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Abstract

From the latter half of the last decade, there has been a growing interest in develop-
ing algorithms for automatically solving mathematical word problems (MWP). It is
a challenging and unique task that demands blending surface level text pattern rec-
ognition with mathematical reasoning. In spite of extensive research, we still have a
lot to explore for building robust representations of elementary math word prob-
lems and effective solutions for the general task. In this paper, we critically examine
the various models that have been developed for solving word problems, their pros
and cons and the challenges ahead. In the last 2 years, a lot of deep learning models
have recorded competing results on benchmark datasets, making a critical and con-

ceptual analysis of literature highly useful at this juncture. We take a step back and
analyze why, in spite of this abundance in scholarly interest, the predominantly
used experiment and dataset designs continue to be a stumbling block. From the
vantage point of having analyzed the literature closely, we also endeavor to provide
a road-map for future math word problem research.

This article is categorized under:
Technologies > Machine Learning
Technologies > Artificial Intelligence
Fundamental Concepts of Data and Knowledge > Knowledge Representation
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1 | INTRODUCTION

Natural language processing has been one of the most popular and intriguing Al-complete sub-fields of artificial intelli-
gence. One of the earliest natural language processing systems arguably was the PhD Thesis on automatically solving
math word problems (MWPs) (Bobrow, 1964). This thesis explored how to map natural language text to a set of pre-
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defined mathematical templates and designed efficient mathematical solving methods using numerical and statistical
analysis. In a similar vein, research has exploded attempting to bridge the gap of semantic parsing. In this survey paper,
our topic is to review advances in the semantically involved task of solving arithmetic word problems using natural lan-
guage processing methodologies, especially those in the realm of deep learning and large language models based methods.

1.1 | Math word problem (MWP) solving

A math word problem (MWP) is a linguistic description of a situation that calls for reasoning between mathematical
entities and the application of both linguistic and mathematical knowledge to answer questions based on the situation.
The complexity of math reasoning can range anywhere from elementary school level problems to complex probabilistic
reasoning. The challenge lay on two fronts (a) analyzing unconstrained natural language, and (b) mapping intricate text
patterns onto a small mathematical vocabulary, for usage within its reasoning framework. A typical example is given
below.

Input Kevin has 3 books. Kylie has 7 books. How many books do they have together?
Answer 10

1.2 | Impact of MWP solving research

Math word problem solving is but an application of knowledge-aware semantic parsing. Semantic parsing is one of the
hard challenges of Natural Language Understanding (NLU) and there exist many ways of formulating the task. Parsing
semantics, or meaning, from text can involve a wide range of topics such as common sense reasoning, word sense dis-
ambiguation and so on. Playing with the complexity of this task within a contained framework such as math word
problem solving is exciting for the NLP community to pursue as the methods discovered for this task can well be extrap-
olated to general question answering and semantic parsing frameworks. While the challenge in MWP solving is to map
linguistic structures onto mathematical definitions, the general NLU task is to identify the domain relevant to the ques-
tion and accordingly craft the answer within that framework. The central idea is to develop algorithms that deal with
complex domains. The other application of robust and explainable MWP solving is to develop intelligent tutoring sys-
tems that can aid the learning of mathematical concepts in a minimally interventionist manner. These factors have
been responsible for the explosion in interest in automated MWP solving in the last decade.

1.3 | Evolution of MWP solving research

Right up until 2010, there has been prolific exploration of MWP solvers, for various domains (such as algebra, percent-
ages, ratio etc.). These solvers relied heavily on hand-crafted rules for bridging the gap between language and the
corresponding mathematical notation. As can be surmised, these approaches, while being effective within their niches,
did not generalize well to address the broader problem of solving MWPs. Moreover, due to the lack of well accepted
datasets, it was hard to measure the relative performance across proposed systems (Mukherjee & Garain, 2008).

The pioneering work by Kushman et al. (2014) employed statistical methods to solve word problems, which set the
stage for the development of automatic MWP solvers using traditional machine learning methods. The work also intro-
duced the first dataset, popularly referred to as Alg514, that had multiple linear equations associated with a problem.
The machine learning task was to map the coefficients in the equation to the numbers in the problem. The dataset com-
prises data units with a triplet structure: natural language question, equation set, and the final answer.

1.4 | Designing the survey

Mirroring recent trends in NLP, there has been an explosion of deep learning models for MWP. Some of the early ones
Wang et al. (2017), Ling et al. (2017) modeled the task of converting the text to equation as a sequence-to-sequence
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(seq2seq, for short) problem. In this context, increasingly complex models have been proposed to capture semantics
beyond the surface text. Some have captured structural information (pertaining to input text, domain knowledge, out-
put equation structure) in the form of graphs and used advances in graph neural networks (Li et al., 2020; Zhang,
Wang, Lee, et al., 2020; etc.). Others have utilized the benefits of transformers in their modeling (Liang et al., 2021;
Pickos et al., 2021; etc.). We will explore these models in detail.

Since this is a problem that has consistently attracted steady (arguably, slow and steady) attention, ostensibly right
from the birth of the field of NLP, a survey of the problem solving techniques offers a good horizon for researchers. The
authors collected 30+ papers on deep learning for word problem solving, published over the last 3 years across premier
NLP avenues. Apart from that, the authors also analyze the state of the art Large Language Models (LLMs) applied to
the word problem solving context. Each paper has its own unique intuitive basis, but most achieve comparable empiri-
cal performance. The profusion of methods has made it hard to crisply point out the state-of-the-art, even for fairly gen-
eral word problem solving settings. Hence, a broad overview of the techniques employed gives a good grounding for
further research. Similarly, understanding the source, settings and relevance of datasets is often important. For exam-
ple, there are many datasets that are often referred to by multiple names at different points in time. Also, the finer
aspects of problem scenario varies across systems (whether multiple equations can be solved, whether it is restricted to
algebra or more domains etc.). In this survey, we systematically analyze the models, list the benchmark datasets and
examine word problem solving literature using a critical analysis perspective.

1.5 | Related surveys

There are two seminal surveys that cover word problem solving research. One, Mukherjee and Garain (2008), has a
detailed overview of the symbolic solvers for this problem. The second, more recent one Zhang, Wang, Zhang, et al.
(2020), covers models proposed up until 2020. In the last 2 years, there has been a sharp spike in algorithms developed,
that focus on various aspects of deep learning, to model this problem. Our survey is predominantly based on these deep
learning models. The differentiating aspects of our survey from another related one, Faldu et al. (2021) are: the usage of
a critical perspective to analyze deep learning models, which enables us to identify robustness deficiencies in the
methods analytically, and also to trace them back to model design and dataset choice issues. Also, the scope of systems
observed is greatly enhanced in our survey by including the latest large language model (LLM) based methods in the
analysis. Our survey distinctly includes the performance values on several datasets and highlights trends that can
inform insights and intuitions of the various approaches. We will also include empirical performance values of various
methods on popular datasets, and deliberate on future directions.

2 | ORGANIZATION OF THE SURVEY

An overall bird's eye view of how the different solvers are organized is presented in Figure 1. The survey begins with
the top-level categories, also encompassing a cursory description of non-neural solvers—namely symbolic and statistical
solvers. After that, different types of neural solvers that employ deep learning techniques are described. This is followed
by a detailed discussion on datasets used for evaluation. Following this, we analyze the performance of various systems.
This is followed by a discussion on the evaluation measures. Finally, the survey ends with motivations for the future.

3 | MODELS

In this section, there will be a detailed description of various top-level algorithmic categories involved in developing
solutions for MWPs.

3.1 | Non-neural solvers

We begin our discussion with solvers that do not utilize neural processing techniques. The first phase are the symbolic
processors where symbols are extracted from employ a rule-based method to convert text input to a set of symbols.
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Manipulating these symbols led to the requisite mathematical reasoning. The next set of solvers are statistical solvers
that employ statistical methods to identify patterns that would, in turn, inform the mathematical reasoning.

3.2 | Symbolic solvers

Early solvers within this family such as STUDENT (Bobrow, 1964) and other subsequent ones (Dellarosa, 1986;
Fletcher, 1985), the dominant methodology was to map natural language input to an underlying pre-defined schema.
This calls for a mechanism to distil common expectations of language, word problems and the corresponding mathe-
matical notation, to form bespoke rulesets that will power the conversion. This may be seen as setting up a slot-filling
mechanism that map the main entities of the word problem to a slots within a set of equation templates.

An example of a schema for algebraic MWP is shown in Table 1.

The advantage is that these systems are robust in handling irrelevant information, with expert-authored rulesets
enabling focus towards pertinent parts of the problem. To further enhance the practical effectiveness within applica-
tions focusing niche domains, research focused on tailoring these symbolic systems for target domains (Mukherjee &
Garain, 2008).

The methods of extracting such information from the text involve simple keyword based matching, syntax parsing
and could range to the complex pattern-based semantic parsing. A common trait of most systems that use this approach
is to work with a specialized version of natural language, most commonly via a Controlled Natural Language. The latest
in this line of work for mathematical algebraic word problems, without using empirical methods, is in Bakman (2007)
which proposed a method that improved upon Dellarosa (1986). This method used “schemas” to solve addition/
subtraction problems with some improvements over Fletcher (1985) for classifying entities like “dolls” as “toys.”

Automatic
Word
Problem
Solvers
[ I | 1
Symbolic Statistical Neural
Solvers Solvers Solvers
|—|—| [ I lil 1
Expression Equation | Seq2Seq ‘ | Graph-Based‘ ‘ Transformers‘ Emerging
Trees Templates Architectures
[ | 1
Language Large LLM-based ———
Models Language Contrastive Knowledge
(LMs) Models Distillation
(LLMs)
FIGURE 1 Types of word problem solvers.
TABLE 1 Workflow of symbolic solvers.
Problem John has 5 apples. He gave 2 to Mary. How many does he have now?
Template [Owner, ] has [X] [obj].

[Owner, ] [transfer| [Y] [obj] to [Owner,].
[Owner, ] has [Z] [obj].
Z=X-Y

Slot-filling [John] has [5] [apple].
[John] [give] [2] [apple] to [Mary].
[Mary] has [Z] [apple].
Zi—51="2

Answer Z=3
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Schemas may be regarded as pre-specified templates for problem solving. Bakman (2007) extends schemas to handle
extraneous information and can solve multi-step problems unlike its predecessors. Better semantic parsing was accom-
plished through statistical methods. The interested reader can look up the detailed review presented by Mukherjee and
Garain (2008) for the detailed comparison of such systems. As one can observe, the rules would need to be exhaustive
to capture the myriad nuances of language. Thus, they did not generalize well across varying language styles. Since each
system was designed for a particular domain, comparative performance evaluation was hindered by the unavailability
of cross-domain datasets.

3.3 | Statistical solvers

As with many tasks in natural language processing, statistical machine learning techniques to solve word problems
started dominating the field from 2014. The central theme of these techniques has been to score a number of potential
solutions (may be equations or expression trees as we will see shortly) within an optimization based scoring framework,
and subsequently arrive at the correct mathematical model for the given text. This may be thought of as viewing the
task as a structure prediction challenge (Zhang, Wang, Zhang, et al., 2020).

0 (xy)

P(y|x;0) :W
Yy

(1)

As with optimization problems, Equation 1 refers to the problem of learning parameters 6, which relate to the fea-
ture function ¢. Consider labeled dataset D consisting of n pairs (x,y,a) where x is the natural language question, y is
the mathematical expression and a is the numerical answer. The task is to score all possible expressions Y, and maxi-
mize the choice of the labeled y through an optimization setting. This is done by modifying the parameters 0 of the fea-
ture function ¢(x,y). Different models propose different formulations of ¢. In practice, beam search is used as a control
mechanism. We grouped the prolific algorithms that were developed, based on the type of mathematical structure
y__either as equation templates or expression trees. Equation templates were mined from training data, much like the slot
filling idea of symbolic systems. However, they became a bottleneck to generalizability, if the word problem at inference
time, was from an unseen equation template. To address this issue, expression trees, with unambiguous post-fix tra-
versals, were used to model equations. Though they restricted the complexity of the systems to single equation models,
they offered wider scope for generalizability.

3.3.1 | Equation templates

Equation templates extract out the numeric coefficients and maintain the variable and operator structure. This was
used as a popular representation of mathematical modeling. To begin with, Kushman et al. (2014), used structure pre-
diction to score both equation templates and alignment of the numerals in the input text to coefficients in the template.
Using a state based representation, Hosseini et al. (2014) modeled simple elementary level word problems with empha-
sis on verb categorization. Zhou et al. (2015) enhanced the work done by Kushman et al. (2014) by using quadratic pro-
gramming to increase efficiency. Upadhyay and Chang (2017) introduced a sophisticated method of representing
derivations in this space.

3.3.2 | Expression trees

Expression trees are applicable only to single equation systems. The single equation is represented as a tree, with leaves
of the tree being numbers and the internal nodes being operators as illustrated in Koncel-Kedziorski et al. (2015).

Expression tree based methods converge faster, understandably due to the diminished complexity of the model.
Some solvers (such as Roy & Roth, 2015) had a joint optimization objective to identify relevant numbers and populating
the expression tree. On the other hand, Koncel-Kedziorski et al. (2015) and Mitra and Baral (2016) used domain knowl-
edge to constrain the search space.
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4 | NEURAL SOLVERS

Among the major challenges for the solvers we have seen so far was that of converting the input text into a meaningful
feature space to enable downstream solving; the main divergences across papers seen across the previous sections has
been based on the technological flavor and methodology employed for such text-to-representation conversion.

The advent of distributed representations for text (Le & Mikolov, 2014); Peters et al., 2018; Pennington et al., 2014;
Devlin et al., 2018), marked a sharp departure in the line of inquiry towards solving math word problems, focusing on
the details of the learning architecture rather than feature-space modeling. There have even been domain specific dis-
tributed representation learners for word problems (Sundaram et al., 2020). As an example of solvers, Ling et al. (2017)
designed a seq2seq model that incorporated learning a program as an intermediate step. This and other early works
made it fashionable to treat the word problem solving task as a language translation task, i.e., translating from the input
natural language text to a sequence of characters representing either the equation or a sequence of predicates. This
design choice, however, has its limitations, which are sometimes severe in terms of the restrictions they place on math
problems that can be admitted within such architectures (Patel et al., 2021.) A few of these linguistic vs. math structure
understanding challenges, especially for neural solvers, are illustrated in Figure 2. As an important example, equation
systems that involve solving multiple equations are not straightforward to address within such a framework. A notable
exception to this is the popular baseline MathDQN Wang et al. (2018), which employs deep reinforcement learning. We
consider different families of deep learning solvers within separate sub-sections herein.

41 | Seq2Seq solvers

The popular Seq2Seq Sutskever et al. (2014) architecture is widely popular for automatic word problem solving. The
central theme here is to facilitate conversion from one sequence to another. As language is a sequence of text and math-
ematical reasoning can be naturally fashioned into a sequence of reasoning steps, this is a popular paradigm. The com-
mon formulations are described in Figure 3. From early direct use of LSTMs (Hochreiter & Schmidhuber, 1997)/GRUs
(Cho et al., 2014) in Seq2Seq models (Huang et al., 2017; Wang et al., 2017) to complex models that include domain
knowledge (Chiang & Chen, 2019; Ling et al., 2017; Qin et al., 2020; Qin et al., 2021), diverse formulations of this basic
architecture have been employed. The details of these systems are presented in Table 2.

The initial set of models used Seq2Seq as is, with small variations in the usage of LSTM or GRUs or with simple
heuristics (for example, Huang et al., 2016 used retrieval to enhance the results). Significant improvements were made
by including some mathematical aspects. This, once again, demonstrates that the task is not merely that of language
translation. Ling et al. (2017) converted the word problem to a text containing the explanation or rationale. This was
done through an intermediate step of generating a step-by-step program on a large dataset. Though the accuracy values
reported were low, the domains spanned anywhere between probability to relative velocity, and the unified framework
demonstrated performing meaningful analysis through qualitative illustrations. This was improved upon by Amini
et al. (2019), which enhanced the dataset and added domain information through a label on the category. The SAU-
Solver Qin et al. (2020) introduced a tree like representation with semantic elements that align to the word problem. As
seen in Table 6, this is a formidable contender. In Chiang and Chen (2019), a novel way of decomposing the equation
construction into a set of stack operations—such that more nuanced mapping between language and operators can be
learned—was designed.

Interpretation Seq2Seq solvers demonstrate, with enough data, great strides in linguistic understanding. Unlike non-
deep systems, which modeled language in a brittle fashion (by counting entities and so on), the models can capture
complex relationships. As the embeddings improve, the systems generally tend to show better contextual understanding
(for example, identifying which quantities are relevant and which numbers need to be ignored). However, these systems
have no sense of mathematical accuracy when it comes to generating numbers and equations. Often numbers that do
not occur in the question appear, or generate mathematically improbable statements like (3-7 for a bunch of apples
which cannot be negative). The two program based approaches Amini et al. (2019) and Ling et al. (2017) fare better in
mathematical accuracy but since they model a wide variety of domains, conceptual understanding is lacking on expert
examination. These qualitative analyses by the authors motivate the need for better metrics that is outlined later in this
paper. In general, adding some form of domain knowledge is seen to enhance performance.
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Training Input
Sample 1
Question Kevin has . books. Kylie has . books and 3 pencils.

How many books do they have together?)

Equationl . + .

Sample 2

Question Kevin has . books. Kylie got . books and 2 pencils
from Kevin. How many books does Kevin have now?)

Equationl . - .
Sample 3

Question John has . apples. He ate . apples. How many does
he have now?7?)

Equationl . - .

Vectorial Representation - GPT-2 embeddings projected onto two dimensions using t-SNE
John has 5 apples. He ate 2 apples. How many does he have now?
L ]

100 1
Kevin has 3 books. Kylie has 7 books and 3 pencils. How many books do they have together?

Kevin has 7 books. Kylie got 3 books and 2 pencils from Kevin. How many books does Kevin have now?
75 A L]

50 A

254

-50 - Y

=754 3+7
©

T T
0 100 150

a4

-100 =50 0

The vectorial representations of MWPs lie quite close to each other even though mathematical semantics may
differ. Hence, multi level semantics may not be captured due to limitations in dataset design or size

FIGURE 2 Schematic of a neural solver.

Input sequence Output sequence

Math Problem Equation

Word Embeddings Character/Word Embeddin@

FIGURE 3 General Seq2Seq formulations.

4.2 | Graph-based solvers

With the advent of graph modeling (Xia et al., 2019) and enhanced interest in multi-modal processing, the graph data
structure became a vehicle for adding knowledge to solvers. One way of enabling this has been to simply model the
input problem as a graph (Feng et al., 2021; Hong et al., 2021; Li et al., 2020; Yu et al., 2021. This incorporates domain
knowledge of (a) language interactions pertinent to mathematical reasoning, or (b) quantity graphs stating how various
numerals in the text are connected. Another way is to model the decoder side to accept graphical input of equations
(Cao et al., 2021; Lin et al., 2021; Liu, Guan, et al., 2019; Wu, Zhang, Wei, & Huang, 2021; Xie & Sun, 2019; Zaporojets
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TABLE 2 Description of Seq2Seq Solvers describing the structure of the proposed method by elaborating on the input sequence, output
sequence and the inclusion of domain knowledge.

Domain knowledge

System Input sequence Output sequence included?

Huang et al. (2016) Word embeddings (word Equation No
problem)

Ling et al. (2017) Word embeddings (word Word embeddings (rationale) and Yes
problem) program

Amini et al. (2019) Word embeddings (word Word embeddings (program) Yes
problem)

Chiang and Chen Word embeddings (word Stack operations for equation Yes

(2019) problem)

Qin et al. (2020) Tree embeddings of word Word embeddings (equation) Yes

problem

et al., 2021). Another natural pathway that has been employed towards leveraging graphs is to use graph neural net-
works for both encoder and decoder (Shen & Jin, 2020; Wu et al., 2020; Wu, Zhang, & Wei, 2021; Zhang, Wang, Lee,
et al., 2020). These methods of using graphs effectively are schematically represented in Figure 4.

Interpretation Graphs are capable of representing complex relationships. The detailed description of how exactly
graphs are utilized in various systems is described in Table 3. With the time-tested success of graph neural networks
(GNNs) (Wu, Pan, Chen, Long, et al., 2021), they fit easily into the encoder-decoder architecture. Intuitively, when
graphs are used on the input side, we can model complex semantic relationships in the linguistic side of the task.
When graphs are used on the decoder side, relationships between the numerical entities or an intermediate representa-
tion of the problem can be captured. Analogously, graph-to-graph modeling enables matching the semantics of both
language and math. This does not necessarily imply graph-to-graph outperforms all the other formulations. There are
unique pros and cons of each of the graph-based papers, as both language and mathematical models are hard to
(a) model separately and (b) model the interactions. The interesting observation as seen in Table 6, graph based models
are both popular and powerful. Unlike sequences, when the input text is represented as a graph, the focus is more on
relevant entities rather than a stream of text. Similarly, quantity graphs or semantics informed graphs, eliminate order-
ing ambiguities in equations. This formulation, however, still does not address the multiple equation problem. On aver-
age, we expect the graph-based systems to do better than the Seq2Seq solvers, as validated in Table 6.

4.3 | Emerging architectures

Apart from these major architectures, there are upcoming different designs of neural networks that formulate the prob-
lem statement. These are grouped under emerging architectures and described below.

4.3.1 | Contrastive solvers

With the widespread usage of Siamese networks (Koch et al., 2015), the idea of building representations that contrast
between vectorial representations across classes in data has seen some interest. In the context of word problem solving,
a few bespoke transformer based encoder-decoder models (Hong et al., 2021; Li, Zhang, et al., 2021) have been pro-
posed; these seek to effectively leverage contrastive learning (Le-Khac et al., 2020).

This is a relatively new paradigm and more research needs to emerge to ascertain definite trends. One of the main
stumbling blocks of word problem solving is that two highly linguistically similar looking word problems may have
entirely different mathematical structure. Since contrastive learning is built on the principle that similar input examples
lead to closer representations, it allows one to use the notion of similarity and dissimilarity to overcome this bottleneck
and consciously design semantically informed intermediate representations, such that the similarity is built not only
from the language vocabulary, but also from the mathematical concepts.
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Description of graph-based solvers by elaborating on the input graph, output graph and the inclusion of domain knowledge.
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No

Yes, between text and numbers
No

No

Yes, quantities and numbers

Yes, both text and numbers

Yes, both text and numbers

Yes, both text and numbers

Yes, both text and numbers

The paradigm of knowledge distillation, in the wake of large, generic end-to-end models, has become popular in NLP
(Li, Lin, et al., 2021). The underlying idea behind this is to distill smaller task-specific models from a generic large pre-
trained or generic model. Since word problem datasets are of comparatively smaller size, it is but logical that large

generic networks can be fine-tuned for downstream processing of word problem solving, as favorably demonstrated by

Zhang, Lee, Lim, et al. (2020) and Hong et al. (2021).

Once again, this is an emerging paradigm. Similar to the discussion we presented with transformer based models,
the fact that the presence of pre-trained language models alone is not sufficient for this task has bolstered initial efforts
in this direction. Knowledge distillation enables a model to focus the learnings of one generic model on to a smaller,
more focused one, especially with less datapoints. Hence, the method of adding semantic information through the
usage of knowledge distillation algorithms is promising and one to look out for.
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TABLE 4 Description of transformer-based solvers by elaborating on the input graph, output graph and the inclusion of domain
knowledge.
Domain knowledge

System Input sequence Output sequence included?

Pickos et al. (2021) Word embeddings (word problem) Word embeddings (explanation) Yes

Griffith and Kalita (2020) Word embeddings (word problem) Word embeddings (explanation) Yes

Shen et al. (2021) Word embeddings (word problem) Word embeddings (equation) Not explicitly

Liang et al. (2021) Word embeddings (word problem) Stack operations for equation Yes

Jie et al. (2022) Word embeddings (word problem) Complex sequence of relations Yes

Zhang and Moshfeghi (2022) Word embeddings (word problem) Complex sequence of operator, Yes

memory and reasoning

4.3.3 | Domain-niche solvers

Some research, encompassing families of statistical solvers and deep models, focus on the pertinent characteristics of a
particular domain in mathematics, such as probability word problems (Dries et al., 2017; Suster et al., 2021; Tsai
et al.,, 2021), number theory word problems (Shi et al., 2015), geometry word problems (Chen et al., 2021; Seo
et al., 2015) and age word problems (Sundaram & Abraham, 2019).

434 | Neuro-symbolic solvers

There is a burgeoning section of the literature that is invested in using neuro-symbolic reasoning to bridge this gap
between perception level tasks (language understanding) and cognitive level tasks (mathematical reasoning). In an
end-to-end fashion, most of these systems have a combination of neural processing for language processing and sym-
bolic solvers for the math part. An example of this is Qin et al. (2021).

4.3.5 | Interpretation

Emerging architectures require more research to ascertain their defining features. The preliminary research effort sug-
gests that, for a particular subset/domain, these methods fair well. Some of them provide interesting generalizability
abilities as well as seen in Table 7. With this discussion, it is clear that adding some form of domain knowledge benefits
an automatic solver. These works provide some directions that may be applied to the popular transformer based para-
digms as described below.

44 | Transformers

Transformers (Vaswani et al., 2017) have lately revolutionized the field of NLP. Word problem solving has been no
exception. Through the use of BERT (Devlin et al., 2018) embeddings or through transformer based encoder-decoder
models, some recent research has leveraged concepts from transformer models (Kim et al., 2020; Liu, Guan,
et al., 2019).

44.1 | Language models

Language Models (LM) such as BERT (Devlin et al., 2018), RoBERTa (Liu, Ott, et al., 2019), T5 (Raffel et al., 2020),
BART (Lewis et al., 2019), BigBird (Zaheer et al., 2020), ALBERT (Lan et al., 2019) use the transformer as a core compo-
nent but vary widely in size, execution and design. The embeddings generated from these models encompassed context
and were pre-trained on relatively larger pieces of text, with millions of parameters. These language models exploited
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TABLE 5 Description of datasets including their commonly used names, their descriptions and their sizes.

Dataset Type Domain Size Source

Small datasets

Alg514 (SimulEg-S) Multi-equation (+,—,%/) 514 Kushman et al. (2014)
AddSub (AI2) Single-equation (+.-) 340 Hosseini et al. (2014)
SingleOp (Illinois, IL) Single-equation (+,—,%/) 562 Roy et al. (2015)
SingleEq Single-equation (+,—.%/) 508 Koncel-Kedziorski et al. (2015)
MAWPS Multi-equation (+,—,%/) 3320 Koncel-Kedziorski et al. (2016)
MultiArith (Common Core, CC) Single-equation (+,—.%/) 600 Roy and Roth (2015)
AllArith Single-equation (+,—,%/) 831 Roy and Roth (2017)
Perturb Single-equation (+,—.%/) 661 Roy and Roth (2017)
Aggregate Single-equation (+,—.%/) 1492 Roy and Roth (2017)
DRAW-1k Multi-equation (+,—%/) 1k Upadhyay and Chang (2017)
AsDIV-A Single-equation (+,—,%/) 2373 Miao et al. (2020)
SVAMP Single-equation (+,—.%/) 1000 Patel et al. (2021)

Large datasets
Dolphin18k Multi-equation (+.—*%/) 18k Huang et al. (2016)
AQuA-RAT Multiple-choice - 100k Ling et al. (2017)
Math23k* Single-equation (+,—*%/) 23k Huang et al. (2017)
MathQA Single-equation (+,—,%/) 35k Amini et al. (2019)
HMWP* Multi-equation (+.—*/) 5k Qin et al. (2020)
Ape210k* Single-equation (+,—,%/) 210k Liang et al. (2021)
GSM8k Single-equation (+.—*/) 8.5k Cobbe et al. (2021)
CM17k* Multi-equation +,—.%/) 17k Qin et al. (2021)
MATH Multi-equation (+.—*/) 12.5k Hendrycks et al. (2021)

Note: Starred datasets are Chinese datasets.

the concept of masking, or allowing the model to guess a part of the sentence, and not just a single token. They also
incorporated sub-word tokenizations that handled out-of-vocabulary issues of previous models. The authors could not
find authentic sources of evaluation on these basic language models. With cursory exploration, they concluded that the
performance was poor and brittle. However, models have been adapted, fine-tuned or utilized in neural architectures to
obtain much better results, which will be described below.

4.4.2 | LM based models

The translation using language models has been modeled variously in these systems, such as from text to explanation
(Griffith & Kalita, 2020; Pigkos et al., 2021), or from text to equation (Liang et al., 2021; Shen et al., 2021). Their perfor-
mance has been listed in Table 6. Table 4 describes the method of representations.

Interpretation When moving from Word2Vec (Mikolov et al., 2013) vectors to BERT embeddings (Devlin
et al, 2018), massive gains were expected due to (a) greater incorporation of context level information and
(b) automatic capturing of relevant information as BERT is essentially a Masked Language Model. Interestingly, the
gains do not have as large a margin as seen in other language tasks such as question answering or machine translation
(Devlin et al., 2018). BERT is a large model that needs to be fine tuned with domain specific information. The small
gains point towards low quality of word problem datasets, which is in line with the fact that the datasets are either quite
small by deep learning standards or that they have high lexical overlap, effectively suggesting that the set of characteris-
tic word problems are small.
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TABLE 6 Answer accuracy of neural models evaluated on three popular datasets—Math23k, MAWPS and GSM8k.

Model name Math23k MAWPS GSM-8K Source
Graph-based

GTSs 74.3 - - Xie and Sun (2019)
SAU-SOLVER 74.8 - - Chiang and Chen (2019)
Graph2Tree 77.4 - - Li et al. (2020)
KA-S2T 76.3 - - Wu et al. (2020)
Graph-To-Tree 78.8 - - Li et al. (2020)
NumS2T 78.1 - - Wu et al. (2020)
Multi-E/D 78.4 - - Shen and Jin (2020)
Seq2DAG 77.1 - - Cao et al. (2021)
EEH-D2T 78.5 84.8 - Wu, Zhang, and Wei (2021)
Generate and rank 85.4 84.0 - Shen et al. (2021)
HMS 76.1 80.3 - Lin et al. (2021)
RPKHS 83.9 89.8 - Yu et al. (2021)
Emerging architectures
Graph-Teacher 79.1 84.2 - Liang and Zhang (2021)
CL 83.2 - - Li, Zhang, et al. (2021)
NS-Solver 75.7 - - Qin et al. (2020)
Transformer
TSN-MD 774 84.4 - Zhang, Lee, Lim, et al. (2020)
EPT - 84.5 - Kim et al. (2020)
Group-att 69.5 76.1 - Li et al. (2019)
LLMs
GPT-3 - 19.8 57.1 Schick et al. (2023)
LLaMa 2 - 824 - Touvron et al. (2023)
GPT-4 - - 92.0 OpenAlI (2023)
PaLM-2 - - 91.0 Anil et al. (2023)
Minerva - - 58.8 Lewkowycz et al. (2022)
LLM-based
PaL - - 92.9 Gao et al. (2023)
MsAT-DeductReasoner - 94.3 - Wang and Lu (2023)
EPT - 88.7 - Kim et al. (2022)
MS - - 96.8 Zhao et al. (2023)
PHP - - 96.5 Zheng et al. (2023)

Note: The best values are bolded.

4.5 | Large language models

Large Language Models (LLMs) have demonstrated unprecedented levels of natural language comprehension by virtue
of their sheer size (often in the billions), the mechanisms of human feedback and components of both language under-
standing and generation. Some notable examples are PaLM (Chowdhery et al., 2022), BLOOM (Scao et al., 2022),
LLaMa (Touvron et al., 2023) and so on. The most popular set of LLMs are the Generative Pre-trained Transformers or
GPTs. Using a combination of mammoth size, autoregressive model and human feedback, GPTs have consistently
shown massive improvements. GPT-2 (Radford et al., 2019), GPT-3 (Brown et al., 2020; OpenAlI, 2023) performance of
these LLMs are depicted in Table 7. Unlike other models, the authors have placed source as where this particular model
was evaluated, rather than the development of the model. A mathematical LLM has been developed (Lewkowycz
et al., 2022) using mathematical data. There has been word problem evaluation using these methods as well.
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TABLE 7 Analysis of large multi-domain datasets AQuA-RAT and MathQA on the performance of available models.
Model Type AQuA-RAT MathQA Source
AQuA Seq2Seq 36.4 - Ling et al. (2017)
Seq2Prog Seq2Seq 37.9 57.2 Amini et al. (2019)
BERT-NPROP Transformer 37.0 - Pickos et al. (2021)
Graph-To-Tree Graph-based - 69.7 Li et al. (2020)
RelExt Transformer - 78.6 Jie et al. (2022)
ELASTIC Transformer - 83.0 Zhang and Moshfeghi (2022)

Note: The best values are bolded.

4.6 | LLMs based

Some models have been developed that use LLMs (Gao et al., 2023; Kim et al., 2022; Schick et al., 2023; Wang &
Lu, 2023; Xie et al., 2023; Zhao et al., 2023; Zheng et al., 2023) as their core components. Some facets of these systems
are described below.

4.6.1 | Promptengineering

Prompt engineering is the task of use zero shot or few shot learning using cleverly chosen prompts that coaxes the
implicit knowledge present in the large pre-trained models.

4.6.2 | Chain-of-thought (CoT) prompting

Converting a query into a set of intermediate queries in a sequential manner to elicit better reasoning from LLMs.

4.6.3 | Program-aided language modeling

Program Aided Language Modeling (Gao et al., 2023) involves capitalizing on the code completion aspect of language
models to enhance reasoning capacities.

4.6.4 | Adapter tuning

Adapter Tuning (He et al., 2021) is a light-weight response to fine-tuning where the entire model is re-trained. In this
method, the last few layers alone are available for weight updating.

Interpretation LLMs and LLM-based models offer the best performance as evidenced by Table 6 and Table 8. Their
size of training data and parameter size, intelligent design and human feedback incorporate common sense knowledge
and mathematical domain knowledge that help push these models to a much better performance.

5 | DATASETS

Datasets used for math word problem solving are listed in Table 5 with their characteristics. The top section of the table
describes datasets with relatively fewer data objects (< 1k, to be specific). The bottom half consists of more recent
datasets that are larger and more popularly used within deep learning methodologies.
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TABLE 8 Maximum performance of different types of neural models on three popular datasets—Math23k, MAWPS and GSM8k are
explored.

Type Max. Accuracy on Math23k Max. Accuracy on MAWPS Max. Accuracy on GSM8k
Graph-based 85.4 89.80

Seq2Seq 75.67

Transformer based 69.50 84.5

Emerging Architectures 83.2 84.4

LLMs - 94.3 96.8

Note: The best values are bolded.

5.1 | Small datasets

The pioneering work in solving word problems (Kushman et al., 2014), introduced a classical dataset (Alg514) of
514 word problems, across various domains in algebra (such as percentages, mixtures, speeds, etc.). This dataset was
annotated with multiple equations per problem. AddSub was introduced in Hosseini et al. (2014), with simple addition/
subtraction problems, exhibiting limited language complexity. SingleOp (Roy et al., 2015) and MultiArith (Roy &
Roth, 2015) were proposed such that there is a control over the operators (single operator in the former and two opera-
tors in the latter). SingleEq (Koncel-Kedziorski et al., 2015) is unique in incorporating long sentence structures for ele-
mentary level school problems. AllArith (Roy & Roth, 2017) is a subset of the union of AddSub, SingleEq and SingleOp.
“Perturb” is a set of slightly perturbed word problems of AllArith, whereas Aggregate is the union of AllArith and Per-
turb. MAWPS (A Math Word Problem Solving Repository) Koncel-Kedziorski et al. (2016) is a curated dataset (with
deliberate template overlap control) that comprises all proposed datasets till that date. A single equation subset of
MAWPS (AsDIV-A) Miao et al. (2020) has been studied, for diagnostic analysis of solvers. Similarly, the critique offered
by Patel et al. (2021) was demonstrated using their newly proposed dataset SVAMP. In SVAMP, minutely perturbed
word problems from the popular dataset AsDIV-A. This particular subset is used to demonstrate that, while high values
of accuracy can be obtained on AsDIV-A easily, SVAMP poses a formidable challenge to most solvers, as it captures
nuances in the relationship between similar language formation and dissimilar equations. All aforementioned datasets
incorporate an annotation of both the equation and the answer. Given the subset-superset relationships between some
of these datasets, empirical usage of these datasets would need to ensure careful sampling to creating subsets for train-
ing, testing and cross-validation.

5.2 | Large datasets

There are several types of datasets available for use. The following are some classifications the authors have observed.

52.1 | Algebraic large datasets

Dolphin18k Huang et al. (2016) is an early proprietary dataset that was evaluated primarily with the statistical solvers.
GSMB8k (Cobbe et al., 2021) is a recent single-equation dataset, that is the large scale version of AsDIV-A (Miao
et al., 2020). Math23K is a popular Chinese dataset for single equation math word problem solving. A recent successor
is Ape210k (Liang et al., 2021).

5.2.2 | Datasets with explanations
AQUuA-RAT (Ling et al., 2017) introduced the first large crowd-sourced dataset for word problems with rationales or

explanations. This makes the setting quite different from the aforementioned datasets, not only with respect to size, but
also in the wide variety of domain areas (spanning physics, algebra, geometry, probability, etc.). Another point of
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difference is that the annotation involves the entire textual explanation, rather than just the equations. MathQA
(Amini et al., 2019) critically analyzed AQuA-RAT and selected the core subset and annotated it with a predicate list, to
widen the remit of its usage. Once again, researchers must be mindful of the fact that MathQA is a subset of AQuA-
RAT. MATH (Hendrycks et al., 2021) is another recent large dataset with 12,500 problems that encompasses a large set
of domains and is currently one of the toughest word problems to solve.

6 | EVALUATION MEASURES

The most popular metric is answer accuracy, which evaluates the predicted equation and checks whether it is the same
as the labeled one. The other metric is equation accuracy, which predominantly does string matching and assesses the
match between the produced equation and the equation from the annotation label.

6.1 | Accuracy based measures

There are many ways of ascertaining the accuracy of the mathematical question answering. The most common ones uti-
lized in algorithms were described previously—namely equation accuracy and answer accuracy. Given below is a more
comprehensive list.

« Answer accuracy: Answer Accuracy measures the accuracy of the model in predicting the final mathematical answer.

« Equation accuracy: Equation Accuracy examines the extent of equation match. This may or may not test full equa-
tion equivalences.

» Exact match accuracy: Exact Match Accuracy measures the percentage of math word problems for which the model
provides a solution that exactly matches the reference solution. This metric is useful for evaluating the precision of
the model's output.

« Variable match accuracy: Variable Match Accuracy assesses the accuracy of the model in correctly identifying and
utilizing the variables present in the math word problems. It provides insights into the model's understanding of the
problem structure and its ability to handle varying input scenarios.

» Expression tree depth accuracy: Expression Tree Depth Accuracy evaluates the correctness of the hierarchical struc-
ture of the mathematical expressions generated by the model. It measures how well the model captures the depth of
the expression tree compared to the ground truth. This is especially useful for graph-based solvers.

6.2 | Text generation evaluation

In the case of evaluating rationales for mathematical reasoning, it is possible to evaluate the quality of generated text
using other metrics. These metrics are listed below.

« BLEU score: BLEU (Bilingual Evaluation Understudy) Score is a metric commonly used in natural language
processing tasks, including text generation. It measures the similarity between the model's output and the reference
solution based on n-gram precision. A higher BLEU score indicates better alignment with the reference.

+ ROUGE score: ROUGE (Recall-Oriented Understudy for Gisting Evaluation) Score evaluates the quality of the
model's output by comparing it to the reference solution in terms of overlapping n-grams. It is commonly used in text
summarization tasks and provides a comprehensive assessment of content overlap.

6.3 | Human evaluation
With the advent of LLMs towards addressing MWPs, it is becoming imperative to develop a method of looking at logical

fallacies in the text generated by LLMs. A human evaluation, though often expensive, is often the best arbiter available
for a comprehensive evaluation.
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7 | PERFORMANCE OF DEEP MODELS

In this section, we describe the performance of neural solvers towards providing the reader with a high-level view of
the comparative performance across the several proposed models.

We have listed the performance of the deep models in Table 6, on two major datasets—Math23K and MAWPS.
Some of these deep models report scores on other datasets as well. For conciseness, we have chosen the most popular
datasets for deep models. We see that, in general, the models achieve around 70%-80% points on answer accuracy. Shen
et al. (2021) outperforms all other models on Math23k whereas RPKHS (Yu et al., 2021) is the best model for MAWPS
till date. As mentioned before, graph based models are both popular and effective. The pure LLMs are competitive with
other neural solvers but the solvers that build on top of LLMs emerge as the formidable choice for MWP solvers.

A note of caution is that, as inferred from the discussion on datasets, (a) both Math23k and MAWPS are single equa-
tion datasets and (b) though some lexical overlap has been performed in the design of these two datasets, the semantic
quality of these datasets are quite similar. This aspect has also been experimented and explored in Patel et al. (2021).
Hence, though we present the best performing algorithms in this table, more research is required to design a suitable
metric or a suitable dataset, such that one can conclusively compare these various algorithms. As a partial solution,
new datasets the GSM8k and MATH are emerging as the de-facto standard for LLM-based MWP solving.

7.1 | Multi-domain datasets

Apart from these algebraic datasets, multi-domain datasets MathQA and AquA are also of special interest. This is
described in Table 7 and depicted in Figure 5. The interesting takeaway is that, the addition of BERT modeling to
AQuA (Pigkos et al., 2021), still performed slightly worse than the Seq2Prog (Amini et al., 2019) model, which is a
derivative of the Seq2Seq paradigm.

7.2 | Analysis and interpretation

By looking at the values, one can immediately notice that graph-based architectures possess significant advantages and
are popular among model developers because they allow the developer to feed structural know-how into the model.
The performance of each type of neural architecture is illustrated in Table 8 and Figure 6. While graph-based algo-
rithms certainly perform well, they are eclipsed by the LLM based methods. The mammoth sizes of the models coupled
with their modeling techniques make the gains larger than those obtained by graph-based models. The interesting thing
to note is that graph-based models are actually performing better than GPT-3 and are competitive with many LLMs.
Finally, the systems built on top of LLMs, being mindful of the domain, are the best performing. This suggests that
domain knowledge injection is a key aspect of exploiting LLMs for MWP solving.

In Table 8 and Figure 6, the authors consolidate the performance across different types of models. Clearly, LLMs
perform the best. However, the toughest dataset predicted till date is the MATH dataset (Table 9), where the best accu-
racy is a little over 50%. In the coming sections, the strengths and weaknesses of such LLMs for this task is described.

8 | ANALYSIS

In this chapter, we consider different aspects of studying MWP models including model design, dataset design, evalua-
tion, how they come together and deliberate on possible future paths for the field of MWP solving, and by extension,
knowledge-aware NLP.

8.1 | Analysis of neural solvers

In this section of the paper, we analyze the pros and cons of applying deep learning techniques to solve word problems

automatically. At the outset, two layers of understanding are imperative: (i) linguistic structures that describe a situa-
tion or a sequence of events and (ii) mathematical structures that govern these language descriptions. Though deep
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learning models have rapidly scaled and demonstrated commendable results for capturing these two characteristics, a
closer look reveals much potential for further exploration. The predominant modus-operandus is to create a deep model
that converts the input natural language to the underlying equation. In some cases, the input is converted into a set of
predicates (Amini et al., 2019) or explanations (Ling et al., 2017). The LLMs disrupted this design principle and latest
gains in prompt tuning and instruction tuning, brought higher gains in accuracy, and more importantly, in
explainability.

8.2 | What shortcuts are being learned?

Shortcut Learning (Geirhos et al., 2020) is a recently well-studied phenomenon of deep neural networks. It describes
how deep learning models learn patterns in a shallow way and fall prey to questionable generalizations across datasets
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TABLE 9 Answer accuracy of LLM based models on a hard dataset—MATH.
Model Accuracy on MATH Source
GPT-4 425 OpenAl (2023)
PaLM 2 2.8 Anil et al. (2023)
Minerva 50.3 Lewkowycz et al. (2022)
PHP (GPT-4) 54.3 Zheng et al. (2023)

Note: The best values are bolded.

(an example is an image being classified as sheep if there was grass alone; due to peculiarities in the dataset).In the con-
text of word problems, Patel et al. (2021) exposed how removing the question and simply passing the situational
context, leads to the correct equation being predicted. This suggests two things, issues with model design as well as issues
with dataset design. The datasets have high equation template overlap, as well as text overlap. Word problem solving is a
hard because two otherwise identical word problems, with a small word change (say changing the word give to take),
would completely change the equation. Hence high lexical similarity does not translate to corresponding similarity in the
mathematical realm (Patel et al., 2021; Sundaram et al., 2020), and attention to key aspects within the text is critical.

8.3 | Isaccuracy enough?

As suggested by the discussion above, a natural line of investigation is to examine the evaluation measures, and perhaps
the error measures for the deep models, in order to bring about a closer coupling between syntax and semantics. High
accuracy of the models to predicting the answer or the equation suggests a shallow mapping between the text and the
mathematical symbols. This is analogous to the famously observed McNamara fallacy,' which cautions against the
overuse of a single metric to evaluate a complex problem. One direction of exploration is data augmentation with a sin-
gle word problem annotated with multiple equivalent equations. Metrics that measure the soundness of the equations
generated, the robustness of the model to simple perturbations (perhaps achieved using a denoising autoencoder) and
the ability of the model to discern important entities in a word problem (perhaps using an attention analysis based met-
ric), are the need of the future. An endeavor has been done by Kumar et al. (2021), where adversarial examples have
been generated and utilized to evaluate SOTA models.

8.4 | Are the trained models accessible?

Most of the SOTA systems come with their own, well-documented repositories. Though an aggregated toolkit (Lan
et al., 2021) (open-source MIT License) is available, running saved models in inference mode, to probe the quality of
the datasets, proved to be a hard task, with varying missing hyper-parameters or missing saved models. This, however,
interestingly suggests that API's that can take a single word problem as input and computes the output, would be highly
useful for application designers. This has been done in the earlier systems such as Roy and Roth (2018) and Wol-
fram (2015).

8.5 | Is numeracy being understood?

Studies (Spithourakis & Riedel, 2018; Wallace et al., 2019) have delved deep into the numerical and mathematical abil-
ity of language models. The consensus is that, as a pattern recognition and language model, numerical common sense
is hard to capture. The primary roadblock is that numbers are infinite and the vectorial representations of words seem
to differ markedly from the semantics of the continuous space of numerals. A plethora of techniques have proposed to
overcome this limitation (Duan et al., 2021; Geva et al., 2020; Jiang et al., 2019; Petrak et al., 2023; etc.). The common
theme is be mindful of the challenges of numeracy and adding appropriate training objectives or methodologies such as
contrastive learning. NumGLUE (Mishra et al., 2022) is a set of benchmarks that evaluates numeracy in different ways.
Another approach of improving accuracy is to add widgets as GPT-4 (OpenAl, 2023) has done, which can ensure
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mathematical accuracy. Yet another approach is to use program-aided language models (Gao et al., 2023) where the
programming models can be used to extract meaningful numeric information. We have noticed that in general- GPT4
makes less arithmetic errors during language generation.

8.6 | Are semantics between language and math captured?

The authors would like to use an example (Figure 7) to drive home this point.

Given an erroneous word problem, where GPT is posed with a word problem that cannot be solved, GPT 3.5 and
GPT 4 attempt to provide an answer. The maximum sum of two digits is that of 99, that is 18. GPT 3.5 postulated the
answer to be 198. While the sum of digits is 20, it is a three digit number. GPT-4 fares better by presenting a two digit
number 82. However, the sum of the digits is 10, not 20. This is one of many examples the authors have examined. Any
proposition of expectation failure, in the format of word problems, provides interesting failure cases for further system-
atic study. This trend suggests further research is required, albeit having superior answer accuracy, language models
still have major lapses in their conceptual clarity.

9 | ANALYSIS OF BENCHMARK DATASETS

In this section of the paper, we explore the various dimensions of the popular datasets (Table 6) with a critical and con-
structive perspective.

9.1 | Low resource setting

Compared to usual text related tasks, the available datasets are quite small in size. They also suffer from a large lexical
overlap (Amini et al., 2019). This taxes algorithms, that now have to generalize from an effectively small dataset. The
fact that the field of word problem solving is niche, where we cannot simply lift text from generic sources like
Wikipedia, is one of the primary reasons why these datasets are small. Language precision is required, while
maintaining mathematical sense. Hence, language generation is also a hard task.

Question A two digit number is twice its reverse. The sum of the digits is 20. Find the
number.

GPT-3.5 Let’s represent the two-digit number as 10a + b, where a and b are the digits in
the tens and ones places, respectively. The reverse of the number is 10b + a.
The problem tells us that the number is twice its reverse, so we can write an
equation:
10a + b = 2(10b + a)

Simplifying and solving for a in terms of b, we get:

10a + b = 20b + 2a 8a = 19b a = (19/8)b

Since a and b are both integers, b must be a multiple of 8 and a must be a
multiple of 19. The only multiple of 8 that has a digit sum of 20 is 80, and the
only multiple of 19 that is a digit is 19. Therefore, a = 19 and b = 8.

So the two-digit number is 10a + b = 198, and its reverse is 10b 4+ a = 89. We
can check that 198 is indeed twice 89, and that the sum of its digits is 1 + 9 +
8 = 18, which is consistent with the problem statement.

Therefore, the number is 198.

GPT-4 Let’s call the tens digit of the number "a" and the ones digit "b". The number
can be expressed as 10a + b. We know that the sum of the digits is 20, so a +
b = 20/2 = 10. We also know that the number is twice its reverse, so 10a + b
= 2(10b + a). Simplifying this equation gives us 9a = 19b. Since a and b are
digits, we know that a must be less than or equal to 9 and greater than or equal
to 1. Similarly, b must be less than or equal to 9 and greater than or equal to
0. The only solution that satisfies all of these conditions is a = 8 and b = 2.
Therefore, the number is 82.

FIGURE 7 Analyzing GPT on math word problems. On posing an incorrect word problem, GPT3.5 and GPT 4 provide incorrect
reasoning steps.
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9.2 | Annotation cost

The datasets currently have little to no annotation costs involved as they are usually scraped from homework websites.
There are some exceptions that involve crowd-sourcing (Ling et al., 2017) or intermediate representations apart from
equations (Amini et al., 2019).

9.3 | Template overlap

Many studies (Zhang, Wang, Zhang, et al., 2020) have demonstrated that there is a high lexical and mathematical over-
lap between the word problems in popular datasets. While lexical overlap is desirable in a principled fashion, as demon-
strated by Patel et al. (2021), it often limits the diversity and thus utility of the datasets. Consequently, many strategies
have been adopted to mitigate such issues. Early attempts include controlling linguistic and equation template overlap
(Koncel-Kedziorski et al., 2016; Miao et al., 2020). Later ideas revolve around controlled design and quality control of
crowd-sourcing (Amini et al., 2019).

10 | ROAD AHEAD

In this section, we describe exciting frontiers of research for word problem solving algorithms.

10.1 | Semantic parsing

As rightly suggested by Zhang, Wang, Zhang, et al. (2020), the closest natural language task for word problem solving is
that of semantic parsing, and not translation as most of the deep learning models have modeled. The mapping between
extremely long chunks of text to short equation sentences has the advantage of generalizing on the decoder side, but
equally has the danger of overloading many involved semantics into a simplistic equation model. To illustrate, an equa-
tion may be derived after applying a sequence of steps that is lost in a simple translation process. A lot of efforts have
already been employed in adding such nuances in the modeling. One way is to model the input intelligently (for
e.g., Liang et al., 2021) Here, sophisticated embeddings are learned from LLMs based models, using the word problem
text as a training bed. The intermediate representations include simple predicates (Roy & Roth, 2018), while others
involve a programmatic description (Amini et al., 2019; Ling et al., 2017). Yet another way is to include semantic infor-
mation in the form of graphs as shown in Chiang and Chen (2019), Huang et al. (2018), Li et al. (2020), Qin et al.
(2020), etc.). The authors have previously described popular modeling methods employed by LLMs such as prompt engi-
neering, CoT modeling, adapter tuning and program aided language approaches as possible candidates for future
research.

10.2 | Informed dataset design

As most datasets are sourced from websites, there is bound to be repetition. Efforts invested in modeling things such as
the following could help aiding word problem research: (a) different versions of the same problem, (b) different equiva-
lent equation types, (c) semantics of the language and the math. A step in this direction has been explored by Patel
et al. (2021), which provides a challenge dataset for evaluating word problems, and (Kumar et al., 2021) where adversar-
ial examples are automatically generated.

10.2.1 | Dataset augmentation
A natural extension of dataset design, is dataset augmentation. Augmentation is a natural choice when we have

datasets that are small and focused on a single domain. Then, linguistic and mathematical augmentation can be auto-
mated by domain experts. While template overlap is a concern in dataset design, it can be leveraged in contrastive

5US017 SUOWILLOD) BAIER1D) 3ol |dde sy Aq pausenoh ae sapie YO ‘9sn JO S3|NJ 10} Ariq1TdUIUO AB|IAA UO (SUOIIPUOD-PUR-SLLLIBY WD A3 | 1M ARelq 1 Ul Uo//SdNY) SUORIPUOD pUe WS | 8Y)33S [5202/0T/0T] uo Afelqi auljuQ A3|1M ‘uopuo JO AiseAIuN AND AQ EGT WPIMZO0T OT/I0p/W00 A3 | 1M Afelg1[pU1UO'Sa11M//:SANY WO papeolumod ‘v ‘v202 ‘S6.2r6T



SUNDARAM ET AL. WIREs Wl LEY. 21 of 27

designs as in Sundaram et al. (2020), Li, Zhang, et al. (2021). A principled approach of reversing operators and building
equivalent expression trees for augmentation has been explored here (Liu et al., 2022).

10.2.2 | Few shot learning

This is useful if we have a large number of non-annotated word problems or if we can come up with complex annota-
tions (that capture semantics) for a small set of word problems. In this way few shot learning can generalize from few
annotated examples.

10.3 | Knowledge aware models

We propose that word problem solving is more involved than even semantic parsing. From an intuitive space, we learn
language from examples and interactions but we need to be explicitly trained in math to solve word problems
(Marshall, 1996). This suggests we need to include mathematical models into our deep learning models to build gener-
alizability and robustness. As mentioned before, a common approach is to include domain knowledge as a graph
(Chiang & Chen, 2019; Qin et al., 2020, 2021; Wu et al., 2020).

The existing datasets describe word problems and expect the models to learn complex mathematical concepts. The
datasets used are nowhere near the size required for robust training. The most popular dataset is GSM 8k, which as
the name suggests, has a mere 8000 word problems. The models race to better each other and this benchmark can be
taken as solved. However, it does not prove that the LLMs have understood the underlying concepts of these word
problems.

104 | Improvements on evaluation

The use of accuracy or equation matching could possibly hide some of the linguistic nuances of the word problem struc-
ture. This is indirectly highlighted by the abysmal performance of SOTA models on the challenge dataset proposed by
Patel et al. (2021). Hence, some research directions are required to develop stronger metrics. One of the ways of doing
that is to develop a benchmark for language models akin to Mishra et al. (2022). This particular benchmark is used to
expose mathematical discrepancies in language models. Benchmark tasks and datasets can be an interesting alternative
to metric design for such word problem solvers.

10.4.1 | Concept evaluation

Apart from the datasets on word problems, datasets are also required on concept question answering to reveal the
extent of understanding by NLP systems, not merely answer accuracy.

10.4.2 | Confidence evaluation

LLMs currently provide mathematical answers with confidence, even erroneous ones. One possible metric to explore is

in evaluation of the confidence in the case of both correct and wrong answers and evaluate these models in a weighted
manner.

11 | CONCLUSION

In this paper, we surveyed the existing math word problem solvers, with a focus on deep learning models. Word prob-
lem solving is a case study for deep semantic parsing—a task that is often described as Al-complete. This survey traced
the history of mathematical word problem solving right from the 1960s. We began with the symbolic solvers that
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employed rule-based algorithms to match complex linguistic patterns to templates that encoded mathematical informa-
tion. These algorithms tended to work in niche domains and comparison was often difficult, we then presented statisti-
cal solvers that utilized human engineering efforts to develop a vectorized representation of word problems and used
machine learning techniques to model math word problem solving as a retrieval or classification problem. This
approach introduced many datasets for comparable analysis. However, these methods performed better linguistic
processing but limited mathematical modeling.

Deep models were initially majorly modeled as encoder-decoder models, with input as text and decoder output as
equations. We listed several interesting formulations of this paradigm—namely Seq2Seq models, graph-based models,
transformer-based models, emerging architectures and LLMs. Prior to LLM based methods, linguistic complexity was
captured by sequence modeling in varying architectures such as LSTM, transformers and so on. Graph based methods
and other unique architectures modeled complex domain knowledge relationships. In general, LLMs tend to capture
complex structural elements that can benefit both linguistic and mathematical aspects. We then explored in detail the
various datasets in use. Subsequently, we analyzed the various approaches of modeling word problem solving, followed
by the characteristics of the popular datasets. We saw an overwhelming trend that paying heed to the mathematical
modeling and tying to the linguistic aspects reaped rich dividends. We concluded that the brittleness of the SOTA
models was due to: (a) modeling decisions, and (b) dataset design. This is intended as a comprehensive survey, but the
authors acknowledge that there may be methods that have escaped their attention. We also caution that the analysis
provided could be subjective and opinionated, and there could be legitimate disagreements with the perspectives put
forward. Finally, we mentioned few avenues of further exploration such as the use of semantically rich models,
informed dataset design and incorporation of domain knowledge.
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