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Abstract

An outlier detection method may be considered fair over specified sensitive attributes if the results of outlier detection are
not skewed toward particular groups defined on such sensitive attributes. In this paper, we consider the task of fair outlier
detection. Our focus is on the task of fair outlier detection over multiple multi-valued sensitive attributes (e.g., gender, race,
religion, nationality and marital status, among others), one that has broad applications across modern data scenarios. We
propose a fair outlier detection method, FairLOF, that is inspired by the popular LOF formulation for neighborhood-based
outlier detection. We outline ways in which unfairness could be induced within LOF and develop three heuristic principles
to enhance fairness, which form the basis of the FairLOF method. Being a novel task, we develop an evaluation framework
for fair outlier detection, and use that to benchmark FairLOF on quality and fairness of results. Through an extensive empiri-
cal evaluation over real-world datasets, we illustrate that FairLOF is able to achieve significant improvements in fairness at
sometimes marginal degradations on result quality as measured against the fairness-agnostic LOF method. We also show that
a generalization of our method, named FairLOF-Flex, is able to open possibilities of further deepening fairness in outlier
detection beyond what is offered by FairLOF'.

Keywords Outlier detection - Fairness - Unsupervised learning

1 Introduction paper, we explore the task of fairness in outlier detection,
an analytics task of wide applicability in myriad scenarios.
There has been much recent interest in incorporating fair-
ness constructs into data analytics algorithms, within the

broader theme of algorithmic fairness [12]. The importance

1.1 Outlier Detection and Fairness

of fairness in particular, and democratic values in general,
cannot be overemphasized in this age when data science
algorithms are being used in very diverse scenarios to aid
decision-making that could affect lives significantly. The
vast majority of fair machine learning work has focused on
supervised learning, especially on classification (e.g., [17,
34]). There has also been some recent interest in ensuring
fairness within unsupervised learning tasks such as cluster-
ing [1], retrieval [35] and recommendations [25]. In this
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The task of outlier detection targets to identify deviant
observations from a dataset, and is usually modeled as an
unsupervised task; [8] provides a review of outlier detec-
tion methods. The classical outlier characterization, due to
Hawkins [16], considers outliers as ‘observations that devi-
ate so much from other observations as to arouse suspicion
that they were generated by a different process’. Applications
of outlier detection range across varied application domains
such as network intrusions [19], financial fraud [26] and
medical abnormalities [22]. Identification of non-main-
stream behavior, the high-level task that outlier detection
accomplishes, has a number of applications in new age data
scenarios. Immigration officials at airports might want to
carry out detailed checks on ‘suspicious’ people, while Al
is likely used in proactive policing to identify ‘suspicious’
people for stop-and-frisk checks. In this age of pervasive
digitization, ‘abnormality’ in health, income or mobility pat-
terns may invite proactive checks from healthcare, taxation
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and policing agencies. Identification of such abnormal and
suspicious patterns is inevitably within the remit of outlier
detection.

The nature of the task of outlier detection, and the con-
texts it is used, makes it very critical when viewed from
the perspective of fairness. When an abnormal behavior is
flagged by an (automated) outlier detection system, it would
naturally lead to concrete actions. In policing, it could lead
to approaching the person involved to perform checks. In the
financial sector, it could lead to de-activating a bank account
or credit card temporarily. In certain other sectors, being
classed as an outlier may be invisible, but could lead to sig-
nificant inconvenience; for example, an insurance company
may interpret the abnormality as a higher level of risk, and
offer a higher premium. Across all the above cases, being
classed as an outlier leads to moderate to significant levels
of inconvenience. In the case of policing, the individual may
be subjected to questioning or targeted surveillance, with the
individual pushed to being defensive; this may be interpreted
as skirting on the boundaries of violating the presumption of
innocence, a human right enshrined in the universal declara-
tion of human rights.1 Further, it could also lead to frustra-
tion and a feeling of humiliation,? and could impact trust in
policing among those who are subject to pro-active interro-
gation. Against this backdrop, consider a sensitive attribute
such as ethnicity. An attribute which is often assigned to
a person on the basis of chance (e.g., one does not choose
one’s ethnicity) and has a historical context of discrimina-
tion may be regarded as sensitive. While contexts of histori-
cal discrimination may differ in shape and size across vary-
ing geographies, the notion of sensitive attributes is often
enshrined within legal and constitutional frameworks, as
well as in affirmative action policies.’ As an example, Title
VII of the Civil Rights Act of 1964 in the United States
declares that race, color, religion, sex, or national origin are
‘protected’ attributes, whereas India’s affirmative action
system recognizes caste as a facet of social discrimination
(and thus, a candidate for sensitivity). If the distribution of
those who are classed as outliers is skewed toward particular
ethnicities, say minorities as often happens, it directly entails
that they are subject to much more inconvenience than oth-
ers. This could lead to multiple issues:

e [t would directly exacerbate targeting of minorities, since
higher levels of pro-active surveillance would lead to
higher rates of crime detection for minorities.

! https://www.un.org/en/about-us/universal-declaration-of-human-
rights.

2 https://reason.com/2013/03/27/when-proactive-policing-becomes-
harassme/.

3 https://en.wikipedia.org/wiki/Affirmative_action.

@ Springer

e Minorities being perceived as more likely to be targeted
for pro-active surveillance could lead to a higher level of
distrust in policing among them, potentially leading to
social unrest.

e It would reinforce the stereotype that minorities are more
likely to engage in crime.

These, and analogous scenarios in various other sectors,
provide a compelling case to ensure that the inconvenience
load stemming from outlier detection and other downstream
processing be proportionally distributed across ethnicities.
The same kind of reasoning holds for other sensitive attrib-
utes such as gender, religion and nationality.

Even if information about ethnicity, gender, religion and
nationality be hidden (they are often not hidden, and neither
is it required to be hidden under most legal regulations) from
the database prior to outlier identification, information about
these attributes are likely inherently spread across other
attributes. For example, geo-location, income and choice of
professions may be correlated with ethnic, gender, religious
and other identities. In fact, it has been argued that even a
single attribute such as the postcode could reveal a lot of
information about individuals [32], many of which are likely
to be correlated with sensitive attributes. The identification
of non-mainstream character either falls out from, or entails,
an analogous and implicit modeling of mainstream charac-
teristics in the dataset. The mainstream behavior, by its very
design, risks being correlated with majoritarian identities,
leading to the possibility of minority groups being picked
out as outliers significantly more often. Interestingly, there
have been patterns of racial prejudice in such settings.*

1.2 Outlier Detection and the Web

While we have discussed public sector scenarios to motivate
outlier detection considerations so far, there are an abun-
dance of other scenarios within the context of the web. Web
has emerged, over the past decades, as a rich source of unla-
beled digital data. Thus, the web likely presents the largest
set of scenarios involving outlier detection. Each user on the
web leaves different cross sections of digital footprints in
different services she uses, together encompassing virtually
every realm of activity; this goes well beyond the public sec-
tor applications referenced above. In a number of scenarios,
identified as an outlier could lead to undesirable outcomes
for individuals. For example, mobility outliers may receive a
higher car insurance quote, and social media outliers may be
subjected to higher scrutiny (e.g., Facebook moderation). It
is important to ensure that such undesirable outcomes be dis-
tributed fairly across groups defined on protected attributes

4 nhttps://www.nyclu.org/en/stop-and-frisk-data.
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(e.g., gender, race, nationality, religion and others) in such
private sector settings for ethical reasons and to avoid bad

press.’

1.3 Our Contributions

We now outline our contributions in this paper. First, we
characterize the task of fair outlier detection under the nor-
mative principle of disparate impact avoidance [4] that has
recently been used in other unsupervised learning tasks [1,
11]. Second, we develop a fair outlier detection method,
FairLOF, based on the framework of LOF [7], arguably the
most popular outlier detection method. Our method is capa-
ble of handling multiple multi-valued protected attributes,
making it feasible to use in sophisticated real-world sce-
narios where fairness is required over a number of facets. We
also outline a generalization of our method, called FairLOF-
Flex, which allows usage of domain knowledge to customize
FairLOF. Third, we outline an evaluation framework for fair
outlier detection methods, outlining quality and fairness met-
rics, and trade-offs among them. Lastly, through an extensive
empirical evaluation over real-world datasets, we establish
the effectiveness of FairLOF in achieving high levels of fair-
ness at small degradations to outlier detection quality. We
also illustrate that our generalization, FairLOF-Flex, is able
to open possibilities of further improving fairness in outlier
detection outcomes.

2 Related Work

Given that there has only been very limited work in fair
outlier detection, we start with covering related work across
outlier detection and fairness in unsupervised learning,
before moving on to discussing fair outlier detection.

2.1 Outlier Detection Methods

Since obtaining labeled data containing outliers is often
hard, outlier detection is typically modeled as an unsuper-
vised learning task where an unlabeled dataset is analyzed
to identify outliers within it. That said, supervised and semi-
supervised approaches do exist [8]. We address the unsu-
pervised setting in our work. The large majority of work in
unsupervised outlier detection may be classified into one
of two families. The first family, that of global methods,
build a dataset-level model, and regard objects that do not
conform well to the model, as outliers. The model could be a
clustering [33], Dirichlet mixture [15] or others [14]. Recent

3 https://www.cnet.com/features/is-facebook-censoring-conservati
ves-or-is-moderating-just-too-hard/.

research has also explored the usage of auto-encoders as
a global model, the reconstruction error of individual data
objects serving as an indication of their outlierness; Rand-
Net [10] generalizes this notion to determine outliers using
an ensemble of auto-encoders. The second family, arguably
the more popular one, is that of local methods, where each
data object’s outlierness is determined using just its neigh-
borhood within a relevant similarity space, which may form
a small subset of the whole dataset. The basic idea is that the
outliers will have a local neighborhood that differs sharply
in terms of characteristics from the extended neighborhood
just beyond. LOF [7] operationalizes this notion by quanti-
fying the contrast between an object’s local density (called
local reachability density, as we will see) and that of other
objects in its neighborhood. Since the LOF proposal, there
has been much research into local outliers, leading to work
such as SLOM [9], LoOP [21] and LDOF [36]. Schubert
et al [29] provide an excellent review of local outlier detec-
tion, including a generalized three phase meta-algorithm
that most local outlier detection methods can be seen to fit
in. Despite much research over the last two decades, LOF
remains the dominant method for outlier detection, continu-
ously inspiring systems work on making it efficient for usage
in real-world settings (e.g., [3]). Accordingly, the framework
of LOF inspires the construction of our FairLOF method.

2.2 Fairness in Unsupervised Learning

There has been much recent work on developing fair algo-
rithms for unsupervised learning tasks such as clustering,
representation learning and retrieval. Two streams of fair-
ness are broadly used; group fairness that targets to ensure
that the outputs are fairly distributed across groups defined
on sensitive attributes, and individual fairness which strives
to restrict possibilities of similar objects receiving dissimi-
lar outcomes. Individual fairness is typically agnostic to the
notion of sensitive attributes. Our focus, in this paper, is
on group fairness in outlier detection. For group fairness in
clustering, techniques differ in where they embed the fair-
ness constructs; it could be at the pre-processing step [11],
within the optimization framework [1] or as a post-process-
ing step to re-configure the outputs [6]. FairPCA [23], a
fair representation learner, targets to ensure that objects are
indistinguishable with respect to their sensitive attribute val-
ues in the learnt space. Fair retrieval methods often imple-
ment group fairness as parity across sensitive groups in the
top-k outputs [2]. The techniques above also differ in another
critical dimension; the number of sensitive attributes they
can accommodate. Some can only accommodate one binary
sensitive attribute, whereas others target to cater to fairness
over multiple multi-valued sensitive attributes; a categoriza-
tion of clustering methods along these lines appears in [1].

@ Springer
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2.3 Fairness in Outlier Detection

In contrast to such several efforts into deepening fairness
in unsupervised learning tasks, there has been very limited
exploration into fair outlier detection. The main related effort
in this space so far, to our best knowledge, is that of devel-
oping a human-in-the-loop decision procedure to determine
whether the outputs of an outlier detection is fair [13]. This
focuses on deriving explanations based on sensitive attrib-
utes to distinguish the outputs of an outlier detection method
from the ‘normal’ group. If no satisfactory explanation can
be achieved, the black-box outlier detection method can
be considered fair. The human is expected to have domain
knowledge of the task and data scenario to determine param-
eters to identify what is unfair, and interpret explanations to
judge whether it is indeed a case of unfairness. This human-
in-the-loop and explanation-oriented framework is only
tangentially related to our remit of fairness in automated
outlier detection. Apart from the above work, there has been
arecent arXiv pre-print on fair outlier detection [30]. Their
method, FairOD, is designed for the case of binary sensi-
tive attributes and targets to achieve equal representation
for the two groups among outlier results. This binary parity
model does not generalize to multi-valued or numeric sensi-
tive attributes. Further, the authors target not to use sensitive
attributes at decision time; however, the decision is made by
a neural auto-encoder model (a global model, among outlier
detection families described in Sect. 2.1) that makes use of
sensitive attributes in training. In contrast to such character-
istics of [30], we address local neighborhood based outlier
detection over data comprising sensitive attributes that could
be of various types; including binary, multi-valued (e.g., eth-
nicity) or numeric (e.g., age).

3 Problem Definition

In this section, we outline the fair outlier detection task
against the backdrop of (fairness-agnostic) outlier detection.

3.1 Task Setting

Consider a dataset X = {..., X, ...} and an object pairwise
distance functiond : XX X — R that is deemed relevant to
the outlier detection scenario. Further, each data object is
associated with a set of sensitive attributes S = {...,S,...}
(e.g., gender, race, nationality, religion and others) which are
categorical and potentially multi-valued, V(S) being the set
of values that a sensitive attribute, S, can take. X.S € V(S)
indicates the value assumed by object X for the sensitive
attribute S. Thus, each multi-valued attribute S defines a
partitioning of the dataset into |V(S)| parts, each of which
comprise objects that take the same distinct value for S.

@ Springer

3.1.1 (Fairness-Agnostic) Outlier Detection

The task of (vanilla or fairness-agnostic) outlier detection is
that of identifying a small subset of objects from X', denoted
as O, that are deemed to be outliers. Within the local outliers
definition we adhere to, it is expected that objects in O differ
significantly in local neighborhood density when compared
to other objects in their neighborhoods. In typical scenarios,
it is also expected that |O| = ¢, where ¢ is a pre-specified
parameter. The choice of t may be both influenced by the
dataset size (e.g., f as a fixed fraction of | X]) and/or guided
by practical considerations (e.g., manual labor budgeted to
examine outliers).

3.1.2 Fair Outlier Detection

The task of fair outlier detection, in addition to identifying
outliers, considers ensuring that the distribution of sensi-
tive attribute groups among O reflects that in X as much
as possible. This notion, referred to interchangeably as
representational parity or disparate impact avoidance, has
been the cornerstone of all major fair clustering algorithms
(e.g., [1, 6, 11]), and is thus a natural first choice as a norma-
tive principle for fair outlier detection. As a concrete exam-
ple, if gender is a sensitive attribute in S, we would expect
the gender ratio within O to be very close to, if not exactly
equal to, the gender ratio in &X'. Note that fairness is com-
plementary and often contradictory to ensuring that the top
neighborhood-outliers find their place in O; the latter being
the only consideration in (vanilla) outlier detection. Thus,
fair outlier detection methods such as FairLOF we develop,
much like fair clustering methods, would be evaluated on
two sets of metrics:

e ‘Quality’ metrics that measure how well objects with
distinct local neighborhoods are placed in O, and

e Fairness metrics that measure how well they ensure that
the dataset-distribution of sensitive attribute values are
preserved within O

We will outline a detailed evaluation framework in a subse-
quent section. Good fair outlier detection methods would be
expected to achieve good fairness while suffering only small
degradations in quality when compared against their vanilla
outlier detection counterparts.

3.2 Motivation for Representational Parity

We outlined fair outlier detection using representational par-
ity as our fairness objective. It may be argued that the dis-
tribution of sensitive attribute groups could be legitimately
different from that in the dataset. For example, one might
argue that outlying social media profiles that correlate with
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crime may be legitimately skewed toward certain ethnici-
ties since propensity for crimes could be higher for certain
ethnicities than others. The notion of representational parity
disregards such assumptions of skewed apriori distributions,
and seeks to ensure that the inconvenience of being classed
as an outlier be shared proportionally across sensitive attrib-
ute groups, as argued in Sect. 1.1. This argument is compel-
ling within scenarios of using outlier detection in databases
encompassing information about humans. In particular, this
has its roots in the distributive justice theory of luck egalitar-
ianism [20] that distributive shares be not influenced by arbi-
trary factors, especially those of ‘brute luck’ that manifest as
membership in sensitive attribute groups (since individuals
do not choose their gender and ethnicity). The normative
principle has been placed within the umbrella of the ‘justice
as fairness’ work due to John Rawls [28] that underlies most
of modern political philosophy. Further, since outlier detec-
tion systems are often used to inform human decisions, it is
important to ensure that outlier detection algorithms do not
propagate and/or reinforce stereotypes present in society by
way of placing higher burden on certain sensitive groups
than others.

4 Background: Local Outlier Factor (LOF)

Our method builds upon the pioneering LOF framework [7]
for (vanilla) outlier detection. LOF comprises three phases,
each computing a value for each object in X, progressively
leading to LOF: (i) k-distance, (ii) local reachability density
(LRD), and (iii) local outlier factor (LOF).

k-distance Let N,(X) be the set of k nearest neighbors®
to X (within X'), when assessed using the distance function
d(., .). The k-distance for each X € X is then the distance to
the kth nearest object.

k-distance(X) = max{d(X,X")|X" € N,(X)} 1))

Local Reachability Density The local reachability density of
X is defined as the inverse of the average distance of X to it’s
k nearest neighbors:

Twen X, X") >
[N (X))

Ird(X) = 1 /< 2)

where rd(X,X’) is an asymmetric distance measure that
works out to the true distance, except when the true distance
is smaller than k-distance(X'):

rd(X,X") = max{k-distance(X'),d(X, X)) 3)

6 [N (X)| could be greater than k in case there is a tie for the kth place.

This lower bounding by k-distance(X’) - note also that k-
distance(X") depends on N (X") and not N,(X) - makes the
Ird(.) measure more stable. [rd(X) quantifies the density of
the local neighborhood around X.

Local Outlier Factor The local outlier factor is the ratio
of the average /rds of X’s neighbors to X’s own Ird.

Yxven, o rdX")

lof(X) =
o ( IN(X)]

)/ Ird(X) “
An lof (X) = 1 indicates that the local density around X is
comparable to that of it’s neighbors, whereas a Ird(X) >> 1
indicates that it’s neighbors are in much denser regions than
itself. Once [of(.) is computed for each X € X, the top-t
data objects with highest lof(.) scores would be returned as
outliers.

5 FairLOF: Our Method

We first outline the motivation for our method, followed by
the details of FairLOF.

5.1 Motivation

In many cases, the similarity space implicitly defined by
the distance function d(., .) bears influences from the sen-
sitive attributes and grouping of the dataset defined over
such attributes. The influence, whether casual, inadvertent
or conscious, could cause the sensitive attribute profiles of
outliers to be significantly different from the dataset profiles.
These could occur in two contrasting ways.

5.1.1 Under-Reporting of Large/Majority Sensitive Groups

Consider the case where d(., .) is aligned with groups defined
by S. Thus, across the dataset, pairs of objects that share the
same value for § are likely to be judged to be more proxi-
mal than those that bear different values for S. Consider a
dataset comprising 75% males and 25% females. Such skew
could occur in real-world cases such as datasets sourced
from populations in a STEM college or certain profes-
sions (e.g., police”). Let us consider the base/null assump-
tion that real outliers are also distributed as 75% males
and 25% females. Now, consider a male outlier (M) and a
female outlier (F), both of which are equally eligible outli-
ers according to human judgement. First, consider M; M is
likely to have a quite cohesive and predominantly male kNN
neighborhood due to both: (i) males being more likely in the

7 https://www.statista.com/statistics/382525/share-of-police-officers-
in-england-and-wales-gender-rank/.
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dataset due to the apriori distribution, and (ii) d(., .) likely
to judge males as more similar to each other (our starting
assumption). Note that the first factor works in favor of a
male-dominated neighborhood for F too; thus, F’s neighbor-
hood would be less gender homogeneous to itself, and thus
less cohesive when measured using our S aligned d(.). This
would yield Ird(M) > Ird(F), and thus lof (M) < lof (F) (Ref.
Eq. 4) despite them being both equally eligible outliers. In
short, when d(., .) is aligned with groups defined over S, the
smaller groups would tend to be over-represented among
the outliers.

5.1.2 Over-Reporting of Large Sensitive Groups

Consider a domain-tuned distance function designed for a
health records agency who would like to ensure that records
be not judged similar just due to similarity on gender; such
fine-tuning, as is often done with the intent of ensuring fair-
ness, might often be designed with just the 'main groups’ in
mind. In the case of gender, this would ensure a good spread
of male and female records within the space; however, this
could result in minority groups (e.g., LGBTQ) being rel-
egated to a corner of the similarity space. This would result
in a tight clustering of records belonging to the minority
group, resulting in the LOF framework being unable to pick
them out as outliers. Thus, a majority conscious design of
d(., .) would result in over-representation of minority groups
among outliers.

5.2 FairLOF: The Method

The construction of FairLOF attempts to correct for such
kNN neighborhood distance disparities across object groups
defined over sensitive attributes. FairLOF distance correc-
tion is based on three heuristic principles; (i) neighborhood
diversity (object-level correction), (ii) apriori distribution
(value-level), and (iii) attribute asymmetry (attribute-level).
We outline these for the first scenario in Sect. 5.1, where
d(., .) is aligned with the sensitive attribute, S, resulting in
minority over-representation among outliers; these will be
later extended to the analogous scenario, as well as for mul-
tiple attributes in S.

5.2.1 Neighborhood Diversity

Consider the case of objects that are embedded in neigh-
borhoods comprising objects that take different values of S
than itself; we call this as a S-diverse neighborhood. These
would be disadvantaged with a higher k-distance, given our
assumption that d(., .) is aligned with S. Thus, the k-dis-
tance of objects with highly diverse neighborhoods would
need to be corrected downward. This is an object-specific

@ Springer

correction, with the extent of the correction determined
based on S-diversity in the object’s neighborhood.

5.2.2 Apriori Distribution

Consider objects that belong to an S group that are very
much in minority; e.g., LGBTQ groups for S = gender.
Since these objects would have an extremely diverse neigh-
borhood due to their low apriori distribution in the dataset
(there aren’t enough objects with the same S value in the
dataset), the neighborhood diversity principle would correct
them deeply downward. To alleviate this, the neighborhood
diversity correction would need to be discounted based on
the sparsity of the object’s value of S in the dataset.

5.2.3 Attribute Asymmetry

The extent of k-distance correction required also intui-
tively depends on the extent to which d(., .) is aligned with
the given S. This could be directly estimated based on the
extent of minority over-representation among outliers when
vanilla LOF is applied. Accordingly, the attribute asymmetry
principle requires that the correction based on the above be
amplified or attenuated based on the extent of correction
warranted for S.

The above principles lead us to the following form for
k-distance:

<max{d(x, XHX' e Nk(X)}>

)
<1 — AX WX Dy ¢ % Div(Nk(X),X.S)>

where Div(N,(X),X.S), Dy ¢ and W' relate to the three
principles outlined above (respectively), 4 € [0, 1] being a
weighting factor. These terms are constructed as below:

{X'|X" € N,(X) A XS # X.S}|

Div(N,(X),X.S) = 6
‘ N, QO] ©
HX'|1X' € XAX'.S=X.S}]
DY = 7
X.S |X| ( )
W;f =c+ |Df§ - DZE”’F| where v* = arg max Df (8)
veV(S)

Equation 6 measures diversity as the fraction of objects
among N,(X) that differ from X on it’s § attribute value.
Eq. 7 measures the apriori representation as the fraction
of objects in X that share the same S attribute value as
that of X. For Eq. 8, D?""F refers to the fraction of S =v
objects found among the top-f results of vanilla LOF over
X. WSX is computed as a constant factor (i.e., ¢) added to the



FairLOF: Fairness in Outlier Detection

491

asymmetry extent measured as the extent to which the larg-
est S-defined group in the dataset is underrepresented in the
vanilla LOF results. While we have used a single S attribute
so far, observe that this is easily extensible to multiple attrib-
utes in S, yielding the following refined form for k-distance:

<max{d(X, XX e Nk(X)}>

)
<1 ) Z (W x Dy ¢ x Div(Nk(X),X.S))>
SeS

While we have been assuming the case of d(., .) aligned
with S and minority over-representation among outliers, the
opposite may be true for certain attributes in S; recollect
the second case discussed in Sect. 5.1. In such cases, the
k-distance would need to be corrected upward, as against
downward. We incorporate that to yield the final k-distance
formulation for FairLOF.

k-distance ;o (X) = <max{d(X, XHx' e Nk(X)}>

x <1 -2 (D) x W (10

NN

X Dy ¢ X Div(Nk(X),X.S))>

where D(X, S) € {—1, +1} denotes the direction of correc-
tion as below:

7zL()l"

PE

+1 if Djf >D
—1  otherwise

w X
where v* = argmax ¢y, D,

D(X,S) = {
(11

This modification in k-distance warrants an analogous cor-
rection of rd(., .) to ensure level ground among the two terms
determining rd(., .).

i orX. X' = max{k-distanceFairLOF(X’),

d(X,X") x (1 — 1) (DX, $)x Wy
NN

XDy ¢ X I(X.S # X’.S)})}
(12)

The second term in rd(., .) is corrected in the same manner
as for k-distance, except that the diversity term is replaced
by a simple check for inequality, given that there is only one
object that X is compared with.

These distance corrections complete the description of
FairLOF, which is the LOF framework from Sect. 4 with
k-distance(., .) and rd(., .) replaced by their corrected ver-
sions from Eqs. 10 to 12, respectively. The overall process is
outlined in Algorithm 1; we will use flof{.) to denote the final
outlier score from FairLOF, analogous to lof(.) for LOF. The
FairLOF hyperparameter, A, determines the strength of the
fairness correction applied, and could be a very useful tool
to navigate the space of options FairLOF provides, as we
will outline in the next section.

Algorithm 1: FairLOF Method

input
parameters: k, t (output size), A, ¢
for S € S do
compute Wéy using Eq. 8
compute D(X, S) using Eq. 11
for s € V(S) do

|_ compute Df using Eq. 7

(S TSI VI

for X € X do
compute Ny (X) using d(.,.)
for S € S do

© o N o

: Dataset X, sensitive attributes S, distance function d(., .)

|_ compute Div(Ng(X), X.S) using Eq. 6

10 compute k-distancepgirpor(X) using Eq. 10

11 for X’ € Ni(X) do

12 |_ compute rdpgirLor (X, X') using Eq. 12

13 compute fairlrd(X) using Eq. 2 where rd(X, X’) is replaced by

rdrairLor (X, X') above ;

14 compute flof(X) using Eq. 4 where Ird(.) is replaced by fairird(.)

15 return top-t objects from X with the highest flof(.) values
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5.2.4 FairLOF Complexity

We briefly analyze the computational complexity of Fair-
LOF. Equations 7 and 8 can be pre-computed at a an exceed-
ingly small cost of O(|S| X m) where m is maxgcg|V(S)|.
Equation 6 needs to be computed at a per-object level, thus
multiplying the LOF complexity by |S| X m. With typical
values of |S| X m being in the 1000s at max (e.g., 3-5 sensi-
tive attributes with 10-20 distinct values each), and outlier
detection being typically considered as an offline task not
requiring real-time responses, the overheads of the k-dis-
tance adjustment may be considered as very light.

5.2.5 FairLOF and Sensitive Attribute Types

Our design of FairLOF is targeted toward multi-valued or
categorical sensitive attributes. This is motivated by observ-
ing that the vast majority of sensitive attributes, such as race,
color, religion, sex, national origin and caste, are multi-
valued in nature. There are, however, some niche scenarios
where numeric sensitive attributes, such as age, may need
to be treated as sensitive. While treating them as categori-
cal through discretization into categories is a way of incor-
porating such attributes into FairLOF, it does not capture
the ordinal nature of those attributes in full essence. We
believe that adapting Eqs. 6, 7 and 8 is feasible, to incorpo-
rate numeric sensitive attributes more organically; however,
such adaptations remain outside the scope of this work.

5.3 FairLOF-Flex: Extending FairLOF

FairLOF uses three heuristic principles to correct distances
in order to nudge the scoring to produce fair outlier detection
results. To recap briefly, these are:

e Neighborhood Diversity The neighborhood diversity
principle yields the factor Div(N,(X), X.S) in Eq. 10 and
the factor I(X.S # X’.S) in Eq. 12.

e Apriori Distribution The apriori distribution principle
maps to the factor D;{ ¢ Which figures in both Egs. 10
and 12.

e Artribute Asymmetry The attribute asymmetry principle
yields the factor Wg"’ which is also used in both Egs. 10
and 12.

FairLOF combines the above factors by multiplying them
together with a direction factor D(X, S) which, being in
{—1,+1} merely changes the direction of the correction
without altering the extent of the correction. The product of
those terms is computed on a per-attribute basis and summed
up over all sensitive attributes to yield a discounting fac-
tor for distance computations, which is further weighted by
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A. The product form to aggregate the contributions of the
separate heuristic principles is informed by the expecta-
tion that they would be in similar ranges numerically. All of
Div(N,(X), X.9),1(X.S # X’.S) and D;S are in [0, 1], whereas
WSX is also expected to be in that range, though not strictly
bounded above by 1.0. The product form places all the cor-
rection terms on an equal footing with respect to the extent
to which they can inform the correction.

However, when FairLOF is applied within a particular
application domain, we would naturally expect that these
principles would apply to varying levels depending upon
the specifics of the domain. As an example, consider using
FairLOF in a spatial outlier detection scenario over a data-
base of individuals in a town which happens to have deeply
racially segregated areas. Given the domain knowledge that
most individuals would be located in racially similar neigh-
borhoods, we may want to limit the strength of the terms
coming from the neighborhood diversity principle when
race is used as a sensitive attribute, and leave the fairness
heavylifting to be largely handled by remaining two factors.
Different domains might require different levels of attenu-
ation and amplification of the effects of the three different
principles. Thus, a simple product form that offers equal
weighting to the three terms would be considered as inflex-
ible for specific domains. We do not attempt to outline a full
suite of scenarios where the relative strengths of the factors
from the separate heuristic principles need to be regulated
in specific ways since that would inevitably depend on the
domain knowledge from the application scenario. Instead,
we attempt to outline that we recognize the need for control-
ling relative strengths of the correction terms, and describe
a generalization of FairLOF to provide some flexibility in
combining these factors.

We now outline a way to generalize FairLOF to incor-
porate such flexibility. We call the generalized method as
FairLOF-Flex. The generalization is incorporated by modi-
fying Eq. 10 as follows:

k-distance g, oF-pie(X) = <max{d(X, XHx' e Nk(X)}>

X <1 - 1) (DX, 8) x (Wg)"

Ses
x (Df)" x Div(Nk(X),x.s>)>
(13)

This modification incorporates two hyperparameters, a
and f, as exponents to W;“ and D; ¢ Tespectively. By vary-
ing « and f#, we can vary the strengths of the correspond-
ing terms, and thus, indirectly, the relative strength of the
Div(N,(X), X.S) term as well. Analogous to the above, Eq. 12

is also modified as the following:
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! . !
Mg op-Fiex X, X') = max{k‘dlsmnceFairLOF(X ),

Ses

d(X, X"y x (1 -2 ) (D9 x (W)

x(DX) X 1(X.S # X’.S)})}

(14)
Given that D))((.s is in the [0, 1] range, § > 1 would in effect
reduce the extent of the correction brought about by it (for
example, 0.5 is less than 0.5). The same holds for WSX vis-
a-vis a. FairLOF-Flex is thus simply the generalization of
FairLOF to incorporate the relative strength hyperparam-
eters, @ and f. As evident, setting @ = f = 1.0 would make
it equivalent to FairLOF. We do not set an analogous expo-
nent for the diversity term, since the relative strength of the
diversity term with respect to the other two can indirectly
be controlled by setting a and § appropriately. For exam-
ple, setting @ = f = 2.0 would implicitly be equivalent to
giving a higher weighting to the diversity term, since the
other two terms are discounted by squaring the correspond-
ing terms. Therefore, setting « = § = 1.0 is not equivalent
toa=p=20.

As indicated earlier, we do not attempt to outline pre-
scriptive ways on how the flexibility provided by way of
the additional hyperparameters a and f§ could be used, since
that is likely to intimately depend on how the specifics of the
domain could be mapped to the terms coming from the three
heuristic principles. Given that our work has been to come
up with a general technique, we have not gathered expertise
of the specific dataset domains to meaningfully reason and
arrive at suitable parameter settings for those. We will illus-
trate, in our empirical analysis section, that effective usage
of such parameters could plausibly lead to gains in fairness.

6 Evaluation Framework for Fair Outlier
Detection

Enforcing parity along S-groups among outliers, as dis-
cussed, often contradicts with identifying high-LOF outli-
ers. This trade-off entails two sets of evaluation measures,
inspired by similar settings in fair clustering [1].

6.1 Quality Evaluation

While the most desirable quality test for any outlier detection
framework would be accuracy measured against human gen-
erated outlier/non-outlier labels, public datasets with such
labels are not available, and far from feasible to generate.

Thus, we measure how well FairLOF results align with the
fairness-agnostic LOF, to assess quality of FairLOF results.

IR 1or N Rpairror|

Jacc(Rops Reairior) = (15)

IR or Y Reairsor!

ZXe,RI—'m‘rLOI-‘ lof(X)
Yxer,,, LofX)

Pres(Rops RpairLor) = (16)

where R; o and Ry, or are top-t outliers (for any chosen
k) from LOF and FairLOF, respectively. Jacc(., .) computes
the jaccard similarity between the result sets, and is thus
a quantification of the extent to which LOF outliers find
their place within the FairLOF results. If we consider the
(fairness-agnostic) LOF results as 'true’ quantifications of
outlierness, the idea is that we would not want to diverge
much from it while striving to ensuring fairness. Thus, high
values of Jacc(., .) are desirable. Next, even in cases where
R rairor diverges from R; o, we would like to ensure that
it does not choose objects with very low lof(.) values within
Rrairrors Pres(., .) computes the extent to which high lof(.)
scores are preserved within R p,;,; o €xpressed as a fraction
of the total lof(.) across R . High values of Pres(., .) indi-
cate that the FairLOF results are aligned well with the outli-
erness as estimated by the fairness-agnostic LOF method. As
is obvious from the construction, higher values for Pres(., .)
indicate better quality of FairLOF results.

The semantics of the LOF score suggests that objects
with lof{.) scores less than 1.0 are inliers since they are in a
higher density region than their local neighborhood. Even
if Rg,;10F contains a few inlier objects, FairLOF could still
score well in the case of Jacc(., .) as long as Rg,;,;oF cOn-
tains several other objects from R; . Similarly, a Rg,;,z0F
containing some inliers could still score well on Pres(., .)
as long as there are other very high lof{.) scores among
the objects it contains. In order to tease out the member-
ship of inliers within FairLOF results more explicitly, we
now outline another metric, outlier-fraction (OF for short),
which measures the fraction of objects in Ry, o that are
not inliers.

Zxer,,,,0, WOfX) 2 1.0)

(17)
|RFairL()F|

OF (RLOF’ RFairLOF) =

where [ is an indicator function that returns 1 or 0. This
measures the fraction of objects that have a neighborhood
that is equally or more sparse than its neighboring objects. It
may be noted that for all the quality metrics outlined above,
viz., Jacc(., .), Pres(., .) and OF(., .), 1.0 functions as an
upper bound, and higher values indicate higher quality of
FairLOF results.
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6.2 Fairness Evaluation

For any particular sensitive attribute S € S, we would like
the distribution of objects across its values among outliers
(i.e., Rpgz0r) be similar to that in the dataset, X. In other
words, we would like the D?F el O D?F arloF -] vector
(V € V(S), and Ref. Eq. 7 for computation) to be as similar
as possible to the distribution vector over the dataset for S,
i.e., Df =[... ,Df, ...], as possible. We would like this to
hold across all attributes in S. Note that this fairness notion
is very similar to that in fair clustering, the only differ-
ence being that we evaluate the outlier set once as against
each cluster separately. Thus, we adapt the fairness metrics
from [1, 31] as below:

ED(R pivior) = Z Euclidean_Distance(D?r arkor, Dgf)
ses
(18)

Wass(R guirior) = Z Wasserstein_Distance(D?F arLor Df)
Ses
19)
where ED(.) and Wass(.) denote aggregated Euclidean and
Wasserstein distances across the respective distribution vec-
tors. Since these measure deviations from dataset-level pro-
files, lower values are desirable in the interest of fairness.

6.3 Quality-Fairness Trade-off

Note that all the above metrics can be computed without
any external labellings. Thus, this provides an opportunity
for the user to choose different trade-offs between quality
and fairness by varying the FairLOF correction strength
hyper-parameter A. We suggest that a practical way of using
FairLOF would be for a user to try with progressively higher
values of A from {0.1,0.2, ...} (note that A = 0.0 yields Fair-
LOF = LOF, with higher values reducing Jacc(.), Pres(.)
and OF(.) progressively) using a desired value of Jaccard
similarity as a pilot point. For example, we may want to
retain a Jaccard similarity (i.e., Jacc(.) value) of approxi-
mately 0.9 or 0.8 with the original LOF results. Thus, the
user may stop when that is achieved. The quantum of fair-
ness improvements achieved by FairLOF over LOF at such
chosen points, as well as the Pres(., .) and OF(., .) values at
those configurations, will then be indicative of FairLOF’s
effectiveness.

6.4 Single Sensitive Attribute and a Quota-Based
System

As noted upfront, FairLOF is targeted toward cases where
there are multiple sensitive attributes to ensure fairness
over; this is usually the case since there are often many
sensitive attributes in real world scenarios (e.g., gender,
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ethnicity, caste, religion, native language, marital sta-
tus, and even age in certain scenarios). For the case of a
single sensitive attribute with a handful of possible val-
ues, there is a simple and effective strategy for fair out-
lier detection. Consider S = gender; we take the global
list of objects sorted in descending order of /of(.) scores
and splice them into male list, female list and other values
for the gender attribute. Based on the desired distribution
of gender groups among outliers (as estimated from the
dataset), ‘quotas’ may be set for each gender value, and
the appropriate number of top objects from each gender-
specific list is then put together to form the outlier set of ¢
objects. This is similar to the strategy used for job selection
in India’s affirmative action policy (aka reservation®). The
extension of this quota-based strategy to multiple sensitive
attributes by modeling them as one giant attribute taking
values from the cross-product, is impractical due to mul-
tiple reasons. First, the cross-product may easily exceed ¢,
leading to practical and legal issues across scenarios; for
example, with just S = {nationality, ethnicity}, we could
have the cross-product approaching 2000+ given there are
200+ nationalities and at least 10+ ethnicities, and practi-
cal values of 7 could be in the 100s due to manual perusal
considerations. Thus, the quota system, by design, would
exclude the large majority of rare combinations of sensi-
tive attribute values from being represented among outliers
however high their LOF scores may be; such a policy is
unlikely to survive any legal or ethical scrutiny to allow
practical uptake. Second, the quota based system offers no
way to control the trade-off between fairness and quality,
making it impractical to carefully choose trade-offs as out-
lined earlier. Third, even a simpler version of the extension
of the quota-based system to multiple attributes has been
recently shown to be NP-hard [5].

7 Experimental Evaluation

We now describe our empirical evaluation assessing the
effectiveness of FairLOF over several real-world datasets.
We start by describing the datasets and the experimental
setup, and then move on to presenting the experimental
results and analyses.

7.1 Datasets
There are only a few public datasets with information of
people, the scenario that is most pertinent for fairness analy-

sis; this is likely due to person-data being regarded highly
personal and anonymization could still lead to leakage of

8 https://en.wikipedia.org/wiki/Reservation_in_India.
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Table 1 Dataset information

Dataset Domain | X] Sensitive attributes used

Adult* US 1994 census 48,842 Marital status, race, sex, nationality
ccP Credit card default 30,000 Sex, education, marital status

W4HE* Wikipedia HE use 913 Gender, disciplinary domain, uni name
St-Mat! Student maths records 649 Gender, age

Tweets [18] Twitter posts 47,560 Gender, ethnicity

http://archive.ics.uci.edu/ml/datasets/Adult

Phttps://archive.ics.uci.edu/ml/datasets/default-+of+credit+card+clients

“https://archive.ics.uci.edu/ml/datasets/wiki4he

dhttps://archive.ics.uci.edu/ml/datasets/Student+Performance

Table 2 FairLOF Quality

. Dataset Method Guide Quality measures
Results: The FairLOF results at
guide points set to Jacc = 0.9 Point Jace Det% Pres Det% OF Det%
and Jacc = 0.8 are shown along
with LOF results for each of the Adult LOF 1.0 1.0 1.0
datasets FairLOF 0.9 0.8939 10.61 0.9977 00.23 1.0 0.0
FairLOF 0.8 0.7986 20.14 0.9906 00.94 1.0 0.0

CC LOF
FairLOF 0.9
FairLOF 0.8

W4HE LOF
FairLOF 0.9
FairLOF 0.8
St-Mat LOF
FairLOF 0.9
FairLOF 0.8
Tweets LOF

FairLOF 0.9
FairLOF 0.8

1.0 1.0 1.0
0.9011 09.89 0.9976 00.24 1.0 0.0
0.7921 20.79 0.9879 01.21 1.0 0.0
1.0 1.0 1.0
0.8776 12.24 0.9987 00.13 1.0 0.0
0.8039 19.61 0.9951 00.49 1.0 0.0
1.0 1.0 1.0
0.9047 09.53 0.9970 00.30 1.0 0.0
0.8182 18.18 0.9896 01.04 1.0 0.0
1.0 1.0 1.0
0.8975 09.25 0.9986 00.14 1.0 0.0
0.8051 19.49 0.9931 00.69 1.0 0.0

Since we use coarse steps for 4, the precise guide point value for Jacc may not be achieved; so we choose
the closest Jacc that is achievable to the guide point. The deteriorations in Quality metrics are indicated
in percentages; Quality deteriorations < 1% are indicated in bold. The guide point and Det% only apply to
FairLOF; thus, those cells against LOF are grayed out

identifiable information.” The datasets we use along with
details are included in Table 1. While the Adult dataset is
a dataset from a national Census exercise, CC is from the
financial sector and comprises credit card default informa-
tion. W4HE and St-Mat are both from the education sec-
tor, and relate to Wikipedia usage and student performance
information, respectively. Tweets, on the other hand, forms
the only text dataset in our analysis, and is a dataset of twit-
ter posts collected for the purpose of hate speech identifica-
tion; we have removed all records which have missing values
for any sensitive attribute. Thus, it may be seen that the data-
sets encompass a wide variety of application domains and
data types, and vary much in sizes as well as the sensitive

9 https://en.wikipedia.org/wiki/AOL_search_data_leak.

attributes used. The choice of sensitive attributes has guided
by what could be considered as those where the member-
ship in those is not chosen by individuals. In the case of
W4HE, we additionally assess that disciplinary domain and
uni name are attributes worthy of ensuring fairness over.

7.2 Experimental Setup
For both LOF and FairLOF, we set t (to get top-f results) to
5% of the dataset size capped at 500 and set k = 5 consist-

ently. For FairLOF, the parameter c (Ref. Eq. 8) is set to be
1/s where s is the number of sensitive attributes.
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Table 3 FairLOF Fairness

: Dataset Method Guide point Fairness Measures
Results: Like for the case of
Quality results, the FairLOF ED Impr% Wass Impr%
results at guide points set to
Jacc = 0.9 and Jacc = 0.8 are Adult LOF 0.2877 0.5328
shown along with LOF results FairLOF 0.9 0.1906 33.75 0.3468 34.91
for each of the datasets FairLOF 038 0.1714 40.42 0.2372 55.48
CcC LOF 0.2670 0.2152
FairLOF 0.9 0.2235 16.29 0.2112 01.86
FairLOF 0.8 0.1568 41.27 0.2012 06.51
W4HE LOF 0.2121 0.3305
FairLOF 0.9 0.0966 54.46 0.2989 09.56
FairLOF 0.8 0.1820 14.19 0.2498 24.42
St-Mat LOF 04174 0.9196
FairLOF 0.9 0.3467 16.94 0.8962 02.54
FairLOF 0.8 0.3467 16.94 0.8962 02.54
Tweets LOF 0.1248 0.0883
FairLOF 0.9 0.0598 52.08 0.0422 49.34
FairLOF 0.8 0.0694 44.39 0.0491 44.39

The improvements in Fairness metrics are indicated in percentages. Fairness improvements of 20%+ are
italicized, and those that are 30%+ are shown in bold. The guide point and Det% only apply to FairLOF;
thus, those cells against LOF are grayed out

7.3 FairLOF Effectiveness Study

The effectiveness of FairLOF may be assessed by consider-
ing the quantum of fairness achieved at low degradations
to quality. It may be noted that higher values are better on
the quality measures (Jacc, Pres and OF) and lower val-
ues are better on the fairness measures (ED and Wass). We
follow the quality-fairness trade-off strategy as outlined in
Sect. 6 with a 4 search step-size of 0.1 and choose 0.9 and
0.8 as guide points for Jacc. The detailed results for the
quality measures are shown in Table 2, whereas those on
the fairness measures are shown in Table 3. As observed in
Sect. 6.3, the quality and fairness results are to be analyzed
in tandem; high fairness improvements at small deterioration
in quality metrics may be considered as a desirable point in
the trade-off. Broadly, we observe the following:

e Fairness Improvements FairLOF is seen to achieve
significant improvements in fairness metrics at reason-
able degradations to quality. The ED measure is being
improved by 30% on an average at the chosen guide
points, whereas Wass is improved by 12% and 22% on an
average at the guide points of 0.9 and 0.8, respectively.
These are evidently hugely significant gains indicating
that FairLOF achieves compelling fairness improve-
ments.

Trends on Pres and OF Even at Jacc close to 0.9 and
0.8, the values of Pres achieved by FairLOF are seen to
be only marginally lower than 1.0, recording degrada-
tions of less than 1.0% in the majority of the cases. This
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indicates that while the LOF results are being altered,
FairLOF is being able to replace them with other objects
with substantively similar lof{.) values. This, we believe,
is a highly consequential result, indicating that Fair-
LOF remains very close in spirit to LOF on result qual-
ity while achieving the substantive fairness gains. The
OF(., .) results are even more compelling; FairLOF is
seen to score 1.0 at each of the settings. This indicates
that there is not even one case where FairLOF includes
an LOF inlier within its results. This further asserts the
effectiveness of FairLOF.

In addition to the above observations, we note the follow-
ing trends on FairLOF performance that throws light on the
nature of FairLOF.

e  Wass versus ED FairLOF is seen to achieve higher gains
on ED as compared to Wass. Analyzing the nature of
the relative character of these measures, we observe that
Wass prefers the distances to be fairly distributed across
attributes. It may be noted that the form of FairLOF con-
siders corrections at the level of each sensitive attribute
and aggregates them in a sum form (e.g., Eq. 10). Thus,
it is designed to minimize aggregate fairness adherence,
making it natural to expect higher gains on the ED meas-
ure than Wass.

Dataset Sizes and Gains It is promising to note that Fair-
LOF is able to achieve higher fairness gains in the large
datasets such as Adult, CC and Tweets vis-a-vis the other
smaller datasets. Larger datasets offer a larger search
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space for solutions, and it may be interpreted that Fair-
LOF is able to make use of the larger room accorded to it
by the larger datasets to its advantage. Analogously, Fair-
LOF gains are seen to saturate quickly for smaller data-
sets, a trend that is most evident for St-Mat in Table 3.

e Trends on Guide Point Our empirical study used two
guide points, 0.9 and 0.8. The latter allows for around
twice as much deviation from LOF results as compared
to the latter. FairLOF is seen to be able to exploit that
additional wiggle room while moving from 0.9 to 0.8 in
order to achieve improvements on the fairness metrics.
Notable exceptions to this trend are seen in W4HE (for
ED) and Tweets datasets; on further analysis, we found
that such outlying trends could largely be attributed to
noise effects than any consistent regularity.

Overall, the empirical analysis confirms the effectiveness
of FairLOF is trading off small amounts of result quality
in return for moderate to large improvements on fairness
metrics.

7.4 FairLOF Parameter Sensitivity Study

One of the key aspects is to see whether FairLOF effective-
ness is smooth against changes in A, the only parameter of
significant consequence in FairLOF. In particular, we desire
to see consistent decreases on each of Jacc, Pres, OF, ED
and Wass with increasing A. On each of the datasets, such
gradual and smooth trends were observed, with the gains
tapering off sooner in the case of the smaller datasets, WAHE
and St-Mat. The trends on Adult and CC were very similar;
for Adult, we observed that the Pearson product-moment
correlation co-efficient [27] against A € [0, 1]to be — 0.900
for Jacc, — 0.973 for Pres, — 0.997 for ED and — 0.959 for
Wass indicating a graceful movement along the various met-
rics with changing 4. OF remained consistently at 1.0 even
for high values of 1. We observed similar consistent trends
for increasing c (Eq. 8) as well. FairLOF was also observed
to be quite stable with changes of k and .

7.5 FairLOF-Flex: Empirical Analysis

FairLOF-Flex, as discussed in Sect. 5.3, is a generalization
of FairLOF through the introduction of two hyperparam-
eters, a and #, which allow to control the relative strengths of
the three kinds of corrections employed by FairLOF. How-
ever, setting @ and f meaningfully requires eliciting deep
domain insights and mapping those to the heuristic prin-
ciples. We do not have such knowledge about the contexts
from which our testbed datasets were sourced, and would
thus not be able to verify whether setting these hyperpa-
rameters meaningfully would lead to good results. Thus, an

alternative way to assess the utility of FairLOF-Flex flex-
ibility is to ask the following question:

Does any setting of a and p, apart from the FairLOF
defaults of a = f = 1.0, yield better results than FairLOF
on fairness and quality?

If we find that there are positions in the (@, f) hyperpa-
rameter space which are better than FairLOF on both the
facets of evaluation (or alternatively, comparable on one
facet and much better on the other), it indicates that Fair-
LOF-Flex is likely to offer useful returns for investment in
understanding the domain and using insights to adjust hyper-
parameters meaningfully.

Accordingly, we experimented with several (a, f) settings
over two datasets, viz., the large Adult and CC datasets and
the small W4HE dataset. We do not perform a compre-
hensive hyperparameter search over all datasets to further
emphasize two points about the exploratory and cautious
nature of this analysis. First, this comprehensive search in
the parameter space is not a recommended strategy since
there is a chance that such ’juicy’ regions in the hyperparam-
eter space may be incidental and not necessarily meaning-
ful. For example, a brute force search could often uncover
meaningless patterns, and capitalizing on such discoveries
is often associated with p-hacking or data dredging.'” That
the comprehensive search uncovers juicy regions only serves
to suggest that it is plausible that the flexibility offered by
FairLOF-Flex could be used effectively. Second, it is not
necessary or given that there would be other hyperparam-
eter settings that outperform a = f = 1.0. That a comprehen-
sive parameter search for a dataset does not yield any better
results than the FairLOF setting should not be interpreted as
taking anything away from FairLOF-Flex. The malleability
in the latter does not guarantee that it would outperform
the former. The malleability is simply there for practitioners
who have a deep knowledge of the data domain to be able to
use it if they may like to.

Coming to the analysis, we found that variations in the
hyperparameters often led to better results for FairLOF-Flex
than FairLOF. It was also seen that the beneficial direction
of variation from the FairLOF setting of « = f = 1.0 differed
across datasets; this further confirms our initial presumption
that there is no domain-agnostic rule for such hyperparam-
eter tuning, and that nuances in the domain should inform
the hyperparameter settings. Some of the results are sum-
marized in Table 4. The table illustrates settings for a and
p where the FairLOF-Flex results are clearly superior to
those achieved by FairLOF. In each of the rows in Table 4,
FairLOF-Flex is seen to be better than FairLOF on fair-
ness measures, while remaining comparable to FairLOF on

10 https://en.wikipedia.org/wiki/Data_dredging.

@ Springer


https://en.wikipedia.org/wiki/Data_dredging

498

D.P,S.S. Abraham

Table4 FairLOF-Flex

Analysis: the table shows some Data set GP* Method a p Quality Fairness
parameter settings for « and g Jacc Pres OF ED Wass
where FairLOF-Flex results
are clearly superior to FairLOF W4HE 0.8 FairLOF 1.0 1.0 0.8039 0.9951 1.0 0.1820 0.2498
results FairLOF-Flex 0.5 1.0 0.8039 0.9967 1.0 0.1512 0.2281
FairLOF-Flex 0.5 0.5 0.7985 0.9915 1.0 0.1679 0.2481
Adult 0.9 FairLOF 1.0 1.0 0.8939 0.9977 1.0 0.1906 0.3468
FairLOF-Flex 0.5 1.0 0.8832 0.9969 1.0 0.1692 0.3054
FairLOF-Flex 1.0 1.5 0.8975 0.9975 1.0 0.1861 0.3374
CC 0.9 FairLOF 1.0 1.0 0.9011 0.9976 1.0 0.2235 0.2112
FairLOF-Flex 1.5 1.5 0.9194 0.9984 1.0 0.2246 0.2052
FairLOF-Flex 0.5 2.0 0.9084 0.9982 1.0 0.2077 0.1932

In all the cases above, there are visible improvements on fairness measures achieved by FairLOF-Flex,
while the quality measures remain competitive with those of FairLOF. Measures where FairLOF-Flex out-
performs FairLOF are indicated in bold

GP Guide point

quality measures. There are some regularities within datasets
that are noteworthy. For example, W4HE prefers lower a,
Adult prefers a < f and CC is seen to like higher values of
p. During our empirical evaluation, we found a number of
settings where FairLOF-Flex was seen to deteriorate, and
thus, Table 4 is not meant to be a representative sample
of our results. However, as mentioned above, the fact that
FairLOF-Flex can achieve better results than FairLOF in
certain configurations points to the possibility that deeper
understanding of the domain and using the domain knowl-
edge to tune the hyperparameters meaningfully holds much
promise in deepening outlier detection fairness.

8 Conclusions and Future Work

In this paper, we considered the task of fair outlier detection.
Fairness is of immense importance in this day and age when
data analytics in general, and outlier detection in particular,
is being used to make and influence decisions that will affect
human lives to a significant extent, especially within web
data scenarios that operate at scale. We consider the para-
digm of local neighborhood based outlier detection, arguably
the most popular paradigm in outlier detection literature. We
outlined the task of fair outlier detection over a plurality of
sensitive attributes, basing our argument on the normative
notion of luck egalitarianism, that the costs of outlier detec-
tion be borne proportionally across groups defined on pro-
tected/sensitive attributes such as gender, race, religion and
nationality. We observed that using a task-defined distance
function for outlier detection could induce unfairness when
the distance function is not fully orthogonal to all the sensi-
tive attributes in the dataset. We developed an outlier detec-
tion method, called FairLOF, inspired by the construction of

@ Springer

LOF and makes use of three principles to nudge the outlier
detection toward directions of increased fairness. We then
outlined an evaluation framework for fair outlier detection,
and used that in evaluating FairLOF extensively over real-
world datasets. Through our empirical results, we observed
that FairLOF is able to deliver substantively improved fair-
ness in outlier detection results, at reasonable detriment to
result quality as assessed against LOF. This illustrates the
effectiveness of FairLOF in achieving fairness in outlier
detection. We also designed a generalization of FairLOF,
called FairLOF-Flex, which was seen to be able to deliver
substantively improved fairness in outlier detection results
in certain configurations, which indicates its promise in
improving the fairness of outlier detection beyond FairLOF.

8.1 Future Work

In this work, we have limited our attention to local neighbor-
hood based outlier detection. Extending notions of fairness
to global outlier detection would be an interesting future
work. Further, we are considering extending FairLOF to
the related task of identifying groups of anomalous points,
and other considerations of relevance to fair unsupervised
learning [24].
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