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Abstract
We investigate the channels through which changes in operating capacity influence freight rates in
the container shipping market using a novel dataset to create an operating capacity index at shipping-
route level. Our analysis reveals that when supply elasticity is low, an increase in operating capacity
tends to drive freight rates upward, as the market faces constraints and cannot easily accommodate
additional demand. Conversely, when supply elasticity is high, an increase in operating capacity
generally leads to lower freight rates, since additional capacity can be deployed to meet rising
demand, preventing price surges. These findings suggest that shipping companies strategically adjust
capacity based on market conditions to optimize profitability, shifting between price and quantity

competition depending on route characteristics and supply elasticity.
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1. Introduction

Containerization has revolutionized global trade, significantly reducing transport times and costs
(Hummels, 2007). This has been a key driver of the growth in global trade in recent decades
(Bernhofen and Kneller, 2016; Cosar and Demir, 2018). The contribution of container trade to global
economic activity is well-documented (Kilian et al., 2023). Today, 60% of the value of seaborne trade
and nearly 90% of non-bulk dry cargo is transported as containerized cargo, including most
manufactured and high-value-added goods. For instance, European and US manufacturing firms rely
on imports of containerized raw materials and intermediate goods, while consumers routinely
purchase finished goods delivered in containers.

The cost of seaborne transportation, particularly freight rates, directly impacts economic growth.
Various factors influence these rates, including supply and demand uncertainty, fleet utilization,
competitor behavior, and geopolitical considerations (Kilian et al., 2023; Michail and Melas, 2021;
Li et al., 2023). ! Lower transportation costs and times lead to rapid growth in world trade and
economic development (Pascali, 2017). Similarly, as shipping freight rates are among the most
volatile asset classes (Choi et al., 2020; Pouliasis and Bentsos, 2024), understanding the determinants
of containership freight rates is crucial for both shipping and commodity markets.

Previous research has primarily focused on the impact of changes in supply and demand factors
on freight rates. From a supply perspective, the emphasis has been on how changes in the operational
fleet size affect freight rates. However, this static measure of supply overlooks an important
dimension: the intensity of container fleet utilization over time. This is often due to the lack of
accurate measures of fleet utilization at high frequency.

In this paper, we address this shortcoming of previous research by estimating the level of
utilization using highly granular data that measures the number of container ships operating on each
shipping route in real-time. Specifically, we construct operating capacity indices at shipping-route
level using a novel dataset that monitors vessel deployment across different container shipping routes.
These indices are based on Automatic Identification System (AIS) data on containership movements

and port calls, providing detailed micro-information on how container operating capacity varies over

' An example of how geopolitical uncertainty affects freight rates is the case of Houthi attacks on shipping traffic in the Red Sea in
2024, which has resulted in the rerouting of more than 60% of Europe-bound vessel traffic around the Cape of Good Hope. This has
added more than two weeks on the duration of the average trip from SE Asia to Europe and has led to disruptions to global trade and a
corresponding increase in freight rates; see as well Lloyd’s List 5 September 2024: “Red Sea reroutings uproot traditional transhipment
trends”
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time and across trade routes. > This enables us to examine how operating capacity affects freight
rates and how companies deploy their ships in response to competition and changing market dynamics.

Our paper contributes to the literature in several ways. First, it provides empirical insights into
the organization and structure of container shipping markets. It discusses how shipping companies
deploy their assets and respond to changing market dynamics by switching between price and quantity
competition. This aligns with the work of Tvedt and Hovi (2024). Second, the paper uses a novel
dataset to construct operating capacity indices for individual shipping routes. This extends the studies
of Regli and Nomikos (2019) and Li et al (2022), which analyzed micro-dynamic market information
from shipping big data. It also adds to the expanding literature on the provision of novel datasets for
the container sector, as highlighted by Otani and Matsuda (2023). Recent studies, such as Li et al
(2024) and Zheng et al (2024), also examine how changes in operating capacity affect freight rates
and freight volatility, respectively. However, these studies differ from ours in that they use monthly
and quarterly data, respectively, and do not distinguish between periods of high and low idle capacity.
This distinction is crucial, as the response of freight rates to changes in capacity depends on the shape
and elasticity of the supply curve.

Finally, the paper provides empirical support for the theoretical predictions of earlier studies,
such as Koopmans (1939), Wergeland (1981) and Stopford (2009), on the shape of the shipping
supply curve and confirms recent empirical evidence, that capacity constraints generate convex
supply curves (Boehm and Pandalai-Nayar, 2022). Thus, the paper complements empirical research
on dynamic pricing conditional on idle capacity (Elmaghraby and Keskinocak, 2003) and asset
pricing for shipping markets (Drakos and Tsouknidis, 2024).

We find that the response of freight rates to changes in operating capacity is conditional on the
level of idle capacity in the market. When idle capacity is high, changes in operating capacity are
significantly negatively correlated with freight rates. This is consistent with shipping companies
reducing their capacity in periods of low utilization to increase their revenue, as the increase in freight
rates outpaces the reduction in capacity due to the inelastic demand for shipping services. On the
other hand, when fleet utilization is high, shipping companies respond to increases in transportation

demand by increasing vessel speed, which results in higher fuel consumption and voyage costs. They

2 Ocean-going containerships are equipped with AIS transponders that send satellite radio signals with geospatial information on vessel
movements. Their primary use is for the safety of navigation and life at sea and for locating ships in search and rescue operations. The
use of AIS transponders is mandatory for all vessels engaged in international voyages and weighing more than 300 tons.



also rotate less efficient vessels from other shipping routes, which increases operating costs. Both
measures increase the marginal cost of containerized shipping and result in higher transportation costs
per unit of cargo.

The rest of the paper is structured as follows: Section 2 discusses the characteristics of the
container shipping market and analyzes it using the theories of supply elasticity and marginal cost.
Section 3 describes the construction of the operating capacity index and presents its statistical
properties. Section 4 analyzes the predictive power of operating capacity on freight rates. Section 5

checks the robustness of the empirical results. Finally, Section 6 concludes the paper.

2. Institutional Background of Container Shipping Markets

The intermodal transportation of cargo in reusable containers of standardized dimensions has
revolutionized global trade since the 1960s and has played a central role in the globalization of the
economy since the 1990s mainly due to its advantages of cost-effectiveness, flexibility and
integrability.

Container shipping markets are an integral part of the modern, highly interconnected global
supply chains. The latter are a major source of productivity gains but, at the same time, the tight
network of global sourcing makes countries vulnerable to disruptions as manifested during the
COVID-19 pandemic. The quantifiable impact of disruptions in container shipping markets is well
documented. Finck and Tillman, (2022) find that global supply chain shocks account for up to 30%
of inflation dynamics and have an impact both to real economic activity and to consumer prices in
the Eurozone area. Similarly, reduction of frictions in containership trades, in the form of easing of
bottlenecks and port congestion, led to a faster recovery of US manufacturing and increased the
recovery of real demand in the US by up to 18% in the post-pandemic environment (Kilian et al.,
2023). It also seems that the impact of supply chain disruptions differs according to their origin. For
instance, Finck and Tillman, (2022) find that supply chain disruptions originating in China are an
important driver for changes in industrial production, while disruptions originating outside of China
are an important driver for the dynamics of consumer prices.

The primary aims of container shipping companies are to increase their market share and avoid
having idle capacity, by deploying it to the market (Song and Wang, 2022). This enables them to

exploit economies of scale (Cullinane and Khanna, 2000) but also leads to fierce competition, low
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profit margins and chronic oversupply. To survive such a competitive environment, major global
carriers form alliances that involve co-deployment of ships over certain routes to improve capacity
utilization, reduce operational costs and ultimately, achieve economies of scale.

Nowadays, shipping alliances have become a prevalent form of cooperation among major
container shipping companies. By forming an alliance, shipping companies can exchange their
container slots to better adapt to the uncertain shipping demand and improve capacity utilization.
Both excess ship capacity and shipping demand affect the optimal slot allocation and exchange
strategy in the alliance. Larger shipping capacity leads to more excess slots exchanged within the
alliance to transport more containers but with an overall decrease in capacity utilization. A stronger
shipping demand leads to more containers being transported by competitors due to limitations of
shipping capacity and higher capacity utilization. Quite often, faced with higher demand uncertainty,
shipping companies choose to keep excess spare capacity, which results in lower profit margins.

From an economic point of view, the shipping freight rate is the equilibrium price in the shipping
market, reflecting the balance between supply and demand for a specific trading route. The freight
rate is therefore the projection of the intersection of the supply curve and the demand curve on the
price axis. On the other hand, the operating capacity index that we develop in the paper, measures the
actual level of capacity for each specific route and can thus be viewed as the projection of the
intersection of the supply and demand curve on the quantity axis.

In shipping markets, the relationship between operating capacity and freight rates depends on
supply elasticity and marginal cost. The price elasticity of supply is the degree to which supply
responds to price changes. The supply schedule for shipping markets is unique and differs from that
of other commodity markets in that it can shift from horizontal to vertical over a range of freight rates,
as shown in Figure 1 (Stopford, 2009). Previous studies suggest that idle capacity is related to
elasticity of supply (Koopmans, 1939; Wergeland, 1981). Supply is elastic when there is excess idle
capacity in the market (Area 1 in Figure 1). In this case, a short-term increase in demand will not
have a noticeable impact on freight rates. On the other hand, supply is inelastic when the fleet is fully
utilized and there is no spare capacity in the market (Area 2 in Figure 1); in this case a shift in demand
will lead to significant freight rate fluctuations. (Alizadeh and Nomikos, 2007; Nomikos and
Tsouknidis, 2022)



[Insert Figure 1 here]

Marginal cost refers to the increase in total cost for each additional unit of product (or service).
Containerships typically carry from a few thousand to tens of thousands of twenty-foot equivalent
units (TEUs). As the utilization rate of the fleet increases, the marginal cost of transportation increases
as well. In addition, freight rates often differ by the direction of transportation and there is large
directional imbalance between freight rates for front-haul voyages (i.e voyages in the main direction
of trade that involve larger cargo volumes) and backhaul freight rates (i.e. the return leg where cargo
volumes are generally lower and containerships mostly transport empty container boxes) (see e.g.
Brancaccio et al., 2020). Container boxes are valuable assets in their own right and their timely
positioning is important for the smooth functioning of global supply chains. Often, in periods of
strong demand, container companies prefer to ship containers back to their ports of origin empty in
order to fill them up as soon as possible (Kilian et al., 2023). The transportation of empty containers
leads to higher transportation costs, which may be as high as 20% of the total operating costs. As a
result, when cargo volumes are low and sufficient idle capacity exists in the market, an increase in
carrying capacity for a specific route can significantly reduce the cost of transporting individual

containers.

3. Construction of the operating capacity index

We construct the container operating capacity index by combining AIS data on containership
port calls with information about the physical characteristics of ships, obtained from the International
Maritime Organization (IMO). Our focus is on trade routes that originate from China which is the
world's leader in maritime connectivity and total cargo movements (Saeed and Cullinane, 2023). In
2022, China's container port throughput was 300 million TEUs, accounting for about 35% of the
global container port throughput,® and China's Liner Shipping Connectivity Index (LSCI)* was
ranked first in the world, making it the most connected economy in the global container shipping

network.

3 Data from the United Nations Conference on Trade and Development Statistics (UNCTADstat).
4 The LSCI indicates an economy's position in the global container shipping network. It is based on the number of ship calls, the
volume of containers handled in ports, the number of services and companies, the size of the largest ships, and the number of countries
connected through direct shipping services. Data from UNCTADstat.
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We focus on nine container shipping routes originating from China namely Japan route, Europe
route, U.S. West Coast route, U.S. East Coast route, South Korea route, Southeast Asia route,
Australia/New Zealand route, South Africa route and South America route. According to the 2023
data from the General Administration of Customs of the People's Republic of China, the countries
and regions covered by those nine routes account for 77.02% of total Chinese containerized trade.
Table 1 shows the nine shipping routes, including the variable names and the ports/countries based

on which the operating capacity index is constructed.

[Insert Table 1 here]

To construct the operating capacity index, we collect AIS data on containership port calls and
docking which provide detailed information on the movements and ports call of each ship. AIS data
have temporal and spatial attributes and include both dynamic and static information. The dynamic
data contains time-stamped information, in Universal Standard Time (UST), on vessels’ position
(latitude and longitude), heading and speed, which is usually updated every 6 seconds. The static
information contains the IMO number, a unique identification number for each ship, and information
on the type of vessel. Figure 2 shows the docking track for three randomly selected containerships.
For example, the container vessel with IMO number 9345415 departed from Long Beach to Los

Angeles on March 3, 2022, and then departed from Los Angeles to Taipei on March 8, 2022.

[Insert Figure 2 here]

Docking track data is then matched, via the IMO number, with data on vessel’s particulars. The
combined dataset includes static data such as the IMO number, gross tonnage and capacity of
containerships, measured in TEUs, and the docking track data such as the port name, country or region,
and arrival/departure time of the departure/arrival port.

The operating capacity index for each shipping route is then constructed using the following
steps:

Step 1: Determine the origin and destination of the shipping routes. The starting point is to

determine the origin and destination of the different shipping routes. For shipping routes to Europe,



US West Coast and US East Coast, we identify the largest ports, in terms of container throughput,
that belong to the respective regions. For example, destination ports on the US West Coast route
include the ports of Los Angeles, Long Beach, Seattle, Oakland and Tacoma. For the remaining routes,
we choose ports in the respective destination countries or areas. The ports and countries for each route
are shown in Table 1.

Step 2: Remove Outliers. For each containership voyage, we mark the points of origin and
destination to determine the shipping route to which it belongs. This identification process results in
inconsistencies in the data which are mainly due to three factors: transit routes, outliers in voyage
duration, and outliers in voyage trajectories. (1) Transit Routes. The identification methodology does
not distinguish between vessels doing short-haul routes or additional port calls on their way to the
final destination. For example, a voyage where a vessel departs from Qingdao and calls at the port of
Busan (S. Korea) on her way to the US West Coast, may be categorized as belonging to the Korea
route, while the port of Busan is merely a transit port for the U.S. West route. Given that the vessels
operating on the Korea, Japan and Southeast Asia routes are smaller, we impose an additional
restriction that only small containerships - with a capacity of less than 3,000 TEUs - are considered
when identifying voyages on the Korea and Japan routes; similarly, the criterion for determining
voyages for the Southeast Asia route is a capacity of less than 8,000 TEUs. (2) Outliers in voyage
duration. Dues to inconsistencies in AIS data, there are cases where the sailing time from origin to
destination, point O to point D, is exceptionally long or short. To filter these outliers, we set lower
and upper limit thresholds for the sailing time for each route, equal to the 5™ and 95" percentiles,
respectively. Sailing times outside of these two thresholds are excluded. (3) Outliers in Voyage
Trajectories. There are generally many feasible trajectories from point O to point D on a given
shipping route. Among the trajectories, some occur very infrequently. In the paper, voyages with
trajectories that occur less than 10% of the times are removed.

Step 3: Calculate the operating capacity for each shipping routes. We construct weekly
operating capacity indices using the number of containerships operating on a shipping route over the
previous seven days and their respective capacities, measured in TEUs, denoted as Num and Cap,
respectively. For each of those metrics we consider three variants: Cap, and Num, measure,
respectively, the fronthaul capacity and number of containerships in the direction from the port of

origin O to the destination port D; Capg, Numg measure the backhaul capacity and number of



containerships in the reverse direction from the destination port D to the port of origin O; and Cap
and Num; measure the total capacity and number of containerships and are calculated as the sum
of the corresponding A4 and B indices. We use weekly time series data to construct the operating
capacity indices for the period from January 2014 to May 2023. Detailed descriptions of the six

operating capacity indices are shown in Table 2.

[Insert Table 2 here]

We also collect data on Idle capacity, Idle;, defined as the combined TEUs of containerships
that are idle.> Idle capacity is a reliable proxy for modelling supply elasticity (Boehm and Pandalai-
Nayar, 2022). We introduce two thresholds, &y;gn and 6y, to create two dummy variables that

measure high and low operating capacity.

1 When Idlet 2 5h_igh
0 when Idle; < Spign

1 when Idle; < 64
0 when Idle; > 6;,,,

1d§1={

mg:{

When Idle; = 6igp, idle capacity is high, implying that supply elasticity at this time is high,
and a shift of the demand curve has little effect on freight rates. When Idle; < &;,,,, idle capacity is
low, implying that supply is inelastic and a small shift in the demand curve can cause a large change

in freight rates. By cross-multiplying the two dummy variables with the operating capacity index,
Cap]i-'t -1df and C ap]i-'t - IdE, we obtain the operating capacity under high and low idle capacity,

respectively.

The shipping routes covered in Table 1 are components of the China Containerized Freight Index
(CCFI), a broad index reflecting the trends of the global container market. CCFI freight rates measure
the current freight rate for the front-haul voyages and are based on transaction prices provided by 23
major Chinese and International shipping companies that have a significant market share on each

route. Freight rates include freight charges and related surcharges and are therefore inclusive of all

5 Idle status applies to containerships that have not been sailing with an average speed greater than one knot for 7 days or more, that
have not been identified as being subject to another status (e.g. laid-up, under repair, in storage or similar), and have not subsequently
recorded an average speed greater than one knot for two or more consecutive days or have not moved more than 20 nautical miles.
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costs a shipper would be expected to pay. ¢ Finally, we use control variables to proxy for exogenous
demand and supply shocks. These include the size of the fleet (supply factor), the total value of
China's exports (demand factor), and the spot price of bunker fuel oil (cost factor).

Freight rates, China's total export values and fuel oil prices are obtained from the iFind database.
The fleet size and idle capacity of the container shipping market are obtained from Clarkson's
Shipping Intelligence Network. Except for the total value of exports and fleet size, which are
measured monthly, all other variables are measured weekly. The time span of the data is from January

2014 to May 2023. See Table 3 for variable definitions and data sources.

[Insert Table 3 here]

[Insert Figure 3 here]

Figure 3 shows the fronthaul operating capacity index, Cap,, and the logarithmic freight rate

changes for each route. Correlation analysis between previous periods’ operating capacity (C apf;llt_l,

C aplig_t_1 and C apélt_l), current freight rate returns (Fre!) and current idle capacity (Idle,) for each

of the nine shipping routes (in Appendix Table Al) indicates that there is no apparent linear
relationship between the freight rate index, idle capacity and the operating capacity index. The
empirical results later in this paper also show that the effect of the operating capacity index on the

freight index is nonlinear and depends on idle capacity.

4. Predictability of operating capacity on freight rate

4.1 Operating capacity and freight rates

We use Granger causality tests to examine the causal relationship between freight rates and
operating capacity, and the results are presented in Table 4. Panel A presents the Granger causality
test results for the impact of operating capacity index on freight rates, while Panel B shows the

Granger causality tests for the effect of freight rates on operating capacity.

¢ Freight rates for backhaul voyages are part of a counterpart freight index, the China Import Containerized Freight Index (CICFI) and
are only available since 2022. Hence, are not included in the analysis presented here. Surcharges include Bunker/Fuel Adjustment
Factor (BAF/FAF), Emergency Bunker Surcharges (EBS/EBA), Low Sulphur Fuel Surcharge (LSS), Currency Adjustment Factor/Yen
Appreciation Surcharge (CAF/YAS), Peak Season Surcharge (PSS), War Risk Surcharge (WRS), Port Congestion Surcharge (PCS)
and Canal Surcharge (SCS/SCF/PTF/PCC).
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[Insert Table 4 here]

We note that the fronthaul capacity indices, Cap,, for the Europe (route 2), U.S. West Coast
(route 3), Korea (route 5), Australia/New Zealand (route 7), South Africa (route 8), and South
America (route 9) routes Granger-cause the corresponding freight rates. Conversely, only for the
Europe (route 2), South African (route 8), and South American (route 9) routes, freight rates Granger-
cause the corresponding operating capacity indices. The results for backhaul and total operating
capacity indices Capp and Cap. are similar to those for Cap,. In general, the capacity index
appears to have a stronger predictive effect on freight rates rather than the other way around.

We test the predictive impact of operating capacity indices on the corresponding shipping freight
rates more formally using the following regression model.

Fref = ay+ ayCap}, 4 + ayFref_; + ¢ (1D
The regression results for the fronthaul, backhaul and total operating capacity indices, Cap,, Capg,
and Capc, are presented in Panels A, B and C in Appendix Table A2, respectively.

The coefficients of the operating capacity indices for the nine shipping routes are positive or
negative although in most cases, their predictive effect on freight rates is not significant. Results
remain qualitatively similar after we introduce control variables including fleet size, the total value
of China's exports and the spot price of fuel oil (regression results are in Appendix Table A3).

We also test the predictive effect of the operating capacity index on freight rates using a panel

regression model.

Fre, = a, + a;Cap;,_, + a,Fre,_; + & (2)
T
where Fre, = [Fre, -, Frefl”, Capj._, = [Cap},_q,-,Cap}, 4| ,and & = [e}, -, &]".

The regression results are presented in Table 5, where Columns (1), (3) and (5) show the baseline

results, and Columns (2), (4) and (6) show the results incorporating control variables.
[Insert Table 5 here]

Consistent with the results from the individual regressions, the coefficients of the operating
capacity indices (i.e., Cap,, Capg and Cap.) are not significant in the panel data model. Therefore,

univariate and panel regressions indicate that there is no significant linear predictability from the
11



operating capacity index to freight rates.

4.2 Predictability conditional on supply elasticity

We examine next the predictive effect of operating capacity conditional on different levels of

supply elasticity. We set the idle capacity thresholds, &y, and 6y, as the 70th and 30th percentile
of idle capacity, and obtain two explanatory variables, C ap]i-,t -1df and C ap]"-,t - 1df, representing

operating capacity under high and low levels of supply elasticity, respectively. We use the following
model to test the predictive effect of operating capacity on freight rates conditional on supply

elasticity for the nine shipping routes.
Fref = ay + oleap]i-,t_1 + azCa]o]i-,t_1 IdR L+ a3Cain-,t_1 IdEk_, + a,Frel_; +€ (3)

where i = 1,...,9 denotes the nine routes as described above.

[Insert Table 6 here]

Two conclusions can be drawn from the regression results in Table 6. First, the regression
coefficients of Cap X Id" are in all cases negative. This indicates that when there is excess idle
capacity (and supply elasticity is high), a reduction in operating capacity leads to higher freight rates.
The results are statistically significant for the fronthaul index, Capy,, in 3 shipping routes, for the
backhaul index, Capg, in 1 shipping route, and for the total index, Cap., in 5 shipping routes.
Second, the regression coefficients of Cap X IdY are mostly positive although their impact on
freight rates is insignificant in all cases. The influence of operating capacity on freight rates,

conditional on supply elasticity, is also confirmed using the panel regression model.

Fre, = ay+ a,Cap;,_, + a,Cap;,_, - Id{", + azCap;,_, - 1d;{_, + a,Fre,_; +& (4)

[Insert Table 7 here]

The results in Table 7 further confirm that the impact of operating capacity on freight rates varies

depending on supply elasticity. When supply is elastic the regression coefficients of the operating

12



capacity indices, Cap; ;1 -Id, in equation (4), are significantly negative and when supply is
inelastic, Cap;j—, -IdE_, in equation 4, the coefficient estimates are significantly positive. The

results are consistent across the fronthaul, backhaul and total capacity indices and remain so after
control variables have been included in the regression.

An important finding of this paper is that operating capacity can have the opposite impact on
freight rates conditional on the level of idle capacity. Container shipping companies often switch from
price competition - i.e. competing on the freight rate they charge their customers - to quantity
competition - i.e. increasing their capacity to increase their market share and exploit economies of
scale (Tvedt and Hovi, 2024). Typically, they deploy larger and more efficient vessels on the mainlane
shipping routes that connect major ports around the world and have the larger volume of cargo flows.
These are the routes that cover East-West trades such as the Europe, US West Coast and US East
Coast routes. Similarly, they deploy smaller and less efficient vessels on regional trades (such as
Japan and South Korea routes) or on trades with lower trading volumes.

The empirical results in the paper suggest that container shipping companies adjust their capacity
according to existing competition and market dynamics as these are proxied by the elasticity of supply.
For instance, a decision to reduce capacity on a route is more likely to occur when excess capacity is
high (Cariou and Guillotreau, 2022). By reducing their capacity in periods when there is excess
capacity (and supply is elastic), shipping companies aim to increase their profits since the increase in

freight rates outpaces the reduction in capacity due to the low elasticity of demand. This is confirmed
empirically by the negative sign of the conditional regression coefficients Capj¢_q -1 df’, in Table

7.

On the other hand, when the supply curve is inelastic and the fleet is operating close to capacity,
shipping companies can increase their short-run capacity in specific routes either by increasing the
utilization rate of the fleet - by increasing vessel speed - which results in higher fuel consumption and
voyage costs, or by rotating less efficient vessels - with higher operating costs - from other routes. ’

Both measures will increase the marginal cost of transportation and result in higher transportation

costs per unit of cargo. The empirical results in the paper confirm this conjecture in that increases in

7 We focus on short-run adjustments since the total supply of shipping, i.e. the stock of fleet, is fixed in the short-run. Ordering and
building new ships will increase supply in the long-run. However, new orders will come in the market with a delay, given a lengthy
construction lag (Kalouptsidi, 2014).
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operating capacity when supply is inelastic will lead to significantly higher freight rates as confirmed
by the positive sign of the conditional regression coefficients Cap;j;_4 -1 df_, in Table 7.

The predictive ability of operating capacity, conditional on supply elasticity, is also confirmed
by measuring the reduction in mean squared prediction error using the out-of-sample R?, R, (Gu
et al., 2020; Bali et al., 2023). We divide the sample into a training sample 7, to estimate the

parameters of model M, and a test sample T,, to test its predictive ability. R3 s, 1s calculated by

. . . A (M)
evaluating the ability of model estimates, 7,7,

to predict realized returns in the test sample period,
as shown in formula (4).

(M
2aoer, Tier1 — ri,t+)1)2

RéS,M =1-

(4)

2
Z(i,t) €T, Ti,t+1

We evaluate two models. Model 1 is the baseline model that includes only panel data with a one-
period lag in freight rates. Model 2 is the conditional capacity model that includes operating capacity
under different supply elasticities added to the baseline model. The R3s values of the two models

for different test samples are presented in Table 8.

[Insert Table 8 here]

We can see that the R§s, of Model 2 is greater than the Rjg, of Model 1, with a difference
of almost 1.5 percentage points. This suggests that conditional operating capacity can predict freight
rates and the prediction is very stable.

As additional supporting evidence for the predictive ability of the conditional capacity model
over the baseline model we use the modified Diebold and Mariano (1995) (DM) and Clark and West
(2007) (CW) tests. The modified DM test (Gu et al., 2020; Bali et al., 2023) considers the cross-
sectional dependence in predictions and can accurately assess the out-of-sample predictive ability of

panel models. Consider the mean-squared variance of the prediction errors of Models 1 and 2 for the

cross-section of panel data, dgl’z), in equation (5):

Ny t+1
1 2 2
d(l.z) — z [ é(l) _ é'(Z) ] (5)
t+1 n‘rz,t+1 T ( L,t+1) ( L,t+1)
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The modified DM test statistic is calculated as:

7(1,2

DM®D = vy (6)
~(1,2)
d

Where d(*? and 6&1'2) denote the mean and Newey-West (1987) standard error of d§1'2)

over the testing sample.

The CW statistic compares the predictive accuracy for nested models by correcting the noise
introduced in the estimation of additional parameters in the larger model (Model 2). Its null hypothesis
(Ho) is that the predictive accuracy of the more parsimonious baseline model (Model 1) is no worse
than that of the conditional capacity model (Model 2). The test eliminates estimation bias and
constructs an asymptotically standard normal statistic using the difference in the mean-squared
prediction error (MSPE) of the two models. Rejection of the null, indicates that the conditional

capacity model has significantly better predictive performance than the baseline model.
[Insert Table 9 here]

As can be seen from Table 9, the statistics are all positive and significant at the 1% or 5% level.
In other words, the conditional operating capacity model (Model 2) performs significantly better than
the baseline model (Model 1) and results remain robust across different tests, different test samples,

T,, and different operating capacity indices.

5. Robustness checks

(1) Alternative operating capacity indices using number of ships

We use as alternative explanatory variables the operating capacity indices based on number of
vessels operating on each shipping route, Numy,, Numg, and Num  for the fronthaul, backhaul
and total operating indices, respectively. As can be seen from Appendix Table A4, when supply
elasticity is high operating capacity has a significantly negative effect on next period’s freight rates.
On the other hand, at low levels of idle capacity (inelastic supply), operating capacity has a positive
but insignificant effect on the freight rates. Therefore, results are qualitatively similar to those

presented in Tables 6 and 7 but appear to be less significant in the case of inelastic supply. It should
15



be noted however that indices based on number of ships do not measure accurately the increase in
slot capacity since they put the same weight to a small containership of 3,000 TEU and a large

containership of 20,000 TEU.

(2) Using average vessel speed as an alternative proxy for capacity
An alternative measure of capacity utilization is the average speed for each voyage. One expects
that as idle capacity decreases and supply becomes inelastic, vessels will sail at higher speed and thus
average speed should have a positive correlation with freight rates. Conversely, when there is excess
capacity vessels will slow steam, and the correlation between average speed and freight rates should
be negative. Therefore, we calculate an index that measures the average speed of each voyage as
follows:

Step 1: Calculate the actual sailing distance of vessels for each route. We identify trajectory
points for each voyage using AIS data. The actual sailing distance is then obtained by summing the
distances of the various trajectory segments along the route.

Step 2: Compute the average vessel speed for each route. By combining vessel departure and
arrival timestamps at ports, the total voyage duration is determined and the average speed per vessel-
voyage is calculated. To construct daily time series for each ship, the voyage-averaged speed is
mapped to the corresponding calendar days within the voyage period as daily speed observations.

Step 3: Calculate the route-level average speed as the arithmetic mean of speeds across all
vessels operating on that route on a given day.

Step 4: Generate route-specific speed index. The speed index is the seven-day moving average
of the route-level average speed for each of the nine shipping routes. As in the case of the operating
capacity index, we construct a fronthaul weekly speed index, Spe,, which represents the average
speed in the direction from origin to destination and a backhaul speed index, Speg, which represents
the average speed in the reverse direction (destination to origin).

We then carry out panel regressions of freight rates on the unconditional and conditional speed
indices (i.e. under high and low supply elasticity), with and without controls. The regression results

are presented in Table 10.

[Insert Table 10 here]
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We observe that when supply elasticity is high (and idle capacity is low), voyage speed has a
significantly negative impact on freight rates, whereas when supply elasticity is low, speed has a
significantly positive impact on freight rates; overall, results are consistent with those presented for

the operating capacity indices in Tables 6 and 7.

[Insert Table 11 here]

Furthermore, we use the product of speed with operating capacity indices to create a new
composite indicator which accounts both for static carrying capacity and speed. Panel regression
results, in Table 11, are entirely consistent with those derived from the capacity indices without
considering speed. Therefore, from a robustness perspective, the operating capacity indices remain

robust even after considering the impact of voyage speed.

(3) Alternative definition for idle capacity

We also use an alternative measure for idle capacity that, in addition to idle containerships, also
considers those that are in lay-up or undergoing repairs or scrubber retrofit. The results of the panel
data regressions, presented in Appendix Table A5, remain robust for different levels of idle capacity.
However, it should be noted that the significance of the regression coefficients decreases which may

be due to vessels under repair or in lay-up, just like newbuildings, not being immediately operational.

(4) Alternative control variables

In addition, we consider alternative control variables: China's total export value is replaced by
China’s Seaborne Containerized Exports®, and the price of 380 centistoke (cst) heavy fuel oils is
replaced by the price of 180 cst fuel oil. The results, in Appendix Table A6, remain qualitatively

similar.

(5) Alternative threshold values for 8;4, and &y,

We consider different values for the two thresholds, 8y, and 8,,,,, which distinguish between

8 Data is from Clarkson's Shipping Intelligence Network and is monthly from January 2014 through May 2023.
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different levels of supply elasticity. Specifically, we consider as thresholds the 60th and 40th
percentiles, the 65th and 35th percentiles, the 75th and 25th percentiles and the 80th and 20th
percentiles of idle capacity, respectively. Results remain robust and the conditional operating capacity
index can predict freight rates despite the use of different thresholds. Due to space limitations, the

corresponding results are provided in the Appendix Tables A7, A8, A9 and A10, respectively.

(6) Analysis with Monthly Data

Given that some of the control variables are only available at monthly frequency, we also
estimate the regressions using monthly data. Regression results using monthly data are presented in
Appendix Table A11 to Table A14 and are qualitatively similar to results using weekly data, indicating

that changing the frequency of the data has no impact on the interpretation of the empirical results.

Concluding, the empirical results suggest that the impact of operating capacity on container
freight rates depends on the level of idle capacity. When there is excess idle capacity and supply is
elastic, reducing capacity can increase profits, as the resulting rise in freight rates outweighs the
reduction in capacity. Conversely, when the container fleet operates near full capacity and supply is
inelastic, increasing short-run capacity - either by speeding up vessels or redeploying less efficient
ships - increases marginal costs and leads to higher freight rates. These findings suggest that shipping
companies strategically adjust capacity based on market conditions to optimize profitability, shifting

between price and quantity competition depending on route characteristics and supply elasticity.

6. Conclusions

In this paper, we investigate the mechanism though which changes in operating capacity affect
freight rates. We use AIS data to analyze the port calls and voyages of containerships from which we
infer the operating capacity for individual shipping routes. We then apply the theories of supply
elasticity and marginal cost to analyze their influence on container freight rates.

We show that, conditional on supply elasticity, operating capacity has predictive power on
freight rates. Specifically, when the supply curve is inelastic and the fleet is operating close to full
capacity, operating capacity has a positive effect on freight rates. We attribute this to increases in the

marginal cost of transportation due to shipping companies’ attempts to increase their short-run
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capacity in specific routes. In contrast, when the supply curve is elastic operating capacity has a
significantly negative effect on freight rates. This can be explained by the fact that a decision to reduce
capacity on a route is more likely to occur when excess capacity is high. By reducing their capacity
in periods of low utilization, companies aim to increase their profits since the increase in freight rates
outpaces the reduction in capacity due to the low elasticity of demand. The empirical results are robust
to alternative specifications for the capacity indices, to changes in the average speed of the vessel and

to different specification of how idle capacity is measured.
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Tables:

Table 1: Containerized freight indices and routes

.. ti it .
Shipping routes Opera. 1ng CaPACY R Ports/countries
indices
Japan route Cap'/Num?! Frel Japan (all ports)
Hamburg, Rotterdam, Antwerp
Cap? /Num? Fre? ’ ’ ’
Europe route ap”/Num re Felixstowe, Le Havre
Los Angeles, Long Beach, Seattle
S. Cap3/Num? Fre3 ’ ’ ’

U.S. West Coast route ap’/Num re Oakland, Tacoma.

U.S. East Coast route Cap*/Num* Fre* New York-New Jersey, Savannah,
Houston.

S. Korea route Cap®/Num?® Fre® Korea (all ports)
Southeast Asia route Cap®/Num?® Fre® Smgapore, Vietnam, Malaysia,
Thailand.
Austrahaf;let\g Zealand Cap” /Num’ Fre” Australia, New Zealand
u
South Africa route Cap®/Num?® Fre® South Africa (all ports)

South America route Cap®/Num® Fre® Brazil, Colombia, Peru, Chile,

Ecuador.

Note: The first column shows the names of the nine routes; second and third columns show the
variable names of the operating capacity indices and the China Containerized Freight Index (CCFI),

respectively. Finally, the fourth column shows the ports or countries covered by each route.



Table 2: Definitions of Operating capacity indices

Index Explanation
Fronthaul capacity, in TEUs, on the shipping route from point O to point D in the
Capa previous 7 days.
Backhaul capacity, in TEUs, on the shipping route from point D to point O in the
caps previous 7 days.
Capc Total capacity of vessels, in TEUs, on the shipping route (sum of Cap, and Capp).
Fronthaul capacity, in number of vessels, on the shipping route from point O to point D
Nums in the previous 7 days.
Backhaul capacity, in number of vessels, on the shipping route from point D to point O
Nums in the previous 7 days.
Num, The total number of vessels on a shipping route (sum of Num, and Numgp).




Table 3: Summary of Variables

Type Variable Definition Measur‘ement Data source Frequency
unit of data
Depe‘ndent Frel Logarlt.hmu.: re.turns 3 Find weekly
variable of freight indices
; Operating capacity Calculated using
Cant
p; indices TEUs AIS data weekly
; Operating capacity )
Cant
Explanatory p; under high idle TEUs Calculated using weekly
. H . AIS data
variables x Id capacity
i Operating capacity )
Cant
P under low idle TEUs Caleulated using weekly
L : AIS data
x Id capacity
Clarkson's
. . thousands of Shipping
Fleet  Containership Fleet TEUs Intelligence monthly
Network
h f
Control Total value of .ur.ldreds ° -
. Export : millions of US iFind monthly
variables China's exports
Dollars
Logarithmic returns
of 380 centistoke -
Fuel (cst) Bunker Heavy -- iFind weekly
Fuel Oil
Clarkson's
th tainership idl hippi
O. er ldle Con amers‘ ip idle TEUSs S 1pp1ng weekly
variables capacity Intelligence
Network

Note: i = 1,~,9 invariables Fre' and C ap]i- denote the Japan route, Europe route, U.S. West route,

U.S. East route, Korea route, Southeast Asia route, Australia/New Zealand route, South Africa route,

and South America route, respectively. j = A, B, C denote, respectively, fronthaul (Cap,), backhaul

(Capp) and total capacity (Capc).



Table 4: Granger Causality tests of operating capacity and freight rates

1 2 3

4

5

6

7

Fre Fre Fre Fre Fre Fre Fre Fre® Fre®
Panel A: Granger Causality test of operating capacity index to freight rate
. 0.651  2.754* 3.222% 0.228  5.201*** 1372  7.680%**  2.412*% 3.364**
Capa (0.522) (0.065)  (0.073)  (0.877) (0.006)  (0.251)  (0.006) (0.066)  (0.035)
. 1372 1.312  14.769*** 3.222% 6.822%***  (.258 4.489**  3.082**  0.938
Caps (0.255) (0.253)  (0.000)  (0.073) (0.001) (0.855)  (0.035) (0.016) (0.422)
Ca! 0.048 0910 12.504*** 0947 5.630***  1.133  11.954***  (0.288  3.523*
e (0.953) (0.403)  (0.000)  (0.389) (0.004) (0.335)  (0.001) (0.592)  (0.061)
Panel B: Granger Causality test of freight rate to operational capacity index
Ca! 1.055 2.896* 0.175 1.222 1.342 0.591 0.107 2.168*  3.109**
“Pa (0.349) (0.056)  (0.676)  (0.301) (0.262) (0.621)  (0.744) (0.091)  (0.046)
. 0.566  2.221 2.762% 0.625  4.238**% 2.703** 13.944*** 1737 0.571
Caps (0.568) (0.137)  (0.097)  (0.430) (0.015) (0.045)  (0.000) (0.141) (0.634)
Cap! 0.523  1.229 0.829 0.280  2.979* 1.575  8327***  0.021 0.436
¢ (0.593) (0.294)  (0.363)  (0.756) (0.052)  (0.195)  (0.004) (0.885) (0.510)

Note: Granger Causality tests of C apil and Fre' have?2,2,1,3,2,3,1,3,and 2 lags, respectively.

Granger Causality tests of Capg and Fre® have 2, 1, 1, 1, 2, 3, 1, 4, and 3 lags, respectively.

Granger Causality tests of C apé and Fre' have 2,2,1,2,2, 3,1, 1, and 1 lag, respectively. i =

1,~,9 denotes the Japan, Europe, U.S. West Coast, U.S. East Coast, Korea, Southeast Asia,

Australia/New Zealand, South Africa, and South America routes, respectively. The top value in each

cell is the chi-square statistic x2. p-values are in brackets. ***, ** and * indicate significance at the

1%, 5%, and 10% level, respectively.



Table S: Panel regressions of freight rates on operating capacity

Panel A: Fronthaul Panel B: Backhaul Panel C: Total Capacity
Capacity Index Cap, Capacity Index Capg Index Cap.
(D ) 3) 4) (©) (6)
Cap 0.134 0.128 0.024 0.082 0.073 0.091
- (0.546) (0.553) (0.061) (0.209) (0.362) (0.460)
Fleet, -0.115%%* -0.116%** -0.117%#**
(-4.294) (-4.446) (-4.439)
Export, 0.502%#:* 0.509%*:* 0.504 %
(4.364) (4.296) (4.216)
Fuel 0.019** 0.019%** 0.019**
‘ (2.055) (2.062) (2.062)
Fre 0.181 0.177 0.181 0.177 0.181 0.177
1 (1.484) (1.452) (1.483) (1.450) (1.484) (1.451)
R? 0.033 0.037 0.033 0.037 0.033 0.037

Note: Panel regressions of freight rates (in logarithmic returns) on operating capacity indices for the
nine shipping routes. Columns (1), (3), and (5) show the results of the baseline regression. Columns
(2) (4), and (6) are the regression results incorporating control variables. t-statistics using clustered
standard errors are in brackets. ***, ** and * indicate significance at the 1%, 5%, and 10% levels,

respectively.



Table 6: OLS regressions of freight rates on conditional operating capacity

(M @ ©) “4) ®) (6) (N ®) &)
Fre! Fre? Fre3 Fre* Fre® Fre® Fre’ Fre® Fre®
Panel A: Fronthaul operating capacity index Cap,

Capprs 0.120 0.870%* 0.522 -0.204 -1.487 -0.425 -2.980 0.349 -1.904
' (0.144) (2.116) (1.626) (-0.334) (-1.173) (-1.340) (-1.566) (0.148) (-1.526)

Capyi—q -0.152 -0.148 -0.266 -0.545 -0.786* -0.145 -1.623* -2.369 -1.522
x Idf (-0.657) (-0.946)  (-1.585)  (-1.472) (-1.839) (-1.367) (-1.701) (-1.356) (-1.526)

Capye—q -0.120 -0.049 0.076 0.443 -0.196 0.110 0.335 0.691 0.105
x Idt_; (-0.511) (-0.355) (0.555) (1.296) (-0.533) (1.532) (0.426) (0.576) (0.124)
-0.208***  (.549%**  (.179*  0.255%*%*  -0.366%** 0.059 0.222%*%  (.259%**  (.434***

Frées (-3.945) (7.823) (1.811) (3.244) (-8.230) (0.409) (3.224) (3.231) (7.597)

R? 0.082 0.317 0.046 0.083 0.133 0.014 0.073 0.074 0.192

Panel B: Backhaul capacity index Capg

Cappss -0.038 -0.401 1.246** 0.809 -3.989%** -0.240 -2.412% -1.290 -1.176
' (-0.052) (-1.078) (2.575) (1.086) (-2.813) (-0.570) (-1.922) (-1.168) (-0.704)

Capg¢—1 -0.144 -0.203 -0.260 -0.396 -0.515 -0.192 -0.898 -2.178 -2.481
x Idf | (-0.640) (-0.957)  (-1.307)  (-0.634) (-1.470) (-1.470) (-1.155) (-1.455) (-1.519)

Capg¢—1 -0.098 0.071 0.021 0.654 -0.115 0.136 0.494 1.315 0.556
x IdE_; (-0.430) (0.350) (0.162) (1.190) (-0.365) (1.619) (0.700) (1.066) (0.357)
-0.208***  (.551%*%*%  (.153*%  0.259%**  (0.372%** 0.059 0.213%**  0.251%%*%  (0.428%**

Frées (-4.002) (8.744) (1.668) (3.212) (-8.485) (0.412) (3.037) (3.140) (7.712)

R? 0.081 0.311 0.064 0.081 0.150 0.014 0.061 0.080 0.189

Panel C: Total operating capacity index Cap

Cape,, 0.015 0.268 0.713%* 0.167 -1.863%* -0.261 -2.7759%* -0.743 -1.552
' (0.036) (1.007) (2.446) (0.381) (-2.456) (-1.161) (-2.444) (-0.857) (-1.632)
Capc -1 -0.074 -0.093 -0.160* -0.271 -0.322% -0.089 -0.682* -1.230 -1.083*
x Idi | (-0.655) (-1.014)  (-1.770)  (-1.125) (-1.678) (-1.493) (-1.586) (-1.460) (-1.709)

Capc -1 -0.054 -0.020 -0.013 0.277 -0.080 0.062 0.148 0.589 0.062
x IdE_; (-0.469) (-0.246)  (-0.189) (1.263) (-0.473) (1.595) (0.401) (0.955) (0.111)
-0.298***  0.556%*%*%  0.164*  0.259%**  -0.370%** 0.058 0.211%**  0.252%%*  (.434%**

Frées (-3.975) (8.466) (1.724) (3.270) (-8.378) (0.405) (3.154) (3.139) (7.739)

R? 0.081 0.310 0.063 0.081 0.143 0.015 0.078 0.078 0.194

Note: OLS regressions of freight rates on conditional operating capacity using the model: Fre! =
ao + ayCapl, 1 + ayCapl,_y X Idfy + azCapj,_, x IdF_; + a,Fre{_; + &f. When idle capacity
is higher than the 70" percentile, Idf = 1. When idle capacity is lower than the 30" percentile,

IdE = 1. In all other cases, the indicator is 0. z-statistics, using Newey-West HAC Standard Errors,

are in brackets. *** ** and * indicate significance at the 1%, 5%, and 10% levels, respectively.



Table 7: Panel regressions of freight rates on conditional operating capacity
Panel A: Fronthaul Panel B: Backhaul Panel C: Total Capacity
Capacity Index Cap, Capacity Index Capg Index Cap,
(D (2) 3) 4) (5) (6)
c 0.100 0.092 -0.105 -0.052 0.000 0.017
ap;._

Pit-1 (0.341) (0.326) (-0.278) (-0.139) (0.001) (0.078)
Capjt—1 -0.201%%*% Q. 182%** | _0.28]*** -0.255%%* -0.119*** -0.108%**
X Id‘{’_1 (-3.275) (-3.006) (-3.728) (-3.467) (-3.538) (-3.264)
Capjt—1 0.090%** 0.095%** 0.1271%** 0.127%%** 0.0527%%** 0.055%**
X Id%_1 (3.305) (3.713) (5.526) (5.110) (4.140) (4.199)

-0.107%** -0.104%** -0.106%**
Fleet,
(-4.087) (-4.245) (-4.208)
0.459%** 0.454%** 0.458%**
Export,
(3.853) (3.926) (3.744)
0.020%** 0.020%** 0.020%**
Fuel,;
(2.098) (2.115) (2.110)
F 0.176 0.173%** 0.176 0.173 0.176 0.173
re,_
-1 (1.438) (1.411) (1.434) (1.407) (1.435) (1.408)
R? 0.036 0.040 0.037 0.041 0.037 0.040

Note: Panel regressions of freight rates on conditional operating capacity using the model: Fre, =

ay+a,Cap;,_ 1 + a,Cap;,_, X Id{", + azCap;,_, x 1d{_, + a,Fre,_, + & . Columns (1),

(3), and (5) show the results of the baseline regression. Columns (2), (4), and (6) are the regression
results with control variables. When idle capacity is higher than the 70th percentile, Idf = 1. When
the idle capacity is lower than the 30th percentile, IdF = 1. In all other cases, the indicator is 0. ¢-
statistics, using Clustered Standard Errors are in brackets. ***, ** and * indicate significance at the

1%, 5%, and 10% levels, respectively.



Table 8: Comparison of out-of-sample predictability using R3; model

Capa Caps ‘ Capc
Panel A: test sample period of 0.5 year (December 2022 - May 2023)
Rés 1 0.044 0.044 0.044
Rés. 0.059 0.062 0.061
Panel B: test sample period of 1.0 year (June 2022 - May 2023)
Rés 1 0.076 0.076 0.076
Rés. 0.090 0.094 0.092
Panel C: test sample period of 1.5 years (December 2021 - May 2023)
Rés 1 0.067 0.067 0.067
Rés. 0.080 0.084 0.082

Note: Out-of-sample R3¢ values for the baseline Model 1 and the conditional capacity Model 2.
R3s is calculated using equation (4). Panel A, Panel B, and Panel C show the R3¢ values for the two
models with test sample periods of 0.5 year (December 2022 - May 2023), 1 year (June 2022 - May
2023), and 1.5 years (December 2021 - May 2023), respectively. Columns Cap,, Capg, and Cap.

represent the fronthaul, backhaul and total operating capacity indices.



Table 9: Diebold-Mariano and Clark-West tests for comparison of out-of-sample

predictability
Model 2 (Capy) Model 2 (Capg) Model 2 (Cap.)

Panel A: DM test
Model 1 (0.5 year) 2.638%** 2.322%* 2.528%**
Model 1 (1.0 year) 3.602%** 3.415%** 3.528***
Model 1 (1.5 years) 2.949%** 2.709%** 2.842%%*

Panel B: CW test
Model 1 (0.5 year) 3.470%** 3.011%** 3.305%**
Model 1 (1.0 years) 5.261%** 5.194 %% 5.280%**
Model 1 (1.5 years) 5.116%** 4.915%** 5.068%**

Note: Diebold-Mariano (DM) (Panel A) and Clark-West (CW) (Panel B) test statistics for comparing
out-of-sample predictive power of the baseline Model 1 and the conditional operating capacity Model
2. A positive number indicates that Model 2 outperforms Model 1. For each panel, the first, second,
and third rows correspond to test sample periods of 0.5 year (December 2022 - May 2023), 1 year
(June 2022 - May 2023) and 1.5 years (December 2021 - May 2023), respectively. The first, second
and third column correspond fronthaul, backhaul and total operating capacity indices. ***, ** indicate

significance at the 1% and 5% levels, respectively.



Table 10: Panel regressions of freight rates on the conditional and unconditional speed indices

Panel A: Fronthaul speed index Spey Panel B: Backhaul speed index Speg
1) (2) 3) “) (5) (6) () (®)
Spe: . 3.780%***  4,687*** 3 395%*k* A TQ¥E* | D 60T**F*  438T*F*F*  2.380**F*  4,071%**
it (9.299) (6.481) (7.871) (5.898) (5.663) (5.231) (5.260) (4.972)
Spej';_l 0.074***  0.066*** 0.072***  0.061***
xldiy (-5.374)  (-4.952) (-5.979) (-5.589)
Speji-1 0.036***  (0.031*** 0.049***  (0,044***
x Idt_; (2.783) (3.022) (3.372) (3.184)
Fleet, 0.186*** 0.165%** 0.223%*%* 0.201%***
(-5.431) (-5.359) (-5.490) (-5.298)
Export, 0.600%** 0.500%*%* 0.481%*** 0.401%**
(5.530) (5.090) (3.890) (3.563)
Fuel, 0.018** 0.018** 0.016* 0.017*
(2.015) (2.090) (1.729) (1.832)
Fre,_, 0.169 0.162 0.163 0.157 0.172 0.161 0.164 0.155
(1.398) (1.335) (1.343) (1.293) (1.414) (1.321) (1.353) (1.276)
R? 0.042 0.050 0.048 0.054 0.039 0.049 0.045 0.054

Note: Panel regressions of freight rates on conditional and unconditional speed index using the model: Fre, =
ay + a;Spe;_; + a,Spe; . XIdf | + asSpe;,_ X Id{_, + a,Fre,_; + &. Columns (1), (3), (5) and
(7) show the results for the baseline regression. Columns (2), (4), (6) and (8) are the regression results after
adding control variables. When idle capacity is higher than the 70th percentile, Idf = 1. When idle capacity
is lower than the 30th percentile, Idf = 1. In all other cases, the indicator is 0. t-statistics, using Clustered
Standard Errors, are in brackets. ***, ** and * indicate significance at the 1%, 5%, and 10% levels,

respectively.
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Table 11: Panel regression of freight rates on combined speed and capacity indices

Panel A: Fronthaul composite index

Panel B: Backhaul composite index

Spey X Capy Spep X Capg
(H (2) (3) (4) (5) (6)
0.395 0.263 0.420 0.094 -0.051 0.066
Spe X Capj 4
: (1491)  (0.932) 1278) | (0297)  (-0.168) (0.184)
_ sksksk _ sksksk _ sksksk _ skskk
Spe x Capyp_y X IdE., 0.027 0.025 0.028 0.025
' (-6.582)  (-6.456) (-6.837)  (-6.593)
skskk skskk sksksk sksksk
Spe x Capy gy X IdEL 0.011 0.011 0.011 0.012
: (3.313) (3.376) (3.421) (3.926)
L0.110%%* 20.099%*
Fleet;
(-5.830) (-4.133)
I 0.389%#* 0.392%#*
xporty (3.607) (3.408)
el 0.020%* 0.020%*
uek (2.136) (2.140)
e 0.180 0.172 0.169 0.181 0.172 0.169
t-1 (1483)  (1.409) (1384) | (1.482)  (1.408) (1.383)
R2 0.033 0.041 0.044 0.033 0.040 0.043

Note: Panel regressions of freight rates on combined speed and capacity indices for different levels of idle

capacity. Columns (1), (2), (4) and (5) show the results for the baseline regression. Columns (3), and (6) are

the regression results after adding control variables. When idle capacity is higher than the 70th percentile,

Idf = 1. When idle capacity is lower than the 30th percentile, Id¥ = 1. In all other cases, the indicator is 0.

t-statistics, using Clustered Standard Errors, are in brackets. ***, ** and * indicate significance at the 1%, 5%,

and 10% levels, respectively.
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Appendix

Table A1: Correlation analysis

Capg_l CaP?—l Capt3—1 Cap?—l CaP?—l Cap?—l Capt7_1 CaP?—l Capt?—l

Panel A: Fronthaul operating capacity index Capy,
Fre} 0.015 0.146 0.082 -0.027 -0.046 -0.042 -0.131 -0.007 -0.037
Idle; -0.115  -0.069 -0.055 -0.090 -0.053 -0.320 0.030 -0.133 -0.213
Panel B: Backhaul operating capacity index Capg
Fre} 0.005 -0.082 0206  0.103 -0.130 0.003 -0.113 -0.049 -0.038
Idle, 0.005 -0.125 -0.336 -0.147 0.111 -0.315 -0.017 -0.085 -0.043
Panel C: Total operating capacity index Cap.
Fre} 0.011  0.05s1 0.179  0.042 -0.102 -0.026 -0.172 -0.041 -0.048
Idle, -0.061 -0.137 -0.231 -0.147 0.036 -0.380 0.008 -0.134 -0.179

Note: Correlations between operating capacity (Capl;_;, Caps,_, and Capt,_,) at t —1 and

freight rate returns (Frel) and idle capacity (Idle,) for the nine shipping routes at t. i = 1,~,9
denotes the Japan, Europe, U.S. West Coast, U.S. East Coast, Korea, Southeast Asia, Australia/New

Zealand, South Africa, and South America routes, respectively.



Table A2: OLS Regressions of Freight rates on Operating Capacity
M @ (©) 4) Q) (6) @) ®) ©

1

2 3 4 5 6 7 8

Fre Fre Fre Fre Fre Fre Fre Fre Fre

Panel A: Fronthaul Operating Capacity index Cap,

Capar s -0.018 0.822%* 0.451 -0.099 -1.834 -0.263 -3.409* 0.536 -1.992%*
(-0.022) (1.970) (1.584) (-0.177) (-1.436) (-0.904)  (-1.684) (0.233) (-1.863)
Fre, . -0.208%**  (.551%** 0.194* 0.277***  -0.362%** 0.075 0.229%**  (.274%**  (.438***
(-3.977) (7.832) (1.946) (3.516) (-8.345) (0.515) (3.257) (3.519) (7.582)
R? 0.084 0.319 0.040 0.073 0.130 0.003 0.065 0.071 0.189
Panel B: Backhaul Operating Capacity Index Capgy
Capssos -0.158 -0.418 1.363*** 0.958 -4.401%%* 0.011 -2.506%* -1.142 -1.704
(-0.211) (-1.185) (3.010) (1.592) (-3.137) (0.027) (-1.995) (-1.102) (-1.073)
Fre, . -0.299%**  (.556%** 0.159* 0.270***  -0.370%** 0.075 0.223%**  Q271%**  (.434***
(-4.015) (8.895) (1.746) (3.294) (-8.591) (0.519) (3.098) (3.451) (7.602)
R? 0.084 0.312 0.063 0.079 0.150 0.001 0.059 0.072 0.187
Panel C: Total Operating Capacity index Cap.
Capesr -0.055 0.240 0.692%* 0.276 -2.082%** -0.108 -2.921%* -0.510 -1.613*
(-0.126) (0.890) (2.573) (0.697) (-2.725) (-0.537)  (-2.464) (-0.601) (-1.771)
Fre, . -0.298%**  (.559%** 0.176* 0.277** -0.367%** 0.075 0.219***  0.271%** 0.439
(-3.997) (8.468) (1.844) (3.443) (-8.495) (0.518) (3.205) (3.474) (7.684)
R? 0.084 0312 0.059 0.074 0.142 0.002 0.073 0.071 0.190

Note: Regression model based on equation (1), Fre; = ay+ a,Cap}, ; + aFrel_, +¢f. t-

statistics using Newey-West HAC Standard Errors are in brackets. ***, ** and * indicate significance

at the 1%, 5%, and 10% levels, respectively.



Table A3: Predictability of operating capacity on freight rates (with control variables)

(M @ 3 “) ®) (6) 0 ®) ©

1 2 3 4 5 6 7 8 9

Fre Fre Fre Fre Fre Fre Fre Fre Fre

Panel A: operating capacity index Cap,

0.099 0.768** 0.448* 0.127 -1.726 -0.427 -3.530%** -0.562 -2.614*
Cape— (0.153) (2.194) (1.724) (0.230) (-1.259) (-1.316) (-2.673) (-0.290) (-1.941)
-0.000 -0.081 -0.055 -0.114 -0.202* -0.171* -0.115 -0.179* 0.058
Fleet, (-0.003) (-0.994) (-0.644) (-1.432) (-1.705) (-1.850) (-1.437) (-1.680) (0.408)
0.217 0.613 0.253 0.419 1.057* 1.084** 0.582 0.684 0.254
Bxport, (0.748) (1.579) (0.612) (1.179) (1.879) (2.345) (1.484) (1.387) (0.386)
0.020 -0.038* 0.036 0.011 0.055* -0.020 0.011 0.030 0.019
Fuels (1.263) (-1.782) (1.564) (0.567) (1.767) (-0.809) (0.528) (1.134) (0.507)
-0.207%*F% (0.552%**k (.194%F*  (.275%F*  _0.366%** 0.070 0.223***  (0.264***  (.439%**
Frées (-6.713) (14.474) (4.312) (6.190) (-8.550) (1.533) (4.997) (5.915) (10.541)
R? 0.084 0.323 0.040 0.072 0.137 0.010 0.065 0.072 0.186
Panel B: operating capacity index Capg
-0.097 -0.368 1.328%*** 1.353** -4.225%%% 0.134 -2.320* -2.411* -2.560
Cape— (-0.150) (-1.004) (3.735) (2.310) (-3.420) (0.317) (-1.930) (-1.689) (-1.424)
0.001 -0.112 -0.058 -0.152%* -0.166 -0.193* -0.114 -0.249%* 0.042
Fleet, (0.013) (-1.393) (-0.685) (-2.016) (-1.429) (-1.937) (-1.412) (-2.253) (0.291)
0.208 0.694* 0.163 0.386 0.888 0.908** 0.368 0.807* 0.309
Bxport, (0.715) (1.787) (0.401) (1.092) (1.589) (2.026) (0.953) (1.646) (0.466)
0.020 -0.038* 0.032 0.012 0.056* -0.020 0.016 0.026 0.016
Fuels (1.257) (-1.765) (1.395) (0.622) (1.827) (-0.797) (0.732) (0.969) (0.434)
-0.208%**  0.557***%  0.160%**  (0.262%**  -0.372%** 0.070 0.218***  0.260%**  (0.434%**
Frées (-6.731) (14.559) (3.512) (5.913) (-8.790) (1.527) (4.843) (5.852) (10.433)
R? 0.084 0.318 0.062 0.082 0.155 0.007 0.058 0.078 0.183
Panel C: operating capacity index Cap.
0.000 0.217 0.693%** 0.677* -2.030%** -0.181 -3.006%** -1.715 -2.937H%*
Cape— (0.001) (0.869) (3.455) (1.715) (-2.731) (-0.772) (-3.320) (-1.512) (-2.570)
0.000 -0.117 -0.043 -0.167** -0.166 -0.161* -0.092 -0.258%* 0.143
Fleet, (0.004) (-1.466) (-0.509) (-2.059) (-1.403) (-1.678) (-1.150) (-2.224) (0.957)
0.213 0.726* 0.286 0.383 0.974* 1.009** 0.533 0.850* 0.409
Bxport, (0.732) (1.880) (0.698) (1.078) (1.739) (2.193) (1.383) (1.704) (0.619)
0.020 -0.037* 0.033 0.011 0.057* -0.020 0.014 0.028 0.015
Fuels (1.255) (-1.712) (1.459) (0.573) (1.824) (-0.803) (0.671) (1.034) (0.418)
-0.208%**  (.558***k  (.176%*F*  0.271FF*  -0.370%** 0.071 0.214***  0.257*%%  (0.442%**
Frées (-6.720) (14.609) (3.929) (6.121) (-8.693) (1.552) (4.796) (5.762) (10.637)
R? 0.084 0.317 0.058 0.077 0.147 0.008 0.072 0.077 0.191

Note: Table A3 shows the results of regressing the freight indices on the operating capacity indices
and the control variables for the nine shipping routes. The regression model uses the equation
Fre! = ay + a;Capl_, + ayFrel_, + azControl, + .. Control = [Fleet, Export, Fuel]”
represent the containership fleet, the total value of China's exports, and the logarithmic returns of

3



spot prices of fuel oils, respectively. The z-statistics are in parentheses. ***, ** and * indicate

significance at the 1%, 5%, and 10% levels, respectively.



Table A4: Panel regressions of freight rates on conditional operating capacity (with

alternative operating capacity indices)

Panel A: fronthaul operating

capacity index Numy,

Panel B: backhaul operating

capacity index Numg

Panel C: total operating
capacity index Num,

(M @ A “4) ® © Q) ® ®
c -0.004 -0.004 -0.006 -0.006 -0.006 -0.006 -0.003 -0.003 -0.004
ape_

Pe-1 (-0.819)  (-0.785)  (-1.111) | (-0.908)  (-1.117)  (-1.110) | (-1.039)  (-1.192)  (-1.394)
Cap;_4 -0.005%**  -0.004*** -0.006%**  -0.005%** -0.003***  -0.002%**
x Idf | (-3.763)  (-3.462) (-4.734)  (-4.396) (-4312)  (-3.987)
Cap;_4 0.001 0.001 0.001 0.002 0.001 0.001
x IdE_; (1.228) (1.383) (1.168) (1.294) (1.242) (1.381)

-0.110%*** -0.107*** -0.109%***

Fleet,

(-4.267) (-4.376) (-4.323)

0.490%** 0.479%** 0.488***
Export,

(3.913) (4.123) (3.986)

0.019** 0.019** 0.019**

Fuel;

(2.068) (2.085) (2.076)

F 0.181 0.178 0.175 0.181 0.178 0.175 0.181 0.178 0.175
re;_

1l (1.480) (1.454) (1.425) (1.479) (1.454) (1.425) (1.478) (1.452) (1.423)

R? 0.033 0.035 0.038 0.033 0.035 0.039 0.033 0.035 0.039

Note: Panel regression results of freight rates on fronthaul (Numy), backhaul (Numg) and total

(Num,) alternative operating capacity indices, using the number of vessels in operation. Columns

(1), (4) and (7) show the results of the baseline regression. Columns (2), (5) and (8) are the regression

results with different levels of idle capacity. Columns (3), (6) and (9) are results with control variables.

t-statistics using clustered standard errors are in brackets. ***, ** and * indicate significance at the

1%, 5%, and 10% levels, respectively.



Table AS: Panel regressions of freight rates on conditional operating capacity (with
alternative measure of idle capacity)

Panel A: Fronthaul Panel B: Backhaul .
operating capacity index | operating capacity index Panel C Tf)tal operating
Cap, Caps capacity index Capc
1) 2) 3) 4 () (6)
Cap,._, 0.127 0.126 -0.006 0.053 0.052 0.076
(0.488) (0.519) (-0.015) (0.143) (0.251) (0.372)
Cap;_, -0.119** -0.086 -0.176** -0.135%* -0.072%* -0.054*
x Idf (-2.242) (-1.608) (-2.490) (-1.958) (-2.333) (-1.745)
Cap;_, 0.043 0.030 0.069** 0.056* 0.027** 0.020
x Idf_; (1.545) (1.127) (2.233) (1.860) (2.011) (1.569)
Fleet, -0.106*** -0.103%** -0.105%**
(-4.026) (-4.167) (-4.181)
Export, 0.452%** 0.4309%** 0.445%**
(3.859) (3.869) (3.746)
Fuel, 0.019** 0.019** 0.019**
(2.040) (2.040) (2.043)
Fre, 0.179 0.177 0.179 0.176 0.179 0.176
(1.466) (1.441) (1.460) (1.436) (1.463) (1.439)
R? 0.034 0.037 0.035 0.038 0.034 0.037

Note: Panel regressions of freight rates on conditional operating capacity, with an alternative measure
of idle capacity which also counts containerships that are laid-up or enter ship repair yards for
scrubber conversions. Columns (1), (3) and (5) show the results of the baseline regression. Columns
(2), (4) and (6) are the regression results with control variables. ¢-statistics, using clustered standard

errors are in brackets. ***, ** and * indicate significance at the 1%, 5%, and 10% levels, respectively.



Table A6: Panel regressions of freight rates on conditional operating capacity (with alternative control

variables)

Panel A: Fronthaul operating

capacity index Capy4

Panel B: Backhaul operating
capacity index Capg

Panel C: Total operating
capacity index Cap

(1) (2) 3) 4) (5) (6)
Capr_s 0.100 -0.031 -0.105 -0.104 0.000 -0.063
(0.341) (-0.103) (-0.278) (-0.269) (0.001) (-0.263)
Capi—, 0.201%F%  L0.169%FF [ -0281%FE  0236%*k [ 0. 19%Fx .0, ]0]%**
x Id (-3.275) (-3.063) (-3.728) (-3.444) (-3.538) (-3.369)
Capi—, 0.090% 0.072% 0.121 %% 0.096% 0.052%* 0.043 %
x Idk_, (3.305) (2.772) (5.526) (4.704) (4.140) (3.529)
Fleet, 0,172 -0.168%** -0.170% %
(-7.998) (-8.900) (-8.314)
Export, 0.001 % 0.001 % 0.001 %
(6.771) (6.852) (6.399)
Fuel, 0.019%* 0.020%* 0.020%
(2.002) (2.023) (2.008)
Fre,.. 0.176 0.166 0.176 0.166 0.176 0.166
(1.438) (1.368) (1.434) (1.367) (1.435) (1.366)
R? 0.036 0.047 0.037 0.048 0.037 0.048

Note: Panel regressions of freight rates on conditional operating capacity with alternative control variables.

Export denotes China’s Seaborne Containerized Exports, and Fuel denotes the logarithmic returns of the

price of fuel oils (180). Columns (2), (4) and (6) show the regression results with alternative control variables.

t-statistics, using clustered standard errors, are in brackets. ***, ** and * indicate significance at the 1%, 5%,

and 10% levels, respectively.



Table A7: Panel regressions of freight rates on conditional operating capacity (with 60" and 40™
percentile thresholds for idle capacity)

Panel A: Fronthaul operating

capacity index Capy

Panel B: Backhaul operating

capacity index Capg

Panel C: Total operating

capacity index Capc

(D (2 3 “4) 5 (6)
Cap 0.024 0.011 -0.133 -0.091 -0.037 20,027
(0.085) (0.041) (-0.337) (-0.227) (-0.173) (-0.120)
Cap,_, 0.112 -0.100 L0.215% -0.196%* -0.080% -0.072
xI1d%, | (-1.419) (-1.220) (-2.231) (-1.976) (-1.846) (-1.610)
Cap,_, | 0.167%%* 0.167%%* 0.157%%% 0.158%%* 0.083%%%  (.083%**
x Id-_ (5.743) (4.851) (3.471) (2.851) (4.423) (3.548)
Fleet, 20.102%%* 20.099%#* L0101 %%
(-3.939) (-4.131) (-4.057)
0.483 %%+ 0.472%%% 0.480%**
Export, (4.030) (4.091) (3.910)
Fuel, 0.020%* 0.020%* 0.020%*
(2.113) (2.130) (2.127)
Fre, . 0.176 0.173 0.176 0.173 0.176 0.173
(1.438) (1.411) (1.440) (1.413) (1.438) (1.411)
R? 0.037 0.040 0.038 0.041 0.037 0.041

Note: When the idle capacity is higher than the 60th percentile, IdY = 1. When the idle capacity is lower than

the 40th percentile, IdF = 1. In all other cases, the indicator is 0. Columns (1), (3) and (5) show the regression

results at different levels of idle capacity. Columns (2), (4) and (6) are results with control variables. ¢-statistics,

using clustered standard errors, are in brackets. *** ** and * indicate significance at the 1%, 5%, and 10%

levels, respectively.



Table A8: Panel regressions of freight rates on conditional operating capacity (with 65™ and 35™
percentile thresholds for idle capacity)

Panel A: Fronthaul operating

capacity index Capy

Panel B: Backhaul operating

capacity index Capg

Panel C: Total operating
capacity index Capc

(H (2 3) “4) Q) (6)
Capn. 0.086 0.074 -0.098 20.049 -0.004 0.011
(0315) (0.284) (-0.256) (-0.126) | (-0.019)  (0.051)
ii’g;l 016254 L0141RFR | 02628k L0232%% | 0104%%% 0,091 %
e~ (-3.654) (-3.212) (-4.482) (-4.019) | (-4322)  (-3.803)
Cape_y | 0.094%%x 0.101%%* 0.100%#* 0.100%%% | 0.049%%%  0.053%%*
x Id}_, 3.121) (3.155) (2.938) (2.655) (3.091) (2.882)
Fleet, 20.107%* 20.103%* 20.105%*
(-4.086) (-4.224) (-4.200)
0.468%%* 0.452%5* 0.462%%*
Export, (4.062) (3.937) (3.849)
0.020%* 0.020%* 0.020%*
Fuel, (2.113) (2.123) (2.123)
- 0.176 0.173 0.176 0.173 0.176 0.173
(1.441) (1.413) (1.436) (1.409) (1.437) (1.411)
R 0.036 0.039 0.037 0.040 0.036 0.040

Note: When the idle capacity is higher than the 65th percentile, IdY = 1. When the idle capacity is lower than

the 35th percentile, IdF = 1. In all other cases, the indicator is 0. Columns (1), (3) and (5) show the regression

results at different levels of idle capacity. Columns (2), (4) and (6) are results with control variables. ¢-statistics,

using clustered standard errors, are in brackets. ***, ** and * indicate significance at the 1%, 5%, and 10%

levels, respectively.



Table A9: Panel regressions of freight rates on conditional operating capacity (with 75" and 25™
percentile thresholds for idle capacity)

Panel A: Fronthaul operating
capacity index Capy

Panel B: Backhaul operating

capacity index Capg

Panel C: Total operating

capacity index Capc

(D (2 3 “4) 5 (6)
Cap 0.133 0.132 -0.058 0.002 0.026 0.049
(0.461) (0.481) (-0.151) (0.006) (0.114) (0.217)
Cap,_; | -0256%%*  _0230%%* | .0351%**  _0319%k* | _0]50%¥*  _0.]136%**
xIdh, | (-3.900) (-3.785) (-4.246) (-4.105) (-4.034) (-3.914)
Cap,_, 0.027 0.025 0.053%* 0.050%* 0.019* 0.017*
x Id}_, (1.206) (1.242) (2.450) (2.284) (1.782) (1.718)
L0.104%%* 20,101 %% L0.103%%*
Fleet, (-4.072) (-4.236) (-4.216)
0.433 %%+ 0.428% %+ 0.431%%%
Export, (3.863) (3.926) (3.745)
Fuel, 0.019%* 0.019%* 0.019%*
(2.021) (2.026) (2.027)
Fre, . 0.176 0.174 0.175 0.173 0.176 0.173
(1.435) (1.412) (1.427) (1.404) (1.430) (1.407)
R? 0.036 0.039 0.037 0.040 0.037 0.040

Note: When the idle capacity is higher than the 75th percentile, IdY = 1. When the idle capacity is lower than

the 25th percentile, IdE = 1. In all other cases, the indicator is 0. Columns (1), (3) and (5) show the regression

results at different levels of idle capacity. Columns (2), (4) and (6) are results with control variables. ¢-statistics,

using clustered standard errors, are in brackets. *** ** and * indicate significance at the 1%, 5%, and 10%

levels, respectively.
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Table A10: Panel regressions of freight rates on conditional operating capacity (with 80" and 20™
percentile thresholds for idle capacity)

. Panel B: Backhaul .
Panel A: Fronthaul operating ) o Panel C: Total operating
L. operating capacity index L
capacity index Cap, Capy capacity index Capc
1) (2) 3) “) &) (6)
Cap,_s 0.110 0.110 -0.059 0.003 0.021 0.044
(0.392) (0.413) (-0.154) (0.009) (0.091) (0.201)
capi_4 -0.228%%** -0.204%** -0.319%%** -0.289%** -0.135%%** -0.122%%**
x Idf | (-3.314) (-3.133) (-3.601) (-3.398) (-3.417) (-3.237)
capi_4 0.054** 0.049** 0.078%*** 0.071%** 0.033** 0.029**
x IdE_; (2.051) (2.026) (2.906) (2.787) (2.440) (2.311)
Fleet, -0.107%** -0.105%** -0.107%%**
(-4.123) (-4.280) (-4.259)
0.452%** 0.449%** 0.451%%*
Export, (3.941) (4.015) (3.841)
Fuel, 0.019** 0.019** 0.019**
(2.016) (2.019) (2.020)
Fre, 0.178 0.175 0.177 0.175 0.177 0.175
(1.453) (1.426) (1.447) (1.421) (1.450) (1.424)
R? 0.035 0.039 0.036 0.039 0.036 0.039

Note: When the idle capacity is higher than the 80th percentile, IdY = 1. When the idle capacity is lower than
the 20th percentile, IdF = 1. In all other cases, the indicator is 0. Columns (1), (3) and (5) show the regression
results at different levels of idle capacity. Columns (2), (4) and (6) are results with control variables. ¢-statistics,

using clustered standard errors, are in brackets. ***, ** and * indicate significance at the 1%, 5%, and 10%

levels, respectively.
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Table A11: Predictability of operating capacity on freight rates (monthly data)
Q) 2) A3) “ (6)) (6) (M (®) )

1 2 3 4 5

6 7 8 9

Fre Fre Fre Fre Fre Fre Fre Fre Fre

Panel A: Fronthaul operating capacity index Cap,

1.085 -2.866 -0.355 -2.086  -8.436** -1.127 -2.685 1.017 10.079

CoPass (0.467)  (-0.985)  (-0.244) (-0.734)  (-2.424)  (-0.632) (-0.313)  (0.080)  (1.125)
Fre, . 0.284%*  0.492%%* (372%%% 0201  0.313%* 0338%%* (0.577%%* 0495%%*  0.119

(2381)  (4.436)  (2.609)  (1.555)  (2.186)  (2.867)  (5.510)  (6.946)  (1.535)
R? 0.065 0.230 0.122 0.029 0.126 0.109 0.322 0.223 0.011

Panel B: Backhaul operating capacity index Capg

Capge, -1414  -0924  2.564* 1299  9377*%*  .1184  -7.199 5040  -2.685
(-0.632)  (-0.557)  (1.773)  (0.293)  (-2.673)  (-0.636) (-1.015)  (0.760)  (-0.307)
0.270%*  0.A477%%*  0334%% 0202  0.288** 0351%%* 0.565%* 0.500%**  0.127
(2.088)  (4311)  (2.401) (1.478) (2.125)  (3.016) (5.714)  (7.080)  (1.465)
R? 0.066 0.222 0.136 0.026 0.147 0.108 0.330 0227  -0.001

Fre,_,

Panel C: Total operating capacity index Cap,

Capcey 0070  -1.773 0646  -0510 5964%%* 0882 4812  3.435 4332
(-0.054)  (-1.073)  (0.538)  (-0.229)  (-2.909)  (-0.695) (-0.802)  (0.906)  (0.681)
0.278%%  0.479%%* 0361%* 0205  0.202%% 0342%%*% 0.564%** (0501%%*  0.127
(2249)  (4.448)  (2.411)  (1.549)  (2.165)  (2.899)  (5.769)  (7.096)  (1.556)
R? 0.063 0.228 0.124 0.025 0.152 0.110 0.329 0.226 0.003

Fre,_,

Note: Regression model based on equation (1), Fre; = ay+ a,Cap}, ; + aFrel_, +¢f. t-

statistics, using Newey-West HAC Standard Errors, are in brackets. *** ** and * indicate

significance at the 1%, 5%, and 10% levels, respectively.
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Table A12: Panel regressions of freight rates on operating capacity (monthly data)

Panel A: Fronthaul Panel B: Backhaul Panel C: Total Operating
Capacity Index Cap, Capacity Index Capp Capacity Index Cap,
&) 2 3) 4) ©)) Q)
Cap,._, -0.847* -0.738 -0.359 -0.173 -0.559 -0.445
(-1.671) (-1.387) (-0.358) (-0.178) (-1.073) (-0.840)
Fleet, -0.118 -0.122%* -0.113
(-1.528) (-1.677) (-1.574)
Export, 0.093 0.076 0.094
(0.204) (0.169) (0.207)
Fuel, 0.055%#* 0.055%** 0.055%**
(3.169) (3.229) (3.184)
Fre,_, (0.323 %4 0.320%** 0.323 %4 0.327]%** 0.323#%* 0.32]%#**
(4.303) (4.314) (4.291) (4.302) (4.300) (4.309)
R? 0.104 0.111 0.104 0.110 0.104 0.110

Note: Panel regressions of freight rates (in logarithmic returns) on operating capacity indices for the
nine shipping routes. Columns (1), (3), and (5) show the results of the baseline regression. Columns
(2) (4), and (6) are the regression results incorporating control variables. t-statistics using clustered

standard errors are in brackets. ***, ** and * indicate significance at the 1%, 5%, and 10% levels,
g

respectively.
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Table A13: OLS regressions of freight rates on conditional operating capacity (monthly data)
(D 2) 3) 4) ) (6) (M ®) €

Fret! Fre? Fre3 4 5 6 7 8

9

Fre Fre Fre Fre Fre Fre

Panel A: Fronthaul operating capacity index Cap,

Capnns 1.176 2981  -0295 -3.155  -6.824*  -1.702  -1.687 0.913 7.756

' (0.515)  (-1.102) (-0.196) (-0.953) (-1.942)  (-1.093) (-0.218)  (0.064)  (0.870)
Capy,_;  -0.433 0.048  -0.749  -1.884  -1.916%*  -0.558  -5.920% -15.75%%*  -3.623
xIdi,  (-0.688)  (-0.039) (-0.756) (-1.041) (-1.980)  (-0.905) (-1.770)  (2.615)  (-0.501)
Capy,—; 0220 0443 0737 2192 -0306 0.576  5.707* 2.600 3.182

xIdk,  (0.345)  (0.454) (1.128) (1.129)  (-0.355)  (1.358)  (1.933)  (0.336)  (0.623)
0.283%*  0.488*** 0.349%** 0166  0.312%* 0306%** 0.551*%%* 0.458%%*  (.107

Free (2.311) (4.408) (2.429) (1.325) (2.222) (2.937) (5.388) (6.305) (1.375)

R? 0.053 0.217 0.130 0.039 0.133 0.137 0.358 0.244 0.001
Panel B: Backhaul operating capacity index Capg

Capy .., -1.338 -1.277 1.857 1.571 -8.660** -2.563 -8.934 5.720 -1.226

' (-0.618)  (-0.724)  (1.148) (0.336)  (-2.443) (-1.279) (-1.237) (0.786) (-0.154)

Capp¢—q -0.229 -0.412 -0.838  -3.242  -1.691** -0.794 -5.579  -14.788**  -13.341

x Idi (-0.382)  (-0.247) (-0.622) (-0.876) (-2.037)  (-1.106)  (-1.381) (-2.550)  (-1.128)
Capp¢—q 0.421 0.951 0.414 2.394 -0.371 0.800 3.302 5.708 9.422

x Idf_; (0.676) (0.739)  (0.665) (0.731)  (-0.545) (1.494) (1.119) (0.704) 0.911)
0.270**  0.470*** 0.336**  0.181 0.284**  0.331*** (.550%**  0.461*** 0.108
(2.047) 4.279) (2.274) (1.358) (2.147) (3.256) (5.859) (5.958) (1.326)
R? 0.054 0.212 0.131 0.029 0.155 0.149 0.345 0.258 0.009
Panel C: Total operating capacity index Cap,

Fre,_,

Capce-y  -0.029 1918 0398  -1.163  5.363**  -1.603  -5.460 3.151 2.896
(-0.023)  (-1.238) (0.317) (-0.453) (-2.618) (-1.316) (-0.992)  (0.645)  (0.469)
Capce-s 0163 0.119  -0482  -1227 -0.870%*  -0341  -3.052* -8.176***  -3.365
xIdi,  (-0.531) (-0.161) (-0.854) (-0.960) (-1.972)  (-1.021) (-1.718)  (-2.655)  (-0.710)
Capce-s  0.173 0339 0264 1301  -0.187 0.363 2.160 1.971 3.006

xId:,  (0.553)  (0.598) (0.806) (0.990)  (-0.501)  (1.517)  (1.433)  (0.496)  (0.859)
0.278%*  0.472%%* 0351** 0175  0.290%* 0311%%* 0.544%%* 0460%**  0.107
(2.196)  (4.446) (2329) (1378)  (2.196)  (2.997)  (5.816)  (5.937)  (1.361)
R 0.051 0217  0.128  0.033 0.159 0.149 0.354 0.253 0.001

Fre,_,

Note: OLS regressions of freight rates on conditional operating capacity using the model: Fre! =
ao + ayCapl, 1 + ayCapl,_y X Idf | + azCapj,_, x IdF_; + a,Fre{_; + &f. When idle capacity
is higher than the 70th percentile, Idf = 1. When idle capacity is lower than the 30th percentile,

IdE = 1. In all other cases, the indicator is 0. t-statistics, using Newey-West HAC Standard Errors,

are in brackets. *** ** and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Table A14:

Panel regressions of freight rates on conditional operating capacity (monthly data)

Panel A: Fronthaul
operating capacity index

Panel B: Backhaul
operating capacity index

Panel C: Total operating
capacity index Capc

Capa Caps
€)) 2 3) 4 ®) (6)
Cap, -1.039% 20.907 -1.064 -0.885 -0.954% -0.842
S (01.902)  (-1.550) | (-1.059)  (-0.883) | (-1.777) (-1.479)
Capje_y | -0.713%%%  _Q732%%% | _1.023%%% ] 033%F* | 0435%%F  (.442%%%
H
X1dZy | (4405 (-3.950) | (-5.076)  (-4.634) | (-4.896) (-4.359)
Capje_i | 0.661%%  0.626%%% | 0762%%%  0721%%% | 0379%%%  (360%*+
XIdiy | (6337) (7.776) 6.112) (5.920) (7.730) (8.425)
Floot -0.080 -0.075 -0.066
t (-1.095) (-1.186) (-1.023)
I -0.080 -0.078 -0.063
poTte (-0.171) (-0.181) (-0.137)
ol 0.054% % 0.054% % 0.054% %
¢ (3.125) (3.137) (3.104)
e 0.314%%%  0312%%% | 0317%F%  0315%kx | 03[5%Fr  (3]3%xx
=1 (4208) (4.225) (4.248) (4.263) (4.234) (4.249)
R 0.114 0.121 0.115 0.121 0.116 0.122

Note: Panel regressions of freight rates on conditional operating capacity using the model: Fre, =

ay+a,Cap;,_ 1 + a,Cap;,_, XId{", + azCap;,_, x Id{_, + a,Fre,_, + &, .

Columns (1),

(3), and (5) show the results of the baseline regression. Columns (2), (4), and (6) are the regression

results after adding control variables. When idle capacity is higher than the 70th percentile, Id} = 1.

When idle capacity is lower than the 30th percentile, Idf = 1. In all other cases, the indicator is 0. ¢-

statistics, using Clustered Standard Errors, are in brackets. ***, ** and * indicate significance at the

1%, 5%, and 10% levels, respectively.
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