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 a b s t r a c t

In this paper, we present a method to compute the minimal form factors (MFFs) of diagonal inte-
grable field theories perturbed by generalized 𝑇 𝑇̄  perturbations. Building on existing results by 
the same authors, these MFFs are constructed in such a way as not to allow for any free parame-
ters, an issue that plagued previous solutions. The MFFs are derived from a generalization of the 
standard integral representation which has been used for UV-complete theories since the birth of 
the form factor bootstrap program. By UV-complete we mean theories whose short-distance/high-
energy limit is a local conformal field theory. Their asymptotics is characterized by exponential 
decay at large rapidities. By computing higher particle form factors, we find that any natural 
higher-particle solutions involve the cancellation of parts of the newly found MFF. We conclude 
that the assumption that the form factor equations, particularly the kinematic residue equation, 
remain unchanged in the presence of 𝑇 𝑇̄  perturbations, is too strong. There is a trade-off between 
having MFFs satisfying desirable analyticity and asymptotic properties and finding analytic solu-
tions to the form factor equations, which is likely solved by nontrivial changes to the form factor 
equations, especially those where locality or semilocality of fields are essential assumptions.

1.  Introduction

Deformations of 2D quantum field theory (QFT) via irrelevant operators of the 𝑇 𝑇̄  family [1–4] have been extensively studied in 
the literature. They are interesting because, on the one hand, they preserve integrability, should that be present in the original theory 
and, on the other hand, the resulting, still integrable model, has new very interesting properties. For this reason, 𝑇 𝑇̄  perturbations 
and their generalisations have been intensely studied in 2D (integrable) quantum field theory [1,2,5–8], in the context of the ODE/IM 
correspondence [9,10], via thermodynamic Bethe ansatz (TBA) [3,4,11–16], perturbed CFT [17–22,24,Guica], string theory [25–28], 
holography [29–36], quantum gravity [37–42], out-of-equilibrium CFT [43–46], in long-range spin chains [47–50], and employing 
the generalised hydrodynamics approach [51–53]. A generalisation of this family of deformations has also been proposed for quantum-
mechanical systems [54–56] and higher-dimensional field theories [57–59]. The effect of the perturbation has been interpreted in 
multiple ways: as coupling the original QFT to two-dimensional topological gravity [37] or to random geometry [18] and as a 
state-dependent change of coordinates [6].

Our own interest in this problem is motivated by integrable quantum field theory (IQFT) where many powerful techniques are at 
our disposal [1,60,61]. In particular, it is well known that in IQFT 𝑇 𝑇̄ -like perturbations modify the exact two-body scattering matrix 
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$f_n(\theta )$


\begin {equation}f_n(\theta + i \pi ) = f_n(-\theta ) = - f_n(\theta ) = -f_n(\theta - i\pi ). \label {eq:eqf}\end {equation}


$g_n(\theta )$


$h_n(\theta )$


\begin {equation}g_n(-\theta ) = g_n(\theta )\;,\qquad h_n(-\theta ) = h_n(\theta ), \label {eq:eqgh}\end {equation}


\begin {equation}g_n(\theta + i \pi ) - g_n(\theta - i \pi ) = 2 \pi i f_n(\theta + i \pi )\;,\quad h_n(\theta + i \pi ) = h_n(\theta - i \pi ). \label {eq:eqgh2}\end {equation}


$\{f_n(\theta )\}_{n\in \mathbb {Z}^+}$


$\{g_n(\theta )\}_{n\in \mathbb {Z}^+}$


$\{h_n(\theta )\}_{n\in \mathbb {Z}^+}$


\begin {equation}f_{2n-1}(\theta ) = -\sinh ((2n-1)\theta ) \;,\quad g_{2n-1}(\theta ) = -\theta \sinh ((2n-1)\theta ) \;,\quad h_n(\theta ) = \cosh (n\theta ) , \label {eq:fghsolution}\end {equation}


\begin {equation}f_{2n}(\theta ) = 0\;,\quad g_{2n}(\theta ) = 0. \label {eq:fgevenvanish}\end {equation}


$f_{2n-1}(\theta )$


$g_{2n-1}(\theta )$


$h_n(\theta )$


$\theta $


$f_{2n-1}(\theta )$


$g_{2n-1}(\theta )$


$g^{(n)}$


$h_n(\theta )$


$n$


$\cosh $


$\vert \theta \vert $


$f_{2n-1}(\theta ) \underset {\vert \theta \vert \to \infty }{\sim } {\rm sign}(\theta )e^{-(2n-1)\vert \theta \vert } + \textrm {``diverging terms''}$


$f_{2n-1}(\theta ) = -\sinh ((2n-1)\theta )$


\begin {equation}g^{(2n)} = 0. \label {Xeqn27}\end {equation}


$\bal $


\begin {equation}\begin {split} \delta _{\bal }(\theta ) & = - \sum _{n=1}^\infty \alpha _{2n-1} \sinh ((2n-1)\theta ), \\ \rho _{\bal }(\theta ) & = \frac {i\pi - \theta }{2 \pi } \delta (\theta ) + \sum _{n=1}^\infty \alpha _{2n-1} \left [ \frac {\cosh ((2n-1)\theta )}{4\pi (2n-1)} - \frac {1}{\pi } \sum _{\genfrac {}{}{0pt}{}{m=1}{m\neq 2n-1}}^\infty \frac {m \cosh (m\theta )}{(2n-1)^2 - m^2} \right ], \\ \alpha _{2n-1} &= \frac {1}{2\pi }\frac {g^{(2n-1)}}{2n-1}, \end {split} \label {eq:deltarhoTTbarsol}\end {equation}


$\delta (\theta )\,-\,\rho (\theta )$


$\TTb $


$\cosh (n\theta )$


$\alpha _n$


$\delta (\theta )$


$h_n(\theta ) = 0$


$n\in \mathbb {Z}$


$\eta = \frac {\theta -i\pi }{\pi }$


$\TTb $


$S$


$S(\theta ) = -1$


$\TTb $


\begin {equation}\delta _\alpha ^{{\rm Ising}}(\theta ) = - \alpha \sinh \theta \;,\quad \epsilon \equiv S(0) = -1. \label {Xeqn29-39}\end {equation}


\begin {equation}\begin {split} \rho _\alpha ^{{\rm Ising}}(\theta ) &= \log \left (-i\sinh \frac {\theta }{2}\right ) - \frac {i \pi - \theta }{2\pi }\alpha \sinh \theta + \frac {\alpha }{4\pi }\cosh \theta - \frac {\alpha }{\pi } \sum _{m=2}^\infty \frac {m\, \cosh (m\theta )}{1-m^2} \\ &= \log \left (-i\sinh \frac {\theta }{2}\right ) - \frac {i \pi - \theta }{2\pi }\alpha \sinh \theta - \frac {\alpha }{2\pi } - \frac {\alpha }{2\pi }\cosh \theta \log (-4\sinh ^2\frac {\theta }{2}) \\ & = \log \left (\cosh \frac {\pi \eta }{2}\right ) - \frac {\alpha }{2\pi }\left [1 + \pi \eta \sinh (\pi \eta ) - \cosh (\pi \eta ) \log \left (4 \cosh ^2\frac {\pi \eta }{2}\right )\right ], \end {split} \label {eq:TTbIsingmff}\end {equation}


$F_{{{\min }}}^{\rm Ising}(\theta ;\alpha ) = \exp \rho _{\alpha }^{\rm Ising}$


${\rm Re}\theta \to \pm \infty $


$\log \left (-i\sinh \frac {\theta }{2}\right )$


$\epsilon = -1$


$\eta = \frac {\theta -i\pi }{\pi }$


$\vert \theta \vert \to \infty $


$0\leq {\rm Im}\,\theta \leq 2\pi $


$\alpha $


$\cosh $


$\alpha $


${\rm Im}\eta = 0,-\frac {1}{4},-\frac {1}{2},-\frac {3}{4},-1$


$\cosh $


$\eta \in \mathbb {R}$


${\rm Im}\theta = i\pi $


$\cosh $


$\theta \in \mathbb {R}$


${\rm Im}\theta = i\pi $


${\rm Im}\theta = 0$


$\alpha = 0$


$\alpha = 0$


$\theta = 0$


$1$


$\alpha $


$e^{\rho _\alpha ^{\,{\rm Ising}}(\theta )}$


$\alpha >0$


$\theta \sim 0$


$\alpha $


$\alpha _c=\pi $


$F_{{\min }}^{\rm Ising}(\theta ;\alpha ):=e^{\rho _\alpha ^{\,{\rm Ising}}(\theta )}$


$\eta = 0$


$\theta = 0$


\begin {equation}\begin {split} F_{\min }^{\rm Ising}(\theta ;\alpha ) & \underset {\eta \to 0}{\sim } e^{ -\frac {\alpha (1 - 2\log 2)}{2\pi }} + O(\eta ^2), \\ F_{\min }^{\rm Ising}(\theta ;\alpha ) & \underset {\theta \to 0}{\sim } \frac {1}{2}(-\theta ^2)^{\frac {1}{2}-\frac {\alpha }{2\pi }}e^{-\frac {\alpha }{2\pi }} \left [1 + \frac {\alpha }{2} (-\theta ^2)^{\frac {1}{2}} + O(\theta ^2) \right ]. \end {split} \label {Xeqn31}\end {equation}


$\eta \to 0$


$\alpha $


$\alpha $


$\theta = 0$


$\alpha $


$\alpha < \pi $


$\alpha > \pi $


$\alpha = \alpha _c = \pi $


$\theta \in \mathbb {R}$


$\alpha >0$


$\alpha _c=\pi $


$-i\sinh \frac {\theta }{2}$


$\kappa \in \mathbb {R}$


$\TTb $


$\alpha _c=\kappa \pi $


$\frac {\alpha }{\pi }-\kappa $


$\theta =0$


$\kappa =1$


$\TTb _{2n-1}$


$2n-1$


\begin {equation}\delta _{\alpha _{2n-1}}^{{\rm Ising}}(\theta ) = - \alpha _{2n-1} \sinh ((2n-1)\theta )\;,\quad \epsilon \equiv S(0) = -1. \label {Xeqn32-43}\end {equation}


\begin {equation}\sum _{\genfrac {}{}{0pt}{}{m=1}{m\neq s}}^\infty \frac {m\, \cosh (m\theta )}{s^2-m^2}= \sum _{m=1}^{s-1} \frac {m\, \cosh (m\theta )}{s^2-m^2}+ \sum _{m=s+1}^{\infty } \frac {m\, \cosh (m\theta )}{s^2-m^2},\end {equation}


\begin {equation}\sum _{\genfrac {}{}{0pt}{}{m=1}{m\neq s}}^\infty \frac {m}{s^2-m^2}\cosh (m\theta )= \frac {1}{2s} + \frac {1}{4s} \cosh (s\theta )+\sum _{m=1}^{s-1} \frac {\cosh (m\theta )}{s-m}+\frac {1}{2} \cosh (s\theta ) \log \left (-4\sinh ^2\frac {\theta }{2}\right ). \label {othersum}\end {equation}


$\eta $


\begin {equation}\begin {split} F_{\min }^{\rm Ising}(\theta ;\alpha _{2n-1}) & \underset {\eta \to 0}{\sim } e^{-\frac {\alpha _{2n-1}(1 - (2n-1) 2 (\log 2+c_{2n-1}))}{2\pi (2n-1)}} + O(\eta ^2), \\ F_{\min }^{\rm Ising}(\theta ;\alpha _{2n-1}) & \underset {\theta \to 0}{\sim } \theta ^{1-\frac {\alpha _{2n-1}}{\pi }}e^{-\frac {\alpha _{2n-1} \left (1+ 2(2n-1) \hat {c}_{2n-1})\right )}{2\pi (2n-1)}} \left [1-\frac {i\alpha _{2n-1} \theta }{2} + O(\theta ^2) \right ], \end {split} \label {Xeqn33-50}\end {equation}


$n=1$


$\theta \rightarrow 0$


$\alpha _{2n-1}$


$\pi $


$\pi \kappa -\sum _{s\in \mathcal {S}} \alpha _s=0$


$\kappa $


$\TTb $


\begin {equation}\frac {\p }{\p \theta }\log {F_{\min }(\theta )}= \frac {1}{8 \pi i} \int _C \frac {\log {F_{\min }(z)}}{\sinh ^2{\frac {1}{2}(z-\theta )}} dz . \label {KW1}\end {equation}


$C$


$0 \leq \textrm {Im}(\theta ) \leq 2 \pi $


$C$


$\sinh ^2{\frac {1}{2}(z-\theta )}$


$z= \theta + 2 \pi i \, n$


$n \in \mathbb {N}$


$\theta >0$


$z=\theta $


$S$


$\theta \rightarrow \infty $


$F_{{\min }}(\theta )= O (\exp {\exp {|\theta |}})$


${\rm Re}(\theta ) \to \infty $


$C$


$C= C_1+C_2+C_3+C_4$


$z=x+i y$


$C_1= \left \{ x: -R \leq x \leq R \right \}$


$C_3= \left \{ x+ 2 i \pi : -R \leq x \leq R \right \}$


$C_2= \left \{R+ i y: 0 \leq y \leq 2 \pi \right \}$


$C_4= \left \{-R+ i y: 0 \leq y \leq 2 \pi \right \}$


$C$


\begin {equation}\int _C dz \,w(z)= \int _{-R}^{R}dx\, w(x) + \int _{R}^{-R}dx \, w(x+ 2 \pi i) + i \int _{0}^{2 \pi }dy \, w(R+i y)+ i\int _{2 \pi }^{0}dy \, w(-R+i y), \label {Xeqn34-53}\end {equation}


\begin {equation}w(z)=\frac {\log {F_{\min }(z)}}{8\pi i \sinh ^2{\frac {1}{2}(z-\theta )}}.\end {equation}


$w(z)$


$R$


\begin {equation}\left |\int _{C_2} dz \, w(z) \;\right | \leq \int _0^{2 \pi } dy \, |w(R+ i y)| \underset {R\rightarrow \infty }{\rightarrow } 0 \label {Xeqn35-55}\end {equation}


$C_4$


$w(z)$


\begin {equation}\left | \frac {\log {F_{\min }(R+i y)}}{\sinh ^2{\frac {1}{2}(R-\theta +i y)}}\right | \sim \frac {O(e^{|R|})}{e^{|R|}} \underset {R\rightarrow \infty }{\rightarrow } 0, \label {Xeqn36-56}\end {equation}


$\TTb $


$S$


$\TTb $


$\mathcal {D}_{\bal }(\theta )$


$\mathcal {D}_{\bal }(\theta )=\varphi _{\bal }(\theta )C_{\bel }(\theta )$


$\Phi _{\bal }(\theta )$


$\mathcal {D}_{\bal }(\theta ) \sim \exp {(\exp {s^* |\theta |})}$


${\rm Re}(\theta )\to \infty $


$s^*$


$w(R+i y)$


\begin {equation}\left | \frac {\log {\mathcal {D}_{\bal }(R+i y)}}{\sinh ^2{\frac {1}{2}(R-\theta +i y)}}\right | \sim \frac {e^{s^*|R|}}{e^{|R|}} \underset {R\rightarrow \infty }{\rightarrow } e^{(s^*-1)|R|}. \label {Xeqn37-58}\end {equation}


$C_{\bel }(\theta )$


$\tilde {\mathcal {D}}_{\bal }(\theta )$


$\bel $


\begin {equation}\left | \frac {\log {\tilde {\mathcal {D}}_{\bal }(R+i y)}}{\sinh ^2{\frac {1}{2}(R-\theta +i y)}}\right | \sim \frac {O(e^{|R|})}{e^{|R|}} \underset {R\rightarrow \infty }{\rightarrow } 0. \label {Xeqn38-59}\end {equation}


$\bel $


$I(z,\theta )= \frac {\log {S(z)}}{\sinh ^2{\frac {1}{2}(z-\theta )}}$


$\log (S(z))$


$z_n$


\begin {equation}\Res \left ( I(z,\theta ),z_n\right )= 4 \p _z \left [ \log {S(z)} \right ]_{z=z_n}.\end {equation}


$z_n= \theta + 2 \pi i n$


$n=0,1,2,\dots $


$C$


$z_0=\theta $


\begin {equation}\oint _{C} dz\, I(z,\theta )= 4 \p _z \left [\log {S(z)}\right ]_{z_0}. \label {residueMFF}\end {equation}


$\TTb $


$\log S(z)$


\begin {equation}\rho (\theta ) = \frac {1}{i \pi } \cosh ^2{\frac {\theta }{2}} \int _0^{\infty } dt \frac { \tanh \frac {t}{2} \ln {S(t)}}{ \cosh {t} - \cosh {\theta } } , \quad \textrm {for}\; 0 \leq {\rm Im}(\theta ) \leq 2 \pi . \label {NiedermeierMFF}\end {equation}


$\Phi _{\bal }(\theta )$


$\sinh (s t)$


$\sinh (s t)$


$-e^{-s t}$


\begin {equation}\log {\mathcal {D}_{\bal }(\theta )}= \frac {1}{ i \pi } \cosh ^2{\frac {\theta }{2}} \int _0^{\infty } dt \frac {\tanh \frac {t}{2} }{ \cosh {t} - \cosh {\theta } } \left ( \ln {\Phi _{\bal }(t)}- \p _t \ln {\hat {\Phi }_{\bal }(t)} \right ), \label {niceformula}\end {equation}


\begin {equation}\ln \hat {\Phi }_{\bal }(\theta )=-i \sum _{s\in 2 \mathbb {Z}^{+} -1} \frac {\alpha _s}{s} \sinh (s\theta ). \label {phihat}\end {equation}


$| \textrm {Re}(\theta )|<\textrm {Re}(t)$


$\theta $


\begin {equation}\frac {\cosh ^2{\frac {\theta }{2}}\tanh {\frac {t}{2}}}{\cosh {t}-\cosh {\theta }}= \sum _{m = 1}^{\infty } \left [ \cosh (m \theta )+(-1)^{m+1} \right ] e^{-m t}. \label {longwaveexp}\end {equation}


$s$


\begin {equation}\log {\mathcal {D}_{\alpha _s}(\theta )}= -\frac {\alpha _s}{ \pi } \sum _{m= 1}^{\infty } \left [ \cosh {k \theta }+(-1)^{m+1} \right ] \int _0^{\infty } dt e^{-m t} \sinh {st}.\end {equation}


\begin {equation}\int _0^{\infty } dt e^{-m t} \sinh {st}= \frac {s}{m^2-s^2}, \label {65}\end {equation}


$m>s$


$k$


\begin {equation}\frac {s}{m^2-s^2} -\frac {m}{m^2-s^2}= - \frac {1}{m+s}, \label {66}\end {equation}


$s$


\begin {equation}\log {\mathcal {D}_{\alpha _s}(\theta )}= \frac { \alpha _s}{ \pi } \sum _{m = 1}^{\infty } \frac {\cosh (m \theta )+(-1)^{m+1}}{m+s} . \label {79}\end {equation}


$c_{s}$


$s$


$\cosh (m\theta )$


$m=s$


\begin {equation}\sum _{\genfrac {}{}{0pt}{}{m=1}{m\neq s}}^{\infty } \frac {s\cosh (m \theta )}{m^2-s^2} = \sum _{m=1}^{s-1} \frac {s\cosh (m \theta )}{m^2-s^2} + \sum _{m=s+1}^{\infty } \frac {s\cosh (m \theta )}{m^2-s^2}.\end {equation}


\begin {equation}\sum _{m=s+1}^{\infty } \frac {s\cosh (m \theta )}{m^2-s^2}=-\sum _{m=1}^{s-1} \frac {s\cosh (m \theta )}{m^2-s^2}+\frac {1}{2s}+\frac {\cosh (s\theta )}{4s}-\frac {\theta -i\pi }{2}\sinh (s\theta ),\end {equation}


\begin {equation}\sum _{\genfrac {}{}{0pt}{}{m=1}{m\neq s}}^{\infty } \frac {s\cosh (m \theta )}{m^2-s^2}=\frac {1}{2s}+\frac {\cosh (s\theta )}{4s}-\frac {\theta -i\pi }{2}\sinh (s\theta )\,.\end {equation}


$m=s$


$\cosh (m\theta )$


$-\frac {\cosh (s\theta )}{2s}$


$s=2n-1$


$i\pi $


$\TTb $


$\bel $


\begin {equation}C_{\bel }(\theta )=C_{\bel }(i\pi ) \prod _{s \in 2\mathbb {Z}^{+}-1}\left [-\frac {1}{2}\,e^{c_s-\sum \limits _{m=1}^{s-1}\frac {\cosh (m\theta )}{s-m}} {\left (2i \sinh {\frac {\theta }{2}} \right )}^{-\cosh {(s\theta )}}\right ]^{\frac {\alpha _s}{\pi }}\,. \label {newC}\end {equation}


$\varphi _{\bal }(\theta )$


$\mathcal {D}_{\bal }(\theta )$


$\mathcal {D}_{\bal }(\theta )=e^{\frac {\theta -i\pi }{2\pi } \alpha \sinh \theta }$


$e^{\frac {\alpha \theta }{\pi }\sinh \theta }$


$|\theta |$


$\alpha >0$


$\alpha <0$


$s=1$


$\alpha _1=\alpha $


$\TTb $


\begin {equation}|\mathcal {D}_{\bal }(\theta )|^2=|\mathcal {D}_{\bal }(i\pi )|^2 \left [\frac {1}{4}\,e^{{\theta }\sinh \theta } {\left (2\sinh {\frac {\theta }{2}} \right )}^{-2\cosh {\theta }}\right ]^{\frac {\alpha }{\pi }},\end {equation}


$|\theta |$


\begin {equation}|\mathcal {D}_{\bal }(\theta )|^2\sim |\mathcal {D}_{\bal }(i\pi )|^2 \left [\frac {1}{4}\,e^{\frac {\theta }{2}e^\theta } e^{-\frac {\theta }{2}e^\theta } \right ]^{\frac {\alpha }{\pi }}= |\mathcal {D}_{\bal }(i\pi )|^2 {4^{-\frac {\alpha }{\pi }}},\end {equation}


$\alpha $


$\alpha >\pi $


$\alpha <\pi $


$\TTb $


$\alpha <\pi $


$\theta =0$


$\alpha >\pi $


$\theta =0$


$\theta =0$


$\alpha _c=\pi $


$S$


$\theta =0$


$\TTb $


$\TTb $


\begin {equation}F_{\min }(\theta ;\bal )=F_{\min }(\theta ) \mathcal {D}_{\bal }(\theta ),\end {equation}


$F_{{\min }}(\theta )$


$\mathcal {D}_{\bal }(\theta )$


$\sqrt {\mathcal {D}_{\bal }(2\theta )}$


$\TTb $


$\alpha =\alpha _c$


$\frac {\alpha }{\pi }-\kappa $


$\theta =0$


$\kappa $


$\alpha $


$\alpha $


$\TTb $


$\theta =0$


$\theta =0$


$\theta =0$


$\alpha >\alpha _c$


$C_{\bel }(\theta )=1$


$\bal $


$S$


$S$


$\TTb $


$\TTb $


$\TTb $


\begin {equation}S_{\bal }(\theta )=\frac {\tanh \frac {1}{2}\left (\theta -\frac {i\pi B}{2}\right )}{\tanh \frac {1}{2}\left (\theta +\frac {i\pi B}{2}\right )}, \label {SmatrixSinhGordon}\end {equation}


$B$


$B=1$


$S$


$S_{\bal }(\theta )$


$S$


$S(\theta )=-1$


$b:=B-1$


\begin {equation}\alpha _{2n-1}= \frac {4 (-1)^{n}}{2n-1}\,{\cos \frac {(2n-1)\pi b}{2}},\end {equation}


$\bal $


$\bel $


$C_{\bel }^{\rm shG}(\theta )$


\begin {equation}F_{\min }^{\rm shG}(\theta ; \bal )F_{\min }^{\rm shG}(\theta + i \pi ; \bal )= \frac {\sinh \theta }{\sinh \theta + i \cos \frac {\pi b}{2}}\,. \label {normalkinpol}\end {equation}


$\bal $


$\bel (\bal )$


$F_{{\min }}^{\rm Ising}(\theta )=- i \sinh \frac {\theta }{2}$


$\beta _{s}$


$s$


$\sqrt {2}$


$C_{\bel }^{\rm shG}(\theta )$


\begin {equation}C_{\bel }^{\rm shG}(\theta ) C_{\bel }^{\rm shG}(\theta +i\pi )= \frac {2}{\sqrt {\sinh ^2{\theta } + \cos ^2{\frac {\pi b}{2}}}}=-\frac {2i}{\sqrt {\Psi ^{\rm shG}(\theta )\Psi ^{\rm shG}(-\theta )}}, \label {CC}\end {equation}


\begin {equation}\varphi _{\bal }^{\rm shG}(\theta )\varphi _{\bal }^{\rm shG}(\theta +i\pi )=\sqrt {\Phi _{\bal }^{\rm shG}(\theta )}= \sqrt {-\frac {\sinh \theta -i \cos \frac {\pi b}{2}}{\sinh \theta + i \cos \frac {\pi b}{2}}},\end {equation}


\begin {equation}\Psi ^{\rm shG}(\theta )=\sinh \theta +i \cos \frac {\pi b}{2}, \label {psiShG}\end {equation}


\begin {equation}\Psi ^{\rm shG}(\theta ) \Phi _{\bal }^{\rm shG}(\theta )=\Psi ^{\rm shG}(-\theta )\,. \label {psiexchange2}\end {equation}


$\bal $


$\bel =\bel (\bal )$


$\TTb $


$\TTb $


$\mathcal {O}$


\begin {equation}F^{\mathcal {O}}_n(\theta _1,\ldots ,\theta _n; \bal )=H^{\mathcal {O}}_n(\bal ) Q^{\mathcal {O}}_n(\theta _1,\ldots ,\theta _n; {\bal }) \prod _{i<j} \frac {F_{\min }(\theta _{ij};{\bal })}{e^{\theta _i}+e^{\theta _j}},\label {ansatz}\end {equation}


$H^{\mathcal {O}}_n(\bal )$


$\Phi _{\bal }(\theta )=(\Phi _{\bal }(-\theta ))^{-1}$


$\bal $


$\bel $


$e^{(n+1)\theta } \prod _{j=1}^n e^{\theta _j}$


$\bel $


$\bal $


$\TTb $


$\bal $


$\bel $


$\bal $


$\beta _i=0$


$\beta _i$


$\bal $


$\bel $


\begin {equation}Q_n^{\mathcal {O}}(\theta _1,\ldots ,\theta _n;\bal ) = Q_n^{\mathcal {O}}(\theta _1,\ldots ,\theta _n) \Theta _n^{\mathcal {O}}(\theta _1,\ldots ,\theta _n;{\bal })\Xi _n^{\mathcal {O}}(\theta _1,\ldots ,\theta _n;\boldsymbol {\beta }(\bal )), \label {Qfactorization}\end {equation}


\begin {equation}Q_{n+2}^{\mathcal {O}}(\theta +i\pi ,\theta ,\theta _1,\ldots ,\theta _n)=e^{(n+1)\theta } \left [\prod _{j=1}^n e^{\theta _j} \right ] Q_n(\theta _1,\ldots ,\theta _n), \label {QIsing}\end {equation}


$\mu $


$n$


$\sigma $


$n$


$\prod _{i<j} \tanh \frac {\theta _{ij}}{2}$


$e^{\theta _i}+e^{\theta _j}$


\begin {equation}\Theta _{n+2}^{\mathcal {O}}(\theta +i\pi ,\theta ,\theta _1,\ldots ,\theta _n;\bal )=\left [\prod _{j=1}^n \Phi _{{\alpha }}(\theta -\theta _j)^{-\frac {1}{2}} -\gamma _{\mathcal {O}} (-1)^n \prod _{j=1}^n \Phi _{{\alpha }}(\theta -\theta _j)^{\frac {1}{2}}\right ]\Theta _{n}^{\mathcal {O}}(\theta _1,\ldots ,\theta _n; \bal ), \label {Tsinh}\end {equation}


$\TTb $


$\bel $


\begin {equation}\Xi ^{\mathcal {O}}_{n+2}(\theta +i\pi ,\theta ,\theta _1,\ldots ,\theta _{n};\boldsymbol {\beta }(\bal ))= i^n \left [\prod _{j=1}^n \sqrt {\Psi ^{\rm shG}{(\theta -\theta _j)}\Psi ^{\rm shG}{(\theta _j-\theta )}}\right ] \Xi _n^{\mathcal {O}}(\theta _1,\ldots ,\theta _n;\boldsymbol {\beta }(\bal ))\,. \label {XSinh}\end {equation}


$\mathbb {Z}_2$


$\mu $


$\varepsilon $


$\sigma $


$\phi $


\begin {equation}\Xi _n^{\mathcal {O}}(\theta _1,\ldots ,\theta _n;\boldsymbol {\beta }(\bal )) = {v}_n \prod _{i=1}^n \prod _{j=1}^n \sqrt [4]{\Psi ^{\rm shG}(\theta _{ij})}, \label {psi}\end {equation}


$v_n$


\begin {equation}v_{n+2}=\cos \frac {\pi b}{2} \, v_n,\end {equation}


$n$


\begin {equation}v_{2k}= {\left (\cos \frac {\pi b}{2}\right )}^{k} v_0 \quad \mathrm {and}\quad v_{2k+1}= {\left (\cos \frac {\pi b}{2}\right )}^{k-1} v_1\,.\end {equation}


$n=2k+1$


$\gamma _{\mathcal {O}}=1$


$\bal $


\begin {equation}\Theta _{2k+1}^{\mathcal {O}}(\theta _1,\ldots ,\theta _{2k+1};\boldsymbol {\alpha }) = \frac {1}{2^k \sqrt {2}} \prod _{i=1}^{2k+1} \sqrt {\prod \limits _{j=1}^{2k+1} \Phi ^{\rm shG}_{\boldsymbol {\alpha }}(\theta _{ij})^{1/2} + \prod \limits _{j=1}^{2k+1} \Phi ^{\rm shG}_{\boldsymbol {\alpha }}(\theta _{ij})^{-1/2}},\end {equation}


$n$


$\gamma _{\mathcal {O}}=-1$


$\Phi ^{\rm shG}_{\bal }(\theta )\Phi ^{\rm shG}_{\bal }(-\theta )=1$


\begin {equation}Q_n^{\mathcal {O}}(\theta _1,\ldots ,\theta _n;\bal ) = Q_n^{\mathcal {O}}(\theta _1,\ldots ,\theta _n) \Gamma _n^{\mathcal {O}}(\theta _1,\ldots ,\theta _n;{\bal }), \label {Qfactorization3}\end {equation}


$\gamma _{\mu }=-1$


\begin {equation}\Gamma ^{\mathcal {\mu }}_{2n+2}(\theta +i\pi ,\theta ,\theta _1,\ldots ,\theta _{2n};\boldsymbol {\alpha })= \left [\prod _{j=1}^{2n} \Psi ^{\rm shG}(\theta -\theta _j) + \prod _{j=1}^{2n} \Psi ^{\rm shG}(\theta _j-\theta )\right ] \Gamma _{2n}^{\mathcal {\mu }}(\theta _1,\ldots ,\theta _{2n};\boldsymbol {\alpha })\,. \label {GammaKineq}\end {equation}


$\Psi ^{\rm shG}(\theta _{ij} + i \pi )=\Psi ^{\rm shG}(\theta _{ji})$


\begin {equation}\Gamma _{2n}^{\mathcal {\mu }}(\theta _1,\ldots ,\theta _{2n};\boldsymbol {\alpha }) = C_{2n} \frac { \prod _{i=1}^{2n} \sqrt {\prod _{j=1}^{2n} \Psi ^{\rm shG}(\theta _{ij}) + \prod _{j=1}^{2n} \Psi ^{\rm shG}(\theta _{ji})}}{\prod _{i<j} \sqrt [4]{ \Psi ^{\rm shG}(\theta _{ij}) \Psi ^{\rm shG}(\theta _{ji})}}\,. \label {solutionGamma2}\end {equation}


$C_{2n}$


\begin {equation}\log {F_{\min }(\theta ;n)} = \frac {1}{i \pi n} \cosh ^2{\frac {\theta }{2n}} \int _0^{\infty } dt \frac { \tanh \frac {t}{2n} \ln {S(t)}}{ \cosh {\frac {t}{n}} - \cosh {\frac {\theta }{n}} } , \quad \textrm {for}\; 0 \leq {\rm Im}(\theta ) \leq 2 \pi n\end {equation}


$n=1$


$S$


$g(t)$


$\ln S(t)$


$\TTb $


\begin {equation}\log {\mathcal {D}_{\bal }(\theta ;n)}= \frac {1}{i \pi n} \cosh ^2{\frac {\theta }{2n}} \int _0^{\infty } dt \frac { \tanh \frac {t}{2n} }{\cosh {\frac {t}{n}} - \cosh {\frac {\theta }{n}} } \left (\ln {\Phi _{\bal }(t)}-\partial _t \ln \hat {\Phi }_{\bal }(\theta )\right ), \label {Dreg}\end {equation}


$\hat {\Phi }_{\bal }(\theta )$


$|\theta |$


\begin {equation}\frac {\cosh ^2{\frac {\theta }{2n}}\tanh {\frac {t}{2n}}}{\cosh {\frac {t}{n}}-\cosh {\frac {\theta }{n}}}= \sum _{m= 1}^{\infty } \left [ \cosh {\frac {k \theta }{n}}+(-1)^{m+1} \right ] e^{-m \frac {t}{n}},\end {equation}


\begin {equation}\int _0^{\infty } dt e^{-t (\frac {m}{n} +s)} = -\frac {1}{\frac {m}{n}+s}\,.\end {equation}


$s$


\begin {equation}\log {\mathcal {D}_{\alpha _s}(\theta ;n)}=\frac {\alpha _s}{\pi } \sum _{m=1}^{\infty } \frac {\cosh {\frac {m \theta }{n}}+(-1)^{m+1} }{m+s \,n}\,.\end {equation}


$c_{sn}$


$\mathcal {D}_{\bal }(\theta ;n)$


$\theta =i\pi n$


$n=1$


$n$


$n$
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by a multiplicative (CDD) factor [62]. Throughout this paper, we will consider theories with a single particle spectrum. This means 
that the scattering matrix and scattering phase carry no particle indices. What follows can be easily generalised to theories with a 
richer spectrum. Then, the deformed 𝑆-matrix is

𝑆𝜶(𝜃) = Φ𝜶(𝜃)𝑆(𝜃) , (1)

where 𝜶 = (𝛼𝑠)𝑠∈⊂ℕ is a, possibly infinite, vector, 𝑆(𝜃) is the two-particle scattering matrix for a theory with a single particle, and

Φ𝜶(𝜃) = exp

[

−𝑖
∑

𝑠∈
𝛼𝑠𝑚

2𝑠 sinh(𝑠𝜃)

]

. (2)

Here 𝑚 is a fundamental mass scale such that the combination 𝛼𝑠𝑚2𝑠 is dimensionless. Hereafter, we will take 𝑚 = 1 for simplicity. 
is a set of spin values, typically those of local conserved charges. Notice that  has to be a subset of the odd integers, otherwise the 
CDD factor does not satisfy the crossing equation Φ𝜶(𝑖𝜋 − 𝜃) = Φ𝜶(𝜃). Since Φ𝜶(𝜃) is a CDD factor, the theory described by this new 
𝑆-matrix is still integrable and has the same particle spectrum as the original model. In [63] certain theories of free fields 𝜙(𝑄, 𝑥) on 
noncommutative Minkowski spaces with different noncommutativity parameters 𝑄 were studied. These models were proven to satisfy 
a weaker form of localization called wedge localization. Interestingly, these models can also be viewed as non-local (but wedge-local) 
field theories on a flat Minkowski space with a non-trivial S-matrix given precisely by the 𝑠 = 1 term in (2), i.e. the CDD factor coming 
from a “pure” 𝑇 𝑇̄ -deformation. The existence of non-trivial “local” observables and their characterization is one of the main open 
questions in the study of these models.

In our papers [64–66] we tackled the problem of computing matrix elements of “local” operators via the form factor bootstrap 
program, the natural next step in the study of an IQFT once the 𝑆-matrix is known. Our study led to closed formulae for the form 
factors of a large class of fields and theories while also leaving several open questions. One of the most perplexing issues that we 
encountered is that the solutions of the form factor equations depend on a large number of free parameters (in [64–66] we called those 
𝛽𝑖) and that there are no obvious physical requirements that allow us to fix these unambiguously. Another issue is that the factorized 
solutions that we found contain square roots, hence a degree of non-analyticity which stands at odds with the usual assumptions of 
the form factor program. Understanding the limit of validity of the standard techniques employed in the context of IQFT and their 
possible extension to these models is therefore one of the main objectives and challenges of our work.

To recap, let
𝐹
𝑛 (𝜃1 … , 𝜃𝑛) ∶= ⟨0|(0)|𝜃1,… 𝜃𝑛|0⟩ = ⟨0|(0)|𝑍†(𝜃1),… , 𝑍†(𝜃𝑛)|0⟩ , (3)

be the 𝑛-particle form factor of an operator  between the ground state |0⟩ and a multiparticle in-state, consisting of 𝑛 particles 
of the same species and distinct rapidities 𝜃1 … 𝜃𝑛. The particle creation and annihilation operators, 𝑍†(𝜃) and 𝑍(𝜃), satisfy the 
Zamolodchikov-Faddeev algebra [67,68]

𝑍(𝜃1)𝑍(𝜃2) = 𝑆(𝜃1 − 𝜃2)𝑍(𝜃2)𝑍(𝜃1) ,

𝑍(𝜃1)𝑍†(𝜃2) = 𝑆(𝜃2 − 𝜃1)𝑍†(𝜃2)𝑍(𝜃1) + 𝛿(𝜃1 − 𝜃2) , (4)

which generalizes to interacting theories the usual exchange relations of creation/annihilation operators in free models. As before, 
𝑆(𝜃) is the two-body scattering matrix of a local IQFT. If the field is spinless the form factor depends only on rapidity differences. 
One of the more successful methods for computing these objects consists of solving a system of consistency equations [69–72] based 
on some natural physical assumptions such as unitarity, crossing symmetry, and the locality property of the field  being considered. 
These are:

• the braiding property
𝐹
𝑛 (𝜃1,… , 𝜃𝑖, 𝜃𝑖+1,… , 𝜃𝑛) = 𝑆(𝜃𝑖 − 𝜃𝑖+1)𝐹

𝑛 (𝜃1,… , 𝜃𝑖+1, 𝜃𝑖,… , 𝜃𝑛) , (5)

that descend directly from the exchange property of the Zamolodchikov-Faddeev algebra;
• the monodromy property

𝐹
𝑛 (𝜃1 + 2𝜋𝑖, 𝜃2 … , 𝜃𝑛) = 𝛾𝐹

𝑛 (𝜃2,… , 𝜃𝑛, 𝜃1) , (6)

• the kinematical residue equation

lim
𝜃̄→𝜃

(𝜃̄ − 𝜃)𝐹
𝑛+2(𝜃̄ + 𝑖𝜋, 𝜃, 𝜃1,… , 𝜃𝑛) = 𝑖

(

1 − 𝛾
𝑛
∏

𝑗=1
𝑆(𝜃 − 𝜃𝑗 )

)

𝐹
𝑛 (𝜃1,… , 𝜃𝑛) . (7)

The factor of local commutativity 𝛾 first appeared in [73] and encodes the (semi-)locality property of the fields. It is defined through 
the equal-time exchange relation of the operator (𝐱) and the field 𝜙(𝐲) associated with the particle creation operators 𝑍†(𝜃). That is

𝜙(𝐱)(𝐲) = 𝛾(𝐲)𝜙(𝐱) for 𝑥1 > 𝑦1 and 𝑥0 = 𝑦0 , (8)

where formally

𝜙(𝐱) ∼ ∫ 𝑑 𝜃
[

𝑍(𝜃)𝑒−𝑖𝐩⋅𝐱 +𝑍†(𝜃)𝑒𝑖𝐩⋅𝐱
]

. (9)
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As an example, for the order/disorder operators in the Ising field theory, 𝜎 and 𝜇, we have 𝛾∫∕⨘ = ±1. However, 𝛾 can be a more 
general phase as it happens, for instance, in the Federbush model [74–77]. One can also have exchange relations more complicated 
than (8), where fields do not simply pick up a phase but become different fields, such as what happens with the branch point twist 
field in [78]. A direct consequence is that Eqs. (6) and (7) cannot be satisfied if this factor is not included. In other words, the locality 
properties of the observables enter explicitly into the form factor equations and their understanding is pivotal for the computation of 
closed exact expressions for 𝑛-particle form factors. If no bound states are present, (5)–(7) are the only equations involved, and the 
solution procedure can be summarized in two steps: first one determines the simplest non-trivial form factor, the two-particle one; 
subsequently, the higher particle form factors are obtained by solving the recursive Eq. (7).

In the case of a deformed model with 𝑆-matrix (1), a two-particle form factor should satisfy
𝐹
2 (𝜃;𝜶) = 𝑆𝜶(𝜃)𝐹

2 (−𝜃;𝜶) = 𝐹
2 (2𝜋𝑖 − 𝜃;𝜶) . (10)

Typically there is at least one other requirement, which specifies the residue of the form factor at the kinematic pole 𝜃 = 𝑖𝜋. However, 
if we limit our attention to solutions without poles, then we need to consider only the two Eq. (10). Entire solutions to these equations 
are known as minimal form factors (MFFs) and in the deformed theory we will denote these as 𝐹min(𝜃;𝜶). The same equations with 
𝑆𝜶(𝜃) replaced by 𝑆(𝜃) are satisfied by the MFF of the undeformed theory, which we will denote as 𝐹min(𝜃):

𝐹min(𝜃) = 𝑆(𝜃)𝐹min(−𝜃) = 𝐹min(2𝜋𝑖 − 𝜃) . (11)

This means that the MFFs 𝐹min(𝜃;𝜶) and 𝐹min(𝜃) are proportional to each other through a function 𝜶(𝜃) which satisfies
𝐹min(𝜃;𝜶) = 𝜶(𝜃)𝐹min(𝜃) ⟹ 𝜶(𝜃) = Φ𝜶(𝜃)𝜶(−𝜃) = 𝜶(2𝜋𝑖 − 𝜃) . (12)

Note that each of the first equalities in (10)–(12) define a Riemann-Hilbert problem for the corresponding functions, with 𝑆𝜶(𝜃), 𝑆(𝜃)
and Φ𝜶(𝜃) playing the role of “jump functions” [79]. This can be used to explicitly write the solution as an integral representation 
involving the logarithm of the jump function. In fact, given the 𝑆-matrix of a massive, UV complete IQFT, it was shown in [70] that 
the MFF is uniquely fixed by the combined requirements of analyticity in the physical strip Im(θ) ∈ [0, π] and (at most) exponential 
growth for 𝜃 large. The integral representation assumes a particularly simple form in terms of the Fourier transform of the 𝑆-matrix 
phase:

𝑖𝛿(𝜃) ∶= log𝑆(𝜃) = ∫

∞

0

𝑑 𝑡
𝑡
𝑔(𝑡) sinh 𝑡𝜃

𝑖𝜋
(13)

then

𝜌(𝜃) ∶= log𝐹min(𝜃) = ∫

∞

0

𝑑 𝑡
𝑡

𝑔(𝑡)
sinh 𝑡

sin2
𝑡(𝑖𝜋 − 𝜃)

2𝜋
. (14)

As we shall see below, the challenge for 𝑇 𝑇̄ -perturbed theories lies precisely on finding convergent representations of this type.
For theories perturbed by 𝑇 𝑇̄  and its generalizations, it was found that the function 𝜶(𝜃), has the factorised structure [64,66]

𝜶(𝜃) ∶= 𝜑𝜶(𝜃)𝐶𝜷 (𝜃) , (15)

with

𝜑𝜶(𝜃) = exp

[

𝜃 − 𝑖𝜋
2𝜋

∑

𝑠∈
𝛼𝑠𝑚

2𝑠 sinh(𝑠𝜃)

]

, 𝐶𝜷 (𝜃) ∶= exp

[

∑

𝑛∈ℤ+
𝛽𝑛𝑚

2𝑛 cosh(𝑛𝜃)

]

. (16)

Here the parameters 𝛼𝑠 in (16) are those defining the CDD factor Φ𝜶(𝜃) (2), while the parameters 𝛽𝑛 are, a priori, free and independent 
of the scattering phase. The existence of this very large freedom in the choice of the MFF is an ambiguity that was already highlighted 
in the original works [64–66] where – arbitrarily and for simplicity – it was chosen to set 𝛽𝑛 = 0 for all 𝑛. In a subsequent paper [80] 
involving two of the present authors, the significance of the parameters 𝛽𝑛 was clarified. There, well-known integrable models such 
as the sinh-Gordon theory were interpreted as irrelevant perturbations of the Ising field theory involving an infinite set of fine-tuned2 
couplings 𝛼𝑠. Then, their MFF obtained from (13) and (14) can be rewritten in the form (15) where the “free” parameters 𝛽𝑛 are now 
fixed in terms of the 𝛼𝑠. It was then revealed that the role of the function 𝐶𝜷 (𝜃) is to quell the unphysical asymptotic properties of the 
function 𝜑𝜶(𝜃), producing a well-defined MFF that satisfies all physical requirements imposed by the UV-completeness of the theory. 
In the present context, UV-completeness means that the theory has a well-defined UV limit, described by a local CFT. A picture of 
IQFT as a massive, relevant perturbation of a CFT was famously put forward in [81].

The main result of this paper is a step by step procedure that allows us to fix the parameters 𝛽𝑠 for 𝑇 𝑇̄ -deformed IQFTs in a 
physically and mathematically justified manner. We propose a generalisation of the integral representation that gives closed solutions 
for IQFTs with arbitrary 𝑆-matrices of the form (1) and (2), which reduces to the representation found in [80] when the sets of 
couplings 𝛼𝑠 is infinite and fine-tuned to yield a UV-complete theory. The parameters 𝛽𝑠 are fixed by analyticity and asymptotic 
requirements, but also, crucially, by the requirement that the resulting MFF is a smooth function of the perturbation parameters 𝛼𝑠. 
For any set of parameters 𝜶 we find that the function 𝜶(𝜃) is given by

𝜶(𝜃) = 𝜶(𝑖𝜋)
∏

𝑠∈2ℤ+−1

⎡

⎢

⎢

⎣

−1
2
𝑒
𝜃−𝑖𝜋
2 sinh(𝑠𝜃)−

𝑠−1
∑

𝑛=1

cosh(𝑛𝜃)
𝑠−𝑚 +𝑐𝑠(

2𝑖 sinh 𝜃
2

)−cosh (𝑠𝜃)⎤
⎥

⎥

⎦

𝛼𝑠
𝜋

, (17)

2 By fine-tuning here we mean that the resulting 𝑆-matrix determines a UV-complete IQFT.
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where 𝑐𝑠 is the constant (68). This formula can be easily generalised to other interesting cases, such as the branch point twist fields 
(see (B.8) in Appendix B) and to the boundary case recently discussed in [82], where the deformation of the one-particle form factor 
is given by √𝜶(2𝜃). Note that in (17) and hereafter, we set the mass scale to 𝑚 = 1 to lighten the formulas.

This paper is organised as follows: in Section 2 we give a heuristic derivation of our result, showing how generalised pairs 
𝛿(𝜃) − 𝜌(𝜃) can be constructed without relying on the existence of a Fourier transform 𝑔(𝑡). In Section 3 we present an alternative 
but equivalent derivation of the same result, starting from the standard contour-integral representation of the MFF proposed in the 
foundational paper [70] by Karowski and Weisz. In Section 4 we discuss some properties of the correlation functions that might be 
obtained building on this new minimal form factor. We conclude in Section 5. In Appendix A we discuss the construction of higher 
particle form factors starting from a factorised ansatz. In Appendix B we generalise our construction of the MFF to branch point twist 
fields.

2.  A heuristic derivation: MFFs and their Fourier transforms

In this section, we are going to produce a generalization of the integral representation of MFFs, capable of accounting for the 
presence of exponential CDD factors in the 𝑆-matrix. In fact, the representation (14) relies on the possibility of expressing the 
scattering phase in integral form (13). This is not possible if the theory we are considering is a 𝑇 𝑇̄ -deformed IQFT, whose 𝑆-matrix 
is of the form (1) with (2). Our goal is then to knead (13) and (14) into a new, more general form. Note that the manipulations we 
will be performing here are formal and that we will be quite cavalier about convergence issues. As such, the content of this section 
is to be taken as a heuristic derivation of our main results.

2.1.  Integral representation of the phase shifts

Let us consider an interacting factorized scattering theory with diagonal 𝑆-matrix,
𝑆(𝜃) = 𝜖 𝑒𝑖𝛿(𝜃) . (18)

The quantity 𝛿(𝜃) is the phase shift and is normalized so that
𝛿(0) = 0 . (19)

Consequently, the remaining constant 𝜖 encodes the value of the 𝑆-matrix at zero rapidity difference 𝑆(0) = 𝜖. For 𝜖 = ±1 we have 
the usual bosonic/fermionic statistics. However, more general theories exist, such as the Federbush model [74,75] where 𝑆(0) is a 
generic phase (in this example, there are also two particle types). If our factorized scattering theory is a UV complete IQFT, then 
the phase shift can be Fourier transformed as in (13). The converse is however not true. A good counterexample is the “bosonic” 
sinh-Gordon model studied in [83] whose 𝑆-matrix has a well defined Fourier transform despite the theory lacking UV completion. 
More general cases have been discussed in [12]. The meaning of this statement is made clearer below.

2.2.  Asymptotic behavior of the 𝑆-matrix and temperedness

We now discuss in more detail the conditions for existence of the Fourier transform of the phase shift, that is the notion of 
tempered distribution [84,85]. We show that the possibility of defining the phase shift as a Fourier transform is related to its nice 
decaying properties at large rapidities and that 𝑇 𝑇̄ -perturbed 𝑆-matrices are precisely of the type where this condition is violated.

Let 𝑓 be a function on ℝ and consider (ℝ), the class of test functions on ℝ and ′(ℝ), the class of distributions on ℝ, i.e. the set 
of linear functionals on (ℝ). Explicitly, given 𝑓 ∶ ℝ → ℝ and 𝜑 ∈ (ℝ) it is possible to define a distribution3

⟨𝑓, 𝜑⟩ = ∫

∞

−∞
𝑓 (𝑥)𝜑(𝑥)𝑑𝑥 ∈ ′(ℝ). (20)

Suppose that 𝛿(𝜃) is a smooth function satisfying the asymptotic condition
lim

|𝜃|→∞
𝛿(𝜃) = 0. (21)

This means that this function and all its derivatives decay faster than any inverse polynomial, i.e.,
∀𝑛 ∈ ℕ, sup

𝜃∈ℝ

|

|

|

𝜃𝑘𝛿(𝑛)(𝜃)||
|

< ∞ for all 𝑘 ∈ ℕ, (22)

Therefore 𝛿(𝜃) belongs to the Schwartz class (ℝ). This implies that its Fourier transform

𝑔(𝑡) ∶= ∫

∞

−∞

𝑑𝜃
2𝜋

𝑒𝑖𝑡𝜃𝛿(𝜃) (23)

3 Note that this symbols  and ′ have nothing to do with the function 𝜶(𝜃) defined earlier (15). Similarly, the symbols  and  ′ around Eq. (23), 
are distinct from the set of spins  in (2).
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exists as an ordinary Lebesgue integral and defines a function 𝑔(𝑡) ∈  ′(ℝ) ⊆ ′(ℝ), the dual to the Schwartz class, i.e. the class of 
tempered distributions. In particular, we also have the inversion formula

𝛿(𝜃) = ∫

∞

−∞
𝑑𝑡 𝑒−𝑖𝑡𝜃𝑔(𝑡), (24)

with absolute convergence of the integral due to rapid decay of 𝑔(𝑡). In summary, if 𝛿(𝜃) ∈ 𝐿1(ℝ), meaning that its absolute value 
is Lebesgue-integrable, we can define its Fourier transform, which will also have nice decaying properties by construction. This is 
what happens for standard phase shifts. Now, consider a phase shift coming from a 𝑇 𝑇̄ -deformation: 𝛿(𝜃) ∼ sinh(𝑠𝜃). It still defines a 
distribution in the sense of ′(ℝ) (class of distributions in ℝ), i.e., for instance, it acts continuously on test functions with compact 
support:

𝜑(𝜃) ∈ 𝐶∞
𝑐 (ℝ) ⟹ ⟨sinh, 𝜑⟩ = ∫

∞

−∞
sinh(𝑠𝜃)𝜑(𝜃) 𝑑𝜃 is finite. (25)

However if we consider the real line, sinh(𝑠𝜃) grows exponentially as |𝜃| → ∞:

| sinh(𝑠𝜃)| ∼ 1
2
𝑒𝑠|𝜃|, (26)

and therefore it does not satisfy any polynomial bound of the form (22) which is a necessary condition for tempered distributions. 
Consequently, 𝛿(𝜃) in this case is a distribution, but it is not tempered; thus, its Fourier transform is not well defined within the 
classical theory of tempered distributions. Indeed, the subclass of test functions (ℝ) ⊂ (ℝ) necessary to make an integral like (25) 
convergent, can only be of two kinds: the class of test functions with compact support (ℝ) = 𝐶∞

𝑐 (ℝ) as written above or a subclass 
with a quicker exponential decay than exp 𝑠|𝜃|:

𝑠(ℝ) ∶=
{

𝜑 ∈ 𝐶∞(ℝ)
|

|

|

|

|

∃𝑠 > 0  such that sup
𝜃∈ℝ

|

|

|

𝜑(𝜃)𝑒𝑠|𝜃|||
|

< ∞
}

⊂ (ℝ). (27)

2.3.  The scattering phase and its Fourier transform

Let us now apply these ideas to the integral representation of a generic 𝑆-matrix. Consider then the scattering phase 𝛿(𝜃) and 
suppose it can be written in terms of its Fourier transform as

𝛿(𝜃) = 𝑖
2 ∫

∞

−∞

𝑑𝑡
𝑡
𝑔(𝑡)𝑒

𝑖𝑡𝜃
𝜋 . (28)

Since the phase shifts are taken to be real functions of the rapidity difference, the function 𝑔(𝑡) must be even: 𝑔(−𝑡) = 𝑔(𝑡). We can 
then rewrite the Fourier transform in the form (13)

𝛿(𝜃) = −∫

∞

0

𝑑𝑡
𝑡
𝑔(𝑡) sin 𝑡𝜃

𝜋
, (29)

which is the representation given earlier (13). In order for this Fourier transform to be a proper function – rather than a distribution 
– we must demand that 𝑔(𝑡) approaches constant values at the integral bounds

𝑔(𝑡) = 𝑔(0) + 𝑂(𝑡2) , lim
|𝑡|→∞

𝑔(𝑡) = 𝑔(∞) < ∞ . (30)

Note that we assumed 𝑔(𝑡) to be Taylor expandable around 𝑡 = 0 and to possess only isolated singularities. The constants 𝑔(0) and 𝑔(∞)

may vanish. We can think of 𝑔(𝑡) as a function on the Riemann sphere ℂ ∪ {∞} which means that it must be either a constant or a 
meromorphic function. In both cases, we can use a Mittag-Leffler expansion [86] to write

𝑔(𝑡) = 𝑔(0) −
∞
∑

𝑛=1

𝑡2

𝜋𝑝(𝑛)
𝑔(𝑛)

𝑡2 + 𝑝(𝑛)2
, 𝑔(𝑛) = ±2𝜋𝑖 Res

𝑡=±𝑖𝑝(𝑛)
[𝑔(𝑡)] , (31)

for some set of poles {±𝑖𝑝(𝑛) | 𝑛 = 1,… ,∞}. We can use the physical properties of the phase shifts to specify the positions of these 
poles. In particular, we want 𝛿(𝜃) to be 2𝜋𝑖-periodic. We see that (31) and the residue theorem – which we can use since the integrand 
of (28) decays as 𝑡−1 as |𝑡| → ∞ – imply

𝛿(𝜃) = const. +
∞
∑

𝑛=1

𝑔(𝑛)

2𝑝(𝑛)
𝑒−

𝑝(𝑛)𝜃
𝜋 , ∀ 𝜃 > 0. (32)

If we want this expression to be 2𝜋𝑖-periodic, then we need to fix
𝑝(𝑛) = 𝑛𝜋. (33)

In conclusion, the function 𝑔(𝑡) must take the following form

𝑔(𝑡) = 𝑔(0) −
∞
∑

𝑛=1

𝑡2

𝑛𝜋2
𝑔(𝑛)

𝑡2 + 𝑛2𝜋2
. (34)
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2.4.  The logarithm of the MFF and its Fourier transform

Given the integral representation (29), we introduce the new function

𝜌(𝜃) = −1
4 ∫

∞

−∞

𝑑𝑡
𝑡
𝑔(𝑡) − 𝑔(0)

sinh 𝑡
𝑒
𝑡(𝑖𝜋−𝜃)

𝑖𝜋 +
𝑔(0) − 1 + 𝜖

2
log

(

−𝑖 sinh 𝜃
2

)

. (35)

Note that the Fourier integral converges as long as 0 ≤ Im 𝜃 ≤ 2𝜋. We immediately verify the identities4

𝜌(𝑖𝜋 − 𝜃) = 𝜌(𝑖𝜋 + 𝜃) , (37a)

𝜌(𝜃) − 𝜌(−𝜃) = 𝑖𝛿(𝜃) +
𝑖𝜋(1 − 𝜖)

2
sign(𝜃) . (37b)

Consequently, we can take this function to be the logarithm of the MFF

log𝐹min(𝜃) = 𝜌(𝜃) ⟹

{

𝐹min(𝜃) = 𝐹min(2𝜋𝑖 − 𝜃) ,
𝐹min(𝜃) = 𝑆(𝜃)𝐹min(−𝜃) .

(38)

With some manipulations5 we can rewrite 𝜌(𝜃) as follows

𝜌(𝜃) = 𝜌(𝑖𝜋) + ∫

∞

0

𝑑𝑡
𝑡
𝑔(𝑡)

sin2
(

𝑡(𝑖𝜋−𝜃)
2𝜋

)

sinh 𝑡
− 1 − 𝜖

2
log

(

−𝑖 sinh 𝜃
2

)

, (39)

where 𝜌(𝑖𝜋) is a constant that can be absorbed into the normalisation of the MFF.

2.5.  From integral to series representations

Using the Mittag-Leffler expansion (34) in the integral representation (28), we can write 

𝛿(𝜃) = −𝑔(0) ∫

∞

0

𝑑𝑡
𝑡

𝑡𝜃
𝜋

sin
( 𝑡𝜃
𝜋

)

+
∞
∑

𝑛=1

𝑔(𝑛)

𝑛𝜋
1
2𝜋𝑖 ∫

∞

−∞
𝑑𝑡 𝑡𝑒𝑖𝑡𝜃∕𝜋

𝑡2 + 𝑛2𝜋2

=

[

−
𝜋𝑔(0)

2
+ 1

2𝜋

∞
∑

𝑛=1

𝑔(𝑛)

𝑛
𝑒−𝑛|𝜃|

]

sign(𝜃).

(40)

Similarly, putting together the integral representation (35) and the expansion (34), we get

𝜌(𝜃) = 𝑖
2𝜋

∞
∑

𝑛=1

𝑔(𝑛)

𝑛
1
2𝜋𝑖 ∫

∞

−∞
𝑑𝑡 𝑡

𝑡2 + 𝑛2𝜋2
𝑒𝑡(𝑖𝜋−𝜃)∕𝜋

sinh 𝑡
+

𝑔(0) − 1 + 𝜖
2

log
(

−𝑖 sinh 𝜃
2

)

. (41)

The integral can be computed by residue theorem, with contributions from a double pole at 𝑡 = 𝑖𝜋𝑛 and simple poles at 𝑡 = 𝑖𝜋𝑚 with 
𝑚 ≠ 𝑛. This gives6

1
2𝜋𝑖 ∫

∞

−∞
𝑑𝑡 𝑡

𝑡2 + 𝑛2𝜋2
𝑒𝑡(𝑖𝜋−𝜃)∕𝜋

sinh 𝑡
𝜃>0
=

∞
∑

𝑚=1
Res𝑡=𝑖𝑚𝜋

[

𝑡
𝑡2 + 𝑛2𝜋2

𝑒𝑡(𝑖𝜋−𝜃)∕𝜋

sinh 𝑡

]

= 𝑖
4𝜋𝑛

(

2𝑛𝜋
( 𝜃 − 𝑖𝜋

𝜋

)

− 1
)

𝑒−𝑛𝜃 + 𝑖
𝜋

∞
∑

𝑚=1
𝑚≠𝑛

𝑚𝑒−𝑚𝜃

𝑛2 − 𝑚2
. (42)

For generic 𝜃 the formula above generalised in a simple way, which can be captured by introducing the sign(𝜃) function in the 
appropriate place, giving the final result:

𝜌(𝜃) = − 1
2𝜋2

∞
∑

𝑛=1

𝑔(𝑛)

𝑛

⎡

⎢

⎢

⎢

⎣

2𝑛𝜋 sign(𝜃)
(

𝜃−𝑖𝜋
𝜋

)

− 1

4𝑛
𝑒−𝑛|𝜃| +

∞
∑

𝑚=1
𝑚≠𝑛

𝑚𝑒−𝑚|𝜃|

𝑛2 − 𝑚2

⎤

⎥

⎥

⎥

⎦

+
𝑔(0) − 1 + 𝜖

2
log

(

−𝑖 sinh 𝜃
2

)

.

(43)

Let us compute the difference 𝜌(𝜃) − 𝜌(−𝜃) and check that (37b) is satisfied. Thanks to the relation (36) we have that the last term in
(43) produces the first term in (40). Furthermore, the sum over 𝑚 in (43) is symmetric under 𝜃 → −𝜃, so it does not contribute and, 
finally, the remaining term in (43) yields the sum over 𝑛 in (40):

2𝑛𝜋 sign(𝜃)
(

𝜃−𝑖𝜋
𝜋

)

− 1

4𝑛
𝑒−𝑛|𝜃| −

2𝑛𝜋 sign(−𝜃)
(

−𝜃−𝑖𝜋
𝜋

)

− 1

4𝑛
𝑒−𝑛|−𝜃| = −𝑖𝜋 sign(𝜃)𝑒−𝑛|𝜃|. (44)

4 For Eq. (37b), we can use the known integral ∫ ∞
−∞

𝑑𝑡
𝑡
sin 𝑡𝜃

𝜋
= 𝜋 sign(𝜃) and

log(−𝑖 sinh 𝜃
2
) − log(𝑖 sinh 𝜃

2
) = −𝑖𝜋 sign(𝜃). (36)

5 We use another known integral: ∫ ∞
−∞

𝑑𝑡
𝑡

sin2(𝑡𝑥)
sinh 𝑡

= 1
2
log cosh(𝜋𝑥).

6 Note that this integral needs regularization: we suppose that 𝜃 has a vanishingly small imaginary part.
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2.6.  Recovering a 𝑇 𝑇̄ -like representation

So far, the contents of this section provide a rederivation of known results. We now come to the new conceptual step which will 
allow us to use these results to construct a pair 𝛿(𝜃) − 𝜌(𝜃) which corresponds to IQFTs perturbed by 𝑇 𝑇̄ . The key observation is that, 
for the purpose of the above identities, the only property that matters is the parity of the functions 𝑒−𝑛|𝜃| and sign(𝜃)𝜃𝑒−𝑛|𝜃|, that is, 
that the former is even under 𝜃 → −𝜃, while the latter is odd. This means that we could replace these functions with others having 
the same parity properties and the MFF Eq. (37) would still hold. We will now exploit this property by investigating what the most 
general choices for these functions can be. We perform the substitutions

𝑒−𝑛|𝜃| sign(𝜃) ⟶ 𝑓𝑛(𝜃) , 𝑒−𝑛|𝜃|𝜃 sign(𝜃) ⟶ 𝑔𝑛(𝜃) , 𝑒−𝑛|𝜃| ⟶ ℎ𝑛(𝜃). (45)

in the series expansions (40) and (43). For simplicity, we will also take 𝑔(0) = 0 and 𝜖 = 1 so that the term log(−𝑖 sinh 𝜃
2 ) in (43) drops 

out and we have an 𝑆-matrix which is a “pure” 𝑇 𝑇̄  deformation. We then have

𝛿(𝜃) = 1
2𝜋

∞
∑

𝑛=1

𝑔(𝑛)

𝑛
𝑓𝑛(𝜃),

𝜌(𝜃) = − 1
2𝜋2

∞
∑

𝑛=1

𝑔(𝑛)

𝑛

⎡

⎢

⎢

⎢

⎣

−𝜋𝑖
2
𝑓𝑛(𝜃) +

1
2
𝑔𝑛(𝜃) −

1
4𝑛

ℎ𝑛(𝜃) +
∞
∑

𝑚=1
𝑚≠𝑛

𝑚
𝑛2 − 𝑚2

ℎ𝑚(𝜃)

⎤

⎥

⎥

⎥

⎦

.

(46)

We want these two quantities to be, respectively, a phase shift and the logarithm of the corresponding MFF. Clearly, only some 
functions 𝑓𝑛(𝜃), 𝑔𝑛(𝜃) and ℎ𝑛(𝜃) will work. We must have

𝛿(𝜃) + 𝛿(−𝜃) = 0 , unitarity of the 𝑆-matrix
𝛿(𝜃) − 𝛿(𝑖𝜋 − 𝜃) = 0 , crossing symmetry of the 𝑆-matrix,
𝜌(𝜃) − 𝜌(−𝜃) = 𝑖𝛿(𝜃) , Watson’s equation,

𝜌(𝑖𝜋 + 𝜃) − 𝜌(𝜋𝑖 − 𝜃) = 0 , crossing symmetry of the form factor.

(47)

We then see immediately that the functions 𝑓𝑛(𝜃) have to satisfy the conditions

𝑓𝑛(𝜃 + 𝑖𝜋) = 𝑓𝑛(−𝜃) = −𝑓𝑛(𝜃) = −𝑓𝑛(𝜃 − 𝑖𝜋). (48)

Watson’s equation tells us that 𝑔𝑛(𝜃) and ℎ𝑛(𝜃) have to be even

𝑔𝑛(−𝜃) = 𝑔𝑛(𝜃) , ℎ𝑛(−𝜃) = ℎ𝑛(𝜃), (49)

and, finally, the crossing symmetry of the form factor yields the following identities7

𝑔𝑛(𝜃 + 𝑖𝜋) − 𝑔𝑛(𝜃 − 𝑖𝜋) = 2𝜋𝑖𝑓𝑛(𝜃 + 𝑖𝜋) , ℎ𝑛(𝜃 + 𝑖𝜋) = ℎ𝑛(𝜃 − 𝑖𝜋). (50)

If we require that {𝑓𝑛(𝜃)}𝑛∈ℤ+ , {𝑔𝑛(𝜃)}𝑛∈ℤ+  and {ℎ𝑛(𝜃)}𝑛∈ℤ+  each constitute an infinite, countable set of independent, smooth functions 
that satisfy the above requirements, then we can almost uniquely fix the solution to be

𝑓2𝑛−1(𝜃) = − sinh((2𝑛 − 1)𝜃) , 𝑔2𝑛−1(𝜃) = −𝜃 sinh((2𝑛 − 1)𝜃) , ℎ𝑛(𝜃) = cosh(𝑛𝜃), (51)

and

𝑓2𝑛(𝜃) = 0 , 𝑔2𝑛(𝜃) = 0. (52)

With “almost uniquely” we mean to say that – since the Eqs. (48)–(50) are homogeneous – we still have the freedom to rescale 
each of the functions 𝑓2𝑛−1(𝜃), 𝑔2𝑛−1(𝜃) and ℎ𝑛(𝜃) by an arbitrary constant (in 𝜃) factor. For 𝑓2𝑛−1(𝜃) and 𝑔2𝑛−1(𝜃) this factor has to 
be the same, due to the first equation in (49), and it can be reabsorbed into the coefficients 𝑔(𝑛). However for the functions ℎ𝑛(𝜃), 
it is indeed an arbitrary choice. We can even choose it to vanish for any 𝑛. This fact is not surprising: it is the usual indeterminacy 
of the cosh terms that was already remarked in previous works [64,66,80]. Here, the choice we make (51), (52) is guided by the 
requirement that the functions (46) agree, for large |𝜃|, with (40), (43) when stripped of their diverging behavior. So, for example, 
we ask 𝑓2𝑛−1(𝜃) ∼

|𝜃|→∞
sign(𝜃)𝑒−(2𝑛−1)|𝜃| + “diverging terms” and we see that 𝑓2𝑛−1(𝜃) = − sinh((2𝑛 − 1)𝜃) fits the bill. Notice that this also 

means that

𝑔(2𝑛) = 0. (53)

7 Here we are assuming that each term in the series – also in the double series – appearing in the Eq. (47) has to vanish independently.
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Thus, we have found that the following functions (we now add an index 𝜶 to include the parameter dependence)

𝛿𝜶(𝜃) = −
∞
∑

𝑛=1
𝛼2𝑛−1 sinh((2𝑛 − 1)𝜃),

𝜌𝜶(𝜃) =
𝑖𝜋 − 𝜃
2𝜋

𝛿(𝜃) +
∞
∑

𝑛=1
𝛼2𝑛−1

⎡

⎢

⎢

⎢

⎣

cosh((2𝑛 − 1)𝜃)
4𝜋(2𝑛 − 1)

− 1
𝜋

∞
∑

𝑚=1
𝑚≠2𝑛−1

𝑚 cosh(𝑚𝜃)
(2𝑛 − 1)2 − 𝑚2

⎤

⎥

⎥

⎥

⎦

,

𝛼2𝑛−1 =
1
2𝜋

𝑔(2𝑛−1)

2𝑛 − 1
,

(54)

constitute a valid 𝛿(𝜃) − 𝜌(𝜃) pair. Notice that the form of the phase shift is exactly that of the 𝑇 𝑇̄  deformation (2). However, the 
MFF is different from that found in [64,66], in the sense that the coefficients of the cosh(𝑛𝜃) terms are not arbitrary, but related to 
the same 𝛼𝑛 appearing in 𝛿(𝜃). This form complies instead with the expression for the sinh-Gordon MFF derived in [80]. In fact, (51) 
is not the only possible set of smooth functions we could choose. Setting ℎ𝑛(𝜃) = 0 for all indices 𝑛 ∈ ℤ is also an alternative choice 
that satisfies all the conditions. This choice reproduces the results of [64,66], when all free parameters are set to zero. We argue that 
the MFF in (54) is a more natural choice, for at least two reasons. First of all, by construction, it reproduces the MFFs obtained from 
the integral representation for UV complete IQFTs. Secondly, as a function of 𝜂 = 𝜃−𝑖𝜋

𝜋 , the logarithm of the MFF in (54) has more 
desirable asymptotic properties than most of the possible solutions found in [64,66]. Let us look at a simple case to illustrate this fact.

2.7.  The 𝑇 𝑇̄ -deformed ising field theory

Let us take the simplest possible factorized scattering theory, a massive free fermion, with 𝑆-matrix 𝑆(𝜃) = −1. Let us perform a 
basic 𝑇 𝑇̄  deformation of this theory. Then the scattering phase becomes

𝛿Ising𝛼 (𝜃) = −𝛼 sinh 𝜃 , 𝜖 ≡ 𝑆(0) = −1. (55)

From the general formula (54), we find the logarithm of the MFF to be

𝜌Ising𝛼 (𝜃) = log
(

−𝑖 sinh 𝜃
2

)

− 𝑖𝜋 − 𝜃
2𝜋

𝛼 sinh 𝜃 + 𝛼
4𝜋

cosh 𝜃 − 𝛼
𝜋

∞
∑

𝑚=2

𝑚 cosh(𝑚𝜃)
1 − 𝑚2

= log
(

−𝑖 sinh 𝜃
2

)

− 𝑖𝜋 − 𝜃
2𝜋

𝛼 sinh 𝜃 − 𝛼
2𝜋

− 𝛼
2𝜋

cosh 𝜃 log(−4 sinh2 𝜃
2
)

= log
(

cosh
𝜋𝜂
2

)

− 𝛼
2𝜋

[

1 + 𝜋𝜂 sinh(𝜋𝜂) − cosh(𝜋𝜂) log
(

4 cosh2
𝜋𝜂
2

)]

,

(56)

where we now reinstated the “Ising term”8 log
(

−𝑖 sinh 𝜃
2

)

, since 𝜖 = −1. We introduced the variable 𝜂 = 𝜃−𝑖𝜋
𝜋 . This function decays 

nicely for |𝜃| → ∞ in the whole strip 0 ≤ Im 𝜃 ≤ 2𝜋, for both 𝛼 positive and negative, as can be seen in Fig. 1. Figs. 2 and 3 show a 
comparison of the MFF obtained from (56) with that derived in [64,66], for, respectively, Im𝜃 = 𝑖𝜋 and Im𝜃 = 0. We notice how the 
MFF we obtained here preserves the large-rapidity behavior of the unperturbed (𝛼 = 0) theory, while the one obtained in [64,66] 
agrees with the 𝛼 = 0 situation only in the vicinity of 𝜃 = 0. This difference in the behaviour of the deformation of the MFF is more 
profound than appears at a cursory glance. The expression found in [64,66] cannot be considered a small deformation of the massive 
free fermion MFF! This was already remarked in [64,66], where it was observed how the deformation leads to a radical difference 
in the correlation functions compared to the undeformed theory. In contrast, the expression (56), can be rightfully considered a 
well-behaved 1-parameter (𝛼) deformation of the massive free fermion MFF. This is immediately clear from the plot of 𝑒𝜌 Ising𝛼 (𝜃) in 
Fig. 2. From the plot in Fig. 3, we see that something peculiar happens for 𝛼 > 0: the minimal form factor seems to change its 𝜃 ∼ 0
behaviour when 𝛼 crosses the value 𝛼𝑐 = 𝜋. In fact, a more careful analysis confirms this observation. Let us consider the behaviour 
of the MFF 𝐹 Ising

min (𝜃; 𝛼) ∶= 𝑒𝜌
Ising
𝛼 (𝜃) in the vicinity of 𝜂 = 0 and 𝜃 = 0.

𝐹 Ising
min (𝜃; 𝛼) ∼

𝜂→0
𝑒−

𝛼(1−2 log 2)
2𝜋 + 𝑂(𝜂2),

𝐹 Ising
min (𝜃; 𝛼) ∼

𝜃→0

1
2
(−𝜃2)

1
2−

𝛼
2𝜋 𝑒−

𝛼
2𝜋
[

1 + 𝛼
2
(−𝜃2)

1
2 + 𝑂(𝜃2)

]

.
(57)

We immediately see that the behaviour at 𝜂 → 0 is qualitatively the same for any value of 𝛼: the MFF is a finite, 𝛼-dependent constant. 
On the other hand, we see that at 𝜃 = 0, the behaviour of the MFF radically depends on the value of 𝛼: if 𝛼 < 𝜋, it vanishes (as happens 
for the undeformed case), while for 𝛼 > 𝜋 it diverges (reaching a constant in the limit case 𝛼 = 𝛼𝑐 = 𝜋). The situation is portrayed in 
Fig. 4. Further discussion of this behaviour in the context of correlation functions is given in Section 4.

Notice that the critical value 𝛼𝑐 = 𝜋 is theory-dependent. In this case, it results from the fact that the MFF of the Ising field theory 
is −𝑖 sinh 𝜃

2 , as we see for instance in Eq. (56). The general statement is that if the leading asymptotic behaviour of the MFF of the 
unperturbed theory is:

8 Notice that, thanks to this term, the minimal form factor 𝐹 Ising
min (𝜃; 𝛼) = exp 𝜌Ising𝛼  diverges as Re𝜃 → ±∞. This is a characteristic behaviour of the 

massive free fermion. In non-free theories, this diverging behaviour will be tempered by the presence of interactions.
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Fig. 1. Comparison of MFFs with the inclusion of cosh terms, for 𝛼 positive and negative, on different lines Im𝜂 = 0,− 1
4
,− 1

2
,− 3

4
,−1.

𝐹min(𝜃) ∼
𝜃→0

𝜃𝜅 , (58)

for some constant 𝜅 ∈ ℝ, then, the MFF of the 𝑇 𝑇̄ -perturbed theory will have the leading asymptotics 
𝐹min(𝜃; 𝛼) ∼

𝜃→0
𝜃𝜅−

𝛼
𝜋 , (59)

so that there is a critical value 𝛼𝑐 = 𝜅𝜋 above which the MFF develops a pole of order 𝛼𝜋 − 𝜅 at 𝜃 = 0. In the Ising field theory we 
simply have 𝜅 = 1.

2.8.  The 𝑇 𝑇̄ 2𝑛−1-deformed ising field theory

Let us now consider a generalisation of the computation in the previous subsection, to the case when the perturbation is a single 
spin-2𝑛 − 1 irrelevant perturbation. That is:

𝛿Ising𝛼2𝑛−1 (𝜃) = −𝛼2𝑛−1 sinh((2𝑛 − 1)𝜃) , 𝜖 ≡ 𝑆(0) = −1. (60)
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Fig. 2. Comparison of MFFs with and without the inclusion of cosh terms on the line 𝜂 ∈ ℝ (i.e. Im𝜃 = 𝑖𝜋).

From the general formula (54), we find the logarithm of the MFF to be

𝜌Ising𝛼2𝑛−1 (𝜃) = log
(

−𝑖 sinh 𝜃
2

)

+ 𝜃 − 𝑖𝜋
2𝜋

𝛼2𝑛−1 sinh((2𝑛 − 1)𝜃) +
𝛼2𝑛−1

4𝜋(2𝑛 − 1)
cosh((2𝑛 − 1)𝜃)

−
𝛼2𝑛−1
𝜋

∞
∑

𝑚=1
𝑚≠2𝑛−1

𝑚 cosh(𝑚𝜃)
(2𝑛 − 1)2 − 𝑚2

, (61)

The sum above can be computed as follows:

∞
∑

𝑚=1
𝑚≠𝑠

𝑚 cosh(𝑚𝜃)
𝑠2 − 𝑚2

=
𝑠−1
∑

𝑚=1

𝑚 cosh(𝑚𝜃)
𝑠2 − 𝑚2

+
∞
∑

𝑚=𝑠+1

𝑚 cosh(𝑚𝜃)
𝑠2 − 𝑚2

, (62)
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Fig. 3. Comparison of MFFs with and without the inclusion of cosh terms on the line 𝜃 ∈ ℝ.

where the infinite sum is given by 
∞
∑

𝑚=𝑠+1

𝑚 cosh(𝑚𝜃)
𝑠2 − 𝑚2

= 1
2𝑠

+ 1
4𝑠

cosh(𝑠𝜃) +
𝑠−1
∑

𝑚=1

𝑠 cosh(𝑚𝜃)
𝑠2 − 𝑚2

+ 1
2
cosh(𝑠𝜃) log

(

−4 sinh2 𝜃
2

)

, (63)

so that
∞
∑

𝑚=1
𝑚≠𝑠

𝑚
𝑠2 − 𝑚2

cosh(𝑚𝜃) = 1
2𝑠

+ 1
4𝑠

cosh(𝑠𝜃) +
𝑠−1
∑

𝑚=1

cosh(𝑚𝜃)
𝑠 − 𝑚

+ 1
2
cosh(𝑠𝜃) log

(

−4 sinh2 𝜃
2

)

. (64)

Putting everything together we have that the logarithm of the minimal form factor is
𝜌Ising𝛼2𝑛−1 (𝜃) = log

(

−𝑖 sinh 𝜃
2

)

+ 𝜃 − 𝑖𝜋
2𝜋

𝛼2𝑛−1 sinh((2𝑛 − 1)𝜃) −
𝛼2𝑛−1

2𝜋(2𝑛 − 1)

−
𝛼2𝑛−1
𝜋

2𝑛−2
∑

𝑚=1

cosh(𝑚𝜃)
2𝑛 − 1 − 𝑚

−
𝛼2𝑛−1
2𝜋

cosh((2𝑛 − 1)𝜃) log
(

−4 sinh2 𝜃
2

)

. (65)
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Fig. 4. Plots of the MFF obtained from (56) as a function of 𝜃 ∈ ℝ for various values of 𝛼 > 0.

For the purpose of studying the asymptotic properties of the minimal form factor, it is useful to rewrite the function above in terms 
of the variable 𝜂, as in the previous subsection

𝜌Ising𝛼2𝑛−1 (𝜃) = log
(

cosh
𝜋𝜂
2

)

−
𝛼2𝑛−1
2𝜋

[ 1
2𝑛 − 1

+ 𝜋𝜂 sinh((2𝑛 − 1)𝜋𝜂)
]

−
𝛼2𝑛−1
𝜋

2𝑛−2
∑

𝑚=1

(−1)𝑚 cosh(𝑚𝜋𝜂)
2𝑛 − 1 − 𝑚

+
𝛼2𝑛−1
2𝜋

cosh((2𝑛 − 1)𝜋𝜂) log
(

4 cosh2
𝜋𝜂
2

)

. (66)

We then find that

𝐹 Ising
min (𝜃; 𝛼2𝑛−1) ∼

𝜂→0
𝑒−

𝛼2𝑛−1(1−(2𝑛−1)2(log 2+𝑐2𝑛−1))
2𝜋(2𝑛−1) + 𝑂(𝜂2),

𝐹 Ising
min (𝜃; 𝛼2𝑛−1) ∼

𝜃→0
𝜃1−

𝛼2𝑛−1
𝜋 𝑒−

𝛼2𝑛−1
(

1+2(2𝑛−1)𝑐2𝑛−1)
)

2𝜋(2𝑛−1)

[

1 −
𝑖𝛼2𝑛−1𝜃

2
+ 𝑂(𝜃2)

]

,
(67)

where

𝑐2𝑛−1 =
2𝑛−2
∑

𝑚=1

(−1)𝑚+1

𝑚
and 𝑐2𝑛−1 =

2𝑛−2
∑

𝑚=1

1
𝑚
, (68)

which are very similar behaviours as found for the 𝑛 = 1 case in (59). In particular, we find again that there is a stark change in 
the 𝜃 → 0 asymptotics depending on whether 𝛼2𝑛−1 is greater or smaller than 𝜋. It is also easy to see that in the presence of several 
perturbations the critical value will correspond to solutions to 𝜋𝜅 −

∑

𝑠∈ 𝛼𝑠 = 0 where 𝜅 is the value in (59).

3.  Alternative construction from the Karowski-Weiss approach

3.1.  The original work

Let us go back to our original Eq. (11). We consider once more the problem of finding general solutions with desirable asymptotic 
properties to these equations for 𝑇 𝑇̄ -perturbed theories. An alternative way to approach this problem is suggested by the original 
construction of Karowski and Weisz which leads also to an integral representation of the MFFs, albeit written in a slightly different 
way. In this subsection we summarise their original work. We start by writing

𝜕
𝜕𝜃

log𝐹min(𝜃) =
1
8𝜋𝑖 ∫𝐶

log𝐹min(𝑧)

sinh2 1
2 (𝑧 − 𝜃)

𝑑𝑧. (69)

Here 𝐶 is a contour enclosing the strip 0 ≤ Im(𝜃) ≤ 2𝜋 as shown in Fig. 5.
The denominator sinh2 1

2 (𝑧 − 𝜃) has double poles at 𝑧 = 𝜃 + 2𝜋𝑖 𝑛 (𝑛 ∈ ℕ). For 𝜃 > 0 only the pole at 𝑧 = 𝜃 falls within the contour. 
Then, by Cauchy’s residue theorem, we obtain the derivative on the l.h.s. Let us examine this construction better. Because of the 
Eq. (11), we have certain asymptotic properties the form factor must satisfy. If the 𝑆-matrix tends to a constant in the high energy 
limit 𝜃 → ∞, as is expected in UV-complete theories, then we must have 𝐹min(𝜃) = 𝑂(exp exp |𝜃|) for Re(𝜃) → ∞. This is very important 
when computing the integral along the contour above. We can divide the contour 𝐶 in in four pieces: 𝐶 = 𝐶1 + 𝐶2 + 𝐶3 + 𝐶4. Given 
𝑧 = 𝑥 + 𝑖𝑦 we have:
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Fig. 5. The contour 𝐶 in (69).

• two horizontal segments: 𝐶1 = {𝑥 ∶ −𝑅 ≤ 𝑥 ≤ 𝑅} and 𝐶3 = {𝑥 + 2𝑖𝜋 ∶ −𝑅 ≤ 𝑥 ≤ 𝑅};
• two vertical segments: 𝐶2 = {𝑅 + 𝑖𝑦 ∶ 0 ≤ 𝑦 ≤ 2𝜋} and 𝐶4 = {−𝑅 + 𝑖𝑦 ∶ 0 ≤ 𝑦 ≤ 2𝜋};

with 𝐶 oriented counterclockwise. So, our integral can be written also as

∫𝐶
𝑑𝑧𝑤(𝑧) = ∫

𝑅

−𝑅
𝑑𝑥𝑤(𝑥) + ∫

−𝑅

𝑅
𝑑𝑥𝑤(𝑥 + 2𝜋𝑖) + 𝑖∫

2𝜋

0
𝑑𝑦𝑤(𝑅 + 𝑖𝑦) + 𝑖∫

0

2𝜋
𝑑𝑦𝑤(−𝑅 + 𝑖𝑦), (70)

with

𝑤(𝑧) =
log𝐹min(𝑧)

8𝜋𝑖 sinh2 1
2 (𝑧 − 𝜃)

. (71)

The idea is that, if 𝑤(𝑧) decays fast enough for large 𝑅, we can discard the vertical contributions. That is by the estimation lemma 
we can write

|

|

|

|

|

∫𝐶2

𝑑𝑧𝑤(𝑧)
|

|

|

|

|

≤ ∫

2𝜋

0
𝑑𝑦 |𝑤(𝑅 + 𝑖𝑦)| →

𝑅→∞
0 (72)

and similarly for the integral along 𝐶4. For our function 𝑤(𝑧) we have that
|

|

|

|

|

|

log𝐹min(𝑅 + 𝑖𝑦)

sinh2 1
2 (𝑅 − 𝜃 + 𝑖𝑦)

|

|

|

|

|

|

∼
𝑂(𝑒|𝑅|)
𝑒|𝑅|

→
𝑅→∞

0, (73)

because the MFF has the asymptotic behaviour described above. Therefore, the integral is given by the sum of the horizontal contri-
butions. These contributions are related to each other by the form factor Eq. (11) giving

1
8𝜋𝑖 ∫𝐶

log𝐹min(𝑧)

sinh2 1
2 (𝑧 − 𝜃)

𝑑𝑧 = 1
8𝜋𝑖 ∫

∞

−∞

𝑑𝑥
sinh2 1

2 (𝑥 − 𝜃)
log

𝐹min(𝑥)
𝐹min(𝑥 + 2𝜋𝑖)

= 1
8𝜋𝑖 ∫

∞

−∞

log𝑆(𝑥)

sinh2 1
2 (𝑥 − 𝜃)

𝑑𝑥, (74)

which therefore provides a representation of the derivative of the MFF in terms of the scattering matrix. If the S-matrix admits a 
Fourier series such as (13), then a representation of the type (14) follows immediately.

3.2.  Challenges posed by 𝑇 𝑇̄ -deformations

Consider now an 𝑆-matrix of the type (1) with a CDD factor of the 𝑇 𝑇̄  type as in (2). Let 𝜶(𝜃) be the deformation of the 
corresponding MFF9, as defined by the Eq. (12) whose general solution we wrote in (15). The main property of the CDD factor Φ𝜶(𝜃)
is that, at large rapidities it does not tend to a constant. Therefore in general we have 𝜶(𝜃) ∼ exp (exp 𝑠∗|𝜃|) for Re(𝜃) → ∞ and 𝑠∗ the 
largest spin in the sum (2). This means that if we follow again the Karowski-Weisz construction we find the following asymptotics of 
𝑤(𝑅 + 𝑖𝑦)

|

|

|

|

|

|

log𝜶(𝑅 + 𝑖𝑦)

sinh2 1
2 (𝑅 − 𝜃 + 𝑖𝑦)

|

|

|

|

|

|

∼ 𝑒𝑠∗|𝑅|

𝑒|𝑅|
→

𝑅→∞
𝑒(𝑠

∗−1)|𝑅|. (75)

So we can no longer argue that the vertical contributions to the integral are vanishing. We can think of two ways, possibly related 
to each other, of solving this problem: the first consists in finding an appropriate choice of contour such that the exponential growth 

9 In (15) and (16) we wrote the most general solution to these equations, namely 𝜶(𝜃) = 𝜑𝜶(𝜃)𝐶𝜷 (𝜃).
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of the function on the real axis can be mitigated. The second comes from the freedom given by the equations in (10) regarding the 
choice of the MFF. As noticed in the introduction, we can always multiply a given solution by some function 𝐶𝜷 (𝜃) given by (16). Let 
us call this modified solution ̃𝜶(𝜃). An appropriate choice of this function, which means a choice of the parameters 𝜷, will ensure 
that

|

|

|

|

|

|

log ̃𝜶(𝑅 + 𝑖𝑦)

sinh2 1
2 (𝑅 − 𝜃 + 𝑖𝑦)

|

|

|

|

|

|

∼
𝑂(𝑒|𝑅|)
𝑒|𝑅|

→
𝑅→∞

0. (76)

The additional parameters 𝜷, if chosen wisely, can enforce the double-exponential asymptotics of the MFF [80]. The idea is 
therefore to regularise the usual integral representation by imposing this asymptotics. 

We end this section with an observation. In general, given an integrand 𝐼(𝑧, 𝜃) = log𝑆(𝑧)
sinh2 1

2 (𝑧−𝜃)
 over a contour such that log(𝑆(𝑧)) is 

analytic everywhere inside and on the contour and 𝑧𝑛 is a pole of the denominator, we have that the residue at the pole is given by
Res

(

𝐼(𝑧, 𝜃), 𝑧𝑛
)

= 4𝜕𝑧
[

log𝑆(𝑧)
]

𝑧=𝑧𝑛
. (77)

As observed previously, the poles are exactly at 𝑧𝑛 = 𝜃 + 2𝜋𝑖𝑛, for 𝑛 = 0, 1, 2,…. If we consider again the contour 𝐶 above, including 
the pole at 𝑧0 = 𝜃 we get

∮𝐶
𝑑𝑧 𝐼(𝑧, 𝜃) = 4𝜕𝑧

[

log𝑆(𝑧)
]

𝑧0
. (78)

Instead of deforming the contour we will see in the next section that imposing the asymptotics above is sufficient to find a closed 
solution that fixes the MFF completely. Not coincidentally the term that regularises the integral representation is proportional to 
contributions of the form (78).

3.3.  A solution

The main problem in defining a complete MFF for a generalized 𝑇 𝑇̄ -deformation comes from the distinct properties of the CDD-
factors. We cannot expand them in terms of a Fourier series, therefore we need to start from an integral representation of the type
(74). In practice, it is more convenient to start from an equivalent representation which involves log𝑆(𝑧) explicitly. This kind of 
representation appears in [87]:

𝜌(𝜃) = 1
𝑖𝜋

cosh2 𝜃
2 ∫

∞

0
𝑑𝑡

tanh 𝑡
2 ln𝑆(𝑡)

cosh 𝑡 − cosh 𝜃
, for 0 ≤ Im(𝜃) ≤ 2𝜋. (79)

The integrand reproduces exactly the same pole structure of (69) but it can also be shown to be equivalent to (14) once we invert 
the Fourier transform. Let us consider Φ𝜶(𝜃) as defined in (2). We have 

log𝜶(𝜃) =
1
𝑖𝜋

cosh2 𝜃
2 ∫

∞

0
𝑑𝑡

tanh 𝑡
2 lnΦ𝜶(𝑡)

cosh 𝑡 − cosh 𝜃
= − 1

𝜋
cosh2 𝜃

2
∑

𝑠∈
∫

∞

0
𝑑𝑡

𝛼𝑠 tanh
𝑡
2 sinh 𝑠𝑡

cosh 𝑡 − cosh 𝜃
. (80)

This integral is not convergent because of the asymptotics of the sinh(𝑠𝑡) function, however it can be easily regularised by replacing 
sinh(𝑠𝑡) by −𝑒−𝑠𝑡. This amounts to the regularisation prescription

log𝜶(𝜃) =
1
𝑖𝜋

cosh2 𝜃
2 ∫

∞

0
𝑑𝑡

tanh 𝑡
2

cosh 𝑡 − cosh 𝜃
(

lnΦ𝜶(𝑡) − 𝜕𝑡 ln Φ̂𝜶(𝑡)
)

, (81)

where

ln Φ̂𝜶(𝜃) = −𝑖
∑

𝑠∈2ℤ+−1

𝛼𝑠
𝑠
sinh(𝑠𝜃). (82)

Let us see explicitly how this prescription leads to the same formulae found in the previous section. For |Re(𝜃)| < Re(𝑡) the integrand 
can be expanded as a long-wave expansion in 𝜃 [87,88] giving

cosh2 𝜃
2 tanh

𝑡
2

cosh 𝑡 − cosh 𝜃
=

∞
∑

𝑚=1

[

cosh(𝑚𝜃) + (−1)𝑚+1
]

𝑒−𝑚𝑡. (83)

Consider next the case of a single perturbation of spin 𝑠. We get then

log𝛼𝑠 (𝜃) = −
𝛼𝑠
𝜋

∞
∑

𝑚=1

[

cosh 𝑘𝜃 + (−1)𝑚+1
]

∫

∞

0
𝑑𝑡𝑒−𝑚𝑡 sinh 𝑠𝑡. (84)

We are left with the computation of a simple integral

∫

∞

0
𝑑𝑡𝑒−𝑚𝑡 sinh 𝑠𝑡 = 𝑠

𝑚2 − 𝑠2
, (85)
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which is only well defined away from the simple pole at 𝑚 > 𝑠. This means that we need to regularise the infinite sum in 𝑘 of (83) by 
subtracting the pole. We can do this by modifying (85) to

𝑠
𝑚2 − 𝑠2

− 𝑚
𝑚2 − 𝑠2

= − 1
𝑚 + 𝑠

, (86)

which is equivalent to the prescription (81) for each term in the sum in 𝑠. The regularised version reads

log𝛼𝑠 (𝜃) =
𝛼𝑠
𝜋

∞
∑

𝑚=1

cosh(𝑚𝜃) + (−1)𝑚+1

𝑚 + 𝑠
. (87)

Let us consider carefully the various contributions to this sum, taking care to compare them to the result of Section 2.8. First, we 
have the constant 

∞
∑

𝑚=1

(−1)𝑚+1

𝑚 + 𝑠
= −

∞
∑

𝑚=𝑠+1

(−1)𝑚+1

𝑚
= −

∞
∑

𝑘=1

(−1)𝑚+1

𝑚
+

𝑠
∑

𝑚=1

(−1)𝑚+1

𝑚
= − log 2 + 1

𝑠
+ 𝑐𝑠, (88)

where 𝑐𝑠 is the constant we defined earlier (68) and 𝑠 is odd.
Then we have the sum involving cosh(𝑚𝜃). It is useful to consider the two terms in (86) separately and exclude the problematic 

value 𝑚 = 𝑠. We compute
∞
∑

𝑚=1
𝑚≠𝑠

𝑠 cosh(𝑚𝜃)
𝑚2 − 𝑠2

=
𝑠−1
∑

𝑚=1

𝑠 cosh(𝑚𝜃)
𝑚2 − 𝑠2

+
∞
∑

𝑚=𝑠+1

𝑠 cosh(𝑚𝜃)
𝑚2 − 𝑠2

. (89)

The infinite sum can be computed to
∞
∑

𝑚=𝑠+1

𝑠 cosh(𝑚𝜃)
𝑚2 − 𝑠2

= −
𝑠−1
∑

𝑚=1

𝑠 cosh(𝑚𝜃)
𝑚2 − 𝑠2

+ 1
2𝑠

+
cosh(𝑠𝜃)

4𝑠
− 𝜃 − 𝑖𝜋

2
sinh(𝑠𝜃), (90)

so that
∞
∑

𝑚=1
𝑚≠𝑠

𝑠 cosh(𝑚𝜃)
𝑚2 − 𝑠2

= 1
2𝑠

+
cosh(𝑠𝜃)

4𝑠
− 𝜃 − 𝑖𝜋

2
sinh(𝑠𝜃) . (91)

The other sum in (86) was computed in (64). In addition, we have the 𝑚 = 𝑠 term coming from the cosh(𝑚𝜃) sum in (87) which is 
simply − cosh(𝑠𝜃)

2𝑠  and cancels with contributions from the sums above. Putting everything together with 𝑠 = 2𝑛 − 1 we get

log𝛼2𝑛−1 (𝜃) =
𝜃 − 𝑖𝜋
2𝜋

𝛼2𝑛−1 sinh((2𝑛 − 1)𝜃) +
𝛼2𝑛−1
𝜋

(

− log 2 + 𝑐2𝑛−1
)

(92)

−
𝛼2𝑛−1
𝜋

2𝑛−2
∑

𝑚=1

cosh(𝑚𝜃)
2𝑛 − 1 − 𝑚

−
𝛼2𝑛−1
2𝜋

cosh((2𝑛 − 1)𝜃) log
(

−4 sinh2 𝜃
2

)

.

Compared to the solution (65) without the Ising term, we see that they are identical up to normalisation constants. These are not 
important in applications, since the MFF is ultimately normalised by its value at 𝑖𝜋. Generalising to any number of 𝑇 𝑇̄  perturbations 
and employing the standard normalisation we can write the general formula (17). If we compare this solution to the general formula 
we wrote in [64,66], we have that the 𝜷-dependent part in (16) is now fully fixed to

𝐶𝜷 (𝜃) = 𝐶𝜷 (𝑖𝜋)
∏

𝑠∈2ℤ+−1

⎡

⎢

⎢

⎣

−1
2
𝑒
𝑐𝑠−

𝑠−1
∑

𝑚=1

cosh(𝑚𝜃)
𝑠−𝑚

(

2𝑖 sinh 𝜃
2

)−cosh (𝑠𝜃)⎤
⎥

⎥

⎦

𝛼𝑠
𝜋

. (93)

and 𝜑𝜶(𝜃) is the same function as in (16). This construction can be easily extended to branch point twist fields, which satisfy 
slightly different form factor equations [65,78]. We discuss this generalisation in Appendix B.

4.  Correlation functions and their asymptotic properties

One of the main uses of the form factor program is for the computation of correlation functions of local fields in the ground 
state. Such correlators can be expanded in terms of integrals of the absolute value squared of the form factors. In our papers [64,66] 
we argued that the correlation functions resulting from a MFF where the function 𝜶(𝜃) is chosen as 𝜶(𝜃) = 𝑒

𝜃−𝑖𝜋
2𝜋 𝛼 sinh 𝜃 will contain 

integrals whose integrand contains the absolute value of this function squared, that is, 𝑒 𝛼𝜃
𝜋 sinh 𝜃 . This function grows extremely rapidly 

for |𝜃| large and 𝛼 > 0 and decays extremely rapidly if 𝛼 < 0. Therefore, there are very different physical properties in these two 
regimes, a feature that is (qualitatively) in line with what is expected from the TBA analysis [2].

Consider instead the new function (17). For simplicity, let us take 𝑠 = 1 and 𝛼1 = 𝛼 so that we have a single 𝑇 𝑇̄  perturbation and 
a single perturbation parameter. The absolute value squared gives

|𝜶(𝜃)|2 = |𝜶(𝑖𝜋)|2
[

1
4
𝑒𝜃 sinh 𝜃

(

2 sinh 𝜃
2

)−2 cosh 𝜃]
𝛼
𝜋
, (94)
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and for |𝜃| large we have

|𝜶(𝜃)|2 ∼ |𝜶(𝑖𝜋)|2
[ 1
4
𝑒
𝜃
2 𝑒

𝜃
𝑒−

𝜃
2 𝑒

𝜃 ]
𝛼
𝜋 = |𝜶(𝑖𝜋)|24

− 𝛼
𝜋 , (95)

which is a constant. This is a radically different asymptotics compared to what we described above. This means that the leading 
asymptotics of the MFF is dictated by the asymptotics of the MFF of the unperturbed theory, and little can be said about the short-
distance scaling of correlators if we do not know the full two-particle form factor. However, from the asymptotics we no longer expect 
to see a marked difference between the 𝛼 positive and negative cases.

There is, however, an important difference in the behaviour of the minimal form factor depending on whether 𝛼 > 𝜋 or 𝛼 < 𝜋. In 
particular, if we consider a 𝑇 𝑇̄  perturbation of the Ising field theory so that

|𝐹 Ising
min (𝜃; 𝛼)|2 = |𝐹 Ising

min (𝑖𝜋; 𝛼)|2 sinh2 𝜃
2

[

1
4
𝑒𝜃 sinh 𝜃

|

|

|

|

2 sinh 𝜃
2
|

|

|

|

−2 cosh 𝜃]
𝛼
𝜋

= |𝐹min(𝑖𝜋; 𝛼)|24
− 𝛼

𝜋 𝑒
𝛼𝜃
𝜋 sinh 𝜃|

|

|

|

2 sinh 𝜃
2
|

|

|

|

2(1− 𝛼
𝜋 cosh 𝜃)

, (96)

we see that for 𝛼 < 𝜋 the function has a zero at 𝜃 = 0 while for 𝛼 > 𝜋 it has an (unphysical) pole at 𝜃 = 0. We see these properties 
numerically in Fig. 4. The presence of a zero at 𝜃 = 0 is common with many other IQFTs such as the Ising and sinh-Gordon models. 
However, the presence of a pole is unphysical and is an indication that the critical value 𝛼𝑐 = 𝜋 represents a transition point between 
two quite different theories. Interestingly, this kind of transition also occurs for UV-complete models and can be seen for instance 
when comparing the MFF of the sinh-Gordon model [89] with the MFF of the Lee-Yang theory [90]. Indeed, the 𝑆-matrices of these 
two theories are very similar, yet the MFF of the Lee-Yang model with the standard construction would also have a zero at 𝜃 = 0. A 
resolution of this problem was put forward in [90] which consists of multiplying this “natural” MFF by a function that cancels the 
pole, while still producing a MFF that is consistent with all axioms and asymptotic requirements. This example provides a pathway 
for how to deal with the critical values found above. Further discussion will be presented elsewhere [91].

5.  Conclusion and outlook

In this paper we revisited the problem of computing the two-particle minimal form factor of an integrable quantum field theory 
perturbed by 𝑇 𝑇̄ . Although the basic structure of this MFF has been identified in previous work [64–66,82] for various types of 
fields and theories, uniqueness of the solution had not been established. The main result of the present work is to propose two 
distinct procedures by which the MFF may be fixed unambiguously. We find that the MFF of an IQFT perturbed by 𝑇 𝑇̄  can be 
uniquely determined by requiring a convergent integral representation, which may be expressed as a regularized version of the usual 
integral representation. The expression that emerges from this construction has a smooth behaviour in the limit when the perturbation 
parameter(s) tend to zero and reproduces to the MFF of standard IQFTs (such as the sinh-Gordon model) when the number of irrelevant 
perturbations is infinite and the couplings are suitably chosen (see Appendix A where the sinh-Gordon example is considered). The 
formula is

𝐹min(𝜃;𝜶) = 𝐹min(𝜃)𝜶(𝜃), (97)

where 𝐹min(𝜃) is the MFF of the unperturbed theory and 𝜶(𝜃) is the function (17), which is generalised to (B.8) for branch point 
twist fields [65,78,92] and to √𝜶(2𝜃) for the one-particle MFF of boundary IQFTs [82].

A special feature of our solution is that, in the simple case of a single perturbation, say by 𝑇 𝑇̄ , there exists a critical value 
𝛼 = 𝛼𝑐 above which the MFF develops a pole of order 𝛼𝜋 − 𝜅 at 𝜃 = 0, where 𝜅 is a property of the unperturbed MFF. The existence of a 
“transition” in the physical properties of the model seems reminiscent of what is observed in the thermodynamic Bethe ansatz analysis 
(see e.g. [2,15]), in particular the emergence of a Hagedorn transition at finite temperature. However, there are notable differences 
between the two situations and we think that they are not related. For one, the Hagedorn transition occurs for any negative value of 
𝛼 (with our prescriptions), whereas for our MFF the “transition” happens at a specific, positive value of 𝛼. Secondly, it is well known 
that the Hagedorn transition is particular to the pure 𝑇 𝑇̄  perturbation and absent for higher spins (unless one modifies the driving 
term of the TBA and considers specific generalized Gibbs ensembles, as discussed in [46]). In our case, however, the critical point is 
present for any finite number of perturbations. Perhaps, the most interesting observation is that, as discussed at the end of Section 4 
the presence of a pole at 𝜃 = 0 is a phenomenon that also occurs for some UV-complete theories when their MFFs are constructed via 
the standard integral representation discussed in this paper. The simplest example is provided by the Lee-Yang theory whose MFF 
was constructed in [90]. In this case the naturally occurring singularity at 𝜃 = 0 is cancelled out by simply modifying the MFF by 
a multiplicative factor which has a zero at 𝜃 = 0. We think therefore that it may still be possible to make sense of solutions with 
𝛼 > 𝛼𝑐 by a similar modification of the MFF. How this factor should be chosen for IQFTs perturbed by a finite number of irrelevant 
perturbations is however an issue that needs further discussion. A more detailed discussion can be found in our upcoming work [91].

Although our analysis provides a way to fix the MFF which is reminiscent of the traditional construction of Karowski-Weisz [70], 
it does not make the construction of higher particle solutions any easier. In fact, the correct prescription for computing such solutions 
is still not fully understood. Solving by plugging our new MFF into the standard ansatz for models with a single particle (like sinh-
Gordon [89]) and imposing factorization (as we previously did) leads to solutions which are not only plagued by square-root factors 
(thus, points of nonanalyticity), similar to [64,66], but also lead to a partial cancellation of the MFF in the form factor ansatz (this 
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is discussed in some detail in Appendix A). This second issue was not present in our earlier work because we had set the function 
𝐶𝜷 (𝜃) = 1 in (15) and worked with the simplest possible form of the MFF.

This cancellation suggests that it may not be possible for the kinematic residue equation as it is, the standard form factor ansatz 
with our complete MFF, and the assumption of factorization into a 𝜶-dependent and an undeformed part, to all hold simultaneously. 
As we already discussed in the introduction, the locality properties of the observables are crucial, and specifically the kinematic 
residue equation is underpinned by the notion of locality (or semi-locality). The work [93] sheds some light on the validity of the 
standard form factor program. Using formal algebraic techniques, local observables for IQFTs are built by infinite expansions whose 
coefficients are a sort of generalization of the usual form factors, coinciding with them for certain regions of the arguments. Local 
observables are characterized by the analyticity properties of their expansion coefficients. These coefficients must satisfy a set of 
axioms that correspond exactly to the usual form factor equations. Interestingly, in the conclusion of [93] it is pointed out how this 
result could be “employed to prove non-existence of local observables in the sense of a no-go theorem” by showing that for some 
𝑆-matrices it is impossible to satisfy all the “axioms”.

The CDD-factor (2) is proposed as an example of such an 𝑆-matrix. Indeed the non-existence of local observables in these theories 
was widely conjectured [3,63], based mainly on the failure of known algebraic and form factor methods, but this has never been 
rigorously established. It would be interesting to understand if our constructive approach can be used to prove this statement more 
rigorously.

As shown in Appendix A a factorised ansatz, where the form factor is a product of the unperturbed solution times a function 
of the perturbation parameter, seems extremely natural for 𝑇 𝑇̄ -perturbed theories but is easily shown not to produce the correct 
solutions when considering more standard IQFTs, that is, when considering the case of infinitely many irrelevant perturbations. We 
have checked this explicitly for the sinh-Gordon model, where a factorized ansatz gives solutions that are distinct from those known 
in the literature [89,94,95] and contain square roots, as already discussed (see Appendix A).

Regarding future work, there are at least two avenues opened to us: it may be that there are non-factorized solutions that we 
have just not been able to construct by the usual methods, would probably be highly non-trivial, and are still to be found, or, the 
standard form factor program and in particular the kinematic residue equation, is not valid in its usual form for 𝑇 𝑇̄ -perturbed theories. 
The latter is a very plausible suggestion since giving up the notion of UV completion and locality does away with two of the basic 
underlying principles of the form factor program as originally formulated. Our current work, as well as [64,66], provides a very 
strong indication that the standard FF program may not admit analytic solutions for theories perturbed by 𝑇 𝑇̄ . Even if this is the case, 
it would be interesting to understand how the breakdown of the program takes place (by using perturbative methods, for instance).
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Appendix A.  Revisiting the sinh-Gordon model

A.1.  Factorizing the kinematical pole

The sinh-Gordon model is the simplest IQFT which is also interacting, hence has a non-trivial scattering matrix [96–98]. The 
two-body scattering matrix takes the simple form

𝑆𝜶(𝜃) =
tanh 1

2

(

𝜃 − 𝑖𝜋𝐵
2

)

tanh 1
2

(

𝜃 + 𝑖𝜋𝐵
2

) , (A.1)

where 𝐵 is a coupling constant that takes values between 0 and 2. The value 𝐵 = 1 is known as the self-dual point. Following the 
notation in our introduction we have called this 𝑆-matrix 𝑆𝜶(𝜃). The reason for this is that there is an alternative way of thinking 
about this function, namely as an 𝑆-matrix of the type (1) where 𝑆(𝜃) = −1, corresponding to the Ising field theory (Majorana fermion) 
and

ΦshG
𝜶 (𝜃) = −

tanh 1
2

(

𝜃 − 𝑖𝜋𝐵
2

)

tanh 1
2

(

𝜃 + 𝑖𝜋𝐵
2

) =
sinh 𝜃 − 𝑖 cos 𝑏𝜋

2

sinh 𝜃 + 𝑖 cos 𝑏𝜋
2

= exp

[

−4𝑖
∑

𝑠∈2ℤ+−1
𝑖𝑠+1

cos 𝑠𝜋𝑏
2

𝑠
sinh(𝑠𝜃)

]

, (A.2)

where 𝑏 ∶= 𝐵 − 1. This means in particular that

𝛼2𝑛−1 =
4(−1)𝑛

2𝑛 − 1
cos

(2𝑛 − 1)𝜋𝑏
2

, (A.3)

and plugging these values into (17) provides yet another way to represent the MFF of the sinh-Gordon theory: 

𝐹 shG
min (𝜃;𝜶)

𝐹 shG
min (𝑖𝜋;𝜶)

= −𝑖 sinh 𝜃
2

∏

𝑛∈ℤ+

⎡

⎢

⎢

⎣

−1
2
𝑒
𝜃−𝑖𝜋
2 sinh((2𝑛−1)𝜃)−

2𝑛−2
∑

𝑚=1

cosh(𝑚𝜃)
2𝑛−1−𝑚 + 𝑐2𝑛−1[

2𝑖 sinh 𝜃
2

]−cosh ((2𝑛−1)𝜃)⎤
⎥

⎥

⎦

4(−1)𝑛 cos (2𝑛−1)𝜋𝑏
2

𝜋(2𝑛−1)

. (A.4)

Employing this representation of the sinh-Gordon scattering matrix, it is possible to show that its MFF [80] admits a representation 
of the type (15) where all values of 𝜶 and 𝜷 are fixed by the requirements of analyticity and asymptotics. The exact formula for 
the function 𝐶shG

𝜷 (𝜃) was obtained in [80]. The explicit form of this function is not needed for our current purposes. An important 
property of the MFF of sinh-Gordon is that

𝐹 shG
min (𝜃;𝜶)𝐹

shG
min (𝜃 + 𝑖𝜋;𝜶) = sinh 𝜃

sinh 𝜃 + 𝑖 cos 𝜋𝑏
2

. (A.5)

Our aim is to find higher-particle form factors of the sinh-Gordon model by employing a factorised ansatz. We will start by separating 
the Ising, 𝜶 and 𝜷(𝜶) parts, using 𝐹 Ising

min (𝜃) = −𝑖 sinh 𝜃
2  and10

𝐶shG
𝜷 (𝜃)𝐶shG

𝜷 (𝜃 + 𝑖𝜋) = 2
√

sinh2 𝜃 + cos2 𝜋𝑏
2

= − 2𝑖
√

ΨshG(𝜃)ΨshG(−𝜃)
, (A.6)

𝜑shG
𝜶 (𝜃)𝜑shG

𝜶 (𝜃 + 𝑖𝜋) =
√

ΦshG
𝜶 (𝜃) =

√

√

√

√

√−
sinh 𝜃 − 𝑖 cos 𝜋𝑏

2

sinh 𝜃 + 𝑖 cos 𝜋𝑏
2

, (A.7)

where

ΨshG(𝜃) = sinh 𝜃 + 𝑖 cos 𝜋𝑏
2
, (A.8)

with

ΨshG(𝜃)ΦshG
𝜶 (𝜃) = ΨshG(−𝜃) . (A.9)

It is well known that the formula (A.5) plays a critical role in determining the higher-particle form factors. Writing it in the factorised 
form above allows us to separate the contributions related to the 𝜶 parameters, 𝜷 = 𝜷(𝜶) parameters and the unperturbed theory, 
parameters which are inherited from the representation (16). We will now “track” these separate contributions into the structure of 
higher-particle form factors and investigate what they reveal about the form factors of 𝑇 𝑇̄ -perturbed theories.

10 From [80] it is interesting to note that only the terms involving 𝛽𝑠 with 𝑠 even contribute to obtaining the property (A.5). This excludes all terms 
involving dilogarithm functions. Note also that compared to [80] we included an extra multiplicative factor 

√

2 into the definition of 𝐶shG
𝜷 (𝜃).
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A.2. 𝑇 𝑇̄ -like solution of the sinh-Gordon model

Typically, the form factors of a field , defined in (3) have the structure

𝐹
𝑛 (𝜃1,… , 𝜃𝑛;𝜶) = 𝐻

𝑛 (𝜶)𝑄

𝑛 (𝜃1,… , 𝜃𝑛;𝜶)

∏

𝑖<𝑗

𝐹min(𝜃𝑖𝑗 ;𝜶)

𝑒𝜃𝑖 + 𝑒𝜃𝑗
, (A.10)

where 
𝑄

𝑛+2(𝜃 + 𝑖𝜋, 𝜃, 𝜃1,… , 𝜃𝑛;𝜶) = 𝐺𝑛(𝜃, 𝜃1,… , 𝜃𝑛;𝜶, 𝜷)𝑄
𝑛 (𝜃1,… , 𝜃𝑛;𝜶) . (A.11)

In the sinh-Gordon case we have the structure (normalisation constants can be absorved into the equation for the constants 𝐻
𝑛 (𝜶))

𝐺𝑛(𝜃, 𝜃1,… , 𝜃𝑛;𝜶) ∶= 𝑖𝑛𝑒(𝑛+1)𝜃
𝑛
∏

𝑗=1
𝑒𝜃𝑗

( 𝑛
∏

𝑗=1

√

ΨshG(𝜃 − 𝜃𝑗 )ΨshG(𝜃𝑗 − 𝜃)

)

×

[ 𝑛
∏

𝑗=1
ΦshG

𝜶 (𝜃 − 𝜃𝑗 )
− 1

2 − 𝛾(−1)𝑛
𝑛
∏

𝑗=1
ΦshG

𝜶 (𝜃 − 𝜃𝑗 )
1
2

]

. (A.12)

Employing the property (A.9) and the fact that Φ𝜶(𝜃) = (Φ𝜶(−𝜃))−1 (by unitarity) we can rewrite 

𝐺𝑛(𝜃, 𝜃1,… , 𝜃𝑛;𝜶, 𝜷) = 𝑖𝑛𝑒(𝑛+1)𝜃
𝑛
∏

𝑗=1
𝑒𝜃𝑗

[ 𝑛
∏

𝑗=1
ΨshG(𝜃 − 𝜃𝑗 ) − 𝛾(−1)𝑛

𝑛
∏

𝑗=1
ΨshG(𝜃𝑗 − 𝜃)

]

. (A.13)

These equations are equivalent to those presented in [89] and [94]. Proceeding in this way allows us also to see how the square 
roots present in the form (A.12) are absent when combining the 𝜶 and 𝜷 factors together in the sinh-Gordon model case. If we stick 
with the representation (A.12) though we have a neat separation into three different contributions: the factor 𝑒(𝑛+1)𝜃 ∏𝑛

𝑗=1 𝑒
𝜃𝑗  is the 

contribution from the Ising field theory, the next factor incorporates the 𝜷 dependence and the factor in the second line incorporates 
the 𝜶 dependence and, as expected, is of exactly the type found for generalised 𝑇 𝑇̄ -perturbed theories [64,65]. Mixing the 𝜶 and 𝜷
factors together with the Ising factors gives the standard solutions for the sinh-Gordon operator content. We will see in the following 
that instead, imposing factorization we end up with different solutions even though the S-matrix is still the sinh-Gordon one.

A.3.  A factorized solution

Therefore, it is natural to try to find solutions to these equations using the same methodology as in [64,65]. We make a solution 
ansatz stating that the sinh-Gordon form factors of some “local” field factorize as the form factors of an Ising field theory times a 
𝜶-dependent part. Furthermore, contrary to our treatment in [64,65] where we considered the case with all 𝛽𝑖 = 0, in the sinh-Gordon 
model we have parameters 𝛽𝑖 entering the MFF, so we need a more general ansatz. Again, we assume further factorisation into an 
𝜶-dependent and 𝜷-dependent part. We write

𝑄
𝑛 (𝜃1,… , 𝜃𝑛;𝜶) = 𝑄

𝑛 (𝜃1,… , 𝜃𝑛)Θ
𝑛 (𝜃1,… , 𝜃𝑛;𝜶)Ξ

𝑛 (𝜃1,… , 𝜃𝑛; 𝜷(𝜶)), (A.14)

Where

𝑄
𝑛+2(𝜃 + 𝑖𝜋, 𝜃, 𝜃1,… , 𝜃𝑛) = 𝑒(𝑛+1)𝜃

[ 𝑛
∏

𝑗=1
𝑒𝜃𝑗

]

𝑄𝑛(𝜃1,… , 𝜃𝑛), (A.15)

which (up to normalisation) is the equation for the Ising form factors of the order field 𝜇 (for 𝑛 even) and for the disorder field 𝜎 (for 
𝑛 odd) [73]. The solution to this equation, or rather, the full form factors are very simple and proportional to he product ∏𝑖<𝑗 tanh

𝜃𝑖𝑗
2

which automatically incorporates the denominator 𝑒𝜃𝑖 + 𝑒𝜃𝑗  in (A.10). The next equation of interest is

Θ
𝑛+2(𝜃 + 𝑖𝜋, 𝜃, 𝜃1,… , 𝜃𝑛;𝜶) =

[ 𝑛
∏

𝑗=1
Φ𝛼(𝜃 − 𝜃𝑗 )

− 1
2 − 𝛾(−1)𝑛

𝑛
∏

𝑗=1
Φ𝛼(𝜃 − 𝜃𝑗 )

1
2

]

Θ
𝑛 (𝜃1,… , 𝜃𝑛;𝜶), (A.16)

which satisfies the generalised 𝑇 𝑇̄  form factor equation discussed and solved in [64,65]. The general solution reads 

Θ
𝑛 (𝜃1,… , 𝜃𝑛;𝜶) =

𝑛
∏

𝑖=1

√

√

√

√

√

√

√

√

√

𝑛
∏

𝑗=1
𝑆𝜶(𝜃𝑖𝑗 )1∕2 − 𝛾

𝑛
∏

𝑗=1
𝑆𝜶(𝜃𝑖𝑗 )−1∕2

𝑛
∏

𝑗=1
𝑆(𝜃𝑖𝑗 )1∕2 − 𝛾

𝑛
∏

𝑗=1
𝑆(𝜃𝑖𝑗 )−1∕2

, (A.17)

as shown in [66]. The 𝜷-dependent recursive equation instead reads

Ξ
𝑛+2(𝜃 + 𝑖𝜋, 𝜃, 𝜃1,… , 𝜃𝑛; 𝜷(𝜶)) = 𝑖𝑛

[ 𝑛
∏

𝑗=1

√

ΨshG(𝜃 − 𝜃𝑗 )ΨshG(𝜃𝑗 − 𝜃)

]

Ξ
𝑛 (𝜃1,… , 𝜃𝑛; 𝜷(𝜶)) . (A.18)

Like in the Ising model and in its deformed version, we expect to have different sectors dictated by the ℤ2 symmetry: either “even” 
fields such as the order field 𝜇 and the energy field 𝜀 and “odd” fields, such as 𝜎. Their counterparts in the sinh-Gordon model, which 
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also possesses this symmetry, should at least be in the same symmetry sector, with the fundamental sinh-Gordon field 𝜙 in the “odd” 
sector and the trace of the stress-energy tensor in the “even” sector. Anyway, we notice that the factor of local commutativity do not 
enters Eq. (A.18). A solution to this equation is relatively easy to find, namely

Ξ
𝑛 (𝜃1,… , 𝜃𝑛; 𝜷(𝜶)) = 𝑣𝑛

𝑛
∏

𝑖=1

𝑛
∏

𝑗=1

4
√

ΨshG(𝜃𝑖𝑗 ), (A.19)

where 𝑣𝑛 is a normalisation constant which satisfies

𝑣𝑛+2 = cos 𝜋𝑏
2

𝑣𝑛, (A.20)

which, depending on whether 𝑛 is even or odd gives solutions

𝑣2𝑘 =
(

cos 𝜋𝑏
2

)𝑘
𝑣0 and 𝑣2𝑘+1 =

(

cos 𝜋𝑏
2

)𝑘−1
𝑣1 . (A.21)

In addition to this, if we specialise to 𝑛 = 2𝑘 + 1 odd and 𝛾 = 1, we get for the 𝜶-dependent part

Θ
2𝑘+1(𝜃1,… , 𝜃2𝑘+1;𝜶) =

1

2𝑘
√

2

2𝑘+1
∏

𝑖=1

√

√

√

√

√

2𝑘+1
∏

𝑗=1
ΦshG

𝜶 (𝜃𝑖𝑗 )1∕2 +
2𝑘+1
∏

𝑗=1
ΦshG

𝜶 (𝜃𝑖𝑗 )−1∕2, (A.22)

and similarly for 𝑛 even and 𝛾 = −1. This expression is rather complicated and there is no immediately obvious way to simplify it. In 
our example, we have in addition that ΦshG

𝜶 (𝜃)ΦshG
𝜶 (−𝜃) = 1 so we can rewrite the formula in several equivalent ways. For example, 

𝑛
∏

𝑖=1

√

√

√

√

𝑛
∏

𝑗=1
ΦshG

𝜶 (𝜃𝑖𝑗 )1∕2 +
𝑛
∏

𝑗=1
ΦshG

𝜶 (𝜃𝑗𝑖)1∕2 =
𝑛
∏

𝑖=1

√

√

√

√1 +
𝑛
∏

𝑗=1
ΦshG

𝜶 (𝜃𝑗𝑖) . (A.23)

It seems therefore that it is possible to consistently solve the form factor equations by assuming factorisation, but the resulting 
solutions are distinct from those previously found and contain square roots.

A.4.  Another solution

We could instead assume factorisation but separate only the Ising part from the rest. That is, instead of (A.14) we now have
𝑄

𝑛 (𝜃1,… , 𝜃𝑛;𝜶) = 𝑄
𝑛 (𝜃1,… , 𝜃𝑛)Γ𝑛 (𝜃1,… , 𝜃𝑛;𝜶), (A.24)

If we specialise to the sector 𝛾𝜇 = −1 and with a sum over even particle numbers, we get

Γ⨘2𝑛+2(𝜃 + 𝑖𝜋, 𝜃, 𝜃1,… , 𝜃2𝑛;𝜶) =

[ 2𝑛
∏

𝑗=1
ΨshG(𝜃 − 𝜃𝑗 ) +

2𝑛
∏

𝑗=1
ΨshG(𝜃𝑗 − 𝜃)

]

Γ⨘2𝑛(𝜃1,… , 𝜃2𝑛;𝜶) . (A.25)

To solve this equation, we just need the property ΨshG(𝜃𝑖𝑗 + 𝑖𝜋) = ΨshG(𝜃𝑗𝑖) and we find the solution

Γ⨘2𝑛(𝜃1,… , 𝜃2𝑛;𝜶) = 𝐶2𝑛

∏2𝑛
𝑖=1

√

∏2𝑛
𝑗=1 ΨshG(𝜃𝑖𝑗 ) +

∏2𝑛
𝑗=1 ΨshG(𝜃𝑗𝑖)

∏

𝑖<𝑗
4
√

ΨshG(𝜃𝑖𝑗 )ΨshG(𝜃𝑗𝑖)
. (A.26)

with 𝐶2𝑛 a constant. Once more the solution involves roots which do not cancel out and therefore it is distinct from the usual solutions 
for the sinh-Gordon model. In addition, the factor in the denominator can be shown to cancel part of the contribution coming from 
the product of MFFs. It seems clear that the Ising part of the MFF and the rest must be considered together in order to solve the 
kinematic residue equation.

Appendix B.  Generalisation to branch point twist fields

In this Appendix we present a generalisation of the results of Section 3.3 to the case of branch point twist fields [65,78]. For our 
purposes, the starting point is the integral representation

log𝐹min(𝜃; 𝑛) =
1
𝑖𝜋𝑛

cosh2 𝜃
2𝑛 ∫

∞

0
𝑑𝑡

tanh 𝑡
2𝑛 ln𝑆(𝑡)

cosh 𝑡
𝑛 − cosh 𝜃

𝑛

, for 0 ≤ Im(𝜃) ≤ 2𝜋𝑛 (B.1)

which reduces to (79) for 𝑛 = 1. Again, we can obtain this representation by inverting the Fourier transform of the 𝑆-matrix, that is, 
by expressing the kernel 𝑔(𝑡) in terms of the Fourier transform of ln𝑆(𝑡) in the usual representation (see [78]). As we did earlier, let 
us consider the deformation of the MFF resulting from a generalised 𝑇 𝑇̄  perturbation in its regularised form

log𝜶(𝜃; 𝑛) =
1
𝑖𝜋𝑛

cosh2 𝜃
2𝑛 ∫

∞

0
𝑑𝑡

tanh 𝑡
2𝑛

cosh 𝑡
𝑛 − cosh 𝜃

𝑛

(

lnΦ𝜶(𝑡) − 𝜕𝑡 ln Φ̂𝜶(𝜃)
)

, (B.2)
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where Φ̂𝜶(𝜃) is the function defined in (82). Expanding for small |𝜃| we can write
cosh2 𝜃

2𝑛 tanh
𝑡
2𝑛

cosh 𝑡
𝑛 − cosh 𝜃

𝑛

=
∞
∑

𝑚=1

[

cosh 𝑘𝜃
𝑛

+ (−1)𝑚+1
]

𝑒−𝑚
𝑡
𝑛 , (B.3)

which when substituting in (B.2) gives the simple integral

∫

∞

0
𝑑𝑡𝑒−𝑡(

𝑚
𝑛 +𝑠) = − 1

𝑚
𝑛 + 𝑠

. (B.4)

The resulting contribution for a given spin 𝑠 is

log𝛼𝑠 (𝜃; 𝑛) =
𝛼𝑠
𝜋

∞
∑

𝑚=1

cosh 𝑚𝜃
𝑛 + (−1)𝑚+1

𝑚 + 𝑠 𝑛
. (B.5)

The sum can be performed as before and it gives a solution, with the structure found in [65,92], namely 
∞
∑

𝑚=1

cosh 𝑚𝜃
𝑛

𝑚 + 𝑠𝑛
= 𝜃 − 𝑖𝜋𝑛

2𝑛
sinh(𝑠𝜃) − 1

2
log

(

−4 sinh2 𝜃
2𝑛

)

cosh(𝑠𝜃) −
𝑛𝑠−1
∑

𝑚=0

1
𝑛𝑠 − 𝑚

cosh 𝑚𝜃
𝑛

, (B.6)

and the constant is
∞
∑

𝑚=1

(−1)𝑚+1

𝑚 + 𝑠𝑛
=

∞
∑

𝑚=𝑠𝑛+1

(−1)𝑚+𝑠𝑛+1

𝑚
= (−1)𝑠𝑛

∞
∑

𝑚=1

(−1)𝑚+1

𝑚
+ 1

𝑠𝑛
− (−1)𝑠𝑛𝑐𝑠𝑛

= (−𝑠)𝑠𝑛 log 2 + 1
𝑠𝑛

− (−1)𝑠𝑛𝑐𝑠𝑛 . (B.7)

where 𝑐𝑠𝑛 is the constant defined in (68). In summary, normalising 𝜶(𝜃; 𝑛) by its value at 𝜃 = 𝑖𝜋𝑛 we can write

𝜶(𝜃; 𝑛)
𝜶(𝑖𝜋𝑛; 𝑛)

=
∏

𝑠∈2ℤ+−1

⎡

⎢

⎢

⎣

− 1
2(−1)𝑠𝑛

𝑒
𝜃−𝑖𝜋𝑛
2𝑛 sinh(𝑠𝜃)−

𝑛𝑠−1
∑

𝑚=1

cosh 𝑚𝜃
𝑛

𝑛𝑠−𝑚 +(−1)𝑛𝑠𝑐𝑠𝑛(
2𝑖 sinh 𝜃

2𝑛

)−cosh (𝑠𝜃)⎤
⎥

⎥

⎦

𝛼𝑠
𝜋

. (B.8)

Setting 𝑛 = 1 we recover the solution (17). The formulae above can be easily generalized to real 𝑛 (as opposed to 𝑛 integer) by 
introducing integer part symbols in some of the summation limits. 
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