

City Research Online

City, University of London Institutional Repository

Citation: Kapoor, D., Shields, K., Reynolds, C., Del Valle Menendez, M. & Jaacks, L. M. (2025). The UK food environment: a systematic review of domains, methodologies and outcomes. Current Developments in Nutrition, 107573. doi: 10.1016/j.cdnut.2025.107573

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/36059/

Link to published version: https://doi.org/10.1016/j.cdnut.2025.107573

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk/

The UK food environment: a systematic review of domains, methodologies and outcomes

Deksha Kapoor, Kirsteen Shields, Christian Reynolds, Martín Del Valle Menendez, Lindsay M. Jaacks

PII: S2475-2991(25)03035-5

DOI: https://doi.org/10.1016/j.cdnut.2025.107573

Reference: CDNUT 107573

To appear in: Current Developments in Nutrition

Received Date: 25 June 2025

Revised Date: 8 September 2025 Accepted Date: 15 September 2025

Please cite this article as: D. Kapoor, K. Shields, C. Reynolds, M. Del Valle Menendez, L.M. Jaacks, The UK food environment: a systematic review of domains, methodologies and outcomes, *Current Developments in Nutrition*, https://doi.org/10.1016/j.cdnut.2025.107573.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 The Author(s). Published by Elsevier Inc. on behalf of American Society for Nutrition.

The UK food environment: a systematic review of domains, methodologies and outcomes

Authors: Deksha Kapoor^{1*}, Kirsteen Shields¹, Christian Reynolds², Martín Del Valle Menendez¹, Lindsay M. Jaacks¹

Affiliations:

- Global Academy of Agriculture and Food Systems, University of Edinburgh, Midlothian,
 EH25 9RG, Edinburgh, United Kingdom
- Centre for Food Policy, City St Georges, University of London, London, EC1R 1UW,
 England, United Kingdom

Corresponding author:

Deksha Kapoor

D.Kapoor@sms.ed.ac.uk

1 Abstract

Understanding food environments is crucial for developing policies and interventions to enhance 2 3 the healthfulness and sustainability of UK diets. We systematically reviewed published scientific 4 research to answer two research questions. First, what types and domains of the food 5 environment have been assessed in the UK using what methodologies? Domains included 6 availability, affordability, promotion, product characteristics/quality, convenience, and sustainability. Second, what outcomes have been assessed in relation to food environments? 7 Outcomes were classified as descriptive (describing the food environment), dietary intake, and 8 9 health. Articles published between January 2000 and December 2024 were identified by searching seven databases: CAB Abstracts, CINAHL, EMBASE, Global Health, PubMed, 10 Scopus, and Web of Science. A total of 31,457 articles were identified, 3,418 full texts were 11 reviewed, and 286 articles were included. Another 26 articles were included after screening the 12 references of articles identified in the database search. Thus, data were extracted from a total of 13 14 312 articles. The most common domain studied was availability (n=100, 32%), followed by product characteristics/quality (n=94, 30%) and promotion (n=33, 10%). There was a paucity of 15 research on the domains of sustainability (n=19, 6%) and affordability (n=16, 5%), with no 16 17 articles on the domain of convenience. Only 49 articles (16%) evaluated more than one domain. Most articles were descriptive (n=206, 66%); 64 (20%) evaluated the association of the food 18 19 environment with dietary intake and 42 (13%) evaluated the association with health, nearly all 20 with obesity. The current literature on the food environment in the UK focusses largely on 21 availability in the food retail space. More research is needed to understand how different 22 domains of the food environment interact to influence dietary intake and health.

- 23 **Registry number for systematic reviews:** The protocol was registered with PROSPERO (ID:
- 24 CRD42022306066) on 8 February 2022.
- 25 **Keywords:** Food environment, UK, Food retail, Fast food, Food packaging, Food safety, Access
- to food, Sustainable diets

Introduction

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Obesity has surpassed smoking as the leading contributor to death since 2014 in the UK (1). The prevalence of obesity across the UK is high, with 32% of adults in Scotland having obesity (2), and 22% and 26% of adults in Wales (3) and England (4), respectively. By 2035, the prevalence of obesity in adults is predicted to increase by 5 percentage points in Scotland, 8 percentage points in England and 11 percentage points in Wales (5). Similarly worrying trends have been observed in children. From 2019-20 to 2020-21, the prevalence of obesity in children 4-5 years old increased from 9.9% to 14.4% and in children 10-11 years old, it increased from 21.0% to 25.5% (6). Unhealthy diets underlie these worrying trends in obesity. The latest National Diet and Nutrition Survey (2023) found that consumption of fruits and vegetables is well below the 5-A-Day recommendation and mean intake of free sugars exceeds the maximum recommendation in all age groups (7). While many continue to place the onus of change on individuals, it is increasingly recognized that food environments that encourage the consumption of unhealthy foods are critical drivers of food choice (8). The food environment is the interface between people and the wider food system. It encompasses all places where people access food, including retailers, restaurants, pubs/bars, cafes/coffee shops, takeaways, mobile food vans, schools, universities, workplaces, and charities as well as deliveries from these places (9). The UK food environment has mirrored trends in unhealthy diets and obesity, with most evidence derived from the built environment. From 1980 to 2000, a study in North East England found a 79% increase in the total number of food outlets with a particularly marked increase in 'foods for consumption away from home' outlets, which increased by 259% compared to a 16% increase in 'household shopping' outlets (10). Similar increases in availability of take-aways and grocers/convenience

stores were reported around secondary schools in East London from 2001 to 2005 (11). In 2022,
there were an estimated 42,341 fast food outlets across the UK (12). Today, particularly
following the COVID-19 pandemic, the way in which people in the UK procure food has
diversified, with an increasing number of people ordering food online and using delivery services
(e.g., Just Eat, Deliveroo, Uber Eats) (13). According to the Food Standards Agency's "Food and
You 2" survey of 5,812 UK participants, conducted between April and July 2024, 75% of
respondents reported shopping at large supermarkets while 19% said they used delivery apps
such as Just Eat, Deliveroo, or Uber Eats at least once a week (14). When asked about their
preferences for ordering food or drinks online, 60% of respondents reported that they preferred
to order from the websites of a restaurant, takeaway or café.

To date, there has not been a comprehensive review of the literature on UK food environments. Previous, multi-country or US-specific reviews do exist, however, and have focused on the retail food environment (15-17) or specific population subgroups, such as school children (18-20), or specific health outcomes, such as obesity (21-23). There is also some recent interest in understanding the digital food environment given the widespread use of grocery and food delivery services in the UK, but this remains a largely unexplored area of research (24, 25).

The aim of this systematic review was to identify and narratively summarize recent evidence regarding the UK food environment and to identify research gaps. The first research question was "what types and domains of food environments have been assessed using which methodologies?" The second was "which outcomes have been assessed in relation to food environments, including descriptive (describing the food environment), dietary intake, and health". Further, "how these outcomes have been stratified by area deprivation, education, gender, income, ethnicity, and age". For all research questions, we explored how the number of

73	articles differed by geography (e.g., UK-wide versus England, Scotland, Wales or Northern
74	Ireland).
75	This systematic review provides an evidence-based understanding of food environment
76	research in the UK, identifying geographical disparities and research gaps, and highlighting a
77	need for bridging various food environment domains to foster cohesive changes and ultimately
78	create healthier and more sustainable food systems.
79	

Methods

The protocol was registered with PROSPERO (ID: CRD42022306066) on 8 February 2022. As this was not deemed human subjects' research, it was exempt from institutional ethics committee review.

Framework and definitions

The review was grounded in the Downs et al. 2020 framework wherein six domains of food environments are defined, including availability, affordability, promotion, product characteristics/quality, convenience, and sustainability (**Table 1**) (26). Whilst this framework proposes three types of food environments – built, cultivated, and natural – in the context of the UK, the built food environment is predominant (26).

Search strategy

The search strategy was developed by reviewing protocols on the food environment published in PROSPERO. Seven electronic databases were searched from inception through December 2024: CAB Abstracts, CINAHL, EMBASE, Global Health, PubMed, Scopus, and Web of Science. Searches included key words for domains of the food environment (e.g., "food access*" "supermarket" etc.) AND key words for the geographic area of interest (e.g., "United Kingdom" "UK" etc.). The search terms and results for each database are given in Supplementary Table 1. Searches were duplicated by a second reviewer to check for accuracy. Additional articles were identified after reviewing the references of articles meeting inclusion criteria.

Study selection

The eligibility criteria were as follows: research articles that measured at least one domain of the food environment (availability, affordability, promotion, product

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

characteristics/quality, convenience, or sustainability); conducted in the UK (England, Wales, Scotland, or Northern Ireland); original research using quantitative or mixed methods with no restrictions on study design; and published from 2000 to December 2024 in English. Only studies published since 2000 were included to better inform local decision-making (policymakers prioritize recent evidence) and subsequent research to address gaps in our understanding of UK food environments. The exclusion criteria were articles on food choices, personal factors such as taste, cultural preferences, knowledge about food, dietary intakes or behaviours without measuring food environments; qualitative articles; articles published in a language other than English; narrative reviews, systematic reviews, opinions, editorials, commentaries, or letters not reporting original research; and articles conducted outside the UK. If the research was conducted outside the UK but measured food environments in the UK, it was included. Articles on the home food environment were excluded. These included articles on marketing such as the impact of TV advertising or time spent on TV viewing in the home/ personal food environment. This review only included articles on advertising in the built food environment – i.e., in-store promotions, packaging of foods, etc.

Search results were imported into Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia) for screening. The search yielded 31,457 articles, of which 13,753 were duplicates (**Figure 1**). DK and MVD independently screened titles and abstracts for eligibility, resulting in the exclusion of 14,286 records. Any discrepancies were resolved through discussion with LMJ. Interrater reliability was assessed using percent agreement (94.2%) and Cohen's kappa (κ =0.83), indicating substantial agreement between reviewers. Full texts of 3,418 articles were sought for retreival, of which full text of 14 articles was not available. The full texts of 3,404 articles were then reviewed by DK and MVD. Of these, 3,092 were excluded and 286

- were included. Another 26 were included after screening the references of these 286 articles.
- Thus, the total number of articles included was 312.

Data extraction

Data from all eligible articles were extracted into an Excel database. The Excel database was developed by DK with input from LMJ and tested on a subset of included articles, making iterative revisions to the database as necessary. DK and MVD extracted data, with uncertainties discussed and resolved with LMJ. Data were extracted on:

- Article characteristics. This included the last name of the first author, year of publication, year of data collection, country study was conducted in (UK-wide, England, Wales, Scotland, or Northern Ireland), study design, sample population, sample size, and source of funding.
 - Type of food environment evaluated. Lytle's (27) categorization of the food environment was adapted to define seven types of built food environments: (1) food store environment (including grocery stores, supermarkets, convenience stores, snack bars, specialty food stores, and farmers' markets), (2) school food environment (including cafeterias, vending machines, and snack shops in day care settings, schools, colleges, and universities and the areas around them), (3) worksite food environment (including cafeterias, vending machines, and snack shops in worksites), (4) neighborhood food environment (all places to procure food within a physical region outside residential address), (5) macro food environment (national and regional food supply), (6) public facility food environment (including cafeterias, vending machines, and snack shops in recreation centers, health care facilities, and other public venues), and (7) restaurant food environment.

- Domains of food environment evaluated (**Table 1**). This included availability, affordability, promotion, product characteristics/quality, convenience, and sustainability (26). For the purposes of this systematic review, articles on food choices, personal factors such as taste, cultural preferences and knowledge about food were not considered part of the food environment.
- Methodology used to assess the domains of the food environment. Any methodology was considered acceptable, including but not limited to instruments such as checklists, interviews or questionnaires; geographic analysis; sales data, nutrient and menu analysis.
 Lytle (27) methodologies and instruments were adapted to define 12 types of methodologies, detailed in Table 2. For intervention studies conducted in the food environments, details on type of intervention were extracted.
- Outcome assessment. This included information on the type of outcome (descriptive, diet, or health), outcome assessment method, and any stratification by area deprivation, education, gender, income, ethnicity and age.

Details on variables extracted from observational and intervention studies are listed in **Supplementary Table 2**. This systematic review assessed attributes such as the number of articles measuring the food environment across geographies (i.e., Wales, England, Scotland, Northern Ireland and UK wide); the number of articles assessing the type of measure (e.g., geographical analysis, menu analysis, nutrient fact panel analysis, etc.); and the environment in which the measurement tool was used (e.g., food store, restaurant, school, etc.). No formal risk of bias assessment was done. Details for all included articles in the systematic review (n=312) are listed in **Supplementary Table 3**.

Results

171	Key characteristics of articles included in the systematic review are presented in Table 3 .
172	Most articles were from England [n=120, 38% (10, 11, 21, 24, 28-143)], followed by UK wide
173	articles [n=87, 28%], Scotland [n=27, 9% (144-170)], Northern Ireland [n=9, 3% (171-179)], and
174	Wales [n=10, 3% (180-189)]. There were 7 articles from Great Britain (190-196) and 21 (6%)
175	multi-country studies (197-217). We further categorized the number of articles at the regional
176	level in each country, showing clear preferences and paucity of food environment research in
177	some areas (Figure 2). In England, most articles were from London (n=27, 26%) and Yorkshire
178	and Humber (n=18, 15%); in Scotland they were from Glasgow (n=12, 43%) and in Wales from
179	Cardiff (n=6, 67%). Within each region, details of urban or rural areas were not provided. Only
180	19 articles evaluated urban/rural differences (42, 45, 50, 75, 90, 95, 106, 126, 131, 138, 155, 157,
181	162, 167, 168, 171, 175, 179, 191). After the search and analysis of articles had been conducted,
182	one article retraction was published (218).
183	Over the past decade, research on food environments has expanded significantly, with
184	58% of articles (n=184) published after 2015 and 26% (n=81) after 2020. However, only 5%
185	[n=16, (24, 87, 90, 94, 111, 197, 213, 219-227)] of these articles noted data collection occurring
186	post-2020. Most articles (n=184, 59%) did not focus on any population group such as children or
187	the elderly but on measuring food environment features. Most articles were cross-sectional
188	(n=242, 78%), followed by longitudinal analysis [n=31, 10% (10, 11, 41, 45, 61, 72, 74, 77, 87,
189	90, 100, 138, 159, 186, 207, 219, 223, 224, 228-240)], intervention studies [n= 17, 5% (28, 43,
190	62, 63, 69, 86, 114, 115, 123, 160, 172, 208, 225, 241-244)], case studies [n= 10, 3% (31, 67,
191	153, 181-183, 185, 245, 246)] and 2% each (n=6) were randomized controlled trials (111, 112,
192	127, 128, 130, 220) and modelling studies (57, 133, 195, 247-249).

Since this review focused on multiple domains of the food environment, the sample size ranged 193 from 115 to 42,838 people; 3 to 8,864 stores; 101 to 68,153 food samples or products; 8 to 194 195 2,255,404 meals, and 3 to 6,781 areas. On tabulation of articles based on type of food studied, 31% (n=97) of the articles focused on type of food outlets instead of focusing on any particular 196 food or food group (10, 11, 31-33, 36, 38-42, 45-47, 49-52, 55, 57, 59, 60, 65-67, 72-79, 82, 87-197 198 92, 94, 95, 100-102, 106-108, 117-119, 122, 123, 126, 131, 141-143, 145, 148-151, 155, 157, 162, 169, 177, 182-184, 190, 191, 194, 199, 200, 210, 212, 213, 223, 228, 234, 246, 250-263). 199 200 These were followed by articles on ready-to-eat foods [n=34, 11% (63, 83, 103, 109, 113, 114, 201 135, 139, 158, 159, 170, 172, 185-187, 189, 192, 201, 206, 211, 264-277)] and articles on meals served at schools, restaurants, or workplaces [n=32, 10% (28, 35, 43, 58, 62, 68-70, 84, 85, 97, 202 111-113, 127-129, 132, 140, 160, 181, 205, 220, 224, 278-285)]. Of 312 articles, 210 (67%) 203 stated their source of funding. Among these, 161 articles (52%) that received government 204 funding, 33 (10%) articles were funded by charitable NGOs, foundations, or professional 205 206 societies, 9 (3%) articles were funded by intergovermental bodies like World Health Organisation, and 5 articles (2%) received funding from private charities (74, 108, 114, 118, 207 286). One article noted joint funding from government and industry (184), while another stated 208 209 joint funding from government and a private charity (217). A total of 63 articles (20%) did not mention their source of funding and 39 articles (12%) did not receive any funding. 210 Types of food environments 211 212 Articles on food store environments were the most common [n=208, 67% (30, 35, 50, 56, 61, 73, 79-81, 107, 114, 133, 135, 141, 143, 144, 159, 161, 178, 190, 195, 200, 202, 209, 215, 213 214 218, 225, 226, 230, 231, 237, 240, 242, 244, 249-251, 256, 261, 274, 278, 287-293)] [**Figure 3**]. 215 These included articles on the nutrient content (29, 34, 53, 116, 124, 139, 140, 166, 192, 206,

207, 214, 216, 232, 236, 238, 264, 266, 267, 269-271, 275, 277, 285, 286, 294-304) and 216 microbial content (93, 163, 168, 172-174, 176, 203, 204, 208, 305) of foods sold in UK food 217 218 stores, availability of healthy foods (40, 59, 130, 146, 147, 156, 175, 182, 183, 229, 235, 242, 306) and access to food stores (37, 38, 49, 57, 66, 106, 110, 137, 138, 142, 150, 152, 153, 165, 219 171, 191, 194, 256, 307). The next most prevalent food environment was restaurant food 220 221 environments [n=52, 16% (28, 43, 51, 89, 92, 102, 125, 151, 213, 233, 246, 253, 265, 308)] which included articles on nutrient content (70, 84, 111, 118, 205, 212, 220, 223, 257, 259, 260, 222 262, 263, 279, 281) or microbiological quality (103, 280, 309-312) of meals served at fast food 223 or full service restaurants. Thirty-six articles evaluated different aspects of neighborhood (10, 31, 224 39, 48, 82, 94, 119, 120, 136, 252, 313, 314) such as 20-minute neighborhood (162) or out of 225 home access in deprived neighborhoods (55, 78, 86, 95, 100, 101, 126, 131, 148, 157, 167, 182, 226 193, 247, 254, 315). Articles assessing nutritional content of school meals (68, 71, 132, 181, 243, 227 316) or vending machines (109) at schools were categorized under school food environments 228 [n=28, 9% (11, 32, 67, 72, 75, 111, 117, 121, 122, 134, 145, 149, 177, 187, 210, 241, 283)]. 229 Twelve articles assessed the online food environment: eight UK-wide articles (25, 219, 221, 222, 230 227, 245, 317), three from England (44, 87, 90) and one multi-country study (198). There were 231 232 15 articles on hospitals and other public venues categorised as public facility food environment (58, 60, 63, 65, 83, 104, 105, 113, 123, 129, 169, 185, 188, 282, 318); 8 articles on worksite food 233 234 environment (62, 85, 97, 111, 127, 128, 160, 224) and 19 articles on macro food environment 235 assessing impact of food policies (42, 52, 158, 164, 211, 217, 234, 248, 255, 276, 289, 319-326). There were 22 (7%) articles that evaluated two types of food environments (33, 45, 47, 73, 180, 236 237 189, 268), of which 13 were on food store and restaurant food environment (46, 77, 78, 88, 105,

- 186, 258, 327). For example, articles evaluating microbial quality of food samples collected from food stores and fast-food restaurants (103, 328).
- There were no articles on natural food environments (both wild and cultivated). All of the above were classified as the built food environment.

Domains and methodologies

242

- 243 The most common domain studied was availability [n=100, 32% (10, 11, 24, 31-33, 38,
- 39, 41, 42, 45-52, 55, 57, 60, 65-67, 72, 73, 75-79, 81-83, 86-92, 94, 95, 100-102, 106, 108, 111-
- 245 113, 117, 119, 121, 122, 126, 131, 133, 134, 136-138, 142, 143, 145, 147-151, 153, 155, 162,
- 246 167, 175, 177, 182-184, 191, 193, 194, 199, 210, 213, 228, 234, 242, 250, 252-256, 276, 306,
- 308, 315, 329, 330)], followed closely by product characteristics/quality [n=94, 30% (29, 34, 53,
- 248 56, 58, 70, 84, 85, 93, 97, 103-105, 107, 109, 120, 124, 129, 139, 144, 163, 168, 170, 172-174,
- 249 176, 178, 185-189, 192, 201, 203-208, 212, 216, 219, 223, 232, 236, 238, 257, 259, 260, 262-
- 250 264, 266-271, 273-275, 277-283, 285, 286, 290, 294-301, 305, 310-312, 314, 317, 328, 331-
- 251 334)] and promotion [n=33, 10% (25, 61, 64, 74, 81, 114, 125, 127, 128, 130, 141, 158, 159,
- 252 161, 169, 180, 190, 197, 200, 211, 215, 226, 227, 240-244, 249, 261, 272, 291, 335)] (**Figure 4**).
- 253 There was a paucity of research on the domains of sustainability [n=19, 6% (43, 68, 69, 202,
- 254 224, 245-248, 251, 265, 284, 289, 319, 321, 322, 324, 336, 337)] and affordability [n=16, 5%]
- 255 (37, 80, 110, 164, 165, 179, 195, 209, 230, 231, 233, 235, 237, 287, 307, 323)]. There were no
- articles on the domain of convenience. Under the domain availability, most articles focused on
- assessing density or proximity of food outlets (41, 228). Others focused on the type of foods
- available in food stores (86, 112, 123). These included fresh fruits and vegetables, and ready-to-
- eat and unhealthy foods (e.g., soft drinks, chips, confectionary, etc.). Under the domain product
- 260 characteristics/quality, most articles assessed nutrient content [e.g., fatty acids, trans fat, sodium,

sugar, etc.] (139, 238, 273) or microbial pathogens in food store or restaurant food environments		
(311, 312). Articles on marketing and nutritional claims on food packaging were covered under		
the promotion domain (197, 272, 335), while those on food prices were most common under the		
affordability domain (195, 320). Lastly, articles on the environmental impact of food were		
covered under sustainability (336).		
There were 50 articles (16%) that evaluated more than one domain, most common were		
articles evaluating availability and affordability [n=15, (37, 40, 44, 54, 59, 98, 99, 146, 156, 157,		
160, 171, 182, 184, 258)], and articles assessing affordability and product characteristics/ quality		
[n=10, (30, 36, 37, 140, 220, 222, 229, 288, 320, 325)]. One article evaluated all domains except		
convenience. It was an 11-country study to benchmark the implementation of recommended		
nutrition policies by national governments using the Healthy Food Environment Policy Index		
(217). The most studied domain in England, Scotland and Northern Ireland was availability,		
while in Wales and UK-wide articles it was quality. More details can be found in		
Supplementary Table 3.		
There was a clear preferred methodology to measure each domain (Figure 5). However,		
because several articles assessed multiple domains, the categories are not mutually exclusive and		

There was a clear preferred methodology to measure each domain (**Figure 5**). However, because several articles assessed multiple domains, the categories are not mutually exclusive and therefore have been counted more than once. Geographic analysis was the most common methodology used to assess availability, applied in 84% (n=108) of articles on availability (308). This was followed by market basket surveys [n=10, 9%] (155) policy analysis [n=5, 5%] (117) and physical measurements [n=2, 2%] (199). Assessing food purchase patterns using sales/cashier receipts [n=23, 58%] (36), market basket surveys [n=16, 40%] (37) and policy analysis [n=1, 2%] (217)were the most used methodologies to assess the affordability domain. To measure promotion, 7 (24%) articles used sales/ purchase analysis (64) and policy analysis

(138) each, 6 articles (21%) used nutrient information available on the package called nutrient fact panel analysis (335) and market basket surveys (74) each, and 3 articles (10%) used physical measurements (169). Nutrient fact panel analysis [n=44, 39%] (201), contaminant analysis [n=33, 29%] (331), articles on food samples tested in a laboratory, called nutrient analysis [n=21,18%] (85), menu analysis [n=12, 10%] (262), market basket surveys (198) and policy analysis [n=2, 2%] (283) each were methodologies to evaluate the domain on product characteristics/ quality.

Lastly, to measure sustainability, ecological footprint analysis (n=14, 70%), policy analysis [n=5, 25%] (336) and sales/ purchase analysis [n=1, 5%] (224) were used. It is important to note that within ecological footprint analysis, multiple methodologies were used, such as life cycle analysis (284, 319), reduction in livestock product supply (248), and Water Footprint Impact Indicator estimated as scarcity weighted liters per portion and global hectares per annum (71). This highlights the multi-faceted nature of sustainability definitions and data sources.

Outcomes

Overall, most articles (n=206, 66%) were descriptive and did not assess any associations between the food environment, 64 (20%) assessed associations with dietary intake (11, 28, 33, 34, 49, 58, 70, 84-86, 99, 107, 109, 112, 116, 118, 120, 125, 127, 128, 132, 136, 139, 140, 145, 170, 212, 223, 229, 230, 232, 235, 236, 238, 242, 260, 263, 264, 266, 267, 269-275, 277, 278, 282, 285, 294-296, 298, 299, 301, 303, 314, 317, 325, 333, 335), and 42 (13%) articles assessed associations with health (39, 45, 47, 48, 50-52, 55, 65, 66, 72, 73, 75-77, 80-82, 94, 97, 102, 126, 133, 134, 137, 138, 142, 194, 195, 199, 219, 228, 234, 247, 252, 254, 255, 276, 308, 315, 322) (**Table 4**). Of the articles assessing health associations, all focused on obesity and the impact of

307	food outlet proximity or density on body mass index, except four articles: one analyzed links
308	with type 2 diabetes (276), two focused on cardiovascular disease and cancer (248, 254) and
309	another with type 2 diabetes, cardiovascular disease and cancer (247). No country-wise
310	differences were observed: descriptive articles were most common across all countries (Table 4).
311	Most of the articles with outcomes did not present stratified analyses (n=233, 75%); 64
312	(20%) articles did stratified analysis by a single variable (32, 37, 38, 40, 44, 55, 59, 60, 66, 67,
313	74-78, 82, 86, 87, 89, 90, 92, 95, 98, 100, 106, 114, 117, 131, 137, 138, 142, 147, 149-151, 154-
314	158, 161, 162, 165-167, 171, 182-184, 190, 192, 193, 213, 231, 234, 242, 243, 250, 252, 253,
315	313, 315, 319, 329) and 15 (5%) articles conducted stratified analysis using two or more
316	variables (33, 42, 73, 81, 89, 101, 122, 126, 133, 134, 225, 254, 255, 289, 321) (Supplementary
317	Table 4). Area deprivation was the most common variable for stratification, for example, articles
318	comparing food outlet density in the least and most deprived neighborhoods (37, 87).

Discussion

A comprehensive understanding of the UK food environment requires interdisciplinary research involving public health experts, nutritionists, behavioral scientists, geographers, and complex systems scientists, among others. However, this systematic review found that most research to date has involved only one or a few aspects of the food environment. While more than 250 articles have been published on the UK food environment over the past two decades, most were on a single domain (availability) and in a single type of food environment, food store. Moreover, obesity was the only health outcome studied extensively. Given recent diversification of the way in which people in the UK procure food, with an increasing number of people ordering food and using delivery services (13), and the cost-of-living crisis, climate crisis, EU exit, and other disruptions to the UK food supply, more interdisciplinary work is needed to explore how interactions across multiple domains impact dietary intake and health.

Further, despite evidence that convenience is a key driver of food consumption behavior in the UK (13) as well as the impact of food systems on climate change (338), this systematic review identified little research on these food environment domains: convenience and sustainability. According to the Food and Agriculture Organization, the processing, packaging, and transport of food have overtaken agriculture as the largest contributor to food-related greenhouse gas emissions in many high-income countries (339). Similarly, evidence suggests that time spent on home food preparation is an indicator of healthy diets (340) and lack of time is a leading barrier to adopting dietary recommendations (341), yet there were no articles identified under the domain of convenience. Consumer interest in sustainability and convenience are megatrends of the fast-food sector in the UK, evident with nearly half of UK adults buying more

locally sourced food and expecting food businesses to play a role in climate change (12). There is also a continued high demand for home food delivery post pandemic (12).

Only about one-fifth of articles identified in this review evaluated more than one domain of the food environment. Valuable insights have come from the few articles identified in this review that looked at multiple domains. For example, the Healthy Food Environment Policy Index, which aimed to assess the extent of implementation of recommended food environment policies by governments, provided a holistic view of the UK's food environment (217). It also identified priority actions to meet implementation gaps (217). Another article evaluating multiple domains identified in this review looked at what dietary changes are required to shift the UK population to diets that meet dietary recommendations for health, have lower greenhouse gas emissions, and are affordable for different income groups (313). To fully comprehend the impact of the food environment on human and planetary health, research is needed that evaluates multiple domains and how these domains interact with each other to influence food choice. For example, ready-to-eat foods are convenient, but are often less affordable, less healthy, come in plastic packaging, and require refrigeration, which impacts their sustainability (342).

With regards to the type of food environment studied, food store environments have been the most researched food environment type by far. More than half of the articles (67%) in this review were on the food store environment, followed by restaurants (16%), neighborhood food environments (11%), and school food environments (9%). These findings differ slightly from Lytle's systematic review of articles measuring the food environment published between 2007 and 2015, which found that 73% of articles measured the food store environment, 50% measured restaurants, and 15% measured schools (percents do not add to 100 because some articles measured both) (27). The emphasis on food store environments is appropriate given that 71% of

expenditures on food and non-alcoholic drinks in the UK is at stores (with the remaining 29% of expenditures eaten out) (343). However, there is an increasing need to evaluate the online food environments given the rise in take-aways and deliveries (344), supermarket home delivery, and other forms of home delivery (e.g., vegetable boxes, Hello Fresh and Amazon Fresh) (13). We found only seven articles (2%) that assessed the online food environment in this systematic review, focusing on either availability or labelling of food items in the retail food environment.

About 70% of articles identified in this review were descriptive with no association with dietary intake or health outcomes. Among the few articles that evaluated associations with health outcomes, all but four evaluated the association with obesity. The other four studied type 2 diabetes, cardiovascular disease, and cancer. This is expected as obesity is the leading risk factor for mortality in the UK (1), but other diet-related diseases such as type 2 diabetes, hypertension and heart disease should also be explored.

This systematic review is not without limitations. Firstly, we did not include search terms for food banks or charity shops, which are an increasingly important source of food during the cost-of-living crisis (345). We also did not include search terms explicitly related to cultivated or natural food environments (for example, community gardens), and therefore may have missed literature on these types of food environments. Secondly, grey literature such as third sector or government reports may have been missed. We tried to overcome this by searching seven databases and reviewing the reference list for all included articles but cannot guarantee that a relevant report was not missed. Third, the search terms used for 'convenience' may have contributed to the lack of studies identified for this domain. Future work should consider expanding the search terms and definition to include the time cost of preparing and consuming

food as well as personal motivation to plan / prepare meals, availability of ingredients and cooking equipment in the home, and access to transport to procure ingredients.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

This study advances understanding of the knowledge gaps that must be filled in order to design evidence-based policies to improve the healthfulness and sustainability of UK diets. At the same time, there is enough evidence for governments to act in order to improve local food environments to achieve healthy diet and weight goals (346). A recently published review of systematic reviews on the effectiveness of food environment policies in improving population diets found that food environment policies targeting the availability of foods in retail and food establishments, food provision in school settings, product reformulation, and the size of portions/packages are effective (347). There are many recent examples of the UK and devolved government actions to improve the food environment. For example, the ban of single-use plastics in England that was initiated from October 2023 (348) and initiatives to reduce food waste (349, 350) have the potential to improve the sustainability of food environments. Regulations on the promotion of foods and beverages high in fat, sugar and salt in England (351) and under consideration in Scotland (352) and Wales (353) have the potential to improve the healthfulness of food environments across the UK. A data visualization tool has also been developed to help local authorities explore their food environments (354). There is a need for a comprehensive review of policies across the UK, including non-food policies and monitoring of the impact of these policies on dietary intake, health and food environments. The better we understand the food environment, the easier it will be to create interventions that bring about a positive change in public health and planetary health.

To summarize, the current literature on the food environment in the UK focusses almost exclusively on availability in the food retail space. Though several recent government initiatives

aim to improve the healthfulness of food environments in the UK, more research is needed to
understand how different domains of the food environment interact to influence dietary intake
and health. Moreover, the types of food environments evaluated need to be expanded to include
the increasingly relevant digital food environment.
Acknowledgements : The authors thank Fiona Brown, academic support librarian at the University
of Edinburgh, for her contribution to the search strategy; and Lily Bliznashka, who was a postdoc
at the University of Edinburgh, for her contribution to the protocol, especially the search strategy.
LMJ and DK conceived and designed the study. DK and MVD screened and extracted data. LMJ
and DK contributed to the development of the extraction template. DK performed the analysis
and drafted the manuscript. DK has primary responsibility for the final content. All authors read
and approved of the final manuscript.
Data sharing: Extracted data is publicly and freely available without restriction at
https://figshare.com/articles/dataset/_b_The_UK_food_environment_a_systematic_review_of_d
omains methodologies and outcomes b /29374151?file=55544885
Funding: This research received no specific grant from any funding agency, commercial or not-
for-profit sectors.
CR is funded by the UK Food Systems Centre for Doctoral Training, The Partnership for
Sustainable Food Future Centre for Doctoral Training (Project Reference:BB/V011391/1. CR is
funded by the Healthy soil, Healthy food, Healthy people (H3) project (Project Reference:
BB/V004719/1). These programmes are funded through the Strategic Priorities Fund (SPF)
'Transforming the UK Food System for Healthy People and a Healthy Environment Programme'
delivered by UKRI in partnership with the Global Food Security Programme BRSRC ESRC

431	MRC, NERC, Defra, DHSC, PHE, Innovate UK and FSA. CR is also funded by the Co-Centre for
432	Sustainable Food Systems (Project Reference: BB/Y012909/1) and Joined up Landscapes (Project Reference: BB/Y012909/1)
433	Reference: TBA).
434	Conflict of Interest: None.
435	Declaration of Interest: Dr Reynolds has advisory positions on boards at the Nutrition Society
436	(Food systems theme lead) and the Institute of Food Science & Technology (Sustainability
437	working group). Dr Reynolds is part of the Sustainable Diet Working Group, Faculty of Public
438	Health, and the British Standards Institution/ International Organization for Standardization
439	committee ISO/TC 34/SC 20 (Food loss and waste). Dr Reynolds has received payment via City,
440	University of London for consulting for: WRAP (a UK NGO); Zero Waste Scotland; DEFRA
441	and the FSA (UK government). Dr Reynolds has been paid a Speaker's Stipend by the following
442	events: The Folger Institute (2020). Dr Reynolds is a member of EGEA, and Nutrition Society
443	Scientific Committees, and co-chair of a session of the EGEA conference (2023) and Nutrition
444	Society conferences (2022-2025). This has meant his registration and flight/accommodation have
445	been paid by Aprifel or the Nutrition Society. CR has won competitive research funding
446	(€49,858) from the following independent foundation: The Alpro Foundation, (2020).

References

447

- 448 1. Ho FK, Celis-Morales C, Petermann-Rocha F, Parra-Soto SL, Lewsey J, Mackay D, Pell JP.
- 449 Changes over 15 years in the contribution of adiposity and smoking to deaths in England and
- 450 Scotland. BMC Public Health. 2021;21(1):169.
- 451 2. Erin Deakin VW, Sophie Birtwistle, Rory McClelland, Jordan Fox, Hannah Biggs, Sarah Minty.
- The Scottish Health Survey Main Report. In: Research SCfS, editor. 2023.
- 453 3. Victoria Hannah AW, Laura Rich, Bethan Jenkins, Amrita Jesurasa. The primary care needs of
- 454 people living with overweight and obesity in Wales: Summary. In: Wales PH, editor. 2021.
- 455 4. Disparities OfHI. Official Statistics Obesity Profile: short statistical commentary UK
- 456 Government; 2024 [Available from: https://www.gov.uk/government/statistics/update-to-the-
- 457 obesity-profile-on-fingertips/obesity-profile-short-statistical-commentary-may-2024.
- 458 5. Keaver L, Xu B, Jaccard A, Webber L. Morbid obesity in the UK: A modelling projection study
- 459 to 2035. Scand J Public Health. 2020;48(4):422-7.
- 460 6. Digital N. Significant increase in obesity rates among primary-aged children, latest statistics
- 461 show. 2021.
- 462 7. Disparities OfHI. National Diet and Nutrition Survey 2019 to 2023: report. UK2025.
- 463 8. Constantinides SV, Turner C, Frongillo EA, Bhandari S, Reyes LI, Blake CE. Using a global food
- 464 environment framework to understand relationships with food choice in diverse low- and middle-
- 465 income countries. Global Food Security-Agriculture Policy Economics and Environment.
- 466 2021;29(100511).
- 467 9. Turner C, Aggarwal A, Walls H, Herforth A, Drewnowski A, Coates J, et al. Concepts and
- 468 critical perspectives for food environment research: A global framework with implications for action
- 469 in low- and middle-income countries. Global Food Security-Agriculture Policy Economics and
- 470 Environment. 2018;18:93-101.
- 471 10. Burgoine T, Lake AA, Stamp E, Alvanides S, Mathers JC, Adamson AJ. Changing foodscapes
- 472 1980-2000, using the ASH30 Study. Appetite. 2009;53(2):157-65.
- 473 11. Smith D, Cummins S, Clark C, Stansfeld S. Does the local food environment around schools
- 474 affect diet? Longitudinal associations in adolescents attending secondary schools in East London.
- 475 BMC Public Health. 2013;13:70.
- 12. Intelligence L. The market and consumer trends shaping the future for UK quick service
- 477 restaurants. 2022 March 2022.
- 478 13. Camilla A GR, Draper A, Guthrie S. Food consumption in the UK: Trends, attitudes and
- 479 drivers.; 2020.
- 480 14. Agency FS. F&Y2 Wave 7: Executive summary. 2024.
- 481 15. Titis E, Procter R, Walasek L. Assessing physical access to healthy food across United
- 482 Kingdom: A systematic review of measures and findings. Obes Sci Pract. 2022;8(2):233-46.
- 483 16. Turner G, Green R, Alae-Carew C, Dangour AD. The association of dimensions of fruit and
- vegetable access in the retail food environment with consumption; a systematic review. Glob Food
- 485 Sec. 2021;29:100528.
- 486 17. Needham C, Sacks G, Orellana L, Robinson E, Allender S, Strugnell C. A systematic review of
- 487 the Australian food retail environment: Characteristics, variation by geographic area, socioeconomic
- 488 position and associations with diet and obesity. Obes Rev. 2020;21(2):e12941.
- 489 18. Turbutt C, Richardson J, Pettinger C. The impact of hot food takeaways near schools in the
- 490 UK on childhood obesity: a systematic review of the evidence. J Public Health (Oxf). 2019;41(2):231-
- 491 9.
- 492 19. Williams J, Scarborough P, Matthews A, Cowburn G, Foster C, Roberts N, Rayner M. A
- 493 systematic review of the influence of the retail food environment around schools on obesity-related
- 494 outcomes. Obes Rev. 2014;15(5):359-74.

- 495 20. Capper TE, Brennan SF, Woodside JV, McKinley MC. What makes interventions aimed at
- improving dietary behaviours successful in the secondary school environment? A systematic review
- of systematic reviews. Public Health Nutr. 2022;25(9):2448-64.
- 498 21. Lam TM, Vaartjes I, Grobbee DE, Karssenberg D, Lakerveld J. Associations between the built
- 499 environment and obesity: an umbrella review. Int J Health Geogr. 2021;20(1):7.
- 500 22. Townshend T, Lake A. Obesogenic environments: current evidence of the built and food
- environments. Perspect Public Health. 2017;137(1):38-44.
- 502 23. Wilkins E, Radley D, Morris M, Hobbs M, Christensen A, Marwa WL, et al. A systematic
- review employing the GeoFERN framework to examine methods, reporting quality and associations
- between the retail food environment and obesity. Health Place. 2019;57:186-99.
- 505 24. Rinaldi C, D'Aguilar M, Egan M. Understanding the Online Environment for the Delivery of
- 506 Food, Alcohol and Tobacco: An Exploratory Analysis of 'Dark Kitchens' and Rapid Grocery Delivery
- 507 Services. Int J Environ Res Public Health. 2022;19(9).
- 508 25. Goodman MK, Jaworska S. Mapping digital foodscapes: Digital food influencers and the
- grammars of good food. Geoforum. 2020;117:183-93.
- 510 26. Downs SM, Ahmed S, Fanzo J, Herforth A. Food Environment Typology: Advancing an
- 511 Expanded Definition, Framework, and Methodological Approach for Improved Characterization of
- 512 Wild, Cultivated, and Built Food Environments toward Sustainable Diets. Foods. 2020;9(4).
- 513 27. Lytle LA, Sokol RL. Measures of the food environment: A systematic review of the field,
- 514 2007-2015. Health Place. 2017;44:18-34.
- 515 28. Al-alawy Khamis KF. Top Tips on Chips: Can Local Fast Food Caterers in England Adopt
- Healthier Cooking Practices? Food and Public Health 2014;4(2):54-9.
- 517 29. Alessandrini R, Brown MK, Pombo-Rodrigues S, Bhageerutty S, He FJ, MacGregor GA.
- Nutritional Quality of Plant-Based Meat Products Available in the UK: A Cross-Sectional Survey.
- 519 Nutrients. 2021;13(12).
- 520 30. Angood KM, Wood JD, Nute GR, Whittington FM, Hughes SI, Sheard PR. A comparison of
- 521 organic and conventionally-produced lamb purchased from three major UK supermarkets: Price,
- eating quality and fatty acid composition. Meat Sci. 2008;78(3):176-84.
- 523 31. Bagwell S. The role of independent fast-food outlets in obesogenic environments: a case
- 524 study of East London in the UK. Environment and Planning a-Economy and Space. 2011;43(9):2217-
- 525 36.
- 526 32. Baniukiewicz M, Dick ZL, Giabbanelli PJ. Capturing the fast-food landscape in England using
- 527 large-scale network analysis. EPJ Data Sci. 2018;7(1):39.
- 528 33. Barrett M, Crozier S, Lewis D, Godfrey K, Robinson S, Cooper C, et al. Greater access to
- 529 healthy food outlets in the home and school environment is associated with better dietary quality in
- 530 young children. Public Health Nutr. 2017;20(18):3316-25.
- 531 34. Bath SC, Hill S, Infante HG, Elghul S, Nezianya CJ, Rayman MP. Iodine concentration of milk-
- alternative drinks available in the UK in comparison with cows' milk. Br J Nutr. 2017;118(7):525-32.
- 533 35. Berill Takacs JAS, Anastasia Z. Kalea, Aiduan Borrion. Comparison of environmental impacts
- of individual meals Does it really make a difference to choose plant-based meals instead of meat-
- based ones? Journal of Cleaner Production. 2022;379.
- 536 36. Bhatnagar P, Scarborough P, Kaur A, Dikmen D, Adhikari V, Harrington R. Are food and drink
- available in online and physical supermarkets the same? A comparison of product availability, price,
- price promotions and nutritional information. Public Health Nutr. 2021;24(5):819-25.
- 539 37. Black C, Ntani G, Inskip H, Cooper C, Cummins S, Moon G, Baird J. Measuring the
- 540 healthfulness of food retail stores: variations by store type and neighbourhood deprivation. Int J
- 541 Behav Nutr Phys Act. 2014;11:69.
- 542 38. Black C, Ntani G, Kenny R, Tinati T, Jarman M, Lawrence W, et al. Variety and quality of
- healthy foods differ according to neighbourhood deprivation. Health Place. 2012;18(6):1292-9.

- 39. Bodicoat DH, Carter P, Comber A, Edwardson C, Gray LJ, Hill S, et al. Is the number of fast-
- 545 food outlets in the neighbourhood related to screen-detected type 2 diabetes mellitus and
- associated risk factors? Public Health Nutr. 2015;18(9):1698-705.
- 547 40. Bowyer S, Caraher M, Eilbert K, Carr-Hill R. Shopping for food: lessons from a London
- 548 borough. British Food Journal. 2009;111(4-5):452-74.
- 549 41. Brown H, Kirkman S, Albani V, Goffe L, Akhter N, Hollingsworth B, et al. The impact of school
- exclusion zone planning guidance on the number and type of food outlets in an English local
- authority: A longitudinal analysis. Health Place. 2021;70:102600.
- 552 42. Brown H, Xiang H, Albani V, Goffe L, Akhter N, Lake A, et al. No new fast-food outlets
- allowed! Evaluating the effect of planning policy on the local food environment in the North East of
- 554 England. Soc Sci Med. 2022;306:115126.
- 555 43. Buratto A, Lotti L. Encouraging sustainable food consumption through nudges: An
- experiment with menu labels. Ecological Economics. 2024;216.
- 557 44. Burden M, Mooney PD, Blanshard RJ, White WL, Cambray-Deakin DR, Sanders DS. Cost and
- availability of gluten-free food in the UK: in store and online. Postgrad Med J. 2015;91(1081):622-6.
- 559 45. Burgoine T, Alvanides S, Lake AA. Assessing the obesogenic environment of North East
- 560 England. Health Place. 2011;17(3):738-47.
- 561 46. Burgoine T, Alvanides S, Lake AA. Creating 'obesogenic realities'; do our methodological
- 562 choices make a difference when measuring the food environment? Int J Health Geogr. 2013;12:33.
- 563 47. Burgoine T, Forouhi NG, Griffin SJ, Brage S, Wareham NJ, Monsivais P. Does neighborhood
- fast-food outlet exposure amplify inequalities in diet and obesity? A cross-sectional study. Am J Clin
- 565 Nutr. 2016;103(6):1540-7.
- 566 48. Burgoine T, Forouhi NG, Griffin SJ, Wareham NJ, Monsivais P. Associations between
- 567 exposure to takeaway food outlets, takeaway food consumption, and body weight in
- 568 Cambridgeshire, UK: population based, cross sectional study. BMJ. 2014;348:g1464.
- 569 49. Burgoine T, Gallis JA, T LP, Monsivais P, Benjamin Neelon SE. Association between distance
- to nearest supermarket and provision of fruits and vegetables in English nurseries. Health Place.
- 571 2017;46:229-33.
- 572 50. Burgoine T, Mackenbach JD, Lakerveld J, Forouhi NG, Griffin SJ, Brage S, et al. Interplay of
- 573 Socioeconomic Status and Supermarket Distance Is Associated with Excess Obesity Risk: A UK Cross-
- 574 Sectional Study. Int J Environ Res Public Health. 2017;14(11).
- 575 51. Burgoine T, Monsivais P, Sharp SJ, Forouhi NG, Wareham NJ. Independent and combined
- associations between fast-food outlet exposure and genetic risk for obesity: a population-based,
- 577 cross-sectional study in the UK. BMC Med. 2021;19(1):49.
- 578 52. Burgoine T, Sarkar C, Webster CJ, Monsivais P. Examining the interaction of fast-food outlet
- 579 exposure and income on diet and obesity: evidence from 51,361 UK Biobank participants. Int J Behav
- 580 Nutr Phys Act. 2018;15(1):71.
- 581 53. Butler G, Stergiadis S, Seal C, Eyre M, Leifert C. Fat composition of organic and conventional
- retail milk in northeast England. J Dairy Sci. 2011;94(1):24-36.
- 583 54. Caraher M, Lloyd S, Lawton J, Singh G, Horsley K, Mussa F. A tale of two cities: A study of
- access to food, lessons for public health practice. Health Education Journal. 2010;69(2):200-10.
- 585 55. Cetateanu A, Jones A. Understanding the relationship between food environments,
- deprivation and childhood overweight and obesity: evidence from a cross sectional England-wide
- 587 study. Health Place. 2014;27(100):68-76.
- 588 56. Chan L, Mehra A, Saikat S, Lynch P. Human exposure assessment of fluoride from tea
- 589 (Camellia sinensis L.): A UK based issue? Food Research International. 2013;51(2):564-70.
- 590 57. Clarke G EH, Guy C. Deriving Indicators of Access to Food Retail Provision in British Cities:
- 591 Studies of Cardiff, Leeds and Bradford. Urban Studies. 2002;39:2041–60.
- 592 58. Davies IG, Blackham T, Jaworowska A, Taylor C, Ashton M, Stevenson L. Saturated and trans-
- fatty acids in UK takeaway food. Int J Food Sci Nutr. 2016;67(3):217-24.

- 594 59. Donkin AJ, Dowler EA, Stevenson SJ, Turner SA. Mapping access to food in a deprived area:
- the development of price and availability indices. Public Health Nutr. 2000;3(1):31-8.
- 596 60. Edwards KL, Clarke GP, Ransley JK, Cade J. The neighbourhood matters: studying exposures
- relevant to childhood obesity and the policy implications in Leeds, UK. J Epidemiol Community
- 598 Health. 2010;64(3):194-201.
- 599 61. Ejlerskov KT, Sharp SJ, Stead M, Adamson AJ, White M, Adams J. Supermarket policies on
- 600 less-healthy food at checkouts: Natural experimental evaluation using interrupted time series
- analyses of purchases. PLoS Med. 2018;15(12):e1002712.
- 602 62. Emma E. Garnett AB, Theresa M. Marteau, Mark A. Pilling, Chris Sandbrook. Price of change:
- Does a small alteration to the price of meat and vegetarian options affect their sales? Journal of
- 604 Environmental Psychology. 2021;75.
- 605 63. Evans CE, Worth S, White R, Strachan EK. Evaluation of an experiment to increase availability
- of healthier snack foods in vending machines situated within English sports facilities. Public Health
- 607 Nutr. 2023;26(12):3088-99.
- 608 64. Fildes A, Lally P, Morris MA, Dalton A, Croker H. Impact on purchasing behaviour of
- 609 implementing 'junk free checkouts': A pre-post study. Nutr Bull. 2022;47(3):333-45.
- 610 65. Fraser LK, Edwards KL. The association between the geography of fast food outlets and
- childhood obesity rates in Leeds, UK. Health Place. 2010;16(6):1124-8.
- 612 66. Fraser LK, Edwards KL, Tominitz M, Clarke GP, Hill AJ. Food outlet availability, deprivation
- and obesity in a multi-ethnic sample of pregnant women in Bradford, UK. Soc Sci Med.
- 614 2012;75(6):1048-56.
- 615 67. G. Gallo R, Barrett L, A. Lake A. The food environment within the primary school fringe.
- 616 British Food Journal. 2014;116(8):1259-75.
- 617 68. Garnett EE, Balmford A, Sandbrook C, Pilling MA, Marteau TM. Impact of increasing
- 618 vegetarian availability on meal selection and sales in cafeterias. Proc Natl Acad Sci U S A.
- 619 2019;116(42):20923-9.
- 620 69. Garnett EE, Marteau TM, Sandbrook C, Pilling MA, Balmford A. Order of meals at the counter
- and distance between options affect student cafeteria vegetarian sales. Nat Food. 2020;1(8):485-8.
- 622 70. Glynn Davies I, Stevenson L, Ashton M, Taylor C, Long R, M. Blackham T, Jaworowska A.
- Nutritional composition of takeaway food in the UK. Nutrition & Food Science. 2014;44(5):414-30.
- 624 71. Graham F, Russell J, Holdsworth M, Menon M, Barker M. Exploring the Relationship between
- 625 Environmental Impact and Nutrient Content of Sandwiches and Beverages Available in Cafes in a UK
- 626 University. Sustainability. 2019;11(11).
- 627 72. Green MA, Radley D, Lomax N, Morris MA, Griffiths C. Is adolescent body mass index and
- 628 waist circumference associated with the food environments surrounding schools and homes? A
- longitudinal analysis. BMC Public Health. 2018;18(1):482.
- 630 73. Griffiths C, Frearson A, Taylor A, Radley D, Cooke C. A cross sectional study investigating the
- association between exposure to food outlets and childhood obesity in Leeds, UK. Int J Behav Nutr
- 632 Phys Act. 2014;11:138.
- 633 74. Harmer G, Jebb SA, Ntani G, Vogel C, Piernas C. Capturing the Healthfulness of the In-store
- 634 Environments of United Kingdom Supermarket Stores Over 5 Months (January-May 2019). Am J Prev
- 635 Med. 2021;61(4):e171-e9.
- 636 75. Harrison F, Jones AP, van Sluijs EM, Cassidy A, Bentham G, Griffin SJ. Environmental
- 637 correlates of adiposity in 9-10 year old children: considering home and school neighbourhoods and
- 638 routes to school. Soc Sci Med. 2011;72(9):1411-9.
- 639 76. Hobbs M, Green M, Roberts K, Griffiths C, McKenna J. Reconsidering the relationship
- 640 between fast-food outlets, area-level deprivation, diet quality and body mass index: an exploratory
- structural equation modelling approach. J Epidemiol Community Health. 2019;73(9):861-6.
- 642 77. Hobbs M, Green MA, Wilkins E, Lamb KE, McKenna J, Griffiths C. Associations between food
- environment typologies and body mass index: Evidence from Yorkshire, England. Soc Sci Med.
- 644 2019;239:112528.

- 645 78. Hobbs M, Griffiths C, Green MA, Jordan H, Saunders J, Christensen A, McKenna J. Fast-food
- outlet availability and obesity: Considering variation by age and methodological diversity in 22,889
- 647 Yorkshire Health Study participants. Spat Spatiotemporal Epidemiol. 2019;28:43-53.
- Horsley JA, Absalom KA, Akiens EM, Dunk RJ, Ferguson AM. The proportion of unhealthy
- foodstuffs children are exposed to at the checkout of convenience supermarkets. Public Health Nutr.
- 650 2014;17(11):2453-8.
- 651 80. Howard Wilsher S, Harrison F, Fearne A, Jones A. Food Sales and Adult Weight Status:
- Results of a Cross-Sectional Study in England. Nutrients. 2022;14(9).
- 653 81. Howard Wilsher S, Harrison F, Yamoah F, Fearne A, Jones A. The relationship between
- unhealthy food sales, socio-economic deprivation and childhood weight status: results of a cross-
- sectional study in England. Int J Behav Nutr Phys Act. 2016;13:21.
- 656 82. Ilyankou I, Newing A, Hood N. Supermarket Store Locations as a Proxy for Neighbourhood
- 657 Health, Wellbeing, and Wealth. Sustainability. 2023;15(15).
- 658 83. James A, Birch L, Fletcher P, Pearson S, Boyce C, Ness AR, et al. Are food and drink retailers
- 659 within NHS venues adhering to NICE Quality standard 94 guidance on childhood obesity? A cross-
- sectional study of two large secondary care NHS hospitals in England. BMJ Open.
- 661 2017;7(11):e018214.
- 662 84. Jaworowska A, Blackham T, Stevenson L, Davies IG. Determination of salt content in hot
- takeaway meals in the United Kingdom. Appetite. 2012;59(2):517-22.
- 664 85. Jaworowska A, Rotaru G, Christides T. Nutritional Quality of Lunches Served in South East
- 665 England Hospital Staff Canteens. Nutrients. 2018;10(12).
- 666 86. Jennings A, Cassidy A, Winters T, Barnes S, Lipp A, Holland R, Welch A. Positive effect of a
- targeted intervention to improve access and availability of fruit and vegetables in an area of
- deprivation. Health Place. 2012;18(5):1074-8.
- 669 87. Kalbus A, Ballatore A, Cornelsen L, Greener R, Cummins S. Associations between area
- 670 deprivation and changes in the digital food environment during the COVID-19 pandemic:
- 671 Longitudinal analysis of three online food delivery platforms. Health Place. 2023;80:102976.
- 88. Kalbus A, Cornelsen L, Ballatore A, Cummins S. Associations between the food environment
- and food and drink purchasing using large-scale commercial purchasing data: a cross-sectional study.
- 674 BMC Public Health. 2023;23(1):72.
- 675 89. Keeble M, Adams J, Bishop TRP, Burgoine T. Socioeconomic inequalities in food outlet access
- 676 through an online food delivery service in England: A cross-sectional descriptive analysis. Appl
- 677 Geogr. 2021;133:None.
- 678 90. Keeble M, Adams J, Burgoine T. Changes in Online Food Access During the COVID-19
- 679 Pandemic and Associations With Deprivation: Longitudinal Analysis. JMIR Public Health Surveill.
- 680 2023;9:e41822.
- 681 91. Keeble M, Adams J, Sacks G, Vanderlee L, White CM, Hammond D, Burgoine T. Use of Online
- 682 Food Delivery Services to Order Food Prepared Away-From-Home and Associated Sociodemographic
- 683 Characteristics: A Cross-Sectional, Multi-Country Analysis. Int J Environ Res Public Health.
- 684 2020;17(14).
- 685 92. Keeble M, Adams J, Vanderlee L, Hammond D, Burgoine T. Associations between online food
- outlet access and online food delivery service use amongst adults in the UK: a cross-sectional
- analysis of linked data. BMC Public Health. 2021;21(1):1968.
- 688 93. Kliem KE, Shingfield KJ, Livingstone KM, Givens DI. Seasonal variation in the fatty acid
- composition of milk available at retail in the United Kingdom and implications for dietary intake.
- 690 Food Chem. 2013;141(1):274-81.
- 691 94. Krenz K, Dhanani A, McEachan RRC, Sohal K, Wright J, Vaughan L. Linking the Urban
- 692 Environment and Health: An Innovative Methodology for Measuring Individual-Level Environmental
- 693 Exposures. Int J Environ Res Public Health. 2023;20(3).

- 694 95. Lake AA, Burgoine T, Stamp E, Grieve R. The foodscape: classification and field validation of
- secondary data sources across urban/rural and socio-economic classifications in England. Int J Behav
- 696 Nutr Phys Act. 2012;9:37.
- 697 96. Lam MCL, Adams J. Association between home food preparation skills and behaviour, and
- 698 consumption of ultra-processed foods: Cross-sectional analysis of the UK National Diet and nutrition
- 699 survey (2008-2009). Int J Behav Nutr Phys Act. 2017;14(1):68.
- 700 97. Little CL, Barrett NJ, Grant K, McLauchlin J. Microbiological safety of sandwiches from
- hospitals and other health care establishments in the United Kingdom with a focus on Listeria
- monocytogenes and other Listeria species. J Food Prot. 2008;71(2):309-18.
- 703 98. Lloyd S, Lawton J, Caraher M, Singh G, Horsley K, Mussa F. A tale of two localities: Healthy
- eating on a restricted income. Health Education Journal. 2011;70(1):48-56.
- 705 99. Mackenbach JD, Burgoine T, Lakerveld J, Forouhi NG, Griffin SJ, Wareham NJ, Monsivais P.
- 706 Accessibility and Affordability of Supermarkets: Associations With the DASH Diet. Am J Prev Med.
- 707 2017;53(1):55-62.
- 708 100. Maguire ER, Burgoine T, Monsivais P. Area deprivation and the food environment over time:
- A repeated cross-sectional study on takeaway outlet density and supermarket presence in Norfolk,
- 710 UK, 1990-2008. Health Place. 2015;33:142-7.
- 711 101. Maguire ER, Burgoine T, Penney TL, Forouhi NG, Monsivais P. Does exposure to the food
- 712 environment differ by socioeconomic position? Comparing area-based and person-centred metrics
- in the Fenland Study, UK. Int J Health Geogr. 2017;16(1):33.
- 714 102. Mason KE, Pearce N, Cummins S. Geographical heterogeneity across England in associations
- between the neighbourhood built environment and body mass index. Health Place. 2021;71:102645.
- 716 103. Mc LJ, Jorgensen F, Aird H, Charlett A, Elviss N, Fenelon D, et al. An assessment of the
- 717 microbiological quality of liver-based pate in England 2012-13: comparison of samples collected at
- retail and from catering businesses. Epidemiol Infect. 2017;145(8):1545-56.
- 719 104. McLauchlin J, Aird H, Charlett A, Chattaway M, Elviss N, Hartman H, et al. Imported edible
- 720 leaves collected at retail sale in England during 2017 with an emphasis on betel and curry leaves:
- 721 microbiological quality with respect to Salmonella, Shiga-toxin-producing E. coli (STEC) and levels of
- 722 Escherichia coli. J Appl Microbiol. 2018;125(4):1175-85.
- 723 105. McLauchlin J, Aird H, Charlett A, Elviss N, Jorgensen F, Willis C. Microbiological Quality of
- 724 Cooked Chicken: Results of Monitoring in England (2013-17). J Food Prot. 2020;83(11):1989-97.
- 725 106. Molaodi OR, Leyland AH, Ellaway A, Kearns A, Harding S. Neighbourhood food and physical
- activity environments in England, UK: does ethnic density matter? Int J Behav Nutr Phys Act.
- 727 2012;9:75.
- 728 107. Mulrooney HM, Bell J. Does the food retail environment reflect UK public health
- recommendations for healthy eating? Public Health. 2016;134:114-6.
- 730 108. Nowak M, Jeanes Y, Reeves S. The food environment in leisure centres and health clubs: how
- 731 appropriate is it for children? Nutrition & Food Science. 2012;42(5):307-14.
- 732 109. Park H, Papadaki A. Nutritional value of foods sold in vending machines in a UK University:
- 733 Formative, cross-sectional research to inform an environmental intervention. Appetite. 2016;96:517-
- 734 25.
- 735 110. Patterson R, Risby A, Chan MY. Consumption of takeaway and fast food in a deprived inner
- London Borough: are they associated with childhood obesity? BMJ Open. 2012;2(3).
- 737 111. Pechey R, Bateman PA, Cook B, Potter C, Clark M, Stewart C, et al. Testing the effectiveness
- 738 of ecolabels to reduce the environmental impact of food purchases in worksite cafeterias: A
- randomised controlled trial. Appetite. 2022;179:106277.
- 740 112. Pechey R, Cartwright E, Pilling M, Hollands GJ, Vasiljevic M, Jebb SA, Marteau TM. Impact of
- 741 increasing the proportion of healthier foods available on energy purchased in worksite cafeterias: A
- stepped wedge randomized controlled pilot trial. Appetite. 2019;133:286-96.

- 743 113. Pechey R, Jenkins H, Cartwright E, Marteau TM. Altering the availability of healthier vs. less
- healthy items in UK hospital vending machines: a multiple treatment reversal design. Int J Behav
- 745 Nutr Phys Act. 2019;16(1):114.
- 746 114. Piernas C, Harmer G, Jebb SA. Removing seasonal confectionery from prominent store
- 747 locations and purchasing behaviour within a major UK supermarket: Evaluation of a nonrandomised
- 748 controlled intervention study. PLoS Med. 2022;19(3):e1003951.
- 749 115. Piernas C, Harmer G, Jebb SA. Testing availability, positioning, promotions, and signage of
- 750 healthier food options and purchasing behaviour within major UK supermarkets: Evaluation of 6
- 751 nonrandomised controlled intervention studies. PLoS Med. 2022;19(3):e1003952.
- 752 116. Pombo-Rodrigues S, Hashem KM, Tan M, Davies Z, He FJ, MacGregor GA. Nutrition Profile of
- 753 Products with Cartoon Animations on the Packaging: A UK Cross-Sectional Survey of Foods and
- 754 Drinks. Nutrients. 2020;12(3).
- 755 117. Rahilly J, Amies-Cull B, Chang M, Cummins S, Derbyshire D, Hassan S, et al. Changes in the
- 756 number of new takeaway food outlets associated with adoption of management zones around
- 757 schools: A natural experimental evaluation in England. SSM Popul Health. 2024;26:101646.
- 758 118. Reeves S, Wake Y, Zick A. Nutrition labeling and portion size information on children's menus
- in fast-food and table-service chain restaurants in London, UK. J Nutr Educ Behav. 2011;43(6):543-7.
- 760 119. Rex D, Blair A. Unjust des(s)erts: food retailing and neighbourhood health in Sandwell.
- 761 International Journal of Retail & Distribution Management. 2003;31(9):459-65.
- 762 120. Saunders P, Saunders A, Middleton J. Living in a 'fat swamp': exposure to multiple sources of
- accessible, cheap, energy-dense fast foods in a deprived community. Br J Nutr. 2015;113(11):1828-
- 764 34.
- 765 121. Shareck M, Lewis D, Smith NR, Clary C, Cummins S. Associations between home and school
- neighbourhood food environments and adolescents' fast-food and sugar-sweetened beverage
- 767 intakes: findings from the Olympic Regeneration in East London (ORiEL) Study. Public Health Nutr.
- 768 2018;21(15):2842-51.
- 769 122. Shoari N, Beevers S, Brauer M, Blangiardo M. Towards healthy school neighbourhoods: A
- baseline analysis in Greater London. Environ Int. 2022;165:107286.
- 771 123. Simpson N, Bartley A, Davies A, Perman S, Rodger AJ. Getting the balance right-tackling the
- obesogenic environment by reducing unhealthy options in a hospital shop without affecting profit. J
- 773 Public Health (Oxf). 2018;40(4):e545-e51.
- 774 124. Tan M, He FJ, Ding J, Li Y, Zhang P, MacGregor GA. Salt content of sauces in the UK and
- 775 China: cross-sectional surveys. BMJ Open. 2019;9(9):e025623.
- 776 125. Thomas JM, Ursell A, Robinson EL, Aveyard P, Jebb SA, Herman CP, Higgs S. Using a
- descriptive social norm to increase vegetable selection in workplace restaurant settings. Health
- 778 Psychol. 2017;36(11):1026-33.
- 779 126. Titis E, Di Salvatore J, Procter R. Socio-economic correlates of childhood obesity in urban and
- 780 rural England. Public Health Nutr. 2023;26(9):1815-27.
- 781 127. Vasiljevic M, Cartwright E, Pilling M, Lee MM, Bignardi G, Pechey R, et al. Impact of calorie
- 782 labelling in worksite cafeterias: a stepped wedge randomised controlled pilot trial. Int J Behav Nutr
- 783 Phys Act. 2018;15(1):41.
- 784 128. Vasiljevic M, Fuller G, Pilling M, Hollands GJ, Pechey R, Jebb SA, Marteau TM. What is the
- 785 impact of increasing the prominence of calorie labelling? A stepped wedge randomised controlled
- pilot trial in worksite cafeterias. Appetite. 2019;141:104304.
- 787 129. Vitale M, Crossland S, Shinwell J, Stretesky PB, Defeyter MA, Brownlee IA. The Nutritional
- 788 Quality of Food Provision at UK Government-Funded Holiday Clubs: A Cross-Sectional Analysis of
- 789 Energy and Nutrient Content. Nutrients. 2023;15(8).
- 790 130. Vogel C, Crozier S, Penn-Newman D, Ball K, Moon G, Lord J, et al. Altering product placement
- 791 to create a healthier layout in supermarkets: Outcomes on store sales, customer purchasing, and
- 792 diet in a prospective matched controlled cluster study. PLoS Med. 2021;18(9):e1003729.

- 793 131. Vogel C, Lewis D, Ntani G, Cummins S, Cooper C, Moon G, Baird J. The relationship between
- 794 dietary quality and the local food environment differs according to level of educational attainment:
- 795 A cross-sectional study. PLoS One. 2017;12(8):e0183700.
- 796 132. Wickramasinghe K, Rayner M, Goldacre M, Townsend N, Scarborough P. Environmental and
- 797 nutrition impact of achieving new School Food Plan recommendations in the primary school meals
- 798 sector in England. BMJ Open. 2017;7(4):e013840.
- 799 133. Wilkins E, Morris M, Radley D, Griffiths C. Methods of measuring associations between the
- 800 Retail Food Environment and weight status: Importance of classifications and metrics. SSM Popul
- 801 Health. 2019;8:100404.
- 802 134. Williams J, Scarborough P, Townsend N, Matthews A, Burgoine T, Mumtaz L, Rayner M.
- 803 Associations between Food Outlets around Schools and BMI among Primary Students in England: A
- Cross-Classified Multi-Level Analysis. PLoS One. 2015;10(7):e0132930.
- 805 135. Wright J, Kamp E, White M, Adams J, Sowden S. Food at checkouts in non-food stores: a
- cross-sectional study of a large indoor shopping mall. Public Health Nutr. 2015;18(15):2786-93.
- 807 136. Wrigley N, Warm D, Margetts B. Deprivation, diet, and food-retail access: findings from the
- Leeds 'food deserts' study. Environ Plann A. 2003;35(1):151-88.
- 809 137. Wu YT, Kingston A, Houlden V, Franklin R. The longitudinal associations between proximity
- to local grocery shops and functional ability in the very old living with and without multimorbidity:
- 811 Results from the Newcastle 85+ study. Arch Gerontol Geriatr. 2022;101:104703.
- 812 138. Xiang H, Goffe L, Albani V, Akhter N, Lake AA, Brown H. Planning policies to restrict fast food
- and inequalities in child weight in England: a quasi-experimental analysis. Obesity (Silver Spring).
- 814 2024;32(12):2345-53.
- 815 139. Yip YL, Ensaff H. Breakfast on the go: Evaluating the nutritional content of supermarket
- 816 products. Nutrition. 2021;84:111098.
- 817 140. Remnant J, Adams J. The nutritional content and cost of supermarket ready-meals. Cross-
- sectional analysis. Appetite. 2015;92:36-42.
- 819 141. Lam CCV, Ejlerskov KT, White M, Adams J. Voluntary policies on checkout foods and
- healthfulness of foods displayed at, or near, supermarket checkout areas: a cross-sectional survey.
- 821 Public Health Nutr. 2018;21(18):3462-8.
- 822 142. Titis E. Quantifying the Impact of Supermarket Distance on Childhood Obesity in Greater
- 823 London, United Kingdom: Exploring Different Access Measures and Modification Effects of
- 824 Transportation. Child Obes. 2023;19(7):479-88.
- 825 143. Vogel C, Abbott G, Ntani G, Barker M, Cooper C, Moon G, et al. Examination of how food
- 826 environment and psychological factors interact in their relationship with dietary behaviours: test of a
- cross-sectional model. Int J Behav Nutr Phys Act. 2019;16(1):12.
- 828 144. Candlish AAG, Pearson SM, Aidoo KE, Smith JE, Kelly B, Irvine H. A survey of ethnic foods for
- 829 microbial quality and aflatoxin content. Food Addit Contam. 2001;18(2):129-36.
- 830 145. Crawford F, Mackison D, Mooney JD, Ellaway A. Observation and assessment of the
- 831 nutritional quality of 'out of school' foods popular with secondary school pupils at lunchtime. BMC
- 832 Public Health. 2017;17(1):887.
- 833 146. Cummins S, Macintyre S. A systematic study of an urban foodscape: The price and
- availability of food in Greater Glasgow. Urban Studies. 2002;39(11):2115-30.
- 835 147. Cummins S, Macintyre S. Are secondary data sources on the neighbourhood food
- environment accurate? Case-study in Glasgow, UK. Prev Med. 2009;49(6):527-8.
- 837 148. Macintyre S, McKay L, Cummins S, Burns C. Out-of-home food outlets and area deprivation:
- case study in Glasgow, UK. Int J Behav Nutr Phys Act. 2005;2:16.
- 839 149. Ellaway A, Macdonald L, Lamb K, Thornton L, Day P, Pearce J. Do obesity-promoting food
- environments cluster around socially disadvantaged schools in Glasgow, Scotland? Health Place.
- 841 2012;18(6):1335-40.
- 842 150. Macdonald L, Ellaway A, Macintyre S. The food retail environment and area deprivation in
- Glasgow City, UK. Int J Behav Nutr Phys Act. 2009;6:52.

- 844 151. Macdonald L, Olsen JR, Shortt NK, Ellaway A. Do 'environmental bads' such as alcohol, fast
- food, tobacco, and gambling outlets cluster and co-locate in more deprived areas in Glasgow City,
- 846 Scotland? Health Place. 2018;51:224-31.
- Sauveplane-Stirling V, Crichton D, Tessier S, Parrett A, Garcia AL. The food retail environment
- and its use in a deprived, urban area of Scotland. Public Health. 2014;128(4):360-6.
- 153. Thornton LE, Pearce JR, Macdonald L, Lamb KE, Ellaway A. Does the choice of neighbourhood
- 850 supermarket access measure influence associations with individual-level fruit and vegetable
- 851 consumption? A case study from Glasgow. Int J Health Geogr. 2012;11:29.
- 852 154. Macintyre S, Macdonald L, Ellaway A. Do poorer people have poorer access to local
- resources and facilities? The distribution of local resources by area deprivation in Glasgow, Scotland.
- 854 Soc Sci Med. 2008;67(6):900-14.
- 855 155. Cummins S, Smith DM, Taylor M, Dawson J, Marshall D, Sparks L, Anderson AS. Variations in
- fresh fruit and vegetable quality by store type, urban-rural setting and neighbourhood deprivation in
- 857 Scotland. Public Health Nutr. 2009;12(11):2044-50.
- 858 156. Cummins S, Smith DM, Aitken Z, Dawson J, Marshall D, Sparks L, Anderson AS.
- 859 Neighbourhood deprivation and the price and availability of fruit and vegetables in Scotland. J Hum
- 860 Nutr Diet. 2010;23(5):494-501.
- 861 157. Dawson J, Marshall D, Taylor M, Cummins S, Sparks L, Anderson AS. Accessing healthy food:
- availability and price of a healthy food basket in Scotland. Journal of Marketing Management.
- 863 2008;24(9-10):893-913.
- 864 158. Dogbe W, Revoredo-Giha C. Industry levy versus banning promotion on soft drinks in
- Scotland: A distributional analysis. Food Policy. 2022;106.
- 866 159. Kopasker D, Ejebu OZ, Norwood P, Ludbrook A. Longitudinal study of the effects of price and
- promotion incentives on purchases of unhealthy foods: evidence for restricting food promotions.
- 868 BMJ Nutr Prev Health. 2022;5(1):62-71.
- Mackison D, Mooney J, Macleod M, Anderson AS. Lessons learnt from a feasibility study on
- 870 price incentivised healthy eating promotions in workplace catering establishments. J Hum Nutr Diet.
- 871 2016;29(1):86-94.
- 872 161. Amarachi Nneli CR-G, Wisdom Dogbe Could taxes on foods high in fat, sugar and salt (HFSS)
- improve climate health and nutrition in Scotland? Journal of Cleaner Production. 2023;421.
- 874 162. Olsen JR, Caryl F, Nicholls N, Smith M, McCrorie P, Mitchell R. Inequalities in neighbourhood
- features within children's 20-minute neighbourhoods and variation in time spent locally, measured
- using GPS. Wellbeing Space Soc. 2023;5:100174.
- 877 163. Plaza J, Damek F, Villena I, Innes EA, Katzer F, Hamilton CM. Detection of Toxoplasma gondii
- in retail meat samples in Scotland. Food Waterborne Parasitol. 2020;20:e00086.
- 879 164. Revoredo-Giha C, Lamprinopoulou-Kranis, Chrysa Toma, Luiza, Kupiec-Teahan, Beata Leat,
- 880 Philip M.K., Cacciolatti, Luca. Bread consumption models; Scotland; Food prices. The 83rd Annual
- 881 Conference of the Agricultural Economics Society Dublin 2009.
- 882 165. Revoredo-Giha C, McNamee P, Norwood P, Akaichi F, Dogbe W. Expenditure and Nutritional
- 1883 Impact of Banning the Promotion of Foods High in Fat, Sugar and Salt in Scotland. Front Nutr.
- 884 2022;9:874018.
- 885 166. Revoredo-Giha C, Russo C. Food Expensiveness in Scotland's Remote Areas: An Analysis of
- 886 Household Food Purchases ☆. Rural Sociology. 2022;88(1):32-70.
- 887 167. Smith DM, Cummins S, Taylor M, Dawson J, Marshall D, Sparks L, Anderson AS.
- Neighbourhood food environment and area deprivation: spatial accessibility to grocery stores selling
- fresh fruit and vegetables in urban and rural settings. Int J Epidemiol. 2010;39(1):277-84.
- 890 168. Solecki O, MacRae M, Ogden I, Strachan N. Can the high levels of human verocytotoxigenic
- 891 Escherichia coli O157 infection in rural areas of NE Scotland be explained by consumption of
- 892 contaminated meat? J Appl Microbiol. 2007;103(6):2616-21.

- 893 169. Stead M, Eadie D, McKell J, Sparks L, MacGregor A, Anderson AS. Making hospital shops
- healthier: evaluating the implementation of a mandatory standard for limiting food products and
- promotions in hospital retail outlets. BMC Public Health. 2020;20(1):132.
- 896 170. Garcia AL, Ronquillo JD, Morillo-Santander G, Mazariegos CV, Lopez-Donado L, Vargas-Garcia
- 897 EJ, et al. Sugar Content and Nutritional Quality of Child Orientated Ready to Eat Cereals and Yoghurts
- in the UK and Latin America; Does Food Policy Matter? Nutrients. 2020;12(3).
- 899 171. Furey S, Strugnell C, McIlveen MH. An investigation of the potential existence of ``food
- 900 deserts" in rural and urban areas of Northern Ireland. Agriculture and Human Values.
- 901 2001;18(4):447-57.
- 902 172. Moore JE, Wilson TS, Wareing DR, Humphrey TJ, Murphy PG. Prevalence of thermophilic
- Campylobacter spp. in ready-to-eat foods and raw poultry in Northern Ireland. J Food Prot.
- 904 2002;65(8):1326-8.
- 905 173. Scullion R, Harrington CS, Madden RH. A comparison of three methods for the isolation of
- Arcobacter spp. from retail raw poultry in Northern Ireland. J Food Prot. 2004;67(4):799-804.
- 907 174. Scullion R, Harrington CS, Madden RH. Prevalence of Arcobacter spp. in raw milk and retail
- 908 raw meats in Northern Ireland. J Food Prot. 2006;69(8):1986-90.
- 909 175. Shaw M, Nugent AP, McNulty BA, Walton J, McHugh M, Kane A, et al. What is the availability
- 910 of iodised salt in supermarkets on the Island of Ireland? Eur J Clin Nutr. 2019;73(12):1636-8.
- 911 176. Soultos N, Koidis P, Madden RH. Presence of Listeria and Salmonella spp. in retail chicken in
- 912 Northern Ireland. Lett Appl Microbiol. 2003;37(5):421-3.
- 913 177. Williams JL. Spaces between home and school: The effect of eating location on adolescent
- 914 nutrition. Ecol Food Nutr. 2016;55(1):65-86.
- 915 178. Wilson IG. Salmonella and campylobacter contamination of raw retail chickens from
- different producers: a six year survey. Epidemiol Infect. 2002;129(3):635-45.
- 917 179. Furey S, Farley H, Strugnell C. An investigation into the availability and economic accessibility
- 918 of food items in rural and urban areas of Northern Ireland. International Journal of Consumer
- 919 Studies. 2002;26(4):313-21.
- 920 180. Aljawad A, Morgan MZ, Rees JS, Fairchild R. The availability of novelty sweets within high
- 921 school localities. Br Dent J. 2016;220(11):575-9.
- 922 181. Fairchild R, Collins A. Serving up Healthy and Sustainable School Meals? An Analysis of
- 923 School Meal Provision in Cardiff (UK). Journal of Environmental Policy & Planning. 2011;13(3):209-
- 924 29.
- 925 182. Guy C. Neighbourhood retailing and food poverty: a case study in Cardiff. International
- 926 Journal of Retail & Distribution Management. 2004;32(12):577-81.
- 927 183. Guy Cliff; Clarke Graham; Eyre H. Food retail change and the growth of food deserts: a case
- 928 study of Cardiff. International Journal of Retail & Distribution Management 2004;32(2):72-88.
- 929 184. Guy CM, David G. Measuring physical access to 'healthy foods' in areas of social deprivation:
- a case study in Cardiff. International Journal of Consumer Studies. 2004;28(3):222-34.
- 931 185. Kibblewhite S, Bowker S, Jenkins HR. Vending machines in hospitals are they healthy?
- 932 Nutrition & Food Science. 2010;40(1):26-8.
- 933 186. Meldrum RJ, Garside J, Mannion P, Charles D, Ellis P. Variation in the annual unsatisfactory
- 934 rates of selected pathogens and indicators in ready-to-eat food sampled from the point of sale or
- 935 service in Wales, United Kingdom. J Food Prot. 2012;75(12):2238-40.
- 936 187. Meldrum RJ, Mannion PT, Garside J, Welsh Food Microbiological F. Microbiological quality of
- 937 ready-to-eat food served in schools in Wales, United Kingdom. J Food Prot. 2009;72(1):197-201.
- 938 188. Meldrum RJ, Smith RM. Occurrence of Listeria monocytogenes in sandwiches available to
- 939 hospital patients in Wales, United Kingdom. J Food Prot. 2007;70(8):1958-60.
- 940 189. Meldrum RJ, Smith RM, Ellis P, Garside J, Welsh Food Microbiological F. Microbiological
- 941 quality of randomly selected ready-to-eat foods sampled between 2003 and 2005 in Wales, UK. Int J
- 942 Food Microbiol. 2006;108(3):397-400.

- 943 190. Nakamura R, Suhrcke M, Jebb SA, Pechey R, Almiron-Roig E, Marteau TM. Price promotions
- on healthier compared with less healthy foods: a hierarchical regression analysis of the impact on
- 945 sales and social patterning of responses to promotions in Great Britain. Am J Clin Nutr.
- 946 2015;101(4):808-16.
- 947 191. Newing A, Hood N, Videira F, Lewis J. 'Sorry we do not deliver to your area': geographical
- 948 inequalities in online groceries provision. The International Review of Retail, Distribution and
- 949 Consumer Research. 2021;32(1):80-99.
- 950 192. Eyles H, Webster J, Jebb S, Capelin C, Neal B, Ni Mhurchu C. Impact of the UK voluntary
- 951 sodium reduction targets on the sodium content of processed foods from 2006 to 2011: analysis of
- household consumer panel data. Prev Med. 2013;57(5):555-60.
- 953 193. Hawkesworth S, Silverwood RJ, Armstrong B, Pliakas T, Nanchahal K, Sartini C, et al.
- 954 Investigating the importance of the local food environment for fruit and vegetable intake in older
- men and women in 20 UK towns: a cross-sectional analysis of two national cohorts using novel
- 956 methods. Int J Behav Nutr Phys Act. 2017;14(1):128.
- 957 194. Dolton PJ, Tafesse W. Childhood obesity, is fast food exposure a factor? Econ Hum Biol.
- 958 2022;46:101153.
- 959 195. Scheelbeek PFD, Cornelsen L, Marteau TM, Jebb SA, Smith RD. Potential impact on
- 960 prevalence of obesity in the UK of a 20% price increase in high sugar snacks: modelling study. BMJ.
- 961 2019;366:l4786.
- 962 196. Mason KE, Pearce N, Cummins S. Do neighbourhood characteristics act together to influence
- 963 BMI? A cross-sectional study of urban parks and takeaway/fast-food stores as modifiers of the effect
- of physical activity facilities. Soc Sci Med. 2020;261:113242.
- 965 197. Bassetti E, Khosravi A, Pries AM. Prevalence of Front-of-Pack Warning Signs among
- 966 Commercial Complementary Foods in Seven High and Upper Middle-Income Countries. Nutrients.
- 967 2023;15(7).
- 968 198. Bridge G, Lomazzi M, Santoso CMA, Bedi R. Analysis of the labelling of a sample of
- 969 commercial foods for infants and young children in 13 countries. J Public Health Policy.
- 970 2021;42(3):390-401.
- 971 199. Cameron A, Waterlander WE, Svastisalee CM. The correlation between supermarket size and
- 972 national obesity prevalence. BMC Obesity. 2014;1(1):1-4.
- 973 200. Charlton EL, Kahkonen LA, Sacks G, Cameron AJ. Supermarkets and unhealthy food
- 974 marketing: An international comparison of the content of supermarket catalogues/circulars. Prev
- 975 Med. 2015;81:168-73.
- 976 201. Chepulis L, Everson N, Ndanuko R, Mearns G. The nutritional content of children's breakfast
- 977 cereals: a cross-sectional analysis of New Zealand, Australia, the UK, Canada and the USA. Public
- 978 Health Nutr. 2020;23(9):1589-98.
- 202. Clark M, Springmann M, Rayner M, Scarborough P, Hill J, Tilman D, et al. Estimating the
- 980 environmental impacts of 57,000 food products. Proc Natl Acad Sci U S A.
- 981 2022;119(33):e2120584119.
- 982 203. Cook N, Williams L, D'Agostino M. Prevalence of Norovirus in produce sold at retail in the
- 983 United Kingdom. Food Microbiol. 2019;79:85-9.
- 984 204. Davis R, Boyd CE, Wakefield J, Shatova O, McNevin A, Harris B, Davis DA. Trace element
- 985 concentrations in white leg shrimp Litopenaeus vannamei from retail stores in the EU, UK, and USA
- and the ability to discern country of origin with classification models. Curr Res Food Sci. 2021;4:655-
- 987 61.
- 988 205. Dunford E, Webster J, Woodward M, Czernichow S, Yuan WL, Jenner K, et al. The variability
- 989 of reported salt levels in fast foods across six countries: opportunities for salt reduction. CMAJ.
- 990 2012;184(9):1023-8.
- 991 206. Dunford EK, Ni Mhurchu C, Huang L, Vandevijvere S, Swinburn B, Pravst I, et al. A
- 992 comparison of the healthiness of packaged foods and beverages from 12 countries using the Health
- 993 Star Rating nutrient profiling system, 2013-2018. Obes Rev. 2019;20 Suppl 2:107-15.

- 994 207. Ellis KA, Innocent G, Grove-White D, Cripps P, McLean WG, Howard CV, Mihm M. Comparing
- the fatty acid composition of organic and conventional milk. J Dairy Sci. 2006;89(6):1938-50.
- 996 208. Agency FS. UK-wide Survey of Salmonella and Campylobacter Contamination of Fresh and
- 997 Frozen Chicken on Retail Sale. 2003.
- 998 209. Grashuis J, Hakelius K. Pricing strategies of corporations and consumer co-operatives in the
- 999 food retail sector: Evidence from England, Sweden, and the Netherlands. Journal of Co-Operative
- 1000 Organization and Management. 2023;11(1).
- 1001 210. Heroux M, Iannotti RJ, Currie D, Pickett W, Janssen I. The food retail environment in school
- neighborhoods and its relation to lunchtime eating behaviors in youth from three countries. Health
- 1003 Place. 2012;18(6):1240-7.
- 1004 211. Hieke S, Kuljanic N, Pravst I, Miklavec K, Kaur A, Brown KA, et al. Prevalence of Nutrition and
- 1005 Health-Related Claims on Pre-Packaged Foods: A Five-Country Study in Europe. Nutrients.
- 1006 2016;8(3):137.
- 1007 212. Hobin E, White C, Li Y, Chiu M, O'Brien MF, Hammond D. Nutritional quality of food items on
- 1008 fast-food 'kids' menus': comparisons across countries and companies. Public Health Nutr.
- 1009 2014;17(10):2263-9.
- 1010 213. Hoenink JC, Huang Y, Keeble M, Mackenbach JD, Pinho MG, Burgoine T, Adams J.
- 1011 Socioeconomic distribution of food outlet availability through online food delivery services in seven
- 1012 European countries: A cross-sectional study. Health Place. 2023;84:103135.
- 1013 214. Kaur A, Scarborough P, Hieke S, Kusar A, Pravst I, Raats M, Rayner M. The nutritional quality
- 1014 of foods carrying health-related claims in Germany, The Netherlands, Spain, Slovenia and the United
- 1015 Kingdom. Eur J Clin Nutr. 2016;70(12):1388-95.
- 1016 215. Thornton LE, Cameron AJ, McNaughton SA, Waterlander WE, Sodergren M, Svastisalee C, et
- al. Does the availability of snack foods in supermarkets vary internationally? Int J Behav Nutr Phys
- 1018 Act. 2013;10:56.
- 1019 216. Trichterborn J, Harzer G, Kunz C. Nutrient profiling and food label claims: evaluation of dairy
- 1020 products in three major European countries. Eur J Clin Nutr. 2011;65(9):1032-8.
- 1021 217. Vandevijvere S, Barquera S, Caceres G, Corvalan C, Karupaiah T, Kroker-Lobos MF, et al. An
- 1022 11-country study to benchmark the implementation of recommended nutrition policies by national
- governments using the Healthy Food Environment Policy Index, 2015-2018. Obes Rev. 2019;20 Suppl
- 1024 2:57-66.
- 1025 218. Potter C, Pechey R, Clark M, Frie K, Bateman PA, Cook B, et al. Effects of environmental
- impact labels on the sustainability of food purchases: Two randomised controlled trials in an
- experimental online supermarket. PLoS One. 2022;17(11):e0272800.
- 1028 219. Bandy LK, Hollowell S, Jebb SA, Scarborough P. Changes in the salt content of packaged
- 1029 foods sold in supermarkets between 2015-2020 in the United Kingdom: A repeated cross-sectional
- 1030 study. PLoS Med. 2022;19(10):e1004114.
- 1031 220. Bianchi F, Luick M, Bandy L, Bone J, Kelly S, Farrington J, et al. The impact of altering
- restaurant and menu option position on food selected from an experimental food delivery platform:
- a randomised controlled trial. Int J Behav Nutr Phys Act. 2023;20(1):60.
- 1034 221. De-loyde K, Pilling MA, Munafò MR, Attwood A, Maynard OM. How are milk substitutes
- labelled in the UK? Should the term 'milk' be added to milk substitute labelling? Behavioural Public
- 1036 Policy. 2023:1-17.
- 1037 222. Glover A, Hayes HE, Ni H, Raikos V. A comparison of the nutritional content and price
- 1038 between dairy and non-dairy milks and cheeses in UK supermarkets: A cross sectional analysis. Nutr
- 1039 Health. 2024;30(1):157-65.
- 1040 223. Huang YR, Theis DRZ, Burgoine T, Adams J. Trends in energy and nutrient content of menu
- items served by large UK chain restaurants from 2018 to 2020: an observational study. Bmj Open.
- 1042 2021;11(12):e054804.
- 1043 224. Mcphedran R, Zhuo S, Zamperetti L, Gold N. The effects of Veganuary on meal choices in
- 1044 workplace cafeterias: an interrupted time series analysis. Behavioural Public Policy. 2023.

- 1045 225. Thomas M, Moore JB, Onuselogu DA, Dalton A, Rains T, Lowry E, et al. Supermarket top-up
- of Healthy Start vouchers increases fruit and vegetable purchases in low-income households. Nutr
- 1047 Bull. 2023;48(3):353-64.
- 1048 226. Trewern J, Chenoweth J, Christie I, Halevy S. Does promoting plant-based products in
- 1049 Veganuary lead to increased sales, and a reduction in meat sales? A natural experiment in a
- supermarket setting. Public Health Nutr. 2022;25(11):3204-14.
- 1051 227. Wallis LW, Moore SG. Product promotions in online supermarkets: prevalence of 'High Fat
- 1052 Sugar Salt' (HFSS) products and labelling characteristics. Public Health Nutr. 2023;26(11):2607-18.
- 1053 228. Alonge O, Shiode S, Shiode N. The Impact of Fast-Food Density on Obesity during the COVID-
- 1054 19 Lockdown in the UK: A Multi-Timepoint Study on British Cohort Data. Sustainability. 2023;15(11).
- 1055 229. Bandy LK, Hollowell S, Harrington R, Scarborough P, Jebb S, Rayner M. Assessing the
- 1056 healthiness of UK food companies' product portfolios using food sales and nutrient composition
- 1057 data. PLoS One. 2021;16(8):e0254833.
- 1058 230. Bandy LK, Scarborough P, Harrington RA, Rayner M, Jebb SA. The sugar content of foods in
- the UK by category and company: A repeated cross-sectional study, 2015-2018. PLoS Med.
- 1060 2021;18(5):e1003647.
- 1061 231. Beatty TKM. Do the Poor Pay More for Food? Evidence from the United Kingdom. American
- Journal of Agricultural Economics. 2010;92(3):608-21.
- 1063 232. Brinsden HC, He FJ, Jenner KH, Macgregor GA. Surveys of the salt content in UK bread:
- progress made and further reductions possible. BMJ Open. 2013;3(6).
- 1065 233. Cornelsen L, Mytton OT, Adams J, Gasparrini A, Iskander D, Knai C, et al. Change in non-
- alcoholic beverage sales following a 10-pence levy on sugar-sweetened beverages within a national
- 1067 chain of restaurants in the UK: interrupted time series analysis of a natural experiment. J Epidemiol
- 1068 Community Health. 2017;71(11):1107-12.
- 1069 234. Green MA, Hobbs M, Ding D, Widener M, Murray J, Reece L, Singleton A. The Association
- 1070 between Fast Food Outlets and Overweight in Adolescents Is Confounded by Neighbourhood
- 1071 Deprivation: A Longitudinal Analysis of the Millennium Cohort Study. Int J Environ Res Public Health.
- 1072 2021;18(24).
- 1073 235. Jones NR, Conklin AI, Suhrcke M, Monsivais P. The growing price gap between more and less
- healthy foods: analysis of a novel longitudinal UK dataset. PLoS One. 2014;9(10):e109343.
- 1075 236. Pombo-Rodrigues S, Hashem KM, He FJ, MacGregor GA. Salt and sugars content of breakfast
- 1076 cereals in the UK from 1992 to 2015. Public Health Nutr. 2017;20(8):1500-12.
- 1077 237. Revoredo-Giha C, Renwick A. Retailers Price Behavior in the UK Fresh Fruit and Vegetable
- 1078 Market. Agribusiness. 2012;28(4):451-68.
- 1079 238. Scarborough P, Adhikari V, Harrington RA, Elhussein A, Briggs A, Rayner M, et al. Impact of
- the announcement and implementation of the UK Soft Drinks Industry Levy on sugar content, price,
- product size and number of available soft drinks in the UK, 2015-19: A controlled interrupted time
- 1082 series analysis. PLoS Med. 2020;17(2):e1003025.
- 1083 239. Smith D. Does the local food environment around schools affect diet? Longitudinal
- associations in adolescents attending secondary schools in East London. BMC Public Health. 2013.
- 1085 240. Van Camp D, de Souza Monteiro DM, Hooker NH. Stop or go? How is the UK food industry
- 1086 responding to front-of-pack nutrition labels? European Review of Agricultural Economics.
- 1087 2011;39(5):821-42.
- 1088 241. Nikolaou CK, Lean ME, Hankey CR. Calorie-labelling in catering outlets: acceptability and
- 1089 impacts on food sales. Prev Med. 2014;67:160-5.
- 1090 242. Piernas C, Cook B, Stevens R, Stewart C, Hollowell J, Scarborough P, Jebb SA. Estimating the
- 1091 effect of moving meat-free products to the meat aisle on sales of meat and meat-free products: A
- 1092 non-randomised controlled intervention study in a large UK supermarket chain. PLoS Med.
- 1093 2021;18(7):e1003715.

- 1094 243. Spence S, Matthews JNS, McSweeney L, Adamson AJ, Bradley J. The Effect of a Product
- 1095 Placement Intervention on Pupil's Food and Drink Purchases in Two Secondary Schools: An
- 1096 Exploratory Study. Nutrients. 2022;14(13).
- 1097 244. Ejlerskov KT, Stead M, Adamson A, White M, Adams J. The nature of UK supermarkets'
- 1098 policies on checkout food and associations with healthfulness and type of food displayed: cross-
- sectional study. Int J Behav Nutr Phys Act. 2018;15(1):52.
- 1100 245. Baker N, Popay S, Bennett J, Kneafsey M. Net yield efficiency: Comparing salad and
- 1101 vegetable waste between community supported agriculture and supermarkets in the UK. J Agric
- 1102 Food Syst Co. 2019;8(4):179-92.
- 1103 246. Filimonau V, Nghiem VN, Wang LE. Food waste management in ethnic food restaurants.
- 1104 International Journal of Hospitality Management. 2021;92.
- 1105 247. Milner J, Green R, Dangour AD, Haines A, Chalabi Z, Spadaro J, et al. Health effects of
- adopting low greenhouse gas emission diets in the UK. BMJ Open. 2015;5(4):e007364.
- 1107 248. Scarborough P, Allender S, Clarke D, Wickramasinghe K, Rayner M. Modelling the health
- impact of environmentally sustainable dietary scenarios in the UK. Eur J Clin Nutr. 2012;66(6):710-5.
- 1109 249. Wu Q, Honhon D. Don't waste that free lettuce! Impact of BOGOF promotions on retail
- profit and food waste. Production and Operations Management. 2023;32(2):501-23.
- 1111 250. Cummins SC, McKay L, MacIntyre S. McDonald's restaurants and neighborhood deprivation
- in Scotland and England. Am J Prev Med. 2005;29(4):308-10.
- 1113 251. Dixon-Hardy DW, Curran BA. Types of packaging waste from secondary sources
- 1114 (supermarkets)--the situation in the UK. Waste Manag. 2009;29(3):1198-207.
- 1115 252. Libuy N, Church D, Ploubidis G, Fitzsimons E. Fast food proximity and weight gain in
- childhood and adolescence: Evidence from Great Britain. Health Econ. 2024;33(3):449-65.
- 1117 253. Macdonald L, Cummins S, Macintyre S. Neighbourhood fast food environment and area
- deprivation-substitution or concentration? Appetite. 2007;49(1):251-4.
- 1119 254. Mason K, Pearce N, Cummins S. Neighbourhood built environments, socioeconomic position,
- 1120 and hospital admissions for cardiovascular disease: a prospective study using UK Biobank. medrxiv
- 1121 preprint. 2023.
- 1122 255. Mason KE, Palla L, Pearce N, Phelan J, Cummins S. Genetic risk of obesity as a modifier of
- 1123 associations between neighbourhood environment and body mass index: an observational study of
- 1124 335 046 UK Biobank participants. BMJ Nutr Prev Health. 2020;3(2):247-55.
- 1125 256. Mason KE, Pearce N, Cummins S. Associations between fast food and physical activity
- environments and adiposity in mid-life: cross-sectional, observational evidence from UK Biobank.
- 1127 Lancet Public Health. 2018;3(1):e24-e33.
- 1128 257. Megan Jones ECF, Kathleen Hennessy-Priest, Ricardo J. S. Costa. . A Systematic Cross-
- 1129 Sectional Analysis of British Based Celebrity Chefs' Recipes: Is There Cause for Public Health
- 1130 Concern? Food and Public Health. 2013;3(2):100-10.
- 1131 258. Penney TL, Burgoine T, Monsivais P. Relative Density of Away from Home Food
- 1132 Establishments and Food Spend for 24,047 Households in England: A Cross-Sectional Study. Int J
- 1133 Environ Res Public Health. 2018;15(12).
- 1134 259. Robinson E, Burton S, Gough T, Jones A, Haynes A. Point of choice kilocalorie labelling in the
- 1135 UK eating out of home sector: a descriptive study of major chains. BMC Public Health.
- 1136 2019;19(1):649.
- 1137 260. Robinson E, Jones A, Whitelock V, Mead BR, Haynes A. (Over)eating out at major UK
- restaurant chains: observational study of energy content of main meals. BMJ. 2018;363:k4982.
- 1139 261. Stones C. Online food nutrition labelling in the UK: how consistent are supermarkets in their
- 1140 presentation of nutrition labels online? Public Health Nutr. 2016;19(12):2175-84.
- 1141 262. Theis DRZ, Adams J. Differences in energy and nutritional content of menu items served by
- popular UK chain restaurants with versus without voluntary menu labelling: A cross-sectional study.
- 1143 PLoS ONE. 2019;14(10) (no pagination).

- 1144 263. Young M, Coppinger T, Reeves S. The Nutritional Value of Children's Menus in Chain
- 1145 Restaurants in the United Kingdom and Ireland. J Nutr Educ Behav. 2019;51(7):817-25.
- 1146 264. Chu BTY, Irigaray CP, Hillier SE, Clegg ME. The sugar content of children's and lunchbox
- beverages sold in the UK before and after the soft drink industry levy. Eur J Clin Nutr.
- 1148 2020;74(4):598-603.
- 1149 265. Espinoza-Orias N, Azapagic A. Understanding the impact on climate change of convenience
- food: Carbon footprint of sandwiches. Sustainable Production and Consumption. 2018;15:1-15.
- 1151 266. Garcia AL, Curtin L, Ronquillo JD, Parrett A, Wright CM. Changes in the UK baby food market
- surveyed in 2013 and 2019: the rise of baby snacks and sweet/savoury foods. Arch Dis Child.
- 1153 2020;105(12):1162-6.
- 1154 267. Garcia AL, Raza S, Parrett A, Wright CM. Nutritional content of infant commercial weaning
- 1155 foods in the UK. Arch Dis Child. 2013;98(10):793-7.
- 1156 268. Gillespie I, Little C, Mitchell R. Microbiological examination of cold ready-to-eat sliced meats
- from catering establishments in the United Kingdom. J Appl Microbiol. 2000;88(3):467-74.
- 1158 269. Hashem KM, He FJ, Alderton SA, MacGregor GA. Cross-sectional survey of the amount of
- sugar and energy in cakes and biscuits on sale in the UK for the evaluation of the sugar-reduction
- 1160 programme. BMJ Open. 2018;8(7):e019075.
- 1161 270. Hashem KM, He FJ, Jenner KH, MacGregor GA. Cross-sectional survey of the amount of free
- sugars and calories in carbonated sugar-sweetened beverages on sale in the UK. BMJ Open.
- 1163 2016;6(11):e010874.
- 1164 271. Hashem KM, He FJ, MacGregor GA. Cross-sectional surveys of the amount of sugar, energy
- and caffeine in sugar-sweetened drinks marketed and consumed as energy drinks in the UK between
- 2015 and 2017: monitoring reformulation progress. BMJ Open. 2017;7(12):e018136.
- 1167 272. Hashem KM, He FJ, MacGregor GA. Labelling changes in response to a tax on sugar-
- 1168 sweetened beverages, United Kingdom of Great Britain and Northern Ireland. Bull World Health
- 1169 Organ. 2019;97(12):818-27.
- 1170 273. Marty L, Evans R, Sheen F, Humphreys G, Jones A, Boyland E, Robinson E. The energy and
- 1171 nutritional content of snacks sold at supermarkets and coffee shops in the UK. J Hum Nutr Diet.
- 1172 2021;34(6):1035-41.
- 1173 274. Moore JB, Horti A, Fielding BA. Evaluation of the nutrient content of yogurts: a
- comprehensive survey of yogurt products in the major UK supermarkets. BMJ Open.
- 1175 2018;8(8):e021387.
- 1176 275. Moore JB, Sutton EH, Hancock N. Sugar Reduction in Yogurt Products Sold in the UK between
- 1177 2016 and 2019. Nutrients. 2020;12(1).
- 1178 276. Sarkar C, Webster C, Gallacher J. Are exposures to ready-to-eat food environments
- associated with type 2 diabetes? A cross-sectional study of 347 551 UK Biobank adult participants.
- 1180 Lancet Planet Health. 2018;2(10):e438-e50.
- 1181 277. Zand N, Chowdhry BZ, Wray DS, Pullen FS, Snowden MJ. Elemental content of commercial
- 'ready to-feed' poultry and fish based infant foods in the UK. Food Chem. 2012;135(4):2796-801.
- 1183 278. Howard S, Adams J, White M. Nutritional content of supermarket ready meals and recipes by
- television chefs in the United Kingdom: cross sectional study. BMJ. 2012;345:e7607.
- 1185 279. Huang Y, Burgoine T, Theis DR, Adams J. Differences in energy and nutrient content of menu
- items served by large chain restaurants in the USA and the UK in 2018. Public Health Nutr.
- 1187 2022;25(10):1-9.
- 1188 280. Little CL, Gillespie IA, Mitchell RT, Local Authority Co-ordinating body on F, Trading S, Public
- 1189 Health Laboratory S. Microbiological examination of ready-to-eat burgers sampled anonymously at
- the point of sale in the United Kingdom. Commun Dis Public Health. 2001;4(4):293-9.
- 1191 281. Muc M, Jones A, Roberts C, Sheen F, Haynes A, Robinson E. A bit or a lot on the side?
- 1192 Observational study of the energy content of starters, sides and desserts in major UK restaurant
- 1193 chains. BMJ Open. 2019;9(10):e029679.

- 1194 282. Nikolaou CK, Hankey CR, Lean ME. Nutritional adequacy of meals from an independent
- catering facility versus chain restaurants for young adults. Nutr Health. 2017;23(1):51-6.
- 1196 283. Parnham JC, Millett C, Vamos EP. School meals in the UK: ultra-processed, unequal and
- inadequate. Public Health Nutr. 2023;26(1):297-301.
- 1198 284. Takacs B, Stegemann JA, Kalea AZ, Borrion A. Comparison of environmental impacts of
- individual meals Does it really make a difference to choose plant-based meals instead of meat-
- based ones? Journal of Cleaner Production. 2022;379.
- 1201 285. Zand N, Chowdhry BZ, Pollard LV, Pullen FS, Snowden MJ, Zotor FB. Commercial 'ready-to-
- 1202 feed' infant foods in the UK: macro-nutrient content and composition. Matern Child Nutr.
- 1203 2015;11(2):202-14.
- 1204 286. Coyne KJ, Baldridge AS, Huffman MD, Jenner K, Xavier D, Dunford EK. Differences in the
- sodium content of bread products in the USA and UK: implications for policy. Public Health Nutr.
- 1206 2018;21(3):632-6.
- 1207 287. Bandy LK, Scarborough P, Harrington RA, Rayner M, Jebb SA. Reductions in sugar sales from
- 1208 soft drinks in the UK from 2015 to 2018. BMC Med. 2020;18(1):20.
- 1209 288. Coffey AA, Lillywhite R, Oyebode O. Meat versus meat alternatives: which is better for the
- 1210 environment and health? A nutritional and environmental analysis of animal-based products
- 1211 compared with their plant-based alternatives. J Hum Nutr Diet. 2023;36(6):2147-56.
- 1212 289. Scarborough P, Appleby PN, Mizdrak A, Briggs AD, Travis RC, Bradbury KE, Key TJ. Dietary
- 1213 greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim
- 1214 Change. 2014;125(2):179-92.
- 1215 290. Neumann NJ, Eichner G, Fasshauer M. Flavour, emulsifiers and colour are the most frequent
- markers to detect food ultra-processing in a UK food market analysis. Public Health Nutr.
- 1217 2023;26(12):3303-10.
- 1218 291. Nakamura R, Pechey R, Suhrcke M, Jebb SA, Marteau TM. Sales impact of displaying
- 1219 alcoholic and non-alcoholic beverages in end-of-aisle locations: an observational study. Soc Sci Med.
- 1220 2014;108(100):68-73.
- 1221 292. Jones P, Comfort D, Hillier DJ, editors. Interpretations of the Concept of Sustainability
- 1222 Amongst the UK's Leading Food and Drink Wholesalers 2016.
- 1223 293. Dicken SJ, Batterham RL, Brown A. Nutrients or processing? An analysis of food and drink
- 1224 items from the UK National Diet and Nutrition Survey based on nutrient content, the NOVA
- 1225 classification and front of package traffic light labelling. Br J Nutr. 2024;131(9):1619-32.
- 1226 294. Cooper S, Nelson M. 'Economy' line foods from four supermarkets and brand name
- equivalents: a comparison of their nutrient contents and costs. J Hum Nutr Diet. 2003;16(5):339-47.
- 1228 295. Zand N, Chowdhry BZ, Zotor FB, Wray DS, Amuna P, Pullen FS. Essential and trace elements
- 1229 content of commercial infant foods in the UK. Food Chem. 2011;128(1):123-8.
- 1230 296. Wood G, Evans S, Pointon-Bell K, Rocha JC, MacDonald A. Special Low Protein Foods in the
- 1231 UK: An Examination of Their Macronutrient Composition in Comparison to Regular Foods. Nutrients.
- 1232 2020;12(6).
- 1233 297. Bath SC, Button S, Rayman MP. Iodine concentration of organic and conventional milk:
- implications for iodine intake. Br J Nutr. 2012;107(7):935-40.
- 1235 298. Dalziel CJ, Kliem KE, Givens DI. Fat and fatty acid composition of cooked meat from UK retail
- chickens labelled as from organic and non-organic production systems. Food Chem. 2015;179:103-8.
- 1237 299. Fry L, Madden AM, Fallaize R. An investigation into the nutritional composition and cost of
- 1238 gluten-free versus regular food products in the UK. J Hum Nutr Diet. 2018;31(1):108-20.
- 1239 300. Ghodsian B, Madden AM. Evaluating the </=10:1 wholegrain criterion in identifying nutrient
- 1240 quality and health implications of UK breads and breakfast cereals. Public Health Nutr.
- 1241 2018;21(6):1186-93.
- 1242 301. Hashem KM, He FJ, Jenner KH, MacGregor GA. Cross-sectional survey of salt content in
- cheese: a major contributor to salt intake in the UK. BMJ Open. 2014;4(8):e005051.

- 1244 302. Kaur A, Scarborough P, Matthews A, Payne S, Mizdrak A, Rayner M. How many foods in the
- 1245 UK carry health and nutrition claims, and are they healthier than those that do not? Public Health
- 1246 Nutr. 2016;19(6):988-97.
- 1247 303. Khehra R, Fairchild RM, Morgan MZ. UK children's breakfast cereals an oral health
- 1248 perspective. Br Dent J. 2018;225(2):164-9.
- 1249 304. Ogundijo DA, Tas AA, Onarinde BA. An assessment of nutrition information on front of pack
- 1250 labels and healthiness of foods in the United Kingdom retail market. BMC Public Health.
- 1251 2021;21(1):220.
- 1252 305. Brereton N. Survey of metals in commercial infant foods, infant formula and non-infant
- specific foods- Report for the UK Food Standards Agency (FS102048). The Food and Environment
- 1254 Research Agency; 2014 March 2014.
- 1255 306. Bath SC, Button S, Rayman MP. Availability of iodised table salt in the UK is it likely to
- influence population iodine intake? Public Health Nutr. 2014;17(2):450-4.
- 1257 307. Lan H, Dobson PW. Healthy Competition to Support Healthy Eating? An Investigation of Fruit
- and Vegetable Pricing in UK Supermarkets. Journal of Agricultural Economics. 2017;68(3):881-900.
- 1259 308. Albalawi A, Hambly C, Speakman J. Associations of Food Outlet Densities with Obesity
- Measures Identify Fish and Chip Shops as a Uniquely Important Problem. Nutrients. 2020;12(4):1-68.
- 1261 309. Sagoo SK, Little CL, Mitchell RT. The microbiological examination of ready-to-eat organic
- vegetables from retail establishments in the United Kingdom. Lett Appl Microbiol. 2001;33(6):434-9.
- 1263 310. Wang Y, Lehane C, Ghebremeskel K, Crawford MA. Modern organic and broiler chickens sold
- for human consumption provide more energy from fat than protein. Public Health Nutr.
- 1265 2010;13(3):400-8.
- 1266 311. Gormley FJ, Little CL, Murphy N, de Pinna E, McLauchlin J. Pooling raw shell eggs: Salmonella
- 1267 contamination and high risk practices in the United Kingdom food service sector. J Food Prot.
- 1268 2010;73(3):574-8.
- 1269 312. Meldrum RJ, Little CL, Sagoo S, Mithani V, McLauchlin J, de Pinna E. Assessment of the
- 1270 microbiological safety of salad vegetables and sauces from kebab take-away restaurants in the
- 1271 United Kingdom. Food Microbiol. 2009;26(6):573-7.
- 1272 313. Reynolds CJ, Horgan GW, Whybrow S, Macdiarmid JI. Healthy and sustainable diets that
- meet greenhouse gas emission reduction targets and are affordable for different income groups in
- 1274 the UK. Public Health Nutr. 2019;22(8):1503-17.
- 1275 314. Ni Mhurchu C, Capelin C, Dunford EK, Webster JL, Neal BC, Jebb SA. Sodium content of
- processed foods in the United Kingdom: analysis of 44,000 foods purchased by 21,000 households.
- 1277 Am J Clin Nutr. 2011;93(3):594-600.
- 1278 315. Shaw H. Food access, diet and health in the UK: an empirical study of Birmingham. British
- 1279 Food Journal. 2012;114(4-5):598-616.
- 1280 316. Wickramasinghe KK, Rayner M, Goldacre M, Townsend N, Scarborough P. Contribution of
- 1281 healthy and unhealthy primary school meals to greenhouse gas emissions in England: linking
- nutritional data and greenhouse gas emission data of diets. Eur J Clin Nutr. 2016;70(10):1162-7.
- 1283 317. Bouga M, Combet E. Emergence of Seaweed and Seaweed-Containing Foods in the UK:
- Focus on Labeling, Iodine Content, Toxicity and Nutrition. Foods. 2015;4(2):240-53.
- 1285 318. Prowse R, Lawlor N, Powell R, Neumann EM. Creating healthy food environments in
- recreation and sport settings using choice architecture: a scoping review. Health Promot Int.
- 1287 2023;38(5).
- 1288 319. Macdiarmid JI, Kyle J, Horgan GW, Loe J, Fyfe C, Johnstone A, McNeill G. Sustainable diets for
- 1289 the future: Can we contribute to reducing greenhouse gas emissions by eating a healthy diet? Am J
- 1290 Clin Nutr. 2012;96(3):632-9.
- 1291 320. Revoredo-Giha C, Akaichi F, Chalmers N. Trading on Food Quality due to Changes in Prices:
- 1292 Are There Any Nutritional Effects? Nutrients. 2019;12(1).

- 1293 321. Stewart C, Piernas C, Cook B, Jebb SA. Trends in UK meat consumption: analysis of data from
- 1294 years 1-11 (2008-09 to 2018-19) of the National Diet and Nutrition Survey rolling programme. Lancet
- 1295 Planet Health. 2021;5(10):e699-e708.
- 1296 322. Briggs A, Kehlbacher A, Tiffin R, Garnett T, Rayner M, Scarborough P. Incorporating the
- societal cost of greenhouse gases into the price of foods could save lives from cardiovascular disease
- and cancer in England: a comparative risk assessment modelling study. PLoS Medicine. 2016.
- 1299 323. Dogbe W, Revoredo-Giha C. Nutritional and Environmental Assessment of Increasing the
- 1300 Content of Fruit and Vegetables in the UK Diet. Sustainability. 2021;13(3):1076.
- 1301 324. Coley D, Howard M, Winter M. Local food, food miles and carbon emissions: A comparison
- of farm shop and mass distribution approaches. Food Policy. 2009;34(2):150-5.
- 1303 325. Aceves-Martins M, Bates RL, Craig LCA, Chalmers N, Horgan G, Boskamp B, de Roos B.
- 1304 Nutritional Quality, Environmental Impact and Cost of Ultra-Processed Foods: A UK Food-Based
- 1305 Analysis. Int J Environ Res Public Health. 2022;19(6).
- 1306 326. Aceves-Martins M, Bates RL, Craig LCA, Chalmers N, Horgan G, Boskamp B, de Roos B. Food-
- 1307 Level Analysis to Identify Dietary Choices With the Highest Nutritional Quality and Lowest
- 1308 Greenhouse Gas Emissions and Price. Front Nutr. 2022;9:851826.
- 1309 327. Gunning Y, Fong LKW, Watson AD, Philo M, Kemsley EK. Quantitative authenticity testing of
- 1310 buffalo mozzarella via αs1-Casein using multiple reaction monitoring mass spectrometry. Food
- 1311 Control. 2019;101:189-97.
- 1312 328. Elson R, Burgess F, Little CL, Mitchell RT, Local Authorities Co-Ordinators of Regulatory S, the
- 1313 Health Protection A. Microbiological examination of ready-to-eat cold sliced meats and pate from
- catering and retail premises in the UK. J Appl Microbiol. 2004;96(3):499-509.
- 1315 329. Macintyre S, McKay L, Cummins S, Burns C. Out-of-home food outlets and area deprivation:
- case study in Glasgow, UK. Int J Behav Nutr Phys Act. 2005;2(16):16.
- 1317 330. Rahilly J, Williams A, Chang M, Cummins S, Derbyshire D, Hassan S, et al. Changes in the
- 1318 number and outcome of takeaway food outlet planning applications in response to adoption of
- management zones around schools in England: A time series analysis. Health Place. 2024;87:103237.
- 1320 331. Li J, Green C, Reynolds A, Shi H, Rotchell JM. Microplastics in mussels sampled from coastal
- 1321 waters and supermarkets in the United Kingdom. Environ Pollut. 2018;241:35-44.
- 1322 332. McLauchlin J AH, Elliott A, Forester E, Jørgensen F, Willis C. . Microbiological quality of raw
- drinking milk and unpasteurised dairy products: results from England 2013–2019. . Epidemiology and
- 1324 Infection 2020. 2020;148.
- 1325 333. Roe M, Pinchen H, Church S, Elahi S, Walker M, Farron-Wilson M, et al. Trans fatty acids in a
- range of UK processed foods. Food Chem. 2013;140(3):427-31.
- 1327 334. Sagoo SK, Little CL, Greenwood M. Microbiological study of cooked crustaceans and
- molluscan shellfish from UK production and retail establishments. Int J Environ Health Res.
- 1329 2007;17(3):219-30.
- 1330 335. Garcia AL, Menon R, Parrett A. Extensive use of on-pack promotional claims on commercial
- 1331 baby foods in the UK. Arch Dis Child. 2022;107(6):606-11.
- 1332 336. Jones M, Pitt H, Oxford L, Bray I, Kimberlee R, Orme J. Association between Food for Life, a
- 1333 Whole Setting Healthy and Sustainable Food Programme, and Primary School Children's
- 1334 Consumption of Fruit and Vegetables: A Cross-Sectional Study in England. Int J Environ Res Public
- 1335 Health. 2017;14(6).
- 1336 337. Scarborough P, Matthews A, Eyles H, Kaur A, Hodgkins C, Raats MM, Rayner M. Reds are
- more important than greens: how UK supermarket shoppers use the different information on a
- traffic light nutrition label in a choice experiment. Int J Behav Nutr Phys Act. 2015;12:151.
- 1339 338. Notarnicola B, Tassielli G, Renzulli PA, Castellani V, Sala S. Environmental impacts of food
- consumption in Europe. Journal of Cleaner Production. 2017;140:753-65.
- 1341 339. Crippa M, Solazzo E, Guizzardi D, Monforti-Ferrario F, Tubiello FN, Leip A. Food systems are
- responsible for a third of global anthropogenic GHG emissions. Nat Food. 2021;2(3):198-209.

- 1343 340. Monsivais P, Aggarwal A, Drewnowski A. Time spent on home food preparation and
- indicators of healthy eating. Am J Prev Med. 2014;47(6):796-802.
- 1345 341. Traill WB, Chambers SA, Butler L. Attitudinal and demographic determinants of diet quality
- and implications for policy targeting. J Hum Nutr Diet. 2012;25(1):87-94.
- 1347 342. Aceves-Martins M, Denton P, de Roos B. Ready meals, especially those that are animal-
- based and cooked in an oven, have lower nutritional quality and higher greenhouse gas emissions
- and are more expensive than equivalent home-cooked meals. Public Health Nutr. 2023;26(3):531-9.
- 1350 343. (DEFRA) DoEFaRA. National statistics Family Food 2019-20 27 January 2022 [Available from:
- 1351 https://www.gov.uk/government/statistics/family-food-201920/family-food-201920#table-11-uk-
- expenditure-on-food-and-drink-in-real-terms-201920supabcsup.
- 1353 344. Scotland FS. Situation Report: Changes to shopping and eating behaviours in Scotland during
- the COVID-19 pandemic in 2020. Scotland; 2020.
- 1355 345. Susannah Irvine AG, Brigid Francis-Devine. Food banks in the UK. House of Commons Library;
- 1356 14 July 2022.
- 1357 346. Goudie S. Why food and diets should be central to the Government's levelling up agenda.
- 1358 White paper. The Food Foundation; 2022 31/01/2022.
- 1359 347. Hansen KL, Golubovic S, Eriksen CU, Jorgensen T, Toft U. Effectiveness of food environment
- 1360 policies in improving population diets: a review of systematic reviews. Eur J Clin Nutr.
- 1361 2022;76(5):637-46.
- 1362 348. Far-reaching ban on single-use plastics in England [press release]. 2023.
- 1363 349. Directorate EaF. Food waste reduction: action plan. 24 April 2019.
- 1364 350. A Green Growth Strategy for Northern Ireland Balancing our climate, environment and
- economy. In: Department for Agriculture EaRAD, editor. 2022.
- 1366 351. The Food (Promotion and Placement) England Regulations 2021 No. 1368 (2021).
- 1367 352. Scottish Government Consultation on Restricting Promotions of Food and Drink High in Fat,
- 1368 Sugar or Salt. July 2022.
- 1369 353. Government W. Healthy Food Environment -Exploring proposals to make the food
- 1370 environment in Wales healthier. 2022.
- 1371 354. Monsivais P, Francis O, Lovelace R, Chang M, Strachan E, Burgoine T. Data visualisation to
- 1372 support obesity policy: case studies of data tools for planning and transport policy in the UK. Int J
- 1373 Obes (Lond). 2018;42(12):1977-86.

1374

1375 Figure Legends

- 1376 **Figure 1.** PRISMA flow diagram for systematic review of food environments in the UK.
- 1377 **Figure 2.** Geographic distribution of number of articles by country in a systematic review of
- the UK food environment (n=312).
- 1379 **Figure 3.** Number of articles by type of food environment and country in a systematic review
- of the UK food environment. Categories are non-exclusive, i.e., articles that evaluated more
- than one type of food environment are counted more than once.
- Figure 4. Number of articles by domain of food environment in a systematic review of the UK
- food environment (n=312). The colored boxes represent the domains while the number on the bar
- represents the number of articles in the domains. The presence of multiple, colored boxes signifies more
- than one domain.

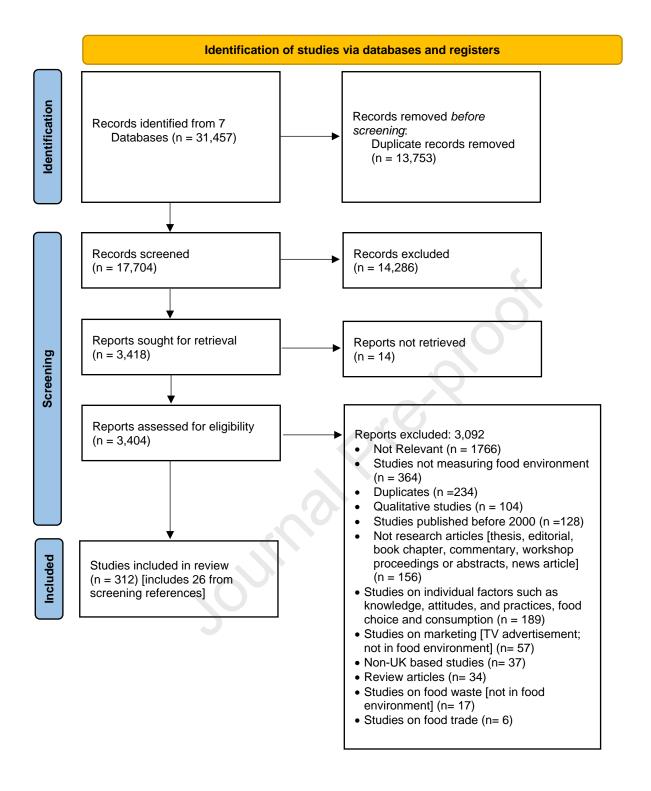
John Marie President

1386	Figure 5. Type of methodology under each domain of food environment in a systematic
1387	review of the UK food environment. Categories are non-exclusive, i.e., articles that used
1388	more than one methodology are counted more than once.
1389	Tables
1390	

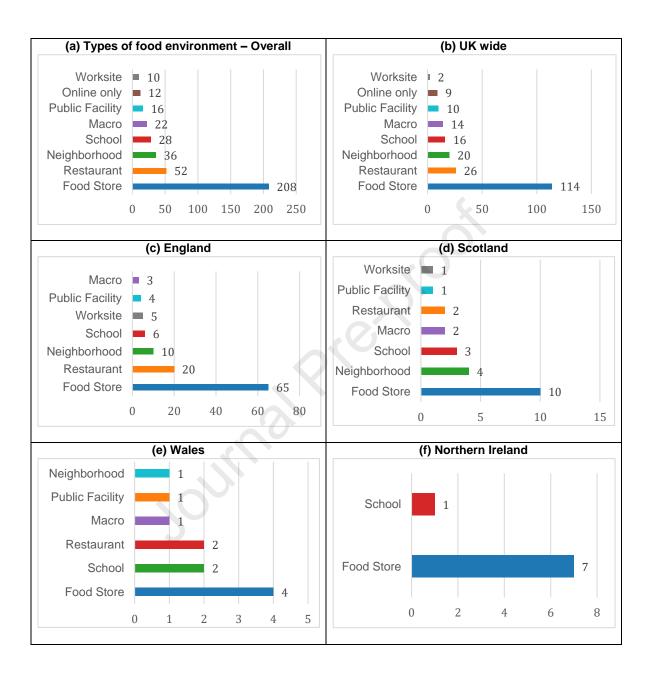
Domain	Definition	
Availability	The presence of a particular food item in a specific physical space or	
	range	
Affordability	The cost of food items in comparison to other foods or to income	
	benchmarks (e.g., % of median income or % of poverty line)	
Promotion	Factors that impact on the attractiveness of foods like packaging,	
	labelling (including traffic light labelling) and placement in the store	
Product characteristics	Features such as food packaging, nutrient and microbial content of	
(Quality)	foods, processing of foods and freshness of foods	
Convenience	Time spent procuring, cooking and consuming foods	
Sustainability	The environmental and social impact of food consumption	

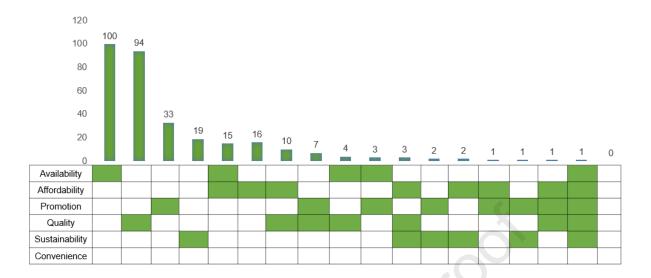
Table 2. Definitions of methodologies to measure the food environment		
Name	Definition	Example
Geographic analysis Menu	Analysis of data collected for a specific geographic area. This includes, for example, counts of the number of food stores or restaurants; and distance to the nearest food stores or restaurants Collects standardized	Number of fast-food restaurants and convenience stores around home and school neighborhoods for 3,089 adolescents (121)
analysis	information from menus	content of menu items from 100 restaurants in the UK (262)
Market basket survey	Collects standardized information (on food characteristics, price, product placement, availability or including pictures of products) for a pre-defined list of foods via direct observation of the food environment or online. These foods may be based on foods frequently consumed by the population or foods of public health concern. Typically used in food store environments	Using a healthy food basket to determine availability and pricing of key items from shops in two localities (98)
Sales/ purchase analysis	Use data from sales, cashier receipts, and annotated receipts to assess food purchasing patterns	An experimental study to examine the effect on vegetarian sales by increasing the proportion of vegetarian options available in university cafeterias (69)
Nutrient fact panel analysis	The nutrient content of foods available in a food environment is analyzed using existing information provided on the product itself (e.g., nutrient fact panel or claims on labeling) or using a nutrient database	Comparion of the Nutrition Information Panel content, serving size and package size of children's ready-to-eat breakfast cereals in 5 countries (201).
Nutrient analysis	Food samples are collected from a food outlet and analyzed in a laboratory for specific nutrients	Trans fatty acid content of 62 processed food (pizza, garlic bread, breakfast cereals, quiche, fat spreads,

		fish and meat products,
		chips, savoury snacks,
		confectionery and ice
		cream) purchased from
		supermarkets, independent
		retailers and takeaway
		outlets (333)
Contaminant	Food samples are collected	Assessment of the
	Food samples are collected from a food outlet and analyzed	
analysis	•	microbiological safety of
	in a laboratory for contaminants	salad vegetables and sauces
	such as pesticides or pathogens	from kebab take-away
		restaurants in the UK (312)
Physical	Data collected via physical	Association of supermarket
measurements	measurements of stores such as	size (measured as total aisle
	aisle length, shelf length, and	length) and national obesity
	placement	prevalence in England (199)
Ecological	Life cycle assessments	Environmental Impact
footprint	determine the environmental	Score of sandwiches and
analysis	impact of foods available in	beverages available in 18
	food environments	university-owned food
		outlets (71)
Policy	Articles analyzing policies or	
analysis	recommendations that impact	Banning the promotion of
	on the domains of food	foods high in fat, sugar and
	environments such as taxes or	salt in Scotland has the
	food labelling requirements	potential to reduce the number
	rood lacening requirements	of calories, sugar, saturated
		fats and sodium for most food
	3	groups (165)
Food supply	Uses national level data such as	Modelling study to shift
analysis	food prices, food availability, or	current diets to diets that
	food consumption	meet dietary
		recommendations for
		health, have lower
		greenhouse gas emissions
		and are affordable for
		different income groups
		(313)
		(0.20)

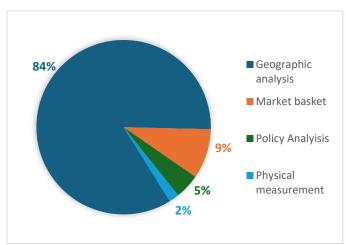

Table 3. Key characteristics of articles included in	the systematic review of the UK	
food environment (n=312)		
Characteristic	n (%) or range	
Geography		
UK-wide	87 (28)	
England	120 (38)	
Scotland	27 (9)	
Northern Ireland	9 (3)	
Wales	10 (3)	
Great Britain	7 (2)	
Coastal waters of UK	1 (1)	
Scotland and England	3 (1)	
Multi-country	21 (7)	
Not able to assign	27 (8)	
Location		
Not specified	262 (84)	
Both rural and urban	18 (6)	
Only urban	32 (10)	
Year of publication		
2000-2005	23 (7)	
2006-2010	30 (10)	
2011-2015	75 (24)	
2016-2020	103 (33)	
Beyond 2020	81 (26)	
Year of data collection		
Not reported	76 (24)	
≤2000	12 (4)	
2001-2005	18 (6)	
2006-2010	47 (15)	
2011-2015	55 (18)	
2016-2020	88 (28)	

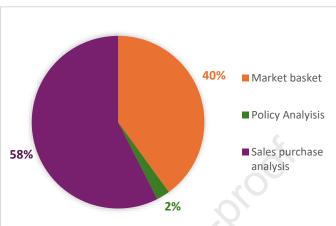
Beyond 2020	16 (5)
Population	
Infant	7 (2)
Children	35 (11)
Adolescents	26 (9)
Adults	57 (18)
Elderly	3 (1)
N/A	184 (59)
Study design	C.
Cross-sectional	242 (78)
Longitudinal	31 (10)
Case study	10 (3)
Modelling	6 (2)
Randomized controlled trial	6 (2)
Intervention	17 (5)
Sample size	
People	115 to 42,838
Store	3 to 8,864
Food samples or products	101 to 68,153
Meals	8 to 2,255,404
Areas	3 to 6,781
Type of food(s) evaluated	
Unhealthy foods (fast foods, sweets, cakes,	26 (9)
pastries, etc.)	
Healthy foods (salads, whole grain cereals, dried	11 (4)
fruits, nuts etc.)	
Mix of healthy and unhealthy foods (salads and	31 (10)
confectionary)	
Fruits and vegetables	18 (6)
Meat and seafood	17 (5)
Milk and milk products	13 (4)
Beverages (including alcoholic beverages)	9 (3)

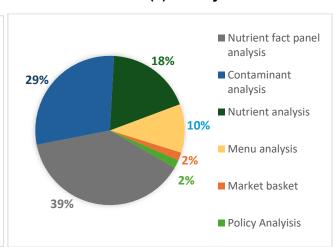

Bread	5 (2)
Baby/ infant food	3 (1)
Articles on multiple food groups	9 (3)
Ready-to-eat	34 (11)
Special foods- e.g., low protein, gluten free, meat	7 (2)
alternatives	
Meals (meals served at schools, restaurants,	32 (10)
workplaces, etc.)	
Food outlets	97 (31)
Source of Funding	
Government	161 (52)
Charitable NGOs, Foundations, or Professional	33 (10)
societies	(O)
Intergovermental bodies	9 (3)
Private charities	5 (2)
Joint funding (Government and Industry)	1 (0)
Joint funding (Government and Private charity)	1 (0)
Not mentioned	63 (20)


Table 4. Outcomes stated in articles included in the systematic review of the UK food environment (n=312)

	Outcomes n (%)		
Country	None- Descriptive	Diet	Health
UK wide	108 (54)	50 (79)	24 (58)
England	48 (23)	12 (18)	17 (40)
Scotland	26 (13)	2 (3)	0 (0)
Wales	9 (4)	0 (0)	0 (0)
Northern Ireland	9 (4)	0 (0)	0 (0)
Multiple countries within UK	6 (3)	0 (0)	1 (2)
Total	206	64	42

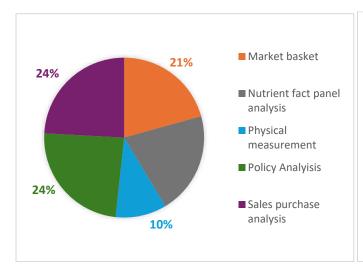


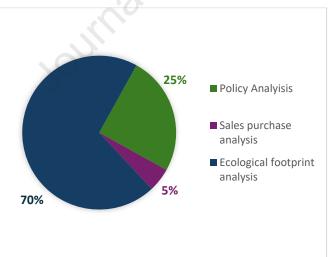



(a) Availability

(b)Affordability

(c) Quality





(d) Promotion

(e) Sustainability

Declaration of interests

\Box The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
☑ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Dr Christian Reynolds reports a relationship with Centre for Food Policy, City St Georges, University of London that includes: consulting or advisory. Dr Christian Reynolds reports a relationship with The Alpro Foundation that includes: funding grants. Dr Christian Reynolds reports a relationship with The Folger Institute that includes: speaking and lecture fees. Dr Christian Reynolds reports a relationship with The Nutrition Society that includes: travel reimbursement. Dr Christian Reynolds reports a relationship with The Institute of Food Science & Technology, The Nutrition Society that includes: consulting or advisory. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.