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 A B S T R A C T

The presence of entrapped gas in liquids is well-documented, arising from gas solubility, surface irregularities, 
or prior phase-change events. In this study, simulations are carried out replicating an experiment involving a 
Mach 2.4 Planar shock interacting with a cylindrical water column, and the results are benchmarked against 
experimental pressure measurements in which the presence of entrapped air is reported. The liquid droplet 
is modelled as a homogeneous mixture of liquid and gas using a multiphase flow framework, and a novel 
relaxation approach is introduced to capture non-equilibrium effects within the mixture region. The effects 
of Gaseous Volume Fraction (GVF) and relaxation rate on shock attenuation, wave propagation speed, and 
cavitation are explored. The results reveal that increasing GVF enhances shock attenuation and slows down 
the wave propagation speed due to the mixture’s higher compressibility. A non-monotonic relationship between 
relaxation rate and pressure peak intensity is observed, governed by the effect of the relaxation rate on shock 
diffusivity, with maximum attenuation occurring at intermediate rates. At high GVF, the low wave propagation 
speed leads to an interaction between the shocks formed internally and around the droplet, which suppresses 
the rarefaction wave formation. Regarding cavitation, results indicate that lower GVF promotes stronger gas 
growth due to less shock attenuation. Finally, this study provides a physical explanation for the temporal 
pressure variations reported in prior numerical works and highlights the critical role of entrapped gas in 
shock–droplet interaction dynamics.
1. Introduction

Shock–droplet interactions occur in a wide range of engineering 
configurations and natural environments. In the aerospace sector, these 
phenomena are encountered in high-speed flight through rain, such as 
atmospheric reentry vehicles (Ando, 2010; Kim and Hermanson, 2012), 
where raindrops interacting with shock waves under extreme condi-
tions can lead to implications on structural integrity (Kondo and Ando, 
2019; Marzbali and Dolatabadi, 2020; Moylan et al., 2013). In super-
sonic and hypersonic propulsion systems such as scramjets, ramjets, 
and rotating detonation engines, shock–droplet dynamics significantly 
influence fuel injection, atomisation and combustion processes (Liu 
et al., 2018; Meng and Colonius, 2015; Malik et al., 2022; Rossano 
and De Stefano, 2025; Viqueira-Moreira et al., 2023). Similarly, in 
liquid rocket engines, the interaction between shockwaves and injected 
propellant droplets is a key parameter for combustion efficiency (Song 
et al., 2023b). Automotive and heavy-duty engines equipped with high-
pressure fuel injection systems also experience droplet velocities reach-
ing supersonic regimes, leading to relevant shock interactions (Song 
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et al., 2023a; Wei et al., 2023). Beyond traditional propulsion and 
mechanical systems, such interactions are exploited in biomedical con-
texts such as ultrasonic therapy (Coralic, 2015; Shpak et al., 2016; 
Johnsen and Colonius, 2009), and in advanced laser-based applica-
tions including bioprinting of 3D tissue structures (Kryou et al., 2021; 
Erfanian et al., 2024), controlled drug delivery (Sun et al., 2022), 
micromachining of hard materials (López López et al., 2016), laser 
cleaning (López López et al., 2017), and surface nanostructuring for 
nanolithography (Chang et al., 2016). Of particular interest to the 
present study is the primary stage of the interaction and the onset of 
cavitation within droplets upon shock impact, as this, can significantly 
alter interfacial dynamics and fragmentation processes.

Despite the extensive literature for droplet breakup regimes
(Wierzba and Takayama, 1988; Joseph et al., 1999; Guildenbecher 
et al., 2009; Theofanous, 2011; Lee and Reitz, 2000; AalbVurg et al., 
2003; Kékesi et al., 2014; Meng and Colonius, 2018; Theofanous and 
Li, 2008; Theofanous et al., 2012), experimental investigations into 
the initial phase of shock–droplet interaction remain scarce. Among 
https://doi.org/10.1016/j.ijmultiphaseflow.2025.105478
Received 2 July 2025; Received in revised form 27 September 2025; Accepted 7 O
vailable online 10 October 2025 
301-9322/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
ctober 2025

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/ijmulflow
https://www.elsevier.com/locate/ijmulflow
https://orcid.org/0009-0007-9555-6720
https://orcid.org/0000-0002-5449-5921
https://orcid.org/0000-0001-9025-2866
mailto:Sotirios.Damianos@city.ac.uk
https://doi.org/10.1016/j.ijmultiphaseflow.2025.105478
https://doi.org/10.1016/j.ijmultiphaseflow.2025.105478
http://creativecommons.org/licenses/by/4.0/


S. Damianos et al. International Journal of Multiphase Flow 194 (2026) 105478 
the limited studies available, Sembian et al. (2016) provided direct 
experimental evidence of cavitation occurring during the early stages of 
shock–droplet interaction. By confining the liquid between two parallel 
plates, resulting in a cylindrical water column and employing high-
speed imaging and pressure transducers, they visualised and quantified 
the pressure wave dynamics within the liquid volume. Moreover, the 
formation of tension regions that triggered cavitation was identified. 
Similar observations have been reported in the context of droplet–wall 
impacts (Field et al., 1989, 2012; Obreschkow et al., 2011) where rapid 
deceleration and reflected waves also induce cavitation. Finally, (Liang 
et al., 2020) experimentally investigated water droplets embedded with 
a vapour cavity and observed the emergence of a transverse jet from 
the upstream interface, which impinged on the downstream interface. 
This highlighted the significant impact of the bubble’s presence within 
the liquid droplet.

Several theoretical studies have been developed to investigate the 
complex wave dynamics in such configurations. Biasiori-Poulanges and 
El-Rabii (2021) used ray-tracing to model wave propagation within 
droplets, revealing time-dependent wavefront shapes characterised by 
cusp singularities formed through wave focusing, and providing para-
metric equations for confined wavefront surfaces. Building upon this 
framework, Xu et al. (2023) analysed the spatio-temporal evolution 
of planar, cylindrical converging, and diverging shocks. They showed 
that converging shocks intensify negative pressure zones and pressure 
oscillations, thereby increasing the likelihood of cavitation manifesta-
tion. Xiong et al. (2024) further refined these models using a multiphase 
solver coupled with ray-tracing, categorising the pressure evolution in 4 
different stages: shock, fluctuation, relaxation, and expansion. Finally, 
it was shown that the location of the pressure wave focal point and 
the maximum negative pressure (NPP) point may diverge, particularly 
under high propagation speed differences between gas and liquid.

Turning to numerical studies, relevant 2D investigations are fo-
cusing on the primary stage of shock droplet interaction. Biasiori-
Poulanges and Schmidmayer (2023) proposed a multi-material frame-
work assuming heterogeneous cavitation, which incorporates the phys-
ical expansion of nuclei and phasic interactions parametrised by a 
relaxation rate. Their results demonstrated that pressure equilibrium 
models tend to overpredict cavitation intensity. Building upon this 
model, Schmidmayer and Biasiori-Poulanges (2023) showed that cav-
itation is inherently less probable to occur in spherical droplets than 
in cylindrical water columns. They further defined distinct regimes of 
cavitation intensity relative to shock strength. Specifically, exponential 
bubble growth was reported for Mach numbers below 4.38 and a 
linear growth for higher values; this was linked to the transition of the 
transmitted shock front from concave to convex. Besides, Jiao et al. 
(2024) examined how gas cavity size and eccentricity influence wave 
dynamics, jetting and cavity collapse, integrating real-fluid thermody-
namics closure models. Despite these advances, 3D simulations with 
robust phase-change modelling remain scarce. Forehand et al. (2023) 
conducted one such study using a VOF solver, comparing two mass 
transfer models, revealing significantly enhanced wave focusing in 3D 
geometries but unrealistically low vapour formation. Finally, Nguyen 
et al. (2024) demonstrated that the onset of cavitation can alter the 
intensity of pressure waves following the reflection of the transmitted 
wave.

Despite the growing body of numerical studies on the primary 
stage of shock–droplet interactions, significant discrepancies remain 
between measured and simulated pressure fields, particularly regarding 
peak amplitudes, shock attenuation, and the arrival times of pressure 
waves at specific locations within the liquid volume. In their exper-
imental campaign, Sembian et al. (2016) reported the presence of 
microbubbles within the liquid bulk during pressure measurements. 
While some studies account for nuclei within the droplet, their assumed 
concentrations are typically very low and serve merely as constraints 
within cavitation models, thereby failing to capture their potential 
influence on shock propagation (Forehand et al., 2023; Nguyen et al., 
2 
2024; Biasiori-Poulanges and Schmidmayer, 2023; Schmidmayer and 
Biasiori-Poulanges, 2023). Therefore, to date, no study has systemati-
cally investigated the role of dispersed gaseous phase within the liquid 
volume on the shock propagation in the primary stage of shock droplet 
interaction, despite it being a common phenomenon.

All liquids contain some dissolved gas, as they naturally absorb 
O2, N2, and CO2 from the air according to Henry’s law, and it is 
virtually impossible to completely eliminate them from any substantial 
liquid volume (Brennen, 2013). Shatalov et al. (2011) reported that 
air dissolved in water can form nano- and micro-bubbles, and that 
changes in external conditions can stimulate their emergence, growth, 
and coalescence. In a subsequent study, Shatalov et al. (2013) also 
stated that microbubbles spontaneously form in water, which under 
normal conditions contains approximately 2 vol% of dissolved gases. 
In addition, microbubbles can also originate from gas pockets trapped 
in surface crevices, rough textures, or on suspended particles such as 
dust or sediment (Scardina and Edwards, 2009). Repeated cavitation 
events can further contribute by releasing additional microbubbles 
into the liquid, effectively generating new nuclei (Bussonnière et al., 
2020). Battistoni et al. (2015) and Gomez Santos et al. (2021) noted 
that liquid fuels often contain dissolved gases, which can flash out 
during pressure drops or the onset of cavitation. As a result, fuel and 
spray droplets may carry entrained gas, influencing their breakup and 
collapse dynamics. Giannadakis et al. (2008), also in the context of 
injection applications, reported that the initial gaseous volume fraction 
typically ranges from 0.01% to 0.5%. In spray cooling, Nguyen et al. 
(2024) experimentally demonstrated that droplets rebounding from a 
surface can encapsulate microscopic air bubbles, which subsequently 
oscillate and alter droplet behaviour. Similarly, Goyal et al. (2020) 
stated that raindrops can capture tiny air pockets during formation 
and impact. In biomedical ultrasonics and lithotripsy, gas nuclei are 
well documented and are known to significantly influence shock wave 
dynamics (Alavi Tamaddoni et al., 2019; Kung et al., 2020). Finally, 
in oversaturated conditions, droplets that have not yet vapourised may 
contain significant vapour volumes within the liquid bulk.

This is the first study investigating the effect of air, uniformly 
entrapped within the liquid volume, on wave propagation and cavi-
tation dynamics during the initial stage of shock–droplet interaction. 
The form and topology of the air within the droplet are not explicitly 
resolved; instead, the air is assumed to exist at a subgrid scale and is 
modelled as a diluted phase forming a uniform mixture with the liquid 
phase. For the phasic interactions within this area, a novel relaxation 
approach is employed, which incorporates non-equilibrium dynamics in 
the system solution. The simulated pressure curves are compared with 
experimental measurements and other numerical studies, specifically in 
terms of peak amplitudes and wave speed. Particular emphasis is placed 
on the role of the relaxation rate, which defines the level of interaction 
between the two phases, and its influence on shock propagation for 
various conditions. In addition, the growth of the gaseous phase in 
response to the tension region is examined for various initial gas 
volume fractions. Finally, since entrapped air was also present in the 
experimental setup, this study offers a physical explanation for key dis-
crepancies observed between numerical predictions and experimental 
pressure profiles.

2. Case description

The experimental configuration reported by Sembian et al. (2016) 
is adopted in this study. Specifically, a cylindrical water column with 
a diameter of 22 mm is assumed to interact with a Mach 2.4 shock 
wave, as illustrated in Fig.  1. Pressure measurements within the droplet 
have been obtained via two sensors positioned at 5 mm and 18 mm, 
respectively.

In the numerical simulations, these sensors are considered with 
a diameter of 5.54 mm, and pressure values are surface-averaged to 
align with the experimental measurement technique. Fig.  2(a) presents 
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Fig. 1. Schematic representation of the investigated case. The background 
mesh shows the locations of the constant-length cells, which are later refined 
in the mesh-independence study.

a visualisation combining numerical schlieren images and pressure 
contours at the top and bottom of each panel, respectively. The former 
is used for tracking the shock front, while the latter for distinguishing 
compressive from expansive (rarefaction) waves. At the same time, Fig. 
2(b) compares the pressure distribution as computed in the experimen-
tal results with recently published studies for this configuration (Sem-
bian et al., 2016; Xu et al., 2023; Xiong et al., 2024; Forehand et al., 
2023).

Once the shock impacts the droplet’s surface, a compression wave 
is transmitted into the liquid, inducing an initial pressure rise at the 
location of the first sensor (1st Peak). The wave propagates and reaches 
the rear sensor, inducing a second pressure peak at 𝑡 = 13.75 μs
(2nd peak). At the same time, shock reflections form at the droplet’s 
boundaries. As the transmitted shock reaches the rear of the droplet, it 
gives rise to a reflected wave that travels in the opposite direction. Due 
to the significant acoustic impedance difference between the droplet 
and the surrounding air, the droplet interface acts nearly as a perfect 
reflector, converting the incident shock into a rarefaction wave.

The droplet’s concave geometry causes the rarefaction wave to focus 
at a specific point (𝑡 = 20 μs), creating a significant pressure drop, which 
promotes cavitation (negative peak). The wave then reflects from this 
focal point and continues in a horseshoe pattern (𝑡 = 22.5 μs), eventually 
reaching the first sensor location (𝑡 = 27.5 μs), resulting in a local 
pressure drop. Finally, the wave reflects again at the droplet’s front 
surface, now as a compression wave, and focuses near the first sensor, 
generating a third pressure peak (𝑡 = 35 μs).

The distinct pressure peaks recorded by the sensors will be referred 
to hereafter as first, second, and third, according to their chronological 
occurrence. The first peak corresponds to the initial rise detected by 
the front sensor. The second peak represents the first rise at the rear 
sensor, while the third peak denotes the second rise at the front sensor, 
resulting from the second reflection of the wave. The negative peak 
refers to the tensile region formed near the rear sensor due to the 
focusing of the rarefaction wave.

Analysis of the numerical results presented in Fig.  2(b) reveals 
that all models capture the initial pressure peak with good accuracy. 
However, they tend to overestimate the magnitude of the second peak, 
indicating an underestimation of shock attenuation. This leads to an ex-
aggerated prediction of the negative pressure peak and, consequently, 
unrealistic cavitation growth. Furthermore, a pronounced third peak 
is computed in simulations, which lacks experimental support. Finally, 
discrepancies in the timing of the second, third, and negative peaks are 
also evident.

3. Methodology

To simulate the shock-droplet interaction in the above configu-
ration, an implementation of a Diffuse Interface Model (DIM) was 
3 
used. To resolve the dynamic topology of the material interfaces as 
described by the DIM volume fraction, high-order interpolations and 
mesh refinement at the interfaces are employed. To this end, the 
Forest of oct-trees Adaptive Mesh Refinement (AMR) framework for 
unstructured hybrid meshes (Papoutsakis et al., 2020, 2018, 2014) 
was used. This approach allows for the on-the-fly refinement of the 
grid to self-similar cells to an arbitrary level. The connectivity of the 
elements, their genealogy, and their partitioning dynamically adapt to 
the emerging moving structures. Finally, the domain decomposition is 
dynamically balanced by deallocating and communicating spawn trees 
in new partitions.

Saurel’s six-equation model (Saurel et al., 2009) is employed, which 
assumes velocity equilibrium between phases while allowing for pres-
sure and thermal non-equilibrium effects. The approach extends the 
simplified five-equation framework (Kapila et al., 2001) to ensure 
positivity of the volume fraction, maintain a monotonic behaviour of 
the speed of sound, and address the derivation difficulties that arise 
when considering both phases (Pelanti and Shyue, 2014; Saurel et al., 
2009). The model incorporates mass and energy conservation equations 
for each phase, a single momentum equation for the mixture and 
a transport equation for the volume fraction of the liquid phase. In 
addition, a seventh equation is solved to ensure conservation of the 
mixture’s total energy. This equation addresses inconsistencies between 
the sum of the phasic energies and the total mixture energy, which 
arise from the non-conservative part of the phasic energy equations. 
The system of the governing equations written in vector form is given 
by: 
𝜕𝐔
𝜕𝑡

+ ∇ ⋅ 𝐅 (𝐔) +𝐇 (𝐔) ∇ ⋅ 𝐮 + 𝐒𝐬𝐭𝐫 (𝐔) = 𝐒𝐫𝐥𝐱 (𝐔) (1)

where 𝐔 is the state vector, 𝐅 is the flux vector, and 𝐇 corresponds to 
the source terms arising from the non-conservative transport variables 
(i.e. volume fraction and phasic energy). The term 𝐒𝐬𝐭𝐫 accounts for the 
effect of the non-conservative stress tensor on phasic energy, while 𝐒𝐫𝐥𝐱
represents the source terms associated with the relaxation process, thus:

𝐔 =
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Here, 𝑎𝑘 represents the volume fraction of phase 𝑘, 𝑘 = 1, 2
(

𝑎1 + 𝑎2
)

= 1. The phasic density, pressure, and temperature are given by 𝜌𝑘, 𝑃𝑘
and 𝑇𝑘, respectively. The phasic internal energy is expressed as 𝑒𝑘 =
𝐸𝑘 − 1∕2𝑢2 where 𝐸𝑘 is the total phasic energy. The mixture pressure, 
temperature, density and total Energy are given by 𝑃 = 𝑎1𝑃1 + 𝑎2𝑃2, 
𝑇 = 𝑎1𝑇1 + 𝑎2𝑇2, 𝜌mix = 𝑎1𝜌1 + 𝑎2𝜌2 and 𝐸 = 𝑎1𝐸1 + 𝑎2𝐸2, respectively. 
Additionally, the velocity vector is represented as 𝐮 = (𝑢, 𝑣,𝑤).

The stress tensor 𝝉 is given by 𝝉 = 𝜇
[

∇𝐮 + (∇𝐮)𝑇
] where 𝜇 is the 

mixture viscosity defined as 𝜇 = 𝑎1𝜇1 + 𝑎2𝜇2. The interfacial pressure 
𝑃𝐼  is defined as 

𝑃𝐼 =
𝑍1𝑃1 +𝑍2𝑃2

𝑍1 +𝑍2
(2)

where 𝑍𝑘 = 𝜌𝑘𝐶𝑘 is the acoustic impedance and 𝐶𝑘 is the speed of 
sound in phase 𝑘. The source terms  , account for pressure and tem-
perature non-equilibrium between phases. Finally, the mixture speed of 
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Fig. 2. (a) Numerical schlieren images (top half) and contour plots of the pressure field (bottom half)  produced without cavitation model for the 22 mm water 
column. (b) Experimental pressure variation at each sensor (Sembian et al., 2016) compared against recent numerical predictions. The results from Xiong et al. 
(2024) are reported in locations having an offset of 0.5 mm from the sensor locations reported in the experiments.
sound is computed according to: 𝐶 =
√

𝑌1𝐶2
1 + 𝑌2𝐶2

2 , where 𝑌𝑘 = 𝑎𝑘𝜌𝑘
𝜌mix

is the mass fraction of phase 𝑘.
The system closure is obtained by specifying an Equation of State 

(EoS) for each phase, which establishes relationships among all ther-
modynamic quantities. Introducing the specific heat ratio 𝛾𝑘 and the 
constants 𝜂𝑘, and𝑃𝑘,∞, the Stiffened Gas (SG) EoS is written as:

𝑃𝑘 =
(

𝛾𝑘 − 1
)

𝜌𝑘𝑒𝑘 − 𝛾𝑘𝑃𝑘,∞ −
(

𝛾𝑘 − 1
)

𝜂𝑘𝜌𝑘, (3)

𝑇𝑘 =
𝑃𝑘 + 𝑃𝑘,∞

𝐶𝑣,𝑘𝜌𝑘
(

𝛾𝑘 − 1
) , (4)

𝐶𝑘 =

√

𝛾𝑘
𝑃𝑘 + 𝑃𝑘,∞

𝜌𝑘
(5)

where 𝐶𝑣,𝑘 is the heat capacity at constant volume for phase 𝑘. The 
SG EoS is employed for both phases, and the parameters used are 
summarised in Table  1, along with corresponding density and speed of 
sound at 𝑃 = 1.01Bar& 𝑇 = 300K. Appendix  A displays the suitability 
of SG EoS for capturing this phenomenon by comparing it with real 
EoS.

As this study investigates the effect of entrapped air within the 
liquid volume, a small amount of air is assumed to be initially present 
as a dispersed phase within the liquid, forming a uniform mixture. Its 
concentration is characterised by the Gaseous Volume Fraction (GVF), 
and the interaction between the two phases is modelled through the 
relaxation step described in Section 3.2.
4 
The integration of the governing equations is achieved by an explicit 
density-based implementation. The numerical solution of the governing 
equations is achieved by employing the splitting procedure described 
by Saurel et al. (2009) in the following consecutive steps:

1. A hyperbolic step, i.e. solving Eq.  (1) while neglecting 𝐒𝐫𝐥𝐱
vector.

2. A relaxation step, where the source terms appearing in 𝐒𝐫𝐥𝐱
are addressed and the energies of each phase are re-initialised 
according to the total energy of the system.

3.1. Hyperbolic step

In this stage, only the left-hand side of Eq.  (1) is taken into ac-
count. For the conservative part, a finite volume Godunov scheme is 
applied (Godunov and Bohachevsky, 1959), extended to handle three-
dimensional unstructured meshes. The HLLC approximate Riemann 
solver (Toro, 2013) is then employed at each cell boundary to define the 
perturbation state. At the same time, the non-conservative part of the 
equations is updated by approximating the volume integral with a mid-
point rule and handling divergences through a centred scheme (Saurel 
et al., 2009). A second-order MUSCL approach (Chiapolino et al., 
2017), suitably adapted for unstructured grids, is used to reconstruct 
the primitive variables at cell interfaces. Spatial gradients are evaluated 
using the Green–Gauss method, and the Minmode limiter (Sweby and 
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Table 1
Stiffened gas EoS constants, along with the corresponding density and speed of sound for the liquid and 
gaseous phases.
 Phase k 𝑃∞ 𝛾 𝜂 𝜌 [kg∕m3] 𝐶 [m∕s] 
 Liquid 5.102 × 108 4.4 −54.9 × 103 996.55 1501  
 Gaseous 0.00 1.4 0.00 1.174 347.5  
Baines, 1984) is applied to preserve stability. Under these conditions, 
the state vector is updated as follows: 

𝐔𝑛+1
𝑖 = 𝐔𝑛

𝑖 +
𝛥𝑡
𝑉𝑖

( 𝑁
∑

𝑓=1
𝐴𝑓𝐅∗𝑛𝑓 +

𝑁
∑

𝑓=1
𝐴𝑓

( 3
∑

𝑘=1
𝑛𝑘

3
∑

𝑙=1

(

𝐇𝑖𝑘𝑙 + 𝐒𝐬𝐭𝐫 ,𝑖𝑘𝑙
)

𝑢∗𝑙

))

(6)

where 𝑉𝑖, 𝐴𝑓 , 𝑛𝑓  are the volume, area and normal vector of face 𝑓
belonging to cell 𝑖, respectively. The quantity 𝑢∗𝑙  represents the flow 
velocity vector at the interface, while 𝐅∗

𝑓  denotes the perturbation state 
of the flux tensor, computed at the interfaces using the HLLC solver.

At this point, it is important to note that all quantities, except 
𝐒𝐬𝐭𝐫 , are discretised and computed in a conservative manner (Saurel 
et al., 2009). The non-conservative treatment of the term 𝐒𝐬𝐭𝐫 ,𝑖 does 
not affect the accuracy of our results, as it appears only in the phasic 
energy equations. These equations are later recomputed during the 
relaxation step in order to align with the conservative mixture energy. 
Therefore, at this stage, the computation of 𝐒𝐬𝐭𝐫 ,𝑖 serves merely as 
an initial estimation of energy before the relaxation step (Pelanti and 
Shyue, 2014). Finally, the temporal discretisation is extended to higher 
order through a 3rd order Runge–Kutta (RK) scheme (Jameson et al., 
1981).

3.2. Relaxation step

The relaxation step addresses the right-hand side of Eq.  (1). It cap-
tures mechanical and thermal non-equilibrium effects while ensuring 
consistency between the sum of the phasic energies and total mixture 
energy.

To maintain energy consistency across all computational stages, 
it is first necessary to correct discrepancies arising from the non-
conservative equation of phasic internal energies. To this end, the 
energy residual is computed as 𝛥𝐸 = 𝐸𝑡𝑜𝑡−𝑎1𝑒1−𝑎2𝑒2−0.5(𝑢2+𝑣2+𝑤2)
and the individual phase energies are updated according to: 𝑒𝑖𝑛𝑖𝑡𝑘 =
𝑒𝑘 + 𝛥𝐸. Unlike conventional methods, this correction is applied prior 
to the relaxation step and does not require pressure equilibrium, which 
is typically assumed in the literature (Saurel et al., 2009; Koukas et al., 
2023; Bidi et al., 2022). As a result, the relaxation procedure remains 
energy-consistent while still permitting thermodynamic disequilibrium, 
as will be further explained.

When a shock wave propagates through a two-phase mixture of 
liquid and gas, it induces distinct thermodynamic states in each phase. 
However, due to interfacial interactions, the system evolves towards 
mechanical (pressure) and thermal (temperature) equilibrium. While 
many models assume this transition to be instantaneous (Saurel et al., 
2009; Pelanti and Shyue, 2014; Koukas et al., 2023; Bidi et al., 2022), 
this assumption does not always hold. In reality, the system requires 
finite time to re-establish thermodynamic equilibrium following a dis-
turbance, such as that caused by a shock wave.

To quantify the rate of this transition, we introduce two relaxation 
coefficients:

• 𝜇: mechanical relaxation rate
• 𝜃: thermal relaxation rate

These parameters characterise the responsiveness of each phase to 
interfacial imbalances. For example, as 𝜇 → ∞, mechanical equilibrium 
is achieved nearly instantaneously, indicating rapid pressure equali-
sation. In contrast, finite values of 𝜇 and 𝜃 reflect the physical time 
required for the system to return to equilibrium.
5 
A further novelty introduced in this work lies in the integration 
of the relaxation processes. Traditionally, mechanical and thermal re-
laxation steps are performed sequentially. In contrast, this approach 
enforces both steps simultaneously within a single computational step. 
As demonstrated in Appendix  B, this modification achieves compara-
ble accuracy while significantly improving computational efficiency, 
robustness, and scalability. Finally, the method is designed to support 
arbitrary equations of state (EoS), ranging from neural network-based 
and tabulated EoS to simplified linear models, making it versatile and 
adaptable to a wide range of thermodynamic conditions.

In line with Schmidmayer et al. (2023), we begin by formulating 
the pressure evolution equations for each phase rather than using the 
energy conservation equations. Specifically

𝜕𝑃1
𝜕𝑡

=
𝜌1𝐶2

𝐼,1

𝑎1
𝜇𝛥𝑃 (7)

𝜕𝑃2
𝜕𝑡

= −
𝜌2𝐶2

𝐼,2

𝑎2
𝜇𝛥𝑃 (8)

where 𝐶2
𝐼,𝑘 =

𝑃𝐼
𝜌2𝑘

− 𝜕𝑒𝑘
𝜕𝜌𝑘

|

|

|

|

|𝑃𝑘
𝜕𝑒𝑘
𝜕𝑃𝑘

|

|

|

|𝜌𝑘

, and 𝛥𝑃 = 𝑃2 − 𝑃1 is the pressure differ-

ence between gaseous and liquid phase following the hyperbolic step. 
Subtracting Eq.  (7) from Eq.  (8) yields: 

𝜕𝛥𝑃
𝜕𝑡

= −

(

𝜌2𝐶2
𝐼,2

𝑎2
+

𝜌1𝐶2
𝐼,1

𝑎1

)

𝜇𝛥𝑃 (9)

which represents an ODE in terms of the pressure difference 𝛥𝑃 . 
Assuming that the combined coefficient 

(

𝜌2𝐶2
𝐼,2

𝑎2
+

𝜌1𝐶2
𝐼,1

𝑎1

)

 remains con-
stant during relaxation, Eq.  (9) admits the analytical solution: 

𝛥𝑃 ∗ = 𝛥𝑃𝑒
−

(

𝜌1𝐶
2
𝐼,1

𝑎1
+

𝜌2𝐶
2
𝐼,2

𝑎2

)

𝜇𝛥𝑡
(10)

where 𝛥𝑃 ∗ denotes the pressure difference after relaxation over a 
timestep 𝛥𝑡. Thus, with a properly defined relaxation rate 𝜇, the pres-
sure difference post-relaxation becomes a known quantity.

It is important to highlight that, following (Biasiori-Poulanges and 
Schmidmayer, 2023), the relaxation rate 𝜇 is assumed to be a function 
of the volume fractions. Therefore, the effective relaxation coefficient 
appearing in Eqs. (7)–(10) is essentially defined as 𝜇(𝑎𝑘) = 𝑎1𝑎2𝜇, 
although, for brevity, it is denoted simply as 𝜇. This formulation implies 
rapid relaxation for volume fractions near 𝑎𝑘 ∼ 0.5, i.e. at the shock 
droplet interface, and slower relaxation in regions where 𝑎𝐾 → 0, 
as in the bulk of a diluted two-phase mixture. Analogous expression 
to Eq.  (10) can be derived for temperature, according to Pelanti (2022), 
leading to similar forms for 𝛥𝑇 ∗, governed by the respective relaxation 
rate. However, due to the negligible influence of thermal effects within 
the liquid volume, we assume 𝜃 = 𝜇, which does not compromise 
accuracy.

To determine the post-relaxation thermodynamic state, we consider 
the governing system as:
𝛥𝑃 ∗ = 𝑃 ∗

2 − 𝑃 ∗
1 , (11)

𝛥𝑇 ∗ = 𝑇 ∗
2 − 𝑇 ∗

1 , (12)

𝑎∗2 = 1 − 𝑎∗1 , (13)

𝜌∗2 = 𝑎2𝜌2

(

𝑎1𝜌1
∗ − 1

)−1

, (14)

𝜌1
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𝑒∗2 = 𝑒2 − 𝑎1𝜌1
𝑒∗1 − 𝑒1
𝑎2𝜌2

, (15)

𝑃 ∗
𝑘 = 𝑃 (𝜌∗𝑘, 𝑒

∗
𝑘), (16)

𝑇 ∗
𝑘 = 𝑇 (𝜌∗𝑘, 𝑒

∗
𝑘), (17)

The superscript (∗) denotes the values after the relaxation step. In 
addition, the last two equations correspond to the chosen equation of 
state (EoS), which defines pressure and temperature as functions of 
density and internal energy. The system has two unknowns: the density 
and energy of one phase (𝜌∗𝑘, 𝑒∗𝑘), which are computed using a Newton–
Raphson iterative method for solving nonlinear systems, as described 
below:

1. Start with estimates for 𝜌∗1 & 𝑒∗1. Typically, these are the values 
obtained after the reinitialisation step.

2. Use Eqs. (14)–(15) to compute 𝜌∗2&𝑒∗2.
3. Apply Eqs. (16) & (17) to compute 𝑃 ∗

𝑘& 𝑇 ∗
𝑘  for both phases.

4. Define the residual vector 𝐫 = (𝑟1, 𝑟2) corresponding to Eqs. (11)–(
5. The gradients of the residuals (11)–(12) are computed numeri-
cally with respect to variables 𝜌1 & 𝑒1 by repeating steps 2-3 for 
𝜌1 + 𝜖 and 𝑒1 + 𝜖, where 𝜖 ∼ 10−4. Thus, the Jacobian can be 
defined as: 

𝐉 =
⎡

⎢

⎢

⎣

𝜕𝑟1
𝜕𝜌1

𝜕𝑟1
𝜕𝑒1

𝜕𝑟2
𝜕𝜌1

𝜕𝑟2
𝜕𝑒1

⎤

⎥

⎥

⎦

(18)

The update of the variables is computed as: 
𝐱𝑛+1 = 𝐱𝑛 − 𝛼𝐉−1𝐫, 𝐱 = (𝜌∗1 , 𝑒

∗
1)

𝑇 , 𝐫 = (𝑟1, 𝑟2)𝑇 (19)

where 𝛼 is a relaxation factor. Finally, convergence is evaluated, 
and if not satisfied, steps 2-5 are repeated.

The volume fraction 𝑎∗1 is then determined from the phasic mass 
conservation. Under this assumption, cavitation appears as a hetero-
geneous phenomenon driven by the expansion of pre-existing nuclei 
rather than by mass transfer across phases. This assumption has also 
been used by Biasiori-Poulanges and Schmidmayer (2023) and is re-
ported to work well compared with mass transfer models that tend 
to significantly underestimate the cavitated region (Forehand et al., 
2023). Consequently, hereafter, references to cavitation will essentially 
denote gas growth; however, the term cavitation will still be used 
for clarity. Moreover, it is important to recall that the entrapped air 
is assumed to exist at a subgrid scale and is modelled as a diluted 
gas. In the initial condition, its volume fraction is considered constant 
across the liquid phase, forming a uniform mixture. As a result, no 
explicit bubble interfaces can be tracked within the droplet, which 
limits the representation of bubble collapse dynamics and the occur-
rence of secondary waves. Moreover, although the diffuse interface 
method typically thickens the interface, this is not expected to create 
significant issues. As explained, the only relevant interface in the mod-
elling problem is that of the droplet–air boundary, which is represented 
with several levels of mesh refinement. Furthermore, due to the short 
duration of the phenomenon and the high inertia of the water droplet 
relative to air, this interface remains largely unaffected. Finally, the 
case under examination is modelled as a 2D column rather than a 3D 
droplet, to enable direct benchmarking against experimental data.

4. Results & discussion

In this section, we simulate the experiments conducted by Sembian 
et al. (2016) to examine the influence of entrapped air on the shock 
wave propagation. The pressure measurements are surface-averaged 
over a radius of 5.54 mm to align with the experimental measurement 
technique. To achieve a comprehensive understanding of the phe-
nomenon, various relaxation rates are explored, and the corresponding 
physical mechanisms are explained. Finally, the impact of the initial 
GVF on cavitation dynamics is discussed.
6 
Fig. 3. Pressure variation over time at 𝑥 = 5 mm for four mesh refinement 
levels applied around the liquid phase.

4.1. Mesh independence

A background mesh of 50 cells per diameter is used. Fig.  3 presents 
the pressure distribution computed using different Adaptive Mesh Re-
finement (AMR) levels around the liquid volume. Each sequential level 
of AMR decreases the cell size by a factor of 2 relative to the previ-
ous level, while AMR 1 represents the background mesh. The results 
indicate that four refinement levels are sufficient to obtain mesh inde-
pendence, corresponding to a core cell size of 𝐷∕400, where 𝐷 is the 
water column diameter. The time step is set to 𝑑𝑡 = 5×10−9, equivalent 
to a CFL number of 0.155.

4.2. Effect of gaseous volume fraction

The effect of initial GVF is investigated under the assumption of 
infinite relaxation rate; this implies that both the gaseous and liquid 
pressure converge instantaneously to an equilibrium value. The range 
of initial GVF investigated is between 10−6 − 10−2. The lower bound 
is selected as a convergence point for low GVF in non-purified water, 
since it will be shown that it yields identical results as 𝐺𝑉 𝐹 =
10−5. Determining the upper bound is less straightforward. For exam-
ple, Shatalov et al. (2013) reports up to 2 vol% of dissolved gases in air, 
while Giannadakis et al. (2008) indicates that initial volume fractions 
for injection applications range from 0.01% to 0.5%. In general, if 
previous mass transfer events have occurred, or are occurring at the 
exact moment of shock interaction due to external conditions, the 
initial GVF in the droplet could easily exceed these reported values. 
To capture a broad range of possible scenarios, a maximum value of 
10−2 is therefore considered. The results are presented in Fig.  4, where 
solid and dashed lines correspond to measurements from the first and 
second sensors, respectively.

It is evident that GVF significantly affects the temporal pressure 
distribution. While the first pressure peak remains largely unaffected, 
the second peak exhibits a high sensitivity, with larger values result-
ing in more pronounced attenuation. This behaviour stems from the 
presence of GVF, in which a portion of the shock energy is absorbed 
into compressing the gaseous phase. This energy transfer contributes 
significantly to shock attenuation.

Consequently, the first sensor, located close to the leading edge, 
does not yet register the energy absorption caused by the gaseous 
phase, and thus the first pressure peak remains nearly unchanged. In 
contrast, the second peak is substantially attenuated, as the shock wave 
has propagated further and more energy has been transferred. These 
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Fig. 4. Variation of mixture pressure over time for infinite relaxation rate 
(𝜇 → ∞) and various gaseous volume fractions. Solid lines represent the sensor 
located at 5 mm, while dashed lines correspond to the sensor at 18 mm. The 
black lines indicate the experimental results reported by Sembian et al. (2016).

observations qualitatively agree with the experimental findings and 
explain the common overestimation in pressure amplitudes reported 
in other numerical simulations (Sembian et al., 2016; Xu et al., 2023; 
Xiong et al., 2024; Forehand et al., 2023). Moreover, the presence of 
GVF appears to influence the wave propagation speed and consequently 
affects the shock arrival time at each sensor. This trend is consistent 
with existing literature findings (Wijngaarden, 2007; Brennen, 2013), 
which report that increasing GVF enhances the compressibility of the 
mixture, thereby reducing the speed of sound. It also suggests that 
discrepancies in shock arrival times reported in prior studies may stem 
from neglecting these effects. Nonetheless, the discrepancy observed 
at the second sensor between numerical predictions and experimental 
results remains non-negligible, due to modelling simplifications and the 
assumption of an infinite relaxation rate which will be discussed in the 
next section.

4.3. Effect of relaxation rate

As GVF increases, the assumption of infinite relaxation rate no 
longer holds. The wave affects the pressure in each phase differently; 
thus, the liquid and gaseous phases should exhibit distinct pressures 
that gradually converge towards equilibrium. The finite relaxation rate 
𝜇 is generally very challenging to determine experimentally. To address 
this, a wide range is initially considered, based on upper and lower 
convergence points. Subsequently, for specific GVFs, the analysis is 
refined to focus on the range that exhibits the highest interest.

Fig.  5 illustrates the influence of various relaxation rates for the 
previously considered GVF values. At this stage, the analysis is limited 
to 𝐺𝑉 𝐹 ≤ 1 × 10−3, as higher values result in significant shock delays. 
These higher GVF cases involve distinct physical mechanisms and will 
therefore be examined separately in a following section. Following, 
focus is placed on evaluating the impact of the relaxation rate on four 
key parameters: (1) shock attenuation, (2) negative peak, (3) third 
peak, (4) wave propagation speed.

4.3.1. Shock attenuation
Shock attenuation manifests through the peak pressure difference 

between the first and the second sensor. From Fig.  5, it is evident that 
for very small GVFs (𝐺𝑉 𝐹 ≤ 1 × 10−4), the relaxation rate becomes 
practically irrelevant for the positive peaks. This is because the gaseous 
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concentration is low enough to alter the shock energy, regardless of the 
assumed rate of energy absorption.

As GVF increases to 𝐺𝑉 𝐹 = 1 × 10−3, the level of shock attenuation 
starts becoming sensitive to the relaxation rate. This sensitivity arises 
from the increased capacity for energy exchange between phases, which 
amplifies the influence of the relaxation dynamics. To investigate this 
effect in greater detail, the results for 𝐺𝑉 𝐹 = 1 × 10−3 are replotted 
in Fig.  6 over a targeted range of relaxation rates that appear to 
have the most pronounced impact on pressure distribution and wave 
attenuation.

The variation in positive pressure peaks is governed by two main 
factors: the energy exchange between phases and the physical diffusiv-
ity of the shock front. The latter arises from the dynamic response of 
the gaseous phase to pressure fluctuations and is the primary mech-
anism for shock attenuation, as will be demonstrated in the discus-
sion relevant to Fig.  7. In the limit of infinite relaxation rates (blue 
line), although the energy exchange is maximised, the system behaves 
like a homogenised fluid, rapidly reaching pressure equilibrium. This 
leads to minimal diffusivity and, consequently, a sharp shock front 
characterised by a high peak pressure.

As the relaxation rate decreases (red, yellow & grey lines), the 
gaseous phase is unable to instantaneously adapt to changes in pres-
sure. Instead, it lags behind the compression wave, resisting com-
pression, which enhances local pressure gradients, increases energy 
dissipation, and promotes wave spreading. Although the energy ab-
sorption does not change significantly, the increased energy dispersion 
reduces the pressure peaks. Finally, in the limit of vanishing relaxation 
rates (purple & green lines), the liquid phase no longer perceives the 
presence of gas, and the system behaves as a single-phase flow with 
negligible energy exchange. This leads to the reappearance of a sharp 
shock and very high-pressure peaks. Remarkably, a diffuse region is 
also observed in the experimental data (red arrow), justifying the 
presence of GVF within the water column.

The lower part of Fig.  7 presents the shock fronts for 𝐺𝑉 𝐹 = 1×10−6, 
confirming that the gaseous volume fraction is too low to significantly 
affect wave propagation or its attenuation. The shock front remains 
sharp regardless of the relaxation rate, resulting in consistently high 
pressure peaks.

Table  2 summarises the variations in peak pressures and shock 
attenuation as a function of both relaxation rate and GVF, highlighting 
the non-monotonic behaviour of pressure peaks with respect to the 
relaxation rate. This behaviour arises from the critical influence of the 
gas volume fraction (GVF) and the relaxation rate on shock propagation 
and attenuation, governed by shock diffusivity and interphase energy 
exchange. These effects vary markedly from case to case, as discussed 
previously. For 𝐺𝑉 𝐹 ≤ 1×10−4, a single average value is reported across 
all relaxation rates due to the minimal sensitivity of the pressure peak 
in this regime. The table also includes deviations from experimental 
values, showing close agreement at the first sensor location across most 
cases, but substantial discrepancies at the second peak. Among the 
investigated cases, results for 𝐺𝑉 𝐹 = 1 × 10−3 demonstrate the best 
alignment with experimental results.

4.3.2. Negative peak
Figs.  5 and 6 clearly demonstrate that the relaxation rate also has a 

significant impact on the negative pressure peak. The negative peak 
is of high importance, as it is closely associated with the intensity 
of cavitation. The mechanism governing here can be conceptualised 
through the shock fronts focusing on the reflection wave, as presented 
in Fig.  8 for 𝐺𝑉 𝐹 = 1 × 10−3 and 𝐺𝑉 𝐹 = 1 × 10−6.

At high relaxation rates (𝜇 → ∞), the negative pressure peak com-
pletely disappears, regardless of the GVF. This behaviour is attributed 
to the intense energy exchange between the two phases. Specifically, 
the rarefaction wave has a much stronger effect on the liquid phase due 
to its low compressibility, causing a significant drop in liquid pressure 
(up to an order of 100%–200%), while the gas phase pressure decreases 
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Fig. 5. Variation of mixture pressure over time for various relaxation rates 𝜇. Each plot represents a different initial gaseous volume fraction (GVF) within the 
droplet. Solid lines represent the sensor located at 5 mm while dashed lines represent the sensor located at 18 mm. The black lines represent the experimental 
results of Sembian et al. (2016). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 2
Summary of peak pressures at 5 mm and 18 mm, their respective deviations from experimental values (𝑃5mm =
19.60 bar&𝑃18mm = 7.89 bar) , and the overall shock attenuation, expressed as a function of the first peak pressure 
(

𝑃5mm−𝑃18mm

𝑃5mm
%
)

. The experimental attenuation is 𝐴𝑡𝑡𝑒𝑥𝑝 = 59.74%. For small GVF values, average values are reported, together 
with their maximum deviations due to negligible differences.
 GVF 𝜇 𝑃5mm [Bar] 𝑃18mm [Bar] 𝛥𝑃5mm[%] 𝛥𝑃18mm[%] Att. [%]  
 1 × 10−6 Avg 20.90 (±0.1) 14.32 (±0.08) 6.63 (±0.5) 81.50 (±1.0) 31.48 (±1.0) 
 1 × 10−5 Avg 20.85 (±0.15) 14.21 (±0.2) 6.38 (±0.7) 80.10 (±2.4) 31.84 (±1.2) 
 1 × 10−4 Avg 20.60 (±0.4) 13.24 (±1.0) 5.10 (±1.9) 67.80 (±13.1) 35.72 (±4.9) 
 0.01 20.32 12.81 3.67 62.36 36.95  
 0.05 18.53 8.99 −5.46 13.94 51.48  
 1 × 10−3 0.25 17.57 6.94 −10.35 −12.04 60.50  
 0.5 19.60 8.305 0.00 5.26 57.62  
 1.0 20.32 9.59 3.67 21.54 52.80  
 ∞ 20.91 10.52 6.63 33.33 49.67  
only slightly (∼ 5%). However, under the assumption of instantaneous 
relaxation, the pressures of both phases must rapidly converge to a 
common equilibrium. As a result, the liquid pressure pulls down the gas 
pressure, leading to a substantial increase in the gas volume fraction. 
This mechanism gives rise to an extensive cavitation region, which 
completely attenuates the shock wave, due to high energy exchange 
between the two phases, irrespective of the initial GVF.

For medium range relaxation rates (0.1 ≤ 𝜇 ≤ 1) and a non-
negligible amount of GVF (𝐺𝑉 𝐹 ≥ 1 × 10−3) the negative pressure 
peak remains absent. However, a different behaviour compared to 
larger relaxation rates is observed here. At these relaxation rates, the 
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shock front lies within a diffusive regime and can be conceptualised 
as consisting of multiple shock layers. When the first layer reflects, 
it encounters subsequent layers, leading to mutual cancellation. As a 
result, only a small fraction of the energy escapes, producing a very 
weak rarefaction wave.

Finally, at very small relaxation rates, the energy exchange between 
phases diminishes, causing the shock front to sharpen once again, 
regardless of the GVF. Gaseous expansion no longer occurs due to 
the insufficient phase interaction. The rarefaction wave propagates 
undisturbed, and its amplitude becomes primarily governed by the 
shock energy left following the second positive peak. Consequently, as 
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Fig. 6. Variation of mixture pressure over time for 𝐺𝑉 𝐹 = 1 × 10−3 and 
various relaxation rates. Solid lines represent the sensor located at 5 mm while 
dashed lines represent the sensor located at 18 mm. The black lines represent 
the experimental results of Sembian et al. (2016). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.)

the relaxation rate decreases, the magnitude of the negative pressure 
peak increases.

4.3.3. Third peak
The third pressure peak primarily depends on the shock energy 

remaining after the wave reflection. It is evident that in scenarios in-
volving significant energy exchange during propagation and reflection, 
the peak is nearly absent, which is in agreement with the experimental 
results. In contrast, at very low relaxation rates, its intensity becomes 
unrealistically high compared to experimental observations.

4.3.4. Propagation speed
Figs.  5 and 6 show that the relaxation rate also affects the arrival 

time of the wave in each sensor and thus the propagation speed. This ef-
fect stems from the impact of the relaxation rate on the compressibility 
of the mixture. Specifically, at high relaxation rates, gas compression 
is promoted, causing the mixture to behave more like a compressible 
medium, which in turn reduces the speed of sound. Conversely, at 
low relaxation rates, gas compression is significantly limited, and the 
mixture tends to behave more like an incompressible fluid, resulting in 
an increased speed of sound.

Table  3 summarises the variations in propagation speed, calculated 
based on the travel time between Sensor 1 and Sensor 2. Results for 
𝐺𝑉 𝐹 = 1×10−2 are also included and will be discussed in the following 
section. It is evident that for constant GVF, the relaxation rate can 
decrease the propagation speed by up to an order of 70%.

4.3.5. High GVF values
As previously discussed, high GVF values lead to distinct physical 

behaviours compared to lower GVF scenarios. Fig.  9 illustrates the 
temporal pressure variation for a GVF of 1 × 10−2. Notably, substantial 
time delays are observed in both the first and second pressure peaks 
for relaxation rates 𝜇 > 0.1, which are attributed to the pronounced 
impact of high GVF on the mixture’s compressibility, as explained in the 
previous section. Another notable difference lies in the amplitude of the 
second peak, which remains unexpectedly high under these conditions.

To clarify this phenomenon, Fig.  10 presents the shock fronts along-
side pressure contours for 𝜇 = 10. Due to the extremely low propagation 
9 
Table 3
Propagation speed variation for various relaxation rates and GVF 
calculated based on the travel time between Sensor 1 and Sensor 
2. 𝛥𝐶 signifies the percentage difference from the nominal speed 
of sound for GVF = 1 × 10−6. For small GVF values, average 
values are reported, together with their maximum deviations due 
to negligible differences.
 GVF 𝜇 C [m/s] 𝛥𝐶[%]  
 1 × 10−6 Avg 1511 (±0.0) 0.0  
 1 × 10−5 Avg 1510 (±0.0) 0.0  
 1 × 10−4 Avg 1460 (±50.0) 3.3 (±3.3) 
 0.01 1508 0.2  
 1 × 10−3 1 996 34.1  
 10 996 34.1  
 0.01 1391 7.9  
 1 × 10−2 1 452 70.1  
 10 433 71.3  

speed inside the liquid bulk (∼ 450 m∕s), the external shock wave 
propagates faster (∼ 2.4 × 340 = 816 m∕s), giving the shock front 
a concave shape (a-c), a feature also reported by Schmidmayer and 
Biasiori-Poulanges (2023) and Xu et al. (2023). Once the external 
shocks reach the rear of the droplet, they collide and a new compression 
wave is generated (d). This wave is transmitted to the still unaffected 
part of the droplet (e) and propagates in the opposite direction of 
the initial internal shock. When these two compression waves collide 
(f), they produce a strong secondary pressure peak (g) and suppress 
the formation of a rarefaction wave. Hence, although the initial shock 
attenuates as expected, the delayed interaction leads to a secondary 
shock formation that significantly amplifies the pressure. Finally, as the 
relaxation rate decreases, the governing behaviour gradually re-aligns 
with the patterns discussed in earlier sections.

4.4. Cavitation dynamics

The influence of the GVF and shock attenuation on cavitation is 
presented in this section. Cavitation depends on two key parameters: 
the magnitude of the rarefaction wave, which itself depends on the 
attenuation of the initial shock, and the degree of interaction between 
the two phases. The latter is directly related to the relaxation rate and 
the effect that low liquid pressures have on gaseous expansion. Based 
on comparisons between experimental and numerical results for the 
shock attenuation and wave speed, the relaxation rate, which properly 
reflects the physical behaviour of the system, should lie within the 
range of 𝜇 = 0.5 to 𝜇 = 4.0. Thus, a relaxation rate of 𝜇 = 2 is selected 
as representative and can be generalised across the entire range.

To compare the cavitating regions across cases, the results are 
normalised by the initial gaseous volume, allowing the evaluation of a 
compression/expansion ratio for the gaseous phase in the investigated 
area. Fig.  11(a) presents the Volume Ratio (VR) for various GVF in 
the location of the second sensor, while Fig.  11(b) shows the contour 
plots of the volume ratio for the whole liquid volume. It is evident that 
as the initial GVF decreases, the VR increases, with an approximate 
fivefold scaling between successive GVF levels. Notably, even when 
comparing 𝐺𝑉 𝐹 = 1×10−6 with 𝐺𝑉 𝐹 = 1×10−5, where the rarefaction 
intensity is nearly identical, a significant difference in VR is observed. 
This indicates that the expansion ratio of the gaseous phase strongly 
depends on the absolute initial GVF value.

It is important to clarify that, in absolute terms, the cavitating 
gaseous volume remains larger in increasing GVF cases. However, in 
this analysis, we select to quantify cavitation through the Volume Ratio, 
which reveals that lower initial GVFs undergo more intense relative 
expansion. Finally, for high initial GVF values (𝐺𝑉 𝐹 ≥ 1 × 10−3), 
cavitation is absent due to the strong attenuation of the rarefaction 
wave.
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Fig. 7. Shock visualisation for different relaxation rates with initial GVF = 1 × 10−3 (upper part) and 𝐺𝑉 𝐹 = 1 × 10−6 (lower part). Red lines represent iso-lines 
of constant density gradient and highlight the diffusivity of the shock. Different relaxation rate values are used for each GVF to highlight the distinct regimes of 
each case. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
5. Conclusion

In this study, Saurel’s six-equation model was adopted to investigate 
the impact of GVF during the initial stage of shock-droplet interaction. 
In addition, a novel finite-rate relaxation approach was developed 
to assess the response of the gaseous phase induced by shock wave 
propagation through the liquid phase.

The findings show that GVF enhances shock attenuation by requir-
ing additional energy to compress the gas phase, while also reducing 
the shock propagation speed due to increased mixture compressibility. 
Shock attenuation is negligible for GVF values below 10−4, but becomes 
increasingly significant at higher concentrations, where the relaxation 
10 
rate plays a key role. In this regime, shock diffusivity dominates, 
leading to maximum attenuation at intermediate relaxation rates.

The amplitude of the negative pressure peak, linked to cavitation 
intensity, is also governed by the relaxation rate. At high GVF, rar-
efaction waves are weakened either by strong cavitation under fast 
relaxation or by enhanced diffusivity at moderate rates. At low GVF, 
fast relaxation still suppresses rarefaction, but slower rates result in 
more intense rarefaction and, consequently, stronger cavitation.

Discrepancies between experimental and numerical pressure pro-
files, particularly the third peak, are attributed to shock attenuation 
effects introduced by GVF, which were often neglected in previous 
models. The relaxation rate further affects the effective speed of sound 
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Fig. 8. Shock visualisation highlighting the reflected wave under varying relaxation rates, for initial GVF of 1×10−3 (top) and 1×10−6 (bottom). The lower half of 
each frame illustrates the gaseous volume ratio, representing the instantaneous GVF normalised by its initial value, and is displayed only when cavitation occurs. 
Different relaxation rate values are used for each GVF to highlight the distinct regimes of each case. Note that different colour scales are employed for the two 
GVF cases to account for their distinct dynamic ranges. Time is in μs.
in the mixture, with higher rates leading to greater compressibility 
and slower wave propagation. At sufficiently high GVF (≥ 10−2), 
this reduction in shock speed may cause compression waves to col-
lide, effectively suppressing rarefaction wave formation. Moreover, 
lower GVF levels are found to promote more intense cavitation due 
to weaker attenuation and more vigorous gaseous expansion. Overall, 
these factors highlight the crucial influence of gaseous impurities in the 
primary stage of shock–droplet interactions and explain why conven-
tional approaches failed to capture the pressure curves reported in the 
experimental campaign of Sembian et al. (2016), thereby contributing 
new insights to the field.

Although the scope of this research is primarily aimed at providing 
a broader perspective on the combined effect of the initial GVF and the 
11 
relaxation rate in shock–droplet dynamics, instead of defining the GVF 
in Sembian et al. (2016) experimental campaign, the authors suggest 
that the most reliable way to determine the GVF is by analysing the 
propagation speed and pressure peaks. In this case, the best agreement 
was obtained for 𝐺𝑉 𝐹 = 10−3 and for 𝜇 values ranging from 0.2 to 2. 
This range of 𝜇 also aligns closely with the values proposed by Biasiori-
Poulanges and Schmidmayer (2023), despite being derived through a 
completely different approach. However, each case has its own specific 
factors, so this solution should not be generalised to other cases.

Future studies could extend this framework to three-dimensional 
geometries and adopt more advanced relaxation models that explicitly 
account for gas in the form of discrete bubbles. Such models would be 
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Fig. 9. Variation of mixture pressure over time for 𝐺𝑉 𝐹 = 1 × 10−2 and various relaxation rates. Solid lines represent the sensor located at 5 mm while dashed 
lines represent the sensor located at 18 mm. The black lines represent the experimental results of Sembian et al. (2016). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Temporal evolution of pressure contours for 𝜇 = 10 and initial GVF of 1× 10−2. The black line represents density gradients higher than 4000 to visualise 
the droplet boundaries and the shock front. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)
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Fig. 11. (a) Comparison of the Volume Ratio (VR), defined as the instant gaseous volume to the initial gaseous volume at the location of the second sensor and 
(b) contours together with iso-lines of the VR at 𝑡 = 22.5 μs for GVF = 1 × 10−6 and GVF = 1 × 10−5. The droplet interface colour align with the GVF label.
better equipped to capture bubble oscillations and the secondary shocks 
they emit when subjected to incident shock waves.
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Appendix A. Comparison of real EoS with SG EoS

This appendix presents a comparison of the pressure distribution 
over time at each sensor, computed using either the simplified stiff-
ened gas (SG) equation of state (EoS) or a real EoS, to evaluate the 
suitability of the SG EoS. The parameters for the SG EoS are taken 
as described in Table  1. For the real EoS, a tabulated approach is 
employed. Specifically, thermodynamic data are generated using the 
REFPROP software in the form of structured tables, as functions of 
density and internal energy for both phases. A 200 × 50 table is 
used for water, covering a density range of 996 to 1000 kg∕m3 and 
internal energy from 74, 807 to 91, 651 J∕kg. For air, a 400 × 600 table is 
generated, with density ranging from 0.34 to 60.62 kg∕m3 and internal 
energy from 322, 861 to 718, 866 J∕kg. Fig.  12 compares the results from 
both approaches, demonstrating that the simplified SG equation of state 
effectively captures the pressure variations associated with shock wave 
propagation.
13 
Fig. 12. Variation of mixture pressure over time for real and simplified (SG) 
equation of state. Solid lines represent the sensor located at 5 mm, while 
dashed lines correspond to the sensor at 18 mm.

Fig. 13. Variation of mixture pressure over time for the two relaxation 
approaches. Solid lines represent the sensor located at 5 mm, while dashed 
lines correspond to the sensor at 18 mm.
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Appendix B. Comparison of standard relaxation approach with 
parallel relaxation

This appendix aims to prove that the proposed approach for the 
relaxation step produces similar results to the standard approach as 
described in Saurel et al. (2009), Pelanti and Shyue (2014). Fig.  13 
compares these two approaches, verifying that the results are identical.

Data availability

Data will be made available on request.
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