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Abstract

Chagas disease, caused by Trypanosoma cruzi (T. cruzi), remains a significant public health
challenge in Latin America. Traditional diagnostic methods relying on manual microscopy
suffer from low sensitivity, subjective interpretation, and poor performance in suboptimal
conditions. This study presents a novel computer vision framework integrating motion
analysis with deep learning for automated T. cruzi detection in microscopic videos. Our
motion-based detection pipeline leverages parasite motility as a key discriminative feature,
employing frame differencing, morphological processing, and DBSCAN clustering across
23 microscopic videos. This approach effectively addresses limitations of static image
analysis in challenging conditions including noisy backgrounds, uneven illumination, and
low contrast. From motion-identified regions, 64 x 64 patches were extracted for classifica-
tion. MobileNetV2 achieved superior performance with 99.63% accuracy, 100% precision,
99.12% recall, and an AUC-ROC of 1.0. Additionally, YOLOv5 and YOLOv8 models (Nano,
Small, Medium variants) were trained on 43 annotated videos, with YOLOv5-Nano and
YOLOvS8-Nano demonstrating excellent detection capability on unseen test data. This
dual-stage framework offers a practical, computationally efficient solution for automated
Chagas diagnosis, particularly valuable for resource-constrained laboratories with poor
imaging quality.

Keywords: Chagas disease; T. cruzi; motion detection; deep learning; YOLO; automated
diagnosis; microscopy

1. Introduction

Chagas disease, a life-threatening disease caused by the protozoan parasite T. cruzi,
affects approximately 6 to 7 million people worldwide, with a much higher number at
risk of infection [1]. Although traditionally endemic to Latin America, global migration
patterns have amplified the disease’s reach, spreading it to non-endemic areas [2]. As a
neglected tropical disease, Chagas disease continues to pose a significant public health
challenge, particularly in regions with limited access to early diagnosis and treatment.

The primary mode of transmission occurs through the faeces of blood-feeding tri-
atomine insects, commonly known as “kissing bugs”. However, the disease can also
spread through alternative routes, including blood transfusions, organ transplants, and the
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consumption of contaminated foods and beverages [2,3]. This multifaceted transmission
pattern contributes to the complexity of disease control and prevention strategies.

T. cruzi, the aetiological agent of Chagas disease, is a flagellated protozoan parasite
belonging to the order Kinetoplastida [4]. This microscopic organism exhibits a complex
life cycle that alternates between insect vectors and mammalian hosts [5]. In the digestive
tract of triatomine insects, T. cruzi exists in its epimastigote form, where it undergoes
reproduction. Subsequently, it transforms into the infective metacyclic trypomastigote form,
which is transmitted to humans and other mammals through the insect’s faeces [6]. Once
inside the mammalian host, the parasite invades cells, metamorphoses into its amastigote
form, and multiplies intracellularly [7]. Figure 1 provides a comprehensive illustration
of the entire life cycle of T. cruzi, depicting its development within the triatomine insect
vector, the transformation into infectious forms, and the intracellular replication stages in
mammalian hosts. This intricate life cycle and the parasite’s ability to evade host immune
responses contribute to the complexity of Chagas disease pathogenesis and the challenges
associated with its diagnosis and treatment.

Blood trypomastigotes
enter the insect and

develop into epimastigote |2
é in the midgut

"4 — Metacyclic trypomastigotes
Epimastigotes are divided expelled with feces

and migrate to the rectum to

become metacyclic trypomastigotes
INVERTEBRATE
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Figure 1. Life cycle of T. cruzi. The image is taken from the work of De Fuentes-Vicente et al. [8].

The clinical manifestations of Chagas disease are diverse and can be categorized
into acute and chronic phases. The acute phase, often asymptomatic or characterised by
mild, non-specific symptoms, can last for several weeks or months. If left untreated, the
disease progresses to a chronic phase, which can remain asymptomatic for decades in most
infected individuals. However, approximately 30-40% of patients develop severe cardiac
or gastrointestinal complications, leading to significant morbidity and mortality [9]. The
chronic cardiac form of Chagas disease is particularly concerning, as it can result in heart
failure, arrhythmias, and sudden death [10]. This progression underscores the importance
of early detection and intervention. Early and accurate diagnosis is crucial for the effective
treatment and management of Chagas disease. The chances of successful treatment are
significantly higher when intervention begins during the acute phase [11].

Traditional diagnostic methods, such as serological tests, blood smear microscopy,
and polymerase chain reaction (PCR), are limited by poor accessibility, high costs, and the
need for specialized equipment [12]. These limitations hinder early detection, particularly
in resource-limited settings where Chagas disease is most prevalent. For this reason, the
theme of World Chagas Disease Day 2022 was “finding and reporting every case to defeat
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Chagas disease” [1]. This highlights the urgent need for innovative, accessible, and accurate
diagnostic tools that can overcome these barriers and support timely interventions.

Recent advances in understanding T. cruzi biology and Chagas disease pathogenesis
have spurred research into novel diagnostic approaches. Bern et al. [13] underscored the
need for sensitive and specific tools in their review of current diagnostic practices, while
Zingales et al. [14] highlighted the importance of standardised nomenclature for improving
diagnosis and treatment strategies. In this context, deep learning-based solutions have
emerged as a promising avenue for addressing these challenges.

However, existing automated approaches face significant limitations in real-world clini-
cal settings. Static image analysis methods achieve only modest accuracies: Pereira et al. [15]
reported 72-96.4% accuracy with substantial performance drops on unseen test data due
to over-fitting, while Morais et al. achieved 89.5% accuracy using traditional machine
learning classifiers. These appearance-based methods rely on time-consuming staining
protocols and fail under poor lighting conditions common in field microscopy. Moreover,
morphological features alone are often indistinguishable from background artifacts in
unstained blood samples, creating diagnostic challenges in resource-limited settings where
Chagas disease is prevalent.

Current diagnostic workflows create critical barriers to rapid diagnosis. The lengthy
staining process delays treatment decisions, particularly during the acute phase when inter-
vention is most effective. Manual microscopy remains subjective and requires specialized
expertise unavailable in many endemic regions.

Our motion-based framework addresses these limitations by eliminating staining
requirements through motion analysis of live, unstained blood samples, enabling rapid
real-time diagnosis. It provides robust performance under variable lighting and imaging
conditions and achieves high diagnostic accuracy (99.63%) in our evaluation, highlighting
its potential to significantly outperform existing methods. Furthermore, its lightweight
design supports deployment on portable devices for point-of-care diagnosis in resource-
constrained environments.

In this study, we propose a novel computer vision framework for automated T. cruzi
parasite detection, emphasizing a motion-based classification approach that directly ad-
dresses the limitations of conventional static frame analysis. Recognising the diagnostic
challenges posed by complex microscopic environments—including heterogeneous back-
grounds and variable lighting—we shift the focus from appearance-based object detection
to motion-centric temporal analysis. Our methodology integrates adaptive frame differenc-
ing, motion saliency enhancement, and advanced contour-based clustering techniques to
isolate parasite-specific movement patterns, thereby enabling robust ROI generation for
deep learning-based classification. To validate our approach, we constructed a balanced
dataset from 23 microscopic video sequences and evaluated performance using several deep
learning architectures, including MobileNetV2, AlexNet, and VGG16. As a comparative
baseline, we implemented a YOLO-based parasite detection model trained on 48 manually
annotated microscopic video sequences. While YOLO-based appearance models have
demonstrated strong performance in general computer vision tasks, they often encounter
limitations in microscopic environments, where low contrast and cluttered backgrounds ob-
scure clear object boundaries. In contrast, our motion-focused framework which leverages
temporal dynamics and flagellar movement proved highly reliable under the same chal-
lenging conditions, underscoring the critical importance of motion-based cues for accurate
and consistent identification of T. cruzi parasites in complex microscopic environments.

The remainder of this paper is organized as follows: Section 2 reviews related work in
parasite detection and motion-based computer vision. Section 3 describes the materials
and methods, with detailed attention given to our motion-based classification framework.
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Section 4 presents the experimental results, including both classification performance of
the motion-based framework and detection performance of the YOLO-based approach.
Section 5 concludes with a discussion of the implications of this work for scalable, auto-
mated diagnosis of Chagas disease.

2. Related Work

The limitations of traditional diagnostic methods for Chagas disease have prompted
the exploration of more accurate, innovative approaches. The approaches consist of a
simple blood smear technique, a cost-effective procedure, and automated analysis methods
for efficient and accurate detection. Similar to advancements in other fields, the broader
discipline of parasitology has witnessed transformative progress with the integration of
machine learning and artificial intelligence. Parallel to the development of new, simple
blood smear techniques as cost-effective diagnostic procedures, these technologies have
significantly enhanced diagnostic accuracy and enabled the rapid generation of results.

For instance, Soberanis-Mukul et al. [16] presented a machine learning algorithm
for T. cruzi parasite automatic detection. When evaluated against a dataset of 120 test
images, their method yielded a sensitivity of 98% and a specificity of 85%. However, the
study acknowledged challenges related to the algorithm’s reliance on image inputs and its
susceptibility to variations in image colour due to different colourisation procedures.

Uc-Cetina et al. [17] proposed a detection method using the AdaBoost algorithm to
identify Chagas parasites in blood images, achieving a sensitivity of 100% and specificity
of 93.25%. Rosado et al. [18] reviewed various image processing and machine learning
techniques for the automatic detection and segmentation of malaria parasites in microscopic
images of blood smears. While their method focuses on detecting the presence of the
parasite, our work extends this by using classification techniques that not only detect
but also categorise the images into specific classes, such as infected versus non-infected.
This comparison highlights the effectiveness of machine learning in both detection and
classification tasks, with detection serving as an important precursor to the classification
process in parasitic disease diagnosis.

Pereira et al. [15] proposed a computational strategy for the automated classification
of T. cruzi parasites in microscopic blood samples. Using a pre-trained MobileNetV2 neural
network, they developed a feature extraction system, which was then fed into a specially
designed single-cell binary classification layer. This innovative architecture demonstrated
remarkable effectiveness, achieving an accuracy rate of up to 96.4% on the validation
dataset. However, they observed a significant drop in test accuracy to 72%, which they
attributed to over-fitting and the limitations of the small dataset.

Morais et al. [19] presented a classification framework that relies on preprocessing
techniques such as segmentation to extract regions of interest, followed by feature extraction
using geometric, texture, and colour descriptions. Their study compared machine learning
classifiers such as SVM [20], KNN [21], and Random Forest (RF) [22], where the RF model
achieved a test accuracy of 89.5% and an AUC of 0.942. They also highlighted challenges
such as over-fitting, dataset size, and image diversity.

Motion analysis has emerged as a powerful alternative to appearance-based parasite
detection, particularly in dye-free or low-contrast microscopy where the morphology of
T. cruzi is often indistinguishable from background artifacts. Martins et al. [23] introduced
a biologically inspired approach that estimates dense optical flow, converts it into saliency
maps, and leverages collateral motion cues. They found their model to be a promising tool
in the research and medical diagnosis of Chagas disease.

In parallel, researchers in video surveillance have demonstrated the efficiency
of lightweight motion techniques under constrained hardware. Thapa, Sharma, and
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Ghose [24] proposed a Differencing and Summing Technique (DST), which computes
frame wise differences and aggregates multi-frame residuals to suppress background noise.
Their method yielded reliable segmentation in both indoor and outdoor scenes, with mini-
mal computational load. Similarly, Husein et al. [25] showed that single threshold frame
differencing enables real-time motion detection on embedded systems.

Building on these insights, our framework applies temporal motion analysis through
frame differencing to isolate dynamic objects, specifically, motile T. cruzi parasites in
microscopic video sequences. Unlike conventional static-image detection methods, our
motion centric pipeline exploits pixel level intensity changes across consecutive frames to
identify active regions. This is followed by morphological operations and contour-based
filtering to eliminate noise and localise parasite candidates. The resulting approach is
robust to cluttered or poorly illuminated imaging conditions and remains lightweight
enough for deployment in resource-limited diagnostic environments.

3. Materials and Methods

The primary data source consisted of digital camera video recordings capturing
T. cruzi parasites. Unlike traditional methods, where T. cruzi detection relies on examining
microscope images during the acute phase of infection—a process in which specialists
manually prepare thin blood smears, stain them, and examine them under a microscope
(a labour-intensive procedure taking approximately 20 min per sample)—the new dataset
provided by the Universidad Auténoma de Yucatén offers a more efficient approach. This
dataset consists of centrifuged blood samples (500 rpm for 2 min), with microscopy analysis
performed within 5 min of blood collection, enabling a faster and less laborious examination
compared to conventional methods.

3.1. Database

A Canon EOS Rebel Tli (Model 500D) digital camera was used for video recording,
capturing the dynamic behaviour of and morphological changes in T. cruzi in an infected
mice blood sample. The camera was connected via a C-mount adapter without optics and
had a resolution of 1280 x 720 pixels, and was operated manually without microscopy
image analysis software. The experiment was conducted by the Universidad Auténom
de Yucatan, and all techniques for animal handling and sample collection were approved
by the Institutional Animal Care and Use Committee of the University (IACUC-03—2021).
For the experiments, infected mice were used, with a parasite concentration of 3 million
parasites per millilitre. Blood samples were collected using 75 mm long capillary tubes with
a 30-microlitre volume, directly at the puncture site or from EDTA tubes after venipuncture.
The samples were centrifuged at 500 rpm for 2 min, and microscopy analysis was performed
within 5 min of blood collection.

3.2. From Video Processing to Motion-Based Classification

As illustrated in Figure 2, the proposed Chagas parasite detection framework com-
prises four key stages: video processing, model training, evaluation, and findings.

Finding a technique that can be easily implemented on simple computing devices is
crucial for practical deployment in real-world settings, especially in low-resource laborato-
ries or mobile diagnostic systems. In this work, we propose a lightweight, motion-based
method that enables the efficient detection of moving objects, specifically, parasitic organ-
isms in microscopic video sequences. The method emphasizes simplicity, robustness, and
computational efficiency to ensure wide applicability. To achieve this, we developed an
innovative computer vision framework that combines adaptive motion detection with
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intelligent filtering and morphological analysis to automatically identify parasites in optical
microscopy datasets.

Motion-Based Chagas Parasite Detection and Classification Process

Video Processing (Motion- Dataset collection and Sample Model Training(Deep learning models training
based parasite detection using —»  Generation(Region Cropping (Parasite 5 using generated samples for automated
adaptive algorithms) Area(Positive and negative)) Chagas parasite classification)

Figure 2. Motion-based Chagas parasite detection and classification framework. The process com-
prises video preprocessing, candidate region extraction, sample generation, and deep learning
model training.

Figure 3 illustrates the complete methodology for parasite detection using adaptive
motion detection. The pipeline consists of three main phases: Multi-Video Input Process-
ing, Motion Saliency Detection, and Trace Detection, culminating in automated sample
generation for machine learning applications.

AUTOMATED CHAGAS DISEASE DETECTION and CLASSIFICATION

METHODOLOGY

Motion-Based Analysis for Trypanosoma cruzi Detection and classification in Microscopic Videos

(A) (B) (] (D)
VIDEO PREPROCESSING [iad MOTION PARASITE > SAMPLE > PARASITE
DETECTION GENERATION CLASSIFICATION

B1.1) Frame Preprocessing B2.1) Frame Enhancement Positive Samples

& CLAHE in LAB color space 64x64 pixels with 50px

padding

chagas1_frame_0
029_positive_02

y
smoothing

LB ity &l Clip limit: 2.0, Tile: 8x8

(B1) Motion (B2) Detection of P ———
Saliency Detection estiges

. B1.2) Motion Detection

ulti-Vi
Input
Frame Frame differencing & thresholding Negative Samples
o Threshold: 25 (10% of 8-bit)
B2.1) Contour Analysis and .
DBSCAN Clustering 6464 pixels
\

chagas1_frame_O
008_negative_02

B1.3) Saliency Enhancement

Gaussian blur for saliency map

Kernel: 15x15
Trypanosoma cruzi

Figure 3. Comprehensive pipeline for automated Trypanosoma cruzi detection and classification.
This diagram outlines the four key stages of a motion-based analysis methodology for identifying
and classifying Trypanosoma cruzi parasites from microscopic video data. (A) Video Preprocessing
extracts frames from multi-video input. (B) Motion Parasite Detection uses a two-part approach:
(B1) Motion Saliency Detection identifies moving objects, and (B2) Detection of Vestiges refines
these detections using frame enhancement and DBSCAN clustering. The detected parasites are
then used in (C) Sample Generation to create a balanced dataset of positive and negative samples
(e.g., 64 x 64 pixel images) for subsequent machine learning. This dataset is then used in (D) Parasite
Classification to train a model for the automated diagnosis of Chagas disease.

3.2.1. Adaptive Motion Detection Algorithm and Preprocessing
Frame Differencing Technique

The Frame Differencing Technique is a computationally simple yet highly effective
method widely used in computer vision for detecting motion. A video is composed of a
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sequence of frames, each made up of pixels with RGB values ranging from 0 (black) to
255 (white). By subtracting two consecutive frames pixel-wise, static regions where pixel
values remain unchanged appear black, while regions with movement manifest as bright
areas due to changes in pixel intensity. This fundamental concept serves as the basis for
motion detection in video sequences.

Figure 4 illustrates the steps for moving object detection using frame differencing.

> Frame 1 |
Background
> Frame ﬁ Frame 2
Addition of
Video Image T 1 s
ge | > mages
Subtraction
Frames 1
A |
Group of 8 1
» Frames |
= Frame 8
v
Creation of Boundary Box Object Morphological
PR < Detection < Noise Reduction
For each Detected Objects

Figure 4. Block diagram demonstrating the sequence of steps in moving object detection using frame
differencing [24].

3.2.2. Algorithm Implementation
Frame Differencing Algorithm
The Frame Differencing Technique employs temporal analysis to detect parasite mo-

tion by comparing consecutive video frames and employment of different image processing
techniques as shown in Algorithm 1.

Algorithm 1 Motion Detection using Frame Differencing

Require: Video sequence {I1,Ip,..., I}
Ensure: Motion saliency maps {S1,52,...,5,-1}
1: for each frame pair (I,_1, I,) do
2: Convert frames to grayscale
3: Apply Gaussian smoothing (5 x 5 kernel)
4 Calculate absolute difference: A, (x,y) = |I,(x,y) — I,—1(x,y)|

) _)255 if An(x,y) > T
5 Apply threshold: M, (x,y) 0 ofherwise
6: Morphological filtering (opening + closing, 3 x 3 ellipse)
7: Generate saliency map: S(x,y) = Gy—15 * M(x,y)

8: end for

Table 1 summarizes the key parameters used in our implementation as Algorithm 1
is applied.

Table 1. Frame differencing parameters.

Parameter Value Description

Motion Threshold (T) 25 ~10% of 8-bit intensity range
Gaussian Kernel 5x5 Noise reduction filter
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Frame Enhancement

Contrast-limited adaptive histogram equalization (CLAHE) is applied to enhance
parasite visibility before training samples are extracted. The enhancement process mod-
ifies the L-channel (lightness) while preserving chromaticity information, as detailed in
Algorithm 2.

Algorithm 2 Adaptive Frame Enhancement

Require: RGB frame
Ensure: Enhanced frame L.,;,4,1c0d
1: Convert I from BGR to LAB colour space
: Splitinto L, A, B channels
: Apply CLAHE to L-channel:
L’ = CLAHE(L, clip_limit = 2.0, tile_size = 8 x 8)
: Merge enhanced L’ with original A, B channels
: Convert back to BGR colour space
o return Loypapced

NS U AW N

Table 2 shows the enhancement parameters.

Table 2. Enhancement parameters.

Technique Parameters Purpose
CLAHE clip_limit = 2.0, tile_size =8 x 8 = Contrast enhancement
Colour Space LAB (L-channel only) Preserve chromaticity

Parasite Detection and Localization

The detection pipeline combines contour analysis with DBSCAN clustering to identify
and refine parasite locations, as detailed in Algorithm 3. Table 3 outlines the key parameters.

Algorithm 3 Parasite Detection Pipeline

Require: Saliency map S(x,y), Enhanced frame I
Ensure: Refined parasite locations {Cy,C, ..., Cr}
1: Threshold saliency map (threshold = 30)
Apply morphological operations (2 x 2 kernel)
Find contours using Suzuki-Abe algorithm
Filter contours by area (A > 50 pixels)
for each valid contour do
Calculate moments Mgy, M1, M1
Centroid: (cx, cy) = (Mio/ Moo, Mo1/ Moo)
end for
Apply DBSCAN (e = 30, min_samples=2) to centroids
Calculate cluster centroids as final detections
: return refined parasite locations

—_ =
= O

Table 3. Detection and clustering parameters.

Component Parameter Value Purpose
Contour Analysis Min Area 50 pixels Filter Noise
Morphological Kernel Size 2 x 2 ellipse Shape Refinement
DBSCAN Epsilon (g) 30 pixels Clustering Radius
DBSCAN Min Samples 2 points Min Cluster Size

Avoid Parasite

Sample Generation Negative Distance 80 pixels Regions
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In general, preprocessing techniques are computationally expensive, and the primary
concern when applying them is the required processing time. Table 4 presents a detailed
time analysis of the motion preprocessing stage. The reported results include both the total
processing time for 23 videos and the average time per video. As shown, the preprocessing
step requires only a few seconds per video, demonstrating that while it is time-consuming
in general, the per-video cost remains relatively small.

Table 4. Time analysis of motion preprocessing stage.

Total Time Videos Avg. Time/Video
75.3s 23 3.27 s

Training Data Generation

Our experimental setup utilized 23 microscopic video sequences containing the par-
asite T. cruzi. Each video was processed as described in the previous sections, including
frame extraction, motion analysis, parasite detection, and sample generation. Positive
training samples are extracted by cropping 64 x 64 pixel regions around detected parasite
locations. Each crop is padded by 50 pixels to ensure complete parasite capture, as defined
in Algorithm 4.

Each 64 x 64 image captures unique parasite positions and flagellar movements,
producing biologically distinct samples rather than duplicates. Motion-based selection
ensures temporal and spatial diversity, capturing multiple movement phases across videos.

Algorithm 4 Training Sample Generation.

Require: Enhanced frame I,,j,1,,ceq, Parasite locations P = {p1,p2, ..., Pm}
Ensure: Positive samples Pp,s, Negative samples Pyq
1: for each parasite location p; in P do

Extract crop with 50-pixel padding

Save as positive training sample

: end for

: while |Pye| < 3 and attempts < 100 do

Generate random location (x, y)

if min _distance(x,y) to all parasites > 80 px then
Extract 64 x 64 crop at (x,y)
Add to Pyeq

end if

: end while

: return Ppos, Preg

O P NP

= =

Training samples are extracted after frame enhancement, ensuring positive and nega-
tive samples reflect enhanced visibility. Table 5 summarizes the sampling strategy.

Table 5. Sample generation strategy.

Sample

Count per Frame Size Constraints
Type
Positive Variable 64 x 64 + 50 px padding  Around detected parasites
Negative 3 64 x 64 >80 px from any parasite

This implementation successfully processes 23 microscopic video sequences of T.
cruzi parasites, generating balanced training datasets suitable for machine learning ap-
plications. The modular design allows for easy parameter tuning and extension to other
parasitic organisms.
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Dataset Splitting and Augmentation

After extracting positive and negative samples from all 23 videos, we prepared the
dataset for model training and evaluation. The dataset was split into three parts using
a 70-15-15 ratio: 70% for training (524 positive and 724 negative samples), 15% for val-
idation (112 positive and 155 negative samples), and 15% for testing (113 positive and
156 negative samples).

To improve the model’s performance and reduce over-fitting, we applied data aug-
mentation only to the training set. The validation and test sets were kept unchanged for
fair evaluation. The augmentation techniques included horizontal and vertical flipping,
rotation, brightness, and contrast adjustments, and adding Gaussian noise. These methods
helped create a more diverse and balanced training dataset.

3.2.3. Deep Learning Models and Training

We trained and evaluated three deep learning models for binary classification of
parasites: MobileNetV2 [26], AlexNet [27], and VGG16 [28]. Each model was selected to
represent a different family of convolutional neural networks (CNNs), balancing between
efficiency, depth, and feature extraction capabilities. All models took RGB images resized
to 224 x 224 as input, with pixel values normalized between 0 and 1. The training used a
batch size of 32 and the Adam optimizer with a learning rate of 0.0001. We used binary
cross-entropy as the loss function, and training was limited to 25 epochs. Early stopping
was used with a patience of 7 epochs to avoid over-fitting if validation loss did not improve.

Model Selection

The selection of models for this study was motivated by the need to explore archi-
tectures with varying levels of complexity, computational efficiency, and representational
capacity. This diversity enables a comprehensive evaluation of how different design
philosophies in deep learning architectures influence the classification of parasites.

MobileNetV2 was chosen as a lightweight and efficient network architecture specif-
ically designed for deployment in mobile and resource-limited environments. Its use of
depthwise separable convolutions and inverted residuals allows it to achieve strong fea-
ture extraction with significantly reduced computational cost. With approximately only
3.4 million parameters, MobileNetV2 is particularly suitable for point-of-care diagnostic
applications where fast inference and low power consumption are critical.

MobileNetV2 has also proven highly effective in related biomedical tasks. Prior studies
report validation accuracies up to 99.9% [29] in malaria parasite detection, outperforming
deeper models such as DenseNet, ResNet152V2, and NasNetLarge.

AlexNet, one of the earliest deep CNNs, was included to serve as a historical and
structural benchmark. Although relatively shallow by modern standards, its convolutional
layers pioneered the use of deep learning for image recognition and to provide insights
into how classical architectures perform on this task. AlexNet contains around 61 million
parameters, making it computationally heavier than MobileNetV2.

VGG16 was selected as a deeper architecture characterized by its uniform design
of stacked convolutional layers. While computationally demanding, VGG16 is known
for its strong feature extraction ability and robustness across many vision tasks. With
approximately 138 million parameters, VGG16 provides a contrast to lightweight models,
enabling an evaluation of how deeper, high-capacity networks compare in terms of their
potential diagnostic utility.

This model selection strategy ensures that the study not only tests state-of-the-art effi-
cient architectures but also examines the performance trade-offs introduced by classical and
deeper CNN models. This balanced foundation allows for a comprehensive experimental
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evaluation in the subsequent sections. The quantitative differences between architectures
(Table 6) enable systematic evaluation of efficiency trade-offs.

Table 6. Comparison of model complexity: parameters and FLOPs.

Model Parameters (M) FLOPs (G)
MobileNetV2 3.4 0.30
AlexNet 61.0 0.72
VGG16 138.0 15.3

3.3. Video Processing for Object Detection

As illustrated in Figure 5, the proposed Chagas parasite detection pipeline involves
four key stages: video processing, model training, evaluation, and inference.

Chagas Parasite Detection Process

Video Processing Model Training(object Evaluation and Inference on Unseen
(annotation of frames ~ —»  detection using YOLOV5 - Performance -> Videos for parasite
using Roboflow) and YOLOv8 architectures Comparison detection

Figure 5. Chagas parasite detection process consisting of video annotation, model training with
YOLOV5/YOLOVS, evaluation, and inference on unseen videos.

The dataset used in this study comprises a total of 48 microscopic video sequences,
each containing biological samples potentially infected with T. cruzi parasites. These videos
exhibit a wide range of conditions, including variations in background textures, lighting,
image resolution, and parasite density. The diverse nature of the dataset ensures that the
developed detection model can generalize across different real-world scenarios and envi-
ronmental conditions observed in microscopic imaging. Figure 6 presents representative
frames from the video dataset, illustrating the diversity of imaging conditions observed.

Figure 6. Examples of raw video data for parasite detection. This figure displays two represen-
tative frames from the dataset of microscopic videos. These frames illustrate the type of raw
data—including background noise and varying lighting—that is used as input for the automated
parasite detection system.

3.3.1. Dataset Preparation
Manual Annotation and Ground Truth Generation

Out of the 48 available videos, a subset of 43 videos was selected for manual annotation.
Each frame in these videos was carefully labelled by using Roboflow, an annotation tool
that allows precise bounding box creation around visible T. cruzi parasites. The labelling
process involved a thorough frame by frame inspection to ensure high annotation quality
and consistency. The annotated data was exported in YOLO compatible format, enabling
seamless integration into both YOLOv5 and YOLOVS training pipelines.
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Data Splitting Strategy

From 43 parasite detection videos, 895 annotated frames were extracted using the
Roboflow platform. These frames were then divided into training and validation datasets
using a simple 80:20 split. The training data was used to optimise the model parameters,
while the validation data was employed to monitor performance during training and
reduce the risk of over-fitting. This setup ensures that the model is evaluated on data it has
not seen before, thereby enhancing its generalisation capability.

Model Training Using YOLO Architectures

In this phase of the study, the You Only Look Once (YOLO) framework was selected
due to its demonstrated efficacy in comprehensive object detection. As a single-stage
detection architecture, YOLO analyses the entire image in a single forward pass, allowing
for the concurrent localisation and classification of multiple objects. This holistic processing
significantly reduces information loss, which is particularly critical in the context of medical
image interpretation.

To assess the effectiveness of the approach in parasite detection, two advanced it-
erations of the YOLO architecture were utilized: YOLOv5 and YOLOvS8. YOLOv5 was
adopted as a reliable baseline, while YOLOVS incorporated state-of-the-art enhancements,
including transformer-based components and decoupled detection heads to improve ac-
curacy and generalisation. Both models were trained on a custom dataset, with essential
hyper-parameters such as image resolution, batch size, and number of epochs carefully
tuned to optimise performance. Each model variant was trained under identical hyper-
parameter settings to ensure a fair comparison. Specifically, all models were trained for
140 epochs using a batch size of 8 and an input image size of 64 x 64 pixels.

Performance Evaluation

Model performance was assessed using standard object detection metrics, including
precision, recall, and mean Average Precision (mAP) at multiple Intersection over Union
(IoU) thresholds. Comparative evaluation between YOLOvV5 and YOLOv8 was conducted
using the validation set to determine the model with superior detection capabilities. Based
on the evaluation results, the best performing model was selected for further inference on
unannotated data.

Model Selection

We considered models that balance detection accuracy, computational efficiency, and
suitability for resource-constrained deployment. YOLOvS8 and YOLOVS5 were selected as
detection backbones because they represent complementary design philosophies within
the same proven Ultralytics ecosystem, enabling a balanced evaluation of anchor-free and
anchor-based approaches on the same dataset.

YOLOVS, the most recent generation (2023) of the YOLO family, introduces an anchor-
free detection head and a refined C2f neck, which improve feature fusion and have been
shown in prior benchmarks to achieve higher mAP scores than YOLOVS5 for equivalent
model sizes. For example, on the COCO dataset, YOLOv8-Nano reaches 37.3 mAP with only
3.2 M parameters, illustrating its combination of accuracy and computational efficiency [30].
YOLOvV5-Nano, from an earlier generation (2020), remains an industry-standard backbone
known for its exceptional inference speed, stability, and competitive accuracy. Its anchor-
based design, built on a CSPDarknet53 backbone with a PANet neck, is highly effective for
small-object detection. With a compact parameter count (2.6 M) and a mature, well-tested
architecture, it is well-suited for real-time deployment on constrained edge hardware.
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Including both models enables a rigorous architectural comparison: YOLOvVS rep-
resents a modern, anchor-free design optimized for performance and flexibility, while
YOLOVS5 offers a stable, speed-optimized architecture with proven practical value. This
dual-model evaluation strengthens the generalizability of our findings across diverse
deployment scenarios. Table 7 [30] shows Official Ultralytics benchmark results for the
YOLOvVS8 and YOLOvV5 models at 640 x 640 input resolution, showing mAP, inference
speed, parameter count, and FLOPs. These values informed our choice of YOLOv8n and
YOLOV5n for the experiments.

Table 7. Benchmark results for YOLOv8 and YOLOv5 models.

. . 1 Speed CPU Speed T4
Model Size (Pixels) = mAPY? 50-95 ONNX (ms) TensorRT Params (M) FLOPs (B)
(ms)
YOLOv8n 640 37.3 80.4 1.47 3.2 8.7
YOLOvS8s 640 449 128.4 2.66 11.2 28.6
YOLOv8m 640 50.2 234.7 5.86 259 78.9
YOLOvS8I 640 52.9 375.2 9.06 43.7 165.2
YOLOv8x 640 53.9 479.1 14.37 68.2 257.8
YOLOvV5n 640 28.0 73.6 1.12 2.6 7.7
YOLOv5s 640 37.4 120.7 1.92 9.1 24.0
YOLOv5m 640 454 233.9 4.03 25.1 64.2
YOLOVS51 640 49.0 408.4 6.61 53.2 135.0
YOLOv5x 640 50.7 763.2 11.89 97.2 246.4

Model Architecture Variants

We evaluated six YOLO configurations: YOLOv5 (Nano, Small, Medium) and YOLOvS
(Nano, Small, Medium). The Nano versions prioritise speed and efficiency for lightweight
deployment, the Small versions offer a balance between accuracy and performance, and the
Medium versions provide higher detection accuracy with moderate computational requirements.

Inference on Unlabelled Videos

Following training and evaluation, the remaining 5 videos unannotated during the initial
phase were used to assess the generalisation ability of the selected model. The trained YOLO
model was applied to these unseen videos to perform real-time parasite detection. Each
video was processed frame by frame, with bounding boxes drawn around detected parasite
instances. The resulting annotated videos were saved and used for visual inspection, allowing
researchers to analyse the spatial and temporal dynamics of parasite behaviour.

4. Experimental Results

This section presents the results of motion-based sample extraction and deep learning-
based classification, followed by object detection using the YOLO framework. The perfor-
mance is assessed through various metrics and comparisons.

4.1. Implementation Details

Experiments were conducted using Python 3.11.13, PyTorch version 2.6.0 + cul24,
and TensorFlow version 2.18.0 in the Google Colab integrated programming environment.
Both training and testing were carried out on an NVIDIA Tesla T4 (15,360 MiB) GPU for
efficient computations. This setup enabled high-performance deep learning experiments,
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leveraging the GPU hardware accelerator to significantly reduce training time and support
resource intensive tasks under a Windows 11 host environment.

4.2. Evaluation Metrics

In this study, the performance of the models was assessed using distinct sets of evalua-
tion metrics. These metrics provide a comprehensive view of each model’s effectiveness
across different tasks, ensuring robust performance in real-world applications. The classifi-
cation performance was evaluated using accuracy, Equation (1), precision, Equation (2),
recall, Equation (3), and Fl-score, Equation (4). In addition, the object detection capability
was quantified using the mean Average Precision (mAP) computed as in Equation (5).

Accuracy = TP+ TN 1)
Y= TP+ FP + FN + TN’
... TP
Precision = T L FP’ 2)
TP
Recall = ————
AT TP EN ©)
2 x Precision x Recall
Fl score = Precision + Recall ’ @)
1 N
AP = — AP;
m N 1221 ir )

where TP (True Positives) represents the correctly predicted positive samples, TN (True Neg-
atives) represents the correctly predicted negative samples, FP (False Positives) incorrectly
predicted positives, and FN (False Negatives) incorrectly predicted negatives.

4.3. Motion-Based Parasite Detection and Sample Classification

The proposed motion-based framework was applied to 23 microscopic video sequences
containing T. cruzi parasites. Using adaptive frame differencing and morphological filtering,
a total of 1784 samples were extracted, comprising 749 positive (with parasites) and 1035
negative (without parasites) samples. Representative examples of these extracted samples
are illustrated in Figure 7, which shows both positive and negative cases used for training
and evaluating the classification models.

chagas23_frame_ chagas23_frame_ chagas23_frame_
0004_negative_0 0004_negative_0 0005_negative_0
3 1

chagas4_frame_0 chagas4_frame_0 chagas4_frame_0
018_positive_03 018_positive_04 019_positive_01 2

chagas4_frame_0 chagas4_frame_0 chagas4_frame_0

. . . chagas23_frame_ chagas23_frame_ chagas23_frame_
t 1 t 1
022_positive 0 022_positive_02 023_positive_0 0007_negative.0  0007_negative 0  0008_negative_0
2 3 1
a b

Figure 7. Representative sample images extracted from microscopic video sequences. The figure
shows positive samples containing visible T. cruzi parasites (a), and negative samples without
parasites (b). These images were used for training and evaluating the classification models.

Deep Learning Classification Results

Three deep learning architectures were trained and evaluated for binary classification
of microscopic images of T. cruzi parasites: MobileNetV2, AlexNet, and VGG16.
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To analyse model performance, Figure 8 illustrates the training results of MobileNetV2,
AlexNet, and VGG16. It shows the changes in training and validation accuracy and loss
across epochs, which help evaluate each model’s convergence behaviour and generalisa-

tion performance.
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Figure 8. Training results of MobileNetV2, AlexNet, and VGG16.

Table 8 summarises the training and validation performance of the evaluated deep
learning models. Among the three architectures, MobileNetV2 demonstrated the most
effective convergence behaviour, attaining a final training accuracy of 99.86% and a valida-
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tion accuracy of 99.25%. The minimal discrepancy between training and validation loss
values (0.0113 and 0.0100, respectively) indicates excellent generalisation capability with
negligible over-fitting.

Table 8. Training and validation performance of deep learning models.

Model Train Accuracy (%)  Train Loss Val Accuracy (%) Val Loss
MobileNetV2 99.86 0.0113 99.25 0.0100
AlexNet 98.42 0.0412 97.75 0.0686
VGG16 96.41 0.1039 97.75 0.0581

AlexNet also achieved strong results, with a training accuracy of 98.42% and a valida-
tion accuracy of 97.75%. Its validation loss of 0.0686 remained within an acceptable range,
supporting the model’s ability to generalise effectively.

VGGI16 reached a training accuracy of 96.41%, and like AlexNet, recorded a validation
accuracy of 97.75%. However, its relatively higher training loss of 0.1039 may suggest
slower convergence or the need for additional regularisation or training epochs. Despite
this, the model still exhibited good generalisation to unseen data.

Overall, these results highlight the robustness and efficiency of MobileNetV2, making
it a strong candidate for deployment in real-time or resource-constrained settings, partic-
ularly in biomedical image classification tasks. Table 9 presents the detailed evaluation
metrics obtained on the test set for the three deep learning models: MobileNetV2, AlexNet,
and VGG16. The performance was measured using accuracy, precision, recall, F1-score,
and loss. These results provide insight into the generalisation ability and robustness of
each model in classifying T. cruzi parasite images.

Table 9. Test performance comparison of deep learning models.

Model Accuracy (%)  Precision (%) Recall (%) F1-Score (%) Loss AUC
MobileNetV2 100.00 99.12 99.56 0.0099 1.00

AlexNet 96.49 97.35 96.92 0.0794 0.9969
VGG16 97.37 98.23 97.80 0.0730 0.9986

Among the evaluated models, MobileNetV2 achieved the highest overall performance
with an accuracy of 99.63%, perfect precision (100%), and an AUC-ROC score of 1.0000,
indicating outstanding classification ability. VGG16 and AlexNet also achieved good and
acceptable performance across all metrics. These results, illustrated in the confusion matri-
ces shown in Figure 9, highlight the effectiveness of deep learning methods in classifying T.
cruzi parasites from microscopic images.

MobileNetV2 showed excellent classification capability, correctly identifying all nega-
tive samples (TN = 156, FP = 0) and misclassifying only one positive sample (FN = 1). This
resulted in the highest recall (99.12%) and perfect precision (100%).

VGG16 also performed well with only three total errors (three FP and two FN), main-
taining strong overall performance and a good balance between precision and recall.

AlexNet misclassified seven samples (four FP and three FN), which slightly reduced
its precision and recall, but it still achieved reliable classification with minimal over-fitting.
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Figure 9. Confusion matrices for MobileNetV2, VGG16, and AlexNet on the test set.

To further evaluate the classification performance of the three models, the Receiver
Operating Characteristic (ROC) curves were plotted, as shown in Figure 10. MobileNetV2
achieved an AUC-ROC of 1.00, confirming its outstanding capability in distinguishing
positive and negative T. cruzi parasite images. VGG16 and AlexNet obtained AUC-ROC
scores of 0.9986 and 0.9969, respectively, reflecting strong classification performance with
minimal misclassification.
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Figure 10. ROC curves for MobileNetV2, VGG16, and AlexNet.

To assess the models’ suitability for real-time applications, inference speed was mea-
sured on the test dataset. MobileNetV2 achieved an average inference time of 13.6 ms per
image, AlexNet 3.6 ms per image, and VGG16 7.8 ms per image. These results indicate that
all models are suitable for practical deployment, with MobileNetV2 providing an optimal
balance between high classification accuracy and fast prediction speed (Table 10).

Table 10. Inference times of the evaluated deep learning models.

Model Inference Time (ms/Image)
MobileNetV2 13.6

AlexNet 3.6

VGGI16 7.8

4.4. Video-Based Parasite Localization Using YOLO Detection Models

To evaluate the effectiveness of object detection models in localizing T.cruzi parasites
within microscopic videos, a total of 43 annotated videos were used for training and
validation. Each video was processed frame by frame, and parasite instances were manually
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labelled using bounding boxes. The annotated data was used to train multiple YOLO-based
models, namely YOLOv5 and YOLOVS, in three configurations each (Nano, Small, and
Medium). The validation set comprised a diverse range of frames with varying parasite
densities, lighting conditions, and background textures, closely simulating real-world
microscopy environments.

4.4.1. Training Performance for Video-Based Parasite Detection

The performance of the trained models was evaluated using widely accepted object
detection metrics, including precision (P), recall (R), mean Average Precision at IoU thresh-
old 0.5 (mAP@0.5), and mean Average Precision averaged over IoU thresholds from 0.5 to
0.95 (mMAP@0.5 : 0.95). These metrics provide a comprehensive view of the model’s locali-
sation accuracy and its robustness across different levels of detection strictness. Table 11
summarises the detection performance of all YOLO variants on the validation dataset.

Table 11. Detection performance comparison of YOLOv5 and YOLOv8 models on the valida-
tion dataset.

Model Precision (P) Recall (R) mAP@0.5 mAP@0.5:0.95
YOLOv5-Nano 0.581 0.575 0.604 0.224
YOLOvV5-Small 0.631 0.525 0.590 0.215

YOLOv5-Medium 0.549 0.559 0.595 0.219
YOLOv8-Nano 0.651 0.504 0.595 0.226
YOLOvV8-Small 0.573 0.544 0.592 0.214

YOLOv8-Medium 0.560 0.515 0.553 0.208

As shown in Table 11, the YOLOv8-Nano model achieved the highest mAP@0.5 : 0.95
score (0.226), indicating a strong balance between localisation precision and robustness
across various IoU thresholds. Interestingly, YOLOv5-Nano achieved the highest mAP@0.5
(0.604), suggesting it performed slightly better at standard IoU evaluation compared to
its counterparts.

YOLOV5-Nano and YOLOv8-Nano also showed competitive results in terms of preci-
sion and recall, making them suitable candidates for deployment in resource-constrained
environments due to their efficiency and lightweight architecture.

It is also important to note that, in general, the detection results were modest and
did not reach exceptionally high scores. This is likely due to the inherent challenges of
the dataset: many video frames contained unclear or noisy backgrounds, poor lighting
conditions, and parasites that were barely visible. These factors negatively impacted the
model’s ability to consistently detect and localize T. cruzi parasites, especially in more chal-
lenging frames.This observation is supported by the comparative training and validation
performance curves shown in Figure 11, which illustrate fluctuations in learning stability
and detection accuracy across both YOLOv5-Nano and YOLOv8-Nano models.

The training curves of the YOLOv5-Nano model demonstrate steady and consistent
improvement across all key metrics. Specifically, the loss components—including the
bounding box regression loss and the objectness loss (which measures the confidence of
object presence within predicted regions)—show a gradual and stable decrease, indicating
effective learning and convergence. Both precision and recall steadily increase throughout
the training process, while the mAP@0.5 and mAP@0.5:0.95 metrics approach competitive
values. Overall, the training appears smooth and well regularised, with no signs of over-
fitting or instability. The results suggest that YOLOv5-Nano is highly efficient and well
suited for this task, especially considering its lightweight architecture.
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Figure 11. Comparison of training and validation performance for YOLOv5-Nano and YOLOvS-
Nano models.

Similarly, the YOLOv8-Nano model exhibits strong convergence behaviour. All three
loss components, box loss, classification loss, and distribution focal loss, decrease progres-
sively during training, reflecting proper optimisation. Precision and recall also improve
consistently, and both mAP metrics show a steady upward trend. However, the initial
loss values are relatively high compared to YOLOv5-Nano, possibly due to architectural
complexity or dataset sensitivity. Although the final performance is stable and competitive,
YOLOv8-Nano did not surpass YOLOv5-Nano in key metrics.

While both models demonstrate effective learning, YOLOv5-Nano slightly outper-
forms YOLOv8-Nano in terms of detection accuracy and training stability. This makes
YOLOv5-Nano a more favourable option for resource-constrained environments and real-
time microscopic parasite detection.

4.4.2. Qualitative Testing on Unseen and External Videos

To further assess the real-world applicability of the proposed detection system, quali-
tative inference was conducted on two additional video sources. The evaluation involved
five unseen videos from the original dataset that were excluded from the training and
validation phases, as well as one external outdoor video captured independently under
high-quality imaging conditions. Visual inspection of the detection outputs was used to
assess the model’s behaviour and effectiveness across different environmental conditions
and video qualities. As shown in Figure 12, the results correspond to unseen videos from
the original dataset.
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Figure 12. Processed video output—YOLOv5 and YOLOVS detections.

The best-performing models, YOLOv5-Nano and YOLOv8-Nano, were selected for
this qualitative assessment based on their superior performance during the quantitative
evaluation phase. Both models underwent inference testing on the unseen video datasets to
evaluate their generalisation capabilities and real-world applicability. Both models successfully
detected and localised multiple parasite instances, demonstrating robust performance even
under challenging conditions such as motion blur, variable lighting, and cluttered or noisy
backgrounds. The detection results showed strong consistency across different frames and
time intervals, indicating good temporal stability of the detection system.

Figures 13 and 14 present a side by side comparison of the YOLOv5-Nano and YOLOvS-
Nano models applied to unseen microscopic videos containing T. cruzi parasites.

In addition, Figure 15 presents the output for an external video captured under
different lighting and background conditions.

YOLOv5-Nano - Video 1 (unseen)
Original Frame #4 (t=0.2s) Detections (Conf: 0.740, Count: 1)

YOLOvS8-Nano - Video 1 (unseen)

Original (t=0.2s) Detections (conf < 0.56)

Figure 13. Comparison of detection results on unseen Video 1: YOLOv5-Nano (top) and YOLOvVS-
Nano (bottom) applied to the same video sequence. This comparison evaluates the detection perfor-
mance of each model under identical conditions.

In Video 1, the YOLOv5-Nano model achieved a higher confidence score of 0.74,
compared to YOLOv8-Nano’s 0.56, indicating stronger detection certainty on the same
frame and timestamp. However, in Video 2, YOLOv8-Nano produced more accurate
bounding boxes and achieved a higher confidence score of 0.79, while YOLOv5-Nano
reached 0.656.
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YOLOv5-Nano - Video 2 (unseen)
Original Frame #1 (t=0.1s) Detections (Conf: 0.656, Count: 3)

YOLOvS8-Nano - Video 2 (unseen)

Original (t=0.1s) Detections (conf < 0.79)

Figure 14. Comparison of detection results on unseen Video 2: YOLOv5-Nano (top) and YOLOvS-
Nano (bottom) applied to the same video sequence. This comparison evaluates the detection perfor-
mance of each model under identical conditions.

In both test cases, the models were evaluated on video frames with similar visual
challenges, such as low contrast and background noise. This comparison highlights how
each model architecture performs under identical or near identical conditions, providing
insights into their generalisation capabilities on unseen microscopic sequences. While
a few missed detections were observed in frames with low contrast or poor visibility
reflecting known challenges in the dataset, these instances were relatively infrequent and
did not substantially affect overall detection performance. The system demonstrated strong
qualitative results, with most detections appearing visually accurate and consistent with
expert expectations.

In this study, we worked with newly collected data for training and evaluation, without
direct comparison to previous works. However, to assess generalization, we utilized a
microscopic video from the publicly available dataset by Martin et al. [31]. This video was
recorded under ideal imaging conditions using an Olympus CKX41 microscope at 400x or
200x magnification. It clearly shows a motile trypomastigote actively swimming among
red blood cells, making it an optimal reference for evaluating our model’s performance
under controlled conditions.

In this high-quality setting, the detection system demonstrated good and accurate
performance, producing tightly aligned bounding boxes around parasite-like structures.

Detection confidence was consistently high, with average confidence scores exceeding
0.5 in most cases. This reflects the model’s ability to generalise effectively and maintain
robust performance when applied to structured, real-world video data. The results from
the outdoor test demonstrate that the detection system performs exceptionally well under
ideal conditions, indicating strong potential for deployment in controlled or high-quality
recording environments.
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Figure 15. Processed video output — YOLOv5 detections for videos taken from Martin et al.’s [31] work.

5. Discussion and Conclusions

This study introduces a novel dual-stage framework for automated T. cruzi detec-
tion that strategically combines motion-based preprocessing with deep learning to ad-
dress critical limitations in Chagas disease diagnostics. The innovative motion analysis
pipeline, utilizing frame differencing, morphological filtering, and DBSCAN clustering
across 23 microscopic videos, successfully exploits parasite motility as a discriminative
feature, proving particularly effective in challenging conditions with low contrast, uneven
illumination, and complex backgrounds where traditional appearance-based methods fail.
The motion-guided sample extraction approach enabled MobileNetV2 to achieve excep-
tional performance metrics (99.63% accuracy, 100% precision, 99.12% recall, and AUC-ROC
of 1.0), validating the robustness of the preprocessing strategy.

The novelty of our approach lies not in individual techniques, but in their strategic
integration for parasitological applications. Unlike existing methods that treat motion as
auxiliary information, our framework positions parasite motility as the primary detec-
tion signal, fundamentally changing the diagnostic approach from appearance-based to
behaviour-based identification. This motion-first strategy enables reliable detection even
when morphological features are compromised by poor imaging conditions, addressing
a critical gap in current automated diagnostic tools for Chagas disease. Subsequently, a
comprehensive evaluation of six YOLO configurations, YOLOv5 and YOLOVS across Nano,
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Small, and Medium variants, identified YOLOv8-Nano and YOLOv5-Nano as optimal
candidates, offering a strong balance between detection accuracy and computational ef-
ficiency. Both models demonstrated robust generalization when applied to previously
unseen microscopic videos, including challenging outdoor scenarios, where YOLOv8-Small
achieved a peak detection confidence of 0.79 with precise localization.

The clinical significance of this framework lies in its ability to deliver an objective,
reproducible, and lightweight solution for automated Chagas disease diagnosis. This is par-
ticularly valuable in resource-limited environments, where traditional manual microscopy
is hindered by low sensitivity and subjective interpretation. By supporting real-time video
processing with high detection accuracy (99.63% vs. 72-96.4% for existing static methods),
the system is well suited for mobile health applications and point of care diagnostics. Its
lightweight design enables rapid processing, with motion detection completing in 3.27 s per
video (75.3 s for 23 videos) and classification inference, using the best-performing model
MobileNetV2, requiring only 13.6 milliseconds per image (434 ms per 32-image batch),
making it suitable for real-time deployment.

Future research should aim to expand the dataset to encompass a broader range of
microscope types, magnification levels, and imaging conditions. Incorporating tempo-
ral consistency mechanisms may help further reduce false positives. Overall, this work
represents a significant advancement in automated parasitological diagnostics, bridging
classical motion-based computer vision with modern deep learning to deliver a practical,
scalable, and impactful tool. It brings reliable parasite screening closer to routine clinical
implementation and has the potential to improve healthcare outcomes in regions where
Chagas disease remains a pressing public health concern.
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