.7.2b)

(A.7.2c)

where the number in parentheses of the last term considered in the 

approximations,indicates the order of the theory used.

After satisfying the corresponding boundary conditions,

the expressions obtained for , Q for second, third and fifth

order wave theories are given below.

(i) Second order wave theory

The following equations are identical with the ones presented 

in Wiegel (1964).

Velocity potential, :

1 sin(^x-^z;
T sinh (£p()

* + a.7.
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Wave profile , •

= <x-cos(4x-<r^) 1 (2+co«YU)co8hMeo8 2x- crA) 
sinh (Ad)

(A.7.4)

The equation for the wave velocity C is the same as for the linear

(A.7.5)

(ii) Third order wave theory

The velocity potential, wave profile and velocity computations 

were carried out by Stokes to the third order for pure gravity waves 

in fluid of finite depth. The following expressions, however, are 

taken from a report by Skjelbreia 0958)«

Velocity potential , (j) :

<£> = —F1 cosh A (d+ * sin (— (F/t)

+ -FF2oosh 2.W+ y)-sin <Tk')

+ -j-FjOosh 3A(d+y)- sin3 ('fex — <7"i) (A.7.6)

where

F1= sinter)

r~ _ 3 oi-___________1____
sinhW)

rr _ 3 A3, (ll~2cosh2Ad)
h5_64- k sinh7(Ad>
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Wave profile , :

= a cos +cos 2^z-<rZ)

+ 4^ A^‘cos (A.7.7)

where

^_gL) cosh(fed) [cosh (2fed) + 2 ]

f. , 3 J
lb

2 sinh3(fed)

1 4- gcosh (/fed)] 

sinh 6(fed)

Wave velocity , Q :

c2=-4-'tanh (M- 8+cosh (4 fed) 

g sinh 4(fed)
(A.7.8)

The value of wave amplitude ’a’ may be determined from equation

given below;

2^0*
(A.7.9)

where H is the wave height.

^(^-)has the same expression as for (A.7.7).

£=2TT/a •
For a specified value of H, 0. is obtained by using Newton-Raphson’s

method.

(iii) Fifth order wave theory

The Stokes’s theory for velocity potential, wave profile

and velocity was extended to the fifth order of approximation by

Be (1955). The expressions used in this study, were, however,
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taken from Skjelbreia and Hendrickson (1961).

Velocity potential, :

$ — -J— {(p An+ p A13+^ Ais) coshft(d+Jj) sinft(x-Ct) 

•+■ ( p A2I + ft A24 ) cosh 2 ft ( d + JJ) Sin 2 ft ( X. - C ft) 

+ (^AB + ^5A3s ) cosh 3&W+y) sin 3ft (x~ Cft) 

4- ^4A44. cosh 4ft(d + y) sin 4ft(X~Cft)

+ ft* A55 cosh5ft(^+j) sin 5ft(* - Ci) } (A.7.10)

Wave profile , :

q =4{/3CO8^(x- ci) + (/a2B22+ ^Bi4) cos2A(x-ci)

+ (|33B!4+ £.%) cos 3A(x -C^)

+ /24B4+ cos4-^(x-Ci)+/3s T>Mcos5ft(x-ci) ] (A.7.11)

Wave velocity , Q :

C=-^-(.l +^Ct+(A.7.12)

in the above expressions is determined by the following 

equation, assuming the wave height H,water depth d.and wave length 

X given:

+ +Bss)j (A.7.13)

The expressions for constants A-, By and C-L are functions of ( ^/k ) 

and listed below. Their numerical values for different values of 

( Va ) a^e given in tables I, II and III of Skjelbreia and Hendrickson 

(1961). For brevity in listing the coefficients, two notations
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are made:

(a) S = sinh (2iM/A)

(b) C = cosh (2Tf d/A)

Co2 = g [tanh(Ad)]

Au = 1/S

, _ -C2 (5CZ+ 1)

(A.7.14a)

(A.7.14b)

(A.7.15a)

(A.7.15b)

(A.7.15c)

-(11840”- 14400*- 19920*+ 26410*- 2490*+ 18) 

15J6S“
(A.7.15d)

(192C%424C% 312C% 4800* - 17)

768S

64S7

(A,7.15e)

(A.7.15f)

(A.7.15S)

(5120% 4224C10- 68OOCg- 128080% 167O4C4- 3150% 107) ?

4O96S13 (6C2 - 1)

(800% 8160% 1338C2- 197.1 (A.7.151)
1536S10 (6C% 1)

-(28800% 724800% 324OOOC% 4320000% 1634700% 16245) (a .7.15j ) 
6144OS1%6C% 1) (80% 110% 3)

64S

C(2C + 1)
4S3

(A.7.l5k)

0(2720’- 5040% 1920% 3220% 21)
(A.7.151)

584S’

 3(80*+ 1)
(A.7.15m)
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(881280% 2082240% 708480% 54OOOC*-218160% 62640% 54C%81)

(A.7.15n)
B35

B44

b55

Ci

c2

12288SU (60% 1)

C(768C10-448Cg- 480% 480% 1060% 21)

384S%6C% 1)

1920000% 2627200% 836800% 201600*°- 7280C*

12288Si0(6C2- 1) (8C4- 110% 3)

+ (71610% 18000% 10500% 225) „

12288Sl0(6C% 1) (80% 110% 3)

(80% 80% 9)

8S4

12 10 f? 6 4-2
(3840C - 4096C + 2592C - 1008C + 5944C - 183OC 

512S1O(6C% 1)

(A.7.15o)

(A.7.15P)

(A.7.15q)

i-l^(A.7.15r)

C3
-1 (A.7.i5s)

C4 (A.7.i5t)

If the wave period is given instead of the wave length to 

describe the wave profile, i.e. H > <%T are known, the wave length

X will be obtained through the following expression:

acceleration due to gravity.

(A.7.16)
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APPENDIX A.8 NON-DIMENSIONALISATION

The equations used in the computer program 'BEMW1' are

in non-dimensional form.

In order to non-dimensionalise all the equations, the

following reference parameters are chosen:

Reference

Reference

Reference

length = X/27f 

velocity = (0A/.2Tr) 

time =

(A.8.1a)

(A.8.1b)

(A.8.1c)

where A is the actual dimension of wavelength.

3 is the acceleration due to gravity.

Before carrying out the analysis, the following table 

is constructed to differentiate symbols with dimensions and 

those without dimensions.
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Parameter Dimensional symbol Non-dimensional 
symbol

horizontal length X X/y

vertical length y
wavelength A A A/

wave number ■k

amplitude (X

water depth d

velocity potential 4 L
wave velocity

' c Cn

time

period T t n
wave frequency cr

acceleration due to gravity 3 %
density P

pressure K
force F K
normal direction n
wave profile i
phase angle 6

cylinder radius Y Yn

wave height H h n

Table A.8.1 Dimensional and non-dimensional symbols
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From equations (A.8.1), the following identities are obtained:

-r — V_2?T (A.8.2a)

(A.8.2b)

(A.8.2c)

(A.8.2d)

(A.8.2e)

(A.8.2f)

(A.8.2g)

(A.8.2h)

(A.8.2i)

(A.8.2j)

t = ^73-^ (A.8.2k)

(A.8.21)

H = HN Zir (A.8.2n)

r - r x Y 27| (A.8.2m)

1 - 1« (A.8.2o)
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Substituting equations (A.8.2) into the relevant equations 

for wave profile, velocity potential, etc., the non-dimensionalised 

counterparts would be obtained. The following shows the non- 

dimensionalised, first order equations used in program ‘ BEMW1’ for 

progressive wave problems:

(a) Wave profile :

(A.8.5a)

(b) Velocity potential:

sin (4^- <rN — ew)

cosh

(A.8.5b)

where ^w= 1 for acceleration due to gravity in non-dimensional 

form.

(c) Dispersion relationship :

tanh(^tfQ (A.8.5c)

(d) Wave velocity :

f 2_ & An t.anhZ \ (A.8.Jd)
2T| < )

(e) Pressure :

(A.8.5e)

where A/ = 1 for fluid density in non-dimensional form.

(f) Normalised forces :

“fc cos 0 ‘ fa 

au-&
(jua.jf)

(A.8.3g)

where and £ are the polar coordinates of a point on an 

object.
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APPENDIX A. 9 SPLINE FITTING OF A CURVE

A spline is a flexible strip which can be held by weights 

so that it passes through each of the given points, but goes 

smoothly from each interval to the next according to the laws 

of beam flexure. A set of cubics fit through a set of data points 

( Xi , ), where I = 1,2,..., N , using a new cubic in each

interval. It corresponds to the idea of the draftsman’s spline 

using a French curve, having the same slope and curvature for the 

pair of cubics that join at each point. The equations are 

then developed subject to these conditions. The following 

derivation is brief and for computational purpose. More details 

can be found in , 'Ahlberg, Wilson and Walsh (1967) •

Thus on interval (zt , Z;+1) , from the linearity of

the second derivative, the following equation is obtained:

~ (A.9.1)
Xi. - X X - Xiti

where co represents the second derivative of Hi.

After rearranging:

X;+1— X. . | X Xj, , jCO = —+------ 2-----------  w i + 1

or

+ x7Xc (A. 9.2)
L <i(. lU

where = Xt'+1— Z^
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Integrating once:

2-h

Integrating again:

(x-xQ3
6^

The functions S-'(x),S/ (X) and SL(x) are continuous on

When X = Xj, , equation (A.9.4) gives:

Substituting equations (A.9.5) into (A.9.4) and with X

fr+4^"‘

(A.9.3)

(A.9.4)

[ *L> .

(A.9.5)

= Xt+i :

(A.9.6)

(A.9.7)

(A.9.8)
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By continuity of slope and with Z_ = Xt, i.e.

the following equation is obtained:

for l = (a.9.9)

Equation (A.9.9) is used to solve for i = and

back substituted into equation(A.9.7) to work out ordinate

then Ui are

or

(A.9.8) to work out slope for a specified X value.

It is noted that the following equations (for ordinate

and slope) are used in the subroutines instead of equations (A.9.7)

and (A.9.8), for computational efficiency:

Ai

(Xi+1- i+i~ x +^l ) tA (A.9.10)

Si(x) -At 4t cOi

Uiti
. 641

(A.9.11)

where = X —Xi

T>2 = Xm- X
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There are two types of spline applicable in this 

situation: (1) periodic spline and (2) cubic spline. The basic

difference between the two splines is that continuity of slope at 

every point including the ends are ensured in the periodic spline, 

whereas the curve fitted by a cubic spline would have continuity at 

every point except the end points.

In the development of the program ’BEMW1’, a periodic 

spline was used to ensure continuity of slope at the end points of 

a wave because an infinite number of waves are assumed. Once the 

program had been developed, the cubic spline was used to solve 

problems where wave periodicity does not exist.
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APPENDIX A. 10 SIMPSON’S RULE,

To evaluate f -f (x) dx the interval from a to b is

subdivided into N sub-intervals, such that the step size:

(A.10.1)

The integration may then be carried out by Simpson’s 1/3 rule

(Gerald, 1970):

(A.10.2)

A condition for equation (A.10.2) to be appliable is that N must 

be even.

In program 'bEMW1z, the calculation of total outflow

through wave surface requires the evaluation of S , distance

J r
between adjacent nodal points on the surface. Since is

obtained from using spline subroutine, the following equation 

derived from simpson’s rule makes use of the first order derivative 

to yield S :

4)} (a . 10.3)

where

4= at  node  n j  •
S„ distance between node M, and node M .

The error term for equation (A.10.3) is 11/720.
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Appendix A.11 Description of program ’ BEMLVB1*

Program 'BEMLVB1' is the basis of development for all 

other programs and was initially written in the author’s undergraduate 

project. The version'BEMLVB1' presented in this thesis is a modified 

undergraduate project’s version to include evaluationsof potential 

derivative and its direction at internal points. The efficiency 

in computational technique has also been improved since the research 

was initiated.

Apart from program 'BEMWY, all other programs have a common 

or similar flow diagram since they were obtained with minor modifications 

to program'BEMLVB1'. It is therefore sufficient to present, as an 

example, a simplified flow chart with algorithm for program'BEMLVBl' 

to illustrate the logical steps undertaken. The flow chart and 

algorithm for program ’BEMW1* has been shown and discussed in chapter 

6, due to the complexity of formulations involved in programming. 

Listing of computer programs is shown in Appendix A.12.
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Start STEP 1

Read in No. of gauss points, gauss weights and gauss lengths

Read in No. of nodes and internal points

STEP 2

STEP 5

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8

STEP 9

STEP 10

___ sk-----------------------------------------------------------
Apply Gaussian elimination

.... x.-------------------------------------------------
Put solution into matrix {VAi}

Print out results of (p and </> in {VAL}

Evaluation of <£ , </> and velocity direction for 

each internal point

*_________________________________________________7_________________________________________________________

Print out results of and velocity direction for
each internal point

STEP 12

STEP 15

STEP 14

STEP 15

STEP 16

STEP 17

Pig. A. 11.1 Flow Chart for ’ EEMLVB1 ’
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Structure of program *BEMLVB1*•

(1) Apart from STEP 6 which is simply to set matrices [h ] , [g ] 

and [VAL] to zero, STEP 1 to STEP 8 are for reading in and 

writing out data.

(2) STEP 9 performs the most important task of boundary element 

method. First of all, element geometries, e.g. length, 

d-i-rpn-Hon cosines, etc., for a particular element are calculated 

at the beginning of a DO-loop on all elements. Preceeding

a nested DO-loop on nodes, the diagonal terms for matrix (g J 

are calculated since it only relies on element length,equation

(4.2.2.5).  Inside the DO-loop on nodes, another nested D0- 

loop on Gauss points is set up to calculate Gauss point 

coordinates and hence the yp and X terms in equation (4.2.2.2a). 

A further nested DO-loop on the ends of the particular element 

is set up with DO-loop on Gauss points. This will compute 

coefficients according to equations(4.2.2.2). They are put in the 

appropriate location in matrices [h ] and[G]. The coefficients 

for evaluation of potential derivative <^> at internal points 

are stored in matrices {PX}, (PY} , [OX-} , {QY} .

When the nodal point coincides with either end point of the 

particular element, it will bypass the DO-loops on Gauss 

points and ends of element since coefficients in matrix [h ] 

are zero and those for matrix [g ] obtained beforehand will 

be put into the diagonal of matrix [g ] . Once the DO-loop 

on all nodes is finished, the same process is repeated for 

the next element, and so on until all the coefficients are 

calculated and added to the appropriate locations in matrices 

(h ) and (g ) .
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(3) Having set up matrices [h ] and[Gj , the diagonal terms in 

matrix [h ] are still unknown. As discussed in section 4.2.2 

for linear variation, STEP 10 completes the diagonal terms

through equation (4.2.11).

(4) STEP 11 is to perform the reordering from equations(4.2.9)

to (4.2.12).

(5) Having obtained [a ] ^x| , a standard solution routine

for Gaussian elimination is carried out in STEP 12.

(6) STEP 13 re-arranges solutions -and put into correct eolumns

(7)

in matrix {VAL} .

Solutions, including known values, for and are printed

(8) at internal points (i.e equations

(9) Results of STEP 15 are printed in STEP 16.
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APPENDIX A. 12 LISTING OF BOUNDARY ELEMENT PROGRAMS

Based on the numerical formulations outlined in chapters 

4 and 6, computer programs were written for the solution of two 

dimensional potential problems using constant or linear variation 

along elements. The programs to be listed in this thesis are:

(1) BEMLVB1---Boundary element program for potential problems

with linear variation along elements.

(2) BEMCVB1 --  Boundary element program for potential problems

with constant variation along elements.

(5) BEMA5Z -- Boundary element program for anisotropic problems

whose domain may be divided up to 5 zones, 

linear variation along elements.

(4) BEMFS1 -— Boundary element program for free surface flow

potential problems with linear variation along 

elements.

(5) BEMTDLV1 — Boundary element program for time dependent

problems with triangular discretisation on 

domain and linear variation along elements.

(6) BEMW1 --  Boundary element program for unsteady wave

problems, with linear variation along elements.

The following variable names and arrays have been used 

in the programs. Wherever possible variable names are chosen to 

coincide with the symbols employed in the text of the thesis but 

the use of mnemonics is frequently necessary.
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AK

AMP

AN(j)

ANGLE

APHI

ARCL(l)

AREA

AX(I)

AY(I)

BK

CON( )

CON1( )

C0N2( )

CX(I)

CY(I)

D( )

DCC1(I)

DCC2(I)

DCl( )

DELTI

DELTIX

DELTMX

DPDNC(L,l)

DPDP(l)

A constant for K

Wave amplitude

Shape functions for constant, linear or quadratic 

variation on element

Acute angle in direction of orthotrophy with respect 

to X-axis in degree

(f) matrix for graph plotting

Arc length at node I on cylinder from a reference point 

Area of triangular element

X coordinate at node I on free surface for moving 

purpose

y coordinate at node I on free surface for moving 

purpose

Wave number (=2TT/\ )

Matrix for the evaluation of exponential integral series

Matrix for the evaluation of exponential integral series

Matrix for the evaluation of exponential integral series

X coordinate at node I on cylinder; X coordinate at 

element node of element I for constant variation 

y coordinate at node I on cylinder; y coordinate at 

element node of element I for constant variation 

Array for domain integral in time dependent problem 

Direction cosine with X axis for node I on cylinder

Direction cosine with y axis for node I on cylinder

Array for domain integral in time dependent problems 

Time step , based on Courant condition 

Minimum time step 

Maximum time step

at Point I on cylinder

Rate of change of d> at node I with respect to node number
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DPDS(I) 

DPDT(L,I) 

DPHIC

BPHLDS

BPHIP

BS

BS( )

BSBP(I)

BSMAX

BSMIN

BT

BXC

BXBP(I)

BXBS(I)

BXBT(L,I) 

BXP

BYC

BYBP(I)

BYBS(I)

BYBT(L,l)

BYP

Rate of change of (f> with respect to S at node I 

Rate of change of (j) with respect to time at node I 

Change in at a node on wave surface in A.B.M. 

corrector formula

Rate of change of (j) with respect to S

Change in (f) at a node on wave surface in A.B.M. 

predictor formula

Bistance between adjacent nodes on surface profile

Dummy array

Rate of change of length at node I along wave surface 

with respect to node number

Maximum distance between adjacent nodes on wave surface

Mini mum distance between adjacent nodes on wave surface 

Time step $£

Change in X. at a node on wave surface in A.B.M. corrector 

formula

Rate of change of X at node I with respect to node number

Rate of change of x with respect to S at node I

Rate of change of x with respect to time at node I

Change in X at a node on wave surface in A.B.M. predictor

formula

Change in jj

formula

at a node on wave surface in A.B.M. corrector

Rate of change of y at node I with respect to node number

Rate of change of y with respect to s at node I

Rate of change of \j with respect to time at node I

Change in Lj at a node on wave surface in A.B.M. predictor 

formula
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H(NN,NN) Overall matrix [h ]

EIA Exponential-integral function

EKIN(L) Array for plotting kinetic energy of wave profile

EL Linear length of element

epo t (l ) Array for plotting potential energy of wave profile

eto t (l ) Array for plotting total energy of wave profile (EPOT + EKIN)

EHLER Euler’s constant

F(NN) Dummy array for Gaussian elimination

FACT(N) Factorial N

fxnl (l ) Array for plotting nonlinear force on cylinder in

X direction

fynl (l ) Array for plotting nonlinear force on cylinder in 

y direction

g (l ,nn ,nn ) Overall matrix for zone L in zoned domain problems

g (nn ,nn ) Overall matrix [q ]

gl (k ) Gauss length at Gauss point K

gl t (k ) Gauss length at Gauss point K for triangular element

GPC1 Gauss point coordinate in X direction

GPC1T Gauss point coordinate in X direction on triangular 

element

GPC2 Gauss point coordinate in y direction

GPC2T Gauss point coordinate in y direction on triangular 

element

GRA Acceleration due to gravity (=1 in non-dimensional form)

gsum ( , ) Overall matrix before Gaussian elimination in zoned 

domain problems

gw (k ) Gauss weight at Gauss point K

gw t (k ) Gauss weight at Gauss point K for triangular element

h (l ,nn ,nn ) Overall matrix for zone L in zoned domain problems
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HK A constant for determining time step St

9 ) Overall matrix before Gaussian elimination in zoned

HX(I)

domain problems

Matrix for spline fit and Simpson’s rule

IRPC Indicator for numerical stepping technique

ISMOTH Number of loops for the smoothing technique to be carried

ISTOP

out

A flag to stop execution if numerical instability occurs

LOOPS Number of loops to be executed

M1 Number of nodes on bottom boundary

M2 Number of nodes on right vertical side boundary

M5 Number of nodes on free surface or top boundary

M4 Number of nodes on left vertical side boundary

NOT Loop counter for each fresh St or surface redistribution

NDTBE Number of sides on external boundary

NDUM Dummy arguement

NE Total number of elements

NEN(l,j) Node number on ends of element I

NENT(l,j) Node numbers on triangular element I

NFIG Figure number for graph plotting

nflg (i ) Type of boundary condition at each node I

NGP Number of Gauss points used

NGPT Number of Gauss points for triangular element

NI Number of internal points

NITER Number of iteration

NN Total number of nodes

NNE Number of nodes on external boundary

NNI Number of nodes on internal boundary

NORDER Order of equation for wave profile and (t



NTCF Choice of numerical interpolation

NTE No. of triangular element in a domain

NTERM Number of terms for infinite series

NTP Number of points to be borrowed for Lagrangian polynomial

NTW Wave type

NVARY Parameter to specify type of variation on element boundary

NX( ) Number of nodes on each external boundary

P(I) Node number on free surface

PAMPD Pressure amplitude

PERD Wave period T

PEPSLN Phase shift in progressive wave

PHI(I) value at node I on free surface for moving purpose

PHIB(I) values before moving wave surface at node I

PHIC1(L,N) (j) matrix for the evaluation of

PI •a

P1NL(L) Array for plotting nonlinear pressure at point 1 on cylinder

P2NL(L) Array for plotting nonlinear pressure at point 2 on cylinder

P?NL(L) Array for plotting nonlinear pressure at point 3 on cylinder

P4NL(L) Array for plotting nonlinear pressure at point 4 on cylinder

PRES1(I) Computed nonlinear pressure at node I on cylinder

PBES2(I) Computed linear pressure at node I on cylinder

PX(I,J) Matrix coefficients for the evaluation of

PY(l,J)
Matrix coefficients for the evaluation of -jffi

QM8(L)
v/

Array for plotting potential derivative at a node on wave

surface

QSUR(L) Array for plotting total outflow through surface

QX(I,J) Matrix coefficients for the evaluation of

QY(I,J) Matrix coefficients for the evaluation of.
eV

R Length between gauss point and nodal point

RADIUS Radius of horizontal cylinder
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RO Density of water (= 1 in non-dimensional form)

RPHl(l) Calculated <j> value at internal point I

S(I) Length of nodal point I along wave surface

SCM1 X coordinate at mid-point of element

SCM2 Lj coordinate at mid-point of element

SEPSLN Phase shift in standing wave

SFACT Specified constant for the redistribution of nodes 

on surface

SGDIA Coefficient of diagonal matrix in[G)

SGOFF Coefficient of off diagonal matrix in[G]

ST( ) Dummy matrix

SYKDXK Effective permeability

T Parameter for cumulation of time

TAXIS(L) Time matrix for graphical output

TGL True Gauss length

THEN( I ) Direction of velocity at internal point I

THET(l) Direction of potential derivative at an internal point I

TIME Starting time of wave profile

TMULT Multiplication factor for time

TPERD Non-dimensional cumulative time (T/PERD)

TT(L) Time matrix for the evaluation of

UI(I) Initial (j) values at node I

UTR1 (j) value at Gauss point of triangular element

VAL(I,1) Array for potential at node I

VAL(I,2)
->(b

Array for potential derivativeat node I

VAL(I,3) Array for unspecified boundary value at node I

VAL(I,4) Array for unspecified boundary value at node I

VAL(L,I,1) Array for potential (j) at node I in zone L

VAL(L,I,2) Array for potential derivative at node I in zone L
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VAL(L,I,5) Array for unspecified boundary value at node I in zone L

VAL(L,I,4) Array for unspecified boundary value at node I in zone L

VALS( ) Dummy array for Gaussian elimination

WAVEC Phase velocity or wave velocity

WAVEHD Wave height

WX(I) Matrix for spline fit and Simpson’s rule

X(I) X coordinate at node I

X1(L,I) X coordinate at node I in zone L before transformation 

in anisotropic problems

X2(L,I) X coordinate at node I in zone L after transformation 

in anisotropic problems

XB(I) X coordinate before moving wave surface at node I

XCENTD X coordinate at centre of horizontal cylinder

XF X coordinate at starting point on each part of external boundary

XK Permeability , kx , direction of orthotrophy

XL X coordinate at end point on each part of external boundary

XLAMDD Wavelength X

XMAXD Number of wavelength in flow domain in X direction

XYK Coefficient of permeability (= 1 if not applicable)

Y(I) j coordinate at node I

Y1(L,I) y coordinate at node I in zone L before transformation

in anisotropic problems

Y2(L,I) Lj coordinate at node I in zone L after transformation 

in anisotropic problems

YB(I) y coordinate before moving wave surface at node I

YBAR(L) Array for plotting mean water level

YCENTD y coordinate at centre of horizontal cylinder

YDEPD Water depth

YF y coordinate at starting point on each part of external boundary

YK Permeability , ky , indirection of orthotrophy

YL y coordinate at end point on part of external boundary

YP Perpendicular distance from node to tangent of element
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Computer programs (pp. 294-340) 
have been removed

for copyright reasons 



(1) BEMLVB1



(2) BEMCVB1

297



(3) EEMAJZ

501



(4) BEMFS1



(5) BEMTBLV1



(6) BEMW1

516



APPENDIX A. 15 GRAPHICAL OUTPUT OF CASE STUDIES IN SECTION 6.5

This appendix shows the time sequence of wave profiles 

and auxiliary graphs for the case studies in section 6.5* 

To present all the wave profiles in the Appendix would be bulky 

and unnecessary. Therefore, the wave profiles for frequency, 

f = 1.172 Hz are chosen to give a good representation of the 

behaviour of wave profiles by the boundary element method. 

The auxiliary graphs for forces and pressures are shown for 

a majority of case numbers.
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APPENDIX A. 14 NOMENCLATURE

The following shows a list of the main symbols used 

in the text of the thesis.

[A] A fully populated square matrix

a Wave amplitude

c Wave velocity; particle velocity; solid angle; 
closed contour

Ce Euler’s constant

Cx Diffraction coefficient

d Water depth; uniform depth

Ei Exponential-integral function

Column vector of known values

F A vector field

Horizontal and vertical forces on an object

K Fundamental frequency of wave

9* Fundamental solution or Green’s function

9
(<?)

Acceleration due to gravity

Overall matrix of boundary integral equation

Gauss weight at Gauss point k

h Step size

H Wave height

H
ha

Overall matrix of boundary integral equation

Downstream water depth

h« Upstream water depth

I Nodal point; nodal node counter

j
14

An element: element counter

Jacobian function
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k Gauss points counter; a constant

K A constant in diffusion equation or detp-rmining 
time step length

4 Wave number

•Ae Effective permeability

Ke Kinetic energy

Hx J ky Permeabilities in the directions of orthotrophy

L Total number of elements on a boundary

Z Length of an element

In Natural logarithm

k Number of triangular or rectangular cells

Direction cosine of outward normal

A linear operator

M Number of Gauss points

m Counter for triangular element

N Total number of nodal points on boundary P

n Normal direction at a node on boundaryT; counter for infinite 
seriesne Outward normal direction at a node on boundary F

Inward normal direction at a node on boundary p

Interpolation function

P

£
7>

A field point in potential theory; point or node number 
on wave surface

A vector at point pwith respect to a set of coordinate axes

Pressure

Pe
fr

Potential energy

A source point in potential theory

IR
A vector at point j with respect to a set of coordinate axes

Notation for constant term

Y Radial direction at a point ; radius of circular cylinder

v(f4) Distance between points pand

s Distance between adjacent nodal points on wave surface
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Dimensions of time

s Simple-layer potential

A Time variable; tangential direction at a point

T Wave period

U Function defined in a closed regular region fl

tA Particle velocity or discharge velocity in x direction

V Particle velocity or discharge velocity in y direction

V Function defined in a closed regular region fl

w Double-layer potential

A set of linearly independent weighting functions

W Column vector of unknowns

X Cartesian coordinate system

X Direction of orthotrophy

X* Scale factor for the transformation of orthotropic flow 
domain to a fictitious isotropic flow domain

Y Direction of orthotropy

y Cartesian coordinate system

& Depth of cylinder axis below still water level

z Notation for constant term

p Boundary of a domain fl

Number of nodal points on an element

Intrinsic coordinate system

0^

p

Angle for orthotrophy; spatial dimension

Angle for orthotrophy

T. Vertical displacement of a point on wave surface

CT Radian wave frequency; simple-layer source density

G Phase angle; error function

_CL A domain; a region

Interior domain

21e

*
Exterior domain

Velocity potential; total head in seepage problem
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4' Potential derivative

Q Internal boundary

9

Double-layer source density

Direction of potential derivative

oC Infinity

AS Element size

A?t Time step length

AX Element size projected on to the x-axis

v^> Particle velocity

X Wavelength
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