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Abstract 

We investigate the channels through which changes in operating capacity influence freight rates in 

the container shipping market using a novel dataset to create an operating capacity index at shipping-

route level. Our analysis reveals that when supply elasticity is low, an increase in operating capacity 

tends to drive freight rates upward, as the market faces constraints and cannot easily accommodate 

additional demand. Conversely, when supply elasticity is high, an increase in operating capacity 

generally leads to lower freight rates, since additional capacity can be deployed to meet rising 

demand, preventing price surges. These findings suggest that shipping companies strategically adjust 

capacity based on market conditions to optimize profitability, shifting between price and quantity 

competition depending on route characteristics and supply elasticity.  
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1. Introduction 

Containerization has revolutionized global trade, significantly reducing transport times and costs 

(Hummels, 2007). This has been a key driver of the growth in global trade in recent decades 

(Bernhofen and Kneller, 2016; Cosar and Demir, 2018). The contribution of container trade to global 

economic activity is well-documented (Kilian et al., 2023). Today, 60% of the value of seaborne trade 

and nearly 90% of non-bulk dry cargo is transported as containerized cargo, including most 

manufactured and high-value-added goods. For instance, European and US manufacturing firms rely 

on imports of containerized raw materials and intermediate goods, while consumers routinely 

purchase finished goods delivered in containers. 

The cost of seaborne transportation, particularly freight rates, directly impacts economic growth. 

Various factors influence these rates, including supply and demand uncertainty, fleet utilization, 

competitor behavior, and geopolitical considerations (Kilian et al., 2023; Michail and Melas, 2021; 

Li et al., 2023). 1 Lower transportation costs and times lead to rapid growth in world trade and 

economic development (Pascali, 2017). Similarly, as shipping freight rates are among the most 

volatile asset classes (Choi et al., 2020; Pouliasis and Bentsos, 2024), understanding the determinants 

of containership freight rates is crucial for both shipping and commodity markets. 

Previous research has primarily focused on the impact of changes in supply and demand factors 

on freight rates. From a supply perspective, the emphasis has been on how changes in the operational 

fleet size affect freight rates. However, this static measure of supply overlooks an important 

dimension: the intensity of container fleet utilization over time. This is often due to the lack of 

accurate measures of fleet utilization at high frequency. 

In this paper, we address this shortcoming of previous research by estimating the level of 

utilization using highly granular data that measures the number of container ships operating on each 

shipping route in real-time. Specifically, we construct operating capacity indices at shipping-route 

level using a novel dataset that monitors vessel deployment across different container shipping routes. 

These indices are based on Automatic Identification System (AIS) data on containership movements 

and port calls, providing detailed micro-information on how container operating capacity varies over 

 
1 An example of how geopolitical uncertainty affects freight rates is the case of Houthi attacks on shipping traffic in the 

Red Sea in 2024, which has resulted in the rerouting of more than 60% of Europe-bound vessel traffic around the Cape of 

Good Hope. This has added more than two weeks on the duration of the average trip from SE Asia to Europe and has led to 

disruptions to global trade and a corresponding increase in freight rates; see as well Lloyd’s List 5 September 2024: “Red Sea 

reroutings uproot traditional transhipment trends” 
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time and across trade routes. 2 This enables us to examine how operating capacity affects freight 

rates and how companies deploy their ships in response to competition and changing market dynamics. 

Our paper contributes to the literature in several ways. First, it provides empirical insights into 

the organization and structure of container shipping markets. It discusses how shipping companies 

deploy their assets and respond to changing market dynamics by switching between price and quantity 

competition. This aligns with the work of Tvedt and Hovi (2024). Second, the paper uses a novel 

dataset to construct operating capacity indices for individual shipping routes. This extends the studies 

of Regli and Nomikos (2019) and Li et al (2022), which analyzed micro-dynamic market information 

from shipping big data. It also adds to the expanding literature on the provision of novel datasets for 

the container sector, as highlighted by Otani and Matsuda (2023). Recent studies, such as Li et al 

(2024) and Zheng et al (2024), also examine how changes in operating capacity affect freight rates 

and freight volatility, respectively. However, these studies differ from ours in that they use monthly 

and quarterly data, respectively, and do not distinguish between periods of high and low idle capacity. 

This distinction is crucial, as the response of freight rates to changes in capacity depends on the shape 

and elasticity of the supply curve.  

Finally, the paper provides empirical support for the theoretical predictions of earlier studies, 

such as Koopmans (1939), Wergeland (1981) and Stopford (2009), on the shape of the shipping 

supply curve and confirms recent empirical evidence, that capacity constraints generate convex 

supply curves (Boehm and Pandalai-Nayar, 2022). Thus, the paper complements empirical research 

on dynamic pricing conditional on idle capacity (Elmaghraby and Keskinocak, 2003) and asset 

pricing for shipping markets (Drakos and Tsouknidis, 2024).   

We find that the response of freight rates to changes in operating capacity is conditional on the 

level of idle capacity in the market. When idle capacity is high, changes in operating capacity are 

significantly negatively correlated with freight rates. This is consistent with shipping companies 

reducing their capacity in periods of low utilization to increase their revenue, as the increase in freight 

rates outpaces the reduction in capacity due to the inelastic demand for shipping services. On the 

other hand, when fleet utilization is high, shipping companies respond to increases in transportation 

 
2 Ocean-going containerships are equipped with AIS transponders that send satellite radio signals with geospatial 

information on vessel movements. Their primary use is for the safety of navigation and life at sea and for locating ships in 

search and rescue operations. The use of AIS transponders is mandatory for all vessels engaged in international voyages and 

weighing more than 300 tons. 
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demand by increasing vessel speed, which results in higher fuel consumption and voyage costs. They 

also rotate less efficient vessels from other shipping routes, which increases operating costs. Both 

measures increase the marginal cost of containerized shipping and result in higher transportation costs 

per unit of cargo. 

The rest of the paper is structured as follows: Section 2 discusses the characteristics of the 

container shipping market and analyzes it using the theories of supply elasticity and marginal cost. 

Section 3 describes the construction of the operating capacity index and presents its statistical 

properties. Section 4 analyzes the predictive power of operating capacity on freight rates. Section 5 

checks the robustness of the empirical results. Finally, Section 6 concludes the paper. 

 

2. Institutional Background of Container Shipping Markets  

The intermodal transportation of cargo in reusable containers of standardized dimensions has 

revolutionized global trade since the 1960s and has played a central role in the globalization of the 

economy since the 1990s mainly due to its advantages of cost-effectiveness, flexibility and 

integrability. 

Container shipping markets are an integral part of the modern, highly interconnected global 

supply chains. The latter are a major source of productivity gains but, at the same time, the tight 

network of global sourcing makes countries vulnerable to disruptions as manifested during the 

COVID-19 pandemic. The quantifiable impact of disruptions in container shipping markets is well 

documented. Finck and Tillman, (2022) find that global supply chain shocks account for up to 30% 

of inflation dynamics and have an impact both to real economic activity and to consumer prices in 

the Eurozone area. Similarly, reduction of frictions in containership trades, in the form of easing of 

bottlenecks and port congestion, led to a faster recovery of US manufacturing and increased the 

recovery of real demand in the US by up to 18% in the post-pandemic environment (Kilian et al., 

2023). It also seems that the impact of supply chain disruptions differs according to their origin. For 

instance, Finck and Tillman, (2022) find that supply chain disruptions originating in China are an 

important driver for changes in industrial production, while disruptions originating outside of China 

are an important driver for the dynamics of consumer prices. 

The primary aims of container shipping companies are to increase their market share and avoid 

having idle capacity, by deploying it to the market (Song and Wang, 2022). This enables them to 
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exploit economies of scale (Cullinane and Khanna, 2000) but also leads to fierce competition, low 

profit margins and chronic oversupply. To survive such a competitive environment, major global 

carriers form alliances that involve co-deployment of ships over certain routes to improve capacity 

utilization, reduce operational costs and ultimately, achieve economies of scale.  

Nowadays, shipping alliances have become a prevalent form of cooperation among major 

container shipping companies. By forming an alliance, shipping companies can exchange their 

container slots to better adapt to the uncertain shipping demand and improve capacity utilization. 

Both excess ship capacity and shipping demand affect the optimal slot allocation and exchange 

strategy in the alliance. Larger shipping capacity leads to more excess slots exchanged within the 

alliance to transport more containers but with an overall decrease in capacity utilization. A stronger 

shipping demand leads to more containers being transported by competitors due to limitations of 

shipping capacity and higher capacity utilization. Quite often, faced with higher demand uncertainty, 

shipping companies choose to keep excess spare capacity, which results in lower profit margins. 

From an economic point of view, the shipping freight rate is the equilibrium price in the shipping 

market, reflecting the balance between supply and demand for a specific trading route. The freight 

rate is therefore the projection of the intersection of the supply curve and the demand curve on the 

price axis. On the other hand, the operating capacity index that we develop in the paper, measures the 

actual level of capacity for each specific route and can thus be viewed as the projection of the 

intersection of the supply and demand curve on the quantity axis. 

In shipping markets, the relationship between operating capacity and freight rates depends on 

supply elasticity and marginal cost. The price elasticity of supply is the degree to which supply 

responds to price changes. The supply schedule for shipping markets is unique and differs from that 

of other commodity markets in that it can shift from horizontal to vertical over a range of freight rates, 

as shown in Figure 1 (Stopford, 2009). Previous studies suggest that idle capacity is related to 

elasticity of supply (Koopmans, 1939; Wergeland, 1981). Supply is elastic when there is excess idle 

capacity in the market (Area 1 in Figure 1). In this case, a short-term increase in demand will not 

have a noticeable impact on freight rates. On the other hand, supply is inelastic when the fleet is fully 

utilized and there is no spare capacity in the market (Area 2 in Figure 1); in this case a shift in demand 

will lead to significant freight rate fluctuations. (Alizadeh and Nomikos, 2007; Nomikos and 

Tsouknidis, 2022) 
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[Insert Figure 1 here] 

 

Marginal cost refers to the increase in total cost for each additional unit of product (or service). 

Containerships typically carry from a few thousand to tens of thousands of twenty-foot equivalent 

units (TEUs). As the utilization rate of the fleet increases, the marginal cost of transportation increases 

as well. In addition, freight rates often differ by the direction of transportation and there is large 

directional imbalance between freight rates for front-haul voyages (i.e voyages in the main direction 

of trade that involve larger cargo volumes) and backhaul freight rates (i.e. the return leg where cargo 

volumes are generally lower and containerships mostly transport empty container boxes) (see e.g. 

Brancaccio et al., 2020). Container boxes are valuable assets in their own right and their timely 

positioning is important for the smooth functioning of global supply chains. Often, in periods of 

strong demand, container companies prefer to ship containers back to their ports of origin empty in 

order to fill them up as soon as possible (Kilian et al., 2023). The transportation of empty containers 

leads to higher transportation costs, which may be as high as 20% of the total operating costs. As a 

result, when cargo volumes are low and sufficient idle capacity exists in the market, an increase in 

carrying capacity for a specific route can significantly reduce the cost of transporting individual 

containers. 

 

3. Construction of the operating capacity index 

We construct the container operating capacity index by combining AIS data on containership 

port calls with information about the physical characteristics of ships, obtained from the International 

Maritime Organization (IMO). Our focus is on trade routes that originate from China which is the 

world's leader in maritime connectivity and total cargo movements (Saeed and Cullinane, 2023). In 

2022, China's container port throughput was 300 million TEUs, accounting for about 35% of the 

global container port throughput, 3  and China's Liner Shipping Connectivity Index (LSCI) 4  was 

ranked first in the world, making it the most connected economy in the global container shipping 

 
3 Data from the United Nations Conference on Trade and Development Statistics (UNCTADstat). 
4 The LSCI indicates an economy's position in the global container shipping network. It is based on the number of ship 

calls, the volume of containers handled in ports, the number of services and companies, the size of the largest ships, and the 

number of countries connected through direct shipping services. Data from UNCTADstat. 
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network.  

We focus on nine container shipping routes originating from China namely Japan route, Europe 

route, U.S. West Coast route, U.S. East Coast route, South Korea route, Southeast Asia route, 

Australia/New Zealand route, South Africa route and South America route. According to the 2023 

data from the General Administration of Customs of the People's Republic of China, the countries 

and regions covered by those nine routes account for 77.02% of total Chinese containerized trade. 

Table 1 shows the nine shipping routes, including the variable names and the ports/countries based 

on which the operating capacity index is constructed.  

 

[Insert Table 1 here] 

 

To construct the operating capacity index, we collect AIS data on containership port calls and 

docking which provide detailed information on the movements and ports call of each ship. AIS data 

have temporal and spatial attributes and include both dynamic and static information. The dynamic 

data contains time-stamped information, in Universal Standard Time (UST), on vessels’ position 

(latitude and longitude), heading and speed, which is usually updated every 6 seconds. The static 

information contains the IMO number, a unique identification number for each ship, and information 

on the type of vessel. Figure 2 shows the docking track for three randomly selected containerships. 

For example, the container vessel with IMO number 9345415 departed from Long Beach to Los 

Angeles on March 3, 2022, and then departed from Los Angeles to Taipei on March 8, 2022. 

 

[Insert Figure 2 here] 

 

Docking track data is then matched, via the IMO number, with data on vessel’s particulars. The 

combined dataset includes static data such as the IMO number, gross tonnage and capacity of 

containerships, measured in TEUs, and the docking track data such as the port name, country or region, 

and arrival/departure time of the departure/arrival port.  

The operating capacity index for each shipping route is then constructed using the following 

steps: 
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Step 1: Determine the origin and destination of the shipping routes. The starting point is to 

determine the origin and destination of the different shipping routes. For shipping routes to Europe, 

US West Coast and US East Coast, we identify the largest ports, in terms of container throughput, 

that belong to the respective regions. For example, destination ports on the US West Coast route 

include the ports of Los Angeles, Long Beach, Seattle, Oakland and Tacoma. For the remaining routes, 

we choose ports in the respective destination countries or areas. The ports and countries for each route 

are shown in Table 1. 

Step 2: Remove Outliers. For each containership voyage, we mark the points of origin and 

destination to determine the shipping route to which it belongs. This identification process results in 

inconsistencies in the data which are mainly due to three factors: transit routes, outliers in voyage 

duration, and outliers in voyage trajectories. (1) Transit Routes. The identification methodology does 

not distinguish between vessels doing short-haul routes or additional port calls on their way to the 

final destination. For example, a voyage where a vessel departs from Qingdao and calls at the port of 

Busan (S. Korea) on her way to the US West Coast, may be categorized as belonging to the Korea 

route, while the port of Busan is merely a transit port for the U.S. West route. Given that the vessels 

operating on the Korea, Japan and Southeast Asia routes are smaller, we impose an additional 

restriction that only small containerships - with a capacity of less than 3,000 TEUs - are considered 

when identifying voyages on the Korea and Japan routes; similarly, the criterion for determining 

voyages for the Southeast Asia route is a capacity of less than 8,000 TEUs. (2) Outliers in voyage 

duration. Dues to inconsistencies in AIS data, there are cases where the sailing time from origin to 

destination, point O to point D, is exceptionally long or short. To filter these outliers, we set lower 

and upper limit thresholds for the sailing time for each route, equal to the 5th and 95th percentiles, 

respectively. Sailing times outside of these two thresholds are excluded. (3) Outliers in Voyage 

Trajectories. There are generally many feasible trajectories from point O to point D on a given 

shipping route. Among the trajectories, some occur very infrequently. In the paper, voyages with 

trajectories that occur less than 10% of the times are removed. 

Step 3: Calculate the operating capacity for each shipping routes. We construct weekly 

operating capacity indices using the number of containerships operating on a shipping route over the 

previous seven days and their respective capacities, measured in TEUs, denoted as Num and Cap, 

respectively. For each of those metrics we consider three variants: 𝐶𝑎𝑝𝐴  and 𝑁𝑢𝑚𝐴  measure, 
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respectively, the fronthaul capacity and number of containerships in the direction from the port of 

origin O to the destination port D; 𝐶𝑎𝑝𝐵 , 𝑁𝑢𝑚𝐵  measure the backhaul capacity and number of 

containerships in the reverse direction from the destination port D to the port of origin O; and 𝐶𝑎𝑝𝐶 

and 𝑁𝑢𝑚𝐶 measure the total capacity and number of containerships and are calculated as the sum 

of the corresponding A and B indices. We use weekly time series data to construct the operating 

capacity indices for the period from January 2014 to May 2023. Detailed descriptions of the six 

operating capacity indices are shown in Table 2. 

 

[Insert Table 2 here] 

 

We also collect data on Idle capacity, 𝐼𝑑𝑙𝑒𝑡, defined as the combined TEUs of containerships 

that are idle.5 Idle capacity is a reliable proxy for modelling supply elasticity (Boehm and Pandalai-

Nayar, 2022). We introduce two thresholds, 𝛿ℎ𝑖𝑔ℎ and 𝛿𝑙𝑜𝑤, to create two dummy variables that 

measure high and low operating capacity. 

𝐼𝑑𝑡
𝐻 = {

1 when 𝐼𝑑𝑙𝑒𝑡 ≥ 𝛿ℎ𝑖𝑔ℎ 

0 when 𝐼𝑑𝑙𝑒𝑡 < 𝛿ℎ𝑖𝑔ℎ
 

𝐼𝑑𝑡
𝐿 = {

1 when 𝐼𝑑𝑙𝑒𝑡  ≤ 𝛿𝑙𝑜𝑤

0 when 𝐼𝑑𝑙𝑒𝑡 > 𝛿𝑙𝑜𝑤
 

 

When 𝐼𝑑𝑙𝑒𝑡 ≥ 𝛿ℎ𝑖𝑔ℎ, idle capacity is high, implying that supply elasticity at this time is high, 

and a shift of the demand curve has little effect on freight rates. When 𝐼𝑑𝑙𝑒𝑡 ≤ 𝛿𝑙𝑜𝑤, idle capacity is 

low, implying that supply is inelastic and a small shift in the demand curve can cause a large change 

in freight rates. By cross-multiplying the two dummy variables with the operating capacity index, 

𝐶𝑎𝑝𝑗,𝑡
𝑖 ∙ 𝐼𝑑𝑡

𝐻 and 𝐶𝑎𝑝𝑗,𝑡
𝑖 ∙ 𝐼𝑑𝑡

𝐿, we obtain the operating capacity under high and low idle capacity, 

respectively. 

The shipping routes covered in Table 1 are components of the China Containerized Freight Index 

(CCFI), a broad index reflecting the trends of the global container market. CCFI freight rates measure 

the current freight rate for the front-haul voyages and are based on transaction prices provided by 23 

 
5 Idle status applies to containerships that have not been sailing with an average speed greater than one knot for 7 

days or more, that have not been identified as being subject to another status (e.g. laid-up, under repair, in storage or 

similar), and have not subsequently recorded an average speed greater than one knot for two or more consecutive days or 

have not moved more than 20 nautical miles. 
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major Chinese and International shipping companies that have a significant market share on each 

route. Freight rates include freight charges and related surcharges and are therefore inclusive of all 

costs a shipper would be expected to pay. 6 Finally, we use control variables to proxy for exogenous 

demand and supply shocks. These include the size of the fleet (supply factor), the total value of 

China's exports (demand factor), and the spot price of bunker fuel oil (cost factor). 

Freight rates, China's total export values and fuel oil prices are obtained from the iFind database. 

The fleet size and idle capacity of the container shipping market are obtained from Clarkson's 

Shipping Intelligence Network. Except for the total value of exports and fleet size, which are 

measured monthly, all other variables are measured weekly. The time span of the data is from January 

2014 to May 2023. See Table 3 for variable definitions and data sources. 

 

[Insert Table 3 here] 

[Insert Figure 3 here] 

 

Figure 3 shows the fronthaul operating capacity index, 𝐶𝑎𝑝𝐴, and the logarithmic freight rate 

changes for each route. Correlation analysis between previous periods’ operating capacity (𝐶𝑎𝑝𝐴,𝑡−1
𝑖 , 

𝐶𝑎𝑝𝐵,𝑡−1
𝑖  and 𝐶𝑎𝑝𝐶,𝑡−1

𝑖 ), current freight rate returns (𝐹𝑟𝑒𝑡
𝑖) and current idle capacity (𝐼𝑑𝑙𝑒𝑡) for each 

of the nine shipping routes (in Appendix Table A1) indicates that there is no apparent linear 

relationship between the freight rate index, idle capacity and the operating capacity index.  The 

empirical results later in this paper also show that the effect of the operating capacity index on the 

freight index is nonlinear and depends on idle capacity. 

 

4. Predictability of operating capacity on freight rate 

4.1 Operating capacity and freight rates 

We use Granger causality tests to examine the causal relationship between freight rates and 

operating capacity, and the results are presented in Table 4. Panel A presents the Granger causality 

 
6 Freight rates for backhaul voyages are part of a counterpart freight index, the China Import Containerized Freight 

Index (CICFI) and are only available since 2022. Hence, are not included in the analysis presented here. Surcharges include 

Bunker/Fuel Adjustment Factor (BAF/FAF), Emergency Bunker Surcharges (EBS/EBA), Low Sulphur Fuel Surcharge (LSS), 

Currency Adjustment Factor/Yen Appreciation Surcharge (CAF/YAS), Peak Season Surcharge (PSS), War Risk Surcharge (WRS), 

Port Congestion Surcharge (PCS) and Canal Surcharge (SCS/SCF/PTF/PCC).  
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test results for the impact of operating capacity index on freight rates, while Panel B shows the 

Granger causality tests for the effect of freight rates on operating capacity. 

 

[Insert Table 4 here] 

 

We note that the fronthaul capacity indices, 𝐶𝑎𝑝𝐴, for the Europe (route 2), U.S. West Coast 

(route 3), Korea (route 5), Australia/New Zealand (route 7), South Africa (route 8), and South 

America (route 9) routes Granger-cause the corresponding freight rates. Conversely, only for the 

Europe (route 2), South African (route 8), and South American (route 9) routes, freight rates Granger-

cause the corresponding operating capacity indices. The results for backhaul and total operating 

capacity indices 𝐶𝑎𝑝𝐵  and 𝐶𝑎𝑝𝐶  are similar to those for 𝐶𝑎𝑝𝐴 . In general, the capacity index 

appears to have a stronger predictive effect on freight rates rather than the other way around.  

We test the predictive impact of operating capacity indices on the corresponding shipping freight 

rates more formally using the following regression model. 

𝐹𝑟𝑒𝑡
𝑖 = 𝛼0 + 𝛼1𝐶𝑎𝑝𝑗,𝑡−1

𝑖 + 𝛼2𝐹𝑟𝑒𝑡−1
𝑖 + 𝜀𝑡

𝑖 (1) 

The regression results for the fronthaul, backhaul and total operating capacity indices, 𝐶𝑎𝑝𝐴, 𝐶𝑎𝑝𝐵, 

and 𝐶𝑎𝑝𝐶, are presented in Panels A, B and C in Appendix Table A2, respectively. 

The coefficients of the operating capacity indices for the nine shipping routes are positive or 

negative although in most cases, their predictive effect on freight rates is not significant. Results 

remain qualitatively similar after we introduce control variables including fleet size, the total value 

of China's exports and the spot price of fuel oil (regression results are in Appendix Table A3).  

We also test the predictive effect of the operating capacity index on freight rates using a panel 

regression model. 

𝑭𝒓𝒆𝑡 = 𝜶0 + 𝜶1𝑪𝒂𝒑𝑗,𝑡−1 + 𝜶2𝑭𝒓𝒆𝑡−1 + 𝜺𝑡 (2) 

where 𝑭𝒓𝒆𝑡 = [𝐹𝑟𝑒𝑡
1, ⋯ , 𝐹𝑟𝑒𝑡

9]𝑇, 𝑪𝒂𝒑𝑗,𝑡−1 = [𝐶𝑎𝑝𝑗,𝑡−1
1 , ⋯ , 𝐶𝑎𝑝𝑗,𝑡−1

9 ]
𝑇
, and 𝜺𝑡 = [𝜀𝑡

1, ⋯ , 𝜀𝑡
9]𝑇. 

The regression results are presented in Table 5, where Columns (1), (3) and (5) show the baseline 

results, and Columns (2), (4) and (6) show the results incorporating control variables. 

 

[Insert Table 5 here] 
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Consistent with the results from the individual regressions, the coefficients of the operating 

capacity indices (i.e., 𝐶𝑎𝑝𝐴, 𝐶𝑎𝑝𝐵 and 𝐶𝑎𝑝𝐶) are not significant in the panel data model. Therefore, 

univariate and panel regressions indicate that there is no significant linear predictability from the 

operating capacity index to freight rates. 

 

4.2 Predictability conditional on supply elasticity 

We examine next the predictive effect of operating capacity conditional on different levels of 

supply elasticity. We set the idle capacity thresholds, 𝛿ℎ𝑖𝑔ℎ and 𝛿𝑙𝑜𝑤, as the 70th and 30th percentile 

of idle capacity, and obtain two explanatory variables, 𝐶𝑎𝑝𝑗,𝑡
𝑖 ∙ 𝐼𝑑𝑡

𝐻 and 𝐶𝑎𝑝𝑗,𝑡
𝑖 ∙ 𝐼𝑑𝑡

𝐿, representing 

operating capacity under high and low levels of supply elasticity, respectively. We use the following 

model to test the predictive effect of operating capacity on freight rates conditional on supply 

elasticity for the nine shipping routes. 

𝐹𝑟𝑒𝑡
𝑖 = 𝛼0 + 𝛼1𝐶𝑎𝑝𝑗,𝑡−1

𝑖 + 𝛼2𝐶𝑎𝑝𝑗,𝑡−1
𝑖 ∙ 𝐼𝑑𝑡−1

𝐻 + 𝛼3𝐶𝑎𝑝𝑗,𝑡−1
𝑖 ∙ 𝐼𝑑𝑡−1

𝐿 + 𝛼4𝐹𝑟𝑒𝑡−1
𝑖 + 𝜀𝑡

𝑖 (3) 

where 𝑖 = 1, … ,9 denotes the nine routes as described above. 

 

[Insert Table 6 here] 

 

Two conclusions can be drawn from the regression results in Table 6. First, the regression 

coefficients of 𝐶𝑎𝑝 × 𝐼𝑑𝐻 are in all cases negative. This indicates that when there is excess idle 

capacity (and supply elasticity is high), a reduction in operating capacity leads to higher freight rates. 

The results are statistically significant for the fronthaul index, 𝐶𝑎𝑝𝐴, in 3 shipping routes, for the 

backhaul index, 𝐶𝑎𝑝𝐵 , in 1 shipping route, and for the total index, 𝐶𝑎𝑝𝐶 , in 5 shipping routes. 

Second, the regression coefficients of 𝐶𝑎𝑝 × 𝐼𝑑𝐿  are mostly positive although their impact on 

freight rates is insignificant in all cases. The influence of operating capacity on freight rates, 

conditional on supply elasticity, is also confirmed using the panel regression model. 

 

𝑭𝒓𝒆𝑡 = 𝜶0 + 𝜶1𝑪𝒂𝒑𝑗,𝑡−1 + 𝜶2𝑪𝒂𝒑𝑗,𝑡−1 ∙ 𝐼𝑑𝑡−1
𝐻 + 𝜶3𝑪𝒂𝒑𝑗,𝑡−1 ∙ 𝐼𝑑𝑡−1

𝐿 + 𝜶4𝑭𝒓𝒆𝑡−1 + 𝜺𝑡 (4) 

 

[Insert Table 7 here] 
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The results in Table 7 further confirm that the impact of operating capacity on freight rates varies 

depending on supply elasticity. When supply is elastic the regression coefficients of the operating 

capacity indices, 𝑪𝒂𝒑𝑗,𝑡−1 ∙ 𝐼𝑑𝑡−1
𝐻   in equation (4), are significantly negative and when supply is 

inelastic, 𝑪𝒂𝒑𝑗,𝑡−1 ∙ 𝐼𝑑𝑡−1
𝐿   in equation 4, the coefficient estimates are significantly positive. The 

results are consistent across the fronthaul, backhaul and total capacity indices and remain so after 

control variables have been included in the regression. 

An important finding of this paper is that operating capacity can have the opposite impact on 

freight rates conditional on the level of idle capacity. Container shipping companies often switch from 

price competition - i.e. competing on the freight rate they charge their customers - to quantity 

competition - i.e. increasing their capacity to increase their market share and exploit economies of 

scale (Tvedt and Hovi, 2024). Typically, they deploy larger and more efficient vessels on the mainlane 

shipping routes that connect major ports around the world and have the larger volume of cargo flows. 

These are the routes that cover East-West trades such as the Europe, US West Coast and US East 

Coast routes. Similarly, they deploy smaller and less efficient vessels on regional trades (such as 

Japan and South Korea routes) or on trades with lower trading volumes. 

The empirical results in the paper suggest that container shipping companies adjust their capacity 

according to existing competition and market dynamics as these are proxied by the elasticity of supply. 

For instance, a decision to reduce capacity on a route is more likely to occur when excess capacity is 

high (Cariou and Guillotreau, 2022). By reducing their capacity in periods when there is excess 

capacity (and supply is elastic), shipping companies aim to increase their profits since the increase in 

freight rates outpaces the reduction in capacity due to the low elasticity of demand. This is confirmed 

empirically by the negative sign of the conditional regression coefficients 𝑪𝒂𝒑𝑗,𝑡−1 ∙ 𝐼𝑑𝑡−1
𝐻  in Table 

7. 

On the other hand, when the supply curve is inelastic and the fleet is operating close to capacity, 

shipping companies can increase their short-run capacity in specific routes either by increasing the 

utilization rate of the fleet - by increasing vessel speed - which results in higher fuel consumption and 

voyage costs, or by rotating less efficient vessels - with higher operating costs - from other routes. 7 

 
7 We focus on short-run adjustments since the total supply of shipping, i.e. the stock of fleet, is fixed in the short-run. 
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Both measures will increase the marginal cost of transportation and result in higher transportation 

costs per unit of cargo. The empirical results in the paper confirm this conjecture in that increases in 

operating capacity when supply is inelastic will lead to significantly higher freight rates as confirmed 

by the positive sign of the conditional regression coefficients 𝑪𝒂𝒑𝑗,𝑡−1 ∙ 𝐼𝑑𝑡−1
𝐿  in Table 7. 

The predictive ability of operating capacity, conditional on supply elasticity, is also confirmed 

by measuring the reduction in mean squared prediction error using the out-of-sample 𝑅2, 𝑅𝑂𝑆,𝑀
2  (Gu 

et al., 2020; Bali et al., 2023). We divide the sample into a training sample 𝜏1 , to estimate the 

parameters of model M, and a test sample 𝜏2, to test its predictive ability. 𝑅𝑂𝑆,𝑀
2  is calculated by 

evaluating the ability of model estimates, 𝑟̂𝑖,𝑡+1
(𝑀)

, to predict realized returns in the test sample period, 

as shown in formula (4). 

𝑅𝑂𝑆,𝑀
2 = 1 −

∑ (𝑟𝑖,𝑡+1 − 𝑟̂𝑖,𝑡+1
(𝑀)

)2
(𝑖,𝑡)∈𝜏2

∑ 𝑟𝑖,𝑡+1
2

(𝑖,𝑡)∈𝜏2

(4) 

 

We evaluate two models. Model 1 is the baseline model that includes only panel data with a one-

period lag in freight rates. Model 2 is the conditional capacity model that includes operating capacity 

under different supply elasticities added to the baseline model. The 𝑅𝑂𝑆
2  values of the two models 

for different test samples are presented in Table 8. 

 

[Insert Table 8 here] 

 

We can see that the 𝑅𝑂𝑆,2
2  of Model 2 is greater than the 𝑅𝑂𝑆,1

2  of Model 1, with a difference 

of almost 1.5 percentage points. This suggests that conditional operating capacity can predict freight 

rates and the prediction is very stable.  

As additional supporting evidence for the predictive ability of the conditional capacity model 

over the baseline model we use the modified Diebold and Mariano (1995) (DM) and Clark and West 

(2007) (CW) tests. The modified DM test (Gu et al., 2020; Bali et al., 2023) considers the cross-

sectional dependence in predictions and can accurately assess the out-of-sample predictive ability of 

panel models. Consider the mean-squared variance of the prediction errors of Models 1 and 2 for the 

 
Ordering and building new ships will increase supply in the long-run. However, new orders will come in the market with a 

delay, given a lengthy construction lag (Kalouptsidi, 2014). 
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cross-section of panel data, 𝑑𝑡
(1,2)

, in equation (5): 

𝑑𝑡+1
(1,2)

=
1

𝑛𝜏2,𝑡+1
∑ [(𝑒̂𝑖,𝑡+1

(1)
)

2
− (𝑒̂𝑖,𝑡+1

(2)
)

2
]

𝑛𝜏2,𝑡+1

𝑖=1

(5) 

 

The modified DM test statistic is calculated as: 

𝐷𝑀(1,2) =
𝑑̅(1,2)

𝜎̂𝑑

(1,2)
(6) 

Where 𝑑̅(1,2)  and 𝜎̂𝑑
(1,2)

  denote the mean and Newey-West (1987) standard error of 𝑑𝑡
(1,2)

 

over the testing sample.  

The CW statistic compares the predictive accuracy for nested models by correcting the noise 

introduced in the estimation of additional parameters in the larger model (Model 2). Its null hypothesis 

(H₀) is that the predictive accuracy of the more parsimonious baseline model (Model 1) is no worse 

than that of the conditional capacity model (Model 2). The test eliminates estimation bias and 

constructs an asymptotically standard normal statistic using the difference in the mean-squared 

prediction error (MSPE) of the two models. Rejection of the null, indicates that the conditional 

capacity model has significantly better predictive performance than the baseline model. 

 

[Insert Table 9 here] 

 

As can be seen from Table 9, the statistics are all positive and significant at the 1% or 5% level. 

In other words, the conditional operating capacity model (Model 2) performs significantly better than 

the baseline model (Model 1) and results remain robust across different tests, different test samples, 

𝜏2, and different operating capacity indices. 

 

5. Robustness checks 

(1) Alternative operating capacity indices using number of ships 

We use as alternative explanatory variables the operating capacity indices based on number of 

vessels operating on each shipping route, 𝑁𝑢𝑚𝐴, 𝑁𝑢𝑚𝐵, and 𝑁𝑢𝑚𝐶 for the fronthaul, backhaul 

and total operating indices, respectively. As can be seen from Appendix Table A4, when supply 
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elasticity is high operating capacity has a significantly negative effect on next period’s freight rates. 

On the other hand, at low levels of idle capacity (inelastic supply), operating capacity has a positive 

but insignificant effect on the freight rates. Therefore, results are qualitatively similar to those 

presented in Tables 6 and 7 but appear to be less significant in the case of inelastic supply. It should 

be noted however that indices based on number of ships do not measure accurately the increase in 

slot capacity since they put the same weight to a small containership of 3,000 TEU and a large 

containership of 20,000 TEU. 

 

(2) Using average vessel speed as an alternative proxy for capacity 

An alternative measure of capacity utilization is the average speed for each voyage. One expects 

that as idle capacity decreases and supply becomes inelastic, vessels will sail at higher speed and thus 

average speed should have a positive correlation with freight rates. Conversely, when there is excess 

capacity vessels will slow steam, and the correlation between average speed and freight rates should 

be negative. Therefore, we calculate an index that measures the average speed of each voyage as 

follows: 

Step 1: Calculate the actual sailing distance of vessels for each route. We identify trajectory 

points for each voyage using AIS data. The actual sailing distance is then obtained by summing the 

distances of the various trajectory segments along the route. 

Step 2: Compute the average vessel speed for each route. By combining vessel departure and 

arrival timestamps at ports, the total voyage duration is determined and the average speed per vessel-

voyage is calculated. To construct daily time series for each ship, the voyage-averaged speed is 

mapped to the corresponding calendar days within the voyage period as daily speed observations. 

Step 3: Calculate the route-level average speed as the arithmetic mean of speeds across all 

vessels operating on that route on a given day. 

Step 4: Generate route-specific speed index. The speed index is the seven-day moving average 

of the route-level average speed for each of the nine shipping routes. As in the case of the operating 

capacity index, we construct a fronthaul weekly speed index, 𝑆𝑝𝑒𝐴, which represents the average 

speed in the direction from origin to destination and a backhaul speed index, 𝑆𝑝𝑒𝐵, which represents 

the average speed in the reverse direction (destination to origin). 

We then carry out panel regressions of freight rates on the unconditional and conditional speed 
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indices (i.e. under high and low supply elasticity), with and without controls. The regression results 

are presented in Table 10.  

 

[Insert Table 10 here] 

 

We observe that when supply elasticity is high (and idle capacity is low), voyage speed has a 

significantly negative impact on freight rates, whereas when supply elasticity is low, speed has a 

significantly positive impact on freight rates; overall, results are consistent with those presented for 

the operating capacity indices in Tables 6 and 7. 

 

[Insert Table 11 here] 

 

Furthermore, we use the product of speed with operating capacity indices to create a new 

composite indicator which accounts both for static carrying capacity and speed. Panel regression 

results, in Table 11, are entirely consistent with those derived from the capacity indices without 

considering speed. Therefore, from a robustness perspective, the operating capacity indices remain 

robust even after considering the impact of voyage speed. 

 

(3) Alternative definition for idle capacity 

We also use an alternative measure for idle capacity that, in addition to idle containerships, also 

considers those that are in lay-up or undergoing repairs or scrubber retrofit. The results of the panel 

data regressions, presented in Appendix Table A5, remain robust for different levels of idle capacity. 

However, it should be noted that the significance of the regression coefficients decreases which may 

be due to vessels under repair or in lay-up, just like newbuildings, not being immediately operational. 

 

(4) Alternative control variables 

In addition, we consider alternative control variables: China's total export value is replaced by 

China’s Seaborne Containerized Exports
8
 , and the price of 380 centistoke (cst) heavy fuel oils is 

replaced by the price of 180 cst fuel oil. The results, in Appendix Table A6, remain qualitatively 

 
8 Data is from Clarkson's Shipping Intelligence Network and is monthly from January 2014 through May 2023. 
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similar. 

 

(5) Alternative threshold values for 𝜹𝒉𝒊𝒈𝒉 and 𝜹𝒍𝒐𝒘 

We consider different values for the two thresholds, 𝛿ℎ𝑖𝑔ℎ and 𝛿𝑙𝑜𝑤, which distinguish between 

different levels of supply elasticity. Specifically, we consider as thresholds the 60th and 40th 

percentiles, the 65th and 35th percentiles, the 75th and 25th percentiles and the 80th and 20th 

percentiles of idle capacity, respectively. Results remain robust and the conditional operating capacity 

index can predict freight rates despite the use of different thresholds. Due to space limitations, the 

corresponding results are provided in the Appendix Tables A7, A8, A9 and A10, respectively. 

 

(6) Analysis with Monthly Data 

Given that some of the control variables are only available at monthly frequency, we also 

estimate the regressions using monthly data. Regression results using monthly data are presented in 

Appendix Table A11 to Table A14 and are qualitatively similar to results using weekly data, indicating 

that changing the frequency of the data has no impact on the interpretation of the empirical results. 

 

Concluding, the empirical results suggest that the impact of operating capacity on container 

freight rates depends on the level of idle capacity. When there is excess idle capacity and supply is 

elastic, reducing capacity can increase profits, as the resulting rise in freight rates outweighs the 

reduction in capacity. Conversely, when the container fleet operates near full capacity and supply is 

inelastic, increasing short-run capacity - either by speeding up vessels or redeploying less efficient 

ships - increases marginal costs and leads to higher freight rates. These findings suggest that shipping 

companies strategically adjust capacity based on market conditions to optimize profitability, shifting 

between price and quantity competition depending on route characteristics and supply elasticity. 

 

6. Conclusions 

In this paper, we investigate the mechanism though which changes in operating capacity affect 

freight rates. We use AIS data to analyze the port calls and voyages of containerships from which we 

infer the operating capacity for individual shipping routes. We then apply the theories of supply 

elasticity and marginal cost to analyze their influence on container freight rates. 
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We show that, conditional on supply elasticity, operating capacity has predictive power on 

freight rates. Specifically, when the supply curve is inelastic and the fleet is operating close to full 

capacity, operating capacity has a positive effect on freight rates. We attribute this to increases in the 

marginal cost of transportation due to shipping companies’ attempts to increase their short-run 

capacity in specific routes. In contrast, when the supply curve is elastic operating capacity has a 

significantly negative effect on freight rates. This can be explained by the fact that a decision to reduce 

capacity on a route is more likely to occur when excess capacity is high. By reducing their capacity 

in periods of low utilization, companies aim to increase their profits since the increase in freight rates 

outpaces the reduction in capacity due to the low elasticity of demand. The empirical results are robust 

to alternative specifications for the capacity indices, to changes in the average speed of the vessel and 

to different specification of how idle capacity is measured. 
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Figures： 

 
Figure 1: Supply elasticity of the shipping market 
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Figure 2: Schematic diagram of vessel's port calls and docking track for three randomly 

selected vessels 
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Figure 3: Fronthaul operating capacity index and logarithmic freight rate returns 
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Tables： 

Table 1: Containerized freight indices and routes 

Shipping routes 
Operating capacity 

indices 
CCFI Ports/countries 

Japan route 𝐶𝑎𝑝1/𝑁𝑢𝑚1 𝐹𝑟𝑒1 Japan (all ports) 

Europe route 𝐶𝑎𝑝2/𝑁𝑢𝑚2 𝐹𝑟𝑒2 
Hamburg, Rotterdam, Antwerp, 

Felixstowe, Le Havre 

U.S. West Coast route 𝐶𝑎𝑝3/𝑁𝑢𝑚3 𝐹𝑟𝑒3 
Los Angeles, Long Beach, Seattle, 

Oakland, Tacoma. 

U.S. East Coast route 𝐶𝑎𝑝4/𝑁𝑢𝑚4 𝐹𝑟𝑒4 
New York-New Jersey, Savannah, 

Houston. 

S. Korea route 𝐶𝑎𝑝5/𝑁𝑢𝑚5 𝐹𝑟𝑒5 Korea (all ports) 

Southeast Asia route 𝐶𝑎𝑝6/𝑁𝑢𝑚6 𝐹𝑟𝑒6 
Singapore, Vietnam, Malaysia, 

Thailand. 

Australia/New Zealand 

route 
𝐶𝑎𝑝7/𝑁𝑢𝑚7 𝐹𝑟𝑒7 Australia, New Zealand 

South Africa route 𝐶𝑎𝑝8/𝑁𝑢𝑚8 𝐹𝑟𝑒8 South Africa (all ports) 

South America route 𝐶𝑎𝑝9/𝑁𝑢𝑚9 𝐹𝑟𝑒9 
Brazil, Colombia, Peru, Chile, 

Ecuador. 

Note: The first column shows the names of the nine routes; second and third columns show the 

variable names of the operating capacity indices and the China Containerized Freight Index (CCFI), 

respectively. Finally, the fourth column shows the ports or countries covered by each route. 
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Table 2: Definitions of Operating capacity indices 

Index Explanation 

𝐶𝑎𝑝𝐴 
Fronthaul capacity, in TEUs, on the shipping route from point O to point D in the 

previous 7 days. 

𝐶𝑎𝑝𝐵 
Backhaul capacity, in TEUs, on the shipping route from point D to point O in the 

previous 7 days. 

𝐶𝑎𝑝𝐶 Total capacity of vessels, in TEUs, on the shipping route (sum of 𝐶𝑎𝑝𝐴 and 𝐶𝑎𝑝𝐵). 

𝑁𝑢𝑚𝐴 
Fronthaul capacity, in number of vessels, on the shipping route from point O to point D 

in the previous 7 days. 

𝑁𝑢𝑚𝐵 
Backhaul capacity, in number of vessels, on the shipping route from point D to point O 

in the previous 7 days. 

𝑁𝑢𝑚𝐶 The total number of vessels on a shipping route (sum of 𝑁𝑢𝑚𝐴 and 𝑁𝑢𝑚𝐵). 
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Table 3: Summary of Variables 

Type Variable Definition 
Measurement 

unit 
Data source 

Frequency 

of data 

Dependent 

variable 
𝐹𝑟𝑒𝑖 

Logarithmic returns 

of freight indices 
-- iFind weekly 

Explanatory 

variables 

𝐶𝑎𝑝𝑗
𝑖 

Operating capacity 

indices 
TEUs 

Calculated using 

AIS data 
weekly 

𝐶𝑎𝑝𝑗
𝑖

× 𝐼𝑑𝐻 

Operating capacity 

under high idle 

capacity 

TEUs 
Calculated using 

AIS data 
weekly 

𝐶𝑎𝑝𝑗
𝑖

× 𝐼𝑑𝐿 

Operating capacity 

under low idle 

capacity 

TEUs 
Calculated using 

AIS data 
weekly 

Control 

variables 

𝐹𝑙𝑒𝑒𝑡 Containership Fleet 
thousands of 

TEUs 

Clarkson's 

Shipping 

Intelligence 

Network 

monthly 

𝐸𝑥𝑝𝑜𝑟𝑡 
Total value of 

China's exports 

hundreds of 

millions of US 

Dollars 

iFind monthly 

𝐹𝑢𝑒𝑙 

Logarithmic returns 

of 380 centistoke 

(cst) Bunker Heavy 

Fuel Oil 

-- iFind weekly 

Other 

variables 
𝐼𝑑𝑙𝑒 

Containership idle 

capacity 
TEUs 

Clarkson's 

Shipping 

Intelligence 

Network 

weekly 

Note: 𝑖 = 1,… , 9 in variables 𝐹𝑟𝑒𝑖 and 𝐶𝑎𝑝𝑗
𝑖 denote the Japan route, Europe route, U.S. West route, 

U.S. East route, Korea route, Southeast Asia route, Australia/New Zealand route, South Africa route, 

and South America route, respectively. 𝑗 = 𝐴, 𝐵, 𝐶 denote, respectively, fronthaul (𝐶𝑎𝑝𝐴), backhaul 

(𝐶𝑎𝑝𝐵) and total capacity (𝐶𝑎𝑝𝐶). 
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Table 4: Granger Causality tests of operating capacity and freight rates 

 𝐹𝑟𝑒1 𝐹𝑟𝑒2 𝐹𝑟𝑒3 𝐹𝑟𝑒4 𝐹𝑟𝑒5 𝐹𝑟𝑒6 𝐹𝑟𝑒7 𝐹𝑟𝑒8 𝐹𝑟𝑒9 

Panel A: Granger Causality test of operating capacity index to freight rate 

𝐶𝑎𝑝𝐴
𝑖  

0.651 2.754* 3.222* 0.228 5.201*** 1.372 7.680*** 2.412* 3.364** 

(0.522) (0.065) (0.073) (0.877) (0.006) (0.251) (0.006) (0.066) (0.035) 

𝐶𝑎𝑝𝐵
𝑖  

1.372 1.312 14.769*** 3.222* 6.822*** 0.258 4.489** 3.082** 0.938 

(0.255) (0.253) (0.000) (0.073) (0.001) (0.855) (0.035) (0.016) (0.422) 

𝐶𝑎𝑝𝐶
𝑖  

0.048 0.910 12.504*** 0.947 5.630*** 1.133 11.954*** 0.288 3.523* 

(0.953) (0.403) (0.000) (0.389) (0.004) (0.335) (0.001) (0.592) (0.061) 

Panel B: Granger Causality test of freight rate to operational capacity index 

𝐶𝑎𝑝𝐴
𝑖  

1.055 2.896* 0.175 1.222 1.342 0.591 0.107 2.168* 3.109** 

(0.349) (0.056) (0.676) (0.301) (0.262) (0.621) (0.744) (0.091) (0.046) 

𝐶𝑎𝑝𝐵
𝑖  

0.566 2.221 2.762* 0.625 4.238** 2.703** 13.944*** 1.737 0.571 

(0.568) (0.137) (0.097) (0.430) (0.015) (0.045) (0.000) (0.141) (0.634) 

𝐶𝑎𝑝𝐶
𝑖  

0.523 1.229 0.829 0.280 2.979* 1.575 8.327*** 0.021 0.436 

(0.593) (0.294) (0.363) (0.756) (0.052) (0.195) (0.004) (0.885) (0.510) 

Note: Granger Causality tests of 𝐶𝑎𝑝𝐴
𝑖  and 𝐹𝑟𝑒𝑖 have 2, 2, 1, 3, 2, 3, 1, 3, and 2 lags, respectively. 

Granger Causality tests of 𝐶𝑎𝑝𝐵
𝑖  and 𝐹𝑟𝑒𝑖  have 2, 1, 1, 1, 2, 3, 1, 4, and 3 lags, respectively. 

Granger Causality tests of 𝐶𝑎𝑝𝐶
𝑖  and 𝐹𝑟𝑒𝑖 have 2, 2, 1, 2, 2, 3, 1, 1, and 1 lag, respectively. 𝑖 =

1,… , 9  denotes the Japan, Europe, U.S. West Coast, U.S. East Coast, Korea, Southeast Asia, 

Australia/New Zealand, South Africa, and South America routes, respectively. The top value in each 

cell is the chi-square statistic χ2. p-values are in brackets. ***, **, and * indicate significance at the 

1%, 5%, and 10% level, respectively. 
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Table 5: Panel regressions of freight rates on operating capacity 

 
Panel A: Fronthaul 

Capacity Index 𝐶𝑎𝑝𝐴 

Panel B: Backhaul 

Capacity Index 𝐶𝑎𝑝𝐵 

Panel C: Total Capacity 

Index 𝐶𝑎𝑝𝐶 

 (1) (2) (3) (4) (5) (6) 

𝐶𝑎𝑝𝑡−1 
0.134 0.128 0.024 0.082 0.073 0.091 

(0.546) (0.553) (0.061) (0.209) (0.362) (0.460) 

𝐹𝑙𝑒𝑒𝑡𝑡 
 -0.115***  -0.116***  -0.117*** 

 (-4.294)  (-4.446)  (-4.439) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡 
 0.502***  0.509***  0.504*** 

 (4.364)  (4.296)  (4.216) 

𝐹𝑢𝑒𝑙𝑡 
 0.019**  0.019**  0.019** 

 (2.055)  (2.062)  (2.062) 

𝐹𝑟𝑒𝑡−1 
0.181 0.177 0.181 0.177 0.181 0.177 

(1.484) (1.452) (1.483) (1.450) (1.484) (1.451) 

𝑅2 0.033 0.037 0.033 0.037 0.033 0.037 

Note: Panel regressions of freight rates (in logarithmic returns) on operating capacity indices for the 

nine shipping routes. Columns (1), (3), and (5) show the results of the baseline regression. Columns 

(2) (4), and (6) are the regression results incorporating control variables. t-statistics using clustered 

standard errors are in brackets. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 

respectively. 
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Table 6: OLS regressions of freight rates on conditional operating capacity  

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 𝐹𝑟𝑒1 𝐹𝑟𝑒2 𝐹𝑟𝑒3 𝐹𝑟𝑒4 𝐹𝑟𝑒5 𝐹𝑟𝑒6 𝐹𝑟𝑒7 𝐹𝑟𝑒8 𝐹𝑟𝑒9 

Panel A: Fronthaul operating capacity index 𝐶𝑎𝑝𝐴 

𝐶𝑎𝑝𝐴,𝑡−1 
0.120 0.870** 0.522 -0.204 -1.487 -0.425 -2.980 0.349 -1.904 

(0.144) (2.116) (1.626) (-0.334) (-1.173) (-1.340) (-1.566) (0.148) (-1.526) 

𝐶𝑎𝑝𝐴,𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

-0.152 -0.148 -0.266 -0.545 -0.786* -0.145 -1.623* -2.369 -1.522 

(-0.657) (-0.946) (-1.585) (-1.472) (-1.839) (-1.367) (-1.701) (-1.356) (-1.526) 

𝐶𝑎𝑝𝐴,𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

-0.120 -0.049 0.076 0.443 -0.196 0.110 0.335 0.691 0.105 

(-0.511) (-0.355) (0.555) (1.296) (-0.533) (1.532) (0.426) (0.576) (0.124) 

𝐹𝑟𝑒𝑡−1 
-0.298*** 0.549*** 0.179* 0.255*** -0.366*** 0.059 0.222*** 0.259*** 0.434*** 

(-3.945) (7.823) (1.811) (3.244) (-8.230) (0.409) (3.224) (3.231) (7.597) 

R2 0.082 0.317 0.046 0.083 0.133 0.014 0.073 0.074 0.192 

Panel B: Backhaul capacity index 𝐶𝑎𝑝𝐵 

𝐶𝑎𝑝𝐵,𝑡−1 
-0.038 -0.401 1.246** 0.809 -3.989*** -0.240 -2.412* -1.290 -1.176 

(-0.052) (-1.078) (2.575) (1.086) (-2.813) (-0.570) (-1.922) (-1.168) (-0.704) 

𝐶𝑎𝑝𝐵,𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

-0.144 -0.203 -0.260 -0.396 -0.515 -0.192 -0.898 -2.178 -2.481 

(-0.640) (-0.957) (-1.307) (-0.634) (-1.470) (-1.470) (-1.155) (-1.455) (-1.519) 

𝐶𝑎𝑝𝐵,𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

-0.098 0.071 0.021 0.654 -0.115 0.136 0.494 1.315 0.556 

(-0.430) (0.350) (0.162) (1.190) (-0.365) (1.619) (0.700) (1.066) (0.357) 

𝐹𝑟𝑒𝑡−1 
-0.298*** 0.551*** 0.153* 0.259*** -0.372*** 0.059 0.213*** 0.251*** 0.428*** 

(-4.002) (8.744) (1.668) (3.212) (-8.485) (0.412) (3.037) (3.140) (7.712) 

R2 0.081 0.311 0.064 0.081 0.150 0.014 0.061 0.080 0.189 

Panel C: Total operating capacity index 𝐶𝑎𝑝𝐶  

𝐶𝑎𝑝𝐶,𝑡−1 
0.015 0.268 0.713** 0.167 -1.863** -0.261 -2.759** -0.743 -1.552 

(0.036) (1.007) (2.446) (0.381) (-2.456) (-1.161) (-2.444) (-0.857) (-1.632) 

𝐶𝑎𝑝𝐶,𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

-0.074 -0.093 -0.160* -0.271 -0.322* -0.089 -0.682* -1.230 -1.083* 

(-0.655) (-1.014) (-1.770) (-1.125) (-1.678) (-1.493) (-1.586) (-1.460) (-1.709) 

𝐶𝑎𝑝𝐶,𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

-0.054 -0.020 -0.013 0.277 -0.080 0.062 0.148 0.589 0.062 

(-0.469) (-0.246) (-0.189) (1.263) (-0.473) (1.595) (0.401) (0.955) (0.111) 

𝐹𝑟𝑒𝑡−1 
-0.298*** 0.556*** 0.164* 0.259*** -0.370*** 0.058 0.211*** 0.252*** 0.434*** 

(-3.975) (8.466) (1.724) (3.270) (-8.378) (0.405) (3.154) (3.139) (7.739) 

R2 0.081 0.310 0.063 0.081 0.143 0.015 0.078 0.078 0.194 

Note: OLS regressions of freight rates on conditional operating capacity using the model: 𝐹𝑟𝑒𝑡
𝑖 =

𝛼0 + 𝛼1𝐶𝑎𝑝𝑗,𝑡−1
𝑖 + 𝛼2𝐶𝑎𝑝𝑗,𝑡−1

𝑖 × 𝐼𝑑𝑡−1
𝐻 + 𝛼3𝐶𝑎𝑝𝑗,𝑡−1

𝑖 × 𝐼𝑑𝑡−1
𝐿 + 𝛼4𝐹𝑟𝑒𝑡−1

𝑖 + 𝜀𝑡
𝑖. When idle capacity 

is higher than the 70th percentile, 𝐼𝑑𝑡
𝐻 = 1 . When idle capacity is lower than the 30th percentile, 

𝐼𝑑𝑡
𝐿 = 1. In all other cases, the indicator is 0. t-statistics, using Newey-West HAC Standard Errors, 

are in brackets. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. 
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Table 7: Panel regressions of freight rates on conditional operating capacity 

 
Panel A: Fronthaul 

Capacity Index 𝐶𝑎𝑝𝐴 

Panel B: Backhaul 

Capacity Index 𝐶𝑎𝑝𝐵 

Panel C: Total Capacity 

Index 𝐶𝑎𝑝𝐶 

 (1) (2) (3) (4) (5) (6) 

𝐶𝑎𝑝𝑗,𝑡−1 
0.100 0.092 -0.105 -0.052 0.000 0.017 

(0.341) (0.326) (-0.278) (-0.139) (0.001) (0.078) 

𝐶𝑎𝑝𝑗,𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

-0.201*** -0.182*** -0.281*** -0.255*** -0.119*** -0.108*** 

(-3.275) (-3.006) (-3.728) (-3.467) (-3.538) (-3.264) 

𝐶𝑎𝑝𝑗,𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

0.090*** 0.095*** 0.121*** 0.127*** 0.052*** 0.055*** 

(3.305) (3.713) (5.526) (5.110) (4.140) (4.199) 

𝐹𝑙𝑒𝑒𝑡𝑡 
 -0.107***  -0.104***  -0.106*** 

 (-4.087)  (-4.245)  (-4.208) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡 
 0.459***  0.454***  0.458*** 

 (3.853)  (3.926)  (3.744) 

𝐹𝑢𝑒𝑙𝑡 
 0.020**  0.020**  0.020** 

 (2.098)  (2.115)  (2.110) 

𝐹𝑟𝑒𝑡−1 
0.176 0.173*** 0.176 0.173 0.176 0.173 

(1.438) (1.411) (1.434) (1.407) (1.435) (1.408) 

R2 0.036 0.040 0.037 0.041 0.037 0.040 

Note: Panel regressions of freight rates on conditional operating capacity using the model: 𝑭𝒓𝒆𝑡 =

𝜶0 + 𝜶1𝑪𝒂𝒑𝑗,𝑡−1 + 𝜶2𝑪𝒂𝒑𝑗,𝑡−1 × 𝐼𝑑𝑡−1
𝐻 + 𝜶3𝑪𝒂𝒑𝑗,𝑡−1 × 𝐼𝑑𝑡−1

𝐿 + 𝜶4𝑭𝒓𝒆𝑡−1 + 𝜺𝑡 . Columns (1), 

(3), and (5) show the results of the baseline regression. Columns (2), (4), and (6) are the regression 

results with control variables. When idle capacity is higher than the 70th percentile, 𝐼𝑑𝑡
𝐻 = 1. When 

the idle capacity is lower than the 30th percentile, 𝐼𝑑𝑡
𝐿 = 1. In all other cases, the indicator is 0. t-

statistics, using Clustered Standard Errors are in brackets. ***, **, and * indicate significance at the 

1%, 5%, and 10% levels, respectively. 
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Table 8: Comparison of out-of-sample predictability using 𝑹𝑶𝑺
𝟐  model 

 𝐶𝑎𝑝𝐴 𝐶𝑎𝑝𝐵 𝐶𝑎𝑝𝐶 

Panel A: test sample period of 0.5 year (December 2022 - May 2023) 

𝑅𝑂𝑆,1
2  0.044 0.044 0.044 

𝑅𝑂𝑆,2
2  0.059 0.062 0.061 

Panel B: test sample period of 1.0 year (June 2022 - May 2023) 

𝑅𝑂𝑆,1
2  0.076 0.076 0.076 

𝑅𝑂𝑆,2
2  0.090 0.094 0.092 

Panel C: test sample period of 1.5 years (December 2021 - May 2023) 

𝑅𝑂𝑆,1
2  0.067 0.067 0.067 

𝑅𝑂𝑆,2
2  0.080 0.084 0.082 

Note: Out-of-sample 𝑅𝑂𝑆
2  values for the baseline Model 1 and the conditional capacity Model 2. 

𝑅𝑂𝑆
2  is calculated using equation (4). Panel A, Panel B, and Panel C show the 𝑅𝑂𝑆

2  values for the two 

models with test sample periods of 0.5 year (December 2022 - May 2023), 1 year (June 2022 - May 

2023), and 1.5 years (December 2021 - May 2023), respectively. Columns 𝐶𝑎𝑝𝐴, 𝐶𝑎𝑝𝐵, and 𝐶𝑎𝑝𝐶 

represent the fronthaul, backhaul and total operating capacity indices. 
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Table 9: Diebold-Mariano and Clark-West tests for comparison of out-of-sample 

predictability  

 Model 2 (𝐶𝑎𝑝𝐴) Model 2 (𝐶𝑎𝑝𝐵) Model 2 (𝐶𝑎𝑝𝐶) 

Panel A: DM test 

Model 1 (0.5 year) 2.638*** 2.322** 2.528*** 

Model 1 (1.0 year) 3.602*** 3.415*** 3.528*** 

Model 1 (1.5 years) 2.949*** 2.709*** 2.842*** 

Panel B: CW test 

Model 1 (0.5 year) 3.470*** 3.011*** 3.305*** 

Model 1 (1.0 years) 5.261*** 5.194*** 5.280*** 

Model 1 (1.5 years) 5.116*** 4.915*** 5.068*** 

Note: Diebold-Mariano (DM) (Panel A) and Clark-West (CW) (Panel B) test statistics for comparing 

out-of-sample predictive power of the baseline Model 1 and the conditional operating capacity Model 

2. A positive number indicates that Model 2 outperforms Model 1. For each panel, the first, second, 

and third rows correspond to test sample periods of 0.5 year (December 2022 - May 2023), 1 year 

(June 2022 - May 2023) and 1.5 years (December 2021 - May 2023), respectively. The first, second 

and third column correspond fronthaul, backhaul and total operating capacity indices. ***, ** indicate 

significance at the 1% and 5% levels, respectively.  
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Table 10: Panel regressions of freight rates on the conditional and unconditional speed indices 

 Panel A: Fronthaul speed index 𝑆𝑝𝑒𝐴 Panel B: Backhaul speed index 𝑆𝑝𝑒𝐵 

 (1) (2) (3) (4) (5) (6) (7) (8) 

𝑆𝑝𝑒𝑗,𝑡−1 
3.780*** 4.687*** 3.395*** 4.278*** 2.607*** 4.387*** 2.380*** 4.071*** 

(9.299) (6.481) (7.871) (5.898) (5.663) (5.231) (5.260) (4.972) 

𝑆𝑝𝑒𝑗,𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

  
-

0.074*** 

-

0.066*** 
  

-

0.072*** 

-

0.061*** 

  (-5.374) (-4.952)   (-5.979) (-5.589) 

𝑆𝑝𝑒𝑗,𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

  0.036*** 0.031***   0.049*** 0.044*** 

  (2.783) (3.022)   (3.372) (3.184) 

𝐹𝑙𝑒𝑒𝑡𝑡 
 

-

0.186*** 

 -

0.165*** 
 

-

0.223*** 

 -

0.201*** 

 (-5.431)  (-5.359)  (-5.490)  (-5.298) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡  
 0.600***  0.500***  0.481***  0.401*** 

 (5.530)  (5.090)  (3.890)  (3.563) 

𝐹𝑢𝑒𝑙𝑡 
 0.018**  0.018**  0.016*  0.017* 

 (2.015)  (2.090)  (1.729)  (1.832) 

𝐹𝑟𝑒𝑡−1 
0.169 0.162 0.163 0.157 0.172 0.161 0.164 0.155 

(1.398) (1.335) (1.343) (1.293) (1.414) (1.321) (1.353) (1.276) 

R2 0.042 0.050 0.048 0.054 0.039 0.049 0.045 0.054 

Note: Panel regressions of freight rates on conditional and unconditional speed index using the model: 𝑭𝒓𝒆𝑡 =

𝜶0 + 𝜶1𝑺𝒑𝒆𝑗,𝑡−1 + 𝜶2𝑺𝒑𝒆𝑗,𝑡−1 × 𝐼𝑑𝑡−1
𝐻 + 𝜶3𝑺𝒑𝒆𝑗,𝑡−1 × 𝐼𝑑𝑡−1

𝐿 + 𝜶4𝑭𝒓𝒆𝑡−1 + 𝜺𝑡. Columns (1), (3), (5) and 

(7) show the results for the baseline regression. Columns (2), (4), (6) and (8) are the regression results after 

adding control variables. When idle capacity is higher than the 70th percentile, 𝐼𝑑𝑡
𝐻 = 1. When idle capacity 

is lower than the 30th percentile, 𝐼𝑑𝑡
𝐿 = 1. In all other cases, the indicator is 0. t-statistics, using Clustered 

Standard Errors, are in brackets. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 

respectively. 
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Table 11: Panel regression of freight rates on combined speed and capacity indices 

 
Panel A: Fronthaul composite index 

𝑆𝑝𝑒𝐴 × 𝐶𝑎𝑝𝐴 

Panel B: Backhaul composite index 

𝑆𝑝𝑒𝐵 × 𝐶𝑎𝑝𝐵 

 (1) (2) (3) (4) (5) (6) 

𝑆𝑝𝑒 × 𝐶𝑎𝑝𝑗,𝑡−1 
0.395 0.263 0.420 0.094 -0.051 0.066 

(1.491) (0.932) (1.278) (0.297) (-0.168) (0.184) 

𝑆𝑝𝑒 × 𝐶𝑎𝑝𝑗,𝑡−1 × 𝐼𝑑𝑡−1
𝐻  

 -0.027*** -0.025***  -0.028*** -0.025*** 

 (-6.582) (-6.456)  (-6.837) (-6.593) 

𝑆𝑝𝑒 × 𝐶𝑎𝑝𝑗,𝑡−1 × 𝐼𝑑𝑡−1
𝐿  

 0.011*** 0.011***  0.011*** 0.012*** 

 (3.313) (3.376)  (3.421) (3.926) 

𝐹𝑙𝑒𝑒𝑡𝑡 
  -0.110***   -0.099*** 

  (-5.830)   (-4.133) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡  
  0.389***   0.392*** 

  (3.607)   (3.408) 

𝐹𝑢𝑒𝑙𝑡 
  0.020**   0.020** 

  (2.136)   (2.140) 

𝐹𝑟𝑒𝑡−1 
0.180 0.172 0.169 0.181 0.172 0.169 

(1.483) (1.409) (1.384) (1.482) (1.408) (1.383) 

R2 0.033 0.041 0.044 0.033 0.040 0.043 

Note: Panel regressions of freight rates on combined speed and capacity indices for different levels of idle 

capacity. Columns (1), (2), (4) and (5) show the results for the baseline regression. Columns (3), and (6) are 

the regression results after adding control variables. When idle capacity is higher than the 70th percentile, 

𝐼𝑑𝑡
𝐻 = 1. When idle capacity is lower than the 30th percentile, 𝐼𝑑𝑡

𝐿 = 1. In all other cases, the indicator is 0. 

t-statistics, using Clustered Standard Errors, are in brackets. ***, **, and * indicate significance at the 1%, 5%, 

and 10% levels, respectively. 
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Appendix 

Table A1: Correlation analysis 

 𝐶𝑎𝑝𝑡−1
1  𝐶𝑎𝑝𝑡−1

2  𝐶𝑎𝑝𝑡−1
3  𝐶𝑎𝑝𝑡−1

4  𝐶𝑎𝑝𝑡−1
5  𝐶𝑎𝑝𝑡−1

6  𝐶𝑎𝑝𝑡−1
7  𝐶𝑎𝑝𝑡−1

8  𝐶𝑎𝑝𝑡−1
9  

Panel A: Fronthaul operating capacity index 𝐶𝑎𝑝𝐴 

𝐹𝑟𝑒𝑡
𝑖 0.015 0.146 0.082 -0.027 -0.046 -0.042 -0.131 -0.007 -0.037 

𝐼𝑑𝑙𝑒𝑡 -0.115 -0.069 -0.055 -0.090 -0.053 -0.320 0.030 -0.133 -0.213 

Panel B: Backhaul operating capacity index 𝐶𝑎𝑝𝐵 

𝐹𝑟𝑒𝑡
𝑖 0.005 -0.082 0.206 0.103 -0.130 0.003 -0.113 -0.049 -0.038 

𝐼𝑑𝑙𝑒𝑡 0.005 -0.125 -0.336 -0.147 0.111 -0.315 -0.017 -0.085 -0.043 

Panel C: Total operating capacity index 𝐶𝑎𝑝𝐶 

𝐹𝑟𝑒𝑡
𝑖 0.011 0.051 0.179 0.042 -0.102 -0.026 -0.172 -0.041 -0.048 

𝐼𝑑𝑙𝑒𝑡 -0.061 -0.137 -0.231 -0.147 0.036 -0.380 0.008 -0.134 -0.179 

Note: Correlations between operating capacity (𝐶𝑎𝑝𝐴,𝑡−1
𝑖 , 𝐶𝑎𝑝𝐵,𝑡−1

𝑖  and 𝐶𝑎𝑝𝐶,𝑡−1
𝑖 ) at 𝑡 − 1  and 

freight rate returns (𝐹𝑟𝑒𝑡
𝑖) and idle capacity (𝐼𝑑𝑙𝑒𝑡 ) for the nine shipping routes at 𝑡 . 𝑖 = 1,… , 9 

denotes the Japan, Europe, U.S. West Coast, U.S. East Coast, Korea, Southeast Asia, Australia/New 

Zealand, South Africa, and South America routes, respectively. 
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Table A2: OLS Regressions of Freight rates on Operating Capacity 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 𝐹𝑟𝑒1 𝐹𝑟𝑒2 𝐹𝑟𝑒3 𝐹𝑟𝑒4 𝐹𝑟𝑒5 𝐹𝑟𝑒6 𝐹𝑟𝑒7 𝐹𝑟𝑒8 𝐹𝑟𝑒9 

Panel A: Fronthaul Operating Capacity index 𝐶𝑎𝑝𝐴 

𝐶𝑎𝑝𝐴,𝑡−1 
-0.018 0.822** 0.451 -0.099 -1.834 -0.263 -3.409* 0.536 -1.992* 

(-0.022) (1.970) (1.584) (-0.177) (-1.436) (-0.904) (-1.684) (0.233) (-1.863) 

𝐹𝑟𝑒𝑡−1 
-0.298*** 0.551*** 0.194* 0.277*** -0.362*** 0.075 0.229*** 0.274*** 0.438*** 

(-3.977) (7.832) (1.946) (3.516) (-8.345) (0.515) (3.257) (3.519) (7.582) 

𝑅2 0.084 0.319 0.040 0.073 0.130 0.003 0.065 0.071 0.189 

Panel B: Backhaul Operating Capacity Index 𝐶𝑎𝑝𝐵 

𝐶𝑎𝑝𝐵,𝑡−1 
-0.158 -0.418 1.363*** 0.958 -4.401*** 0.011 -2.506** -1.142 -1.704 

(-0.211) (-1.185) (3.010) (1.592) (-3.137) (0.027) (-1.995) (-1.102) (-1.073) 

𝐹𝑟𝑒𝑡−1 
-0.299*** 0.556*** 0.159* 0.270*** -0.370*** 0.075 0.223*** 0.271*** 0.434*** 

(-4.015) (8.895) (1.746) (3.294) (-8.591) (0.519) (3.098) (3.451) (7.602) 

𝑅2 0.084 0.312 0.063 0.079 0.150 0.001 0.059 0.072 0.187 

Panel C: Total Operating Capacity index 𝐶𝑎𝑝𝐶  

𝐶𝑎𝑝𝐶,𝑡−1 
-0.055 0.240 0.692** 0.276 -2.082*** -0.108 -2.921** -0.510 -1.613* 

(-0.126) (0.890) (2.573) (0.697) (-2.725) (-0.537) (-2.464) (-0.601) (-1.771) 

𝐹𝑟𝑒𝑡−1 
-0.298*** 0.559*** 0.176* 0.277** -0.367*** 0.075 0.219*** 0.271*** 0.439 

(-3.997) (8.468) (1.844) (3.443) (-8.495) (0.518) (3.205) (3.474) (7.684) 

𝑅2 0.084 0.312 0.059 0.074 0.142 0.002 0.073 0.071 0.190 

Note: Regression model based on equation (1), 𝐹𝑟𝑒𝑡
𝑖 = 𝛼0 + 𝛼1𝐶𝑎𝑝𝑗,𝑡−1

𝑖 + 𝛼2𝐹𝑟𝑒𝑡−1
𝑖 + 𝜀𝑡

𝑖 . t-

statistics using Newey-West HAC Standard Errors are in brackets. ***, **, and * indicate significance 

at the 1%, 5%, and 10% levels, respectively. 
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Table A3: Predictability of operating capacity on freight rates (with control variables) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 𝐹𝑟𝑒1 𝐹𝑟𝑒2 𝐹𝑟𝑒3 𝐹𝑟𝑒4 𝐹𝑟𝑒5 𝐹𝑟𝑒6 𝐹𝑟𝑒7 𝐹𝑟𝑒8 𝐹𝑟𝑒9 

Panel A: operating capacity index 𝐶𝑎𝑝𝐴 

𝐶𝑎𝑝𝑡−1 
0.099 0.768** 0.448* 0.127 -1.726 -0.427 -3.539*** -0.562 -2.614* 

(0.153) (2.194) (1.724) (0.230) (-1.259) (-1.316) (-2.673) (-0.290) (-1.941) 

𝐹𝑙𝑒𝑒𝑡𝑡 
-0.000 -0.081 -0.055 -0.114 -0.202* -0.171* -0.115 -0.179* 0.058 

(-0.003) (-0.994) (-0.644) (-1.432) (-1.705) (-1.850) (-1.437) (-1.680) (0.408) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡 
0.217 0.613 0.253 0.419 1.057* 1.084** 0.582 0.684 0.254 

(0.748) (1.579) (0.612) (1.179) (1.879) (2.345) (1.484) (1.387) (0.386) 

𝐹𝑢𝑒𝑙𝑡 
0.020 -0.038* 0.036 0.011 0.055* -0.020 0.011 0.030 0.019 

(1.263) (-1.782) (1.564) (0.567) (1.767) (-0.809) (0.528) (1.134) (0.507) 

𝐹𝑟𝑒𝑡−1 
-0.297*** 0.552*** 0.194*** 0.275*** -0.366*** 0.070 0.223*** 0.264*** 0.439*** 

(-6.713) (14.474) (4.312) (6.190) (-8.550) (1.533) (4.997) (5.915) (10.541) 

𝑅2 0.084 0.323 0.040 0.072 0.137 0.010 0.065 0.072 0.186 

Panel B: operating capacity index 𝐶𝑎𝑝𝐵 

𝐶𝑎𝑝𝑡−1 
-0.097 -0.368 1.328*** 1.353** -4.225*** 0.134 -2.320* -2.411* -2.560 

(-0.150) (-1.004) (3.735) (2.310) (-3.420) (0.317) (-1.930) (-1.689) (-1.424) 

𝐹𝑙𝑒𝑒𝑡𝑡 
0.001 -0.112 -0.058 -0.152** -0.166 -0.193* -0.114 -0.249** 0.042 

(0.013) (-1.393) (-0.685) (-2.016) (-1.429) (-1.937) (-1.412) (-2.253) (0.291) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡 
0.208 0.694* 0.163 0.386 0.888 0.908** 0.368 0.807* 0.309 

(0.715) (1.787) (0.401) (1.092) (1.589) (2.026) (0.953) (1.646) (0.466) 

𝐹𝑢𝑒𝑙𝑡 
0.020 -0.038* 0.032 0.012 0.056* -0.020 0.016 0.026 0.016 

(1.257) (-1.765) (1.395) (0.622) (1.827) (-0.797) (0.732) (0.969) (0.434) 

𝐹𝑟𝑒𝑡−1 
-0.298*** 0.557*** 0.160*** 0.262*** -0.372*** 0.070 0.218*** 0.260*** 0.434*** 

(-6.731) (14.559) (3.512) (5.913) (-8.790) (1.527) (4.843) (5.852) (10.433) 

𝑅2 0.084 0.318 0.062 0.082 0.155 0.007 0.058 0.078 0.183 

Panel C: operating capacity index 𝐶𝑎𝑝𝐶  

𝐶𝑎𝑝𝑡−1 
0.000 0.217 0.693*** 0.677* -2.030*** -0.181 -3.006*** -1.715 -2.937*** 

(0.001) (0.869) (3.455) (1.715) (-2.731) (-0.772) (-3.320) (-1.512) (-2.570) 

𝐹𝑙𝑒𝑒𝑡𝑡 
0.000 -0.117 -0.043 -0.167** -0.166 -0.161* -0.092 -0.258** 0.143 

(0.004) (-1.466) (-0.509) (-2.059) (-1.403) (-1.678) (-1.150) (-2.224) (0.957) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡 
0.213 0.726* 0.286 0.383 0.974* 1.009** 0.533 0.850* 0.409 

(0.732) (1.880) (0.698) (1.078) (1.739) (2.193) (1.383) (1.704) (0.619) 

𝐹𝑢𝑒𝑙𝑡 
0.020 -0.037* 0.033 0.011 0.057* -0.020 0.014 0.028 0.015 

(1.255) (-1.712) (1.459) (0.573) (1.824) (-0.803) (0.671) (1.034) (0.418) 

𝐹𝑟𝑒𝑡−1 
-0.298*** 0.558*** 0.176*** 0.271*** -0.370*** 0.071 0.214*** 0.257*** 0.442*** 

(-6.720) (14.609) (3.929) (6.121) (-8.693) (1.552) (4.796) (5.762) (10.637) 

𝑅2 0.084 0.317 0.058 0.077 0.147 0.008 0.072 0.077 0.191 

Note: Table A3 shows the results of regressing the freight indices on the operating capacity indices 

and the control variables for the nine shipping routes. The regression model uses the equation 

𝐹𝑟𝑒𝑡
𝑖 = 𝛼0 + 𝛼1𝐶𝑎𝑝𝑡−1

𝑖 + 𝛼2𝐹𝑟𝑒𝑡−1
𝑖 + 𝛼3𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝑡 + 𝜀𝑡

𝑖. 𝑪𝒐𝒏𝒕𝒓𝒐𝒍 = [𝐹𝑙𝑒𝑒𝑡, 𝐸𝑥𝑝𝑜𝑟𝑡, 𝐹𝑢𝑒𝑙]𝑇 

represent the containership fleet, the total value of China's exports, and the logarithmic returns of 
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spot prices of fuel oils, respectively. The t-statistics are in parentheses. ***, **, and * indicate 

significance at the 1%, 5%, and 10% levels, respectively.
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Table A4: Panel regressions of freight rates on conditional operating capacity (with 

alternative operating capacity indices) 

 
Panel A: fronthaul operating 

capacity index 𝑁𝑢𝑚𝐴 

Panel B: backhaul operating 

capacity index 𝑁𝑢𝑚𝐵 

Panel C: total operating 

capacity index 𝑁𝑢𝑚𝐶 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

𝐶𝑎𝑝𝑡−1 
-0.004 -0.004 -0.006 -0.006 -0.006 -0.006 -0.003 -0.003 -0.004 

(-0.819) (-0.785) (-1.111) (-0.908) (-1.117) (-1.110) (-1.039) (-1.192) (-1.394) 

𝐶𝑎𝑝𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

 -0.005*** -0.004***  -0.006*** -0.005***  -0.003*** -0.002*** 

 (-3.763) (-3.462)  (-4.734) (-4.396)  (-4.312) (-3.987) 

𝐶𝑎𝑝𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

 0.001 0.001  0.001 0.002  0.001 0.001 

 (1.228) (1.383)  (1.168) (1.294)  (1.242) (1.381) 

𝐹𝑙𝑒𝑒𝑡𝑡 
  -0.110***   -0.107***   -0.109*** 

  (-4.267)   (-4.376)   (-4.323) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡 
  0.490***   0.479***   0.488*** 

  (3.913)   (4.123)   (3.986) 

𝐹𝑢𝑒𝑙𝑡 
  0.019**   0.019**   0.019** 

  (2.068)   (2.085)   (2.076) 

𝐹𝑟𝑒𝑡−1 
0.181 0.178 0.175 0.181 0.178 0.175 0.181 0.178 0.175 

(1.480) (1.454) (1.425) (1.479) (1.454) (1.425) (1.478) (1.452) (1.423) 

R2 0.033 0.035 0.038 0.033 0.035 0.039 0.033 0.035 0.039 

Note: Panel regression results of freight rates on fronthaul (𝑁𝑢𝑚𝐴), backhaul (𝑁𝑢𝑚𝐵) and total 

(𝑁𝑢𝑚𝐶) alternative operating capacity indices, using the number of vessels in operation. Columns 

(1), (4) and (7) show the results of the baseline regression. Columns (2), (5) and (8) are the regression 

results with different levels of idle capacity. Columns (3), (6) and (9) are results with control variables. 

t-statistics using clustered standard errors are in brackets. ***, **, and * indicate significance at the 

1%, 5%, and 10% levels, respectively. 
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Table A5: Panel regressions of freight rates on conditional operating capacity (with 

alternative measure of idle capacity) 

 

Panel A: Fronthaul 

operating capacity index 

𝐶𝑎𝑝𝐴 

Panel B: Backhaul 

operating capacity index 

𝐶𝑎𝑝𝐵 

Panel C: Total operating 

capacity index 𝐶𝑎𝑝𝐶 

 (1) (2) (3) (4) (5) (6) 

𝐶𝑎𝑝𝑡−1 
0.127 0.126 -0.006 0.053 0.052 0.076 

(0.488) (0.519) (-0.015) (0.143) (0.251) (0.372) 

𝐶𝑎𝑝𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

-0.119** -0.086 -0.176** -0.135* -0.072** -0.054* 

(-2.242) (-1.608) (-2.490) (-1.958) (-2.333) (-1.745) 

𝐶𝑎𝑝𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

0.043 0.030 0.069** 0.056* 0.027** 0.020 

(1.545) (1.127) (2.233) (1.860) (2.011) (1.569) 

𝐹𝑙𝑒𝑒𝑡𝑡 
 -0.106***  -0.103***  -0.105*** 

 (-4.026)  (-4.167)  (-4.181) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡 
 0.452***  0.439***  0.445*** 

 (3.859)  (3.869)  (3.746) 

𝐹𝑢𝑒𝑙𝑡 
 0.019**  0.019**  0.019** 

 (2.040)  (2.040)  (2.043) 

𝐹𝑟𝑒𝑡−1 
0.179 0.177 0.179 0.176 0.179 0.176 

(1.466) (1.441) (1.460) (1.436) (1.463) (1.439) 

R2 0.034 0.037 0.035 0.038 0.034 0.037 

Note: Panel regressions of freight rates on conditional operating capacity, with an alternative measure 

of idle capacity which also counts containerships that are laid-up or enter ship repair yards for 

scrubber conversions. Columns (1), (3) and (5) show the results of the baseline regression. Columns 

(2), (4) and (6) are the regression results with control variables. t-statistics, using clustered standard 

errors are in brackets. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. 
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Table A6: Panel regressions of freight rates on conditional operating capacity (with alternative control 

variables) 

 
Panel A: Fronthaul operating 

capacity index 𝐶𝑎𝑝𝐴 

Panel B: Backhaul operating 

capacity index 𝐶𝑎𝑝𝐵 

Panel C: Total operating 

capacity index 𝐶𝑎𝑝𝐶 

 (1) (2) (3) (4) (5) (6) 

𝐶𝑎𝑝𝑡−1 
0.100 -0.031 -0.105 -0.104 0.000 -0.063 

(0.341) (-0.103) (-0.278) (-0.269) (0.001) (-0.263) 

𝐶𝑎𝑝𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

-0.201*** -0.169*** -0.281*** -0.236*** -0.119*** -0.101*** 

(-3.275) (-3.063) (-3.728) (-3.444) (-3.538) (-3.369) 

𝐶𝑎𝑝𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

0.090*** 0.072*** 0.121*** 0.096*** 0.052*** 0.043*** 

(3.305) (2.772) (5.526) (4.704) (4.140) (3.529) 

𝐹𝑙𝑒𝑒𝑡𝑡 
 -0.172***  -0.168***  -0.170*** 

 (-7.998)  (-8.900)  (-8.314) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡 
 0.001***  0.001***  0.001*** 

 (6.771)  (6.852)  (6.399) 

𝐹𝑢𝑒𝑙𝑡 
 0.019**  0.020**  0.020** 

 (2.002)  (2.023)  (2.008) 

𝐹𝑟𝑒𝑡−1 
0.176 0.166 0.176 0.166 0.176 0.166 

(1.438) (1.368) (1.434) (1.367) (1.435) (1.366) 

R2 0.036 0.047 0.037 0.048 0.037 0.048 

Note: Panel regressions of freight rates on conditional operating capacity with alternative control variables. 

𝐸𝑥𝑝𝑜𝑟𝑡 denotes China’s Seaborne Containerized Exports, and 𝐹𝑢𝑒𝑙 denotes the logarithmic returns of the 

price of fuel oils (180). Columns (2), (4) and (6) show the regression results with alternative control variables. 

t-statistics, using clustered standard errors, are in brackets. ***, **, and * indicate significance at the 1%, 5%, 

and 10% levels, respectively. 
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Table A7: Panel regressions of freight rates on conditional operating capacity (with 60th and 40th 

percentile thresholds for idle capacity) 

 
Panel A: Fronthaul operating 

capacity index 𝐶𝑎𝑝𝐴 

Panel B: Backhaul operating 

capacity index 𝐶𝑎𝑝𝐵 

Panel C: Total operating 

capacity index 𝐶𝑎𝑝𝐶 

 (1) (2) (3) (4) (5) (6) 

𝐶𝑎𝑝𝑡−1 
0.024 0.011 -0.133 -0.091 -0.037 -0.027 

(0.085) (0.041) (-0.337) (-0.227) (-0.173) (-0.120) 

𝐶𝑎𝑝𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

-0.112 -0.100 -0.215** -0.196** -0.080* -0.072 

(-1.419) (-1.220) (-2.231) (-1.976) (-1.846) (-1.610) 

𝐶𝑎𝑝𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

0.167*** 0.167*** 0.157*** 0.158*** 0.083*** 0.083*** 

(5.743) (4.851) (3.471) (2.851) (4.423) (3.548) 

𝐹𝑙𝑒𝑒𝑡𝑡 
 -0.102***  -0.099***  -0.101*** 

 (-3.939)  (-4.131)  (-4.057) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡 
 0.483***  0.472***  0.480*** 

 (4.030)  (4.091)  (3.910) 

𝐹𝑢𝑒𝑙𝑡 
 0.020**  0.020**  0.020** 

 (2.113)  (2.130)  (2.127) 

𝐹𝑟𝑒𝑡−1 
0.176 0.173 0.176 0.173 0.176 0.173 

(1.438) (1.411) (1.440) (1.413) (1.438) (1.411) 

𝑅2 0.037 0.040 0.038 0.041 0.037 0.041 

Note: When the idle capacity is higher than the 60th percentile, 𝐼𝑑𝑡
𝐻 = 1. When the idle capacity is lower than 

the 40th percentile, 𝐼𝑑𝑡
𝐿 = 1. In all other cases, the indicator is 0. Columns (1), (3) and (5) show the regression 

results at different levels of idle capacity. Columns (2), (4) and (6) are results with control variables. t-statistics, 

using clustered standard errors, are in brackets. ***, **, and * indicate significance at the 1%, 5%, and 10% 

levels, respectively. 
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Table A8: Panel regressions of freight rates on conditional operating capacity (with 65th and 35th 

percentile thresholds for idle capacity) 

 
Panel A: Fronthaul operating 

capacity index 𝐶𝑎𝑝𝐴 

Panel B: Backhaul operating 

capacity index 𝐶𝑎𝑝𝐵 

Panel C: Total operating 

capacity index 𝐶𝑎𝑝𝐶 

 (1) (2) (3) (4) (5) (6) 

𝐶𝑎𝑝𝑡−1 
0.086 0.074 -0.098 -0.049 -0.004 0.011 

(0.315) (0.284) (-0.256) (-0.126) (-0.019) (0.051) 

𝐶𝑎𝑝𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

-0.162*** -0.141*** -0.262*** -0.232*** 

-

0.104*** -0.091*** 

(-3.654) (-3.212) (-4.482) (-4.019) (-4.322) (-3.803) 

𝐶𝑎𝑝𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

0.094*** 0.101*** 0.100*** 0.109*** 0.049*** 0.053*** 

(3.121) (3.155) (2.938) (2.655) (3.091) (2.882) 

𝐹𝑙𝑒𝑒𝑡𝑡 
 -0.107***  -0.103***  -0.105*** 

 (-4.086)  (-4.224)  (-4.200) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡 
 0.468***  0.452***  0.462*** 

 (4.062)  (3.937)  (3.849) 

𝐹𝑢𝑒𝑙𝑡 
 0.020**  0.020**  0.020** 

 (2.113)  (2.123)  (2.123) 

𝐹𝑟𝑒𝑡−1 
0.176 0.173 0.176 0.173 0.176 0.173 

(1.441) (1.413) (1.436) (1.409) (1.437) (1.411) 

𝑅2 0.036 0.039 0.037 0.040 0.036 0.040 

Note: When the idle capacity is higher than the 65th percentile, 𝐼𝑑𝑡
𝐻 = 1. When the idle capacity is lower than 

the 35th percentile, 𝐼𝑑𝑡
𝐿 = 1. In all other cases, the indicator is 0. Columns (1), (3) and (5) show the regression 

results at different levels of idle capacity. Columns (2), (4) and (6) are results with control variables. t-statistics, 

using clustered standard errors, are in brackets. ***, **, and * indicate significance at the 1%, 5%, and 10% 

levels, respectively. 
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Table A9: Panel regressions of freight rates on conditional operating capacity (with 75th and 25th 

percentile thresholds for idle capacity)  

 
Panel A: Fronthaul operating 

capacity index 𝐶𝑎𝑝𝐴 

Panel B: Backhaul operating 

capacity index 𝐶𝑎𝑝𝐵 

Panel C: Total operating 

capacity index 𝐶𝑎𝑝𝐶 

 (1) (2) (3) (4) (5) (6) 

𝐶𝑎𝑝𝑡−1 
0.133 0.132 -0.058 0.002 0.026 0.049 

(0.461) (0.481) (-0.151) (0.006) (0.114) (0.217) 

𝐶𝑎𝑝𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

-0.256*** -0.230*** -0.351*** -0.319*** -0.150*** -0.136*** 

(-3.900) (-3.785) (-4.246) (-4.105) (-4.034) (-3.914) 

𝐶𝑎𝑝𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

0.027 0.025 0.053** 0.050** 0.019* 0.017* 

(1.206) (1.242) (2.450) (2.284) (1.782) (1.718) 

𝐹𝑙𝑒𝑒𝑡𝑡 
 -0.104***  -0.101***  -0.103*** 

 (-4.072)  (-4.236)  (-4.216) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡 
 0.433***  0.428***  0.431*** 

 (3.863)  (3.926)  (3.745) 

𝐹𝑢𝑒𝑙𝑡 
 0.019**  0.019**  0.019** 

 (2.021)  (2.026)  (2.027) 

𝐹𝑟𝑒𝑡−1 
0.176 0.174 0.175 0.173 0.176 0.173 

(1.435) (1.412) (1.427) (1.404) (1.430) (1.407) 

𝑅2 0.036 0.039 0.037 0.040 0.037 0.040 

Note: When the idle capacity is higher than the 75th percentile, 𝐼𝑑𝑡
𝐻 = 1. When the idle capacity is lower than 

the 25th percentile, 𝐼𝑑𝑡
𝐿 = 1. In all other cases, the indicator is 0. Columns (1), (3) and (5) show the regression 

results at different levels of idle capacity. Columns (2), (4) and (6) are results with control variables. t-statistics, 

using clustered standard errors, are in brackets. ***, **, and * indicate significance at the 1%, 5%, and 10% 

levels, respectively.
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Table A10: Panel regressions of freight rates on conditional operating capacity (with 80th and 20th 

percentile thresholds for idle capacity)  

 
Panel A: Fronthaul operating 

capacity index 𝐶𝑎𝑝𝐴 

Panel B: Backhaul 

operating capacity index 

𝐶𝑎𝑝𝐵 

Panel C: Total operating 

capacity index 𝐶𝑎𝑝𝐶 

 (1) (2) (3) (4) (5) (6) 

𝐶𝑎𝑝𝑡−1 
0.110 0.110 -0.059 0.003 0.021 0.044 

(0.392) (0.413) (-0.154) (0.009) (0.091) (0.201) 

𝐶𝑎𝑝𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

-0.228*** -0.204*** -0.319*** -0.289*** -0.135*** -0.122*** 

(-3.314) (-3.133) (-3.601) (-3.398) (-3.417) (-3.237) 

𝐶𝑎𝑝𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

0.054** 0.049** 0.078*** 0.071*** 0.033** 0.029** 

(2.051) (2.026) (2.906) (2.787) (2.440) (2.311) 

𝐹𝑙𝑒𝑒𝑡𝑡 
 -0.107***  -0.105***  -0.107*** 

 (-4.123)  (-4.280)  (-4.259) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡 
 0.452***  0.449***  0.451*** 

 (3.941)  (4.015)  (3.841) 

𝐹𝑢𝑒𝑙𝑡 
 0.019**  0.019**  0.019** 

 (2.016)  (2.019)  (2.020) 

𝐹𝑟𝑒𝑡−1 
0.178 0.175 0.177 0.175 0.177 0.175 

(1.453) (1.426) (1.447) (1.421) (1.450) (1.424) 

𝑅2 0.035 0.039 0.036 0.039 0.036 0.039 

Note: When the idle capacity is higher than the 80th percentile, 𝐼𝑑𝑡
𝐻 = 1. When the idle capacity is lower than 

the 20th percentile, 𝐼𝑑𝑡
𝐿 = 1. In all other cases, the indicator is 0. Columns (1), (3) and (5) show the regression 

results at different levels of idle capacity. Columns (2), (4) and (6) are results with control variables. t-statistics, 

using clustered standard errors, are in brackets. ***, **, and * indicate significance at the 1%, 5%, and 10% 

levels, respectively. 

 

  



 

 50 

Table A11: Predictability of operating capacity on freight rates (monthly data) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 𝐹𝑟𝑒1 𝐹𝑟𝑒2 𝐹𝑟𝑒3 𝐹𝑟𝑒4 𝐹𝑟𝑒5 𝐹𝑟𝑒6 𝐹𝑟𝑒7 𝐹𝑟𝑒8 𝐹𝑟𝑒9 

Panel A: Fronthaul operating capacity index 𝐶𝑎𝑝𝐴 

𝐶𝑎𝑝𝐴,𝑡−1 
1.085 -2.866 -0.355 -2.086 -8.436** -1.127 -2.685 1.017 10.079 

(0.467) (-0.985) (-0.244) (-0.734) (-2.424) (-0.632) (-0.313) (0.080) (1.125) 

𝐹𝑟𝑒𝑡−1 
0.284** 0.492*** 0.372*** 0.201 0.313** 0.338*** 0.577*** 0.495*** 0.119 

(2.381) (4.436) (2.609) (1.555) (2.186) (2.867) (5.510) (6.946) (1.535) 

𝑅2 0.065 0.230 0.122 0.029 0.126 0.109 0.322 0.223 0.011 

Panel B: Backhaul operating capacity index 𝐶𝑎𝑝𝐵  

𝐶𝑎𝑝𝐵,𝑡−1 -1.414 -0.924 2.564* 1.299 

-

9.377*** -1.184 -7.199 5.040 -2.685 

(-0.632) (-0.557) (1.773) (0.293) (-2.673) (-0.636) (-1.015) (0.760) (-0.307) 

𝐹𝑟𝑒𝑡−1 
0.270** 0.477*** 0.334** 0.202 0.288** 0.351*** 0.565*** 0.500*** 0.127 

(2.088) (4.311) (2.401) (1.478) (2.125) (3.016) (5.714) (7.080) (1.465) 

𝑅2 0.066 0.222 0.136 0.026 0.147 0.108 0.330 0.227 -0.001 

Panel C: Total operating capacity index 𝐶𝑎𝑝𝐶  

𝐶𝑎𝑝𝐶,𝑡−1 -0.070 -1.773 0.646 -0.510 

-

5.964*** -0.882 -4.812 3.435 4.332 

(-0.054) (-1.073) (0.538) (-0.229) (-2.909) (-0.695) (-0.802) (0.906) (0.681) 

𝐹𝑟𝑒𝑡−1 
0.278** 0.479*** 0.361** 0.205 0.292** 0.342*** 0.564*** 0.501*** 0.127 

(2.249) (4.448) (2.411) (1.549) (2.165) (2.899) (5.769) (7.096) (1.556) 

𝑅2 0.063 0.228 0.124 0.025 0.152 0.110 0.329 0.226 0.003 

Note: Regression model based on equation (1), 𝐹𝑟𝑒𝑡
𝑖 = 𝛼0 + 𝛼1𝐶𝑎𝑝𝑗,𝑡−1

𝑖 + 𝛼2𝐹𝑟𝑒𝑡−1
𝑖 + 𝜀𝑡

𝑖 . t-

statistics, using Newey-West HAC Standard Errors, are in brackets. ***, **, and * indicate 

significance at the 1%, 5%, and 10% levels, respectively. 
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Table A12: Panel regressions of freight rates on operating capacity (monthly data) 

 
Panel A: Fronthaul 

Capacity Index 𝐶𝑎𝑝𝐴 

Panel B: Backhaul 

Capacity Index 𝐶𝑎𝑝𝐵 

Panel C: Total Operating 

Capacity Index 𝐶𝑎𝑝𝐶 

 (1) (2) (3) (4) (5) (6) 

𝐶𝑎𝑝𝑡−1 
-0.847* -0.738 -0.359 -0.173 -0.559 -0.445 

(-1.671) (-1.387) (-0.358) (-0.178) (-1.073) (-0.840) 

𝐹𝑙𝑒𝑒𝑡𝑡 
 -0.118  -0.122*  -0.113 

 (-1.528)  (-1.677)  (-1.574) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡 
 0.093  0.076  0.094 

 (0.204)  (0.169)  (0.207) 

𝐹𝑢𝑒𝑙𝑡 
 0.055***  0.055***  0.055*** 

 (3.169)  (3.229)  (3.184) 

𝐹𝑟𝑒𝑡−1 
0.323*** 0.320*** 0.323*** 0.321*** 0.323*** 0.321*** 

(4.303) (4.314) (4.291) (4.302) (4.300) (4.309) 

𝑅2 0.104 0.111 0.104 0.110 0.104 0.110 

Note: Panel regressions of freight rates (in logarithmic returns) on operating capacity indices for the 

nine shipping routes. Columns (1), (3), and (5) show the results of the baseline regression. Columns 

(2) (4), and (6) are the regression results incorporating control variables. t-statistics using clustered 

standard errors are in brackets. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 

respectively. 
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Table A13: OLS regressions of freight rates on conditional operating capacity (monthly data) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 𝐹𝑟𝑒1 𝐹𝑟𝑒2 𝐹𝑟𝑒3 𝐹𝑟𝑒4 𝐹𝑟𝑒5 𝐹𝑟𝑒6 𝐹𝑟𝑒7 𝐹𝑟𝑒8 𝐹𝑟𝑒9 

Panel A: Fronthaul operating capacity index 𝐶𝑎𝑝𝐴 

𝐶𝑎𝑝𝐴,𝑡−1 
1.176 -2.981 -0.295 -3.155 -6.824* -1.702 -1.687 0.913 7.756 

(0.515) (-1.102) (-0.196) (-0.953) (-1.942) (-1.093) (-0.218) (0.064) (0.870) 

𝐶𝑎𝑝𝐴,𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

-0.433 -0.048 -0.749 -1.884 -1.916** -0.558 -5.920* -15.75*** -3.623 

(-0.688) (-0.039) (-0.756) (-1.041) (-1.980) (-0.905) (-1.770) (-2.615) (-0.501) 

𝐶𝑎𝑝𝐴,𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

0.220 0.443 0.737 2.192 -0.306 0.576 5.707* 2.600 3.182 

(0.345) (0.454) (1.128) (1.129) (-0.355) (1.358) (1.933) (0.336) (0.623) 

𝐹𝑟𝑒𝑡−1 
0.283** 0.488*** 0.349** 0.166 0.312** 0.306*** 0.551*** 0.458*** 0.107 

(2.311) (4.408) (2.429) (1.325) (2.222) (2.937) (5.388) (6.305) (1.375) 

R2 0.053 0.217 0.130 0.039 0.133 0.137 0.358 0.244 0.001 

Panel B: Backhaul operating capacity index 𝐶𝑎𝑝𝐵  

𝐶𝑎𝑝𝐵,𝑡−1 
-1.338 -1.277 1.857 1.571 -8.660** -2.563 -8.934 5.720 -1.226 

(-0.618) (-0.724) (1.148) (0.336) (-2.443) (-1.279) (-1.237) (0.786) (-0.154) 

𝐶𝑎𝑝𝐵,𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

-0.229 -0.412 -0.838 -3.242 -1.691** -0.794 -5.579 -14.788** -13.341 

(-0.382) (-0.247) (-0.622) (-0.876) (-2.037) (-1.106) (-1.381) (-2.550) (-1.128) 

𝐶𝑎𝑝𝐵,𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

0.421 0.951 0.414 2.394 -0.371 0.800 3.302 5.708 9.422 

(0.676) (0.739) (0.665) (0.731) (-0.545) (1.494) (1.119) (0.704) (0.911) 

𝐹𝑟𝑒𝑡−1 
0.270** 0.470*** 0.336** 0.181 0.284** 0.331*** 0.550*** 0.461*** 0.108 

(2.047) (4.279) (2.274) (1.358) (2.147) (3.256) (5.859) (5.958) (1.326) 

R2 0.054 0.212 0.131 0.029 0.155 0.149 0.345 0.258 0.009 

Panel C: Total operating capacity index 𝐶𝑎𝑝𝐶  

𝐶𝑎𝑝𝐶,𝑡−1 -0.029 -1.918 0.398 -1.163 

-

5.363*** -1.603 -5.460 3.151 2.896 

(-0.023) (-1.238) (0.317) (-0.453) (-2.618) (-1.316) (-0.992) (0.645) (0.469) 

𝐶𝑎𝑝𝐶,𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

-0.163 -0.119 -0.482 -1.227 -0.870** -0.341 -3.052* -8.176*** -3.365 

(-0.531) (-0.161) (-0.854) (-0.960) (-1.972) (-1.021) (-1.718) (-2.655) (-0.710) 

𝐶𝑎𝑝𝐶,𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

0.173 0.339 0.264 1.301 -0.187 0.363 2.160 1.971 3.006 

(0.553) (0.598) (0.806) (0.990) (-0.501) (1.517) (1.433) (0.496) (0.859) 

𝐹𝑟𝑒𝑡−1 
0.278** 0.472*** 0.351** 0.175 0.290** 0.311*** 0.544*** 0.460*** 0.107 

(2.196) (4.446) (2.329) (1.378) (2.196) (2.997) (5.816) (5.937) (1.361) 

R2 0.051 0.217 0.128 0.033 0.159 0.149 0.354 0.253 0.001 

Note: OLS regressions of freight rates on conditional operating capacity using the model: 𝐹𝑟𝑒𝑡
𝑖 =

𝛼0 + 𝛼1𝐶𝑎𝑝𝑗,𝑡−1
𝑖 + 𝛼2𝐶𝑎𝑝𝑗,𝑡−1

𝑖 × 𝐼𝑑𝑡−1
𝐻 + 𝛼3𝐶𝑎𝑝𝑗,𝑡−1

𝑖 × 𝐼𝑑𝑡−1
𝐿 + 𝛼4𝐹𝑟𝑒𝑡−1

𝑖 + 𝜀𝑡
𝑖. When idle capacity 

is higher than the 70th percentile, 𝐼𝑑𝑡
𝐻 = 1. When idle capacity is lower than the 30th percentile, 

𝐼𝑑𝑡
𝐿 = 1. In all other cases, the indicator is 0. t-statistics, using Newey-West HAC Standard Errors, 

are in brackets. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.



 

 53 

Table A14: Panel regressions of freight rates on conditional operating capacity (monthly data) 

 

Panel A: Fronthaul 

operating capacity index 

𝐶𝑎𝑝𝐴 

Panel B: Backhaul 

operating capacity index 

𝐶𝑎𝑝𝐵 

Panel C: Total operating 

capacity index 𝐶𝑎𝑝𝐶 

 (1) (2) (3) (4) (5) (6) 

𝐶𝑎𝑝𝑗,𝑡−1 
-1.039* -0.907 -1.064 -0.885 -0.954* -0.842 

(-1.902) (-1.550) (-1.059) (-0.883) (-1.777) (-1.479) 

𝐶𝑎𝑝𝑗,𝑡−1

× 𝐼𝑑𝑡−1
𝐻  

-0.713*** -0.732*** -1.023*** -1.033*** -0.435*** -0.442*** 

(-4.405) (-3.950) (-5.076) (-4.634) (-4.896) (-4.359) 

𝐶𝑎𝑝𝑗,𝑡−1

× 𝐼𝑑𝑡−1
𝐿  

0.661*** 0.626*** 0.762*** 0.721*** 0.379*** 0.360*** 

(6.337) (7.776) (6.112) (5.920) (7.730) (8.425) 

𝐹𝑙𝑒𝑒𝑡𝑡 
 -0.080  -0.075  -0.066 

 (-1.095)  (-1.186)  (-1.023) 

𝐸𝑥𝑝𝑜𝑟𝑡𝑡 
 -0.080  -0.078  -0.063 

 (-0.171)  (-0.181)  (-0.137) 

𝐹𝑢𝑒𝑙𝑡 
 0.054***  0.054***  0.054*** 

 (3.125)  (3.137)  (3.104) 

𝐹𝑟𝑒𝑡−1 
0.314*** 0.312*** 0.317*** 0.315*** 0.315*** 0.313*** 

(4.208) (4.225) (4.248) (4.263) (4.234) (4.249) 

R2 0.114 0.121 0.115 0.121 0.116 0.122 

Note: Panel regressions of freight rates on conditional operating capacity using the model: 𝑭𝒓𝒆𝑡 =

𝜶0 + 𝜶1𝑪𝒂𝒑𝑗,𝑡−1 + 𝜶2𝑪𝒂𝒑𝑗,𝑡−1 × 𝐼𝑑𝑡−1
𝐻 + 𝜶3𝑪𝒂𝒑𝑗,𝑡−1 × 𝐼𝑑𝑡−1

𝐿 + 𝜶4𝑭𝒓𝒆𝑡−1 + 𝜺𝑡 . Columns (1), 

(3), and (5) show the results of the baseline regression. Columns (2), (4), and (6) are the regression 

results after adding control variables. When idle capacity is higher than the 70th percentile, 𝐼𝑑𝑡
𝐻 = 1. 

When idle capacity is lower than the 30th percentile, 𝐼𝑑𝑡
𝐿 = 1. In all other cases, the indicator is 0. t-

statistics, using Clustered Standard Errors, are in brackets. ***, **, and * indicate significance at the 

1%, 5%, and 10% levels, respectively. 
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