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ABSTRACT
This thesis investigates the addition of experience learning components to types of 
general problem solver which have been advocated by the Artificial Intelligence 
community for use in planning domains. The learning components considered preserve 
the general applicability of a problem solver while allowing for it to improve it’s efficiency 
when applied to a particular domain. Various heuristic acquisition methods are 
presented, as well as three types of problem solver; together they have all been 
implemented in a large integrated system called "FM".

A specific aim is to demonstrate that a particular planning and learning configuration can 
significantly improve its efficiency by the automatic acquisition of strong heuristics, 
using a novel heuristic aquisition method. The body of the thesis concentrates on this 
particular configuration which proved successful in a range of planning applications.
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INTRODUCTION

In early 1986, after being engaged for some time in a study of 

Machine Learning, I had concluded that most of the research 

carried out in the area lacked immediate evaluation because 

systems were not fixed to a performance component. For example, a 
majority of work published in Concept Induction did not include 
applications for the induced concept descriptions which could act 

as evaluators for the quality of learning.

On the other hand, in the general-problem-solving area, little 
work had been carried out on systems which could perform automatic 
search improvement through experience. Early work on the Soar 
project [Laird et al 84] indicated that it was possible for 

general problem solvers to improve their performance significantly 
in this way; at about the same time Korf [Korf 85] suggested that 

as well as implanting problem solvers with weak heuristics, to 
maintain their generality but improve their efficiency they should 

also be equipped with weak methods for generating strong 
heuristics (he introduced the phrase 'weak methods for learning' 
to describe this).

It seemed natural to attack both these issues with one system, and 
therefore I composed a research plan [McCluskey 86] with the 

following proposal as its main conclusion:

'[I propose] ..the construction of a "heuristic-learning planning 

shell" which would tackle the efficiency/generality/power trade-

off problems in the following way: The shell would be applicable 
to a class of problem domains; when it attempts problems in a 
particular domain it starts by applying the traditional weak 
methods of general heuristic search but from experience develops a 

strong model with which to guide subsequent searches’.

The general aim of this thesis is therefore to investigate the 

usefulness of experience learning techniques when applied to 

general problem solving systems; specifically the thesis aims to 

demonstrate that a particular general planner configuration can 
significantly improve its efficiency by the automatic acquisition 
of strong heuristics (c-chunks), when supplied with an application 

domain. This work improves on previous research in that the 

c-chunks created are very general but useful heuristics, which 

are refined in the light of future problem solving. Being general, 

they minimise matching costs yet are more widely applicable than, 
for example, heuristics which would be obtained using pure 
Explanation Based Learning techniques of [Mitchell 86].

I followed the path of learning through experience because 

natural intelligence is inextricably bound to this type of 
learning; but also experience-based methods have focus. What is to 
be learned is determined by previous experience or use; systems 

should improve their performance with the particular type of
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problem in. which they have had experience. This contrasts with 
preprocessing methods which lack direction or bias. It is also 
consistent with the idea that the set of relevant problems should 
be much smaller that the set of possible problems for experience 
learning to be worthwhile ([Van der Velde 86], p.13, puts forward 

this idea in his work on the conversion from deep to shallow 
knowledge in a second generation expert system).

I assume the reader is familiar with basic concepts in the field 
of Machine Learning, and in particular the relationship between 
the sub-field studied here and other sub-fields: other works have 
adequately covered this, e.g. [Carbonell 83], [Mitchell 83]. I 
have restricted this thesis to learning from the problem solving 
trace which is generated in finding successful action sequences, 
or operator sequences, as we shall call them. As with natural 
learning about problem solving, this demands that simpler problems 
are posed initially. Apart from setting the problems, no other 
user intervention is required.

Contents Overview

Chapter 1 provides a gentle introduction to the idea of states and 

operators, and introduces the problem specification language 
('task framework') for my FM problem solving system shown in 

figure 0/1, which has the Strips-assumptions at the heart of its 

operator representation. Then the three control strategies, which 
form the performance components, are described. These are the 
(quite standard) best-first state space search ('FOR'), goal 

directed linear search ('MEA'), and goal directed constraint 
posting non-linear search ('NLP'). The latter, being the most 

complex of these, is defined and implemented using a constructive 
formal specification, described in [McCluskey 88a] and appendix 
D. 5.

Chapter 2 forms a basis for the succeeding chapter by defining 
basic chunks and macros. The established idea of using goal 

regression on declaratively specified operators to create 
heuristics is formally defined for any FM-specified operator 
schemas. A simple example is used to clarify this form of chunk 
and macro creation.

Chapter 3 is the core of this thesis: it describes a developed, 
reasonably successful attempt at meeting the proposal quoted above 
from [McCluskey 86], for a linear goal directed search strategy. 

The heuristic acquisition method described in 3.1 is novel: useful 
heuristics for an operator, being the last in a successful sub-
sequence of operators, are approximated by the similarities 
between the weakest precondition of the sequence and the 
operator’s precondition; then they are backed up by a background 
knowledge base, and strengthened by a discrimination technique 
which draws on both successful and failed operator instantiations 
from the problem solving trace.
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The techniques in 3.1 produce heuristic preconditions for operator 
- goal combinations which must be refined and integrated. In 3.2 
I define a general form for heuristic rules, and incremental 
learning techniques which perform the optimisation and refinement 
of the initial heuristics.

3.3 provides test runs from two sample applications which show the 
system significantly improving its performance in both the time 
and space needed to solve tasks. Comparisons are made between 
various planner configurations: with no heuristic acquisition, 
with handcrafted heuristics and with heuristic acquisition using 
chunking algorithms.

Chapter 4 is exploratory in its scope, in that it investigates 
heuristic acquisition in the more powerful non-linear planner. It 
explores how transforms in partial plan space can be declaratively 
specified, and uses the idea of transform regression and 
Explanation-Based Generalisation to show how heuristic 
preconditions for these transforms can be constructed from old 
transform solution sequences.

Chapter 5 contains my general conclusions, a comparison of FM with 

some rival work, and directions for future work.

The six papers comprising appendix D are an important part of 
this work and are considered to support this thesis submission. 
For example, the non-linear planner is defined in appendix D.5 

and should be read as a prerequisite to understanding chapter 4. 
Likewise appendix D.6, the FM User Guide, supports material in 

section 1.1. Appendices will be referred to when needed either 
through their name or via the reference section.

Final Note: All of this thesis is my own work (i.e. all the 
written material, appended papers, program implementations 
including all of the FM implementation, application definitions, 

test runs, handcrafted rules etc.)
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1. THE TASK FRAMEWORK AND PERFORMANCE COMPONENTS 

1.1 The FM Framework

In this chapter I develop the representational framework for the 
FM problem solving and planning system. I will use the framework 
to define the three performance components for which heuristic 

acquisition will be discussed in chapters 2,3 and 4.

This particular section defines the task framework "(I,G,E,OS)", 

which will be referred to throughout the rest of the thesis. Apart 
from developing notation, the chapter contains introductory 
material, included for completeness, which can be skipped by those 
familiar with Strips-type frameworks.

1.11 State Representation

A STATE DESCRIPTION ’S’ is defined to be a conjunction of ground, 
i.e. fully instantiated predicates. It models the changeable 
facts in some application, at a certain point in time. For 

example in the application of stacking blocks on a table, the 
state description that represents figure 1/1 could be:

on(a,b)&on(b,table)ftclear(a)ftclear(c) & 
on(c,table)&clear(d)&on(d,table). -1(1)

Persistent facts such as ’clear(table)’ may be omitted but made 
implicit in the action representation described in 1.2.

We supplement state descriptions with an ENVIRONMENT ’E’ which 

defines the unchanging background facts of an application. In the 
blocks world this may trivially contain typing information, but in 

other applications this may be any persistent information deemed 
relevant. The environment for the block’s world could be:

type_of(a,block)&type_of(b,block)&
type.of(c,block)&type_of(d,block) -1(2)

Both the environment and states may each be supplemented by set of 

rules, which are primarily for the use of FM’s learning 

components. Thus we may split E and S:

E = E.f (facts) + E.r (rules)
S = S.f (facts) + S.r (rules)

but note that the problem solving components must be supplied with 

the full theory as ground facts, and so we assume:

Theory(E) = E.f and
Theory(S) = S.f,

that is the rules should only show the connections between facts 
already present (see appendix A for examples of domains with
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rules, and for examples of rule syntax).

Another example application is the children's puzzle, commonly 
known as the Eight Puzzle; the state shown in figure 1/2 is 
represented by:

at(tilel,pl)&at(tile2,p2)&at(tile3,p3)&at(tile4,p4)& 
at(tile8,p5)&at(tile6,p6)&at(blank,p7)&at(tile7,p8)& 
at(tile9,p9). -1(3)

The environment for this puzzle can be represented as:

next(pl,p2)&next(pl,p4)&next(p2,p3)&next(p2,p5)& 

next(p3,p6)&.... type_of(pl,position)&type_of(p2,position)&...
type_of(tilel,tile)&type_of(tile2,tile)&... etc -1(4)

Of course it is easy to devise other representations for these 
problems.

An Initial State 'I' is any state description from which problem 
solving begins. 1(1) and 1(3) can be considered initial states.

A Goal Condition 'G' is a conjunction of ground predicates 

specifying a SET of state descriptions, to which problem solving 

must be directed (although G may contain existentially quantified 
variables for the performance component specified in 1.23).

Examples of goal conditions for the blocks and eight puzzle worlds 
are:

on(b,c)&on(a,b) -1(5)

at(tilel,pl)&at(tile2,p2)&at(tile3,p3)&at(tile4,p4)&
at(blank,p5)&at(tile6,p6)feat(tile7,p7)&at(tile8,p8)& 
at(tile9,p9) -1(6)

The set of states specified are exactly those that contain the 

goal condition. Several state descriptions satisfy 1(5), but 1(6) 
specifies precisely one state - the usual goal for this puzzle.

1.12 Operator Representation

I will model actions in these worlds as operators that change 

state descriptions instantaneously. A most convenient way is by 
simply having an operator:

delete predicates from the old state to which the action is 
applied;

- add predicates to "create" the new state.

Any unaffected predicates therefore remain true in the new state.
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This form of operator side-steps a famous problem in A.I. called 
The Frame Problem', which is encountered when we try to model 

everything in a first order logic. In such a formulation, every 
operator would have to have attached to it a set of 'frame axioms' 
which mention each predicate that is unaffected - making operators 

of unmanageable size.

Since this representation is declarative, it also makes it easier 
for the system to reason about its operators. The most general 
form of an Operator in FM is a 7-tuple, having three 

preconditions and three postconditions:

( name: <name>(<parameters>) ,

filter: <filter preconditions>,

check: Environmental preconditions>,

precon: <state preconditions^

padd: <add set>,

add: <side effects>,

del: <delete set> )

The last six components are sets of predicates. Each component of 

an operator 0 can be referred to by its component name, or for 
brevity by a selector function: say O.n, O.e, O.f, O.p, O.a, O.s 

and O.d respectively.

O.e, O.f, and O.p are the preconditions for the operator. We 

stipulate that the filter predicates O.f must be identical to a 
subset of O.p (O.f will only be used in goal directed search, and 
performs a similar function to the preconditions in SIPE's 
operators [Wilkins 84]). O.a and O.s constitute the full add-set 

for the operator.

Parameters in operators are represented below with capital 
letters. They have SCOPE throughout the whole of the tuple; one 
may think of the operator as being represented as a logic term. 

The name must contain at least all those parameters that occur in 
the precondition, so that the instantiation of O.n yields a unique 
application of the operator. Two special predicates are recognised 
by the system: 'ne(X.Y)’ meaning X is not equal to Y, and a 
*type_of’ predicate with the obvious meaning. For instance when 

FM learns new operators or rules it knows that parameters of 
different types can't be instantiated to the same constant, and so 
don't need any further binding restrictions.

Using this representation, two blocks world operators could be

13



defined as:

( name: unstack(Blockl, Block2),
check: type_of(Blockl,block)&type_of(Block2,block)& 

ne(Block1,Block2),
filter: nil,
precon: on(Blockl,Block2)&clear(Blockl),
padd: on(Blockl,table)&clear(Block2),
add: nil,
del: on(Blockl,Block2) )

( name: stack(Blockl, Block2),
check: type_of(Blockl,Block)&type_of(Block2,Block)& 

ne(Blockl,Block2),
filter: nil,
precon: on(Blockl,Obj ect)&clear(Blockl)&clear(Block2)
padd: on(Blockl,Block2)&clear(0bject),
add: nil,
del: on(Blockl,Object)&clear(Block2) )

An operator for legally moving the tiles in the Eight Puzzle is:

( name: move(Tile,Pl,P2),

check: next(Pl,P2)&ne(Tile.blank)&type_of(Pl.position)& 

type_of(P2,position)&type_of(Tile,tile),

filter: nil,
precon: at(blank,P2)feat(Tile,Pl) ,

padd: at(blank,Pl)&at(Tile,P2) ,

add: nil,
del: at(blank,P2)&at(Tile,Pl) ) -1(8)

(see appendix A for more examples)

1.13 Operational Semantics

An OPERATOR APPLICATION of operator 0 on state description S with 

respect to environment E is possible if there exists a ground 
instance O’ of 0 such that S contains O’.p and E contains O’.e, 
i.e. S satisfies the preconditions of 0. In general there may be 

more than one such ground instance, but application of instance O' 
to S can be defined as the following state description (N.B. ’U’ 
and will be the symbols used for set union and difference, 

respectively):

O’[S] = { S - O’.d } U O'.a U O’.s

In other words O’[S] is the state produced by first removing the 
instantiated operator’s delete set from S, then adding its 
add set and side effects to S.
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A TASK is defined as a four-tuple (I,G,E,OS):

( initial state, goal condition, environment, operator set )

e.g. (1(1), 1(5), 1(2), 1(7)) is a task:

A task (I,G,E,OS) is ACHIEVED when a sequence of operator 
instances O’(l) ... O’(n-l), O'(n), taken from set OS, is found, 

such that 0’(n)[0’(n-1) [ ... 0'(1) [ I ] ... ]] contains G.

Of course this expanded STRIPS-type framework is still a little 
'loose'. It should be pointed out, for example, that a necessary 

condition for task achievement is that each predicate in the 
goal condition can unify with a predicate in some operator's add 
set. More details of this framework can be found in the FM user 
guide [McCluskey 88b] and in appendix D.6.

1-2 The Performance Components

I shall now describe the three planners that were used in the 

experimental work that lead to this thesis, using the notation of 
the task framework defined above. Their implementation is given in 

appendix C.

1.21 The State Space Search: FOR

FOR contains the simple strategy of best-first search through the 
space of states. It starts by generating all states from the 
initial state by every possible instantiation of operators from 
the operator set, then expanding each of the generated states 
likewise. Each state is actually represented within a node 
containing information such as the operator sequence required to 
reach it, and the cost of that particular partial solution. 
Optionally, the following features may be included in this search:

(1) The user can supply an operator's inverse so that the strategy 

will avoid applying an operator and then its inverse sequentially. 

In the environment E, the user states:

inverse( O.n, 0'.n).

for example:

inverse( move(Tile,Pl,P2), move(Tile,P2,Pl)),

This will stop sub-sequences being generated which move a tile to 

a square then immediately move it back again. Of course, because 
of the declarative representation for operators, generation of 

inverses could be easily automated and executed during a pre-

processing stage.

(2) The strategy can keep a list of all states expanded, and check 

through them to make sure an identical one is not re-expanded.
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This heuristic can cause more matching overheads than its worth in 
some problem domains and so is optional.

So costly is this strategy that acquiring heuristics by experience 
(see chapter 2) only works well on domains such as the 8-puzzle!.

1.22 The Goal Directed Search: MEA

MEA is so named because it implements some of the principles of 
’Means-Ends Analysis1 in a similar fashion to STRIPS [Fikes et al 
72]. Specifically it forms the difference between a goal state 

and initial state as a set of predicates; then it treats the 
preconditions of the operators that achieve one or more of the 

difference predicates as new goal conditions.

Hence the backward search of FM proceeds in a goal reduction 
manner, starting with the initial goal, through a space of goal 
nodes. This space is searched by storing 'open' nodes in a 
priority queue. Elements are given an initial priority depending 
on a weak heuristic, represented as a rule below, which depends 

on the initial state of that node and the goals it must solve.

In the version of MEA used in chapter 3, this was simply: 

priority = large number -
2*(no. of goal predicates not solved by initial state)

To ensure fairness, the priorities are all incremented after each 

node expansion.

Each goal node can be modelled as a 5-tuple:

(Goal, Initial State, Ancestors, Purpose, Trace),

The Trace records attempts to solve the Goal; these are made up by 
combining operator subsequences together, which solved subsets of 
Goal. The Purpose records why the goal node was created, which can 

be of two types:

(a) to solve the unsatisfied preconditions of an operator;

(b) to solve a Goal from an advanced Initial State (not I in 

(I,G,E,OS)) in which one or more of Goal’s predicates has been 

achieved.

The ’Ancestor’ slot is simply a record where the node’s ancestry 
is kept. One use of this slot is to allow MEA to identify nodes 

with recurring goals and delete them from the search.

Goals, expressed as conjunctions of predicates, are initially 

assumed to be decomposable: when a goal node is activated, 
operator instantiations which add goal predicates have their 
unsatisfied preconditions form another goal node, unless they are
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figure 1/3: Goal Node processing in MEA (">” means "contains")



already satisfied in which case those operators are applied to the 
initial state and the result recorded in the trace. If the 

parent’s main goal is solved as a result, the process recurses.

When the trace of a goal node eventually contains a state 

satisfying its goal (via an operator sequence Os), we say that the 
goal node is solved, and all nodes which are successors of it are 
removed from the search. If it was activated to solve an operator 
0’s preconditions, then the sequence Os + 0 is applied to the goal 
node’s parent’s initial state and the result recorded in the 

parent’s trace.

A goal node’s initial state may be the state inherited from a 
parent node, or may be an advanced state partially satisfying the 
parent’s goal. The latter is the case when goals cannot be solved 
by simple decomposition; MEA examines the trace and forms new goal 
nodes whose goal predicates are inherited but whose initial states 
are selected from intermediate states taken from the parent’s 
trace. This type of search ensures that when a node is solved, the 
attempts to solve the node’s goal are declaratively available in 
the trace for scrutiny by learning components.

The whole process of goal node expansion is shown in the process 
diagram of figure 1/3. The level above this is the top level 
strategy: it simply chooses the next node to expand as the one 

with the highest priority.

1.23 The Non-Linear Goal Directed Search: NLP 

NLP is defined precisely in [McCluskey 88a, appendix D.5], using a

model-based specification method. We assume that the reader has 
andstudied this paper, as it is background to to 

contains all the necessary notation.

chapter 4,

One important detail that is left out of the paper is its

comparison with the work from which it is derived . e.g. is the

specification for goal achievement in NLP as powerful as Chapman’s 
original in [Chapman 87]. The theorem below shows that it is. As 

far as comparing the FM task framework with Chapmans ’Tweak’, the 

former is more structured in that it allows a background 
environment E, whereas Chapman’s relied on simply operators and 

states.

Theorem:

NLP’s goal achievement specification can achieve any goals that 
Chapman’s Modal Truth Criterion (M.T.C.) can [Chapman 87].

Proof:

First we state the Modal Truth Criterion in FM’s notation. Given a 
partial plan PP = pp(Os,Ts,Ps,As,Es), a task specification 
(I,G,E,OS), and taking an operator 0 to be of the (slightly 
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simplified) form (0.n,0.e,0.p,0.a,0.d), then if (P.O) is in Ps, A 
in Os:

P is achieved at operator 0 in PP by A (called ’achieved(P,O,A)’) 
if there exists A in Os:

[(there exists Q in A.a: P = Q) &

before(A.O.Ts) &
for all C in Os:

[before(O.C.Ts) V

for all Q in C.d:
[not(unify(Q,P,Es) V

there exists WK in Os:
[before(C,WK,Ts) & before(WK.O.Ts) &

there exists R in WK.a:
[P=Q => P=R] ] ] ] ]

The modal operators (originally in Chapman’s M.T.C.) are included 

implicitly in the definitions of predicates ’before’ and ’unify’, 
which are given in [McCluskey 88a, appendix D.5].

Lemma:

In whatever situation a white-night (WK) has to be used for goal 

achievement, it can be taken to be the asserter A.

Considering the diagram:

--- > c----> A----> C----> WK----> (P) 0----> C----> .....

C represents possible positions for clobberers - i.e. those 

operators whose delete list contains a predicate Q which could 
possibly unify with P. If a clobberer cannot be necessary before 
A or necessary after 0, then the only other way of goal 

achievement for P is by WK: if Q unifies with P, then WK has a 

predicate in its add list which can be made identical with P.

But in every situation where this latter case follows, we may 

choose WK to be the asserter instead of A. At worst this causes 

more instantiation of the partial plan (as admitted by Chapman 
himself in [Chapman 87]), so it can be seen that this does not 

lessen the power of the planner.

So taking A = WK we have: achieved(P,0,A) =

there exists A in Os:

[(there exists Q in A.a: P = Q) & before(A,0,Ts) &

for all C in Os:
[before(0,C,Ts) V
for all Q in C.d:

[not(unify(Q,P,Es) V

there exists A in Os:
[before(C,A,Ts) & before(A,0,Ts) &
there exists R in A.a:

[P=Q => P=R] ] ] ] ]
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But P-Q in A.a in the first conjunction, and ;before(A,0,Ts)’ is 

true by the second, hence:

achieved(P,O,A) =
there exists A in Os:

[(there exists Q in A.a: P = Q) & before(A,0,Ts) &

for all C in Os:
[before(0,C,Ts) V

for all Q in C.d:
[not(unify(Q,P,Es) V
there exists A in Os:

[before(C,A,Ts) &

true & true
J ] ] ]

and since before(C,A,Ts) does not depend on Q this is logically 
equivalent to

there exists A in Os:

[(there exists Q in A.a: P = Q) &

before(A,0,Ts) &

for all C in Os:
[ C = 0 V
C = A V
before(0,C,Ts) V 
before(C,A,Ts) V
(for all Q in C.d: not(unify(Q,P,Es)) ]

which is my specification of goal achievement. QED.

This specification is an integral part of the constructive 
specification given in NLP, and it is verified that the design and 
implementation are faithful to it in [McCluskey 88a,appendix D.5].
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2 THE BASIS OF CHUNK AND MACRO FORMATION WITHIN FM 

2.1 Background to Chunk creation

In this chapter the chunking method developed is used exclusively 

m FOR, the forward state space search, but the other chunking 
techniques developed later are based on it and use the same 

notation. The material is mostly foundational, for those not 
familiar with heuristic/macro generation from goal regression, but 

ns such contributes to the body of the thesis in chapter 3.

The theory of Explanation Based Generalisation (EBG) was 

postulated in [Mitchell 86] and has had considerable influence 
since then (see [Hirst 87], [DeJong and Mooney 87] for example). 
Since it is already a familiar theory to Machine Learning workers, 

we use it's framework to explain the basis of chunk and macro 
creation in FM. Essentially this corresponds with my original idea 
of "model based generalisation of a successful operator sequence's 

weakest precondition" [McCluskey 87b p.136], which means that the 
generalisation is justified by the operator and environment model 

supplied by the user.

Recall that there must be four components involved in EBG 
(following [Mitchell 86]):

(a.) the target concept: what is to be learned;

(b) operationality criteria: the form in which the learned concept 

description must be encoded, the operational description of (a);

(c) the domain theory: a 'deep' body of knowledge containing a

non-operational definition of (a);

(d) an example of (a). ..2(1)

The process of EBG is first to build a proof tree showing that (d) 
is an example of (a), (drawing from the theory in (c)) such that 
all leaves in the tree are in form (b). Then each leaf is 

generalised as much as possible without falsifying the proof, and 
finally the acquired heuristic is defined as 

conjunction of generalised leaves —> concept •.2(2)

Mitchell et al, using their LEX2 system, exemplify how EBG is 
applied to heuristic acquisition in [Mitchell et al 86, p. 62-65]. 
We will use the same line of argument, but generalise to systems 

of FM's power (recall that unlike FM, LEX2 was tied to a specific 
application i.e. Symbolic Integration, which has a fixed goal, 
rewrite rules as operators, and a relatively simple generalisation 
space for operator preconditions). Consider the solution sequence 

to some task (I,G,E,OS), paired with the corresponding 
intermediate state descriptions:
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C(O(1),S(1)), ... ,(O(i),S(i))» ... (0(n),S(n) )] ,

where O(i)[S(i-l)] = S(i), S(n) contains G, S(0) = I.

Using 2(1) we have:

(a) is a heuristic precondition for 0(i) defining the set

{ S : 0(i) is the correct operator to apply

when in state S to achieve goal G }

(b) is a generalised state expression;

(c) is the set of general axioms for state space search, as in
[Mitchell et al 86, p.62] as well as the specific regression

theory developed in section 2.2 following;

(d) is [(0(1),S(1)), ... ,(0(i),S(i)), ... (0(n),S(n))],

Following [Mitchell et al 86, p63] , the main operational 'leaf' in 

the proof tree is:

matches( (S(i-l) U E) ,

regress(0(i),regress(0(i+l),.. regress(0(n),G).. )) )

..2(3)

where 'regress' is defined in 2.2 below, and matches(S,C) means C 
is some condition that is satisfied by S; if C and S are simple 

sets of ground predicates, then this is equivalent to 'S contains 
C'. If c contains variables, then this is equivalent to 'there 

exists some instantiation of C which is contained by S'.

(S(i-l),g) is then regarded as an instance of the set of all 
(State, Goal condition) pairs under domain definition of E and OS, 

to which 0(i) is best applied. From the proof tree it can be seen 
that we are using no other characteristic of S except this match, 

so any state that matches the regression expression will also do.

2-2 Regression

We define the regression of a conjunction of ground predicates G 

through an operator 0 as its weakest precondition written 
"wp(0,G)":

wp(0,G) = { G’: 0 is applicable to G and 0[G'] contains G}

This is analogous to the weakest precondition used in the program 
proving literature (e.g. [Gries 83]): wp(0,G) specifies the set of 

all states such that execution of command(s) 0 from any one of 
them will terminate in a state satisfying G.

Regression works well where there is a declarative definition for 
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operators ([Porter and Kibler 85] use the word "transparent" to 
describe appropriate operator schemas); in program proving the 

axiomatic semantics of control constructions are used. For FM, 
where 0 is a totally instantiated operator from OS, and S is a 

state expression:

°ES] = (S - O.d) U O.a U O.s

and since O.p U O.e are supposed to be the necessary and 
sufficient condition for 0’s application, it follows that the 

weakest precondition is the conjunction of ground predicates given 
by the set:

wp(O,G) = (G - (O.a U O.s)) U O.p U O.e ..2(4)

Now consider the case of a sequence of operators [0(1), ...,
0(n)]. Following [Gries 83, page 115] we can define:

WP(EO(1), .... 0(n)],G) =

wp(0(l),wp(0(2), ... wp(0(n-l),wp(0(n),G)) ... ))
Letting:

P(0) = G

p(l) = wp(0(n),G)

P(2) = wp(0(n-l),wp(0(n),G))
P(3) = wp(0(n-2),wp(0(n-l),wp(0(n),G))) etc,

and for any operator 0, let O.as = O.a U O.s, then from 2(4):

P(l) = (P(0) - O(n).as) U 0(n).p U 0(n).e
p(2) = (P(l) - O(n-l).as) U 0(n-l).p U 0(n-l).e
P(3) = (P(2) - 0(n-2).as) U 0(n-2).p U 0(n-2).e etc, and hence

P(0) = G and for 1 <= j <= n,
p(j) = (P(j-l) - 0(n-j + l).as) U O(n-j + l).p U 0(n-j+l).e, ..2(5)

If we define wp([0(i), ... ,0(n)],G) = WP(i,n), then (see fig 2/1)

WP(i,n) = P(n-i+l) = (P(n-i) - O(i).as) U 0(i).p U 0(i).e ..2(6)

In fact we will separate these out into two disjoint components:

WP(i,n) = WPs(i.n) U WPe(i,n), where:

WPe(i,n) = 0(i).e U ... U 0(n).e
WPs(i,n) = P(n+i-l) - WPe(i,n) ..2(7)

This construction is well defined because FM’s operators’ 

components must be restricted to conjunctions of predicates, 
avoiding the problems of obtaining disjunction through regression 
as mentioned in Porter and Kibler’s critique of analytical goal 
regression [Porter and Kibler 85].
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figure 2/1: Build-up of weakest preconditions
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figure 2/2: An Initial State for the Eight Puzzle
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2.3 The 8-Puzzle Example

We will use the 8-puzzle example introduced in chapter 1 to 
demonstrate the ideas of chunk creation. (The similarity to Soar's 
chunks for this type of strategy can be seen by referring to [Laird 
86] which also uses the 8-puzzle problem as an example application 

domain).

Recall that the board has 9 numbered positions (pl,p2,..,p9) on 
which there are 8 numbered tiles (tilel,tile2,..,tile8) and a 
'blank'. The idea is to find a sequence of moves (i.e. swapping a 

tile with the blank horizontally or vertically) linking a pair of 

states, (I,G).

Let I be as shown in figure 2/2, let G = at(tilel,p7), then FM with 

the FOR search strategy will output the solution sequence of 

operators:

[move(tile7,p8,p5),move(tile8,p7,p8).move(tilel,p4,p7)]

Using the equations 2(7) and the operator definitions in appendix 

A, we have:

WPs(l,3) =

at(tile7,p8)&at(blank,p5)&at(tile8,p7)&at(tilel,p4)

WPe(l,3) =

next(p4,p7)&next(p8,p5)ftnext(p7,P8)&ne(tilel,blank)& 
ne(tile8,blank)&ne(Tile7,blank)

and hence an 'ungeneralised chunk' is formed as:

(0(i),G,WPs(i,n),WPe(i,n)) for n = 3 and i = 1,2 and 3.

In future problem solving, if the current state S contains 
WPs(i,n) and the current goal = G, then 0(i) is the operator 

instantiation that should be chosen to continue the search 
(WPe(i,n) is superfluous in this ungeneralised version).

2.4 Chunk Generalisation and Use

To recap, our regression equation 2(5) can be applied to a 
solution sequence for any task (I,G,E,OS); for i, 1 -< i =< n, it 

will produce the subset of S(i-l)&E.f which is necessary and 
sufficient for 0(i), ... ,0(n) to succeed, that is the expression 

WP(i,n).

This is a generalised expression in the sense that it specifies 
■the set of all states which contain it. It can be generalised 
further: recall from section 1.13 that for an operator to be 
applicable, its preconditions much match the current state and
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environment. Using this matching that proves each 0(j) is 
applicable, for i =< j =< n, wherever a constant in S(j-l) was 
substituted for a variable in O(j).p or O(j).e, the constant can 
be generalised to a variable, without falsifying the proof. This 

is justified because any property of the particular identity of 
bhe constant used would be stated in O(j).e and will itself be 

generalised to the same variable, becoming a binding constraint. 
Whenever a constant matched a constant in the proof, however, this 

must stay in unchanged. Also the following restrictions are 
imposed:

“Identical constants must be generalised to the same variable 

instance only when they were both substituted for the same 
variable instance in some operator's preconditions;

“To perform 'careful' generalisation (as defined in [Kodratoff 
84]), different variable instances from 0(j) should have binding 

restrictions added to the target chunk, so that they may not be 

instantiated to the same constant later, when the chunk is in use. 
Since FM’s variables should be given a type in the domain 
definition this restriction is not needed unless the variables 

are of the same type.

STRIP'S macrops system violated the second rule and over-

generalised macro operators (as pointed out in [Fikes et al 72]). 
The generalisation operator we have just described will be called 
GP: it carefully generalises constants to variables in an 

ungeneralised chunk as long as the precondition proofs of the 
original solution sequence are not violated.

A simple chunk is then defined as the logical term:

Gp(G,0,WPs(i,n),WPe(i,n)) for i = 1,2, .. n-1.

A chunk C can be used in future searches to expand a state space S 

generated in the search for a solution to some task (I,G,E,OS) as 
follows: Given a chunk C = (Gc',0c',Sc',Ec'), If there exists a 

ground instantiation of C, say (Gc,0c,Sc,Ec), such that

G = Gc
& S => sc
& E => Ec

then apply 0c. ■.2(8)

Alternatively, chunks may be used within future searches in test 

mode: all new states are created, and ones which are created 
through operators that satisfy 2(8) are chosen to expand next, the 

others discarded or given a lower priority.

Expand mode is more efficient in the sense that it avoids 

generating states in the first place; on the other hand generate 
and test mode is desirable if chunks are heuristics favouring 
expansions rather than considering them as dead certainties. The 
latter is true in the case of the C-chunks described in chapter 3.
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2(8)’s first conjunction could be generalised to 'G contains Gc' 

which would allow chunks to apply to subsets of the main goal: in 
the context of other interfering goal predicates, however, 

operator instantiations recommended may not turn out to be the 
best ones.

Back to example 2.3. Assuming that names starting with capitals 

are variables, then

GP(G,O(1),WPs(l,3),WPe(l,3)) =

(chi.move(Tile7,P8,P5),

at(Tilel,P7),

at(Tile7,P8)&at(blank,P5)&at(Tile8,P7)&at(Tilel,P4),

next(P4,P7)&next(P8,P5)&next(P7,P8)&ne(Tilel,blank)&
ne(Tile8.blank)&ne(Tile7.blank)&ne(P4,P7)&

ne(P4,P8)&ne(P4,PS)&ne(Tilel,Tile8)&ne(Tilel,Tile7)&
ne(P7,P8)&ne(p7,P5)&ne(Tile8,Tile7)&ne(P8,P5) )

GP(G,0(2),WPs(2,3),WPe(2,3)) =

(ch2,move(Tile7,P8,P5),

at(Tilel,P8),
at(Tile7,P8)&at(blank,P5)&at(Tilel,p7),

next(p7,P8)&ne(Tilel,blank)&next(P8,P5)&
ne(Tile7,blank)&ne(p7,P8)&ne(p7,P5)&
ne(Tilel,Tile7)&ne(P8,P5) )

Here we see that constant 'blank' is not generalised since it 

appears as a constant in the operators. The 'ne' predicate adds 
the appropriate binding restrictions mentioned above. Note that 
this is a logical term in the sense that each component shares 

variable identifiers, and constants in the goal and operator slots 

are generalised with ones in the other two components.

Bor an example of chunk use, consider the task where I is shown in 

figure 2/2, G = at(tile2,p3) and E and OS are as in appendix A. 
In search FOR, from the initial state I, the operators generated 

would be:

{ move(tile4,p6,p5), move(tile2,p2,p5),

move(tile7,p8,p5), move(tilel,p4,p5) }

Matching the operator move(tile4,p6,p5) and goal G with chi we 
have: 

(chi ,move(tile4,p6,p5),

at(tile2,p3),

at(tile4,p6)&at(blank,p5)&at(Tile8,p3)&at(tile2,P4), 
next(P4,p3)&next(p6,p5)&next(p3,p6)&ne(tile2,blank)& 
ne(Tile8,blank)&ne(tile4,blank)&ne(P4,p3)&
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ne(P4,p6)&ne(P4,p5)&ne(tile2,Tile8)&ne(tile2,tile4)& 

ne(p3,p6)&ne(p3,p5)&ne(Tile8,tile4)&ne(p6,p5) )

and since I matches the third component of chi with bindings 
tile3/Tile8 and p2/P4, making the expression

next(p2,p3)&next(p6,p5)fenext(p3,p6)&ne(tile2,blank)& 

ne(tile2.blank)&ne(tile4,blank)&ne(p2,p3)& 
ne(p2,p6)&ne(p2,p5)&ne(tile2,tile3)&ne(tile2,tile4)& 

ne(p3,p6)&ne(p3,p5)&ne(tile3,tile4)&ne(p6,p5)

consistent with E. Since none of the other operator instances 
instantiate the chunk to give a consistent match with I or E, then 
the first operator will be chosen for application. ch2 will 

likewise choose the correct operator at the next step, and infact 

the goal will be solved with no search. This shows a simple 

example of chunking, taken directly from the FM implementation, 
demonstrating what is termed ’symmetrical transfer’ in [Laird 
86] .

2.5 Closed Macro Creation

Since chi above held the weakest precondition of the sequence of 
operators with respect to the generalised goal, it could have put 
forward the rest of the sequence as the solution immediately. A

macro’ (introduced in [McCluskey 87a] and [McCluskey 87c]). It is 
a compiled operator which takes the place of the sequence 0(i), 

. .., 0(n). Closed macros take a form similar to that of a 

primitive operator:

structure in FM that can in fact do this is called a ’closed

( macroN( <all variables occurring in WP(i,n) and G> )

check: WPe(i,n)

macrop: <list of primitive operators>

precon: WPs(i,n)

padd: G

add: Sn - (SO U G)

del: nil )

For example, FM could form a macro analogous to chi:

( macrol(Tile7,P5,Tile8,P8,Tilel,P4,P7)

check: next(P4,P7)&ne(Tilel,blank)&next(P7,P8)&
ne(Tile8,blank)&ne(Tile7,blank)&ne(P4,P7)&ne(P4,P8)&
ne(P4,P5)&ne(Tilel,Tile8)&ne(Tilel,Tile7)&ne(P7,P8)&
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ne(P7,P5)£ne(Tile8,Tile7)&ne(P8,P5)

macrop: [move(Tile7,P8,P5),move(Tile8,P7,P8),move(Tilel,P4,P7)J

precon: at(Tile7,P8)&at(blank,P5)£at(Tile8,P7)&at(Tilel,P4)

padd: at(Tilel,P7)

add: at(blank,P4)&at(Tile8,P8)&at(Tile7,P5)

del: nil )

When FM creates a macro for the FOR or MEA strategies, it need not 

construct a delete set, since when an operator is applied, the 
primitive sequence in the ’macrop’ slot is used. However, for the 
Non-linear planner NLP, a delete set WP(i,n).d is built using 

analogous regression equations to 2(5):

WP(i,n).d = Pd(n-i-l) = (Pd(n-i) - 0(i).as ) U 0(i).d and

Pd(l) = 0(1).d

This is because NLP reasons about the temporal ordering of 

operators using all their components, and so needs a declarative 
version of the delete set. Macros thus defined can be used in two 
ways in future search:

(a) as chunks, in the sense that if the current goal-state- 

environment combination matches the macro’s padd-precon-check 

components respectively, then the primitive sequence will be 
applied (or in the case of the goal directed searches, added to 
the current partial solution).

(b) just like a primitive operator, in any of the search 

paradigms.

case (a) suits the FOR strategy and the 8-puzzle problem, but is 

generally a less flexible method of knowledge acquisition than 
chunking, for two reasons: firstly, chunking amasses preconditions 
for particular operators, which can be integrated (as will be seen 
in section 3.2), whereas the closed macro is too rigid; secondly, 

chunks may be generalised further and used in situations that do 

not demand the rest of the operator sequence to be added.

In case (b), macros change long searches with low branching 

factors, to shorter bushy searches, and if created and used 
indiscriminately soon cause a search explosion. Minton in [Minton 
85] sensibly suggests that their formation must be selective; his 
MORRIS system stores successful operator sequences and creates 

macros from the most often occurring subsequences (called script 

Macros). Although we presume MORRIS’S macro construction was 
similar to ours, it is not quite clear how the purpose predicates 
(FM’s ’padd’ set) would be derived for these sequences.

Another reason that a macro would be built in the MORRIS system is 
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to accomplish some conjunction of goals that proved difficult to 
solve. This is a similar idea to that of Iba’s system [Iba 85]. 
His simple precondition for macro creation was that the primitive 

operator sequence left most of the state invariant but changed 
some crucial aspect. An example of this would be in the creation 
of macros for the 8-Puzzle (as investigated in [Korf 85]). Good 

candidate operator sequences would be those that moved a tile from 

one square to another, leaving others that were already in ’goal' 
positions in place. This use of macros, although quite efficient 
for finding a solution to tasks with interacting goals, is prone 

to find solutions many times longer than an optimal solution (as 
found in Korf's Rubik's Cube example in [Korf 85]).

The problems mentioned above were encountered when using macro 

creation in FM on the application domains listed in appendix A: 

as a result of them the emphasis in the rest of this thesis will 
be placed on the more successful chunking techniques.
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3. SEARCH CONTROL ACQUISITION IN LINEAR GOAL DIRECTED PLANNING

3.1 C-chunk Creation and Use

3.11 Introduction

The demise of the general problem solver in the 70's was partly 
due to the fact that weak methods alone were not sufficient to 
maintain an acceptably low level of search. There were attempts to 

combat the search problem using pre-processing techniques on the 
initial domain definition, e.g. the ABSTRIPS system [Sacerdoti 74] 

which generated predicate abstraction levels; or the REFLECT 

system [Dawson and Siklossy 77]: this looked for inconsistent goal 
predicate pairings, then during an exhaustive goal directed 

expansion, goals nodes containing such a pair would be discarded. 
These systems seemed to perform well but lacked focus: on the 

other hand there are convincing arguments for experience-
learning systems in such works as [Carbonell 83] and [Van der 
Velde 86]. Carbonell describes a computational model which directs 

the experience of problem solving into a learning mechanism. This 

mechanism compiles and stores a problem's solution in a form 
suitable for re-use by analogy with new problems. Van de Velde 

neatly sums up his arguments for experience learning in 
'second generation expert systems' ([Van de Velde 86] page 
13) "the translation from deep to shallow knowledge is only 

worthwhile if there are far less relevant problems that 
possible ones" - the relevant ones will be found only by 

experience.

The intended function of the chunk described in chapter 2 was that 
it should form a heuristic precondition for a generalised goal and 

operator by matching on the 'current state’ in the search space. 
In contrast linear goal directed searches are through spaces of 

'goal nodes’ of various types, each node consisting of (at least) 

such information as an unachieved goal set, an initial state and a 
sequence of operators; inevitably this does not allow the 
straightforward matching of the simple chunk, since search is 
through a space of goal nodes.

Hence the reason for my development of an experience-based, 

general method for learning heuristics to cut down goal directed 
search, one that would find operational reasons why one operator/ 

operator instantiation is to be preferred over another, and could 
do so for any domain defined by the task specification of chapter 
1 (the term 'operational' is used here with a similar meaning to 
that used in the definition of E.B.G. in [Mitchell et al 86] p.51, 

x-e. an operational description is one which can be readily matched 
with some part of the working memory of a problem solver). 
My work developed through two stages: I devised b-chunk creation 

as a method of extending the use of equation 2(6) of chapter 2 to 
goal directed searches [McCluskey 87b], [McCluskey 87d]; and 
recently evolved this into a more efficient version, incorporating 
incremental rule repair. I shall call the latter version the 'c- 
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chunk’ simply to distinguish it from the others.

In a typical goal directed search, a goal node is expanded, 

creating new goal nodes, by collecting all operator instantiations 
that solve one or more of the predicates in the set of unachieved 

goals (i.e. contain the predicate in their add-set). As stated in 
[Minton and Carbonell 87], there are four distinct choice points 

in this type of search:

1 Which node N to expand next?
2 Which goal predicate P in N to achieve?
3 Which operator 0 that achieves P, to add to N?
4 Which set of operator bindings should be applied to 0?

Acquiring strong heuristics for Step 2 was originally addressed by 

the ABSTRIPS system mentioned above, where predicates acquired 
abstraction levels, and during search the next goal predicate was 
chosen according to which had the highest abstraction value. 
Creating ’goal structure’ in this way may deal effectively with 

choice of goal, but not how to achieve it.

Thus I decided to concentrate on the crucial choices 3 & 4, where 

search control is badly needed, to cut down the number of new 
nodes created thus eventually eliminating choice 1. In ’concept 
learning’ terms, I address the problem of learning an operational 

concept (one that matches on the initial task specification) of 
which is the best operator and instantiation for that operator, 

with respect to achieving a particular goal.

3.12 Example Objectives

Roughly, the intended purpose of our chunking mechanism is to 

capture the most general conditions under which a certain operator 
instance should be used to achieve a certain goal. This I will 
define as the target concept for the operator-goal combinations. I 

will give some simple examples of choice in goal directed search, 

and guess, by examining the domain definitions from appendix A, 

some operational reasons why a particular choice is the best. In 
this way I will attempt to hand craft a rule for particular goal 

predicates; later we shall see how the c-chunk mechanism automates 
this through experience, for domains which has been stated within 
the FM framework.

For example, consider our robot world domain defined in appendix 
A. It may be required to learn under what most general conditions 

a robot should choose a particular door D to push a box B through 
into rooom R, thus achieving ’in_room(B,R)’. Consider figure 3/1:

Here the goal is simply ’in_room(boxl,room2)’. Of the three 

choices of operator instantiation, (shown by the arrows), 

pushthrudoor(boxl,door25,room2)’ is obviously the best, an 
operational reason we might venture, as being:
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figure 3/2: Another robot world fragment

33



’in_room(boxl,room5)&

connect(room2,room5,door25)&
fits_thru(boxl,door25)’

On further reflection we might come up with a description of the 

target concept as:

0 is the best door to push B through into R if

D can be reached, and is the nearest to B, by a path which 
includes only doors (including D) through which B fits.

For simplicity we define 'nearness’ by equating each operator with a 

unit cost. An operational description might be:

to achieve in_room(B,R), for any B, D, R, where type_of(B,box), 

type_of(D,door) and type_of(R,room):

{ in_room(B,Rl)&connect(R,R1,D)&fits_thru(B,D)

V

not( there exists D’:
in_room(B,Rl)ftconnect(R,R1, D')&fits_thru(B,D’) )& 

in_room(B,Rl)&connect(R,R2,D)&fits_thru(B,D)& 

connect(R2,R1,Dl)&fits_thru(B,Dl)

V

not( there exists D', D":

.....  etc

V

.... etc }

=> choose pushthrudoor(B,D,R)

Even this series is not quite correct - the problem of closed 

doors means that it may be cheaper to go through an extra room to 

avoid having to open a series of closed doors and therefore enter 
by a different D! Where the domain contained a room connected to 

another by two doors would also change the target concept: if one 
is open, it should be able to discriminate in its favour against a 

closed door where necessary. Thus even the robot world shows that 
these target concepts are non-trivial. Examining another scenario 

may help: consider figure 3/2.

Here the main goal is ’in_room(boxl,room3)’, whereas the subgoal 

to be solved is ’in_room(robot,room2)’ .

°f the four choices of operator instantiation, (shown by the 

arrows), >gothrudoor(door25,room2)’ is obviously the best; an „ 
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operational approximation to the reason is:

’connect(room2,room5,door25)&

connect(room6,room5,door56)& 
in_room(robot,room6)& 

not( there exist Z: connect(room2,room6,Z) )’

and the reader is left to draft a general disjunctive rule, similar 
to the 'pushthrudoor’ example.

3-13 Basic C-chunk Creation

Consider operator 0(i) (l<i=<N) taken from a minimal, successful 

operator sequence of size N, which has solved some task given to 
0(i) must have been the correct operator choice from some set 

of operator instantiations 01 = <0(j): j in l..n & n>=l}, which

were proposed at a node in goal directed search, to achieve one of 
the node's goal predicates, G. The heuristic creation processes 
which I shall describe search for the characteristics in the task 

specification which make 0(i) the best choice from 01 to achieve 
G, and so discriminate against the rest of 01.

This is in contrast to using pure EBL on the problem solving trace 

and searching for characteristics which match the goal node that 

explain why 0(i) was the best choice (e.g. see chapter 4 or 
Cl'Iinton et al 87]). This latter approach is too easily bogged down 

by the complexity and peculiar representation of nodes, and is 

invariably over-specific; on the contrary I believe that learning 
algorithms should not so much concentrate on correctness (as 
also argued in [Van der Velde 88]) but on forming practical and 

usable rules, although they may need refining in the light of 
further experience.

The build up of useful chunks may be helped by the fact that in 
MEA, a solution sequence to any solved sub-task can be a candidate 

f°r chunk creation, and may cause the creation of up to N-l chunks 
(recall from chapter 1 that each node in the goal directed search 

is itself a sub-task). For instance a situation can arise when a 
sub-goal solution which is not on the main solution path gives 

rise to chunk creation. Consider the and/or tree, representing 
part of a solution trace, in figure 3/3. Here a subgoal of nodel 
may be solved through nodes 4 and 5, and chunk(s) may be created, 

even though the solution path for the main task may consequently 
Turn out to be along a different path.

At some nodes (e.g. node5), 01 may have been a singleton, in which 

case a chunk is not made. This may be because the operators have 
been well refined by the user (e.g. 'gotodoor', 'close' of 

The robot world in appendix A only ever cause the generation of 

°uly one Cbiid node during goal directed search) or that chunks 
have already cut down the search. The simple rule is that where
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there was no branching in the solution trace, then no chunks are 
created. This causes the rate of chunk creation to be reduced, as 

they are effectively used.

The discriminant components which are derived by chunking are 

conditions on the initial state I and and environment E, and stem 

from the goal regression and generalisation processes used in 
chapter 2. For the b-chunk this discriminant is derived from the 
similarities between WPs(l,n) and WPs(i,n) (see 2(7) and consult 
[McCluskey 87d], figures 2 and 3), whereas for the c-chunk, 

WPs(l,i) and 0(i).p are used. The final goal predicate used to 
derive WPs(l,i) is that predicate for which 0(i) was added to the 

search to achieve.

Similarities are enhanced using a 'strengthening algorithm'; two 
such algorithms are detailed below. The core of a c-chunk's 
heuristic precondition on states is defined as:

C(i) = {P in WPs(l,i) : 0(i).p&S.r => P} ..3(1)

To produce C(i), the present algorithm uses the rules in S.r to 

increase the set 0(i).p, then intersects these ground predicates 
with WPs(l,i). A possible chunk is then proposed as (compare with 

2(7)):

GP(O(i).n,G,C(i),0(i).e)

The core, however, along with the environmental conditions O(i).e, 
gives only a generalised approximation as to why an operator is 
needed to achieve a goal, and success depends heavily on the 
particular domain's representation, and the rules in S.r. The 
chunk at this stage is reminiscent of the weak heuristic 'choose 

the operator which has the most preconditions already achieved by 
the initial state’ which is actually included as a weak heuristic 
in MEA. To improve on this, I devised algorithms A and B to 

strengthen the chunk’s latter two components.

The strengthening algorithms specialise expressions C(i) and 
0(i).e ( = Wl(0), W2(0) ) until they reach expressions Wl(j) and

W2(j) which discriminate in favour of the correct choice if used 

in exactly the same task. Following figure 3/4, The instance to be 
generalised is represented at point (a). At point (b) it has been 

generalised to include only those predicates that were necessary 
and sufficient for the operator sequence to be applied, up to and 

including 0(i) .

Systems based strictly on EBG, such as Prodigy, would presumably 
only produce an equivalent of point (c), when learning from 
success i.e. the generalisation of (b)'s constants to variables, 
where it does not invalidate the sequence 0(1) .. 0(i)'s

precondition's proof ([Minton & Carbonell 87] p.231 show the

acquisition of this type of heuristic for a blocks world example 
which we reproduce in section 5.2). In (c), however, there is 

generally information which just relates to the satisfaction of 
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intermediate operator preconditions, and is irrelevant to the 
final operator 0(i). In fact, the last two components of (c) are 

identical to the state and environmental preconditions of a 
closed macro (see section 2.5 or [McCluskey 87c]).

My chunking techniques start with the expression at point (e) and 

specialise it, using a strengthening algorithm, until it 

discriminates against choices in the original solution at point 
(d). Although the algorithms are essentially general to specific, 
in some cases C(i) may already be too specific - for instance when 

it produces a conjunctive component of a disjunctive target 
concept. In fact the discriminating chunk at point (d) may still 
only be an approximation to the target concept - methods of chunk 

repair and refinement are explained in 3.2. An outline of my two 
'general to specific' algorithms are given below, and their 
implementations are in appendix C.

Algorithm A

First let us define the following two 'residual' sets (see figure 

3/5):

WPs(l,i)' = WPs(l,i) - 0(i).p

O(i).p' = O(i).p - WPs(l,i)

This algorithm adds predicates from WPs(l,i)' to C(i), and adds 

environment relations to the last component of the chunk that 
connect 0(i).p' and WPs(l,i)’, finding relevant connections 

between them using association chains.

Thus the idea is to look for connections between features in 
WPs(l,i) and O(i).p that do not appear in the initial chunk.

Following Vere 
an association 
respect to a

in [Vere 77] (see also figure 3 in appendix D.4), 
chain between two predicates X and Y, with 
set of background facts F, is a sequence of 

predicates C1,C2, ... Cm, such that

Cl = X, Cn = Y, Ci in F, 1 < i < m 

and for all k, 1 < k < n, Ck-l,Ck,Ck+l is such that:

there exists terms x and y in Ck such that
x is a term in Ck-1 &
y is a term in Ck+1 & 
not(x = y). 3(2)

An example of a chain, with F = E.f in appendix A.l, is C1,C2,C3, 

where

Cl = in_room(boxl,rooml)

C2 = connects(rooml,room2,doorl2)
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C3 = at_door(boxl,door23,room2)

and where x = rooml and y = room2.

Algorithm A is shown in figure 3/6: note the use of only a subset 

of the environment E for the association chain's background facts 

F - in fact those parts used in operator application proof before 

and including 0(i).

The algorithm strengthens the initial chunk along two dimensions: 
the inner loop starts with F assigned to only O(i).e, and 
gradually increments this to the full sequence {0(i).e U .. U 
0(1).e}, if necessary. This reflects the fact that discriminating 

conditions will naturally be found 'near’ i, and ensures that it 
will not be over-specialised. The outer loop lengthens the 
association chain allowed.

Algorithm B

As previously mentioned in [McCluskey 87b], the complexity 

problems involved in building association chains limited their 

size. To combat this, algorithm B was developed as A's successor. 

Specifically, B is computationally less expensive because 

extra features which strengthen the core (defined by 3(1)) are 
obtained directly from operator applications' preconditions, 
rather than using relational chains. Inside the single 

loop of B it can be seen that the most complex operations are 

intersection and term listing. Growing association chains, on the 
other hand, is in general an exponential problem, and only 
viable for small chains.

If we first define

TS(wff) = (t : t is a term appearing in wff}-,
C(i,k) = {P in WPs(l,i) : 0(k).p&E => P}, 1 < k =< i,

then the basic idea is to specialise C(i) (= C(i,i)) towards

WPs(l,i) by adding predicates of WPs(l,i) that appear in the 
preconditions of operators 'behind' 0(i), i.e. adding C(i,i-1), 

then C(i,i-2) etc, until the chunk discriminates. Any predicates 
that are added to C(i) are supported by environmental predicates 
from operator preconditions that contain common terms (see figure 

3/7).

The resultant C-chunk from either algorithm is defined as

GP(0,G,Wl(j),W2(j)) ..3(3)

where GP is the generalisation operator defined in section 2.4.

To recap: a c-chunk is a 4-slot logical term; it is formed from a 
successful problem solving trace of a goal reduction search, and
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procedure strengthen_A;

/* initialise chunk components */
Wl(0):=C(i);
W2(0):= O(i).e;
j :=0;

while (GP(O,G,W1(j),W2(j)) is not a discriminating chunk)
& (j < complexity bound) do:
j ;=
F := O(i).e;
k := i;
while (GP(O,G,W1(j),W2(j)) is not a discriminating chunk)

& (k > 1) do:
k ■= k-1
F := F U O(k).e
(X, Y) := {x, y : x is a predicate in WPs(1 ,i)’,

and x is related to some predicate z in O(i).p’ by an 
association chain x,y,z of length j+2 in F };

W1(j) :=W1(j-1)&X;
W2(j) :=W2(j-1)&Y

end while;
end while;

end strengthen_A.

figure 3/6: strengthening algorithm A

procedure strengthen_B;

/* initialise chunk components */ 
W1(0):=C(i);
W2(0):= {P : P is in O(i).e &

( TS(P) intersect TS(W1(0)) <> empty_set) };
j :=0;

while (GP(O,G,W1(j),W2(j)) is not a discriminating chunk & j<i) do 
j := j+1;

X :=C(i,i-j);
Y := {P : P is in O(i-j) .e &

( (TS(P) intersect TS(X)) <> empty_set) };
W1(j) :=W1(j-1)&X;
W2(j) :=W2(j-1)&Y

end while

end strengthen_B.

figure 3/7: strengthening algorithm B
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used as a heuristic to guide future searches by matching its slots 
with components of a goal node.

Specifically, it is 

application 0 which 
solution sub-sequence

formed from the context of an operator 

achieved some sub-goal G at the end of a 
of operators. The chunk's third and fourth

components are extracted from the state and environmental parts

of the weakest precondition of the sub-sequence; predicates 

extracted are ones which appear in operator preconditions 
towards the end of the sub-sequence, and which seem to be the 
reason why operator 0 was used to achieve goal G.

Chunk use will now be defined in the following section.

3.14 The Use of c-chunks

The meaning of ’a discriminating chunk' in 3/7 is made precise by 
our definition of the use of chunks. Consider the set of operator 
instantiations 01 = {0(j): j in l..n & n > 1 } which have been 

proposed in the goal directed expansion of some node with initial 
state S, to solve one of the node's goal predicates, G; also 
assume that none of the O(j)’s have preconditions satisfied by S 

(if an operator were applicable, then it would be applied and the 
advanced state would be stored in the node's trace, as explained 

in chapter 1). A chunk is defined as discriminating if it favours 
one and only one member of 01. A chunk (O',G',W1,W2) that matches 

the operator 0(i) and the node's three components, in the 
following way, favours that instantiation:

there exists some variable binding set t:

(0(i) = [0']t) &
(G = [G']t) &
(S => [Wl]t) &
(E => [W2]t) ..3(4)

As defined, if 0(i) is the only instantiation to be favoured, then 
the chunk is discriminating and 0(i) will be the one chosen to 
continue goal directed search. Of course the same chunk, or 

others, may advise more one operator instantiation, in which case 
all favoured paths will be followed (the various combinations are 

elaborated later, in section 3.23).

3.15 C-chunk examples

We will use the scenario of figure 3/2 to clarify the chunk idea. 
If the initial state is as shown, and the goal is 

in_room(boxl,room3), then using E and OS defined in appendix A.l, 

FM will output the following operator sequence as the solution:

{0(1), 0(2), ... 0(11)} =

{gotodoor(door56,room6), gothrudoor(door56,room5),
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gotodoor(door25,room5), gothrudoor(door25,room2), 
gotodoor(doorl2,room2), gothrudoor(door12,rooml), 
goto(boxl), pushtodoor(boxl,door12), 

pushthrudoor(boxl,doorl2,room2), pushtodoor(boxl,door23,room2), 
pushthrudoor(door23,boxl,room3) } .

Chunk formation will occur whenever there was a choice of 

operator/operator instantiation in the search generated for this 
solution. If there were no existing chunks, then in fact there 
would have been four choice points: we will show chunk creation 
for two of these - 0(9) and 0(11). For more examples consult 
section 3.3.

Chunk creation first uses equations 2(7) to construct the weakest 
preconditions:

WPs(l,9) = in_room(boxl,rooml)£in_room(robot,room5)£ 
open(doorl2)£open(door25)£open(door56),

WPe(l,9) = connect(rooml,room2,doorl2)£fits_thru(boxl,doorl2)£ 

connect(room2,room5,door25)£

connect(room5,room6,door25)£type_of(boxl,box)

WPs(l,ll) = in_room(boxl,rooml)£in_room(robot,room5)£
open(door23)£open(door12)£open(door25)£open(door56),

WPe(l ,11) = connect(rooml,room2,doorl2)£fits_thru(boxl,doorl2)£ 
connect(room2,room5,door25)£fits_thru(boxl,door23)£ 

connect(room2,room3,door23)£type_of(boxl,box)£ 
connect(room5,room6,door25)

Since 0(9).p =
at_door(robot,door12,rooml)£next_to(robot,boxl) 

£open(doorl2)££in_room(boxl,rooml),

then from 3(1) and the robot-world environment E in appendix A,

C(9) = in_room(boxl,rooml)£open(doorl2)

and a discriminating c-chunk would be formed:

GP(pushthrudoor(boxl,doorl2,room2),
in_room(boxl,room3),Wl(0),W2(0)) =

ch(ch9, pushthrudoor(B,D,R),
in_room(B,R), 
open(D)£in_room(B,Rl), 
connect(R1,R2,D)£type_of(Bl,box)£fits_thru(Bl,D))

This discriminates against the other candidates:

{ pushthrudoor(boxl,door23,room2), pushthrudoor(boxl,door25,room2), 
pushthrudoor(boxl,door24,room2) }
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This example produced a discriminating heuristic without the need 

for strengthening; if we examine C(ll), however, this will not 
immediately lead to a good heuristic; without strengthening, this 
chunk will look like:

ch(chll’, pushthrudoor(Bl,D23,R3),
in_room(Bl,R3),
open(D23),
connect(R2,R3,D23)&type_of(Bl,box) )

which does not discriminate between the two operator instances

{pushthrudoor(boxl,door34,room3), pushthrudoor(boxl,door23,room3),

The strengthening algorithm B for example, would terminate for j=2 

and output:

Wl(2) = open(door23)&in_room(boxl,rooml)&open(doorl2)

W2(2) = connect(rooml,room2,doorl2)&fits_thru(boxl,doorl2)&

fits_thru(boxl,door23)&connect(room2,room3,door23)& 

type_of(boxl,box).

which produce the discriminating chunk:

ch( chll, pushthrudoor(Bl,D23,R3),

in_room(Bl,R3), 
open(D23)&in_room(Bl,Rl)&open(D12) 
connect(R1,R2,D12)&fits_thru(Bl,D12)&

fits_thru(Bl,D23)&connect(R2,R3,D23)& 
ne(D12,D23)&ne(Rl,R3)&type_of(Bl,box))

Sometimes discriminating features are found which are only 
supportive or co-incidental to the target concept. Although 
occurrences are minimalised (since the algorithm is searching 
through predicates which are in the weakest precondition) section 

3.2 shows how FM can refine imperfect rules.

We shall now give a simple example of the use of chll, in future 

problem solving. Consider figure 3/1, with the goal of 
‘in_room(boxl,rooml)’. Then two operator instances would be 

immediately generated during search:

{pushthrudoor(boxl,door14,rooml), pushthrudoor(boxl,doorl2,rooml)} 

chll discriminates between these two and favours the correct 
choice pushthrudoor(boxl,doorl2,rooml) because chll instantiates 

to:

ch(chll,pushthrudoor(boxl,door23,rooml),

in_room(boxl,rooml),
open(door23)&in_room(boxl,Rl)&open(D12)
connect(R1,R2,D12)&fits_thru(boxl,D12)&
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f its_thru(box1, door23)feconnect (R2, rooml, door23)& 
ne(D12,door23)&ne(Rl,rooml)&type_of(box1,box))

and a consistent binding exists for the state component (R1 = 
room5, D12 = door25) and so for the further instantiated 
environment component (R2 = room2).

3.16 Evolution of the Chunking Technique

Before developing c-chunks any further, I will show how they have 
evolved from my previous work on b-chunks. I originally designed 
b-chunks [McCluskey 87a] as being analogous to chunks which aid 

forward search - they both rely on the same kernal, the ’WPs(i,n)’ 
of section 2; they also both take into account the final goal. An 
advantage of this was thought to be that they could be used to 
propose operators to generate a skeleton solution to a problem 
before search began, similar to the ideas of Carbonell in 
[Carbonell 83]. This would change their test role in a ’generate 

and test’ search to one of operator generation. As probably 
happened in Carbonell’s line of research, I found that the 

combinatorics of search for the rest of the solution was as least

as bad as starting from scratch - this also proved to be the case 

when using chunks to generate an advanced partial plan within a 
general non-linear planner (see chapter 4).

I will not describe the b-chunk in depth here, since the two forms 

are very similar, and the material is covered in [McCluskey 87b], 
[McCluskey 87d] which support this thesis. I will, however, list 

the important differences, using the terminology already developed 
for creating a chunk with respect to an operator 0(i):

3.161: The ’goal slot’ of the b-chunk was occupied by the main 
goal predicate(s) of the goal node’s solution sequence (a goal 
node tree was shown in figure 3/3), not necessarily the one 0(i) 
was invoked to achieve.

3.162: WPs(l,n) and WPe(l,n) were used instead of WPs(l,i) and 

WPe(l,i) respectively. This would include extra information from 

the second part of the solution sequence, after the action of 

0(i).

3.163: 0(i).p was expanded to WPs(i,n).

The b-chunk was then created using the same processes as explained 
in section 3.13. For example the core of a b-chunk was:

C(i) = {P in WPs(l,n) : (WPs(i,n) & E) => P}

Referring to 3(4), a b-chunk favours an operator instantiation 

if:

there exists some binding set t: 

(0 = [0’]t) &
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(S => [Wljt) &
(E => [W2]t) &
(([G’]t => G) V
(there exists Gl: ancestor_of(G1,G) & [G'Jt => [Gl]) )

This is not a straightforward match (unlike 3(4)) because the b- 

chunk stores the 'final goal G', and uses it as an extra 
constraint. The final disjunction includes an 'ancestor' 

relation, which allows the chunk's goal to unify with any 
ancestor goal encountered in the search - making the chunk more 

generally applicable. Also there was the possibility that the 
final goal was a conjunction of predicates, hence the need for the 

implication in the last conjunction.

Early tests on several different 'toy' worlds, lead to the 

following conclusions about the b-chunk:

3.164: Although in some circumstances the correct choice of an
operator/operator instantiation does depend on the main goal of 

the task, as well as on the rest of the specification, using the 
goal as a further constraint causes the target concept 

generalisation space to be too complex and disjoint - in fact it 

tends to multiply the chunks needed. A circumstance where the main 
goal may be important is when it consists of two interfering 

subgoals; this may be overcome, however, with separate heuristics 
to deal with goal ordering such as abstraction.

3.165: The constraints that are gathered from the successful

operator sequence to form a b-chunk, for some operator 0, consist 
of predicates used in application proofs both before and after 0 
in the sequence. Those that are from after 0 tend to be 

irrelevant and make the chunk overspecific.

3.166: B-chunks don't record which goal predicate an operator was
added to achieve in the original search. This causes no problem if 
a user is constrained to structure the operators so that each has 
only one non-side effect (e.g. only having one predicate on the 
'padd' list of FM operators), but seems unreasonable in general, 
since the spirit of this work is for the system itself to make 

such operational decisions.

Finally, we recap the make-up of b-chunks:

Like c-chunks, they are 4-slot logical terms formed from a 
successful problem solving trace of a goal reduction search; they 
are used as heuristics to guide future searches by matching their 

slots with components of a goal node.

They are heuristics formed from the context of an operator 
application (say 0) which occurred in some solution sequence of 
operators (say in solving a main goal G). As with c-chunks, their 

third and fourth components are extracted from this context, but 
in contrast they are made from similarities between:
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—the generalised weakest precondition of the WHOLE sequence of 

operators that solved G; and

—the weakest precondition of the sub-sequence of operators after 
(and including) 0.

3.2 Chunk Refinement

3.21 Introduction: the Form of Heuristic Rules

Refinement and acquisition control of chunks into a rule set will 
now be discussed, as any expanding rule base needs at least some 

form of redundancy control and a truth maintenance component.

It should be obvious from the examples above that chunking does 
not immediately acquire a perfect operational version of the 
target concept: recall the example in 3.15 that created chll. If 
in the original initial state (in figure 3/2), door34 had been 

closed, then the weak chunk chll’ would have discriminated between 
the two operator instances. This is not too serious, however, 
since (following 3.15) if the chunk chll’ is applied to operators 
that solve goal ’in_room(boxl,rooml)’ in figure 3/1, then the 
chunk’s lack of discrimination in this case would send it to be 

specialised as described in 3.23 below.

I therefore view chunk refinement under the umbrella of 

incremental concept learning (it should follow chunk creation as 
suggested in [McCluskey 87b]) and feel that a planner should 

improve its performance both analytically and experimentally. 
This is because analytic goal regression only generates a 
sufficient condition for goal achievement, and is very often over-
specific. To this end, the integration of concept learning and 
analytic goal regression has already been encouraged in both 
[Boswell 86] and [Porter and Kibler 85]. Let us first review the 
structure of the stored c-chunks. In the earlier part of this 
chapter we modelled a chunk (0,G,W,W’) as a kind of decision rule 

of the form:

IF G & W & W’ match their corresponding task components

then add 0 under the bindings of these matches ..3(5)

This is too primitive, because the heuristic store must be in a 
form suitable for change and repair as more successful sequences 

are analysed. In general, several chunks may be made for the same 

operator-goal pair, and would together form an evolving, 
disjunctive rule. Rules may also have to be repaired, in cases 
where they are too general. To accommodate this we draw on the idea 

of evolutionary, automated knowledge refinement as proposed in 
[Michalski 85]. He defines censored production rules of the form:
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if 
then 
unless

<premise> 
<decision> 
<censor>.

Building on this idea of the censor, our evolving knowledge base 
is defined as a collection of heuristic rules, each of the form:

" ( if G then

(if (W1,W1’) unless <list of exceptions> V
if (W2,W2') unless <list of exceptions> V 

.....  V
if (Wn,Wn’) unless <list of exceptions> ) 

then choose 0 ) "

..3(6)

where it is implicit that G, Wi, Wi' match a node's goal, initial 
state and environment, respectively.

This representation allows the problem of 'overlapping rules' to 

be solved incrementally. For instance, following [Boswell 86,pp52- 
53], given two learned heuristic rules:

If Pl then apply operator 01;

If P2 then apply operator 02;

it is argued that if Pl and P2 are not disjoint and 01 leads to a 
shorter solution, then the rule set should be changed to:

If Pl then apply operator 01;
If P2£not(Pl) then apply operator 02;

I will use the exception slot of 3(6) to deal with overlapping 

chunks in a similar way (see 3.23(c)). Given this more general 
form, we redefine the use of an individual chunk: it favours an 
operator instantiation if and only if it satisfies 3(4) AND none 
of the chunks in its exception list favour a different operator 
instantiation.

Incremental chunk creation and use will drive the repair or 

modification of heuristic rules of this form, and will help them 

to converge towards their target concepts. Basically, heuristic 
rules can evolve in three ways: they can be generalised by the 
addition of new chunks, specialised by chunk strengthening, or 
specialised by exception addition. Using the rule representation 
just discussed, this will be dealt with in section 3.23, while in 
the next section we will describe rule optimisation.

3.22 Rule Optimisation

The purpose of optimisation is to make heuristic rules more 

efficient while preserving their meaning. If R is a rule in 3(6) 
format then define:
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Theory(R) = { S : S is a state description and (S,E.f) is 
matched by some pair (Wi.Wi’) in R, 

and none of its exceptions }

An optimisation operation T is thus axiomatised by the following 

invariant, for any rule R:

Theory(R) = Theory( T applied to R)

Some operations are given below, together with examples of their 
use:

Tl: Using the rules specified in environment E.r, remove redundant 
predicates in each chunk.

For example consider the chunk chi which is taken from our results 
of 3.3:

ch(chl, gothrudoor(x(1),x(2)), in_room(robot,x(2)), 
open(x(l))&in_room(robot,x(3)), 

ne(x(3),x(2))&ne(x(5),x(l))&ne(x(2),x(4))&ne(x(3),x(4))& 

connect(x(3),x(4),x(5))&type_of(x(4),room)& 
connect(x(4),x(2),x(l))&type_of(x(3),room)& 

type_of(x(2),room)&type_of(x(5),door)& 
connect(x(4),x(3),x(5))&connect(x(2),x(4),x(l)) )

the rules from the robot world in appendix A shorten this to:

ch(chl, gothrudoor(x(1),x(2)), in_room(robot,x(2)), 
open(x(l))&in_room(robot,x(3)), 

ne(x(3),x(2))&ne(x(5),x(l)) 
connect(x(4),x(3),x(5))^connect(x(2),x(4),x(l)) )

T2: Re-order the predicates in each chunk for efficiency.

Our chunk becomes (its final form is in section 3.3):

ch( chi, gothrudoor(x(l),x(2)), in_room(robot,x(2)) 

open(x(l))&in_room(robot,x(3)), 
connect(x(3),x(4),x(5))&connect(x(4),x(2),x(l))& 

ne(x(3),x(2))&ne(x(5),x(l)) )

T3: Re-order the chunks within a rule for efficiency.

FM keeps a record of the heuristic worth of each chunk within a 
heuristic rule, and uses this to bias its use, i.e. the most used 

chunks, being the most probable to give a match, are tried first.

T4: Use background rules specified in environment E to merge
chunks.
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For larger implementations it would also be advisable to cut down 
the number of chunks using environment/state rules such as:

type_of(X,door) —> closed(X) V open(X).

Then given two chunks:

ch( chi, gothrudoor(x(1),x(2)), in_room(robot,x(2)) 

open(x(l))&in_room(robot,x(3)),
connect(x(3),x(4),x(5))^connect(x(4),x(2),x(l))& 
ne(x(3),x(2))&ne(x(5),x(l)) )

ch( ch2, gothrudoor(x(1),x(2)), in_room(robot,x(2)) 

closed(x(l)&in_room(robot, x(3)) , 
connect(x(3),x(4),x(5))&connect(x(4),x(2),x(l))& 
ne(x(3),x(2))&ne(x(5),x(l)) )

these would simply merge to:

ch( ch3, gothrudoor(x(l),x(2)), in_room(robot,x(2)) 
in_room(robot,x(3)),
connect(x(3), x(4),x(5))&connect(x(4), x(2),x(l))& 

ne(x(3),x(2))&ne(x(5),x(l)) )

I define a predicate relation to be sparse if the number of 
instances of it in E is much smaller that the number of possible 
instances. For example 'connect' in appendix A is sparse - there 
are 18 instances of it whereas there are (no. of objects)**3 

possible.

It is then obvious that T2 can make a significant amount of 
difference to the matching cost of rules by re-ordering chunks' 
predicates so that the sparse relations are matched first. 

Naturally, relations with the largest arity tend to be also the 
most sparse; this particular optimisation rule has had the most 
impact on the experimental results outlined below.

3.23 Rule Repair

Chunks are domain dependent heuristics created by a weak (general) 

learning method. They can be viewed as generalisations in 
'operator x goal x state x environment' space. As the environment 
is a fixed body of facts, this component acts as a constraint on 
the state expression’s variables. Figure 3/8 represents a 

simplification of the way some fictional chunks approximate a 
particular target concept (i.e. where the goal predicate name and 

operator name have been fixed).

Due mainly to FM’s generality and more powerful operators, simple 
incremental induction methods, epitomised by the version space 
technique of LEX [Mitchell 83], cannot be used. For example, 
operator parameters, rather than operators alone, are chosen 

by chunks.
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Related to the more general, powerful representational factor 
mentioned above is the disjunctive nature of target concepts. In 
the version space paradigm, an example inside the space allows the 
concept ’lower bound’ to be generalised so as to cover it, or on 

the other hand, a counter example causes the specialisation of 

the concept’s ’upper bound’ (see [Mitchell 83] for more details of 
the version space method applied to problem solving). If this 

method were to be used in the scenario of figure 3/8, e3 should 
generalise ch-2 towards ch-1, but this clearly is not correct 

because of the disjunctive nature of the target concept.

A more drastic measure is rule subsumption: if ch-2 is created 
from example e2, after ch-1, then it can be seen from the diagram 
that ch-1 subsumes ch-2, i.e. ch-1 covers more ground instances 
than ch-2. In some of those ground instances, however, ch-1 may 
either offer more than one operator instantiation, or worse the 
wrong one, hence it is be wise to keep ch-2. On the other hand, 
deleting ch-1 and keeping ch-2 does not seem profitable, since 
ch-1 covers more of the target concept.

We will show how rule repair can give a partial answer to this 

problem, and deal with over-general or over-lapping rules. We have 
already seen how chunk creation and strengthening processes help to 
'home in’ on conjunctive parts of the target concept quickly (see 

figure 3/4), and how a heuristic rule may be disjunctive to match 

this.

First, consider figure 3/9 which shows the main cases where 
chunks are created or incremented when applied to search 

reduction. In the figure, ’node’ represents an expanded node 
which has been encountered during goal directed search but is also 
on the solution path to some task; and each arc a choice of 
operator and instantiation that was generated at that node.

In case (a) no chunks have been used, whereas (b) is the desirable 

case where a chunk has indicated the correct path. In (c), a chunk 

has indicated the correct path, but other chunks C’ and C" have 
fired for incorrect paths. In (d), the chunk is too general and 
has fired for more paths than the solution. Finally (e) represents 

a chunk C’ which has incorrectly fired.

FM performs an analysis on the trace of a planning session and 

deals with these eventualities as follows:

(a) A chunk is made (cf. section 3.13), optimised (cf. section 

3.22, T1 and T2), and augments the relevant heuristic rule.

(b) The heuristic worth of C is incremented (cf. section 3.22, 

T3) .

(c) The heuristic worth of C is incremented and C is added to C’ 
and C" ’s Clist of exceptions> slots (see expression 3(6)).
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Occasionally, since the the rules acquired are generally 
incomplete, circular exceptions may be recorded. In this case FM 
will generalise both rules so as not to include eirher exception.

(d) Chunk C is passed to the strengthening algorithm, with the set 

of operator instantiations (01 in 3.1) restricted to those that 

the chunk has favoured (the first three branches in the diagram). 

C is specialised so that it would subsequently discriminate 
between the three branches (the exception to this is where the 
branches lead to a solution of the same length - this causes a 

dilemma for the learner, and is discussed later in 3.321)).

(e) A chunk is made as in (a) with C added to its list of 

exceptions. This option is only available when:

* FM is in 'learning mode' only - i.e. where the MEA search does 
not use chunks’ advice but registers it and builds heuristic rules 
up accordingly.

* FM is in ’learning and planning mode’ but chunks do not cut 
branches down but simply favour instances heuristically.
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3.3 Experimental Results

3.31 Introduction

Although several other domains have been specified to FM (as 

listed in appendix A, these include Tower-of-Hanoi, 8-Puzzle, 

Blocks worlds, Macbeth World) we have chosen two particular ones 
to show the power of the c-chunk with the MEA strategy (of course 

these applications are simply 'micro-worlds’, that is they make 
simplifying assumptions when compared with the more complex real 
world):

1. A robot-room world (figure 3/10), an augmented version of the 
one in [Sacerdoti 73]. This was chosen for several reasons-

-similar worlds appears several other times in the literature, 
making it somewhat of a 'bench-mark' (e.g. [Fikes et al 72], 
[Dawson & Siklossy 77]).

-the target concepts to be learned are not trivial (as we saw in 

section 3.1).

2. A warehouse world (figure 3/11); this involves tasks such as 

moving crates from one part of the warehouse to another, which 
means having to plan a route to a truck, plan the trucks route to 
the crate, pick up the crate, remove obstructions along the way 

etc. This was chosen because:

-like the robot world, it has a convenient spatial representation, 

and is therefore more intelligible.

-it is a more complex world than the robot worlds.

-it does not seem to have been modelled elsewhere in the 
literature, and is therefore somewhat 'fresh'!

3.32 The Robot World Experiments

Although many variations and representations of plan layout, 
initial state and environment are possible, I show a particular 
one which in detailed by the I,E,OS of appendix A.l, and 
graphically shown in figure 3/10. I have tried variations along 
the representational and arrangement dimensions of this domain, 

and obtained similarly encouraging results as presented below, 
because of the generality of the c-chunking method.

The following criteria were taken into account when selecting the 

sample tasks:
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Figure 3/10: robot world
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1. put less demanding tasks at the beginning of the session;

2. do not have tasks with complex, interfering multiple goals.

Criterion 1. was included since it seems more 'natural’ for a 

learning system to be presented with less demanding tasks first.

Criterion 2. was included since the c-chunk in its present form is 
not aimed at advising on goal interactions, and MEA (unlike NLP) 
is not particularly adept at solving them.

The task lists presented below reflected these criteria, 

(especially list 1). The initial states, environment and operator 
sets are given in appendix A.

Each task consists of one or more goal predicates to be achieved 
from a 'current' state; once a solution is found, the state is 
incrementally updated by applying the solution sequence to it. 
Output from some of the test runs is supplied in appendix B. We 
tried various configurations with the sample tests:

Configuration NO-CHUNKING:

This is MEA, the goal directed, linear problem solver with no 

learning components. It is, however, equipped with two weak 
heuristics: 'nodes with most goals satisfied in the initial state

should be expanded first' and 'nodes that contain circular goals 

should be deleted'. This configuration is the lowest common 

denominator for all the configurations below.

Configuration A:

MEA is equipped with c-chunk creation under strengthening 
algorithm A. Only association chains of the minimum length 3 are 
allowed (i.e. the complexity bound in 3/7 set to '2'). Rule 
refinement as specified in 3.2 is implemented.

Configuration B:

MEA is equipped with c-chunk creation under strengthening 
algorithm B, and rule refinement as specified in 3.2.

Configuration HAND-CRAFTED:

This is Configuration B but with an initial set of hand crafted c- 
chunks, obtained through studying the environment and operator set 

given in appendix A.l.

Note that the CPU times given in the results tables are the 
totals; this includes applying each problem's solution 
sequentially to the initial state to arrive at a final state which 
contains the goal; and also any heuristic acquisition, repair and 
use that might be taking place.
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Running in interpreted Prolog on a Sun 3/50 workstation, with 
plenty of diagnostic reporting, the implementation speeds are 

obviously not for absolute but relative comparison. Also, the 
addition of other weak, possibly preprocessing techniques, such as 

hierarchical operator and goal structure, would speed up all the 

results uniformly.

Task Listl: 

1: in_room(robot,room2);

2: in_room(boxl,room2);
3: in_room(box2,room3);
4: in_room(big_box,room3);
5: in_room(boxl,room6)&closed(door56);
6: in_room(robot,room7);
7: in_room(boxl,room3);
8: in_room(box2,room7);
9: next_to(box2,big_box);
10: in_room(boxl,room6)& 

in_room(box2,room7)& 

in_room(box2,room7) ;

Task List2:

1: in_room(boxl,room3).

2: in_room(box2,room6)&
in_room(robot,room6)& 

closed(door56)& 
closed(door67).

3: in_room(boxl,room5)&
in_room(big_box,room5).

4: in_room(box2,room3)& 

closed(door23)& 
closed(door35).

5: in_room(robot,rooml)&
closed(doorl2).

6: next_to(boxl,box2)&
in_room(box2,room5).

7: in_room(boxl,room7)&
in_room(box2,room7)& 
in_room(big_box,room6).

8: in_room(big_box,room7)&
next_to(big_box,boxl)& 
in_room(box2,room6).

9: in_room(boxl,rooml)&

in_room(robot,room2)& 
closed(doorl2).

10: in_room(big_box,rooml)& 
next_to(big_box,boxl)& 
in_room(box2,room5) .
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RESULTS FOR TASK LIST1

NO-CHUNKING CONFIG. A CONFIG. B HAND-CRAFTED

TASK NO ICPU NODES ICPU NODES ICPU NODES 1 CPU NODES

&SOLN 1 TIME EXPAND- ITIME EXPAND- ITIME EXPAND- ITIME EXPAND-
SIZE IUSED

I
ED lUSED

1
ED lUSED

I
ED lUSED

1
ED

1: 5
1
1 59s 20

1
1 67s 20

1
1 65s 20

1
1 27s 5

2: 5 1 25s 5 1 27s 5 1 29s 5 1 27s 5

3: 7 11 75s 10 1 62s 9 1 63s 9 1 68s 7
4: 12 I1 185s 28 1 200s 28 1 203s 28 1 87s 14
5: 9 1 102s 18 1 77s 15 1 78s 15 1 72s 14
6: 4 1 35s 12 1 19s 4 1 17s 4 1 22s 4
7: 9 1 485s 58 1 340s 45 1 51s 9 1 59s 9
8: 5 1I 98s 14 1 99s 13 1 31s 5 1 36s 5
9: 5 1 96s 15 1 78s 12 1 33s 6 1 38s 5
10: 23 1 *** ** 1 599s 106 1 407s 68 1 452s 63

Avge soln size: 8.4

(N.B. »♦♦♦» means that program ran out of space, after at
2000s of CPU time and 200 nodes expanded)

least

RESULTS FOR TASK LIST2

NO-CHUNKING CONFIG. A CONFIG. B HAND-CRAFTED

TASK ICPU NODES ICPU NODES ICPU NODES I CPU NODES
&SOLN ITIME EXPAND- ITIME EXPAND- ITIME EXPAND- ITIME EXPAND-
SIZE lUSED

1
ED lUSED

1

ED lUSED

1

ED lUSED

1

ED

1: 7
1
1 88s 25

1
I 101s 25 1 99s 25 I 40s 8

2: 11 1 131s 21 1 108s 17 1 104s 17 I 84s 15
3: 15 11056s 161 1 367s 68 1 367s 65 1 252s 42

4: 11 1 291s 39 1 82s 16 I 82s 16 I 82s 16

5: 7 1 45s 14 1 53s 13 1 51s 13 I 41s 11

6: 11 1 541s 71 1 96s 18 1 94s 18 1 100s 24

7: 12 1 772s 99 1 210s 43 1 208s 43 1 196s 40

8: 10 1 104s 19 1 86s 13 1 87s 13 1 59s 12

9: 14 1 332s 44 1 171s 29 1 170s 29 1 151s 26

10: 22 | *** ** 1 472s 78 I 480s 78 1 372s 64

Avge soln size: 12 operators
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RESULTS FOR TASK LIST21RESULTS FOR TASK LIST11

CONFIG. A CONFIG . B CONFIG. A CONFIG. B

TASK |CPU NODES ICPU NODES 1 1 CPU NODES I CPU NODES
&SOLN ITIME EXPAND--ITIME EXPAND- 1 1 TIME EXPAND-| TIME EXPAND-
SIZE lUSED

1
ED lUSED

1
ED 1 1

l i
USED ED I USED ED

1: 5
1
1 26s 5

1
I 23s 5

I 1
II 55s

i
15 | 36s 5

2: 5 1 25s 5 1 24s 5 II 26s 5 1 30s 5
3: 7 1 83s 10 1 68s 9 1 1 47 s 7 1 48s 7
4: 12 I 84s 14 1 165s 23 1 1 229s 28 I 228s 28
5: 9 1 84s 15 1 76s 15 1 1 81s 14 I 99s 14
6: 4 1 20s 4 1 17s 4 1 1 22s 4 1 31s 4
7: 9 1 357s 44 1 60s 10 1 1 74s 10 | 81s 10
8: 5 1 108s 13 1 31s 5 1 1 36s 5 1 35s 5
9: 5 1 41s 6 1 34s 6 1 1 39s 6 1 39s 5
10 23 1 471s 72 1 414s 68 II 588s 90 | 647s 86

RESULTS FOR TASK LIST 22 RESULTS FOR TASK LIST12

CONFIG. A CONFIG. B CONFIG. A CONFIG. B

TASK ICPU NODES ICPU NODES 1 1 CPU NODES I CPU NODES
&SOLN ITIME EXPAND-■ITIME EXPAND- II TIME EXPAND-■ITIME EXPAND'
SIZE lUSED

1
ED lUSED

1

ED 1 1
II

USED ED lUSED

1

ED

1: 7
1
1 85s 20

1
1 114s 18

1 1
II 43s 8 1 36s 8

2: 11 1 94s 15 1 120s 15 II 109s 17 I 79s 15

3: 15 1 304s 59 1 280s 42 II 273s 44 1 244s 42

4: 11 1 82s 16 1 82s 16 1 1 89s 16 1 79s 16

5: 7 1 45s 11 1 55s 11 1 1 41s 11 1 38s 11

6: 11 1 103s 18 1 127s 18 1 1 143s 32 1 124s 32
7: 12 1 192s 40 1 223s 40 II 257s 47 1 184s 40
8: 10 I 87s 13 1 87s 13 II 164s 28 1 58s 12

9: 14 1 182s 28 1 229s 28 II 187s 26 1 141s 26
10: 22 1 498s 78 1 566s 64 1 1 522s 78 1 425s 78
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3.321 Discussion of Results

It should first be noted that my hand crafted heuristic rules 

(given in appendix A) cut down CPU time and expanded nodes by up 

to a factor of 6, averaging at over 3 for this level of task 

complexity (these factors, in fact, generally rise as the task 

complexity goes up). Occasionally, in simpler tasks, the rules 
may only give similar performance to the basic problem solver - 
this is where the implanted weak heuristics are sufficient to cut 

down search completely.

Chunk creation in configuration B is shown to dramatically cut 
down times also, the last five times of B for listl even beating 
HAND-CRAFTED. This is because of the higher matching cost of a 
more comprehensive rule set held by the latter, and is an 
indication that (in more complex worlds) learning from experience 
of relevant problems is preferable than preprocessing techniques. 
Configuration A has shakey results as over-specific chunks were 
created initially, slowing down learning and causing more repair 

to have to take place towards the end of the task list.

More evidence that the acquired rules are well on the way to the 
target concepts is given in 3(7) below. These are Configuration 

B’s rules after list 1; they should be compared to the the hand-
crafted in appendix B (note that identifiers beginning with ’x’ 

are variables).

IF GOAL = in_room(robot,x(1)) THEN

/2/ IF ( in_room(robot,x(2)), 
connect(x(2),x(l),x(3)) ) unless <> OR

/l/ IF ( in_room(robot,x(2))&open(x(3)), 
connect(x(2),x(4),x(5))£connect(x(4),x(l),x(3))& 
ne(x(2),x(l))£ne(x(5),x(3)) ) unless </2/>

THEN CHOOSE gothrudoor(x(3),x(1))

IF GOAL = in_room(x(l),x(3)) THEN
/3/ IF ( in_room(x(l),x(4))&open(x(2)),

connect(x(4),x(3),x(2))&type_of(x(l),box) 

&fits_thru(x(l),x(2)) ) unless <> OR
/5/ IF ( in_room(x(l),x(4))&open(x(2)),

connect(x(4),x(5),x(6))£connect(x(5),x(3),x(2))£ 

fits_thru(x(l),x(6))&type_of(x(l),box)&fits_thru(x(l),x(2))£ 
ne(x(4),x(3))£ne(x(6),x(2)) ) unless </3/> OR

/6/ IF ( in_room(x(l),x(4)), 
connect(x(4),x(3),x(2))£type_of(x(l),box)& 

fits_thru(x(l),x(2)) ) unless <>
THEN CHOOSE pushthrudoor(x(l),x(2),x(3)) ..3(7)

Task list 2 was chosen to test heuristic acquisition with more 

difficult tasks of several goal conjunctions. The operator set and 
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environment remain the same, and the initial state is given in 
appendix A.1

Approximating the absent CPU time to be 2000s, the hand crafted 
rules perform on average nearly four times faster than the basic 

planner, in this harder list of tasks.

This time algorithms A and B seem to match each other closely for 
speed, and in fact acquired similar heuristic rules. The exception 
was chunk /7/ (in 3(2) below) - this could only be acquired by the 

more powerful algorithm B, because of the limit on association 
chain length in algorithm A. Again the performance figures show 
that acquired heuristics quickly start to approximate the hand - 
crafted ones. For instance, after only two tasks to learn from, 
the time taken to solve task 3 has been cut from 1056 seconds to 
367 seconds using either algorithm (remember that the latter 

figure is not only problem solving time but also includes time 
taken for chunk acquisition and refinement from the solution of 
task 3 !).

In task 6 a curious situation arose: A and B actually produced 

fewer nodes than HAND-CRAFTED. Further investigation showed that 

one of my handcrafted rules was faulty - I had assumed that the 
target concept for ’in_room(Box, Room)’ was very similar in 
structure to ’in_room(robot, Room)’ - in fact this is incorrect 
with the operator set used in appendix A. FM found it was less 
effort pushing a box into a room through two open doors (4 

operators) than one closed door (5 operators), and made chunks 

accordingly. This can be seen by examining the rules acquired 
using algorithm B from list2 (shown below in 3(8)); contrast chunk 
/l/ with /6/: for the latter, the status of the door dosen’t 

matter, whereas the 'open' condition is present in the former.

IF GOAL = in_room(robot,x(2)) THEN
/3/ IF (in_room(robot,x(3))&open(x(l)),

connect(x(3),x(2),x(l)) ) unless <> OR
/6/ IF ( in_room(robot,x(3)),

connect(x(3),x(2),x(l)) ) unless <> OR
/2/ IF ( in_room(robot,x(4))&open(x(l))&open(x(3)),

connect(x(4),x(5),x(3))&connect(x(5),x(2),x(l))&

ne(x(4),x(2))&ne(x(3),x(l)) ) unless </3/6/> OR

/5/ IF (in_room(robot,x(3))&open(x(l)),
connect(x(3),x(4),x(5))&connect(x(4) ,x(2),x(l))&
ne(x(3),x(2))&ne(x(5),x(l)) unless </3/6/> OR

/7/ IF ( in_room(robot,x(5))&open(x(3))&open(x(4))&open(x(l)),

connect(x(5),x(6),x(3))&connect(x(6),x(7),x(4))&
connect(x(7),x(2),x(l))&ne(x(5),x(7))&ne(x(5),x(2)) 

&ne(x(3),x(4))&ne(x(3),x(l))&
ne(x(6),x(2))&ne(x(4),x(l)) ) unless <>

THEN CHOOSE gothrudoor(x(1),x(2))

60



IF GOAL = in_room(x(l),x(3)) THEN
/l/ IF ( in_room(x(l),x(4))&open(x(2)),

connect(x(4),x(3),x(2))&type_of(x(l),box)&
fits_thru(x(l),x(2)) ) unless <> OR

/4/ IF ( in_room(x(l),x(5))&open(x(4))&open(x(2)), 

connect(x(5),x(6),x(4))&connect(x(6),x(3),x(2))& 

fits_thru(x(l),x(4))&type_of(x(l),box)& 

fits_thru(x(l),x(2))&ne(x(5),x(3))
&ne(x(4),x(2)) ) unless </l/> OR

THEN CHOOSE pushthrudoor(x(l),x(2),x(3)) ..3(8)

The second pair of tables were constructed after both task lists 
had been executed again, but this time the acquired heuristics 

rules from the first runs were used. Rule acquisition continued, 
so that more chunks could be formed if necessary, and rules could 

be further refined. Task listXY means task listY is run with 
heuristics acquired from execution of listX.

Although performance is similar to hand-crafted rules, one or two 
tasks still lag behind, even in LIST11 where exactly the same 

tasks are given again. This is because of chunk interaction - 
situation type (c) is occurring (see section 3.2, figure 3/9); 

once these corrective exceptions are made, this problem 
disappears.

A more important problem may occur where a task has multiple 
solutions of equal length. In listl/task4/B a chunk advises two 

paths to follow, and is subsequently called in for strengthening. 
There is a dilemma: should the planner search exhaustively to make 
sure that the non-solution path does not lead to an equal solution 
(each time this occurs!) as did the Lex system [Mitchell 83] or 

should it always apply the strengthening algorithm?. There does 
not seem to be any definitive answer to this, since searching for 
every possible solution is obviously expensive if not impossible. 
I decided on the following compromise for the actual 

implementation:

* don’t look down each path - this is far too slow if the learning 

time is being taken as an integral part of the planning time (as 

in our case).

* send the advising chunk to be strengthened. If the paths are 
indeed equal, the algorithm may find no distinguishing features, 
in which case the chunk is re-instated, and not allowed to be 
strengthened again. If there are distinguishing features, these 
are of course added; this means that at worst an over-specific 
chunk would be developed (but no more so than would be developed 

using strict E.B.G.!).

Another problem with chunks, which has plagued learning systems at 
least as far back as STRIPS with Macrops [Fikes et al 72] is the 
overhead in matching cost of learning components. As the 

61



application domains we consider become more complex, chunks will 
have to be created with a hierarchical structure, as will 

operators and the rest of the domain definition. Our chunk 
optimisation routines (specified in 3.2) alleviate this: 

reordering predicates so that the sparse ones are matched first, 
and reordering chunks so that the most commonly used and simplest 

are tried first. However, we found that the matching cost of the 
hand-crafted chunks was much lower because of an incorrect, but 

efficient assumption we had made: Compare chunk /7/ in 3(8) above 
with it’s counter-part in the hand-crafted set (appendix B):

/7/ IF ( in_room(robot,x(5))&open(x(3))&open(x(4))&open(x(l)), 

connect(x(5),x(6),x(3))&connect(x(6),x(7),x(4))& 
connect(x(7),x(2),x(l))&ne(x(5),x(7))&ne(x(5),x(2)) 
&ne(x(3),x(4))&ne(x(3),x(l))& 
ne(x(6),x(2))&ne(x(4),x(l)) ) unless <>

THEN CHOOSE gothrudoor(x(l),x(2))

Two of the three ’open’ conditions in /7/ have free variables, and 

cause a considerable overhead in matching, which is not present in 
the hand crafted (over general) rule above. In my implementation 

the state condition is matched, then the environment (i.e. a 

procedural implementation of equation 3(4)) Thus the correct 
instantiation would generally only be found after some 

backtracking. I tried merging the state and environment conditions 

of chunks, then ordering their predicates according to sparseness: 
but this did not alleviate the problem, since structuring the 
chunk into ’changeable’ and ’non-changeable’ components had itself 
been efficient. Structuring the chunk further so that components 
have a slot in which to place predicates which contain only ’free’ 

variables, seems to be the answer.

In comparison, Minton and Carbonell [Minton and Carbonell 87] 
treat the problem differently: their Prodigy system uses feedback 
on the problem solving time a rule saves vs. its matching cost; if 
this comparison is adverse, the system may delete a rule all 
together.

A final problem encountered by c-chunk creation in the robot world 
is that of picking the wrong discriminating feature. Obviously the 

probability is lessened by the goal regression procedure, and by 
’backwards-directed’ strengthening, but may still occur; This 

problem was highlighted in Winston’s arch-learning program 
[Winston 75]: the trainer was expected to present counter examples 

with just one major discriminatory feature (although Winston 

claimed the program would keep alternatives and ’backtrack’ if 
necessary). In his system, the counter examples presented are 

analogous to our incorrect paths. The the problem is: how can the 
learner pick out which features are co-incidental, and which 
discriminate.
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In the case of my implementation used for the tests, this problem 
is dealt with effectively since chunk creation is incremental and 

heuristic rules are refined: erroneous heuristics simply make 
learning slower and may initially lead to non-minimal solutions. 
This is since chunks are learned and used immediately; one way of 

eradicating the effects of a ’bad chunk’ is by introducing a 
learning session, where tasks are solved in learning mode only, 

where heuristics are acquired but not used (earlier learning 

programs like LEX [Mitchell et al 83] seem to only work in this 
manner). To exemplify this, and to show the incremental chunking 

mechanism is reasonably robust to this sort of ’noise’ I created a 
new configuration:

Configuration ’Bad’

MEA is equipped 
algorithm B, and 
supplied with the 
chunks given below:

with c-chunk creation under 

rule refinement as specified in 
chunks obtained from listl, and 

strengthening
3.2; it is 
the two bad

ch(chl, gothrudoor(x(1),x(2)),

in_room(robot,x(2)), 

in_room(x(0),x(3))&open(x(l)), 

connect(x(3),x(2),x(l))&type_of(x(0),box) )

ch(ch2,pushthrudoor(x(l),x(2),x(3)), 

in_room(x(l),x(3)), 

in_room(robot,x(4))&open(x(2)), 
connect(x(4),x(3),x(2))&type_of(x(l),box)& 

fits_thru(x(l),x(2)) )

List2 was then executed; since this is analogous to test listl2, I 
will call the results list!2’:

RESULTS FOR TASK LIST12’

NO-CHUNKING CONFIG.’BAD’ CONFIG. B HAND-CRAFTED

TASK ICPU NODES ICPU NODES ICPU NODES 1 CPU NODES
&S0LN ITIME EXPAND- ITIME EXPAND- ITIME EXPAND- ITIME EXPAND-
SIZE IUSED

1
ED IUSED

1
ED IUSED

1
ED IUSED

1
ED

1: 7
1
1 88s 25

1
1 63s 15 1 36s 8 1 40s 8

2: 11 1 131s 21 1 122s 18 I 79s 15 I1 84s 15
3: 15 11056s 161 1 271s 44 1 244s 42 | 1 252s 42
4: 11 1 291s 39 1 88s 16 1 79s 16 | 82s 16
5: 7 1 45s 14 1 41s 11 1 38s 11 1 41s 11
6: 11 1 541s 71 1 146s 32 1 124s 32 | 100s 24
7: 12 1 772s 99 1 254s 47 1 184s 40 | 196s 40 |
8: 10 1 104s 19 1 163s 28 1 58s 12 | 59s 12 |
9: 14 1 332s 44 1 199s 28 I1 141s 26 | 151s 26 |
10: 22 | * + * *♦ 1 462s 70 I1 425s 78 | 372s 64 |
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These results compare well alongside the listl2 results, and 

indicate that the chunk refinement technique can cope with ’noisy' 

or bad chunks. The residual rule set after these tasks have been 
executed are supplied in appendix B. The reader will see that the 

original chunks have been 'exceptioned out’.

In conclusion, despite the problems listed, all these results 
in the robot world show that c-chunk creation works extremely well 
in this domain, with the performance of algorithm B being 
generally better than A. LIST1/B and LIST12/B give most 
encouraging results: six out of the first ten times being better 

than hand-crafted, and by the second 10 tasks the times are better 
than the hand-crafted in 8 out of 10 cases. This is as expected: 
the 20 different tasks by and large increase in difficulty (with 
the exception of LIST1/10).

3.33 The Warehouse World Experiments

This domain proved to be more complex than the robot world since 

the number of goal interactions among preconditions was much 
higher. Also the number of target concepts (operator - goal 
combinations) is much higher at over twenty. This became apparent 
when I attempted to handcraft rules by studying the domain, and 
the final set of chunks (in appendix B) was far from ideal; in 

fact in the test runs, the handcrafted set benefited greatly from 
chunk acquisition. My experience with trying to produce optimal 
control rules seems to concur with others who have tried this 
exercise (e.g. [Carbonell 88]): letting FM produce the chunks was 

far easier!

Again two task lists, list3 and list4 were chosen and executed. 
This was a random choice except for the criteria as discussed in 
the previous robot experiments, and ensuring that the basic 
problem solver could actually solve the problems themselves.

The configurations chosen were:

Configuration NO-CHUNKING: as in the robot world.

Configuration B: MEA is equipped with c-chunk creation under 
strengthening algorithm B, and rule refinement as specified in 

3.2. Learning and problem solving times are shown separately this 
time (in the robot world learning time was not significant, 
averaging at less than ten per cent of the total).

Configuration HAND-CRAFTED: as in the robot world.

Again the CPU times given are inclusive. An initial world and 
environment is shown in figure 3/10, and the full domain 

definition is in appendix A.2. Sample results are included in 

appendix B.
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figure 3/11: warehouse world
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The task lists were:

LIST3:

1: in_truck.
2: at(truck,s8).
3: loaded(truck,crate3,sl6).
4: at(crate3,s8).
5: loaded(truck,crate2,s7).
6: at(crate2,s9).
7: stacked(crate2,shelf 10).
8: stacked(crate2,shelf 14).
9: on_floor(crate 1,slO).
10: stacked(crate3,shelf7).

LIST4:

1: at(truck,s6).

2: stacked(crate2,shelf7).
3: stacked(cratel,shelf 14).

4: loaded(truck,crate3,s!2).

5: on_floor(crate3,s2)£ 
at(crate2,s4).

6: stacked(crate3,shelf6).
7: on_floor(crate2,sl)&

on_floor(crate3,s9).

8: on_floor(cratel,s2).
9: stacked(crate3,shelf9)& 

loaded(truck,crate1,sl2).
10: stacked(cratel,shelf10)& 

stacked(crate2,shelf6).

The initial states for list3 and list4 were, respectively: 

unloaded(truck)&unloaded(crane)£on_floor(driver,s9)&

on_floor(crate2,sl2)&on_floor(crate3,sl6)&on_floor(cratel,sl)& 
at(crate 1,si)£clear(s10)&clear(s3)£at(driver,s9)& 
clear(s4)&clear(s5)&clear(s7)&at(truck,s2)&at(crate2,sl2)& 

at(crate3,sl6)&clear(sl4)&clear(s6)&clear(sll)&
clear(s8)&clear(sl3)&at(crane,sl4)&clear(s15) 

unloaded(truck)&unloaded(crane)&on_floor(driver,sl2)& 
on_floor(crate2,s2)&on_floor(crate3,s8)£on_floor(crate1,sl)£ 
at(crate 1,si)&clear(slO)&at(driver,sl2)&clear(s5)£ 

clear(s7)&at(truck,si6)&at(crate2,s2)&at(crate3,s8)£ 
clear(sl4)£clear(s6)£clear(slI)£clear(s4)£clear(sl3)& 
clear(s3)£clear(s9)£at(crane,sl4)&clear(sl5)
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RESULTS FOR TASK LIST3

NO-CHUNKING CONFIG. B HAND-CRAFTED

TASK NO|CPU NODES
EXPAND-
ED

ICPU
ITIME
IPROB.SOLV;
1

LEARNING

NODES
EXPANDED

|TOT. NODES
ITIME EXPAND-

IUSED ED
i

&SOLN
SIZE

ITIME
IUSED
1

1: 3
1
1 70s 9

1
1 70s 9s 9 1 81s 9

2: 3 1 36s 5 1 35s 10s 5 1 36s 4
3: 5 1 53s 5 1 53s 5s 5 1 62s 5
4: 2 1 20s 2 1 19s 4s 2 1 18s 2
5: 3 I 116s 12 1 124s 7s 12 1 104s 10
6: 3 I 44s 7 1 42s 11s 7 1 50s 6
7: 2 1 35s 3 1 32s 3s 3 I 35s 3
8: 6 I 379s 32 I 386s 12s 32 1 350s 31

9: 7 1 701s 94 1 389s 24s 48 1 376s 48
10: 7 1 472s 60 1 181s 2s 23 1 164s 23

RESULTS FOR TASK LIST4

HAND-CRAFTEDNO-CHUNKING CONFIG. B

TASK NOICPU NODES ICPU NODES ITOT. NODES
&SOLN ITIME EXPAND- ITIME EXPANDED ITIME EXPAND-
SIZE IUSED

I
ED IPROB.SOLV.

I
LEARNING lUSED

I
ED

1: 7
1
I 383s 42

1
1 384s 16s 42

I
1 466s 42

2: 5 1 72s 10 1 67s 10s 9 1 72s 9

3: 7 1 168s 29 1 165s 33s 27 1 199s 25

4: 7 1 462s 58 1 106s 31s 12 1 147s 13

5: 7 11480s 80 11435s 34s 80 11007s 66

6: 9 1 764s 56 1 750s 24s 56 1 720s 53

7: 10 1 704s 82 1 631s 24s 69 1 669s 65

8: 7 11319s 138 I 279s 11s 43 1 313s 43

9: 8 1 91s 17 1 96s 15s 14 1 116s 14

10: 13 |2086s 151 1 597s 41s 58 1 632s 55
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RESULTS FOR TASK LIST33

HAND-CRAFTEDNO-CHUNKING CONFIG. B

TASK NOICPU NODES
EXPAND-
ED

ICPU
ITIME
IPROB.SOLV; LEARNING
i

NODES
EXPANDED

I TOT. NODES
ITIME EXPAND-
IUSED ED
i

&SOLN
SIZE

ITIME 
lUSED 
1

1: 3
1
1 70s 9 1 25s Is 3 1 81s 9

2: 3 1 36s 5 1 39s Is 4 1 36s 4
3: 5 1 53s 5 1 51s 2s 5 1 62s 5

4: 2 1 20s 2 1 15s Is 2 1 18s 2
5: 3 1 116s 12 1 35s Is 3 1 104s 10
6: 3 I 44s 7 1 22s Is 3 1 50s 6
7: 2 I 35s 3 1 30s Is 2 1 35s 3
8: 6 1 379s 32 1 94s 5s 10 1 350s 31
9: 7 1 701s 94 1 199s 14s 20 1 376s 48

10: 7 I 472s 60 1 163s 2s 23 1 164s 23

RESULTS FOR TASK LIST43

NO-CHUNKING CONFIG. B HAND-CRAFTED

TASK NOICPU NODES ICPU NODES ITOT. NODES

&SOLN ITIME EXPAND-ITIME EXPANDED ITIME EXPAND-

SIZE lUSED
1

ED I PROB.
1

SOLV; LEARNING lUSED ED
I

1: 3
1
1 70s 9

1
1 71s 9s 9

i
1 81s 9

2: 3 1 36s 5 1 35s 8s 4 1 36s 4

3: 5 1 53s 5 I 51s 2s 5 1 62s 5

4: 2 1 20s 2 1 19s 4s 2 1 18s 2

5: 3 1 116s 12 1 118s 7s 13 1 104s 10

6: 3 I 44s 7 1 51s 7s 6 1 50s 6

7: 2 1 35s 3 1 25s Is 4 1 35s 3

8: 6 1 379s 32 1 53s 2s 9 1 350s 31 |

9: 7 1 701s 94 1 170s 19s 20 1 376s 48 |

10: 7 1 472s 60 1 239s 2s 26 1 164s 23 |
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RESULTS FOR TASK LIST44

NO-CHUNKING CONFIG. B HAND-CRAFTED

TASK NO I CPU NODES
EXPAND-
ED

ICPU
ITIME

IPROB.SOLV.
1

LEARNING

NODES
EXPANDED

ITOT. NODES
ITIME EXPAND-
IUSED ED

&SOLN

SIZE
ITIME 
lUSED
1

1: 7
1
1 383s 42

1
1 107s 6s 10

1
1 466s 42

2: 5 1 72s 10 |1 83s 6s 10 1 72s 9
3: 7 11 168s 29 | 130s 26s 18 1 199s 25
4: 7 1 462s 58 | 81s 16s 8 1 147s 13
5: 7 1 1480s 80 | 452s 20s 44 1 1007s 66
6: 9 1 764s 56 I 134s 3s 13 1 720s 53
7: 10 I 704s 82 I 176s 7s 20 1 669s 65 I
8: 7 1 1319s 138 | 48s 2s 7 1 313s 43 |
9: 8 1 91s 17 | 79s 2s 9 1 116s 14 |
10: 13 I 2086s 151 I 441s 39s 43 1 632s 55 I

RESULTS FOR TASK LIST34

NO-CHUNKING CONFIG. B HAND-CRAFTED

TASK NO I CPU NODES 1 CPU NODES ITOT. NODES
&SOLN ITIME EXPAND--ITIME EXPANDED ITIME EXPAND-
SIZE lUSED

I
ED IPROB.SOLV. LEARNING lUSED ED |

1: 7
1
1 383s 42 1 509s 17s 42

1 1
1 466s 42 |

2: 5 1 72s 10 1 114s 2s 15 1 72s 9 |
3: 7 1 168s 29 1 75s 9s 13 1 199s 25 |
4: 7 1 462s 58 1 141s 32s 12 1 147s 13 |
5: 7 11480s 80 11461s 12s 76 11007s 66 |
6: 9 1 764s 56 1 558s 16s 47 1 720s 53 |
7: 10 1 704s 82 1 464s 12s 53 1 669s 65 |
8: 7 11319s 138 1 230s 4s 35 1 313s 43 |
9: 8 1 91s 17 1 84s 15s 13 1 116s 14 |
10: 13 12086s 151 1 450s 7s 45 1 632s 55 |

69



3.331 Discussion of Results

The results again show that the presence of c-chunking generally 
increases the time and space efficiency of problem solving, but 

with this domain, improvement is not as smooth nor as quick, 

although in some cases it can be very large (list44/B/task8 for 

example). The handcrafted rules were poor compared to the 

robot world, and relied on automatically created c-chunks to 
improve their performance.

List3/B took until task 9 to use any of its acquired chunks, and 

then the last two tasks showed a marked improvement. The reason 
for this is seen by considering the other runs for this list: the 
first seven tasks in list3 are mostly too simple to need strong 

heuristics. The larger problems 8, 9 and 10, however, benefit from 
them; in retrospect, if I were to bias list3 to show chunk 
acquisition in a better light, then I would have made tasks 1-7 
more complex!

List4/B includes some dramatic improvements: for example after 

only learning from 3 problems, task 4 is solved in just over one 

fifth of the expanded nodes that were taken in list4/no-chunking. 
Task 5 unfortunately did not benefit at all, whereas task 8’s time 
is cut down by a factor of almost 5.

The test runs which use previous experience show that problem 

solving time and learning time generally decrease (except as 
previously mentioned, where tasks are too simple to benefit) e.g. 
after a shakey start, Iist34/B outperforms Iist4/B, whereas list44 
is dramatically better than both of these.

Similar problems cropped up in warehouse as discussed in 3.321: as 

in the robot world, refinement of chunks was not smooth, the 
major cause being the matching problem. In particular, long 
relational chains could be generated using algorithm B, if 
discriminating factors were purely spatial. For example, moving a 
crate from sl6 to sl3 involves a repetition of operator 

’drive_load’ over several spaces. The weakest precondition of the 
solution sequence would contain a long spatial chain (of relation 

’next’) which would cause a large matching overhead, if it were 

picked out by the strengthening algorithm.

To deal with this, a limit was placed on the size of relational 
chains which could be produced during the strengthening algorithm. 
This brought it into line with algorithm A, whose association 
chains already have a complexity limit. Although it is actually a 

problem of the inadequacy of representing spatial relations using 
propositional and not analogue means, some automatic control for 

combinatorics in matching is inevitable. Unfortunately, this in 
turn means that discriminating features of a weakest precondition 

which are relationally far from the final goal will not be picked 
up by strengthening.
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3.34 Conclusions

The experiments above are evidence that creating, using and 
refining c-chunks increases the efficiency of a general planner in 

the particular domain to which it is applied: tasks which share 
similarities are solved in decreasing time. In a sense chunking 

also increases the power of the planner since more difficult tasks 

can be solved than previously, because the the chunks also cut 
down on the number of expanded nodes. Other general conclusions 

are that more experience leads to more refined heuristics and does 
not tend to 'clog up' the system, and in the robot world at least, 
the acquired heuristic rules converge towards the hand crafted 
target concepts.

As stated in 3.32 and 3.33, the task lists were chosen at random 

except for the criteria stated in 3.32. In particular they were 
not carefully selected to give good performance.

The difference in learning curve between the robot and warehouse 
domains can be reduced to two major differences: in the robot 

world there were only essentially two target concepts that needed 
to be learned, in the warehouse there are nearer twenty; also, in 
the more complex world some chunks were not made because of over- 
long chains of relations.

Finally I will suggest some improvements to c-chunking which 

should go some way towards solving the problems encountered.

To summarise the problems from 3.32 and 3.33:

1. Learning is slowed because of chunk interaction;

2. Generated chunks may include features which should not be 
included in the target concept.

3. multiple equal length solutions can, on occasion, cause 
strengthening where it is not needed.

4. the overhead in matching cost of some chunks is high.

Two strategies which go some way to solving problem 1. and 2. 
respectively are as follows:

1. In the present system, an operator instance only has to be 
matched by one chunk for it to be favoured for expansion; instead 
the set of all chunks that favour operators could be recorded, 
with a speed-up in rule refinement, since more examples (chunks 

that favour the correct path) and counter examples (chunks that 

need specialising because they favour the wrong path) of the 
target concept would be available.

2. During the strengthening process, a chunk in made after the
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FIRST discriminating feature is found. If this process would be 
allowed to continue, picking out other discriminating features and 
creating more chunks for the same target concept, it would ensure 

that no important features were missed, at the expense of 
creating more chunks. Further experience would single out the 

chunks nearest the target concept.

Both these methods, however, would cause an overhead: the first in 
problem solving time, which is more critical, and the second in 
learning time.

Problem 3. may be solved by using a more powerful general planner 

instead of MEA, one that produces a partially ordered operator set 
as a solution (thus specifying a set of equal length solutions): 

it would give the learner better information from which to extract 

heuristics, as pointed out in 4.1 below.

I would speculate that problem 4. is an issue of basic domain 
representation: it may be attacked by the introduction of
abstraction levels, or some form of automatic representation 
change such as that used in constructive induction (defined in 
[Michalski et al 83]). Cruder techniques have been advocated such 

as deleting heuristics which prove worthless over a period of 
problem solving (e.g.[Minton 85]). Deleting chunks which have not 

been successfully used in the last J N' problems had occurred to me, 
and most certainly would have cut down some matching time (e.g. 
task 1 in Iist34/B) but appears crude: addition of ad hoc 
optimisation rules for these two particular domains may have made 

the results more attractive, but would not have benefited the 

overall thesis.

72



4. TOWARDS HEURISTIC ACQUISITION IN NON-LINEAR PLANNERS

4.1 Introduction

Experimental research into learning and planning has predominantly 
been carried out with linear performance systems. A non-linear 

planner (NLP) has a number of advantages as the performance 
component of a learning system. For instance, an NLP can solve 
more complex problems than usual goal directed linear planners 
i.e. those which try to find solutions to goal predicates without 
the power to interleave these with solutions to other goal 

predicates. Under certain constraints, the finding of an optimal 
solution in polynomial time and space using NLP can be guaranteed 
(as proved in [Chapman 87]). Also, the output of a linear planner 

may be misleading to a learning component that accepts it, because 

of its over commitment to ordering; in the linear planner of the 
chapter before, when the first solution is found, planning 
stops and this solution is used for chunking. It seems 

unreasonable to carry on and search for multiple minimal 
solutions, without knowing of there existence, or when to 

terminate. But better quality heuristic acquisition would be 

obtained from the analysis of the correct partial order or least 
committed sequence of operators, where any completion of the 
sequence can form a solution, such as that output from my 
constraint posting NLP.

This chapter is mostly speculative: using the system as described 
in chapter 1.23 and appendix D.5, I discuss the type of choices 

made in the goal achievement components of NLP, explore one method 
of heuristic acquisition, and develop an example from a prototype 
implementation (N.B. [McCluskey 88a] or appendix D.5 is background 

to this chapter and introduces all the relevant notation).

4.2 The Search through Partial Plan Space

Our NLP has to make several types of choices during search and 
partial plan generation, and some are similar in nature to those 
discussed in 3.1, i.e.

1 — Which node (partial plan) PP to expand next?
2 — Which goal predicate P in PP to achieve?

As stated previously, 1 can be addressed indirectly by creating 
less partial plans, and 2 is alleviated by the addition of 
hierarchy (indeed our original version of NLP has already been 

extended to an hierarchical planner called HNLP see [Fox 88]).

The choices involved in goal achievement itself are different, 
however, and these are the ones we will investigate. Referring to 

NLP’s specification we can deduce the types of choice available to 
a goal achievement algorithm implementing it; consider an arbitrary 
partial plan PP = pp(0s,Ts,Ps,As,Es) generated during the search 
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for a solution to task (I,G,E,OS). If P is an unachieved 
precondition predicate of 0 in Os (i.e. (P,0) is in Ps), then in 

trying to achieve goal P at 0 we can choose:

—to use an existing operator instance within Os (if possible), 

or

—to add a new operator to Os, from OS. —4(1)

Both of these choices may themselves involve choices. Once an 
operator A has been selected, is present in the partial plan, and 
has been partially instantiated so that it's add-list will 
necessarily assert P, there are choices involved in 'de-

clobbering' P. For instance, if an operator instance C in Os can 

possibly delete P, a choice must be made to:

—constrain Ts so that C is necessarily before A

—constrain Ts so that 0 is necessarily before C

—constrain Es so that nothing in C's delete list unifies with P

-4(2)

Adding a new operator from OS to a partial plan is the only way 
that otherwise necessarily achieved preconditions can be 
clobbered. Each P in Ps must therefore be de-clobbered every time 

a new operator is added - this again may entail choices of 
constraint addition such as the three described in 4(2).

The discussion above implies that c-chunks may not be useful in 
cutting down the search space of the NLP. After experimenting with 
this possibility, I reached the following conclusions:

a. C-chunks cannot be generated in the same way as they are in 
linear goal directed search, since failed paths at the 'state 
space' level are not available.

b. The NLP is a constraint posting planner, meaning choices 
between operator instantiations are postponed, and therefore the 

main application of the c-chunk, to choose between instantiations, 

is not present in the search. Chunks can, however, choose a 
particular operator in favour of others, and may also be used in 

'generate mode’. In the latter case, they generate promising 
operator instantiations and add them to the partial plan.

c. As mentioned in b., chunks in generate mode do help the search, 
but unfortunately miss the main source of combinatorics: this is 

invariably in the choice of temporal and variable constraints 
possible during the declobbering stage.

From 3. it follows that an approach to heuristic acquisition in 
this type of planner must be integrated with NLP; in effect, 
generated heuristics should advise on all the choices in goal 
achievement. The approach we shall investigate relies on applying 
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the state space paradigm to partial plan space: each choice 
considered in 4(1) and 4(2) will actually correspond to the 

application of a ’partial plan space operator’. These ’operators’ 
produce new nodes by changing the components of a partial plan and 
are in effect the procedural implementation of part of our NLP 

specification in appendix D.5; to avoid confusion with planning 

operators we will call them ’transforms’.

In general, given a partial plan PP = pp(Os,Ts,Ps,As,Es), a 
transform produces a new partial plan of the form (see figure 4/1):

PP’ = pp(0s+0p, Ts+T, Ps-(P,0)+Pre(Op), As+(P,0), Es+B)

where PP’ is valid (refer to the defining data type invariant in 
A.5) and:

* Op is a operator instance, and Op.a contains a 
predicate unifying with P;

* T is a temporal partial order on Os+Op;

* B is a set of variable constraints;

* Pre(0) = { (P,0): P is a precondition predicate of operator 0};

(..any of the above components may also be null)

* (P,0) is a member of Ps;

4.3 Heuristic Acquisition using EBG

We have effectively re-represented non-linear planning as a state 
space search at a higher level (i.e. in partial plan space). Since 
the transforms have been stated declaratively, the technique of 
Explanation Based Generalisation can be used, as in chapter 2, in 
which to substantiate our approach to heuristic acquisition. 
Recall that there must be four components involved in EBG (from 
2(1)):

(a) the target concept: what is to be learned;

(b) operationality criteria: the form in which the learned concept 

description must be encoded;

(c) the domain theory: a ’deep’ non-operational definition of the 
target concept;

(d) an example of the target concept.

In the partial plan space these will be:

(a) a matching condition defining the set of partial plans for 

which an operator H of form:
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figure 4/1: Partial Plan Space
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(+0p,+T,-(P,0)+Pre(Op),+(P,0),+B) 

is useful, in other words an operational definition of

{PP : PP is a valid partial plan, PP is not a 'goal state'

(i.e. not(PP.Ps = { }) and H(PP) is on the

minimal solution path };

(b) a description which matches with (and thus defines a set of) 

partial plans;

(c) problem solving rules such as in [Mithchell et al 86]:

- for all PP, solved(PP) if and only if PP.Ps = { }.

- for all PP, solvable(PP) if and only if
(solved(PP) V there exists operator 

H such that H(PP) is solvable)

together with rules specific to the NLP, e.g. the specification of 
'goal achievement';

(d) a partial plan PPO and operator Hl such that Hl(PPO) is on the 

optimal solution path from PPO:

PPO -- Hl----> PPI ---H2----> ....---Hn----> PPn

Having posed the problem in the same terms as Mitchell et al's 
seminal paper, we conclude from the proof tree ([Mithchell et al 
86] page 63) that the heuristic condition for applying Hl to a 

partial plan PP is:

matches( PP, regress(Hl,regress(H2, ... regress(Hn,PPn) ...)).

This can be used as a heuristic precondition in 'generate and test 
mode' in future planning: if Hl is a member of a set of transforms 
generated for plan PP, then Hl(PP) will be chosen as the next node 
in the search space if PP matches the regression expression.

There are complications, however: the language of all valid 

partial plans is complex and does not readily admit a convenient 

concept description language; also transforms are not stored or 
known a priori, and in fact are theoretically infinite in number. 

But I will now address another important issue - how to evaluate 
the expression 'regress(H,PP)' for any valid partial plan PP and 

transform H.

A transform H = (+0p,+T,-(P,0)+Pre(Op),+(P,0),+B) applied to PP, 

by definition, achieves goal P at operator 0 in H(PP). The 
regression of the final transform Hn from last partial plan 
PPn = pp(0s,Ts,Ps,As,Es) is the precondition for its application 
minus the addition it makes to the partial plan i.e. it is given 

by the actual instances of Os, Ts and Es used in the proofs of the 
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goal achievement specification (see section 1.3), minus the parts 

added by it.

Hence if Os', Ts’, Es’ are the actual subsets of Os, Ts, Es 
respectively, used in the specification proofs, then

regress((+0p,+T,-(P,0)+Pre(0p),+(P,0),+B), pp(Os,Ts,Ps,As,Es))

= (Os’-Op, Ts’-T, Ps+(P,0)-Pre(0p), As-(P,0), Es’+B) = Rn

Continuing in a similar fashion to the the regression technique 
discussed in 2.2, if

Hn-1 = (+0p’,+T’,-(P’,0’)+Pre(0p’), + (P’,0’),+B’) then

regress( Hn-1, regress(Hn , pp(Os,Ts,Ps,As,Es))

= Rn U

(0s"-0p’, Ts"-T’, Ps+(P’ .O’)-Pre(Op’), As-(P’.O’), Es"+B’),

where Os", Ts" and Es" are the subsets of PPn-l’s relevant 
components used in the specification proofs.

Finally, we can make the recursive definition:

regress(Hl,regress(H2, ... regress(Hn,PPn) ...)) =

regress(H2, ... regress(Hn,PPn) ...))

U (Os"-Op, Ts"-T, Ps+(P,0)-Pre(0p), As-(P,O), Es"+B) ..4(3)

where HO = (+0p,+T,-(P,0)+Pre(0p),+(P,0),+B), and and Os", Ts" and 

Es" are the subsets of PPO’s relevant components used in the 
specification proofs.

4(3) can be built for any final subsequence of the achieving 
transforms, Hi, .. Hn, 1 =< i =< n, and is a ’generalised partial 
plan’ which specifies the set of partial plans which contain it. 
Using the same argument as that in chapter 2, the regression 
expression can be generalised further by generalising objects in 

the transforms as long as the proofs of the preconditions for each 

transform is not violated.

4.4 An Example Application

The implementation of NLP has one efficiency feature which limits 
the full reconstruction of transforms: partial plan variables are 
also prolog variables, and so their instantiations are lost. This 
could be remedied by the use of a meta-interpreter (e.g. like that 
used in [Krawchuk and Witten 88]) but my implementation for 
simplified transforms is adequate to throw light on some major 
problems facing this approach, without the need for this extra 

78



complexity. In fact the meta-interpreter of [Kedar-Cabelli. and 
McCarty 87] was tried on NLP, using the prolog implementation as a 
specification of the performance component. Unfortunately a 
combination of the complexity of the target program and the use of 
some ’procedural bits’ proved too much for this approach. Instead 

the implementation of the partial plan abstract data type was 

extended to include a component which recorded those parts of a 

partial plan accessed and changed during goal achievement.

The example below is taken from the test runs. We use the block’s 

world example, and take the specific task to be the well known 
’Sussman’s Anomaly’. E and OS are defined in appendix A.8: note 
that a simpler list format representation is used for operator 

schemas than presented in chapter 1, so that addition of operator 
instantiations to partial plans is more efficient. A routine is 
included in the same appendix defining the change between 
this representation and that of FM.

If I = on(a,table)&on(c,a)&on(b,table)ftclear(c)&clear(b)
G = on(a,b)&on(b,c)

then the transforms to achieve this task specification are, 
(written in the simplified form (+Op,+T,+(P,O)):

Hl = (puton(b,c),[],(on(b,c).goal))

H2 = (puton(a,b),[],(on(a,b),goal))

H3 = (none, [],(clear(c),puton(b,c)))

H9 = (none,[t(newtower(c,a),puton(b,c))],(clear(c),newtower(c,a)))

H10 = (none,[],(on(c,a),newtower(c,a)))

Now partial plan PP1O is (where opl, op2, op7, init, goal are 
simply identifiers)

PP( C
(init,init,[],

[on(a,table),on(c,a),on(b,table),clear(c),clear(b)],[]),

(goal,goal, [(on(a,b) ,on(b,c)] ,□,[]),
(opl,puton(b,c),[on(b,table),clear(b),clear(c)],

[on(b,c),clear(table)], [on(b,table),clear(c)]), 
(op2,puton(a,b),[on(a,table).clear(a),clear(b)],

[on(a,b),clear(table)],[on(a.table),clear(b)]),

(op7,newtower(c,a), [on(c,a),clear(c)],[clear(a),on(c,table)], 

[on(c,a)]) ],

[t(op7,opl), t(op7,op2), t(opl,op2)]>
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[ ], 

[(on(c,a),op7), (clear(c),op7), (on(a,table),op2), (clear(a),op2), 
(clear(b),op2), (on(b,table),opl), (clear(b),opl),

(clear(c),opl), (on(a,b).goal), (on(b,c),goal)], [] ).

and using our regression formula:

regress(PP10,H10) =

(Os contains [init, puton(b.c), puton(a.b), newtower(c,a) ]),
(init contains on(c,a)) & (Ts contains [t(newtower(c,a),puton(b,c)), 

t(newtower(c,a),puton(a,b))])

After generalisation along the lines of the EBG theory, as applied 

to forward search as detailed in chapter 2, this could generate 
a heuristic such as:

for all (distint) operator instantiations 01,02,03,
for all predicates P, IF

(Os contains [init, 01, 02, 03 ]) &

(init adds P) &
(Ps contains P) &
(Ts contains [t(03,01), t(03,02)]) THEN

use transform (none,[],(P, 03))

4.5 Discussion and Future Work

This chapter has been mainly speculative, although the regression 
equation described has been implemented on top of the basic NLP. A 
clean, novel approach to speeding up planning in domain 
independent constraint posting planners (as typified by NLP) is 
proposed by the automatic construction of search control rules in 

partial plan space. These rules would store not only the 
conditions under which certain operators are needed, but also the 

correct choices of temporal and variable constraints. But major 

problems face the development of this line of research:

(1) the regression of transforms leads in general to disjunctive 
formulae, since there is usually more than one way that goals may 
be declobbered. For instance, in the example above, sub-goal 
on(c,a) may be declobbered by the fact that it is not deleted by 
either puton(a,b) or puton(b.c), rather than using the temporal 

constraints. Therefore there are alternatives, and choosing one 

leads to an over-specific heuristic.

(2) the generalisation space for partial plans is non-trivial! 

Compared with early examples of generalisation spaces, such as 
LEX’s spaces of algebraic expressions [Mitchell 83], or 

generalisation using Michalski’s VL logic (in [Michalski et al 
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83]), a space of generalised partial plans would be quite complex 
to construct, search and manipulate.

Other forms of learning in plan space have been advocated: an
interesting model of learning and problem solving is described 
(but not implemented!) in [Carbonell 83]; the thesis is as 

follows: a problem solver should initially use weak methods to
solve problems, but then use past solutions to similar problems 

as a starting point for future problem solving. Problems are 
judged to be similar to past problems by a difference function, 

which depends on such features as goal conditions and initial 
problem states. When a solution to a past problem is used for a 

new problem, problem solving progresses through 'problem space' by 
incrementally adjusting the old solution until it is changed 
into a full solution to the new problem. Carbonell introduced a 

variety of problem space operators to accomplish this, including 
ones to insert and delete bits of the solution.
The incremental adjustment is then meant to improve using concept 
learning techniques, where successful adjustments are considered 

as positive examples, etc (as in the typical concept learning 
paradigm). Carbonell's work on this seems to have lead to later 
work on derivational analogy in PRODIGY (referred to in figure 5.1 

below).

Now NLP can be used in three modes:

1- simple best first search through partial plan space;

2- search as in 1-, but using chunks or EBG-generated heuristics 
(as discussed in 4.3) to cut down search branching;

3- search as in 1-, but after chunks are created from operator 

solution sequences, they are used to suggest operator inclusion in 
later planning, as mentioned in 4.2 conclusion b.

Mode 3- is similar to Carbonell's line of research: rather 
than use chunks for 'generate then select' mode, examination 

of the new task (I,G,E,0S) can instantiate the left hand side of 
chunks (refer to the chunk form given in 3(5)) so that their right 

hand side can be used to compile an advanced partial plan from 

which to start problem solving, consisting of an initial 
operator set Os'.

An experimental implementation of this, however, showed up a 
serious problem: given an arbitrary goal P to solve, using the goal 
achievement algorithm, there is still a choice between using an 
operator from the partial solution to solve P or adding another 

operator - it is not necessarily true that an operator from the 
'advanced partial solution' should solve P. This leads to more 
choices than in the basic search: choices in 4(1) and 4(2) do not 

go away, but increase because of the extra operators in the partial 
plan. We found that using an old plan which is 'close' to a new 
problem (as measured by some a priori rules) is generally no more 

efficient than heuristically improving search or even search from 
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first principles. The general conclusion is therefore to favour 
heuristic acquisition techniques that cut down search in the NLPs, 

and some of my future work will run along these lines.

82



5. CONCLUSIONS

5.1 General Conclusions

The work from which this thesis is compiled spanned a wide 
investigation of experience-based performance improvement in 
standard, general-problem-solving paradigms. It entailed designing 
and implementing FM, a large learning and planning system, which 
was used as a testbed for performance improvement techniques, and 
resulted in the construction of five types of heuristic 

acquisition components, respectively creating:

** the closed macro (chapter 2 and appendices D.l and D.3)

** the basic chunk (chapter 2 and appendix D.2)

** the b-chunk (appendices D.2 and D.4)

** the c-chunk (chapter 3)

** the NLP heuristics (chapter 4)

The specific aim of this thesis was to investigate the hypothesis 
that a general planner could significantly improve it's efficiency 
through successful experience when presented with a domain 

specification, by acquiring domain dependent heuristics. Chapter 

3 of this thesis describes a type of heuristic acquisition that 
supports our hypothesis, at least for a certain class of 
planners and application domains; consequently in the write-up 

emphasis has been placed on the automatic creation of 
heuristic control rules, formed with c-chunks, for goal 
directed linear systems. Without doubt this has been the more 
successful line of the research. Of the two main technique types, 
chunk creation and macro creation, the former proved most 
successful for a simple reason: chunks cut down search - that is 

they attack the central cause of a general problem solver's 
inefficiency. On the other hand closed macros are more generally 
applicable - they can be used in all three types of planner 

without change, whereas a different version of the chunk is needed 
for each type of search. On the whole, however, tests with FM 

involving macros, or using chunks to create initial partial 

solutions, bring with them their own combinatorial problems, and 
consequently make their general application difficult.

Next I will list what I believe to be the most important 

achievements of FM's c-chunks, which are supported by the 
experimental results in both the test domains of section 3.3. 

Problems encountered with this method were discussed at the end of 
that section, along with possible ways of overcoming them, so I 
will concentrate here on the positive results:

5.11: they generally show monotonicity in efficiency improvement, 
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and avoid falling into a similar trap that apparently happened to 
Macrops acquisition of [Fikes et al 72]: the system would become 
bogged down with combinatorics as more Macrops were formed, and 

spend more time in matching heuristic's preconditions than it 
would have done in problem solving from first principles (to 
paraphrase [Porter and Kibler 84, p.278]'s argument, following 
[Fikes et al 72]). Although some matching problems were inevitably 

encountered in chunking, this had little to do with the amount of 
training examples, but the inadequate propositional representation 
of a spatial domain (cf. section 3.33) ; indeed over the course of 

many training examples, fewer and fewer chunks are formed as 
experience builds up the heuristic rules and less choice points 
(which initiate chunking) are recorded during search.

5.12: the learned heuristics show a high degree of 'across-task 

transfer'. The tests' speedy marked improvement in problem solving 
efficiency is evidence of this, and is a result of the generality 
bias inherent in the strengthening algorithms. Recently I have 

encountered supporting research for generality bias away from 
strict EBL in the 'Progressive Refinement' learning techniques of 
[Van der Valde 88] (also see 5.33): for certain domains the author 

advocates forfeiting the correctness of EBL for over-

generalisation and then forced specialisation (i.e. rule repair!).

5.13: the accumulation of chunks into heuristic rules is an 
incremental method, and is relatively noise-immune. This was 

tested in section 3.32 by the addition of some erroneous chunks 
before a batch of test problems were executed, and performance 
still approximated to the ordinary learning curve.

5.14: rule acquisition is relatively immune to problem ordering: 

experiments in both the domains of 3.3 show that useful rules are 
acquired when task lists are tried in either order; ideally, of 
course, simple problems should be given first.

While it is probably the case that a general problem solver which 
acquired heuristics for a particular domain could hardly reach the 
efficiency level of a special purpose domain specific knowledge-
based system, much time and effort would be saved in handcrafting 

the rules; in fact the handcrafted rules designed for two sample 
domains were extremely laborious to construct. In the case of the 

warehouse domain they turned out to be erroneous and incomplete, 

and had to be de-bugged through testing (in a similar fashion to 
application domain construction).

In a sense, work on control rule acquisition is complementary to 
work on domain level, inductive rule acquisition, a good example 
of which is given in [Michalski and Chilausky 80]. There is also 

an analogous situation in the area of program transformation which 
is concerned with the derivation of an efficient program from a 

declarative program specification: handcrafting a program will 

produce a more efficient implementation than automatic 
transformation from the specification, although the latter is more 
desirable.
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I have demonstrated through the experiments in 3.3 that the C- 
chunk method has been successful for a particular goal directed 
implementation, and the particular framework of >(I,G,E,OS)> , but 

claim that it can be generalised to general problem solving 

systems bearing the following characteristics:

5.15: the overall search strategy must be goal directed, in which 

operator instantiations that achieve goals are used to extend 
search through a space of goal nodes in a best first manner;

5.16: the operator schemas themselves must be declaratively 
specified, and should be reasonably consistent models of some 
actions;

5.17: effective planning should be possible on simple problems 
using weak heuristics only.

5.15 ensures that the c-chunk strengthening method can be adopted, 
i.e. failed operator instantiations can be recorded and used for 
discrimination purposes, while 5.16 allows weakest preconditions 

to be constructed easily. Finally, Condition 5.17 is for 
’bootstrapping' heuristic acquisition, in that the system must be 

able to solve simple problems from which to learn.

Part of the second condition has, however, been weakened for FM by 
the work of [Porteous 87]: during plan execution, if an operator 

could not be applied because of a mismatch between FM's beliefs 
and the 'real' world (which was modelled by some separate data 
structure), then replanning would take place (see reference for 
details). Some complementary work has been carried out on operator 

precondition repair in [Carbonell and Gil 87] and is shown as the 

'Experimentation' module in figure 5/1; in standard FM, however, 
the task framework in assumed to be complete and consistent.

As well as failing point 5.15, both NLP and FOR flounder 
NLP was most disappointing: the combinatorics of

combinations and choices in constraint posting made it an 
magnitude slower than MEA.

on 5.17. 
temporal 

order of

5.2 Comparisons

5.21 Prodigy

As far as I can tell from the literature, there are few research 

groups which have attempted to create a domain independent 
learning and planning system that strengthens weak heuristics with 
acquired control knowledge through experience.

One such general planning system that learns by experience is the 
Prodidgy program referred to previously, created at CMU by various 

authors including Minton, Carbonell, Etzioni, Knoblock and Kuokka 
discussed in [Minton and Carbonell 87], and in [Minton el al 87]. 

The work on Prodigy was carried out in parallel with my own, the 
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major difference being in scale!

The top level architecture of the whole system is shown in figure 
5/1 and is taken from [Carbonell 88]. Various types of knowledge 
acquisition components have been integrated into the one system: 

including a learning-by-experimentation module, which refines 

the system's domain information which had been incorrect or 
incomplete [Carbonell And Gil 87]; and it also contains a 
derivational analogy component, following Carbonell’s earlier work 
on analogy [Carbonell 83]. It is obviously a large implementation, 

at the heart of which is a Strips-type general planner, not 
dissimilar to MEA.

The ’search control rule’ acquisition sub-system is analogous to 
FM’s chunk creation processes, and consists of three components: 

Explanation-based Learning to acquire the initial control rule, 
Compression to optimise it and Evaluation to monitor its 
usefulness. The main advantages of this sub-system are that EBL’s 
’target concepts’ like ’operator-succeeds’, ’operator fails’ can 
be given ’declaratively’ to the system via a set of rules, and 
that different modes of rule use can be set up - e.g. operator 

preference or rejection.

Learning from success is weak but is substantially improved by 

learning from failure - in fact the two together seem similar to 
FM’s c-chunk creation (c-chunks use operator failure implicitly in 
the strengthening algorithms). As referred to in section 3.2, 

[Minton and Carbonell 87]’s example developed from a blocks world 

application produces a very specific chunk. It is reproduced 
below: it’s informal meaning is ’to hold a block X which is on a
block Y, unstack(X,Y) is the correct operator to add to the goal 
directed search if currently a block W is on X, the arm is empty 
and W is clear. Minton and Carbonell denote this rule as:

OP-SUCCEEDS(OP, G, NODE) if
MATCHES (OP, UNSTACK(X,Y)) & 

MATCHES (G , HOLDING(X) ) &
KNOWN (NODE, ON(X,Y)&0N(W,X)&CLEAR(W)&ARMEMPTY )

In FM notation, this is equivalent to chunk:

ch( chi, UNSTACK(X.Y), HOLDING(X), 
ON(X,Y)&ON(W,Z)&CLEAR(W)&ARMEMPTY, nil)

From the same solution sequence, FM would create a C-chunk thus: 

ch( chi, UNSTACK(X.Y), HOLDING(X),
ON(X,Y)&ARMEMPTY, TYPE(X,block)&TYPE(Y,block)&NE(X,Y))

This rule is more general (containing only 2 conditions instead of 
4) and nearer part of an optimal control rule, which would not
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figure 5/1: the prodigy system
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include the irrelevant fact 'ARMEMPTY'.

Unlike FM, Prodigy creates 'correct' rules relying on strict EBL 
and does not incrementally refine or repair them by any 
generalisation/specialisation techniques. As shown in the figure, 

it does optimise rules, in fact in a similar way to FM. Prodigy 

also monitors the amount of CPU time they save, deleting them if 

they prove not to be effective (this is a little puzzling since 
effectiveness could only be judged if the problem solver searches 
exhaustively trying all paths in an ordinary problem solving 

session).

5.22 Soar

The Soar problem solving program has similarities to FM in that it 
uses experience learning to improve performance. In fact my use of 
the term 'chunk' arose from this work. Like Prodigy, this system 
was also created at CMU, arising from the doctoral dissertations 
of Laird and Rosenbloom, and was developed by a large team (e.g 
see [Steier et al 87] for latest developments, a paper which has 
has nine authors!).

Soar has one learning mechanism: 'chunking'. Chunks are created by 
analysing successful solutions, but rather than just for heuristic 
control rules, they are created for 'decisions' in all aspects of 
Soar's problem solving behaviour. The creation process is carried 
out in three steps (following [Laird et al 86]):

(1) collect conditions which were used in processing before the 

solved goal, and actions which were the 'result of the goal'.

(2) variable-ise identifiers;

(3) perform chunk optimisation.

Soar has been used in many applications, including the usual toy 

problems, but also non-trivial applications such as speeding up 
the 'Rl' expert system [Rosenbloom et al 85]. When applied to the 

8-puzzle problem, for example, it seems to produce similar 
behaviour to FM when equipped with the FOR search and closed macro 

acquisition: 'macrol' created by FM and reproduced in section 2.7

corresponds to Soar’s 'with-column symmetry transfer’ explained on 

p.39 of [Laird et al 86].

Unlike Prodigy’s control rule acquisition, Soar is not so
theoretically transparent, but does have a clear advantage: Soar 

creates decisions for every choice it must make and it is 
therefore claimed to be a universal learning mechanism, chunking 

as it does on all levels of the system. From the literature, it is 
difficult to extract exactly what the specification language for 
Soar applications is, and in what form the chunks appear. To quote 
[Laird et al 86], p.31: "When the problem solver knows what its

doing, everything works fine, ..." !.
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5.23 Progressive Refinement

Another incremental, evolutionary approach to learning in problem 

solving is the Progressive Refinement of [Van der Velde 88]. Here 

the acquisition of ’heuristic associations’ is described, the main 

application being second generation diagnostic expert systems, 
rather than planning domains.

He divides previous similar work into learning control knowledge 
and learning shortcuts, putting his work firmly into the latter 
category. Although only FM’s closed macros fall into his ’short-
cut’ category, there are similarities with my research. The system 
learns from problem and solution pairs, relying on background 
knowledge of the domain, and makes deliberate over-generalisations 

of learned heuristics (especially for domains which he classes as 
non-critical and non-diverse), then forces specialisation in the 
face of incorrectness. Similarly, my C-chunk algorithm often 

produces over-general chunks, which are simpler, leaner and 
practically correct, but of course may be subsequently specialised 
in the rule repair module.

5.3 Future Directions

The primary future objective is to evolve the control rule 
acquisition mechanism specified in chapter 4 into an efficient 
general representation that will increase the efficiency of NLP 

while preserving its advantages of non-linearity. The main snag in 
using strict E.B.G. in partial plan space is that the acquired 

heuristics are too specific and detailed to allow efficient 

matching when they are in use.

I would also like to use FM with MEA in a large embedded domain, 
perhaps in a real robot manipulation task area, but before this 
can be accomplished, the c-chunking method needs to be perfected, 

along the lines discussed in the conclusions of section 3.3. In 
the limit c-chunking would most certainly require an automatic 

representation change facility for the domain definition, when for 
example, chains of relations in target concepts become unwieldly. 
Indeed I would go as far as to say that the success of FM with c- 

chunks in those domains to which it has been applied is due 
mainly to the fact that target concept approximations can be 
formed relatively easily in the predicate language defined by the 
user. This is reminiscent of Lenat’s conclusions in his re-
analysis of his AM discovery system [Lenat and Brown 83]: he 

admitted that a major reason why it had worked well was that the 
Lisp representations were ’close’ to the mathematical world in 

which AM was exploring!

Since FM’s chunk is not a 'universal learning’ mechanism, we also 
need heuristic acquisition for other aspects of the system that 
involve decisions e.g. decisions about which linear ordering to 
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choose to solve a conjunction of goal predicates.

Finally I will elaborate on future work needed to improve the 

performance components. The main task when using FM is in 
developing a consistent domain specification. This is a non-

trivial task, and in future could be alleviated by work in two 
directions:

* automatic tools for specification development and checking;

* automatic domain knowledge acquisition components, where FM is 
embedded in an outside environment and receives feedback.

The first direction would have
test domains 
schemas, for 

Specifically, 
needed:

considerably, 
instance, had 

procedures that

helped the construction of the two 
whereas 'debugging' the operator 
to be done by trial and error, 

perform the following functions are

* to check operators leave state descriptions in a consistent form 
with respect to domain facts and rules, after their application; 

for example, consider the simple structuring rule in the warehouse 
domain:

"for all Objects, Positions

on_floor(Object,Position) -> at(Object,Position)"

Any operators that change an Objects position, and fail to change 
both the facts in this rule, would be spotted as inconsistent by 
the check procedures, using this rule as an axiom.

* to check domain facts I.f and E.f and the domain rules I.r and 
E.r are consistent with each other.

For MEA and NLP to cope with more complex domains, the addition of 
goal hierarchy and operator abstraction levels is necessary. In a 
sense this is simply to add another (powerful) 'weak heuristic', 

and should complement control rule creation. As mentioned in 
chapter 4, my non-linear planner has already been expanded to the 
hierarchical planner 'HNLP' described in [Fox 88], and work is in 

progress to add chunking components to this. The Prodigy system 
discussed above in 5.2, and shown in figure 5/1, has likewise been 

extended to allow hierarchically structured domains, but is still 
tied to a linear Strips-type planner [Carbonell 88]. Similarly, 

other weak heuristics, such as the addition of rules to detect 
inconsistent goal conjunctions, complement my approach: the true 
'Heuristic-learning, Problem Solving Shell' will be formed by 
combining weak heuristics for learning with traditional goal 
oriented and hierarchical weak methods. Extending the expressive 

power of the FM framework is another possible future direction, 
and integrating planners that break out of the 'Strips 
assumptions', with learning components, yet another.
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APPENDIX A.l: THE ROBOT WORLD 

frame(

name: robot_world01,

type: context, 
/* E.f :— */ 

always: 

type_of(rooml,room)&type_of(room2,room) 

&type_of(room3,room)&type_of(room4,room) 
&type_of(room5,room)£type_of(room6,room) 

&type_of(room7,room)&type_of(door23,door) 
&type_of(door24,door)&type_of(door25,door) 
&type_of(door35,door)&type_of(door45,door) 
&type_of(door56,door)&type_of(doorl2,door) 
£type_of(door47,door)&type_of(door57,door) 

&type_of(door67,door)£type_of(box2,box) 
£type_of(big_box,box)&type_of(boxl,box) 

&connect(room2,room3,door23)feconnect(room3,room2,door23) 
ftconnect(room2,room4,door24)ftconnect(room4,room2,door24) 
^connect(room2,room5,door25)feconnect(room5,room2,door25) 
&connect(room6,room5,door56)feconnect(room5,room6,door56) 
^connect(room5,room3,door35)ftconnect(room3,room5,door35) 

&connect(room5,room4,door45)&connect(room4,room5,door45) 

&connect(room4,room7,door47)^connect(room7,room4,door47) 
feconnect(room5,room7,door57)&connect(room7,room5,door57) 
^connect(room6,room7,door67)feconnect(room7,room6,door67) 

ftconnect(rooml,room2,doorl2)£connect(room2,rooml,doorl2) 
&fits_thru(boxl,door24)&fits_thru(boxl,door23) 

£fits_thru(boxl,door25)&fits_thru(boxl,door56) 
£fits_thru(boxl,door45)£fits_thru(boxl,door35) 
&fits_thru(boxl,door47)£fits_thru(boxl,door57) 

&fits_thru(boxl,doorl2)£fits_thru(boxl,door67) 
&f it s_th.ru (box2 , door24) &f its_thru(box2, door23) 
&fits_thru(box2,door25)£fits_thru(box2,door56) 
£fits_thru(box2,door45)&fits_thru(box2,door35) 
&fits_thru(box2,door47)&f its_thru(box2,door57) 
&fits_thru(box2,doorl2)&fits_thru(box2,door67)

&fits_thru(big_box,door24)
&f it s_ thru (big_box, door25)£f it s_th.ru (big_box, door56)

&fits_thru(big_box,door35)
£fits_thru(big_box,door47)£fits_thru(big_box,door57) 
&fits_thru(big_box,doorl2)&fits_thru(big_box,door67), 

/* S.r :— */ 
axioms: [at_door(0,D,R),in_room(0,R),

next_to(01,02)&in_room(01,R),in_room(02,R), 
next_to(02,01)&in_room(01,R),in_room(02,R) ] ).

/* E.r :— */
env_axioms([ [connect(X,Y,_), ne(X,Y)],

[connect(_,Y5,Z5), ne(Y5,Z5)], 
[connect(X4,_,Z4), ne(X4,Z4)], 
[connect(X1,Y1,Z1), connect(Y1,XI,Z1)], 
[connect(_,Y2,_), type_of(Y2,room)], 
[connect(_,_,Z3), type_of(Z3,door)]]

).
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/* initial world for listl */

init_world(

in_room(boxl,room4)&in_room(box2,room4)&
in_room(big_box,rooml)&in_room(robot,room6)& 
closed(door67)&open(door47)&open(door57)&closed(door45)& 

closed(door56)&open(door35)&closed(doorl2)& 

open(door23)&open(door25)&open(door24)

).

/* initial world for list2 */

init_world(
in_room(boxl,room2)&in_room(box2,room2)&in_room(big_box,room4)& 

in_room(robot,room6)&open(door67)&open(door47)& 
open(door57)&open(door45)&open(door56)&

open(door35)&open(door12)& 
open(door23)&open(door25)&open(door24)
).

/* LIST OF OPERATORS (OS) */

frame(
name: gothrudoor(D,R),

type: operator,

filter: nil,
check: connect(Rl,R,D),

precon: at_door(robot,D,R1)& 

open(D) ,
padd: in_room(robot,R),

add: next_to(robot,D),
delete: at_door(robot,_, 

&next_to(robot,_)

).

&in_room(robot,_)

frame(

name: gotodoor(D,R), 
type: operator,

filter: nil,
check: connect(R,_,D),

precon: in_room(robot,R),

padd: at_door(robot,D,R),
add: nil,

delete: at_door(robot,_

)•

&next_to(robot,_)
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frame(

name: pushthrudoor(Ob,D,To_room), 
type: operator, 
filter: nil, 

check: type_of(Ob,box)&

fits_thru(Ob,D)& 

connect(R,To_room,D), 

precon: at_door(0b,D,R)& 
in_room(0b,R)& 
next_to(robot ,0b)& 
open(D),

padd: in_room(0b,To_room),

add: in_room(robot,To_room)&
next_to(robot,Ob), 

delete: at_door(robot,_,_)

&at_door(0b,_,_)
&next_to(robot,_)
&next_to(0b,_)
&next_to(_,0b)
&in_room(robot,_) 
&in_room(0b,_) 

).

frame(

name: pushtodoor(Ob,D,R),
type: operator,

filter: nil,

check: type_of(Ob,box)& 

connect(R,_,D), 
precon:

in_room(0b,R)& 
next_to(robot,Ob), 

padd: at_door(0b,D,R),
add: next_to(robot,0b),
delete: at_door(0b,_,_)

&next_to(robot,_) 
&next_to(0b,_) 

&next_to(_,0b)

).

frame(

name: open(D),

type: operator,
filter: nil,

check: type_of(D,door)&connect(R,_,D),
precon: closed(D)&

at_door(robot,D,R),
padd: open(D),
add: nil,

delete: closed(D)
&next_to(robot,_)

).
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frame(

name: pushtobox(Obl,0b2), 
type: operator, 
filter: nil, 

check: type_of(Obi,box)& 

type_of(0b2,box)& 
ne(0bl,0b2),

precon:

next_to(robot,Obi)& 
in_room(0b2,R)& 
in_room(Obl,R), 

padd: next_to(0bl,0b2),

add: next_to(robot,0bl),
delete: at_door(robot

&at_door(0bl

&next_to(robot,_) 
&next_to(Obl,_) 
&next_to(_,0bl) 

)•

frame(

frame(

name: goto(X),
type: operator, 
filter: nil, 

check: type_of(X,box),
precon: in_room(X,R)& 

in_room(robot,R), 
padd: next_to(robot,X),
add: nil,

delete: at_door(robot

&next_to(robot,_)
).

name: close(D), 
type: operator, 

filter: nil, 

check: type_of(D,door)&connect(R,_,D), 
precon: open(D)&

at_door(robot,D,R),
padd: closed(D),
add: nil,

delete: open(D)

&next_to(robot,_)
).
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APPENDIX A.2 THE WAREHOUSE WORLD

/* ************ warehouse environment ***************** */

frame(

name: warehouse,
type: context,
/* E.f: — */

always:

type_of(cratel,crate)

&type_of(crate2,crate)
&type_of(crate3,crate)
&type_of(si,space)

&type_of(s2,space)&type_of(s3,space) 
&type_of(s4,space)&type_of(shelf6,shelf) 

&type_of(s6,space)&type_of(s7,space) 
&type_of(shelf7,shelf)

&type_of(s8,space)&type_of(s9,space)
&type_of(shelf9,shelf)

&type_of(s10,space)&type_of(shelf10,shelf) 
&type_of(s12,space)&type_of(s13,space) 

&type_of(s14,space)&type_of(shelf 14,shelf) 
&type_of(sl6,space)
&pickup_point(s6)&

&pickup_point(s9)
&pickup_point(s10)

&pickup_point(s14)

&connect(s6,shelf6)&connect(shelf6,s6) 

feconnect(s10,s6)£connect(s6,slO)
^connect(slO,s9)&connect(s9,slO)
feconnect(s9,shelf9)&connect(shelf9,s9)

^connect(sl4,slO)&connect(slO,sl4) 
&connect(slO,shelf10)^connect(shelf10,slO) 
^connect(s14,shelf14)&connect(shelf14,s14)

&next(sl,s2)&next(s2,sl) 
&next(s2,s3)&next(s3,s2) 

&next(s4,s3)&next(s3,s4) 
fenext(s6,s7)&next(s7,s6) 
&next(s8,s7)&next(s7,s8) 
&next(s9,slO)&next(slO,s9) 

&next(sl4,sl3)&next(sl3,sl4) 
&next(sl3,s9)&next(s9,sl3) 

&next(s6,s2)&next(s2,s6) 

&next(s6,sl0)&next(slO,s6) 
fenext(sl4,sl0)&next(slO,si4) 

&next(s3,s7)&next(s7,s3) 
&next(s8,s4)&next(s4,s8) 

&next(s8,sl2)&next(sl2,s8) 
&next(sl6,sl2)&next(sl2,sl6) 

&between(s7,s6,shelf6)&between(s3,s7,shelf7) 
&between(sl3,s9,shelf9)&between(s13,si4,shelf14) 
&between(s9,sl0,shelfl0),
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/* S.r 
axioms

).

/* E. r 
env_axioms([

).

/* an initial

init_world(

:— */
: [loaded(truck,B,Y),at(B,Y),

on_floor(Xl,Y1),at(Xl,Yl), 
loaded(crane,Y2,Z2),at(crane, Z2), 

loaded(crane,Y6,Z6),above_floor(Y6,Z6), 

stacked(X3,Y3),at(X3,Y3), 

in_truck&at(truck,Y5),at(driver,Y5) ]

:— ♦/
[next(X,Y), ne(X,Y)],
[next(X3,Y3), next(Y3,X3)], 
[between(Xl,X2,_),next(XI,X2)], 

[connect(X4,X5), connect(X5,X4) ] ]

state for the warehouse world */

unloaded(truck)& 

unloaded(crane)& 
on_floor(driver,s13)& 

on_floor(crate2,sl2)& 
on_floor(crate3,sl6)& 

on_floor(crate 1,sl)& 

at(cratel,sl)& 
clear(slO)&
clear(s3)&

at(driver,sl3)&
clear(s4)&
clear(s5)& 
clear(s7)& 
at(truck,s2)& 

at(crate2,sl2)& 
at(crate3,sl6)& 
clear(sl4)&

clear(s6)& 
clear(sll)& 

clear(s8)& 

clear(s9)& 
at(crane,sl4)& 

clear(sl5)
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/* LIST OF OPERATORS (OS) */

/*l*/frame(

name: load(B,X,Y),
type: operator,
filter: 
check:

at(B,X), 
type_of(B,crate)& 

next(X,Y)& 
type_of(X,space)& 

type_of(Y,space),
precon:

in_truck& 

on_floor(B,X)& 
unloaded(truck)& 
at(truck,Y),

padd: at(B,Y)&loaded(truck,B,Y)&clear(X) ,
add: nil,
delete: on_floor(B,X)&

at(B,X)&

unloaded(truck)

).

/*2*/frame(

name: unload(B,Y,X),
type: operator,
filter: nil,
check: type_of(B,crate)& 

next(X,Y)& 

type_of(X,space)& 

type_of(Y,space),
precon:

clear(X)& 
in_truck& 

loaded(truck,B,Y),
padd: unloaded(truck)&on_floor(B,X)&at(B,X),
add: nil,
delete: loaded(truck,B,Y)& 

clear(X)& 

on_floor(B,Y)&

).
at(B,Y)
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precon:

/*3*/frame(

name: get_in(X,Y),
type: operator,
filter: 

check:
at(truck,Y),

type_of(X,space)& 

type_of(Y,space)& 
next(X,Y),

).

padd: 
add: 
delete:

at(driver,X)& 
on_floor(driver, X)& 
at(truck,Y), 
in_truck, 
clear(X)&at(driver,Y), 
on_floor(driver,X)& 
at(driver,X)

).

/*4*/frame(

name: get_out(Y,X),
type: operator,
filter: nil,
check:

type_of(X,space)& 

type_of(Y,space)& 
next(X,Y),

precon:

in_truck& 
clear(X)& 
at(truck,Y),

padd: on_floor(driver,X),
add: clear(X)&at(driver,X),
delete: in_truck& 

clear(X)& 
at(driver,Y)

98



).

/*5+/frame(

name: drive_load(B,X,Y) ,
type: operator,
filter: nil,
check:

next(X,Y)&
type_of(X,space)& 

type_of(Y,space)& 
type_of(B,crate),

precon:

in_truck&
loaded(truck,B,X)& 
clear(Y),

padd: loaded(truck,B,Y)&at(B,Y) ,
add: at(driver,Y)ftclear(X)feat(truck, Y) ,
delete:

at(driver,X)& 
loaded(truck,B,X)& 

at(B,X)& 

at(truck,X)& 

clear(Y)

/*6*/frame(

name: drive(X,Y),
type: operator,
filter: nil,

precon:

check:

type_of(X,space)& 
type_of(Y,space) & 
next(X,Y),

in_truck&

unloaded(truck)& 
at(truck,X)& 

clear(Y),
padd: at(truck,Y)feclear(X),

add: at(driver,Y),
delete:

at(driver,X)&

at(truck,X)&
clear(Y)

).
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/*7*/frame(

name: walk(X,Y),
type: operator, 

filter: nil, 
check: next(X,Y)&

type_of(X,space)&

type_of(Y,space),
precon: at(driver.X)

&on_floor(driver,X)& 
clear(Y), 

padd: at(driver,Y),

add: on_floor(driver,Y)&clear(X),
delete:

at(driver,X)&on_floor(driver,X)& 
clear(Y)

).

/*8*/frame(

name: lift_up(B,Y),
type: operator,
filter: nil, 

check:

pickup_point(Y)& 
type_of(B,crate), 

precon:

unloaded(crane)&
at(crane,Y)& 

on_floor(B,Y), 

padd: above_floor(B,Y)&loaded(crane,B,Y) ,
add: nil,

delete: unloaded(crane)&

on_floor(B,Y)
).

/*9*/frame(

name: lift_down(B),
type: operator,

filter: above_floor(B,Y)&at(B, Y), 
check:

type_of(B,crate),
precon:

above_floor(B,Y)& 
loaded(crane,B,Y), 

padd: on_floor(B,Y)&unloaded(crane),
add: nil,

delete: loaded(crane,B,Y)&

above_floor(B,Y)
).
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/*10*/frame(

name: move.crane(X,Y),
type: operator,
filter: nil,
check:

pickup_point(X)& 

pickup_point(Y)& 
connect(X,Y),

precon:

padd: 
add: 
delete: 

).

at(crane,X)& 
unloaded(crane), 
at(crane,Y), 
nil,
at(crane,X)

/*ll*/frame(
name: crane_stack(B,X,S),
type: operator,

filter: nil,
check:

pickup_point(X)& 
connect(X,S)& 

type_of(S,shelf)& 
type_of(B,crate),

precon:

loaded(crane,B,X),
padd: stacked(B,S)£unloaded(crane),
add: nil,

delete: 
).

loaded(crane,B,X)

/*12*/frame(

name: crane_unstack(B,Y,S),

type: operator,
filter: stacked(B,S)&above_floor(B,Y),

check:

connect(S,Y)& 
type_of(S,shelf)& 
type_of(B,crate),

precon:
unloaded(crane)& 

stacked(B,S)& 
at(crane,Y),

padd: loaded(crane,B,Y),

add: nil,
delete: unloaded(crane)& 

stacked(B,S)

).
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/*13*/frame(

name: truck_stack(B,X,Y,Z), 
type: operator, 
filter: nil,
check:

between(X,Y,Z)& 
type_of(X,space)& 

type_of(Y,space)& 
type_of(Z,shelf)& 
type_of(B,crate), 

precon:
at(truck,X)& 

unloaded(truck)& 

in_truck& 

on_floor(B,Y), 

padd: stacked(B,Z),

add: above_floor(B,Y),
delete:

on_floor(B,Y)
).

/*14*/frame(

name: truck_unstack(B,X,Y,Z), 
type: operator, 

filter: stacked(B.Z), 
check:

between(X,Y,Z)&
type_of(X,space)&

type_of(Y,space)& 
type_of(Z,shelf)& 

type_of(B,crate), 
precon:

at(truck,X)& 

unloaded(truck)& 
in_truck& 
stacked(B.Z), 

padd: on_floor(B,Y),
add: nil,

delete:
stacked(B,Z)& 
above_floor(B,Y) 

).
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APPENDIX A.3 THE 8-PUZZLE 

frame(

name: eight_puzzle,
type: context,

always:

next(pl,p2) 

&next(p2,pl) 
&next(pl,p4) 
&next(p4,pl) 
&next(p5,p2) 
ftnext(p2,p5) 

&next(p3,p2) 
&next(p2,p3) 

&next(p3,p6) 

&next(p6,p3) 

&next(p6,p5) 
&next(p5,p6) 

&next(p6,p9) 
&next(p9,p6) 
&next(p9,p8) 

&next(p8,p9) 
&next(p8,p5) 

&next(p5,p8) 
&next(p7,p8) 

&next(p8,p7) 
&next(p4,p7) 
&next(p7,p4) 
&next(p4,p5) 
&next(p5,p4) 

&type_of(tilel,tile) 

&type_of(tile2,tile) 
&type_of(tile3,tile) 
&type_of(tile4,tile) 

&type_of(tile6,tile) 
&type_of(tile7,tile) 
&type_of(tile8,tile) 

&type_of(tile5,tile) 
&type_of(pl,p) 

&type_of(p2,p) 
&type_of(p3,p) 

&type_of(p4,p) 

&type_of(p5,p) 
&type_of(p6,p) 
&type_of(p7,p) 
&type_of(p8,p) 
&type_of(p9,p)

>

axioms : []
).
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/* this info is needed for efficient forward search */ 

inverse( move(X,Y,Z), move(X,Z,Y) ).

init_world(
at(tile3,p3)& 
at(tile2,p2)& 
at(tile6,pl)& 
at(tilel,p4)& 

at(tile7,p8)& 
at(tile5,p9)& 
at(tile4,p6)& 
at(blank,p5)& 
at(tile8,p7) 

).

/* OPERATOR (OS) */

frame(
name: move(T,S,D),

type: operator, 

filter: nil, 
check: next(S,D)&ne(T,blank),

precon: at(T,S)£at(blank,D), 
padd: at(T,D)&at(blank,S),

add: nil,
delete: at(T,S)&at(blank,D) 

).
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APPENDIX A.4 A BLOCKS WORLD

frame(

name: blocksl,
type: 

always
context,

type_of(a,box)
&type_of(b,box)

&type_of(c,box)
&type_of(d,box)

&type_of(e,box)
axioms : CJ ) .

init_world(

on(a,table)# on(d,table)& 

on(e,table)# on(c,a)& 
on(b,table)&clear(c)& 

clear(e)#clear(d)& 

clear(b)
).

/* LIST OF OPERATORS (OS) */

macrop: [] ,

frame(

name: puton(0bl,0b2) ,
type: operator,

check: ne(0bl,0b3)&ne(0b2,0b3)& 
ne(0bl,0b2)#type_of(Obi,box)& 
type_of(0b2,box),

precon: on(0bl,0b3)#clear(0bl)&

clear(0b2),
padd: on(0bl,0b2),
add: clear(0b3),
delete: 
).

on(Obi,0b3)&clear(0b2)

frame(

name: newtower(Obl,0b2),
type: operator,
macrop: □ ,
check: type_of(0b2,box)#type_of(Obi,box)& 

ne(0bl,0b2),
precon: on(0bl,0b2)#clear(0bl),
padd: clear(0b2),
add: on(0bl,table),
delete: 
).

on(0bl,0b2)
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APPENDIX A.5 THE TOWER OF HANOI PUZZLE 

frame(
name: tohl,

type: context,

always:

type_of(pl.pole)
&type_of(p2,pole)

&type_of(p3,pole)
&type_of(dl,disc)
&type_of(d2,disc)
&type_of(d3.disc)
&type_of(d4,disc)
&type_of(basel.base)
&type_of(base2,base)

&type_of(base3,base)
&smaller(dl,basel)

&smaller(dl,base2)
&smaller(dl,base3)

&smaller(d2,basel)
&smaller(d2,base2)
&smaller(d2,base3)
&smaller(d3,basel)
&smaller(d3,base2)

&smaller(d3,base3)

fesmaller(d4,basel)
&smaller(d4,base2)
&smaller(d4,base3)
&smaller(dl,d2)
&smaller(dl,d4)
&smaller(d2,d4)

&smaller(d3,d4)
&smaller(d2,d3)

&smaller(dl,d3),

axioms: [ ontop(X,Y)&on(Y,P),on(X,P), 
ontop(X,Y)&on(X,P),on(Y,P) ]

).

inverse( movel(D,Pl,P2).movel(D.P2,Pl) ). /* move2 inverse not specified*/

init_world( top(dl)& top(base2)&

on(basel,pl)&top(base3)&
on(base2,p2)&on(base3,p3)&
on(dl,pl)&on(d2,pl)&
on(d3,pl)&on(d4,pl)&

ontop(dl,d2)&
ontop(d2,d3)&

ontop(d3,d4)& 
ontop(d4,basel) ).
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/* OPERATOR (OS) */

frame(

name: movel(D,0bl,0b2,Pl,P2),
type: operator,
filter: □ ,
check: type_of(Pl,pole)& 

type_of(P2,pole)& 
type_of(D,disc)& 
smaller(D,Obl)& 
ne(Pl,P2),

precon:

top(D)& 
top(Obl)& 

on(D,Pl)& 

ontop(D,0b2)& 

on(0bl,P2),

padd: on(D,P2),
add: top(0b2)& 

ontop(D.Obl),

delete: on(D,Pl)& 

ontop(D,0b2)& 

top(Obl)

).
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APPENDIX A.6 MACBETH WORLD 

frame(

name: story_of_macbeth,
type: context,

always:

type_of(macduff,person) 

&type_of(macbeth_lady,person) 
&type_of(macbeth,person) 
&type_of(duncan,person) 
&type_of(a_dagger,weapon) 
&type_of(a_dagger,object) 
&is_strong(macbeth) 

&is_evil(macbeth_lady) 
&is_strong(duncan) 
&is_strong(macduff) 

&knows(macbeth,macduff) 

&knows(macbeth,duncan) 
ftknows(macbeth_lady.macduff) 
ftknows(macduff,duncan) 

ftknows(macbeth_lady,duncan) 
&married(macbeth_lady,macbeth) 

&can_influence(macbeth_lady,macbeth)

> 
axioms: [ ] 
).

init_world(
has(macbeth_lady,a_dagger)& 

has_motive(macbeth_lady)& 
nearby(macbeth,duncan)& nearby(macduff,duncan)& 

alive(macbeth)&alive(macduff)& 
alive(duncan)& alive(macbeth_lady) ).

/* LIST OF OPERATORS (OS) */

frame(

name: kill(Killer,Inst.Killed),
type: operator, 
filter: [] , 
check: type_of(Killer,person)&

type_of(Killed,person)& 

is_strong(Killer)& 
type_of(Inst,weapon)& 
ne(Killer.Killed), 

precon: has(Killer,Inst)& 
next_to(Killer,Killed)& 
has_motive(Killer), 

padd: dead(Killed),
add: murderer(Killer),
delete: alive(Killed) ).
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frame(
name: give_motive(Accomplice.Killer) , 

type: operator, 
filter: □ ,

check: type_of(Killer,person)&
type_of(Accomplice.person)& 

type_of(Weapon,weapon)& 
is_evil(Accomplice)& 

can_influence(Accomplice.Killer), 
precon: has_motive(Accomplice), 
padd: has_motive(Killer),
add: needs(Killer,Weapon),
delete: nil

).

frame(

name: meet(Pl,P2),

type: operator,
filter: [] ,
check: type_of(Pl,person)&

type_of(P2.person), 

precon:
nearby(Pl,P2),

padd: next_to(Pl,P2),
add: nil,
delete: nil
).

frame(

name: give(Giver,Obj.Given),
type: operator,
filter: [] ,

check: type_of(Giver,person)^
type_of(Giver.person)&
type_of(Obj.weapon),

precon: has(Giver,Obj)&needs(Given,Obj), 

padd: has(Given,Obj),
add: nil,
delete: has(Giver,Obj)
).
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APPENDIX A. 7: BOX WORLD 

/* This operators are equivalent to Minton's IJCAI 87 (p229) ones*/

frame(

name: blocks_worldl,
type: context,
always:

type_of(box2,box)
&type_of(box5,box)
£type_of(box4,box)
&type_of(boxl,box)
&type_of(box3,box),

axioms: □
).

inversef pickofffloor(X),putonfloor(X) ). 

inverse( putonfloor(X),pickofffloor(X) ). 

inverse( pickoffbox(X,Y),putonbox(X,Y) ). 
inverse( putonbox(X,Y),pickoffbox(X,Y) ).

env_axioms ( [] ) .

/* init world for blocks */

init_world(
handempty&
onfloor(box3)&
onfloor(box4)&
onfloor(box5)&
ontop(boxl,box2)&
ontop(box2,box3)&
clear(box4)&
clear(box5)&
clear(boxl)

).

frame(

name: putonbox(Obl,0b2),
type: operator,
macrop: [] ,

check:

type_of(Obi,box)&
type_of(0b2,box)&ne(0bl,0b2),

precon: clear(0b2)& 
holding(Obl), 

padd: ontop(0bl,0b2),
add: handempty&clear(Obl),
delete: clear(0b2)&

holding(Obl)
).
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frame(

).

name: pickoffbox(0bl,0b2),
type: operator,
macrop: □ ,
check:

type_of(Obi,box)&
type_of(0b2,box)&ne(0bl,0b2) ,

precon: clear(0bl)& 
handemptyfe 
ontop(0bl,0b2),

padd: clear(0b2)&holding(0bl),

add: nil,

delete: clear(0bl)& 
handemptyfe 
ontop(0bl,0b2)

frame(
name: 

type: 
macrop: 
check:

precon:

padd:

add: 
delete:

)•

pickofffloor(Obl), 

operator,

□ ,
type_of(Obi,box), 

clear(0bl)& 
handemptyft 
onfloor(Obl), 

holding(Obl), 
nil,
clear(0bl)& 
handemptyfe 
onfloor(Obl) 

frame(
name: putonfloor(Obl),

type: operator,
macrop: [] , 
check: type_of(Obi,box),
precon: holding(Obl), 
padd: handempty,
add: clear(0bl)&onfloor(0bl),

delete: holding(Obl) 

).
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APPENDIX A.8 NLP BLOCKS WORLD 
(This is the representation used for NLP with EBL, 

and below it is given the procedure that changes from FM 
representation to this one.)

env( [ type_of(a,box)

,type_of(b,box)
,type_of(c,box)

,type_of(d.box)
.type.of(e,box)] ).

/* init world for blocks */

init_world(

[ on(a,table), on(c,a),

on(b,table), clear(c), clear(b)] ).

operator(puton(_125545,.125560),[ne(_125545,.125641),
ne(.125560,.125641),ne(_125545,.125560),

type.of(_125545,box),type.of(.125560,box)] ,
[on(_125545,.125641),clear(.125545),clear(_125560)], 
[on(_125545,.125560),clear(_125641)] ,
[on(_125545,,125641),clear(_125560)]).

operator(newtower(.126467,_126482) ,
[type.of(.126482,box).type.of(.126467,box), 

ne(_126467,.126482)],
[on(_126467,.126482),clear(.126467)], 

[clear(_126482),on(_126467,table)], 
[on(_126467,.126482)]).
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/* procedure for changing rep’s */ 

:- op(700,xf x
:- op(100,xf y,’.

change(Infile, Outfile)

see(Infile),
read(

frame( name: N,

type: operator,
macrop:
check: EnvA,
precon:PreA,
padd: AA,
add: AddA, 

delete: DelA) ),
andtolist(EnvA,Env) ,

andtolist(PreA,Pre) , 
andtolist(AA,A), 

andtolist(AddA,Add), 
andtolist(DelA,Del), 
append(A,Add,Added), 
tell(0utfile), 

write( operator( N, 
Env, 

Pre, 
Added, 
Del)), 

write(’.’),nl,change(Infile,Outfile). 
changed, Outfile) :- tell(0utfile) ,told.

/**♦♦*****♦*******************♦************************************/

andtolist(nil,[]) :- !.
andtolist(X&Y,[X|Z]) :-!, andtolist(Y,Z).

andtolist(X, [X]) :- !.

append( [] ,L,L) :-!.

append([H|T],L,[H|Z]) :- append(T,L,Z),!.
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/* APPENDIX B.1 */
/* Results of list 1 with chunking, algorithm B */

no. of expanded nodes: 20
taskfile: listl2 taskno: taskl of length 5
goal: in_room(robot,room2) by: [gotodoor(door56,room6),open(door56) , 
gothrudoor(door56,room5),gotodoor(door25,room5),gothrudoor(door25,room2)]

CPUsed=65 secs

no. of expanded nodes: 5
taskfile: listl2 taskno: task2 of length 5
goal: in_room(boxl,room2) by: [gotodoor(door24,room2), 
gothrudoor(door24,room4).goto(boxl),pushtodoor(boxl,door24,room4), 

pushthrudoor(boxl,door24,room2)]

CPUsed=28 secs

no. of expanded nodes: 9 
taskfile: list 12 taskno: task3 of length 7 
goal: in_room(box2,room3) by: [gotodoor(door24,room2), 
gothrudoor(door24,room4),goto(box2),pushtodoor(box2,door24,room4), 
pushthrudoor(box2,door24,room2).pushtodoor(box2,door23,room2), 

pushthrudoor(box2,door23,room3)]

CPUsed=63 secs

no. of expanded nodes: 28
taskfile: listl2 taskno: task4 of length 12 
goal: in_room(big_box,room3) by: [gotodoor(door23,room3), 
gothrudoor(door23,room2),gotodoor(doorl2,room2),open(doorl2), 

gothrudoor(doorl2,rooml),goto(big_box),pushtodoor(big_box,doorl2,rooml), 

pushthrudoor(big_box,door12,room2),pushtodoor(big_box,door25,room2), 
pushthrudoor(big_box,door25,room5),pushtodoor(big_box,door35,room5), 

pushthrudoor(big_box,door35,room3) ]

CPUsed=201 secs

no. of expanded nodes: 15
taskfile: listl2 taskno: task5 of length 9 
goal: in_room(boxl,room6)&closed(door56) by: [gotodoor(door23,room3), 

gothrudoor(door23,room2),goto(boxl),pushtodoor(boxl,door25,room2), 

pushthrudoor(boxl,door25,room5),pushtodoor(boxl,door56,room5), 
pushthrudoor(boxl,door56,room6),gotodoor(door56,room6),close(door56)]

CPUsed=75 secs

no. of expanded nodes: 4
taskfile: listl2 taskno: task6 of length 4 
goal: in_room(robot,room3) by: [open(door56),gothrudoor(door56,room5), 

gotodoor(door35,room5),gothrudoor(door35,room3)]
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CPUsed=17 secs 

no. of expanded nodes: 9
taskfile: listl2 taskno: task7 of length 9 
goal: in_room(boxl,room3) by: [gotodoor(door35,room3), 
gothrudoor(door35,room5),gotodoor(door56,room5), 
gothrudoor(door56,room6),goto(box1),pushtodoor(boxl,door56,room6), 

pushthrudoor(boxl,door56,room5),pushtodoor(boxl,door35,room5), 
pushthrudoor(boxl,door35,room3)]

CPUsed=50 secs

no. of expanded nodes: 5 
taskfile: listl2 taskno: task8 of length 5 
goal: in_room(box2,room7) by: Egoto(box2),pushtodoor(box2,door35,room3), 

pushthrudoor(box2,door35,room5).pushtodoor(box2,door57,room5), 
pushthrudoor(box2,door57,room7)]

CPUsed=30 secs

no. of expanded nodes: 6 
taskfile: listl2 taskno: task9 of length 5 
goal: next_to(box2,big_box) by: [pushtodoor(box2,door57,room7), 

pushthrudoor(box2,door57,room5),pushtodoor(box2,door35,room5), 
pushthrudoor(box2,door35,room3),pushtobox(box2,big_box)]

CPUsed=33 secs

no. of expanded nodes: 68
taskfile: list!2 taskno: tasklO of length 23
goal: in_room(boxl,room6)&in_room(box2,room6)&in_room(big_box,room6) by: 
[goto(boxl),pushtodoor(boxl,door35,room3),
pushthrudoor(boxl,door35,room5).pushtodoor(boxl,door56,room5), 
pushthrudoor(boxl,door56,room6),gotodoor(door56,room6), 

gothrudoor(door56,room5),gotodoor(door35,room5), 
gothrudoor(door35,room3),goto(box2),pushtodoor(box2,door35,room3), 

pushthrudoor(box2,door35,room5),pushtodoor(box2,door56,room5), 
pushthrudoor(box2,door56,room6),gotodoor(door56,room6), 

gothrudoor(door56,room5),gotodoor(door35,room5), 
gothrudoor(door35,room3),goto(big_box),pushtodoor(big_box,door35,room3), 
pushthrudoor(big_box,door35,room5),pushtodoor(big_box,door56,room5), 

pushthrudoor(big_box,door56,room6)]

CPUsed=415 secs

/* APPENDIX B.l */
/* rule set after execution os listl, addition of

2 bad heuristics and execution of list2 */

chlOgothrudoor(x(l),x(2))in_room(robot,x(2)) 

115



in_room(robot,x(3))&closed(x(4))&open(x(1))

connect(x(3),x(5),x(4))&connect(x(5), x(2),x(1))&ne(x(3),x(2))&ne(x(4),x(l))

ch20gothrudoor(x(1),x(2))in_room(robot,x(2)) 
in_room(robot,x(3))
connect(x(3),x(2),x(l))

chl02gothrudoor(x(1),x(2))in_room(robot,x(2)) 
in_room(robot,x(3))&open(x(4))£open(x(l)) 
connect(x(3),x(5),x(4))^connect(x(5),x(2),x(1))&ne(x(3),x(2))&ne(x(4),x(l))

ch_bad2gothrudoor(x(1),x(2))in_room(robot,x(2))
in_room(x(3),x(4))&open(x(l))
connect(x(4),x(2),x(l))&type_of(x(3),box)

ch30pushthrudoor(x(1),x(2),x(3))in_room(x(1),x(3))
in_room(x(l),x(4))&open(x(2))
connect(x(4),x(3),x(2))&type_of(x(1),box)&fits_thru(x(l),x(2))

ch50pushthrudoor(x(1),x(2),x(3))in_room(x(l),x(3))
in_room(x(1),x(4))&closed(x(5))&open(x(2) )

connect(x(4),x(6),x(5))&connect(x(6),x(3),x(2))&fits_thru(x(l),x(5))£ 

type_of(x(l),box)&fits_thru(x(l),x(2))£ne(x(4),x(3))£ne(x(5),x(2))

ch60pushthrudoor(x(l),x(2),x(3))in_room(x(l),x(3)) 
in_room(x(l),x(4))

connect(x(4),x(3),x(2))&type_of(x(l),box)&fits_thru(x(1),x(2))

ch80pushthrudoor(x(l),x(2),x(3))in_room(x(l),x(3))
in_room(x(l),x(4))&in_room(robot,x(3))£open(x(5))&open(x(2)) 
connect(x(4),x(6),x(5))&connect(x(6),x(3),x(2))&
fits_thru(x(l),x(5))&type_of(x(l),box)&fits_thru(x(l),x(2))& 

ne(x(4),x(3))&ne(x(5),x(2))

ch_badlpushthrudoor(x(l),x(2),x(3))in_room(x(l),x(3)) 

in_room(robot,x(4))&open(x(2))
connect(x(4),x(3),x(2))&type_of(x(1),box)£fits_thru(x(l),x(2))

chlpushthrudoor(x(1),x(2),x(3))in_room(x(l),x(3))
in_room(x(1),x(4))&open(x(5))&open(x(2))
connect(x(4),x(6),x(5))£connect(x(6),x(3),x(2))&fits_thru(x(1),x(5))& 
type_of(x(1),box)£fits_thru(x(1),x(2))&ne(x(4),x(3))&ne(x(5),x(2)) 

ch50 4 0 discrim 
ch_bad2 1 0 discrim 
chl02 10 10 strengthened 
ch80 7 30 strengthened 
ch_badl 1 10 discrim 

chlO 1 30 discrim 
ch60 4 20 discrim 
chi 2 10 multiples 

ch30 2 180 discrim 
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ch20 1 190 discrim

chlOl 9 30 discrim

chlO has exception ch20
ch70 has exception ch30

ch50 has exception ch30
chlOl has exception ch30

ch90 has exception ch20
ch_bad2 has exception chl02

ch_bad2 has exception ch20
chl02 has exception ch20
ch_badl has exception ch30
chi has exception ch30
chi has exception ch60

ch60 has exception chlOl

/* APPENDIX B.2 */

/* results for list44 */

no. of expanded nodes: 10

taskfile: list taskno: taskl of length 7

goal: at(truck,s6) by: [get_in(sl2,sl6),drive(sl6,sl2), 
load(crate3,s8,sl2),unload(crate3,sl2,sl6),drive(s12, s8) , 
drive(s8,s7),drive(s7,s6)]
CPUsed=107 secs

CPUsed=6 secs

no. of expanded nodes: 10
taskfile: list taskno: task2 of length 5
goal: stacked(crate2,shelf7) by: Edrive(s6,s7),drive(s7,s3) , 
load(crate2,s2,s3),unload(crate2,s3,s7),truck_stack(crate2,s3,s7,shelf7)] 
CPUsed=83 secs
CPUsed=6 secs

no. of expanded nodes: 18

taskfile: list taskno: task3 of length 7
goal: stacked(cratel,shelf 14) by: [drive(s3,s2),load(cratel,si,s2), 

drive_load(cratel,s2,s6),drive_load(cratel,s6,sl0), 
unload(cratel,slO,si4),lift_up(crate 1,si4), 

crane_stack(cratel,s14,shelf14)]

CPUsed=130 secs

CPUsed=26 secs

no. of expanded nodes: 8 
taskfile: list taskno: task4 of length 7 
goal: loaded(truck,crate3,sl2) by: Edrive(sl0,s6),drive(s6,s2), 
drive(s2,s3),drive(s3,s4),drive(s4,s8),drive(s8,sl2) , 

load(crate3,sl6,sl2)]
CPUsed=81 secs

CPUsed=16 secs

no. of expanded nodes: 44
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taskfile: list taskno: task5 of length 7

goal: on_floor(crate3,s2)&at(crate2,s4) by: [drive_load(crate3,s12,s8), 
drive_load(crate3,s8,s4),drive_load(crate3,s4,s3),
unload(crate3,s3,s2),truck_unstack(crate2, s3,s7,shelf7), 
load(crate2,s7,s3),drive_load(crate2,s3,s4)]

CPUsed=452 secs
CPUsed=20 secs

no. of expanded nodes: 13
taskfile: list taskno: task6 of length 9

goal: stacked(crate3,shelf6) by: [move_crane(sl4,slO), 
move_crane(slO,s6),unload(crate2,s4,s8),drive(s4,s3), 
load(crate3,s2,s3),drive_load(crate3,s3,s7),unload(crate3,s7,s6), 
lift_up(crate3,s6),crane.stack(crate3,s6.shelf6)]
CPUsed=134 secs

CPUsed=3 secs

no. of expanded nodes: 20

taskfile: list taskno: task7 of length 10

goal: on_floor(crate2,sl)&on_floor(crate3,s9) by: [load(crate2,s8,s7), 
drive_load(crate2,s7,s3),drive_load(crate2,s3,s2), 

unload(crate2,s2,si),crane_unstack(crate3,s6,shelf6),
lift_down(crate3),load(crate3,s6,s2),drive_load(crate3,s2,s6), 

drive_load(crate3,s6,slO),unload(crate3,slO,s9)]

CPUsed=176 secs
CPUsed=7 secs

no. of expanded nodes: 7
taskfile: list taskno: task8 of length 7
goal: on_floor(cratel,s2) by: [move_crane(s6,slO),move_crane(slO,sl4), 
crane.unstack(cratel,s14,shelf14),lift_down(cratel),
load(cratel,sl4,slO),drive_load(cratel,slO,s6),unload(crate 1,s6,s2)] 
CPUsed=48 secs

CPUsed=2 secs

no. of expanded nodes: 9

taskfile: list taskno: task9 of length 8
goal: stacked(crate3,shelf9)£loaded(truck,cratel,sl2) by: 

[move_crane(sl4,sl0),move_crane(sl0,s9),lift_up(crate3,s9), 
crane_stack(crate3,s9,shelf9),load(cratel,s2,s6), 
drive_load(cratel,s6,s7),drive_load(cratel,s7,s8), 

drive_load(cratel,s8,sl2)]
CPUsed=79 secs
CPUsed=2 secs

no. of expanded nodes: 43
taskfile: list taskno: tasklO of length 13
goal: stacked(cratel,shelf10)&stacked(crate2,shelf6) by: 
[move_crane(s9,slO),drive_load(cratel,sl2,s8),drive_load(cratel,s8,s7), 
drive_load(cratel,s7,s6),unload(cratel,s6,slO),lift_up(cratel,slO) , 
crane_stack(cratel,s10,shelf10),move_crane(slO,s6), 

drive(s6,s2),load(crate2,sl,s2),unload(crate2,s2,s6),

lift_up(crate2,s6),crane_stack(crate2, s6.shelf6)]

CPUsed=441 secs
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CPUsed=39 secs 

/* acquired chunks after execution of list4 ♦/

chx3drive(x(1),x(2))at(truck,x(2))
at(driver,x(l))&unloaded(truck) 

type.of(x(l),space)fetype.of(x(2),space)&next(x(l),x(2))

chx23drive(x(l),x(2))at(truck,x(2))
at(truck,x(1))£in_truck£clear(x(2)) 

type.of(x(l),space)&type_of(x(2),space)£next(x(l),x(2))

chx2drive(x(1),x(2))at(truck,x(2) )
at(driver,x(3))&clear(x(2))&unloaded(truck) 

type.of(x(3),space)£next(x(3),x(l))&type_of(x(2),space)& 

next(x(l),x(2))&ne(x(3),x(2))

chxldrive(x(l),x(2))at(truck,x(2))
at(driver,x(3))&clear(x(2))&clear(x(l))£unloaded(truck)
type.of(x(3),space)£next(x(3),x(4))&next(x(4),x(l))&
type.of(x(l),space)fetype.of(x(2),space)&next(x(l),x(2))& 
ne(x(3),x(l))&ne(x(3),x(2))&ne(x(4),x(2))

chxlldrive(x(l),x(2))at(truck,x(2))
in.truck&clear(x(2))&clear(x(l))&unloaded(truck) 
next(x(3),x(1))&type_of(x(l),space)&type_of(x(2),space)& 

next(x(l),x(2))&ne(x(3),x(2))

chxl2drive(x(l),x(2))at(truck,x(2) ) 
in_truck&clear(x(3))&clear(x(l))&clear(x(2))&unloaded(truck) 
next(x(4),x(3))&type_of(x(3),space)&next(x(3),x(l))& 
type.of(x(l),space)&type_of(x(2),space)£next(x(l),x(2))& 
ne(x(4),x(l))&ne(x(4),x(2))&ne(x(3),x(2))

chy3drive_load(x(l),x(2),x(3))loaded(truck,x(l),x(3)) 
at(truck,x(2))&in_truck&unloaded(truck)

next(x(2),x(3))&type_of(x(2),space)£ne(x(3),x(2))

chxl7drive_load(x(l),x(2),x(3))at(x(l),x(3))
at(truck,x(2))&in_truck&clear(x(3))&unloaded(truck) 
next(x(4),x(2))£next(x(2),x(3))&type_of(x(2),space)& 

type.of(x(3),space)&ne(x(4),x(3))

chxl5drive_load(x(l),x(2),x(3))loaded(truck,x(l),x(3)) 
loaded(truck,x(1),x(4))&in_truck&clear(x(3))&clear(x(2))&clear(x(5) ) 
next(x(4),x(5))&type_of(x(4),space)&next(x(5),x(2))&type_of(x(5),space)& 
next(x(2),x(3))&type_of(x(2),space)&type_of(x(3),space)&
type.of(x(l),crate)&ne(x(4),x(2))&ne(x(4),x(3))&ne(x(5),x(3))

chx!6drive_load(x(1),x(2),x(3))loaded(truck,x(l),x(3)) 

loaded(truck,x(1),x(4))&in_truck£clear(x(3))&clear(x(2)) 
next(x(4),x(2))&type_of(x(4),space)£next(x(2),x(3))£ 

type.of(x(2),space)fttype.of(x(3),space)£
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type_of(x(l),crate)&ne(x(4),x(3))

chx21drive_load(x(1),x(2),x(3))loaded(truck,x(l),x(3))
at(truck,x(4))#on_floor(x(l),x(5))&in_truck#clear(x(2))&clear(x(3)) 
type_of(x(4),space)#next(x(4),x(2))&next(x(5),x(2))&

type_of(x(5),space)#next(x(2),x(3))&type_of(x(2).space)# 
type_of(x(3),space)&type_of(x(1),crate)&ne(x(4),x(5))& 

ne(x(4),x(3))&ne(x(5),x(3))

chx9drive_load(x(l),x(2),x(3))loaded(truck,x(l),x(3)) 
on_floor(x(1),x(4))&in_truck&clear(x(3))&unloaded(truck) 

next(x(4),x(2))&type_of(x(4),space)#next(x(2),x(3))& 
type_of(x(3),space)&type_of(x(1),crate)#ne(x(4),x(3))

chy2drive_load(x(l),x(2),x(3))loaded(truck,x(1),x(3)) 

at(truck,x(4))&in_truck&clear(x(3))&unloaded(truck) 
next(x(4),x(2))&type_of(x(4),space)&next(x(2),x(3))& 
type_of(x(3),space)&ne(x(4),x(3))

chy8drive_load(x(l),x(2),x(3))loaded(truck,x(1) ,x(3)) 
in_truck#clear(x(3))feclear(x(2))

next(x(4),x(2))&next(x(2),x(3))&type_of(x(2),space)& 
type_of(x(3),space)#ne(x(4),x(3))

chy9drive_load(x(l),x(2),x(3))loaded(truck,x(l),x(3))
on_floor(x(l),x(4))&in_truck#clear(x(2))&clear(x(3))&unloaded(truck) 

next(x(5),x(2))&next(x(4),x(6))&type_of(x(4).space)# 

next(x(6),x(2))&next(x(2),x(3))&type_of(x(2),space)# 
type_of(x(3),space)&type_of(x(l),crate)#ne(x(4),x(2))& 
ne(x(5),x(4))&ne(x(5),x(6))#ne(x(5),x(3))&ne(x(2),x(4))& 
ne(x(2),x(6))&ne(x(4),x(3))&ne(x(6),x(3))

chyllunload(x(1),x(2),x(3))on_floor(x(1),x(3)) 
on_floor(x(1),x(4))&in_truck#unloaded(truck) 
next(x(4),x(2))&type_of(x(4),space)&type_of(x(l),crate)&ne(x(2),x(4))

chx5unload(x(l),x(2),x(3))on_floor(x(l),x(3))
on_floor(x(1),x(4))&in_truck#clear(x(2))#clear(x(3))&unloaded(truck) 
next(x(4),x(2))&type_of(x(4),space)&type_of(x(l),crate)# 
next(x(3),x(2))&type_of(x(3),space)&type_of(x(2),space)#ne(x(4),x(3))

chx20unload(x(l),x(2),x(3))on_floor(x(l),x(3)) 

on_floor(x(l),x(4))&in_truck&clear(x(3))&clear(x(2)) 

next(x(4),x(5))&type_of(x(4),space)ftnext(x(5),x(2))& 

type_of(x(l),crate)#next(x(3),x(2))&type_of(x(3).space)# 
type_of(x(2),space)&ne(x(4),x(3))#ne(x(4),x(2))&ne(x(5),x(3))

chylunload(x(l),x(2),x(3))on_floor(x(l),x(3))
at(truck,x(4))#in_truck#clear(x(2))#clear(x(3))#unloaded(truck) 

next(x(4),x(5))#type_of(x(4),space)&next(x(5),x(2))& 
next(x(3),x(2))#type_of(x(3).space)&type_of(x(2).space)# 

ne(x(4),x(3))&ne(x(4),x(2))&ne(x(5),x(3))

chy5unload(x(l),x(2),x(3))on_floor(x(l),x(3))

120



at(truck,x(4))&in_truck&clear(x(3))&clear(x(2))&unloaded(truck) 

next(x(5),x(4))&next(x(4),x(2))&type_of(x(4),space)& 
next(x(3),x(2))&type_of(x(3),space)&type_of(x(2),space)& 

ne(x(5),x(3))&ne(x(5),x(2))&ne(x(4),x(3))

chx221oad(x(1),x(2),x(3))loaded(truck,x(l),x(3)) 

on_floor(x(l),x(2))&in_truck
type_of(x(l),crate)&next(x(2),x(3))&
type_of(x(2),space)&type_of(x(3).space)

chxl81oad(x(1), x(2),x(3))loaded(truck,x(l),x(3))
at(truck,x(3))&in_truck&unloaded(truck)

type_of(x(l),crate)&next(x(2),x(3))&type_of(x(2),space)& 
type_of(x(3).space)

chx41oad(x(l),x(2),x(3))clear(x(2))
at(driver,x(3))&on_floor(x(l),x(2))&unloaded(truck)
type_of(x(l),crate)&next(x(2),x(3))&type_of(x(2),space)& 

type_of(x(3).space)

chxl01oad(x(l),x(2),x(3))loaded(truck,x(1),x(3)) 

on_floor(x(l),x(2))&in_truck&unloaded(truck)
type_of(x(l),crate)&next(x(2),x(3))&type_of(x(2),space)& 

type_of(x(3).space)

chx6crane_stack(x(l),x(2),x(3))stacked(x(l),x(3)) 

at(crane,x(2))
connect(x(2),x(3))&type_of(x(3),shelf)& 
type_of(x(1),crate)&ne(x(2),x(3))&pickup_point(x(2))

chxl9crane_stack(x(1),x(2),x(3))stacked(x(l),x(3)) 

nil

connect(x(2),x(3))&type_of(x(3),shelf)&
type_of(x(1),crate)&ne(x(2),x(3))&pickup_point(x(2))

chy41ift_down(x(l))on_floor(x(l),x(2))
above_floor(x(1),x(2))&at(crane,x(2))

type_of(x(l).crate)

chy61ift_down(x(1))on_floor(x(l),x(2)) 

above_floor(x(l),x(2))
type_of(x(l).crate)

chy7crane_unstack(x(l),x(2),x(3))loaded(crane,x(1),x(2)) 

stacked(x(l),x(3))&unloaded(crane)
connect(x(3),x(2))&type_of(x(3),shelf)&
type_of(x(l),crate)&ne(x(2),x(3))

chx3 1 0 discrim
chx4 1 0 discrim

chx5 2 0 discrim

chx6 3 0 discrim
chxlO 3 10 discrim

chxll 4 0 discrim
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chxl2 4 0 discrim 
chxl 1 10 discrim 

chx2 1 20 multiples 
chxl7 5 0 discrim 
chx20 6 0 discrim 
chx21 6 0 discrim 

chx23 6 0 discrim 
chyl 1 0 discrim 

chy2 1 0 discrim 
chy4 1 0 discrim 

chy5 2 0 discrim 
chy3 1 10 discrim 
chxl8 5 20 discrim 
chy6 2 0 discrim 
chy7 2 0 discrim 
chy8 3 0 discrim 
chy9 3 0 strengthened 
chx9 3 20 multiples 

chxl5 5 10 multiples 

chxl6 5 10 multiples 
chxl9 6 30 discrim 
chyll 4 0 discrim 

chx22 6 10 discrim

chy8 has exception chxl5 
chy8 has exception chxl6 
chy8 has exception chx22 
chy3 has exception chx22

/* APPENDIC B.3 */
/* handcrafted rules for robot world */

ch(chl0,gothrudoor(_406551,_406552),in_room(robot,_406552), 

in_room(robot,XX),connect(XX,U,W)&connect(U,.406552,.406551)& 
ne(XX,_406552)&ne(W,.406551)).

ch(ch20,gothrudoor(_406551,_406552),in_room(robot,_406552), 

in_room(robot,_406558),connect(_406558,_406552,_406551)).

ch(ch30,pushthrudoor(_406551,_406552,Z),
in_room(_406551, Z) ,in_room(_406551,U),
connect(U,Z,.406552)&type_of(.406551,box)&fits_thru(_406551,.406552)).

ch(ch50,pushthrudoor(.406551,.406552,Z),
in_room(.406551,Z),in_room(_406551,U), 
connect(U,W,V)ftconnect(W,Z,.406552)& 

fits_thru(_406551,V)&type_of(.406551,box)& 
fits_thru(_406551,.406552)&ne(U,Z)&ne(V,.406552)).

ch(chl00,pushthrudoor(X,Y,Z), 

in_room(X,Z),in_room(X,U), 
connect(U,W,V)£connect(W,Z1,Yl)&connect(Zl,Z,Y)& 

fits_thru(X,Yl)&fits_thru(X,V)&type_of(X,box)&
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fits_thru(X,Y)£ne(U,Z)&ne(V,Y)&ne(Y,Yl)£ne(Y1,V)).

ch(ch200,gothrudoor(YD,YY),in_room(robot,YY), 

in_room(robot,XX),connect(XX,U,W)£connect(U,Y,X)& 
connect(Y,YY,YD)&ne(YD,X)&ne(YD,W)&ne(XX,Y)&ne(W,X)).

ch_record(chlO,1,40,multiples). 

ch_record(chl00,1,40.multiples). 
ch_record(ch200,1,80.multiples).
ch_record(ch20,1,80,multiples). 

ch_record(ch50,4,70,multiples).
ch_record(ch30,2,80,multiples).

ch_ex(chl0,ch20).

ch_ex(ch50,ch30).

ch_ex(ch200,ch20).

ch_ex(chl00,ch30).

ch_ex(ch200,chlO).
ch_ex(chl00,ch50).

/* attemp at handcrafted rules for ’warehouse' world */

/* load *♦***♦**♦*/

ch(chl00,load(Xl,X2,X3),loaded(truck,Xl,X3),
at(truck,X3),

type_of(XI,crate)&next(X2,X3)&type_of(X2,space)&type_of(X3,space) ) .

ch(chi01,load(Xl,X2,X3),loaded(truck,XI,X3) ,
at(truck,X4)&clear(X3),
next(X4,X3)&
type_of(XI,crate)&next(X2,X3)&type_of(X2,space)&type_of(X3,space) ) .

ch(chi02,load(Xl,X2,X3),loaded(truck,XI,X3) ,

at(truck,X4)&clear(X3)&clear(X5),
next(X4,X5)&next(X5,X3)&
type_of(XI,crate)£next(X2,X3)&type_of(X2,space)£type_of(X3,space)& 

type_of(X4,space)&type_of(X5,space)).

/* unload (1) ♦***♦*+***/

ch(chl05,unload(Xl,X2,X3),on_floor(XI,X3) ,

at(truck,X2)&loaded(truck,XI,X2) ,
type_of(XI,crate)£next(X2,X3)&type_of(X2,space)&type_of(X3,space) ) .

ch(chl06,unload(Xl,X2,X3),on_floor(XI,X3) ,

at(truck,X4)£clear(X2)&loaded(truck,XI,X4) ,

next(X4,X2)&
type_of(XI,crate)£next(X2,X3)&type_of(X2,space)&type_of(X3,space) ).
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/* unload (2) *********/ 

ch(chl08,unload(Xl,X2,X3),at(Xl,X3), 

at(truck,X2)&loaded(truck,XI, X2), 
type_of(XI,crate)&next(X2,X3)&type_of(X2,space)&type_of(X3,space) ).

ch(chl09,unload(Xl,X2,X3),at(Xl,X3) ,
at(truck,X4)&clear(X2)&loaded(truck,XI,X4) , 
next(X4,X2)&
type_of(XI,crate)&next(X2,X3)&type_of(X2,space)&type_of(X3,space) ) .

/* drive **********/

ch(ch200,drive(XI,X2),at(truck,X2),
at(truck,Xl)&clear(X2), 
type_of(XI,space)&type_of(X2,space)fenext(XI, X2) ) .

ch(ch201,drive(XI,X2),at(truck,X2),

at(truck,X4)&clear(Xl),

next(X4,Xl)&
type.of(XI,space)&next(XI,X2)&type_of(X2,space)&type_of(X4,space)).

ch(ch202,drive(XI,X2),at(truck,X2),
at(truck,X5)&clear(Xl)&clear(X3),

next(X5,X3)£next(Xl,X3)&
type_of(XI,space)&next(Xl,X2)&type_of(X2,space)&type_of(X3,space)& 

ne(X5,Xl)&ne(X2,X3)&ne(X5,X2)).

/* drive_load */
ch(ch302,drive_load(Xl,S2,S3),loaded(truck,XI,S3), 
in_truck£clear(S3)£loaded(truck,Xl,S), 
next(S,S2)£type_of(S,space)&next(S2,S3)& 
type_of(S3,space)&type_of(XI,crate)&ne(S,S3)).

ch(ch305,drive_load(Xl,S2,S3),at(Xl,S3), 

in_truck£clear(S3)£loaded(truck,Xl,S), 
next(S,S2)£type_of(S,space)&next(S2,S3)& 
type_of(S3,space)&type_of(XI,crate)fene(S,S3)).

ch(ch301,drive_load(Xl,S2,S3),loaded(truck,XI,S3), 

loaded(truck,XI,S)£in_truck&clear(S8)& 
clear(S3)&clear(S2)&unloaded(truck), 
next(S,S8)&type_of(S,space)£next(S8,S2)£ 
next(S2,S3)&type_of(S2,space)£type_of(S3,space)& 
type_of(XI,crate)£ne(S,S2)&ne(S,S3)£ne(S8,S3)).

ch(ch306,drive_load(Xl,S2,S3),at(XI,S3),
loaded(truck,XI,S)£in_truck&clear(S8)&clear(S3)& 

clear(S2)&unloaded(truck),
next(S,S8)£type_of(S,space)£next(S8,S2)fenext(S2,S3)& 
type_of(S2,space)&type_of(S3,space)&type_of(XI,crate)& 

ne(S,S2)£ne(S,S3)£ne(S8,S3)).

ch_ex(ch201,ch200).
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ch_ex(ch202,ch201) . 

ch_ex(ch202,ch200) .

ch_ex(chl02,chlOl) . 
ch_ex(chl02,chlOO) . 
ch_ex(chl01,chlOO) .

ch_ex(chl06,chl05) . 

ch_ex(chl09,chl08) .

ch_record(ch200,1,0,multiples) . 

ch_record(ch201,1,0.multiples) . 
ch_record(ch202,1,0,multiples) . 
ch_record(chlOO,1,0,multiples) . 
ch_record(chl01,1,0,multiples). 
ch_record(chl02,1,0.multiples) . 
ch_record(chl05,1,0,multiples) . 

ch_record(chl06,1,0,multiples). 

ch_record(chl08,1,0,multiples). 
ch_record(chl09,1,0.multiples) . 
ch_record(ch301,1,0,multiples) . 
ch_record(ch302,1,0.multiples) . 
ch_record(ch305,1,0,multiples) . 
ch_record(ch306,1,0.multiples) .
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APPENDIX C: PROGRAM LISTINGS

The Separate NLP_EBL implementation

MODULE NAME USED IN.. FUNCTION

procedures

nlpd

nlpO

NLP with E.B.L.

NLP with E.B.L.

driver for NLP with E.B.L. 

top level strategy through 
partial plan space

nlpl NLP with E.B.L. goal achievement within 

a partial plan

nlp2 NLP with E.B.L. implementation of partial 
plan abstract data type

nlp3 NLP with E.B.L. utilities

nlpl NLP with E.B.L. heuristic aquisition

The FM Implementation

bootc MEA, FOR, NLP boot file for the FM 

system

f env MEA, FOR enviromental variables

f me MEA the MEA strategy

fused MEA c-chunk use (called by 
fmc)

f comp MEA c-chunk optimisation

driver_mec MEA provides a user interface

driver_help MEA, FOR provides a user help 
facility

fchmea MEA c-chunk creation
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faugmac MEA c-chunk strengthening

futile MEA, FOR utilities

fmacgr MEA, FOR macro creation

fuse FOR basic chunk use

f exh FOR state space search

driver_f FOR user interface

(other files which implement NLP within the FM framework are not 

included for brevity, and because they are similar to NLP_EBL 
given above.)
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/************* nlpd nlpd nlpd nlpd nlpd nlpd *****************/
/* driver for NLP with E.B.L. *******************************************/

init_world(I),nl,init_count,
write('This is the non-linear planner..'),nl, 
write('with E.B.L...'),nl,
write('My current world is ’),nl,write(I),nl,
nl,write('Enter list of goal(s)>'), 
read(G),

trans(G,goal,Gpp), /* put goal into internal rep'n*/

/* of Ps in partial plan */
assert(ppWP( □ ,□,□,□,□)),

/* now CALL MAIN PREDICATE in TOP LEVEL with initial partial plan*/ 
nlp( [pp(r( [],□,[],[]),
□ , [opi(init,init, □ ,1, □ ), opi(goal, goal, □ ,[],□)],

□ , Gpp, [],env( [],□)) ]).
b

nl,write('Enter LIST of goal(s)>'),b.

/* this is called after nip has succeeded */ 

write_out(pp(_,H,Os.Tcons,_,_,_)) 

retract(init_world(I)), 
setof(0pl,linearops(Os,Tcons, Opl), [OlRest]), 

applyopseq(0,l, S), 
write('By sequence of operators '),nl,nl,write(O),nl,nl, 
write('goal is satisfied, new state is’), 
nl,nl,write(S),nl, 
assert(init_world(S)), 
write('other sequences '),nl,wlist(Rest),nl, 
learn(H,0s).

/******************njpo nlpO nlpO nlpO — TOP LEVEL****#********/ 

/* for NLP with E.B.L.******************************************/

nlp(PPs)
empty(PPs),

write('failure - task is impossible’),
i

nlp(PPs)

member(PP,PPs), 
all_goals_achieved(PP), 
write_out(PP).

nlp(PPs) 
remove_partial_plan(PPs, PP,PPsO), 
get_unachieved_predicate(PP, P,0), 
achieve_all(P,0,PP, PPsl), 
append(PPsO,PPsl, PPs2) , 

nlp(PPs2).
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nlp(PPs)
remove_partial_plan(PPs, PP,PPsO), 

get_unachieved_predicate(PP, P,O), 
nl,write(’goal failed***see fredal'), 
tell(fredal),write(P),write(0),nl, 
writepp(PP),nl,nl,tell(user), 
nlp(PPsO).

/*******+*****local utilities*************************/

empty( [] ).

all_goals_achieved(PP)
get_Ps(PP, []),

/*remove_partial_plan([PPIPPsO], PPmin,PPsO).*/

/* simple heuristic: find plan that minimises |Os I + IPsI 
remove_partial_plan([PPIPPs] , PPmin,PPsO)

get_Ps(PP, Ps)
get_Os(PP, Os)

length(Ps, PL)
length(0s, OL)

Score is OL+PL, 
for_all_els(PPs,min_pp,plan(PP,Score), 

write(SS),
plan(PPmin,SS)),

removeL(PPmin,[PPIPPs], PPsO).

min_pp(PP,plan(PPl.Scorel),
get_Ps(PP, Ps),
get_Os(PP, Os),
length(Ps, PL),
length(Os, OL) ,
Score2 is OL+PL,
Score2 >= Scorel,!

plan(PPl,Scorel))

plan(PP,Score2))min_pp(PP,plan(_,Scorel),

get_Ps(PP, Ps),
get_0s(PP, Os) ,

length(Ps, PL),

length(0s, OL),
Score2 is OL+PL,
Score2 < Scorel,!

get_unachieved_predicate(PP, P.O)

get_Ps(PP, Ps), 
most_inst(Ps,g(P,0)), 
i .

/* achieve asserts new plans as prolog clauses since 
this makes the variables therein, independent */

achieve_all(P,O,PP, PPs) 
achieve_all(P,O,PP), 
setof(X,retract(newplan(X)),PPs).

129



/*achieve_all(P,0,PP)

init_pp_trans,
achievel(init,P,O,PP, PPO),

init_pp_trans, 
init_rec(PPO,PPl), 
assert(newplan(PPl)), 
fail. */

achieve_all(P,0,PP)

init_pp_trans,
achievel(_,P,O,PP, PPO), 
init_pp_trans, 
init_rec(PPO,PPl), 
assert(newplan(PPl)), 
fail.

achieve_all(P,O,PP)
init_pp_trans, 
achieve2(P,0,PP, PPO), 

init_pp_trans, 
init_rec(PPO,PPl), 

assert(newplan(PPl)), 

fail.
achieve_all(_,_,_).

/******************top LEVEL END***************************+****/ 
/*****+***+*+******nTpl nlpl nlpl nlpl nlpl ********************/ 

/*+*+**********+***GOAL ACHIEVEMENT BY EXISTING OP**************/

/* The specification of this program is written as a series of 
post conditions on the R.H.S. of the code */

/* apart from simple retrieve fns this relies on the correct 
implementation of six predicate:

unify(P,Q,Ts);

unify(P,Q,PP, PPO);
before(P,Q,Ts);
before(P,Q,PP, PPO);

constraint,Q,PP, PPO);
insert_op(P,PP, A,PPO)

*/

achieve 1(A,P,0,PP, PP6)

get_history(PP, Hl), 
increment_count(Nl), 
append(Hl, [Nl],H), 

rep_history(PP51,H, PP6),

get_el_0s(PP, A), /* there exists A in Os: */

achieve(P,O,A,PP, PP3), /* achieve(P,O,A) */

add_el_As(P,0,PP3, PP4),

del_el_Ps(P,0,PP4, PP5),

/* for monitoring only.. */

sift_out(PP5,PP51),
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retract(pp_trans(XI,X2,X3,X4,X5)), 

assert(ppA(H,A,XI,X2,X3,X4,X5)), 

store_rec(PP6),

tell(freda),
nl,write(ppA(H,A,XI,X2,X3,X4,X5)),nl, 

nl,write(P),write(0),
writepp(PP6).tell(user) ,
write(.),ttyflush.

achieve(P,0,A,PP, PP5)
get_el_add(A,PP, Q), /* there exists Q in A. a:*/

unify(P,Q,PP, PPI), /* nec_unify(P,Q,Es) & */

before(A,0,PPl, PP2), /* before(A,0,Ts) & */

bef_rec(A,0,PP2, PP3) ,

con_rec(A,Q,PP3, PP4) ,

get_0s(PP4, Os), » /* for all C in Os: */

for_all_els(Os,
declobber(P,A,0),

PP4, PP5) . /* declobber(P,A,0,C) */

/♦ This part makes sure C is not a clobberer */

declobber(_,0,_,0,PP, PP)
1

/* C = 0 V */

declobber(_,_,A,A,PP, PP) : - /* C = A V ♦/

PP3)
Ts),

/* before(0,C,Ts) V */

i

declobber(_,_,0,C,PP, 
get_Ts(PP, 
before(0,C,Ts),
bef_rec(O,C,PP, PP3),

declobber(_,A,_,C,PP, PP3) 
get_Ts(PP, Ts), 
before(C,A,Ts), 
bef_rec(C,A,PP, PP3), 
i .

declobber(P,_,_,C,PP, PP3) 
get_Es(PP, Es), 
not( get_el_del(C,PP, 

unify(P,Q,Es) ), 
uni_rec(P,C,PP, PP3),
i

Q),

/* before(C,A,Ts) V */

/*not(there exists Q
/*C.d: pos_unify(Q,P,Es))*/

in */

/* If this point is reached then 
this part CHANGES the partial

C is 
plan

a clobberer; 
to avoid this */

/♦ Don’t need to bother recording additions because these are recorded 

for the H operator 
from collection of

anyway - although they must still be taken 
required proof objects */

declobber(_,_,O,C,PP,
before(0,C,PP,

PPO)
PPO) . /* make before(0,C,Ts) V */
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declobber(_,A,_,C,PP, PPO) 

before(C,A,PP, PPO). /♦ make before(C,A,Ts) V */

/* C.d contains at least one predicate which clobbers P .. */ 

declobber(P,_,_,C,PP, PPO)
get_del(C,PP, Cd), /* for all Q in C.d: */

for_all_els(Cd,
constrain(P),
PP, PPO). /* make not(unify(P,Q,Es)) */

/******************GOAL ACHIEVEMENT end*************************/

/******************GOAL ACHIEVEMENT BY NEW OP**************/ 

achieve2(P,0,PP, PP8)

insert_op(P,PP, A,PPI), 
achieve(P,O,A,PPI, PP4), 

get_As(PP4, As), 
for_all_els(As,

declobber_As(A), 

PP4, PP5),

add_el_As(P,0,PP5, PP6), 
del_el_Ps(P,0,PP6, PP7),

/* there exists new A in Os:*/

/* achieve(P,O,A) */

/* for all (P,0) in As: */

/* declobber_As(A,(P,0))*/

/* for monitoring only.. */

sift_out(PP7,PP71), 
get_history(PP, Hl), 
increment_count(Nl), 
append(Hl,[Nl],H), 
rep_history(PP71,H, PP8),

add_0s_trans(A,PP8),
retract(pp_trans(XI,X2,X3,X4,X5)), 

assert(ppA(H,A,XI,X2,X3,X4,X5)), 

store_rec(PP8),

tell(freda),
nl,wri t e(ppA(H,A,X1,X2,X3,X4,X5)),nl, 

nl,write(P),write(0),
writepp(PP8),tell(user),

write(.),ttyflush.

declobber_As(A,g(_,A),PP, PP) :
i

declobber_As(A,g(_,0),PP, PP3) :- 

get_Ts(PP, Ts), 
before(0,A,Ts), 
bef_rec(0,A,PP, PP3),
i ,

declobber_As(A,g(P,0),PP, PP3) :- 

get_del(A,PP, Ad),

/* A = 0 V */

/* before(0,A,Ts) V */

/* for all Q in Ad: */
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for_all_els(Ad,

declobber_pred(A,0,P),

PP, PP3). /* declobber_pred(A,0,P,Q)*/

declobber_pred(_,_,P,Q,PP, 
get_Es(PP, Es), 

not(unify(Q,P,Es)),

PP)

/* not(pos_unify(Q,P,Es)) V */

declobber_pred(A,0,P,Q,PP, PP3) 
get_el_0s(PP, W) , 
get_Ts(PP, Ts), 
before(A,W,Ts), 
before(W,0,Ts), 

bef_rec(A,W.PP, PPI), 
bef_rec(W,0,PPI, PP3),

get_el_add(W,PP, R), 
not(not( 

unify(P,Q,PP,_), 
P == R )), /*

/* there exists W in Os: */

/* before(A,W,Ts) & */
/* before(W,0,Ts) & */

/* there exists R in W.a:*/

/* nec_unify(P,Q,Es) & */
*/

/* Otherwise we'll have to add constraints, now we know */ 
/* A is a Clobber for some P in 0, possibly before 0. */

declobber_pred(A,0,_,_,PP, PPO) 
before(0,A,PP, PPO).

declobber_pred(_,_,P,Q,PP, PPO):- 

constraint,P,PP,PPO) .

declobber_pred(A,0,P,Q,PP, PPO) 
get_el_Os(PP, W), 

before(A,W,PP, PPI), 
before(W,0,PPi, PPO), 

get_el_add(W,PPO, R), 

not(not( 

unify(P,Q,PPO,_), 
P == R )). /*

/* One other possibility is where 
altogether! we leave this out!

W 
*/

/* if nec, make before(0,A,Ts) */

/* put constraint on P or Q */

/* there exists W in Os: */ 
/* make before(A,W,Ts) & */
/* make before(W,0,Ts) & */

/* there exists R in W.a:*/

/* nec_unify(P,Q,Es) & */

*/

is got by adding a new operator

//******************G0AL ACHIEVEMENT END*************************

4^***********p2 nlp2 nlp2 nlp2 nlp2***************************/ 
/* Partial Plan ADT **************************/

/*
<plan rep> = pp(R,H,Os,Ts,Ps,As,Es).

R temporarily stores the change info for learner.

133



H = history

<0s
<Ts
<Ps

<As
<Es

rep> = 

rep> = 
rep> = 
rep> = 

rep> =

list of opi(<id>,<op_name>,<preL>,<addL>,<delL>)

list of t(<op_identifier>,<op_identifier>)
list of g(<predicate>,<op_identifier>)

list of g(<predicate>,<op_identifier>)
env( ne's -binding restrictions, other restrictions

NOTE: driver must also be changed!!!!!!!

*/

/****+♦**♦+**♦*******+*♦***************+**+***************************/

get_history(pp(_,H,, H). 
rep_history(pp(R,_,A,B,C,D,E),H, pp(R,H,A,B,C,D,E)). 

increment_count(Nl)
retract(count(N)), Nl is N+l, assert(count(Nl)),!. 

init_count retract(count(_)), assert(count(0)),!.
init_count assert(count(0)).

/* plan component access */

get_0s(pp(_,_,Os,, Osl)
lop(0s,0sl). /* just get operator identifiers */

lop([opi(Id,IR],[IdI A])

lop(R,A),
i

lop( [],□).

get_0(Id,pp(_,_,Os,A) 
member(opi(Id,A,, Os),!.

get_Ts(pp(_, Ts 1 Ts)

get_Ps(pp(_, Ps 1! — > — > — ° — > — / 9 Ps)
get As(pp( ,i — > — » — » — »As,_), As)

get Es(pp( ,> — » — » — » Es) , Es)

/* plan component member access */

get_el_Os(pp(_,_,Os,, 
lop(0s,Osl), 
member(0,Osl).

get_el_Ps(pp(_,_,_,_,Ps,_,_), 

member(g(P,0),Ps).

0)

g(P,O))

get_el_As(pp(_,As,_), 
member(g(P,0),As).

g(P,O))

/* operator component access */
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get_del(Id,pp(_,_,Os,, Del) 

member(opi(Id,Del),0s),

/* operator component member access */

get_first_el_add(Id,pp(_,_,Os,, A) 
member(opi(Id,Add,_),0s),!, 

member(A,Add),!.
get_el_add(Id,pp(_,_,Os,, A) 

member(opi(Id,Add,_),0s),!, 

member(A,Add).
get_el_del(Id,pp(_,_,Os , D) 

member(opi(Id,Del),0s),! , 
member(D,Del).

/* plan component update */

rep_Ts(pp(R,H,Os,_,Ps,As,Es),New, 
rep_Es(pp(R,H,Os,Ts,Ps,As,_),New,

pp(R,H,Os,New,Ps,As,Es)). 
pp(R,H,Os,Ts,Ps,As,New)).

add_Ts(pp(R,H,Os,Ts,Ps,As,Es),NewT, pp(R,H,0s,[NewTlTs],Ps,As,Es)) 
add_Ts_trans(NewT,Os).

add_op(0,pp(R,H,Cl,C2,C3,C4,C5), pp(R,H,C,C2,C3,C4,C5))

append(Cl, [0],C).

add_Ps(Gs,Id,pp(R,H,Os,C2,Ps,C4,C5), pp(R,H,Os,C2,NewPs,C4,C5)) 

trans(Gs,Id,Gsid), 
append(Gsid,Ps,NewPs), 

add_Ps_trans(Gsid,Os),!.

add_el_As(P,O,pp(R,H,Os,Ts,Ps,As,Es), pp(R,H,Os,Ts,Ps,[g(P,0)I As], Es) ) 

add_As_trans(g(P,O),0s),!.
/* updates Es with input from a new operator */ 
add_Es(E,pp(R,H,Cl,C2,C3,C4,env(El,E2)),

pp(R,H,Cl,C2,C3,C4,env(NewEl,NewE2))) 

sortne(E,Ene,Erest), 
append(Ene,El,NewEl), 
append(Erest,E2,NewE2),
i .

sortne( [] ,[],□).
sortne([ne(A,B)I ER],[ne(A,B)IEne] ,Erest) 

sortne(ER,Ene,Erest).

sortne([E|ER],Ene,[E|Erest])
sortne(ER,Ene,Erest).

del_el_Ps(P,O,pp(R,H,Os,Ts,Ps,As,Es), pp(R,H,Os,Ts,NewPs,As,Es))
removeL_equiv(g(P,0),Ps,NewPs),

135



writepp(pp(R,H,Os, Ts,Ps,As ,env(El,E2))) :-

file_dump(on),nl,nl, /* flag for storing trace */

write(H),nl, 
write(R),nl,nl, 
wlist(Os),nl, 
wlist(Ts),nl, 
wlist(Ps),nl, 
wlist(As),nl, 
wlist(El),nl, 
wlist(E2),nl,
write(’♦♦♦+♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦+♦♦♦♦♦♦♦♦+♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦’),nl, 
i

writepp(_).

/♦♦♦♦♦♦Record for Learning ♦♦++♦♦♦**********************♦♦♦♦♦♦♦♦♦♦/

/♦♦♦♦♦♦IMPLEMENTATION OF THE SIX AUX. FNS IN NLP1*****************/

/************* before(X,Y,PP,PPO): make X nec. before Y in PPO ♦/

before(X,X,_, _)
!,fail. /* can't put X before itself!♦/

before(X,Y,PP, PP)
get_Ts(PP, Ts), 
before(X,Y,Ts), 
i

before(X,Y,PP, PPO)
get_Ts(PP, Ts),

not( before(Y,X,Ts)), 
add_Ts(PP,t(X,Y), PPO),
i

/♦*♦*******♦+* before(X,Y,Ts): X is nec. before Y in Ts */

/♦ before(X,Y,Ts)'s specification:

X < Y <=> X=init V Y=goal V
{ t(X,Y) in Ts V

there exists Z in Os:
t(X,Z) in Ts & Z < Y }

*/

before(X,Y,Ts) :-

not(X=Y), 
not(Y=init), 
not(X=goal), 
befor(X,Y,Ts).

befor(init,_,_) :- !.
befor(_,goal,_) :- !.
befor(X,Y,Ts) :-

member(t(X,Y),Ts), /♦♦♦uses Ts's REP ♦♦♦/
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befor(X,Y,Ts) 

member(t(X,Z),Ts), 

befor(Z,Y,Ts),

/m***************** unify(P,Q,PP,PPO) */ 
unify(P,Q,PP, pp) :-

P = Q, 
get_Es(PP, Es), 

not(not(consis(Es))).

/******************* unify(P,Q,Es) */ 
unify(P,Q,Es)

not(not(

P = Q,
consis(Es) )).

consis(env(Ene,Econs))

env(Env),
follows(Econs,Env), 
numbervars(Ene,1,_) , 

consist(Ene),
i .

follows([],_).
follows([YIR],E)

member(Y,E),
follows(R,E).

consist ( [] ) .

consist( [ne(X,X)|_])
!.fail.

consist([_|Y])

consist(Y). 
/*************+****************************************************/

insert_op(G,PP, 0P.PP4)

operator(N,

E,

P,
A,
D),

not(not( A = [GI_] )), /* verefy G is first in padd */

gensym(op,OP), 
add_op(opi(OP,N,P,A,D),PP, PPI), 

add_Ps(P,OP,PPl, PP2), 

add_Es(E,PP2, PP4).

/♦♦♦♦♦♦♦♦♦♦♦Me*************************** ***************************/

constraint,Q,PP, PP) 

get_Es(PP, Es), 
not(unify(Q,P,Es)), 
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constrain(P,Q,PP, PPO)

get_Es(PP, Es), 
put_constraint(Q,P,Es,NewEs), /* put constraint on P or Q */
rep_Es(PP,NewEs, PPO).

put_constraint(Q,P,Es,NewEs)
put_c(P,Q, Es,NewEs),

not(unify(P,Q,NewEs)),
not(not(consis(NewEs))).

put_c(U,P,env(X,Y),env([ne(A,B)|X] ,Y) )
U =. . [_ I TU] ,
P =. . [_|TP] ,
p_c(TU,TP,ne(A,B)).

p_c([Tl|_],[T2|_],ne(Tl,T2))

var(Tl).
p_c([T1I_],[T2|_],ne(Tl,T2))

var(T2).
p_c([_|Rl],E_|R2],0) 

p_c(Rl,R2,0).
p_c( [] , [] .none) .

/**************************************************************/
/* Constructs a sufficient condition for achieve satisfaction */
/* present rep'n = r(P in A,Os’,Ts‘,Es’) */

init_rec(pp(_,H,V,W,X,Y,Z) , pp(r(EJ ,□,□,□),H, V. W, X, Y,Z) ) .

store_rec(pp(r(A,_,C,D),H,Os,_,_,_,_)) 

lop(0s,Osl), 

removeL(goal.OsI.Osl), 
removeL(init,0s1,0s2), 
assert(ppR(H,A,0s2,C,D)),!.

con_rec(A,Q, pp(r(Con,0,T,E),H,Os,W,X,Y,Z),
pp(r([c(A,Q)|Con],O,T,E),H,Os,W,X,Y,Z) ) !.

/* Os?? - fill when storing?? */

bef_rec(A,C,pp(r(Con,0,T,E),H,Os,W,X,Y,Z),
pp(r(Con,0,[t(A,C)|T],E),H,Os,W,X,Y,Z)) :-

not(A=init),
not(C=goal),
i

bef_rec(_,_,PP, PP).

/* member(opi(A,Opl, Os),

member(opi(C,0p2,_,_,_), Os),!. */

uni_rec(P,C,pp(r(Con,0,T,E),H,Os,W,X,Y,Z),

pp(r(Con,0,T,[n(C,P)|E]),H,Os,W,X,Y,Z)) !.
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/***********+****++end. of adt ***************************************/ 

/* This section builds up the declarative form of the PP transform **/ 

/* form is pp_trans(+0s,+set of Ts,+As(=-Ps),+set of Ps,+set of Es) */

add_Os_trans(A,PP) 
retract(pp_trans(_,B,D,E,F)), 
assert(pp_trans(A,B,D,E,F)),!.

add_Ts_trans(t(_,goal),_) !.
add_Ts_trans(t(init,_),_) !.

add_Ts_trans(t(Opl,0p2),_)

/*member(opi(Dpi,N1,_,_,_), Os), 

member(opi(0p2,N2, Os),*/ 
retract(pp_trans(A,B,D,E,F)), 
assert(pp_trans(A,[t(0pl,0p2)IB],D,E,F)),!.

add_Ps_trans(Ps,_)
retract(pp_trans(A,B,_,C,E)), 

assert(pp_trans(A,B,Ps,C,E)), ! .

add_As_trans(g(P,0p),_)
/*member(opi(Op,N,, Os),*/ 
retract(pp_trans(A,B,D,_,E)), 
assert(pp_trans(A,B,D,g(P,Op),E)) , ! .

init_pp_trans
retract(pp_trans(_,_,_,_,_)), 
assert(pp_trans(none,[],[] ,none,□)),!.

init_pp_trans 
assert(pp_trans(none,[],[] ,none,[])),!.

/*************************************************/ 

sift_out(PP, PPI)
get_Es(PP, env(El,E2)), 
remove_ground_preds(El,E3), 

remove_ground_preds(E2,E4), 

sift(E3,NEl), 

sift(E4,NE2), 
rep_Es(PP,env(NEl,NE2), PPI),
i

remove_ground_preds([XIY],Z) 
is_ground(X), 
remove_ground_preds(Y,Z).

remove_ground_preds([XIY],[X IZ]) : - 
remove_ground_preds(Y,Z).

remove_ground_preds ([],[]). 

is_ground(X)
X =.. [_ I Y] , 
is_groundL(Y).

is_groundL([XIT])
i
’ 9

not(var(X)), 
is_groundL(T).

is_groundL([]).
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increment_count(Nl)
retract(count(N)), Nl is N+l, assert(count(Nl)),!. 

/* general predicate for removing equiv. dupes from a list 

which contains perhaps uninst. vars */
sift([],[]) !.

sift([X] , [X]) ! .
sift([H|T], [HID])

not_mem(H,T),
sift(T.O),
i

sift([_|T], 0)

sift(T,0),
i

not_mem(E,[X I_])
E == X,
!,fail.

not_mem(E,[_IY])
not_mem(E,Y).

not_mem(_,[]).

/**+**********nlp3 nlp3 nlp3 nlp3 nlp3*************************/ 
/**************************************************************/ 

/* local utilities ***************/

/* implements "for all els in list do 0P(args, el., I, 0)" */ 

for_all_els( [X I Rest],Op,1,0)

Op =.. 0L,
append(0L,[X,I,II],OL1),
Pred =.. 0L1,
call(Pred),
for_all_els(Rest,0p,Il,0).

f or_all_els ( [],_,I,I).

/* list of goals -> g(el,Id) for all el in list
- used in plan adt and driver*/ 

trans ( [] ,_,[]).
trans([L|LR],Id,[g(L,Id)ILRN]) trans(LR,Id,LRN). 

detrans ([],[]).
detrans([g(L,_)ILRN],[L|LR]) detrans(LRN,LR).

/* terrible impl. of not */

not(X) call(X),!.fail.
not(_).
not(X.Y) call(X),call(Y),!,fail.

not(_,_).
not(X.Y.Z) call(X),call(Y),call(Z),!.fail. 

not(_,_,_).

/********+********converts a partial order into a linear sequence********/
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/* patch *♦***+*******************/ 

linearops(Lops,[], [N])
member(opi(_,N,_,_,_),Lops), 

not(N = init), not(N= goal), !.

linearops(Lops,Tcons, Linops) 
line(Tcons, LTcons), 

id_to_name(LTcons,Lops, Linops).

line(T, TO)

get_identifsT(T,IdL), 
list_to_set(IdL, IdS), 

sortll(IdS.T, TO).

get_identifsT( [],[]).

get_identifsT([t(0Pl,OP)IGR],[OP1,OP|Y]) 
get_identifsT(GR,Y).

/* Now make the p.o. into a lattice by adding init & goal */

sortIl(Ids,T, Ord):-
add_limit(Ids,T, NewT),
sortl( [init,goal lids] ,NewT,[], Ordl), 

removelast(Ordl,[_I Ord]).

add_limit([I|L],T, [t(I,goal),t(init,I) I NewT]) 

add_limit(L,T, NewT).

add_limit([],T, T).

/* now sort the lattice */

sortl( [X][X]).
sortl(IdS,T,Used, [L|R]) 

lowest(IdS,T,Used, L), 
removeL(L,IdS, IS), 

sortI(IS,T, [LlUsed], R).

lowest(IdS,T,Used, L)
member(L,IdS),

member(t(L,_),T),
not( member(t(X,L),T), not( member(X,Used) ) ). 

lowest([Idl_],_, Id).

id_to_name( [] ,_ , [] ) .
id_to_name([Id IR],Lops, [Name I NR]):-

member(opi(Id,Name,_,_,_),Lops), 
id_to_name(R,Lops, NR).

/*********+************************************************/

/* this part allows dumps to be turned off or on */

file_dump(on).
fdump retract(file_dump(_)),
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assert(file_dump(on)).

no_fdump retract(file_dump(_)),

assert(file_dump(off)).
close_files tell(freda),told.

/********* applies a list of ops to create a FINAL state */ 
applyopseq([Op ITl],S,S2)

applyop(S,Op,SI),
applyopseq(Tl,S1,S2).

applyopseq([],S,S) !.

applyop(State,Op,New) operator(0p,

— >

— >

Add,
Del

),

remove_list(Del,State,Newl), 
add_list(Add,Newl,New).

/**********list processing functions************************/

remove_list( [DI Del],State,New) :-
remove_ALL(D,State,New2),
remove_list(Del,New2,New),!.

remove_list( [_I Del],State,New) : -
remove_list(Del,State,New),!.

remove_list( [],New,New) !.

add_list(Add,Newl,New)
append(Add,Newl,New2), 
list_to_set(New2, New),!.

reverse(X.Y) reverse_x(X, [],Y),!.
reverse_x( [] ,C,C).
reverse_x([HIT],C,R) reverse_x(T,[HIC],R).

last([E| []] ,E) ! .

last([_IT],E) last(T,E).

last2([E,_], E) !.
Iast2([_IT],E) last2(T,E).

append([],L,L).
append([HIT],L, [HIZ]) append(T,L,Z).

/* removes the first unif'y occurence of El in list */

removeL(El,[E1|T],T) !.
removeL(El,[XlTl],[X|T2]) removeL(El,T1,T2),!.

/* removes the first equiv. occurence of El in list */ 
removeL_equiv(El,[E2IT],T) El == E2, !.
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removeL_equiv(El,[X ITl],[XIT2]) removeL_equiv(El,Tl,T2),!.

/* removes all unif’y occurences of El in list */ 

remove_ALL(_, [],[]).
remove_ALL(El,[El IT],T1) remove_ALL(El,T,Tl),!. 
remove_ALL(El,[XITl],[XIT2] ) remove_ALL(El,Tl,T2),!.

remove_ALL_L( □ ,L,L) !.

remove_ALL_L([HIT],L,L1)
remove_ALL(H,L,L2), 

remove_ALL_L(T,L2,Ll),!.

removelast ([_],[] ) !.
removelast([XI XI],[X IYl] ) removelast(XI, Yl) .

member(X, [XI _]) .

member(X,[_IL]) member(X,L).

/*pretty print lists*/

writeL( [] ).
writeL([XIY]) write(X),writeL(Y).

wlist([X|Y]) write(X),nl,wlist(Y).
wlist( □).

/* This procedure changes a list to a set */ 

list_to_set( □ , []) !.
list_to_set(ELIT],S) member(L.T),!, list_to_set(T,S). 
list_to_set( [LIT],[LITl]) list_to_set(T,Tl).

/**************** generate symbol predicate*************** */

gensym(Root,Atom)

getnum(Root,Num), 

name(Root,Name1), 
name(Num,Name2), 
append(Name1,Name2,Name), 

name(Atom,Name),
i

getnum(Root,Num) 
retract(current_num(Root,Numl)),!,

Num is Numl+1, 
asserta(current_num(Root,Num)).

getnum(Root,1) asserta(current_num(Root,1)).

/* used in weak heuristic: */
/* finds the most inst’d el’ of a list by looking at simply the

second level terms i.e. g(i,o), f(I,o), d(F,D,f) would give g(i,o) */ 

/*PRE of most_inst(X,Y)= X is list of >0 arity fns */
/*P0ST: Y = function which maximises {no.of const*(l+l/arity)} */

most_inst( [G11G],B)
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value(Gl.N), 
m_inst(G,Gl,N,B,_),

value(g(G,_),1)
atom(G),

value(g(G,_),N) /*
G = .. [_ I L] , /*

valuel(L,0,Nl), 

length(L,Len), 
N is N1+ Nl/Len,

specifically when terms are of form g(X,_) 

and we are interested in X */

value(G,l)

atom(G),
i t

value(G,N)

G =.. LIL], 
valuel(L,O,Nl) , 
length(L,Len),
N is N1+ Nl/Len,

valuel([HIT],Nl,N) 
nonvar(H),
N2 is Nl+1, 

valuel(T,N2,N).
valuel([_IT],N1,N) 

valuel(T,Nl,N).
valuel ( [] , N, N) : - 

/**** nlpl nlpl nlpl nlpl nlpl nlpl nlpl nlpl nlpl *********/ 

learn(H,0s)
assert (wp(0, 
learnl(H,0,0s).

learnl ([], I,_) retr,tell(freda),nl,write(I),write(’ transforms'),

nl,told,!.

retr.

retr retract(ppA(_, ,_., , , )),fail

retr retract(ppR( , ,.., , )),fail.

retr retract(wp( , , ,, , , )),fail.

/* start with last transform first .. */ 

learnl(H,I,Os)
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ppA(H,A,OsA,TsA,PsA,AsA,EsA), 

ppR(H,Con,OsS,TsS,EsS), 
writeppT(ppT(A,OsA,TsA,PsA,AsA,EsA)), 

writeppR(ppR(Con,OsS,TsS,EsS)), 
print_others(H), 

wp(I,WPcons, WpOs, WpTs, WpPs,WpEs),

append(WPcons,Con,WPconsO), 
append(WpOs,OsS,WpOsl), 
append(WpTs,TsS,WpTsl), 

append(WpPs, [AsA],WpPsl), /* add achieved P to Ps*/
/*append(WpAs,AsS,WpAsl),*/ 
append(WpEs,EsS,WpEsl),

remove_ALL_L( [OsA],WpOs1,Wp0s2), 
remove_ALL_L(TsA,WpTsl,WpTs21),

/* remove any fact in wpT which refers to OsA - the op added*/ 

remove_op(OsA,WpTs21,WpTs2), 

remove_ALL_L(PsA,WpPsl,WpPs2), 

remove_ALL_L(EsA,WpEsl,WpEs21), 
remove_opN(OsA,WpEs21,WpEs2), 
remove_opC(OsA,WPconsO,WPcons1),

list_to_set(Wp0s2,Wp0s3), 
list_to_set(WpTs2,WpTs3), 
list_to_set(WpPs2,WpPs3), 
list_to_set(WpEs2,WpEs3),

Il is 1+1,
/* changes names of ops to ids **/ 

rem_identl(WPcons1,WPcons2,0s), 
rem_ident2(Wp0s3,Wp0s4,0s), 
rem_ident3(WpTs3,WpTs4,Os), 
rem_ident4(WpPs3,WpPs4,0s), 
assert(wp(Il,WPcons1,Wp0s3,WpTs3,WpPs3,WpEs3)), 

writeWP(wp(Il,WPcons2,Wp0s4,WpTs4,WpPs4,WpEs3)), 

removelast(H,Hl), 
learnl(Hl,Il,Os), ! .

print_others(H)
last2(H,HL), 
ppA(Hl,Xl,X2,X3,X4,X5,X6), 

ppR(Hl,X7,X8,X9,X10),

last2(Hl,HL), 
not(Hl = H), 
tell(freda),nl,nl,write(’others...************************>)> 
writeppT(ppT(Xl,X2,X3,X4,X5,X6)) , 
writeppR(ppR(X7,X8,X9,X10) ) , 
tell(freda),nl,write(>♦********************************>), 

tell(user).
print_others(_).

writeppT(ppT(A,OsA,TsA,PsA,AsA,EsA)) :-
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tell(freda),nl.nl.nl, 

write(ppT(A,OsA,TsA,PsA,AsA,EsA)), 
tell(user).

writeppR(ppR(Con,OsS,TsS,EsS)) 
tell(freda),nl.nl.nl, 

write(ppR(Con,OsS,TsS,EsS) ), 
tell(user).

writeWP(wp(I,WpCons,WpOs,WpTs,WpPs,WpEs)) : - 

tell(freda).nl.nl.nl, 
write(I),write(WpCons),nl, 
write(WpOs),nl, 
write(WpTs),nl, 
write(WpPs),nl, 
write(WpEs),nl, 
nl,tell(user).

remove_op(A, [t(I,Il)|R],Ct(I.Il)| NR] ) 

not(I = A), 

not(Il = A), 

remove_op(A,R.NR),
i

remove_op(A,[_ I R],NR) 

remove_op(A,R.NR),
i

remove_op(_, [],[]).

remove_opN(init,X,X) !.
remove_opN(none,X,X) !.
remove_opN(A,[n(A,_)|R],NR) 

remove_opN(A,R,NR), 
i ,

remove_opN(A,[X IR],[XI NR] ) 

remove_opN(A,R,NR) ,

remove_opN(_, [],[]).

remove_opC(init,X,X) !.

remove_opC(none,X,X) !.
remove_opC(A,[c(A,_)IR] ,NR)

remove_opC(A,R,NR),
i .

remove_opC(A,[X IR],[X I NR]) 

remove_opC(A,R,NR),
i

remove_opC(_, [],[]).

rem_identl([c(I,P)|R],[c(Name,P)I NR],0s) 
member(opi(I,Name,_,_,_),0s), 

rem_identl(R,NR,Os),
i _

rem.identl(□ ,[],_).

rem_ident2([I|R],[NameI NR],0s)
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member(opi(I,Name,_,_,_),0s), 

rem_ident2(R,NR ,0s),
i .

rem_ident2( □ ,□,_).

rem_ident3([t(I,Il)IR],[t(Name,Namel)|NR],Os) 

member(opi(I,Name,_,_,_),0s), 
member(opi(I1,Namel,_,_,_),0s), 

rem_ident3(R,NR,Os),
i

rem_ident3( [] , [] ,_) .

rem_ident4(Cg(P,I)|R],[g(P,Name)I NR] ,0s) 
member(opi(I,Name,_,_,_),0s), 
rem_ident4(R,NR,0s) ,

i

rem_ident4( [] , [] ,_) .

/************ FM FH FH FM FM FM FM FM FM FM FM FM FM pM ******/ 

/************ THIS IS THE BOOT FILE FOR FM WITH C-CHUNKS******/

boot(mea,0,E,I)

consult( [
’../lp/fenv’,

’../lp/fmc’,
’../lp/fcm',
’../lp/fused_bk',
’../lp/fcomp_bk',
’../Ip/driver_mec’,
’../lp/driver_help',
’../lp/fchmea_bk',
’../lp/faugmac',
'../Ip/futile’,

’../Ip/fmacgr’,

0,
E,
I

]).
boot(forward,0,E,I)

consult([
’../lp/fenv’,
’../lp/fcm',

’.,/Ip/fuse’,

’../lp/fexh',

’../lp/driver_f >,
’../Ip/driver_help’,
’../lp/fchunk',
'../lp/faugmac',
’../lp/futile',

'../Ip/fmacgr’,

0,
E,
I

]).
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boot(nlp,0,E,I)
consult( [

’../nip/twd’,
’../nlp/futile_nlp’,
’../nlp/driver_nlp',
’../nip/tweak',
'../nlp/fmacgrd',
’../nlp/new_fuse',

0,
E,

I,
'../lp/fcm',
'../lp/driver_help',
'../lp/fchunkmea',
'../Ip/faugmac',
'.,/lp/fm’

]).

consult(options),

strategy(S),
operator_file(0),
environment_file(E),
init_file(I),
boot(S,0,E,I),
frame(name:Environment,type : context,_,, 
assert(environment(Environment)).

/*

************** fenv fenv fenv fenv fenv fenv fenv *****************

includes 'agenda' control plus problem step addition */

:- op( 700, xf x, ’:’).

op( 100, xfy, '&’).

/* ENVIRONMENTAL PARAMETERS are in 'options' file */

clock(O). /* increment after each task */

activation(O). /* increment after each process finishes */
/* must be reset by driver */ 

numberofnodes(O). /* increment after each node expansion */

/♦ INITIAL AGENDA (PROCESS AND PASSIVE QUEUES) */ 
processq([]). 
passiveq( [] ) .
q(_). /* for flagging active or passive q's */
count(0). /* used in main loop */
order_store( []). /* root for fchunkmea's storing of chunk seqs*/

/* MAIN LOOP FOR EVERYTHING */
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go2(_):-processq(X),

highest(X,d(P,N)).

length(X,NN),write(' ’).write(NN), 
retract(count(C)),Cl is C+l,assert(count(Cl)), 
((Cl > 8,nl,retract(count(_)),assert(count(0))) ; true ),

removeL(d(P,N),X,XI), 

incremental ,X2,1) , 
retract(processq(_)), 
assertz(processq(X2)), 
start(P),!.fail.

go procnumber(X),go2(X). /* go fails when no tasks left */ 
go

processq( [_|_]), /* something left in proceeq */
tell(user),

write(>♦** maximum no. of activations reached ***'), 

retract(clock(N)),N1 is N+l,assert(clock(Nl)),!.

go-

procnumber(X)

increment_activation(X).
procnumber(X)

max_activations(M), 
activation(A),
A < M,

procnumber(X).

increment_activation(X)
retract(activation(Xl)),
X is Xl+1, 
assert(activation(X)), 
i

highest([d(P,N)J,d(P,N)). 

highest([d(P.N)|T],Z) highest(T,d(Q,M)),

( (M<N,!,Z=d(P,N)) ;

Z=d(Q,M) ).

increment([d(P,N)],[d(P.Nl)],1) Nl is N+I. 
increment([d(P,N)|T], [d(P,Nl)|L],I) Nl is N+I, 

increment(T.L.I).
increment( □ 

start(X) call(X),!.
start(_).

/* note: process assumed not to already exist */

addprocess(P.N) retract(processq(X)).

assertz(processq([d(P,N)|X])).
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addpassive(P.N) retract(passiveq(X)),

assertz(passiveq([d(P,N)I X] ) ).

Z****************************************************/

/**♦*****♦*!m fm fm fm fm fm fm fm*****************/

/* definiton of fn to use M.E.A. on a partial soln */
/* which is applied only once to each task */

mea_step(X)
frame( name: X,

type: problem, 
ancest:Ancest, 

context: Context, 
init_world: I, 

goal: G, 
trace: [] , 

solution: S),
del(I,G,Gl), /* only try for unachieved goals */
/* new active tasks are initiated on only the 1st*/ 
/* unachieved goal predicate’s op’s preconditions*/ 
retract(q(_)),assert(q(active)),

/* BOOK KEEPING */

pushtrace(PT),
tell(PT),
writeL([nl,’node name: ’,X,’ ’,’goal: ’,G,’ ancestorsnl]), 

wlist(Ancest),nl,
tell(user),!, 
retract(numberofnodes(Nn)),Nnl is Nn+1, 

assert(numberofnodes(Nnl)),

expandmea(X,p(I,[],[]),Lnewps,Gl.Context,G1,Ancest), 
success(X,G,Context,Ancest,Lnewps,S),
( (not( var(S) ),mac(X)) ; true),/*not varS=success*/ 

retract(frame(name:X,type:problem,_ 

assertz(frame(name: X,

type: problem, 

ancest:Ancest, 
context: Context, 
init_world: I, 

goal: G, 
trace: Lnewps, 
solution: S)),!.

/* M.E.A. sort of expansion */

expandmea(Pn,X,Ln,G&G1,Context,Goal,Ancest) :- !, 

expandmeal(Pn,X,Lnl,G,Context.Goal,Ancest), 
expandmea(Pn,X,Ln2,G1,Context.Goal,Ancest), 

append(Lnl,Ln2,Ln).
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expandmea(Pn,X,Ln,G,Context,Goal,Ancest) :-

expandmeal(Pn,X,Ln,G.Context,Goal,Ancest).

/* Find a set of primitive ops OL whose primary add literal -> this goal 
literal G. Any ops in OL which are applyable are applied. If none then 

then add the OL's to the m.e.a. agenda */

expandmeal(Pn,p(Cstate,_,_),Lnewps,G,Context,Goal,Ancest) : -

setof(0,nonemp(0,G,Cstate,Context,Goal),0L) , 

split(Cstate,OL,Lops.Otherops,Context), 
expmea(Pn,_,Cstate,Lnewps,Lops,Otherops,G,Context,

Goal,Ancest).

expandmeal(_,_,_,G,_,_,_) zzz,write(’*op.f.*’),write(G).

zzz.

expmea(Pn,_,Cstate,[],□,Otherops,G,Context,Goal,Ancest)

use_heuristics(Pn,Cstate,G,Context.Otherops,

Otherops1,Ancest), 
addps(Pn,Otherops1,Cstate,Status,Context,G,Goal), 
( (not(var(Status)),retract(q(_)),assert(q(passive)))

;true).
expmea(_,N,Cstate,Lnewps,Lops,G,Ea(Pn,_,_)|_])

applyops(Cstate,Lops,Lstates),

genps(Pn,N,Lops,Lstates,Lnewps,G).
expmea(_,N,Cstate,Lnewps,Lops,_,G,El)

applyops(Cstate,Lops,Lstates) ,
genps(start,N,Lops,Lstates,Lnewps,G).

/* finds an operator which can add a subgoal */

nonemp(0,G,Cstate,Context,_) :-

frame( name: 0,
type: operator, 

filter: FA, 

check: Ch, 

precon:_, 

padd: A,

hold(G,A), /* G contained in primary add lit?*/
hold(FA,Cstate), /* FILTER */

frame(name:Context,_,always:Always,_),

hold(Ch,Always). /* check this instantiation is poss*/

nonemp(0,G,Cstate,Context,Goal) :-

usemacros(on),
eqfirst(G,Goal),

frame( name: 0,

type: operator, 

macrop: [_I_], 

check: Ch, 

precon:P,
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padd: A,
_,_),

del(Goal,A,nil),

frame(name:Context,_.always:Always,_),
hold(Ch,Always), 

mea_macros(Argnum),

( (0 =.. SL,length(SL,SLl),SL1 =< Argnum) ; 
hold(P,Cstate) ).

eqfirst(G,G&_).
eqfirst(G,G).

/* to allow macros to be mea’d */ 

split (_,[],[],[],_) . /* remove hold(P.. above, and */
/* comment out opposite ’split' */ 

split(S,[SohI Sot],[SohlT],X,Context):- 
frame( name: Soh,

type: operator,
macrop: [_|_],

>

Soh =.. SL,length(SL.SLl), 
mea.macros(Argnum),
SL1 > Argnum, 

split(S,Sot,T,X,Context).
split(S,[SohI Sot],[SohlT],X,Context) : -

frame( name: Soh,
type: operator,

filter: _,

check: Ch,

precon: P,
_____),

frame(name:Context,_.always:Always,_),

hold(P,S), 

hold(Ch,Always), 
split(S,Sot,T,X,Context).

split(S, [SohI Sot],X,[SohIT],Context):- 
split(S,Sot,X,T,Context).

/******************** add desirable op precons as new tasks ***********/ 
/***********#*********************************************************/

addps(_, [] 
addps(Pn,[0 IT],S,St,Context,G,Goal) :- 

frame( name: 0,
type: operator,
check: C,
precon: P,_,_,_),

frame(name:Context,_.always:Always,_),
hold(C,Always), /* instantiation must be valid ♦/

frame( name: 0,

type: operator,_,

check: Cl, 

precon: Pl,_,_,_), 

rev(Always.Alwaysl), 

hold(Cl,Alwaysl),
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findgoals(Gpl,Gp2,S,P,Pl,Pn,G.Goal), /* finds inst. of 

P for 0 */
( (Gpl=nil,Gp2=nil) ; St=added ), 

addpsO(Gpl,P,Pn,0,S,Context,G,Goal), 
addpsO(Gp2,Pl,Pn,0,S,Context,G,Goal), 
addps(Pn,T,S,St.Context,G,Goal) .

addpsO(nil,!.

addps0(_,P,Pn,0,S,Context,G,_Goal) : -
gensym(aux,A),
frame(name:Pn,type:problem,ancest:Ancest,, 
asserta(

frame(name:A,

type:problem, 

ancest:[a(Pn,0,G)IAncest], 
context:Context, 

init_world:S, 
goal:P, 

trace: [] , 

solution:_)

),

/♦record parallel goals to be solved, for incon. checks 

shelve — must regresss II goals, not store them. 
acculm_goal(Pn,AG), 

del(G,_Goal,Goall),

for now just register top level goals (Pn = task..) 
(name(Pn,[116,97,115,107 I_]),
ad(AG,Goall,NewAG) ; NewAG=AG ) , 

assert(acculm_goal(A,NewAG)), */

/♦WEAK HEURISTIC — favour smaller goalists+/ 
del(S,P,PP),andtolist(PP,PPL),length(PPL, Le), 

Interest is 400 - 2*Le, /*- 2*Le,+/

q(Status),
( (Status=active,addprocess(mea_step(A),Interest)) ; 

(Status=passive,addpassive(mea_step(A).Interest)) ), 

pushtrace(PT), 

tell(PT), 
writeL([nl,'child name: ’,A,’ ’,'priority: ’.Interest,' 
status:-’,Status,nl]), tell(user),!.

/+ This should really be finding every distinct instantiation of 
Precons that maximally intersects S,& setting Gp =Precons' compliment 

-instead it finds a max of 2 inst’ns by also reversing S.

To stop the plthora of nodes two weak heuristics are employed:
1. If an identical predicate has been already mea'd further up 

the tree, then reject the whole cjn (say Gp.. = nil)

♦♦♦don’t bother--  2. If the acculmulated parallel goals are in

consistent with a Gp, then likewise set the Gp to nil +/

findgoals(Gpl,Gp2,S,P,P1,Pn,G,_Goal) :-

del(S.P.Gplt),
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rev(S,S1),

del(Sl,Pl,Gp2t), /* Gp’s are now ground wffs */
( (equivc(Gplt,Gp2t),Gp2=nil) ; true ),

/♦ Gplt=Gp2t —> call one nil so only achieve once */

( (circular(Gplt,Pn,G),Gpl=nil) ; true ),

/♦ Gplt circular —> set Gpl = nil */

( (var(Gp2),circular(Gp2t,Pn,G),Gp2=nil) ; true ), 
/* Gp2 not nil& Gp2t circular —> set Gps = nil */

/* ( (var(Gpl),incon_goal(Gplt,Pn,G,_Goal),Gpl=nil) ; true ), 
( (var(Gp2),incon_goal(Gp2t,Pn,G,_Goal),Gp2=nil) ; true ), 

♦/

( (var(Gpl),Gpl=Gplt) ; true ),

( (var(Gp2),Gp2=Gp2t) ; true ).

/* shelving...........

incon_goal(Gp,Pn,G,Goal) 
inconsistent_check(on), 
acculm_goal(Pn,AG),
i• >

not(AG=nil),

del(G,Goal,Goall),
(name(Pn, [116,97,115,107 I_]), 

ad(AG,Goall,NewAG) ; NewAG=AG ) , 

inconsistent(Gp.NewAG).
*/

circular(Gp,X,G) /* succeeds if goal is in ancestory */
frame(name:X,

type:problem,

ancest:L,,
(intersect(G,Gp,_) ; interL(Gp.L) ).

interL(Gp,[a(_,_,G)|T]) intersect(Gp,G,_) ; interL(Gp,T).

/* remove all problem frames whose ancestory contains X’s Dad

as long as they were after the same goal G */

killps(X) frame( name:X,

type: problem,

ancest: [a(Dad,_,G)I,
killall(Dad,G,X).

killps(X) :- frame( name:X,

type: problem,

ancest:

killall(_,_,taskl).

killall(Dad,G,X) :-

frame( name:Y,

type: problem,

ancest: L,,
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member(a(Dad,Z,G),L), 

not( Z = nil), /* deals with case when goal is trying to 
be acieved from an enhanced state */ 

not( X = Y ), 
retract(frame( name:Y,

type: problem, 

ancest: L,, 
killpsl(Y).

killall(_,_,_).
killpsl(Y)

processq(Q), 
passiveq(QQ), 
(

(removeL(d(mea_step(Y),_),Q,Q1), 
retract(processq(Q)), 
assert(processq(Ql))) ;

(removeL(d(mea_step(Y),_),QQ,QQ1), 

retract(passiveq(QQ)), 

assert(passiveq(QQ1)))

),
!,fail.

/**+******♦*+******************************************/ 

/* applies specific list of ops to every p.sol. in X */

apply_step(X,L,LN) :- /* LN is list of task names */

frame( name: X,
type: problem, 
ancest:Ancest, 

context: C, 
init_world: I, 

goal: G, 

trace: P, 

solution: S), 
apply_all(I, [p(I,[],[]) I P] , L, LN, Lnewps, C) , 
/*(name(X,[97,117,1201_]) ;*/ macros(Lnewps,C,I,G,X) , 

append(P,Lnewps,Pl), 
success(X,G,C,Ancest,Lnewps,S), 

retract(frame(name:X,type:problem,_, 

assertz(frame(name: X,
type: problem, 
ancest:Ancest, 

context: C, 
init_world: I, 

goal: G, 
trace: Pl, 
solution: S)).

apply_all(I,[P|T],L,LN,Lnewps,Context) :- 

apply_l(I,P,L,LN,Ln,Context), 

apply_all(I,T,L,LN,Lnl.Context), 

append(Ln,Lnl,Lnewps).

apply_all(_,
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apply.l(_,p(St,Op,N),L,LN,[p(Nsl,Opn,N2)],Context) : - 

applyopseq(L,St,Ns.Context), 

last(Ns,Nsl), 
append(0p,L,0pn), 
append(N,LN,N2).

/* failure of seq. may mean wrong ordering so try other way */

apply_l(I,p(_,Op,N),L,LN,[p(Ns,Opn,N2)],Context) : - 
applyopseq(L,I,NsLl.Context), 

last(NsLl,Nsl), 
applyopseq(Op,Nsl,NsL2,Context), 
last(NsL2,Ns), 

append(L,0p,0pn), 
append(LN,N,N2).

apply_l.

/********************+♦*********************************/
/* These procedures are shared by both controls */

success[],_).

success(X,G,_,[],Lnewps,S) 
follows(G,Lnewps,S), 

killps(X), /* this may not remove 'top level’ */

/* processes so empty processq as well */ 
retract(processq(_)), 

assert (processq( [] )), 
addprocess(status(X),900), 

addprocess(critic(X),800), 

write(X),write(’ succeeds’), 

clock(M).macrofade(M).

success(X,G,_,[a(An,nil,_)|_],Lnewps,p(St,Op,N))
follows(G,Lnewps,p(St,0p,N)), 

killps(X), 
write(X),write(’ succeeds’), 

unlockmea(An), 
addprocess(apply_step(An,Op,N),800). 

success(X,G,_,[a(An,Opr,GG)I_],Lnewps,p(St,Op,N)) : -
follows(G,Lnewps,p(St,Op,N)), 

killps(X), 
write(X),write(’ succeeds’), 

unlockmea(An), 
append(0p,[Opr],0L), 
append(N,[t(An,GG)],NL), 

addprocess(apply_step(An,0L,NL),800). 

success(X,G,C,Ancest,Lnewps,_)

addnewps(X,G,C,Ancest,Lnewps). /* no success,try expanding*/ 

/* partial solns */

/* makes a sister process to a successful one active */

unlockmea(An)
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passiveq(Pq), 

member(d(mea_step(X),_),Pq), 

frame(name:X,_,ancest:[a(An,_,G) 

setof(Z,group(An,G,Z),L), 
swapL(L).

group(An,G,Z)

passiveq(Pq), 

member(d(mea_step(Z),_),Pq), 
frame(name:Z,_,ancest:[a(An,_,G)) 

swapL(U).

swapL([H|T])

retract(passiveq(Pq)), 
removeL(d(mea_step(H),Pq,Pql) , 

addprocess(mea_step(H),500), 
assert(passiveq(Pql)), 

swapL(T).
unlockmea(_).

/* create a new set of tasks that try to reach G from enhanced state */ 

addnewps(X,G,C,Ancest,[p(S,_,_)|T])

gensym(aux,A), 

del_cut(S,G,Gl), 
not(member(a(_,_,G1),Ancest)),/*no circ goals*/ 
/* acculm_goal(X,AG), 

asserta(acculm_goal(A,AG)), -see incon. goal work */ 
asserta(

frame(name:A,

type:problem,
ancest:[a(X,nil,Gl)IAncest],

context:C,

init_world:S,
goal:G, 

trace: [] , 

solution:_)
),

addprocess(mea_step(A),500), 
addnewps(X,G,C,Ancest,T).

addnewps(X,G,C,Ancest,[_|T]) :-

addnewps(X,G,C,Ancest,T).
addnewps(_,_,_,_,[]).

macrofade(N) :- macrofade_is(on),

frame( name: 0,

type: operator,
macrop: [MI_] ,

N > M-l,

nl,write(0),write(’ gone'), 

retract(frame( name: 0, 

type: operator, 
macrop: [M|_],

fail.
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macrofade(_) macrofade_is(off).

macrofade(_) nl.

follows(G,[p(X,Y,N)|T],S)

(hold(G.X),

S = p(X,Y,N)) ;

follows(G,T,S).

/* put the new nodes into p(,,) format */

genps(_,_, [] , [] , [] ,_) .

genps(Y,_,[OplOpt],[Sr I St],[p(Sr,[Op],[t(Y.G)])|T],G) 

genps(Y,_,Opt,St,T,G).

/* ordering predicate not used at the moment */

/* orderg(G&H,Gl&G3) !,

maxi(G&H,Gl), 

del(Gl,G&H,G2), 

orderg(G2,G3).
orderg(G,G).

maxi(G&H,Max) !,

ord(G.N),

maxi(H,Hl), 

ord(Hl.M), 
( (N>M,!, Max = G) ; Max = Hl ).

maxi(G,G). ♦/ 

/* fcmfcmfcmfcmfcmfcmfcmfcmfcmfcmfcmfcmfcm */

/* this control will have chunks leading the search for a soln */

cea(Goal,I,E)

frame(name:E,always:C,_),
xxx(0L, Goal, I, C), 
/*get_opp(OL,_,I,C,Goal) ,*/ 

tell(fredlO).write(OL),nl.nl,tell(user) .
xxx(0L, Goal, I, C)

setof(0,get_op(0,Goal,I,C),OL).
cea(_,_,_).

get_op(0,Goal,I,E)

ch(_,0,G,P,C), 

del(Goal,G,nil), 
hold(P.I), 

hold(C,E).
/*

get_opp([], [],_,_,_).

get_opp([0|R],[Res IRl],I,E,Goal) 

ch(_,0,G,P,C), 

del(Goal,G,nil), 

hold(C.E), 

del(I,P,Res), 

get_opp(R,Rl,I.E.Goal).
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*/

/* for a particular problem, store all applicable rules */

make_heurs
init_world(I),

environment(E),

frame(name:E,_,_:El,_),
delete_old_heuristics,
tell(fred20),write(I),nl,nl,write(E),nl, 
make_new(I,El).

delete_old_heuristics

retract(pr,

fail.
delete_old_heuristics.

make_new(I,E)
ch(Nm,0,G,Il,El),

hold(Il,1),
not(not(hold(El,E))),

( pr(_,G,0,El) ;
assert(pr(Nm,G,0,El)),tell(fred20),nl,write(pr(Nm,G,0,El)), 

nl,write(’from chunk....’),nl,write(ch(Nm,0,G,Il,El)),nl,nl ), 

fail. /♦ might have to put in a recursive call here instead*/ 
make_new(_,_) tell(fred20),told,!.

/*♦**♦*** fuse fuse fuse fuse fuse fuse fuse ***************/

/* Version for new-b-chunks post 28/7/88 -no ancestory*/
/* ’A’ is superflouous *♦*♦***/

/* tries to cut down alternative mea operator inst’s using chunks; 

cutting down is irrevocabe at the moment although the 
chks are just heuristics. Also, choose the one(s) that 

satisfies most chks in the event of a tie */
use_heuristics(Pn,Cstate,Goal,C,Oin,Oout,_) :-

/* treat macros separately */ 

usechunks(on), 

separate(Oin,Mac,Prim), 
chks(Pn,Cstate,Goal,C,Mac,Out1) , 
chks(Pn,Cstate,Goal,C,Prim,0ut2), 

append(Outl,0ut2,Oout).
use_heuristics(Pn,Cstate,Goal,C,Oin,Oin,_) :-

usechunks(off), 
separate(Oin,Mac,Prim), 
chks(Pn,Cstate,Goal,C,Mac,_), 

chks(Pn,Cstate,Goal,C,Prim,_) .

chks,Oin,Oin) usechunks(off),chunking_is(off).

chks(_,Oin,Oin) length(Oin,N),N =< 1. 

chks(Pn,_,G,_,0in,0in)
not( ch(_,),

tell(fred5),
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nl,write(chunk_used(Pn,none,G,Oin,[])),
nl,tell(user), 

assert(chunk_used(Pn,none,G,Oin, [] ) ). 
/* no chunks abroad */

chks(Pn,Cstate,Goal,C,Oin,Oout) :-

uel(Cstate,Goal,C,Oin,Scores,Used_chs), 

max(Scores,M), /* finds max no. of a list */
chks2(Pn,Goal.Scores,Oin,Oout,M,Used_chs).

chks2(Pn,G,_,0in,0in,0,_)
tell(fred5),

nl,write(chunk_used(Pn,none,G,Oin, □ )),
nl,tell(user), 
assert(chunk_used(Pn,none,G,Oin,[])),!. 

chks2(Pn,G,Scores,Oin,Oout,M,Used_chs2) :-

collect(Oin,Scores,M,0out2), 

except_ch(Used_chs2,0out2,Used_chs2,Oout,Used_chs), 

length(Oin,LI),length(Oout,L2),

L3 is L1-L2,writeL( [’uc’,L3,’-’,LI,L2,' ’]), 

tell(fred5),wlist(0in),nl,wlist(Oout).tell(user) , 

assert(chunk_used(Pn,some,G,Oin,Used_chs)),
i

ucl(_,
uel(Cstate,Goal,C, [0 IOT],[11 NT],[c(0.Chunk)IUsed_chs]) :- 

frame(name:C,_,always:Always,_), 
uc2(Cstate,Goal,C,0,Chunk,Always), 
tell(fred5),nl,write(Chunk),nl, 

write('used on ’),write(0),nl,tell(user), 
uc1(Cstate,Goal,C.OT,NT,Used_chs),
i e

uel(Cstate,Goal,C,[_|OT],[0 I NT],Used_chs) :- 

uel(Cstate,Goal,C,0T,NT,Used_chs),
i

uc2(Cstate,Goal,_,0,ch(Name,0,Goal,S,Ch).Always) 
ch(Name,0,Goal,S,Ch),

hold(S,Cstate), 

hold(Ch,Always), 
i

/* gets rid of chs that are excepted by others in Used_chs */ 
except.ch(Used_chs,Oout,Used.chs,Oout,Used.chs) : - 

length(Used_chs,1),
i

except.ch(Used.chs,[0 I OR],[c(0,ch(N,_,_,_,_))|L],OR1,L1) :- 
ch_ex(N,Ex_ch),
member(c(_,ch(Ex.ch,_,_,_,_)),Used.chs), 

except.ch(Used.chs,OR,L,OR1,LI).

except_ch(Used_chs,[0 I OR],[CIL],[0 I0R1] ,[CI LI] ) : - 

except.ch(Used.chs,0R,L,OR1,LI) .

except_ch(_, □,[],[], [])
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collect( □ ,[],_,□).
collect([OinIOL],[Max INL],Max,[OinI0L1]) /*save op if its score=Max*/

collect(OL,NL,Max,OLl).
collect([_IOL],[_INL].Max,0L1) /*otherwise discard */

collect(0L,NL.Max.OLl).

separate( [],[],[]).
separate([011OL],[011M],P)

frame(name:01.macrop:[_I_], 
separate(OL,M,P).

separate( [01 IOL],M,[011P]) 
separate(OL,M,P).

/♦** SUBSUMES AND **fcomp*fcomp*fcomp*fcomp****************/

/♦*♦ COMPRESSES CHUNKS ****************/

compress(ch(N,0, G,Ps,Pe),Mode) :- 

compress_chunks(off), 

(ch(_,O,G,Ps,Pe) ; subsume(ch(N,O,G,Ps,Pe).Mode)),!.
compress(ch(N,O,G,Psi,Pe).Mode)

env_axioms(L), 
use_env(Pe,Pe,Pe2,L), 
/* put reins at front ..*/ 

pred_ord2(Pe2,Pe4), 
pred_ord3(Pe4,Pe3), 

pred_ord2(Psl,Ps4), 
pred_ord3(Ps4,Ps), 
remove(nil,Ps,Ps5), 
remove(nil,Pe3,Pel),
(ch(_,0,G,Ps5,Pel) ; subsume(ch(N,0,G,Ps5,Pel),Mode)),!.

pred_ord3(Pe,X&Pel) 

remove_bt(X,Pe,Pe3),

X =.. Y.

length(Y.L),
L > 3, 
pred_ord3(Pe3,Pel),!.

pred_ord3(Pe,Pe) !. 
pred_ord2(Pe,X&Pel)

remove_bt(X,Pe,Pe3),

X =.. Y.
length(Y,L),

L > 2,
pred_ord2(Pe3.Pel),!.

pred_ord2(Pe,Pe) !.

get_chunks( [ch(A,S,D,F,G)IC])

retract(ch(A,S.D.F.G)), 

get_chunks(C),!.

get_chunks([]) !.

use_env(P&Pe.Pel.PeRes.L)

not( not( env_follows(P,Pel,L) ) ),
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rem_equiv(P,Pel,Pe2), 

use_env(Pe,Pe2,PeRes,L), 
i .

use_env(P&Pe,Pel,P&PeRes,L) 
use_env(Pe,Pel,PeRes,L), !.

use_env(P,Pe,nil,L)

not( not( env_follows(P,Pe,L) ) ), !. 
use_env(P,_,P,_) !.

env_follows(P,Pstart,L)

numvars(Pstart,1,_) , 
env_followsl(P,Pstart,L). 

env_followsl(_,_,[]) !,fail. 

env_followsl(P,Pstart,[[A,P]I_]) :- 
hold(A,Pstart),!.

env_followsl(P,Pstart,[_I Rest])

env_foliowsl(P,Pstart,Rest).

/***************************************/
/*will have to sort out 'Mode’ before using again..*/ 
subsume(ch(N,A,B,C,D),M)

subsume_chunks(off), 

chunk_assert(ch(N,A,B,C,D),M),!. 

subsume(ch(N,A,B,C,D),M)
not(ch(_,, /* no chunks made */
chunk_assert(ch(N,A,B,C,D), M),!.

subsume(ch(N,A,B,C,D),_)
get_chunks(Cs),
subsumel([ch(N,A,B,C,D)],Cs), 
subsume_old(ch(N,A,B,C,D),Cs), 
i

subsume_old(ch(N,A,B,C,D),Cs)

ch(N,
subsume 1(Cs, [ch(N,A,B,C,D)]).

subsume_old(_,Cs) 

put_chunks(Cs).

put_chunks( [ch(A,S,D,F,G)IC]) 

asserta(ch(A,S,D,F,G)), 

put_chunks(C),!.
put_chunks( []) !.
get_chunks([ch(A,S,D,F,G)IC])

retract(ch(A,S,D,F,G)), 
get_chunks(C),!.

get_chunks([]) !.

subsumel([Cl IC2],C)

not( subsumed(Cl,C)),

chunk_assert(Cl),
subsumel(C2,C).

subsumel([_IC2],C)
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subsumel(C2,C).
subsumel( □ ,_) :- !.

subsumed(ch(N,O,G,Ps,Pe),C)
numvars(ch(N,O,G,Ps,Pe),1, 
exp_env(Pe,Pel), 

adcut(Ps,Pel,PP), 

subsumedl(N,O,G,PP,C),
i .

subsumedl(Name,0,G,Cl,[ch(N,O,G,Ps,Pe)|_J) 

ch_record(Name,_,Sl),
ch_record(N,_,S2),
S2 > SI,

adcut(Ps,Pe,PP),

del(Cl,PP,nil), /* PP is more gen than Cl */ 

write(N),

write(’ has subsumed ’),write(Name),nl, 
tell(fred21),nl,write(N),

write(' has subsumed ’),write(Name),nl,tell(user),!. 

subsumedl(Name,0,G,ClI CL] )

subsumedl(Name,O,G,Cl,CL).

chunk_assert(_,non_discrim)

retract(weak_ch(N,A,B,C,D)),
retract(ch_record(N,Nl,N2,_)),
tell(user),write(N),write(’ failed to strengthen'),nl, 

/* chunk has been sent for strengthening..*/

/* ..its done no good */ 

assert(ch(N,A,B,C,D)), 

assert(ch_record(N,Nl,N2,multipies)),
i

chunk_assert(_.multiples)

retract(weak_ch(N,A,B,C,D)),
retract(ch_record(N,Nl,N2,_)),

tell(user),write(N),write(’ failed to strengthen'),nl, 
/* chunk has been sent for strengthening..*/

/* ..its done no good */ 

assert(ch(N,A,B,C,D)), 
assert(ch_record(N,Nl,N2,multiples)),
i

chunk_assert(ch(N,A,B,C,D).discrim)
retract(weak_ch(_,_,_,_,_)),
/* chunk has been sent for strengthening..*/ 

retr_ex(N),

retract(ch_record(N,_,_,_)), 

current_num(task,Num), 

gensym(ch,New), 

assert(ch_record(New,Num,0,strengthened)), 

write(N),write(' strengthened to '),write(New),nl, 

assert(ch(New,A,B,C,D)).
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retr_ex(N) retract(ch_ex(N,_)).fail.
retr_ex(N) retract(ch_ex(_,N)),fail.
retr_ex(_).

/*usual case .. ♦/ 

chunk_assert(ch(N,A,B,C,D),M)

max_chain_size(Nl), 
not(big_chains(D,Nl)), 

assert(ch(N,A,B,C,D)), 
write(N),write(’ made’),nl, 
current_num(task,Num), 
assert(ch_record(N,Num,0,M)),

chunk_assert(ch(N,
nl, write(N) , write( ’ chains too big’),nl.

big_chains(D,N)
andtolist(D.DL),
rem_all(ne(_,_),DL,DL1), 

rem_all(type_of(_,_).DL1.DL2), 

big_c(DL2,N).

big_c(D,N)
member(DM.D), 

count_inst(DM,D,C), 
C > N.

rem_all(X,DL,DLl)
removeL(X,DL,DL2) , 

rem_all(X,DL2,DLl), ! . 

rem_all(_,DL,DL).

count_inst(DM,[DMlDR],C) 

count_inst(DM,DR,Cl) , 
C is Cl + 1, ! .

count_inst(DM,[_I DR],C) 
count_inst(DM,DR,C) , ! .

count_inst(_,_,0).

/************* drive driver driver driver driver driver *****************/

/* This drives the simulation of a robot environment */
/* version with new chunks */

b

environment(C),

init_world(I),nl,
write(JMy environment is called ’),write(C),nl,
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write(’My current world is ’),nl,write(I),nl, 

task(C,I).
bfile environment(C),init_world(I),nl,

write(’My environment is called ’),write(C),nl, 
write(’My current world is ’),nl,write(I),nl, 

retract(numberofnodes(_)), 

assert(numberofnodes(0)), 
task_file(FI),see(FI),read(G),taskl(C,I,G),bfile. 

bfile.

task(C,I) :- 
retract(numberofnodes(_)), 

assert(numberofnodes(0)), 
nl,write('Enter task or "h" for help>’), 
read(G), 

help(G,C,I). /* see driver_help */

tasklend_of_file) :- 
task_file(FI),see(FI),seen,!,fail. 

taskl(C,I,G)
gensym(task.T), 

assert(
frame( name: T,

type: problem, 
ancest: [] , 

context: C, 
init_world: I, 

goal: G, 
trace: □ , 
solution: _)

),

retract(processq(_)), 
assert(processq([d(mea_step(T),1000)])), 

assert(acculm_goal(T,nil)),

! >g°> 
abolish(acculm_goal, 2) , 

numberofnodes(Nn), 
retract(activation(_)), 

assert(activation(0)), 
writeL([nl,’no. of expanded nodes: ’,Nn,nl]),

tell(fredlOO),
writeL( [nl,’no. of expanded nodes: ’,Nn,nl]), 

frame( name: T,
type: problem,
ancest: _, 

context: C, 
init_world: _, 

goal: G, 

trace:_,
solution:p(S,0m,Tr)), 

length(0m,0mL), 

task_file(FI),
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writeL(E’tfile: ’,FI,’ no: ’,T,’ of length ’,0mL]),nl, 

writeL(E’goal: ’,G,’ by: ’,0m,’ trace ’,Tr]), 

tell(fred5),writeL([T,’ over ************’]),tell(user),

not(var(S)),

write(’task finished’),nl,

(print_stats ; true ), /* true for C-prolog */

new_chunk(I,Om,Tr,G,C), 
replacemacs(Om,Omm,C), 
write(’By sequence of operators ’),nl,nl,write(Omm),nl, 

write(’goal ’),write(G),write(’ is satisfied, state is’), 
nl,nl,write(S),nl, 

retract(init_world(_)), 
assert(init_world(S)),
(print_stats ; true ). /* true for C-prolog */

print_stats :- 
statistics(runtime,[_,CP]), CPused is fix(CP/100), 

tell(fredlOO),writeL(E’CPUsed=’.CPused,’ secs ’]),nl,tell(user), 

writeL([’CPUsed=’,CPused,’ secs ’]),nl.
/ *

statistics(runtime,CP]), CPused is fix(CP/100), 

statistics(clause_store,[XI,X2]), C is fix(100*(X2/X1)), 

statistics(global_stack,[X3,X4]), G is fix(100*(X4/X3)), 

statistics(local_stack,[X5,X6]), L is fix(100*(X6/X5)), 
statistics(trail,[X7,X8]), T is fix(100*(X8/X7)), 

writeL(E’CPUsed=’.CPused,’ secs, Space left: ’]), 

tell(fredlOO),writeL(E’CPUsed=’.CPused,’ secs ’]),nl,tell(user), 
writeL([’C=’,C, G=’,G,’7. L=’,L,’7. T= ’ , T, ’ 7.’, nl] ) .

*/

taskl(_,_,_) see(user),nl,nl,write(’**TASK FAILURE**’),nl,nl, 
storefs(fred4,problem,8).see(user), 

write(’see fred4 for problem dump’).

/************* driver_help driver_help driver_help *****************/

help(h,C,_)

gather(Pads,Ens), 

write_info(C,Pads,Ens),
i• >

b.

help(end_of_file,C,I)
taskl(C,I,end_of_file).

help(G,_,I)

hold(G.I),
nl,write(G),write(’is already true!’),nl,nl,
i• >

b.

help(G,C,_)

not(poss_achieve(G,C)),
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gather(Pads,Ens),

writeL(Cnl,’"’,G,’"’,’ is not a valid task!’,nl,nl]), 

write_info(C,Pads,Ens),
i• >

b.

help(Gexp,C,I)
/* exp_state(G,Gexp),*/

nl,write(Gexp), nl,
!,taskl(C,I,Gexp). /* TASK1 IS IN ALL DRIVERS */

write_info(C,Pads,Ens)

write(JTasks may be any conjunct of .. ’),nl,nl, 
andtolist(Pads,L), 
wlist(L),nl,

write(’with environmental restrictions including.. ’),nl.nl, 
andtolist(Ens,EnsL), 

select_write(EnsL),
frame(name:C,_,always:Always,_), 

writeL([> etc .. etc .. and environment Always,nl]).

select_write([type_of(A,B)ITj) :-

writeL([’type of is ’.B,’; ’]),

select_write(T).
select_write([_IT]) :-

select_write(T).
select_write([]) nl.

poss_achieve(nil,_) !.

poss_achieve(G,C)
frame(_,_,_,check:W,_,padd:X,_,_), 

frame(_,_,always:Always,_), 

del(X,G,SmallerG), 
not(SmallerG = G), 

hold(W,Always), 

poss_achieve(SmallerG,C).
poss_achieve(nil,_).

gather(Pads,Ens) :- 
gathered(Pads,Ens),
i

gather(Pads,Ens) :-
setof(X,collect(X),PL), 

numvars(PL,1,_), 
gather1(PL,Pads,Ens), 
assert(gathered(Pads,Ens)),
i

collect(f(W,X)) :-
frame(_,_,_,check:W,_,padd:X,_,_).
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gatherl([f(E.P)|T].PAO.PAl)
gatherl(T,PA2,PA3), 
ad(P,PA2,PAO), 
ad(E,PA3,PAI).

gatherl([],nil,nil).

/****♦**♦**+**♦+*♦*♦*♦**********+**♦*♦***+*♦***♦****♦**************/

/******** fchmea fchmea fchmea fchmea fchmea ***********/

/* This contains the new (***post 8/88**) problem solution chunker for 
backward search methods.*/

new_chunk(I,0L,TL,G,C) 
chunking_is(on), 

length(0L,Le),Le > 1, 

tell(user),nl.write(’..chunking..’),nl, 
new_chunkOO(I,OL,TL,G,C), 
tell(user),nl,write(’chunking finished’),nl, 

remove_ch_used,!.

new_chunk(_. 
remove_ch_used retract(chunk_used(_,_,_,_,_)).fail. 

remove_ch_used.

new_chunkOO(I,OL,TL,G&GR,C) 
andtolist(G&GR,GL), 

member(t(_,G1),TL), 
member(Gl,GL), 
removeL(Gl,GL.GL1), 

listtoand(GLl,GA), 
split_up_to(TL,t(_,Gl),TL1,TL2), 

length(TLl.LN), 

split_to_no(OL,LN,OLl,0L2), 

new_chunkO(I,OLl,TLl,C,IN), 
new_chunk00(IN,0L2,TL2,GA,C).

new_chunkOO(_, !.

new_chunkOO(I,OL,TL,G,C) 

not(G = _&_), 

new_chunkO(I,OL,TL,C,_).
new_chunkOO(_,write(’**exception in new chunkOO**’), ! .

new_chunkO(I,OL,TL,C,LS)
applyopseql(OL,I,SL), 

removelast 1(SL,SL1,LS), 

reverse(0L,REV_0), 

reverse(TL,REV_TL), 

reverse( [I ISL1],REV_S), 

get_Len(REV_O,REV_S,C.REV_E.REV_P). 
new_chunkl(C.I,REV_O,REV.TL,REV_S,REV_E,REV_P). 
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new.chunkl(_,_,E_]!.

new.chunkl(C,IS, EO IOL],[TITL],[SISL],EEI EL],[PI PL]) 

new_chunk2(C,IS, [0 IOL],T,[SISL],EE I EL],[PI PL]),
I• >

new.chunkl(C,IS,OL.TL.SL,EL.PL).

new.chunkl (C, IS, E_ I OL] , E_ I TL] , E_ I SL] , E_ I EL] , I PL] ) : - 

new.chunkl(C,IS,OL,TL,SL,EL,PL).

new_chunk2(C,IS, EO I OL] , t(T,G) ,[SISL].EChecklEL],EPPllPL])

/* some chs used */
chunk_used(T,some,G,_,CL), 
member(c(0,_),CL), 

removeL(c(0,ch(N,_,_,_,_)),CL,CL1),
i• >

retract(ch_record(N,TC.Score, M)) ,

Scorel is Score + 10, 
assert(ch_record(N,TC,Scorel,M)), 
put_excep(N,CL1), 
strengthen(CLl,N,C,IS,EOIOL],t(T,G),ESISL],ECheck I EL],EPPllPL]).

new_chunk2(C,IS,EOIOL],t(T,G),ESISL],EChecklEL] ,EPPllPL])

/* this part finds P = {Ps in WP1:PP&E("PP1 in preds) => Ps } */ 
chunk_used(T,none,G,Ochoices,_), 

length(Ochoices,LOch),LOch > 1, 

member(0,Ochoices), 
getprec(G,EOIOL],ESlSL],C,WPlis,_,ConstsL), 

list.to.set(ConstsL,ConstL),
(intersection(PPl,WPlis,P) ; P = nil ), 

generalise(0,ConstL,Og), 

generalise(G,ConstL,Gg), 

generalised, ConstL, Pg) , 
generalise(Check,ConstL,Checkg),!, 
andtolist(Check.ChL) , /* this part ensures min. genn */
generaliseL(ConstL,ChL,_,Cv),/* by adding not eq. literals to */ 
list_to_set(Cv,Cvl), /* the check literals */

add_ne(Cvl,Nel), 
slim(Nel,Ne2), /♦ del. some ne's */ 

remove(nil,Ne2,Ne), 
ad(Checkg,Ne,Chi), 

gensym(ch,CH), 
tell(fred2),writeL(Ech(CH,Og,Gg,Pg,Chi), ’ . ’]),told, 

tell(fred21), 
writeL(Ech(CH,Og,Gg,Pg,Chi),‘’]),nl,nl,tell(user), 

see(fred2), 
read(ch(CH,01,Gl,Pl,Checkl)),

seen, 
assert(poss_ch(CH,01,G1,P1.Checkl)),

(discrim(Ochoices,ECheck I EL],nil.ConstL,IS,WPlis,G,C,0,Check,PPI,P); 

ndiscrim(Ochoices,EL,PL,Check,PPI,ConstL,IS,WPlis,G,C,0)),
i

new_chunk2(C,IS,EOlOL],t(T,G),ESISL],EChecklEL],EPPllPL])
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/* this part finds P = {Ps in WP1:PP&E("PPI in preds) => Ps } */ 

use_chunks(off), /* in case we have bad chunk ♦ / 

chunk_used(T,some,G,Ochoices,BadC), 
length(Ochoices,L0ch),LOch > 1, 
member(0,0choices), 

getprec(G,[0 IOL],[SISL],C,WPlis,_,ConstsL), 

list_to_set(ConstsL,ConstL),
(intersection(PPl,WPlis,P) ; P = nil ), 

generalised,ConstL,Og) , 
generalised,ConstL,Gg) , 

generalised,ConstL,Pg) , 
generalise(Check,ConstL,Checkg),!, 
andtolist(Check,ChL), /* this part ensures min. genn */

generaliseL(ConstL,ChL,_,Cv),/* by adding not eq. literals to */ 
list_to_set(Cv,Cvl), /* the check literals */

add_ne(Cvl,Nel), 

slim(Nel,Ne2), /* del. some ne’s ♦/ 
remove(nil,Ne2,Ne), 

ad(Checkg,Ne,Chi), 

gensym(ch.CH), 
tell(fred2),writeL([ch(CH,Og,Gg,Pg,Chi). ']),told, 
tell(fred21), 

writeL([ch(CH,Og,Gg,Pg,Chl), ’. ’]),nl.nl,tell(user), 

see(fred2), 

read(ch(CH,01,Gl,Pl,Checkl)),
seen,

assert(poss_ch(CH,01,G1,P1.Checkl)),
(discrim(Ochoices, [ChecklEL],nil.ConstL,IS.WPlis,G,C,0,Check,PPI,P); 

ndiscrim(Ochoices,EL,PL,Check,PPI,ConstL,IS,WPlis,G,C,0)), 
tell(fredlOO),nl,write(’**BAD CH ’)> 
write(BadC),nl,write(CH), nl,tell(user), 

put_excep(CH,BadC),
i .

strengthen( 

strengthen(CLl,N,/* only one choice-chunk—*/ 
not(member(c(_,ch(N,_,_,_,_)),CL1)).

strengthen(CLl,N,C,IS,[OlOL],t(_,G),[SISL],[Check I EL],[PPI|PL]) 

strengthen_chunks(on), 
not(ch_record(N,_,_,strengthened)), 

not(ch_record(N,multiples)), 
ch(N,01,Gl,Pl,Checkl), 

0 = 01, 

frame(name:C,_,always:EN,_), /* vars not already done by */ 
hold(Pl.IS) , 

hold(Checkl,EN), 
get_chN(CLl,N,Ochl), 
getprec(G,[0|0L],[S|SL],C,WPlis,_,ConstsL), 

list_to_set(ConstsL,ConstL),

(intersection(PPl,WPlis,P) ; P = nil ), 

retract(ch(N,01,Gl,P1.Checkl)), 

assert(poss_ch(N,01,Gl,P1.Checkl)), 
assert(weak_ch(N,01,Gl,Pl.Checkl)),

(discrim( [OlOchl],[ChecklEL],nil,ConstL,IS,WP1is,G,C,O,Check,PPI,P);
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ndiscrim( [0 I Ochl],EL,PL,Checkl,Pl,ConstL,IS,WPlis,G,C,O)),
i

strengthen^,.

put_excep(_, []).

put_excep(N, [c(_,ch(Nl,_,_,_,_))|CL]) /* alredy exception */
ch_ex(Nl,N),

put_excep(N,CL).

put_excep(N, [c(_,ch(NlI CL]) /* retract if circular */
retract(ch_ex(N,Nl)), 
put_excep(N,CL).

put_excep(N, [c(_,ch(N,_,_,_,_))|CL]) /♦ will strengthen ..*/
put_excep(N,CL).

put_excep(N, [c(_,ch(Nl,_,_,_,_))I CL]) 
assert(ch_ex(Nl,N)),write(ch_ex(Nl,N)), nl, 

put_excep(N,CL).

get_chN( [c(0,ch(N,)IR], N,[0 IOchl]) : - 

get_chN(R,N,Ochl),!.

get_chN([_IR],N,0chl) :- 
get_chN(R,N,Ochl),!.

get_chN( [] ,_,[]).

get_Len([011T],[SITl],C,[Chi ICh2],[PrlIPrR])

frame(name:01check:Chi,precon:Pr,_,_,_), 
hold(Pr,S), /* These 3 lines instantiate */
frame(name:C,_,always:A,_), /* vars not already done by */ 

hold(Chl,A), /* op parameter instants */

exp_state(Pr,Prl),

get_Len(T,Tl,C,Ch2,PrR).

get_Len( [],_,_,[],[] ) !.

/* nfaugmac ****nfaugmac ****nfaugmac **** */

/♦ augments a macro precon. */

/* This part find whether the formed chunk needs strengthening */ 
/* NOTE: post 8/88: — WPi/WPil are just Oi.pre/Oi.prel */ 

ndiscrim(_,
not(poss_ch(_,_,_,_,_)),! .

/♦ acculm version +endbit (in case of 2=paths)*/ 

ndiscrim(0SL,[El],[Pl],EA,PA,ConstL,IS,WP1,G,C,0) :- 

adcut(El,EA,EAA), 

adcut(Pl,PA,PAA), 

discriml(EAA,PAA,ConstL,IS,WPl,G,C,O,OSL), 

discrim3(EAA,PAA,ConstL,IS,WP1,G,C,O,OSL).
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ndiscrim(OSL,[El I ER],[PlIPR],EA,PA,ConstL,IS,WP1,G,C,0)
adcut(El,EA,EAA), 

adcut(Pl,PA,PAA), 

discriml(EAA,PAA,ConstL,IS,WPl, G,C,0,0SL), 
ndiscrim(0SL,ER,PR,EAA,PAA,ConstL,IS,WP1,G,C,0).

discriml(EAA,PAA,ConstL,IS,WP1,G,C,0,0SL) 
one_ucl(IS,G,C,OSL,ScoreL), 
sum(ScoreL,N), 
discrim2(N,EAA,PAA,ConstL,WP1,G,C,O).

discrim2(l

retract(poss_ch(Nm,Al,A2,A3,A4)),

compress(ch(Nm,Al,A2,A3,A4),discrim),!. /* at last chunk is made..*/ 
discrim2(_,EAA,PAA,ConstL,WP1,G,C,0)

new_aug_chunk(EAA,PAA,ConstL,WPl,G,C,0).

discrim3(_,
not(poss_ch(_,_,_,_,_)),!.

discrim3(_,/* get here - non-disc chunk */ 

retract(poss_ch(Nm,Al,A2,A3,A4)), 

compress(ch(Nm,Al,A2,A3,A4).multiples),!.

one_ucl(_,_,_,[], []) !.

one.ucl(Cstate,Goal,C,[0 I0T],[NI NT]) : -
frame(name:Calways:Always,_),
( (one_uc2(Cstate,Goal,0,Always), N=l)

; N=o ),
one.uc1(Cstate,Goal,C.OT,NT),!.

one_uc2(Cstate,Goal,0,Always) 

poss_ch(_,0,Goal,S,Ch), /*MAY CHANGE TO del(G,Goal..*/ 
hold(S,Cstate), 

hold(Ch,Always).

Z***************************************************************/
/* Note: WPil is simO in IJCAI paper or C(i) in ML one */

new_aug_chunk(EAA,PAA,ConstL,WP1,G,_,0) : -

(intersection(PAA,WP1,P) ; P = nil ),!, 

get_terms(P,TLl), /* TL1 = list of terms in P */ 
list_to_set(TLl,TL), /* get rid of dupes ♦/
get_preds_with_terms(TL,EAA,ER),

generalised,ConstL,Og) , 

generalise(G,ConstL,Gg), 

generalised,ConstL,Pg)» 

generalise(ER,ConstL,Checkg),!,

andtolist(ER.ChL), /♦ this part ensures minimal gen'n */
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generaliseL(ConstL,ChL,_,Cv),/* by adding 'ne' literals to */ 

list_to_set(Cv,Cvl), /♦ the 'check' literals */
add_ne(Cvl,Nel),

slim(Nel,Ne2), /*DIRTY way of del'ing some ne's */ 
remove(nil,Ne2,Ne), 

ad(Checkg,Ne,Chl), 

retract(poss_ch(Nm,_,_,_,_)),

tell(fred2),writeL([ch(Nm,Og,Gg,Pg,Chi),’. ']),told, 
see(fred2),read(ch(Nm,Ogl,Ggl,Pgl,Checkgl)).seen, 
tell(fred21),write(’enhanced chunk:-’),nl, 
writeL(Ech(Nm,Og,Gg,Pg,Chl),'. ']),nl.nl,tell(user), 
assert(poss_ch(Nm,Ogl,Ggl,Pgl,Checkgl)),!.

get.terms(X&Y,T)

x =.. E_lTL],
get_terms(Y,Tl), 

append(TL,Tl,T).

get_terms(X,T)
X

get_preds_with.terms(TL,E&A,E&R) : -

get_terms(E,ET), 

member(M,ET), 
member(M,TL), 
get_preds_with_terms(TL,A,R) , ! . 

get_preds_with_terms(TL,_&A,R) :- 
get_preds_with_terms(TL,A,R) .

get_preds_with_terms(TL,E,E)
get_terms(E,ET), 
member(M,ET), 

member(M,TL),!.

get_preds_with_terms(_,_,nil) .

/* *************** futile futile futile futile ************** */

/* utility fns-used by more than one part +++++++++ */ 

not(X) X,!.fail.

not(_).
/* write out list of terms ♦/

writeL(EnlIY]) nl,writeL(Y).
writeL([X IY]) write(X),writeL(Y). 

writeL(EJ) !.

/* call list of goals */ 
call_list([Cl|T]) call(Cl),call-list(T). 

call-list( []).

append( [] ,L,L) .

append([HIT],L,[HIZ]) append(T,L,Z).

sum(EJ,0) !.
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sum([HIT],N) sum(T,Nl),N is Nl + H.

intersect(SI,S2,X) elem(X,Si),elem(X,S2).

intersection(X,Y,I) setof(Il,intersect(X,Y,II),L),listtoand(L,I).

i([] □) /* intersection for lists */
i( [E| T] , Y, [E|T1] ) /* NOTE: error., e.g. i([x,y], [x], []) succeeds!!*/

member(E,Y),
i• > 
i(T,Y,Tl).

i([_lT],Y,Z) i(T,Y,Z).

i_equiv( [],_) fail,!. /* succeeds if there’s a common equiv mem*/ 
i_equiv([EI_],Y)

eq_member(E,Y),
i

i_equiv([_IT],Y) i_equiv(T,Y).

eq_member(E,[YI_])

E == Y,!.
eq_member(E,[_IT])

eq_member(E,T),!.

listtoand( [],nil)./♦ could just have one of these but ordering matters */ 

listtoand([X],X) !.
listtoand([XIY],X&T) !,listtoand(Y,T). 

andtolist(nil,[]).
andtolist(X&Y,[XIZ]) andtolist(Y.Z).

andtolist(X,[X]) !.

/* removes 1st occurence of a list el */

/♦ fails if no occurence */

removeL(El,[El IT],T) ! .
removeL(El, [XITl],[XIT2]) removeL(El,T1,T2).

removelast( [_],[]) !.
removelast( [XI XI], [XIYl]) removelast(XI,Yl).

removelastl( [L] , [] ,L) !.
removelastl( [X I XI], [XIYl],L) removelastl(Xl,Yl,L).

/* list utilities specific to ’fchmea’ ♦/ 

split_up_to([t(_,G)ITLR],t(_,G),[t(_,G)],TLR) !. 

split_up_to( [X ITLR],t(_,G),[X ITL1],TL2) : -
split_up_to(TLR,t(_,G),TL1,TL2) .

split_to_no(0L,0,[],0L) !.
split_to_no([0 IOL],N,[0 I0L1],0L2) : -

Nl is N-l, 
split_to_no(OL,Nl,OL1,0L2).

member(X,[X|_]).

member(X,[_IL]) member(X,L).
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/★ finds max in a List of nos, fails if empty list */ 
max([N],N) :- !.

max([NINL],M) :- max(NL.Ml),( (N>M1,N=M) ; (M1=M) ).

/* ’i’ has already been written */

interL([E|X],Y,[E|Z]) member(E,Y),interL(X,Y,Z). 
interL(

elem(X,Y&_)elem(X,Y). 
elem(X,_&C):-!,elem(X,C).
elem(X.X).

/* fails if P is not == to a Pl in arg2 */ 
rem_equiv(P,Pl&Pr,Pr) :-

P == Pl,
i

rem_equiv(P,Pl£Pr,Pl&Prl) 
rem_equiv(P,Pr,Prl).

rev(X,Y) :- rev_x(X,nil,Yl),remove(nil,Y1,Y),!. 
rev_x(X&Y,C,R) rev_x(Y,X£C,R).

rev_x(X,C,X&C).

reverse(X,Y) reverse_x(X, [],Y),!. 
reverse_x( [],C,C).
reverse_x([HIT],C,R) reverse_x(T,[HIC],R).

/* checks equiv of 2 ground £-exps */

equivc(X,Y) del(X,Y,nil),!,del(X,Y,nil),!.

/* checks to see whether 2 feexps are inconsistent */ 

inconsistent(G&_,G1)

inconsist(G,GP), hold(GP,Gl),!.
inconsistent(_&Gg,Gl)

inconsistent(Gg,Gl).
inconsistent(G,Gl)

inconsist(G,GP), hold(GP,Gl),!.

vars_in(X&Y) ((X =.. Z,vars_inl(Z)) ; vars_in(Y)),!.
vars_in(X) X =.. Z,vars_inl(Z).
vars_inl([HIT]) ( var(H) ; vars_inl(T) ).

/* pre: ithlist(i,j,x,y) input i=pos. of first in list, y is el. of x*/ 
ithlist(I,I, [X|_],X) .

ithlist(I,J, [_IL],X) Il is 1+1,ithlist(Il,J,L,X).

/* post: ithlistd, j ,x,y) ouput j = pos(y in x) + i -1 */

/* This procedure changes a list to a set ♦/
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list_to_set([], □) !.

list_to_set([L|T],S) member(L,T),!,list_to_set(T,S). 

list_to_set([LIT],[L|Tl]) list_to_set(T,Tl).

/* numbervars ♦/

numvars(A,B,C) numvarsl(A,B,C),!. 

numvarsl(x(N),N,N1)
Nl is N+l.

numvarsl(Term,Nl,N2) 

nonvar(Term), 
functor(Term,_,N), 

numvarsl(0,N,Term,Nl,N2).
numvars1(N,N,_,N1,N1). 

numvarsl(I,N,Term,Nl,N3)

I < N,

II is 1+1, 
arg(Il.Term,Arg), 

numvarsl(Arg,Nl,N2), 
numvarsl(Il,N.Term,N2,N3).

/* generate symbol predicate */

gensym(Root,Atom)

getnum(Root,Num), 

name(Root,Name1), 
name(Num,Name2), 
append(Namel,Name2,Name) , 

name(Atom,Name).

getnum(Root,Num)

retract(current_num(Root,Numl)),!, 

Num is Numl+1, 
asserta(current_num(Root,Num)).

getnum(Root,1) asserta(current_num(Root,1)).

/********* finds all applicable operators in state S */

findops(Cstate,Lops,Context) :- setof(0,f(0,Cstate,Context),Lops).

f(0,S,Context) usemacros(off),

frame( name: 0,
type: operator,

filter:.,

check: Ch,

precon: P, 

padd: 

_,_),

hold(P,S),

frame(name:Context,_,always:Always,_),
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hold(Ch,Always).
f(0,S,Context) usemacros(on),

frame( name: 0,

type: operator,

— >

check: Ch,

precon: P,
padd: _,

hold(P,S),
frame(name:Context,_,always: Always , _) , 
hold(Ch,Always).

/* finds instantiations of <argl>& S s.t. <argl> follows from S - 

or if it is always true in that context. On bactracking this 

will try for an alternate intantiation of course, but note that 
the most general S will not nec. appear first !! */

hold(nil&X,Y) :- hold(X,Y). /* nil IS REALLY TRUE */ 

hold(nil,_).

hold(ne(U,V)&Y,S) :-!, not(U == V),hold(Y,S).

hold(ne(U,V),_) :-!, not(U == V).

hold(X&Y,S) :- elem(X,S),hold(Y,S).

hold(X,S) :- elem(X,S).

/********* applies a list of ops to create a seq of states */

/* Note seq. will fail if unapplicable or one of addlists is superfluous*/

applyopseq( [Op ITl],S,[SI IT2],Context) :- !,f(Op,S,Context),

applyop(S,Op,SI),!, 

applyopseq(Tl,SI,T2,Context).

applyopseq( [],_,[] ,_) :- !.

/♦****+*+* applies a list of ops to create a seq of states */
/* as above but no precondition checking*/

applyopseq1( [Op ITl],S,[SI IT2]) : -
applyop(S,Op,Sl), 

applyopseql(Tl,SI,T2).

applyopseql( [],_,[] ) :- !.

/********* applies each op to create a list of new states */

applyops(State,[OpI 01],[Ns IT]) :- applyop(State,Op,Ns),
applyops(State,01,T).

applyops(_, [],[]).

/* MACROS ARE OUT FOR NOW
applyop(State,Op,Ns) :- frame( name: Op,

type: operator,
macrop: [_IL],
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applyopseql(L,State,SS),

last(SS.Ns).

*/

applyop(State,Op,Ns) frame( name: Op,
type: operator,
filter:

check: _,
precon:
padd: Padd, 
add: Add, 
delete: Del), 

del(Del,State,Nsl), 

ad(Add,Padd,Tadd), 
ad(Tadd,Nsl,Ns).

/* del(X,Y,Z) Z is Y-Z, where X and Y are SETS feed */

/♦ seems to work ok for an instantiated S on backtracking */
/* last results show that later alternatives generated are rubbish */

del(X,Y,Z) :- del3(X,Y,Z1),remove(nil,Zl,Z).

del3(X&D,S,Ns) :- !,del2(X,S,Nsl),del3(D,Nsl,Ns). 

del3(X,S,Ns) :- del2(X,S,Ns).

del2(X,S,Z) :- elem(X,S),remove(X,S,Z). 

del2(X,S,S) :- not(elem(X,S)).

del.cut(A,B,C) :- del(A,B,C),!.

remove(nil,X&nil,X) :- !. /*copes with removing nil */ 

remove(X,X&S,S) :- !.
remove(X,Y&S,Y&Z) :- !,remove(X,S,Z).

remove(X,X,nil) :- !.
remove(nil,X,X). /* this is so rem. nil will always succeed */

remove_bt(X,X&S,S). 
remove_bt(X,Y&S,Y&Z) :- remove_bt(X,S,Z). 

remove_bt(_,_&_,_) :-!,fail.
remove_bt(X,X,nil) :- !.
/************/

ad(X&A,S,Ns) :- elem(X,S),ad(A,S,Ns).

ad(X&A,S,X&Ns) :- ad(A,S,Ns). 

ad(X,S,S) :- elem(X,S). 
ad(nil,S,S). 
ad(S,nil,S). 

ad(X,S,X&S).

adcut(Ps,Pe,PP) :-

ad(Ps,Pe,PP),!.

last([E| □] ,E) .

178



last([_ I T],E) last(T,E).

/* adds extra predicates to a state which are implied implicitly */

exp_state(I,0) frame(_,_,_,axioms: L),expsi(I,0,L).

expsl(0,0, []) ! .
expsl(1,0, [Pre,Post IR])

del(I,Pre,nil),
ad(Post,1,01),
expsl(01,0,R).

expsl(I, 0, [_,_ I R] ) :-
expsl(I,0,R).

/* adds extra preds to environment facts which are implied implicitly */ 

exp_env(Pe,Pe2)
env_axioms(L),
expel(Pe,Pel,L),
adcut(Pe,Pel,Pe2),

expel(_,nil, □) !.
expel(Pe,B&Pel, [ [A,B]IL]) 

hold(A.Pe), 
expel(Pe,Pel,L).

expel(Pe,Pel,[_IL]) 
expel(Pe,Pel,L).

/* collects all the constants in a cjn of preds into a list */

get_consts(P&PS,CL) get_con(P,CLl),get_consts(PS,CL2), 

append(CLl,CL2,CL),!.

get_consts(P,CL) get_con(P,CL),!.

get_con(P,CL) P =.. [_IT], get_conl(T,CL).

get_conl( [],[]).
get_conl( [C I T] , [Cl CL] ) not(var(C)),get_conl(T,CL). 

get_conl([_IT],CL) get_conl(T,CL).

/*-------------------------------------------- */

/* chunk utilities */

dchunks retract(ch(_,_,_,_,_)),fail.

dchunks.

lchunks(F) tell(F),lchsl([]),lrec,lexch,told.
lchsl(X) ch(_,A,_,_,_),not(member(A,X)),lchs(A),lchsl([AI X]).

lchsl(_).
lchs(A) ch(Z,A,B,C,D),numvars(ch(Z,A,B,C,D),1,_),write(Z),

write(A),write(B),nl,write(C),nl,write(D),nl,nl,fail.
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lchs(_).

lrec nl,nl,ch_record(A,B,C,D),writeL([A,’ ’,C,’ ’,D]),nl,fail.
lrec.

lexch nl,nl,ch_ex(A,B),writeL([A,’ has exception ’,B]),nl,fail. 
lexch.

/♦save chs for use in other task*/
st_chunks(F) tell(F),schs,srec,sexch.nl,told,

tell(init_adv),init_world(I),write(init_world(I)), 
write(’. ’),nl,told.

schs ch(Z,A,B,C,D),
write(ch(Z,A,B,C,D)),
write(’ . ’),nl,fail.

schs .
srec ch_record(A,B,C,D),write(ch_record(A,B,C,D)) ,

write(’. ’),nl,fail.

srec.
sexch :-ch_ex(A,B),write(ch_ex(A,B)),

write(’. ’),nl,fail.

sexch.

/♦progress of a task

progrss(File) processq(X), writeout(File,X). 

writeout(File,[HIT]) :-

*/

/* status of a problem */

status(P) frame(name: P,trace: T,solution: S),

tell(fred),

pw(T), 

var(S), 
addprocess(status(P),75), 

tell(user).
status(P) :- frame(name: Ptrace: _,solution: p(X,Y,Z)), 

tell(fred),
nl,nl,write(’solution**************’),nl, 

write(’ state:’),nl,write(X),nl, 
write(’ ops:’),nl,wlist(Y),nl, 
write(’ cost: ’),write(Z),nl,nl,nl, 

tell(user).

pw([p(X,Y,Z)|T]) :- write(’partial trace:-’),nl, 

write(’ state:’),nl,write(X),nl, 

write(’ ops:’),nl,wlist(Y),nl, 

write(’ cost: ’),write(Z),nl,nl,nl, 

pw(T).
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pw( □).

wlist([X|Y]) write(X),nl,wlist(Y).
wlist( [] ) .

/*-------------------------------------------- +/

/* pretty list frames to file F ONLY for succ/fail lists */

writeframes(F) tell(fredl),listing(frame),told, 

see(fredl),tell(F).read(Fr), 
wfs(Fr),told,seen.

wfs(end_of_file).
wfs(Frame) pp(Frame),read(Next),wfs(Next).

pp(F) F =.. [frame IT],write(’frame(>),nl.nl,

ppi(T),write(’ ).'),nl,nl.

ppl([N,type:operator,suec:S,fail:F] )
write(N),nl,nl,

write(’succesful contexts:'),nl,nl,

wlrs(S),

write('failed contexts:'),nl,nl,

wlrs(F).
ppi(T) :- wlist(T).

wlrs( []) .
wlrs([r(G,S,O,P)|L]) write(P),tab(5),write(G),tab(5), 

write(0),nl,nl,wlss(S),nl,nl,wlrs(L).
wlss(X&Y&Z) write(X),write(’&’),write(Y),nl,wlss(Z). 

wlss(X) write(X),nl,nl.

/* prints to File all frames of type T with arity A */

storefs(File,T,A)

tell(File),
functor(X,frame,A),

call(X),
X =.. [_,_,type:T|_],

X =.. Y, 
wlist(Y),nl,fail.

storefs(File,_,_)
tell(File),told.

/*++++++++++

/* ************* fmacgr fmacgr fmacgr fmacgr fmacgr **************** */ 

/* This file contains a procedure to make solutions
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into MACRO OPERATORS F M A C G R
--  Uses fred4 as a scratch file
--  This version uses ’goal regression’ ♦/

mac(X) frame(name: X,

type: problem,
ancest:_, 

context: C, 

init_world: I, 
goal: GG,

— >

solution: S),

mac1(S,C,I,GG,X).

macros(R,C,I,G,X) :-

producemacros(on),

macros 1(R,C,I,G,X).

macros(_,.

macros 1( [p(S,0,_)IR],C,I,G,X) :-

del(S,G,G),writeL([’*mac*-no goals solved by op ’,0,nl,S,nl,G]), 

macros 1(R,C,I,G,X).
macros 1([p(_,0,_)IR],C,I,G,X) :-

length(0,1),
macros1(R,C,I,G,X).

macros 1([p(S,0,_)IR],C,I,G,X) :-

intersection ,̂ G,GG),

gensym(X,XX),
macl(p(S,0,_),C,I,GG,XX),

macros 1(R,C,I,G,X).

macros 1(_,.

macl(p(S,0Lm,_),C,I,GG,X) :-

producemacros(on),
nonvar(S),
length(0Lm,Len), 
replacemacs(OLm,OL,C), /♦ primitives->macs,update mac’score*/

!,Len >1, /* original opseq must be > 1 */

del(I,GG,G),
applyopseql(OL,I,SS1), /♦ no precon check */

removelast(SSI,SS),

reverse([I ISS],SSR),

reverse(0L,OLR),
/* vvvv “ Ch = WPel */
getprec(G,OLR,SSR,C, WPs1,Ch,ConstLD), /* old method below */ 

list_to_set(ConstLD,ConstL),

/*getprecon(OL,Pre,Ch,[I ISS],C),Pre= 01.pre+(0i.pre-0(i-l).add) */

applyopseql(OL,WPsl,FL), /*Ch are acculmutated perman.cons.*/

last(FL,Finalstate),
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del(WPsl,Finalstate,Add) , 
del(G,Add,Sadd),

/* Add = Finalstate - Pre */

generalise(WPsl.ConstL,Pl), 
generalise(Ch,ConstL,Chll), 

generalised,ConstL, A2) , 

generalise(Sadd,ConstL,Al), /* consts which are not in ConstL */

/* are turned into variables */ 
generaliseL(ConstL,OL,OLl,V4), /* generalize op seq. instances

& collect vars in V4*/ 
list_to_set(V4,V5), /* assume NO CONSTS IN UNINST. OPS NAMES */
V =. . [X|V5],

andtolist(Ch,ChL), /* this part ensures minimal gen'n */
generaliseL(ConstL,ChL,_,Cv),/* by adding not equal literals to */ 

list_to_set(Cv,Cvl), /* the 'check' literals */

add_ne(Cvl,Nel), 

slim(Nel,Ne2), 
remove(nil,Ne2,Ne), 

ad(Chll,Ne,Chl),
possible_macro(X,V,OL1,Chi,Pl,A2.A1).

possible_macro(_,_,0L1-

frame(name: _,
type: operator, 
macrop: [_I0L1], 

check: _,
precon: _, 

padd: _, 

add: _, 
delete: _ 

).

possible_macro(X,V,0L1,Chi,Pl,A2,Al) :- 
clock(Time), /* attach a value to a macro */
Ti is Time +2, /* currently 2 more than task no. */

tell(X),
write( frame(name: V,

type: operator, 
macrop:[TiI0L1], 

check: Chi, 
precon: Pl, 
padd: A2, 

add: Al, 
delete: nil)),

write('.'),nl,told, /* turns upper case into vars!!! */ 
see(X).read(TERM),seen,assert(TERM), 

tell(X), /* ******* report new macro ******* */

write(V),nl,nl, 
write('check: '),write(Chl),nl, 

write('precon: '),write(Pl),nl, 

write(’padd: '),write(A2),nl, 

write('add: ’),write(Al),nl, 

write('macrop: ’),write(OLl),nl,
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told.

add_ne([_],nil).
add_ne([X|Y],Z) add.nel(X,Y,Z1),add_ne(Y,Z2),ad(Zl,Z2,Z).

add_nel(_,[],nil).

add_ne1(X,[Y],ne(X,Y)) .

add_ne1(X,[ZIY],ne(X,Z)£Z1)
add_nel(X,Y,Z1).

slim(ne(U,V)&Y,ne(U,V)&Z)
name(U, [U1|_]),name(V,[U1I_]),slim(Y,Z). 

slim(ne(_,_)£Y,Z) slim(Y,Z).
slim(ne(U,V),ne(U,V))

name(U,[U1I_]),name(V,[U11_]) . 

slim(_,nil).
/* - - - 

getprec(Abs, [011 T] , [S I Tl] , C,Abs4,Ch,ConstL) :-

functor(01,Fun,NN),/* ops must be unique */ 

functor(0u,Fun,NN),/* must look at uninst’ed operator */ 

frame(name: Ou,EV,precon:PV,_,_,_), 
get_consts(PV,CSl),get_consts(EV,CS2) , 
append(CSl,CS2,CS),

frame(name:01,check:Chi,precon:Pr,padd:PA,add:AD,_), 
hold(Pr,S), /*These 3 lines instantiate */
frame(name:C,_,always:A,_) , /*vars not already done by */ 

hold(Chl.A), /*op parameter instants */

del(PA,Abs,Absl),

del(AD,Abs1,Abs2), 

ad(Pr,Abs2,Abs3), 
getprec(Abs3,T,Tl,C,Abs4,Ch2,CSC), 

append(CSC,CS,ConstL),

ad(Chl,Ch2,Ch).

getprec( Abs ,[],_,_, Abs, nil,[] ) :- !.

/* getprecon( [011T],P,Ch,[SITl],C) :-

frame(name:01check:Chi,precon:Pr,_,_,_), 

hold(Pr,S),
frame(name:C,_,always:A,_),

hold(Chl,A),
getpre( [011T],Pl,Ch2,Tl,nil,C),
ad(Chl,Ch2,Ch), 

ad(Pr,Pl,P). 
getpre( [01,02],Pl,Ch,[S],Astore,C) :- 

frame(name: 01,padd:PA,add:A,_), 

frame(name:02,_,_,check:Ch,precon:Pr,_,_,_), 

hold(Pr.S), 

frame(name:C,_,always:Always,_), 

hold(Ch,Always),
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ad(PA,A,AA),
ad(AA,Astore,Al), 

del(Al,Pr,Pl).

getpre([01I[021T]],P2,Ch,[SITl],Astore,C) 
frame(name:01padd:PA,add:A,_), 

frame(name:02,_,_,check:Ch2,precon:Pr, 
hold(Pr.S),
frame(name:C,_,always:Always,_), 

hold(Ch2,Always), 
ad(PA,A,AA),
ad(AA,Astore,Al), 

del(Al,Pr,Pl),

getpre([02 IT],P,Ch3,Tl,Al,C), 

ad(Ch2,Ch3,Ch),
ad(Pl,P,P2). */

/* This part changes constants to variables 
/* by turning the 1st letter to a capital.

/* -the first parameter must be a &-exp

NB: only 1-depth */
*/ 

constants considered */

generalise(nil,_,nil).

generalise(X&Y,ConstL,X1&Y1) :-

X =. . [HIT],
genlist(ConstL,T,Tl,_),

XI =.. [HITl],!, 
generalised,ConstL, Yl) .

generalised,ConstL, XI) :-

X =. . [HIT],
genlist(ConstL,T,Tl,_),

XI =.. [HITl].

generaliseL(ConstL,[XIY],[XIIYl],L2) :-

X =.. [HIT],
genlist(ConstL,T,Tl,LI),

XI =.. [HITl],!,
generaliseL(ConstL,Y,Yl,L3), 

append(Ll,L3,L2).

generaliseL(_, [],[],[]).

genlist(_, [],[],[]).
genlist(ConstL,[H|T],[Hl ITl],[H1|T2]) 

not(var(H)),
not(member(H,ConstL)) 

name(H,[I I J]),

/♦CHECK H IS NOT A SPECIAL CONST */

Il is I - 32, 
name(Hl,[Il I J]), 
genlist(ConstL,T,Tl,T2). 

genlist(ConstL,[HIT], [HITl],L) :-

genlist(ConstL,T,Tl,L).

/♦ take a list of instantiated ops and replace 

primitives */

any macros with their

replacemacs( [],[],_).
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replacemacs([0 IOL],T1,C)

frame(name:0,_,macrop:[_ | T].check:Ch,, 
increment(0),
frame(name:Calways:Always, /♦ instantiate params*/ 

hold(Ch,Always), 

replacemacs(0L,T2,C), 
append(T,T2,Tl).

replacemacs([0 IT],[O|T1],C) 

replacemacs(T,T1,C).

increment(O)

functor(0,Fun,NN), 

functor(0u,Fun,NN), 
retract(frame(name: Ou, 

type: operator, 
macrop: [NIT], 
check: Ch, 
precon: P, 
padd: PA, 

add: A, 
delete: D)),

Nl is N+l, 
asserta( frame(name: Ou, 

type: operator, 
macrop:[NlIT], 

check: Ch, 
precon: P, 

padd: PA, 
add: A, 
delete: D)).

/********** fexh fexh fexh fexh ****************/

/♦ -- breadth first forward search with a check for duplicate states
(sift predicate) ♦/

/* NOTE: THIS IS DIFFERENT FROM LP’S- THE SEMANTICS OF INVERSE OPERATORS 

HAVE BEEN PUT INTO ENVIRONMENT*/
/* definiton of fn to expand a partial soln exhaustively */

exhaustive_step(X) :-
frame( name: X,

type: problem, 
ancest:Ancest, 
context: C, 

init_world: I, 
goal: G, 

trace: PO, 

solution: S),

( (PO=[],P=[p(I,[],O)]) ; P = PO ),

/♦ print no. of open nodes ♦/

length(P0 , Le) , write ( ’ #’ ) , write (Le) , write ( 

lowcost(P,Pic),
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/* add one to expanded node count */

retract(numberofnodes(Nod)),
Nodi is Nod +1, 

assert(numberofnodes(Nodi)),

expand(Pic,Lnewps, G, C), 

removeL(Plc,P,Pl), 
( (Lnewps= [] ,P2=P1) ; append(Lnewps,Pl,P2) ), 

ex_success(X,G,Lnewps,S),
retract(frame(name:X,type:problem,_, 
tell(fred3),wlist(P2),told, 

assertz(frame(name: X, 

type: problem, 

ancest:Ancest, 
context: C, 

init_world: I, 
goal: G, 
trace: P2, 

solution: S)).

expand( p(Cstate,Y,N),Lnewps,G,C) :- 

length(Y,Le),writeL(['OL', Le]), 
findops(Cstate,Lops,C), 

fastsift(Y,Lops,Lopsl), 
use_heuristics(Cstate,G,C,Lops 1,Lops2,forward), 

applyops(Cstate,Lops2,Lstates),!, 
/*sift(Lops,Lstates,Lopsl,Lstatesl),*/ 

genps(Y,N,Lops2,Lstates,Lnewps,G).

genps(_,_, [],□,□,_)•

genps(Y,N,[OpI Opt], [Sr I St],[p(Sr,Or,Nl)IT],G) :- 

append(Y,[Op],0r), 

pathcost(Sr,Or,N,Nl,G), 
genps(Y,N,Opt,St,T,G).

/* take into account number of goals solved */
pathcost(S,Or,_,Nl,G) :- length(Or,Len),del(S,G,Left),andtolist(Left,L), 

length(L.NN),N1 is 2*NN +Len.

follows(G,[p(X,Y,N)IT],S) :-
(hold(G,X),

S = p(X,Y,N)) ;
follows(G,T,S).

/* asslist(Lstates). -only needed if all states are being saved

asslist([]) .

asslist([X|Y]) :- gensym(cs,CS),write(CS),assert(state(X)),asslist(Y).*/

ex.success(X,G,Lnewps,S) :- follows(G,Lnewps,S),

wipestates,
addprocess(critic(X),800),
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addprocess(chunk(X),800),

/*addprocess(status(X),900),*/ 

addprocess(mac(X),900).
wipestates retract(state(_)).fail.
wipestates.

ex_success(X,_,_,_) 

addprocess(exhaustive_step(X),200).
/* regenerates itself? */ 

fastsift( [],X,X).

fastsift(_, [] , []).

fastsift([Yl|_],[0 IOL],OL1)

inverse(0,Yl), 
fastsift( [YlI_],OL,OL1).

fastsift([YlI_], [01OL],[0 I0L1]) : -
fastsift( [YlI_],OL,OL1).

/* gets rid of states that have been seen before — */

sift([],[],[],[]).
sift([_|Rl],[S|R2],OL,SL)

state(ST), 

del(S,ST,nil), 

sift(Rl,R2,0L,SL).
sift([0|Rl] , [S|R2] , [0I0L] , [S|SL])

sift(Rl,R2,OL,SL).

/* gets rid of an operator that is just the inverse of the last one-*/

fastsift(_, [],[],[],[]).

fastsift(CS, [_IRl],[SIR2],OL,SL)

hold(S.CS), 
fastsift(CS,Rl,R2,0L,SL) .

fastsift (CS, [0 I Rl] , [S I R2] , [0|0L] , [S I SL] )
fastsift(CS,Rl,R2,0L,SL).

/* find lowest cost of list of p(<states>,<ops>,<n>) */

lowcost([p(X,Y,N)],p(X,Y,N)) !.
lowcost( [p(X,Y,N)IT],Z) lowcost(T,p(Xl,Yl,N1)),

( (N<N1 ,!, Z=p(X,Y,N)) ;
Z=p(Xl,Yl,Nl) ).

/************* drive driverf driverf driverf driverf driver *********/

/* FORWARD SEARCH */ 

b environment(C),init_world(I),nl,

write(’My environment is called ’),write(C),nl, 
write(’My current world is ’),nl,write(I),nl, 

task(C,I).
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bfile environment(C),init_world(I),nl, 
write(’My environment is called ’),write(C),nl, 

write(’My current world is ’),nl,write(I),nl, 
see(’list.tsk’),task(C,I),bfile.

bfile.

task(C,I)

retract(numberofnodes(_)) , 
assert(numberofnodes(0)) , 
nl, write( ’ Enter task or "h." for help>’), 
read(G), 

help(G,C,I). /* see driver_help */

taskl,end.of_file)

see(’list.tsk’),seen,!,fail.
taskl(C,W,G)

gensym(task.T),
assert(

frame( name: T,

type: problem, 
ancest: [] , 

context: C, 

init_world: W, 
goal: G, 
trace: [] , 
solution: _)

).
retract(processq(_)), 
assert(processq([d(exhaustive_step(T),1000)] )), 

! .go.
numberofnodes(Nn),
retract(activation(_)), 
assert(activation(0)), 

writeL([nl,’no. of expanded nodes: Nn.nl]),
frame( name: T,

type: problem,

ancest: _, 

context: C, 

init_world: _, 
goal: G, 
trace:_, 
solution:p(S,0m,_)), 

not(var(S)), 
replacemacs(Om,0,C), 

write(’By sequence of operators ’),nl,nl,write(0),nl,nl, 
write(’goal ’),write(G),write(’is satisfied, state is’), 
nl,nl,write(S),nl, 

retract(init_world(_)), 

assert(init_world(S)),
(print_stats ; true ). /* true for C-prolog */

print_stats :-

statistics(runtime,[_,CP]), CPused is fix(CP/100),
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statistics(clause_store,[XI,X2]), C is fix(100*(X2/Xl)), 
statistics(global_stack,[X3,X4]), G is fix(100*(X4/X3)), 

statistics(local_stack, [X5,X6]), L is fix(100*(X6/X5)), 

statistics(trail,[X7,X8]), T is fix(100*(X8/X7)), 
writeL([’CPUsed=’,CPused,’ secs, Space left: ']), 

writeL([’C=',C,'7, G=’,G,’7. L=',L,'7. T=' ,T, ’7.’,nl] ) .

taskl(_,_,_) nl, nl, write( ’ **TASK FAILURE**'),nl,nl,
storefs(fred4,problem,8), 
write('see fred4 for problem dump').

/♦***♦*** fchunk fchunk fchunk fchunk fchunk fchunk ***********/ 

/* uses numerous routines from FMACGR */

/* This contains the problem solution chunker for 

forward search methods- the chunk can then contain 

the subset of the state (-in which it was applied 
successfully) which was nec. for the success of the 

rest of the op sequence.

*/

chunk(X) :- chunking_is(off).

chunk(X) :- chunking_is(on),
frame( name: X,XI,X2,context:Context, 

init_world: I, 

goal: G, 
trace: T, 
solution: p(S,OL,C) ), 

removelast(0L,0Ll), 
applyopseql(0L1,I,SL), 
rechunks(I,G,OL,[I ISL],Context).

/♦ records chunks */

rechunks(I,G,[0 ITl],[SIT2],C) :-

reverse([0 ITl],OLR),

reverse([SIT2],SLR),
getprec(G,OLR,SLR,C,P,Check,ConstLD), 
list_to_set(ConstLD,ConstL),
/* only for mea --  intersection(PP,I,P), */

generalised, ConstL, Og), /* also note inters . (x,y,nil) fails!*/ 

generalised , ConstL, Gg) , 

generalised,ConstL, Pg) , 

generalise(Check,ConstL,Checkg),

andtolist(Check.ChL), /♦ this part ensures minimal gen'n */

generaliseL(ConstL,ChL,_,Cv), /*by adding not eq.literals to */ 

list_to_set(Cv,Cvl), /* the 'check' literals */ 
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add_ne(Cvl,Nel),
slim(Nel,Ne2), /* dirty way (by 1st letter) of del'ing some ne’s */

remove(nil,Ne2,Ne), 
ad(Checkg,Ne,Chi), 
gensym(ch,Nm),

tell(fred),writeL([ch(Nm,Og,Gg,Pg,Chl), ’ . ']),told,
see(fred),read(ch(Nm,01,G1,Pl,Checkl)),seen,
( ch(_,01,G1,Pl,Checkl) ; assert(ch(Nm,01,G1,Pl,Checkl)) ),!, 

rechunks(I,G,Tl,T2,C).
rechunks (I C) .

/ ******************* ******** **£ND* ******************* ** /
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1. INTRODUCTION
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RELATED WORK

2.1 Macrops

Evidently Samuel’s famous draughts program [Samuel 59] first 
implemented the general technique of learning by re-using 
previously stored solutions. but two important sophistications 
over simply storing a problem-solution pair were introduced by the 
method of macro operator or ’Macrop’ creation in [Fikes et al 721:

-abstracting out any details in the initial problem state 
that do not contribute to the finding of a. solution,

-the selective generalisation of 
the problem’s solution.
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Another feature of the Macrops was their open representation 
within STRIPS as ’triangle tables’ which allowed subsequences of 
operators to be later re-used. This method of storing ’open 
macros’ for the purpose of re-using arbitrary subsequences has 
been criticised in [Minton 85] and [Carbonell 83] on the grounds 
of inefficiency, although in the original paper the representation 
was also used for its benefits in monitoring pian execution.
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Significant improvement in problem solving within simulated 
robot worlds is achieved but there are drawbacks in using closed 
macros as the sole learning component:

-search trees shorten but grow bushy since distinct 
instantiations of goal achieving macros proliferate. A shift in 
problem representation is effectively made.but within which a weak 
heuristic evaluation function is generally inadequate.

system’s subsequent problem solving behaviour by providing search 
control knowledge. They are formed using similar ideas of 
abstraction and generalisation involved in macro creation, but the 
learnt components are stored in a dispersed manner. We outline 
part of their technique below.
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produce non optimal paths (even after. checks for redundant
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3The success of systems such as these relies partly on 
special concept description language (c.d.l) being supplied within
which types or operator bindings 
improve by experience, narrowing 
(for each operator) and therefore 
the situations when operators are 
comparison or early work).

are partially ordered. They 
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3. THE ARCHITECTURE OF FM

The design decisions reflected in FM’s i mp1 ementa t i on
made to al low the addition of various learning components as 
as providing an effective problem solver shell. At present 
control can perform a state space or goal reduction search, 
latter explained below.

were 
well

the
the

3.1 GUAL NODE SEARCH IN FM
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implementation of FM 
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M . p = 0 [ 1 ] . p
... U

U (0[21.p 
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( 0 [ 1 ] . a U U [ 2 ] .
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a ) )

A n o t h e r . more e f f icient method for forming M. p (implement ed
i n F M) is to use a goa 1 regression procedure. 1 f G i s the set o f
goa 1 predicates for the solution sequence then:

M . p = P n where P 0 = G
Pi = (Pi-1 - 0 [ n* 1 - i ] . a) U Cltn-H-iJ.p , i = 1 to n

In this context, the methods give equivalent results.

A compiled macro is then carefully generalised as outlined in 
2.1. Identical constants are generalised to the same variable 
throughout the macro. but equality binding restrictions are added 
where variables 
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5.1 Construction

C o n s ider u[ 1 j ( 1 < 1 n ) taken rrom an operator
Oil], UL2J .... LI [ n ] which achi eves a goa 1 node
P r e d i cate ( s ) G ) rrom a ini tial state 1. We build
( OC i J ’ . G’ . P’ ) for each 0[i J using simi 1 a r methods
ou t 1 i ned i n 4.1:

sequence 
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a b-chunk 
to those
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precondition of the
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identical constants are
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changed to the same variable names etc.

A chunk to guide state space search is constructed in the 
same manner except that P is simply the operator sequence’s macro 
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5.2 Augmented B-chunks

In some situations the b-chunk, as presented in 5.1, 
be discriminatory if used on an identical problem to which 
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sequence when important similarities with the initial state
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among the environment. initial state and goal obtained rrom 
successful proolem solving. in a form usable for future goal 
directed search.



6 . EXAMPLES

present two examples f r o m different domains. Note capital 
stand for variables in the chunks and macros shown.

6. 1 The 8-puzzle

This example shows the creation and chunks in stateuse of
space search and the s i m1 1 a r i t y to Soar’s chunks for this type of
stategy. ( see [Laird 86] which a 1 so gives de ta i 1 s of the 8- pu z z 1 e
problem). Basically the board has 9 numbered positions (
pl.p2....p9) on which ther e are 8 numbered tiles ( 11 . 12 . . . . t8 ) and
a ’blank*. The idea is to find a sequence of moves ( i . e. swapping
a tile with the biank hori zon ta 1 ly or vert i ca1 1 y) 1 inking a pair
of states. ( S. G) •

; pl : p2 : p3 :

: p4 : P5 : p6 : fi gure 1 . The 8- puzzle board.

; p? : p8 : p9 :

A state can be specified by the formula: at(tx.p1)&at(ty,p2)&...,
the t o p o 1 o g y by next(pl.p2)&<next(pl,p4)&t. . and an operator
move (t i lex. p y, pz ) means swap tilex (which is on py) with the blank
wh i c h must be on an adjacent postion pz.

The goal i s ’at(tl,pl)&at(t2,p2)&..&at(biank.pS>&.. ’ and to
solve this the system must solve the decomposable goals

G1= a t(b1ank. p5),
G2= at(b1ank,p5)&at(t1.pl),
G3= at(blank.p5)&atktl.pl)&at(t2,p2).
G4= ... etc (see [Korf 852 for details)

To sol 
series of 
problem (1 
Using only

ve these goals rrom arbitary positions FM can
chunks through 

.G2) where 1 
weak heuristics

and creates chunks such as

create
its search experience. Consider the 
= a t(b1ank,p5)&a t(11,p2)&. . (anything). 
F M finds the correct operator sequence.
(ignoring some details):-

a

t moved 1.X1.X2.’;
a t ( T 4 , X 4 ) ;
at(Tl.XI) & a t(b1ank.X2)&at(T2,X4)&at(T4.X3)t».
next(X2.X3)&next(X3.X4)&next(X4,Xl)&next(Xl,X2).).

If the system is subsequently given the problem I 1 ’ . G'2) where 
1 = at(b1ank.p5)&at(t1,p4)& ...(anything) then no choices in the 
search will appear since chunks including the one above advise the 
correct operator bindings through each step in the state space 
search. This sort of improvement is termed ’symmetrical transrer’ 
in [Laird 86 J.



Robot World

This example gives an idea of how domain specific heuristics 
can be built up in a simulated robot world similar to that found 
in (Fikes et al 72). The system is asked to simulate a robot
performing various
figure 2.

box-moving tasks in the world descr ibed i n

:r oom 1 1r oom2 1 room3 !

___x __
1 1

f i gur e 2 : a robot wor 1 d

— x -------------------- x
1 1

----------------------------\-------------- --
1room4 !r oom5 !roomB
: \ \ :

1
1 11 1

1 room?

1 »

1

FM learns various useful macros by experience such as 
(ignoring some details):-

mac-liRoomx,Box,Door.Roomy) is
preconditions: Roomx connects Roomy by Door &

action: 
primitives :

Box is in Roomx on the floor &< the Door is 
open & the robot is in Roomy;
Puts Box in Roomy next to the Robot 

gotodoor(Door,Roomy), 
gothrudoor(Door,Roomx), 
goto(Box ) , 
pushtodoor(Box,Door,Roomx), 
pushthrudoor(Box,Door,Roomy) .

B-chunks are learnt by experience as described above. They advise
on the best instantiations of these macros during search e.g 
chunk reates to the macro above (again some details are lert

this
out.) :

mac-1iRooml, Box 1,Doorl.Room2) ; 
Box is in RoomB:

box

Boxl is 
connects

This advises

in Rooml on the foor & Doorl is open
Room2 by Doorl

instantiations
to to a room next to the one

& Room2 connects RoomS
Rooml

for the macro that would move the 
of its goal position-, and advises

against any instantiations that do not conform to this.



6. FUTURE WORK

Experiments have shown that impressive results are achieved 
when chunks are created tor macros, because the number of possible 
instantiations of macros in the backward search tends to be much 
higher than primitives, and so the need for heuristic pruning is
greater. To
investigate:

assess the r u 1 I power of the b-chunk we mu s t

-methods o T chunk cr ea t i on for mac r o s t ha t avoids any
combinatorial explosion in the learning phase.

-concept learning t o genera 1i se existing chunks where
appropriate (e.g. the example chunk is too specific in that it 
insists on open doors;.

CONCLUS1 ON

We have presented a 
space, general problem solvers 
Given a particular domain, 
heuristics. in the torm of 
successrul problem solving, 
and generalised goal pair, 
operator variables, 
state information.

new weak learning heuristic for state 
for use in goal directed reasoning, 

this weak method can create strong 
b-chunks, through the experience of 
These chunks record for each operator 

the adviseable instantiations for
by storing important environment and initial
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The Anatomy of a Weak Learning Method for use in Goal 
Directed Search

t .l . Mc Clus key
Department of Computer Science, The City University, London, 
England, EC1 OHB.

Abstract

We present an overview of a problem solving system that has been built to explore 
the potential of experience-based, weak methods for learning. One such method, that of 
creating heuristics from experience, is described in depth with the help of examples. 
This method creates heuristics to improve goal directed search by analysing why an 
operator appeared in a successful sequence. Heuristics are formed by the model-based 
generalisation of similarities between the operator’s weakest precondition and a 
problem’s specification. An algorithm is presented which uses background knowledge of 
the application domain to strengthen these similarities.

1. Introduction

The objective of this research is to explore the learning of heuristics by 
experience, and the hypothesis that a general problem solver shell can create 
useful domain dependent heuristics by such experience. To this end we have 
designed and implemented such a shell called FM. When applied to an application 
domain, it uses weak methods to acquire strong problem solving heuristics 
through experience, resulting in improved performance. FM can form heuristics 
to bring about improvements in search, representation change and goal ordering. 
In section 2 we present an overview of its architecture; in section 3 we describe 
at length, with the help of examples, the anatomy of one such weak method for 
reducing search within a goal directed control strategy.

Similar lines of research have been followed in the last few years which have 
inspired this work (Korf, 85; Laird, Rosenbloom & Newell, 86; Langley, 85; 
Carbonell, 83). They involve combining learning components with typical A.I. 
paradigms of Problem Solving, which are consequently used as the performance 
element for the learning techniques. A parallel effort is the development of the 
so called second generation expert system; here rules for shallowing reasoning 
can be created and modified incrementally from a deep application model when, 
during problem solving, the present rule set fails (e.g. Van de Velde 86). This 
work is aimed at improving knowledge intensive systems, and oriented towards 
the creation of rules within a knowledge base, rather than the improvement of 
search and representation in search intensive systems.

Our problem solver shell has been equipped with weak learning methods and 
designed and implemented with the following characteristics: it accepts 
application domains in the form of an environment (facts and rules) and a set of 
structured, transparent operators (in the sense of Porter & Kibler 84). Problems 
are posed as initial state and goal condition pairs, and either a state space or 
problem space search strategy can be selected. A dual format for learnt 
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heuristics is used: they are formed explicitly for search guidance but also appear 
implicitly through representation changes in the application domain’s operators.

2. An Overview of FM

The main modules of FM are shown in figure 1, arrows showing data flow in 
and out of the two main processes; each component is present in modular form 
and therefore easily changed. A brief description of components is given below 
with the help of a simple robot world example shown in figure 2. FM has been 
tested with typical micro-worlds (e.g the Eight Puzzle, Tower of Hanoi, various 
robot worlds and blocks worlds). It exhibits learning during and after problem 
solving sessions (the former type has helped problem solving within that 
session); it forms heuristics that apply to problems with different initial and goal 
states, and also to both scaled up and reconfigured environments. Methods for 
learning three types of heuristic are being investigated: for search guidance, for 
representation change in operators and for goal decomposition.

Figure 1: The FM achitecture

rooml
___ /

room4

box1 room2

I room5^

21

room3

room6 robot |

box2

Figure 2: A Robot World



A Weak Learning Method 3

A goal and initial state are stated as conjunctions of literals in first order logic; 
e.g. goal = in_room(box1,room6)&closed(door56), 
initial state = in_room(box1,room1)&in_room(robot,room6)&...open(door56)&...

The environment is a collection of facts and rules which act as background 
knowledge and include the typing taxonomy of objects;
e.g. environment = type_of(box1,box)&...type_of(room1,room)&... 

connects(room5,room6,door56)&fits_thru(box1)door56)&... 
(in_room(X,R)&next_to(X,Y) -> in_room(Y,R))&... 
(at_door(X,D,R) -> in_room(X,R))&...

An operator O has five main parts, (O.e, O.p, O.a, O.s, O.d), representing 
environmental preconditions, main preconditions, add-list, side effects and 
delete-list, respectively. They are all specified as conjunctions of literals 
containing variables whose scope ranges throughout the operator, and are 
assigned a STRIPS-like semantics; (note: capital letters are used within 
predicates to represent variables in this paper)
e.g. pushthrudoor(B,D,R) =

(connects(R,R1,D)&fits_thru(B,D), 
at_door(B,D,R1)&next_to(robot,B)&open(D), in_room(B,R), 
in_room(robot,R), at_door(B,D,R1)&at_door(robot,D,R1)&next_to(B,X)& ...)

Currently there are two kinds of learning techniques implemented: compiling 
operators into macros in primitive operator format and creating new heuristics 
which appear as various types of chunks. Details of the former are presented in 
(McCluskey, 87), along with a description of the main goal reduction-type control 
strategy employed in FM. Chunks, which are so named since they are created 
from a successful problem solving sequence and advise on the future use of an 
operator, are explained in the next section.

3. Chunks in FM

3.1 State Space Chunks

We will describe the construction of a simple chunk, which can be used by 
FM as a heuristic in a state space search strategy, because it provides 
background for the b-chunks explained in 3.3. Bearing a similarity to the chunk 
of SOAR (Laird, Rosenbloom & Newell, 86), they form heuristic preconditions for 
(operator, goal) pairs by the model-based generalisation of a successful operator 
sequence’s weakest precondition.

The construction is made in two stages: Firstly, given a sequence of fully 
instantiated operators (O(i): 1=< i =<n} achieving goal predicates G, form the 
quad Q = (O(i), G, WPs(i), WPe(i)) for each i. Here WPs(i), WPe(i) are the state 
and environment components of the weakest precondition WP(i) of the operator 
sequence (O(j) : i =<j =< n), respectively, defined here by:

WPs(i) = P(n+1-i) where P(0) = G,
P(j) = (P(j-1) - (O(n+1-j).a & O(n+1-j).s)) & O(n+1-j).p: 
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and WPe(i) = O(i).e&O(i+1).e& .. &O(n).e.

The symbols and mean set difference and set union, respectively. 
Since we are dealing with conjunctions of ground literals these operations are well 
defined.

Secondly, Q is generalised into a chunk in the following way: Every constant 
symbol that occurs in (O(j) : i=<j=<n) as a result of substitution for an operator 
variable, in the original proof of the operator preconditions, is generalised to a 
variable, with identical constants turning to identical variables, throughout Q. If 
two constants s, t of the same type occur, then they may be generalised to 
variables S, T, but an extra predicate ’not_equal(S,T)’ is added to WPe(i). This 
has the special meaning that the variables may not be later instantiated to the 
same constant and, together with the other collected constraints in WPe(i), 
ensures a minimum generalisation.

3.2 Use of State Space Chunks

FM uses its constructed chunks described above in a forward state space 
search. Consider S, a conjunction of ground literals representing the ’current 
state’, in a search for goal state or condition G, with respect to an environment 
E. Assume that the set of operator(s’) instantiations that may be applied to S is 
Os; then any O in Os that maximises the size of the following set of chunks is 
heuristically favoured to form a successor to S:

{(O’,G’,WPs,WPe): (O,O’)t unifies for some substitution set t such that G 
contains (G’)t, S contains (WPs)t and E contains (WPe)t}

In other words the operator(s’) instatiantions that ’match’ the most chunks are 
chosen to continue the search.

Chunks created for application domains that warrant a state space search can 
significantly reduce search times. We have applied FM to such domains as the 
Eight Puzzle and achieved results supporting the claims of (Laird, Rosenbloom 
& Newell, 86). Below is a sample chunk created during problem solving in the 
Eight Puzzle world which would correspond to their ’symmetrical transfer’ of 
learning, involving a cyclic movement of three tiles: 
ch1 = (move(T1,X1,X2),

at(T4,X4), 
at(T1,X1)&at(blank,X2)&at(T2,X4)&at(T4,X3), 
next(X2,X3)&next(X3,X4)&next(X4,X1)&next(X1,X2)& 
type_of(T1,tile)& ...type_of(X1,position)&...) .

Only one simple operator is needed with the relational representation we are 
using (i.e. move a tile T from position P1 to P2): 
move(T,P1,P2) =

(next(P1,P2)&type_of(T,tile)& .... at(T,P1)&at(blank,P2), 
at(T,P1)&at(blank,P2), _, at(T,P1)&at(blank,P2))
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3.3 The B-chunk

FM is equipped with a goal reduction strategy which can search through a 
space of nodes representing partial solutions to a problem (McCluskey, 87). 
Nodes may be generated by adding an operator that achieves desirable goal(s) 
to a parent’s partial solution. The goal of the new node is to solve the operator’s 
preconditions (similar to the goal node search of (Dawson & Siklossy, 77)). Nodes 
may also be generated to change operator ordering in the face of conflicting 
goals, or to add a whole sequence of operators which solve one particular 
subgoal. The chunks described above do not, of course, apply here since they 
rely on the idea of matching a current state. To improve the goal reduction 
search FM analyses a successful operator sequence that solves some goal node 
(modelled simply as (State, Goal, Environment) below), and creates b-chunks.

The general idea is as follows: Consider a fully instantiated operator sequence 
(O(i): 1=<i=<n) that solves some goal node (S,G,E). For each O(i), the features 
occurring in (S,G,E) which seem to be the reasons why O(i) occurred in the 
sequence, are stored in the form of a b-chunk. Another problem (or node) 
(S’.G’.E’), which matches this chunk (see 3.4 for the precise definition of 
matching), would then have that particular operator proposed (along with the 
constraints embedded in the chunk) to be part of the solution sequence. In the 
present version of FM, however, the chunk is used more as a operator 
application discriminator than a proposer i.e. chunks cut down the branching 
factor of goal directed search.

We will now introduce an example operator sequence that will be used to 
clarify the b-chunk idea. Using the figure 2 as a diagramatic description of the 
initial state, with G= in_room(box1,room3), let
{0(1), 0(2), ... 0(11)} = {gotodoor(door56,room6), gothru(door56,room5), ... 

pushthru(door23,box1,room3)}.

Using similar techniques to section 3.1 above, we form the core, C(i), of a 
b-chunk’s heuristic precondition on states as the conjunction of the set:

{P in WPs(1) : WPs(i)&E => P}

e.g. consider 0(9) = pushthru(box1,door12,room2) above. Then with 
WPs(9) = at_door(box1,door12,room1)&open(door12)& ...,

E = (at_door(X,Y,Z) -> in_room(X,Z)))& .... 
WPs(1) = in_room(box1,room1)&open(door12)& .... 
we have C(i) = in_room(box1,room1)&open(door12)&open(door23).

A b-chunk is now formed by generalising (0(i),G,C(i),WPe(i)) as in 3.1. The 
chunk for the above example would be:

ch2 = (pushthru(B1,D1,R2), 
in_room(B1,R3), 
in_room(B1,R1)&open(D1)&open(D2), 
connect(R1,R2,D1)&connect(R2,R3,D2)&fits_thru(B1,D1)& ... ).
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This chunk would discriminate against other possible operator instantiations 
in the goal directed search since it incorporates similarities to the initial state 
that only pushing the box from rooml would satisfy. Chunks formed from 
operators that occur towards the end of a sequence usually turn out not to be 
discriminatory. In this case, FM ’strengthens’ them by the following iterative 
process:

W1(0):=C(i); W2(0) := WPe(i); j := 1;
repeat

(X, Y) := {x, y : x is a predicate in {WPs(i) -- C(i)} and is related to some 
predicate in WPs(1)J by an association chain y of length j in E);

W1(j) :=W1(j-1)&X; W2(j) :=W2(j-1)&Y; j:=j+1
until either the generalised chunk (O,G,W1(j),W2(j)) is 
discriminatory, or some complexity bound is reached.

The technique of using association chains is explained in (Vere, 77). The 
stengthening process adds important features that connect WPs(i) and WPs(1) to 
the last two components of the chunk. Consider creating a chunk for 
pushthru(box1,door23,room3) occurring as 0(11) in our example. Then C(i) = 
open(door23), which would not discriminate against pushthru(box1, 
door35,room3). After the action of this process (for j=1 only) the chunk is now 
more useful:

ch3 = (pushthru(B1,D1,R1), 
in_room(B1,R1), 
in_room(B1,R3)&open(D1)&open(D2), 
connects(R1,R2,D1)&connects(R2,R3,D2)&fits_thru(B1,D1)& ... )

3.4 The Use of B-chunks

Consider an operator instantiation O which has been proposed as part of a 
solution sequence to a node (S,G,E). B-chunks that match the operator and the 
node’s three components in the following way, favour that instantiation (similar to 
3.2): for b-chunk (O’.G’.WPs.WPe) we require (0,0’)t to unify for some 
substitution set t such that G, or one of the ancestors of (S,G,E)’s goals, contains 
(G’)t, S contains (WPs)t and E contains (WPe)t . Consider our simple example 
again, after the eleven operator sequence to transport the box into room3 has 
been ’executed’. During the solving of a new task ’in_room(box2,room3)’, the 
chunk *ch3’ will advise in favour of the operator instantiation 
pushthru(box2,door35,room5), since it conforms to the chunk’s constraints within 
this task specification.

4. Conclusions and Future Work

We have given an overview of a general problem solver shell employed in 
exploring weak methods for learning, and described a novel method, that of 
creating b-chunks, for cutting down search in goal directed systems. B-chunks 
integrate well with another method used in FM, that of closed macro creation 
(McCluskey, 87), since they advise on the use of both primitive and macro 
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operators. This is important since although the latter reduce the depth of search, 
the branching factor increases, and so the need for an improving heuristic is 
more acute. B-chunks can be adapted to advise on goal ordering and we hope to 
to extend their application to non-linear planning processes. We also envisage 
optimising the chunks created using techniques fron Incremental Concept 
Induction and further feedback monitoring.

We have sidestepped many problems e.g. the system relies on successful 
operator sequences before learning can begin, and makes the assumption that 
sequences are optimal. It has been useful testing FM on micro-worlds, since 
experimenting with different learning methods and representation shifts is easier, 
but we are at present embedding it in a ’real world’ robot inspection problem. 
Regarding the implementation, we have found that the complexity of the 
strengthening algorithm given in 3.4 constrains its use to small values of ’j’, and 
its performance depends heavily on the initial domain representation. Finally, the 
system, as described, has been implemented and runs in C-Prolog.
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COMBINING WEAK LEARNING HEURISTICS IN 
GENERAL PROBLEM SOLVERS

t .l . Mc Clusk ey

ABSTRACT

This paper is concerned with state space problem solvers that achieve generality by 
learning strong heuristics through experience in a particular domain. We specifically 
consider two ways of learning by analysing past solutions that can improve future 
problem solving: creating macros and the chunks. A method of learning search 
heuristics is specified which is related to ’chunking’ but which complements the use of 
macros within a goal directed system. An example of the creation and combined use of 
macros and chunks, taken from an implemented system, is described.

I INTRODUCTION

Integrating ideas and techniques devoloped in Machine Learning, with those of 
Problem Solving, has attracted substantial recent research effort (e.g. [Laird et al 86], 
[Korf 85], [Langley 85], [Mitchell et al 83]). An important aspect is the revival of the 
’general’ problem solver. Its demise was due in part to the failure of its weak heuristics 
to tackle problems of complexity in some given application domain; now it returns 
equipped with not just weak problem solving heuristics but with weak heuristics for 
learning strong, i.e.domain dependent, heuristics. The latter may take the form of useful 
shifts in the problem space representation (a simple example is the learning of macro 
operators) or improving search through a particular space by the acquisition of search 
control heuristics. Thus, while its generality is maintained, learning may improve the 
problem solver’s efficiency during the application to a particular domain. This is the 
approach we have taken in the construstion of a ’heuristic learning problem solver shell’ 
called FM; it can acquire strong heuristics from problem solving experience when it is 
applied to specific domains. A complementary approach is to acquire or discover them 
during a preprocessing stage as in [Iba 85], [Korf 85]) and [Dawson & Siklossy 77].

FM’s application domains can have variable initial and goal states. Applications are 
interchangeable by specifying domain environments, states and goals as expressions in 
first order logic, and operators in terms of structured add, delete and precondition 
predicates. Control stategies may be interchanged (e.g. forward best-first or goal 
reduction) as can weak learning methods such as macro and chunk creation.

This constitutes a more general approach to recent work on heuristic learning in 
problem solvers (e.g. [Mitchell et al 83], [Korf 85]), where systems typically improve in 
domains with a fixed goal, employ a more specialised representation scheme, and a 
forward state space search strategy. This paper will outline FM’s goal directed search 
and describe how macros and chunks are created and used as complementary 
heuristics during that search.



II GOAL NODE SEARCH IN FM

The backward search of FM proceeds in a goal reduction manner, starting with the 
initial goal, through a space of goal nodes (similar to those in [Dawson & Siklossy 77]). 
Each goal node can be modelled as a 6-tuple:

(identifier, goal, initial state, ancestors, purpose, trace).
The trace records attempts to solve the goal, whereas the purpose records why the goal 
node was created (typically to solve the unsatisfied preconditions of an operator). Goals, 
expressed as conjunctions of predicates, are initially assumed to be decomposable: 
when a goal node is activated, operator instantiations which add goal predicates have 
their unsatisfied preconditions form another goal node, unless they are already satisfied 
in which case those operators are applied to the initial state and the result recorded in 
the trace.

When the trace of a goal node eventually contains a state satisfying its goal (via an 
operator sequence Os), we say that the goal node is solved, and all nodes which are 
ancestors of it are rempved from the search. If it was activated to solve an operator O’s 
preconditions, then the sequence Os + O is applied to the goal node’s parent’s initial 
state and the result recorded in the parent’s trace.

A goal node’s initial state may be the state inherited from a parent node, or may be 
an advanced state partially satisfying the parent’s goal. The latter is the case when goals 
cannot be solved by simple decompositon; FM examines the trace and forms new goal 
nodes whose goal predicates are inherited but whose initial states are selected from 
intermediate states taken from the parent’s trace.

The kind of representation of goal nodes outined above aids both the formation and 
use of strong heuristics. The trace is available for analysis and criticism after the 
solution of each goal node, allowing ’within-trial transfer of learning’ (see [Laird et al 84]) 
to take place. In our implementation of FM we have experimented with the formation of 
closed macros, ’b-chunks’ and also subgoal ordering heuristics at this stage, but we 
shall limit our discussion to the first two.

Ill CLOSED MACRO CREATION

We consider a closed macro operator to be an operator sequence that has been 
compiled and generalised into a form similar to that of a primitive operator (in contrast to 
the ’open' macrops of [Fikes et al 72]). This sequence forms part of a past solution, in 
the case of learning by experience, which includes fully instantiated operators and 
intermediate states. Here the compilation involves finding the sequence’s weakest 
precondition through the intermediate states and using it as the macro’s precondition. 
Within this certain constants can then be selectively generalised using a technique 
similar to the Explanation-Based Learning of [Mitchell et al 86].

Systems that learn closed macros ([Minton 85], [Iba 85]) seem to demonstrate 
significant improvement in problem solving within robot and puzzle worlds but there are 
pitfalls in using this technique as the sole learning component:

-search trees do shorten but unfortunately grow bushy since distinct instantiations of 
macros proliferate. (This is reminisent of the effect of paramodulation, a ’macro 
inference rule’ in Theorem Proving, which combines resolution with the axioms of 
equality, but when used in search changes long thin trees to short bushy ones!).



-solutions which comprise of closed macros are prone to produce non-optimal paths 
even after checks for redundant primitive operator sequences have been made.

We claim that such problems may be overcome by the learning of strong heuristics 
such as chunks to complement the use of macros.

Macros are created and stored in FM when goal nodes are solved, and then are 
immediately available for use in problem solving. Each are compiled from a successful 
operator sequence into a primitive operator format. The major part of this compilation 
process is in building up the precondition M.p (a conjunction of predicates) of a macro 
M. This is accomplished by a procedure modelled on goal regression equations:

M.p = Pn where PO = G and
Pi = (Pi-1 -- O[n+1-i].a) U O[n+1-i].p , i = 1 to n

where ’U’ and mean set union and difference, O[i].p, O[i].a stand for the 
precondition and add predicates of operator i respectively, and G the goal predicates for 
the solution sequence.

Constants that appeared as arbitrary members of some particular type in the 
solution's operator sequence are carefully generalised to a variable with that type 
restriction (following [Kodratoff 84]). Generalisation is justified since no operator in the 
solution sequence referred to the constant specifically but only to its type. Identical 
constants are generalised to the same variable throughout the macro, but equality 
binding restrictions are added where variables of the same type are generalised from 
distinct constants, so that they may not be instantiated to the same constant when in 
use. Macros are then incorporated into future problem solving as primitive operators, 
although some may later be deleted if rarely used.

IV B-CHUNK CREATION

The chunks created by FM improve the system’s subsequent problem solving 
behaviour by providing search control knowledge. They are formed during the goal 
directed search and advise on the search through partial solutions. The absence of such 
a learning component in STRIPS with Macrops is pointed out in [Porter and Kibler 84] 
and Minton’s Morris system [Minton 85] apparently combines only weak search 
heuristics with the use of macros.

Consider O[i] (1<i<n) taken from an operator sequence O[1],O[2]......O[n] which
achieves a goal node (with goal predicate(s) G) from a initial state I within a domain 
environment E (E is a set of facts and rules constituting background knowledge for a 
particular application). A b-chunk (O[i]’; G’; P’) is built for each O[i] to the following 
specification: consider a function ‘sim’:

sim : CP x CP x CP x NatO --> CP 
where CP is the space of conjunctions (or sets) of predicates, and 
sim(X,Y,E,0) = (P in Y: P logically follows from X&E) 
sim(X,Y,E,N) = sim(X,Y,E,N-1) union

(y el. of Y, e subset of E : y is related to an x in X 
by an association chain e of length N}

Then P= sim(M(i),M(1),E,K) where M(j)= the macro precondition (see section III) of 
sequence O[j],O[j+1], ...,O[n]; K >= 0, and finally

(O[i]’; G’; P’) = the careful generalisation of (O[i]; G; P).



When K = 0 then O[i]’s chunk’s third component may be roughly described as those 
predicates which were present in the goal node’s initial state and that were also involved 
in the achievement of G after O[i-1]. This includes environment information (which is 
assumed to be a part of every state) that has been used in the satisfaction of the 
operator's preconditions. FM initially forms P with K=0 and then checks to see if the 
resulting chunk would be discriminatory if used to solve the same goal node again. If it is 
not the case then K is incremented and P is augmented with predicates using an 
'association chain’ technique similar to that described in [Vere 77].

B-chunks are then used during subsequent search when FM finds multiple operators 
(or operator instantiations) are available to achieve a goal predicate Gp, but none of 
their preconditions are completely satisfied. A b-chunk (01; G1; P) will favour an 
operator instantiation O applied to a goal node if P logically follows from l&E under the 
variable bindings obtained by the successful matching of 01 to O, and G1 to either Gp or 
one of Gp’s ancestors. The instantiation(s) favoured by the most chunks is then chosen 
to form a new goal node.

V COMBINED USE OF LEARNT HEURISTICS

To clarify the combined use of closed macros and b-chunks we use a simple 
example. We applied FM to a robot world using a similar operator set to [Fikes et al 72]. 
After box moving tasks it forms macros such as:

( name: macro21(Rm1, Dr1,Rm2,Box,Dr2,Rm3), 
preconditions: in_room(Box,Rm1)&next_to(robot,Box) 
&connect(Rm1,Rm2,Dr1)&connect(Rm2,Rm3,Dr2) ....
add: in_room(Box,Rm3), 
side_effects: in_room(robot,Rm3), ... ).

Macro21 is equivalent to the primitive sequence:
{pushtolBox.Drl.Rml), pushthru(Box,Dr1,Rm2), 
pushto(Box,Dr2,Rm2), pushthru(Box,Dr2,Rm3) }.

In solving the goal ’in_room(boxA, room4)’ from the situation in figure 1, macro21 
constitutes the part of the solution shown by an arrow. One b-chunk (where K=1 in 
section IV) created to advise on its use is (note: we leave out some details; capital 
letters denote variables):

( macro21(Rm1, Dr1,Rm2,Box,Dr2,Rm3) ;
in_room(Box,Rm3) ;
in_room(Box,Rm4)&connect(Rm4,Rm1,Dr3)& 
connect(Rm1,Rm2,Dr1)&connect(Rm2,Rm3,Dr2)& ...)

In a future problem, this chunk will support the inclusion of instantiations of macro21 
in partial solutions which conform to its constraints. For instance, consider task 
in__room(boxB,room6). It can be seen by the description of chunk use in section IV that 
instance macro21(room4,door47,room7,boxB,door67,room6) is favoured by the chunk 
shown above to form the first part of a solution, resulting in a filtering out of any other 
undersirable instantiations. Note that this chunk suggests the initial position of the robot 
is irrelevant.



•~macro21(room3,door37,room7,boxA,door47,room4)

figure 1. (Note: doorXY connects roomX and roomY)

VI CONCLUSIONS

We have described a goal directed search which allows the use of weak methods for 
learning. Given a particular domain, these weak methods create strong heuristics, in the 
form of macros and b-chunks, through the experience of successful problem solving. 
The chunks record for each operator and generalised goal pair, the adviseable 
instantiations for operator variables. They do this by storing important similarities among 
the environment, initial state and goal in a form usable for future goal directed search. 
The number of possible instantiations of macros in the backward search tends to be 
much higher than primitives, and so the need for this heuristic pruning is greater.

We have used FM in several applications in which it builds up strong domain 
dependent heuristics by experience. Of particular note is the b-chunks’ high degree of 
accross-task transfer of learning. This is because they record quite general similarities 
between the components of a problem space such that when these similarities are 
encountered again the choice of (macro) operator instantiation can be determined.
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1 
research area:

Learning from problem solving experience; related to 
research in [1],[2],[3],[4].

poster topic:

Outline description of a general problem solving shell 
called FM which has been built to experiment with various 
learning methods.

Details of one such learning method (the b-chunk) for 
use in task domains requiring goal directed problem 
solving strategies.

theses being investigated:

(1) A general problem solver can significantly improve its 
Performance through experience in a particular domain, 
using weak methods for creating problem solving 
heuristics in areas such as:

- search control

- representation change

- goal ordering

(2) Useful operator heuristics can be learnt from the 
hiodel based generalisation of similarities between a solved 
Problem’s specification and the reasons why the operator 
appeared in the solving sequence.



2
FM’s inputs:

- task ... (initial state, goal condition) = (S,G)

- environment... (facts,rules) = (E.f.E.r)

- operators ... (environmental conditions, preconditions,
adds, side-effects, deletes) =

(O.e, O.p, O.a, O.s, O.d)

- search stategy ... currently either means-end goal 
directed, or best first forward.

figure 1: flow diagram of the FM shell



3

FM’s representations:

Components of operators, states, environment facts and 
goals are predicate conjunctions.

Search strategies can be interchanged but must be based 
around search through "goal nodes", which roughly 
represent partial solutions.

FM’s current weak learning techniques:

Macro creation: formation of powerful operators from 
subsequences of more primitive ones, built in the same 
format.

Chunk creation: formation of operator heuristics containing 
favourable goal, current state and environment information 
for use in state space search.

B-chunk creation: formation of operator heuristics 
containing favourable goal, initial state and environment 
information for use in goal directed search.

FM has been used in:

typical robot worlds (see example 1)
blocks worlds
’tower of hanoi' puzzles
’eight’ puzzles
story model (see example 2)



4

The B-chunk

The form of a chunk is ( O, G, W1, W2), where

- O is the parameterized operator name

- G is the goal condition

- W1 is an initial state condition

- W2 is an environment condition

and the quad has been carefully generalised.

FM uses them to help find plans. Roughly, a b-chunk 
Proposes the inclusion of an operator O with the variable 
3indings that occured from the successful matching of W1, 
G, W2 to the current task definition and environment S, G, 
E, respectively.

A b-chunk is built for operator O(i) out of a sequence 
0(1), 0(n), starting with

(0(i), G, W1(0), WPe(i) )

as the the root (see figure2), and then applying 
strengthening and generalising processes to it.



5
Building B-chunks (1)

Consider a successful operator sequence 
0(1), .... O(n) for task (S,G).
Let WPs(i) = WP( [Oi,...,On], G ):

E.f (facts)

WPe(1)

WPe(i)

E.r (rules)

environment

figure 2: collecting weakest preconditions

Using ’transparent’ operators, we have:

WPs(i) = P(n+1-i) where 
P(O)=G,
P(j) = ( *■ (0(n+1-j).a&0(n+1-j).s) ) & 0(n+1-j).p

WPe(i) = O(i).e&...&O(n).e



6
Building B-chunks (2)

To build a b-chunk for operator O(i), 1<i<=n, we start with 
the quad of ground predicates:

(O(i), G, W1(0), W2(0)) where
W1(O) = { P in WPs(1) : WPs(i)&E.r=> P} and
W2(0) = WPe(i)

W1(O) and W2(0) are strengthened with the following 
algorithm which uses an association chain technique [5]:

j -1;
repeat

(X, Y) := {x, y : x is a predicate in WPs(i).R and 
is related to some predicate in WPs(1).R 
by an association chain y of length j in E.f};

W1(j) :=W1(j-1)&X;
W2(j) :=W2(j-1)&Y;
j := j+1

until either the generalised chunk (O,G,W1(j),W2(j)) is 
discriminatory, or some complexity bound is reached.

WPs(1)

W 1
T

JI

i

(-a,..) (••b,..)
WPs(i)

figure 3: chunk build-up through associations
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Example 1: robot world

rm1 rm2 rm3

I
robot box

rm6rm4 rm5

figure 4: part of a robot world

Assume the usual STRIPS-like model, with the initial state 
as in figure 4. FM solves goal "in_room(box,room6)" using 
a nine operator sequence, during which b-chunks are 
formed, e.g. for operator "pushthru", marked by an arrow:

(pushthru(Box,Door35,Rm5), 
in_room(Box,Rm6), 
in_room(Box,Rm2)&open(Door56)&open(Door35)&.., 
connect(Rm5,Rm6,Door56)&connect(Rm3,Rm5,Door2)& 
connect(Rm2.Rm3.Door23)&type_of(Rm2,room)&...)

This advises a certain instantiation for the operator within 
a new problem which matches the chunk’s goal, state and 
environment components. It discriminates against the 
instantiation ”pushthru(box,door45,rm5)" being examined 
in a similar problem.
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Example 2: story model

This application for FM was inspired by an example in [6]: 
reasoning with a simplified storyline from Shakespeare’s 
Macbeth.

Operators were created representing actions such as "kill", 
"motivate" and "give", e.g. kill(Killer,Weapon,Killed) has 
preconditions " has( Killer, Weapon)&has (Killer, Motive) & 
near(Killer,Killed)".

An environment was created containing the obvious 
taxonomic, property and relational information.
FM was given, and solved, the following task,

(wants(lady_macbeth,duncan,dead)&has(lady_macbeth, 
a _dagger)&has(macduff,sword)&alive(duncan)&....

murdered(duncan) )

A typical b-chunk formed after solving this goal was:

( kill(Murderer,Weapon,Murdered),
killed(Murdered),
wants (Accomplice, Mu rdered,dead)& has (Accomplice, 

Weapon), 
married(Murderer,Accomplice)&can_influence(Accomplice 
, Mu rderer) &is_evil (Mu rderer) &not_equal( Mu rderer, 
Murdered)&.... )

This chunk could have the more general interpretation 
"Someone can be killed by an evil person if currently the 
person’s wife wants the someone dead, has a weapon and 
can infuence her husband", rather than being only a 
heuristic for future search.



1 
Results and Conclusions

The development of FM is still at an early stage (1 year 
old!) but results are encouraging with respect to the 
generality of the weak learning methods.

The b-chunks’ strength lies in their ability to embody 
relationships between operator sequences preconditions 
and initial states, using an environment as background 
knowledge. In all the applications mentioned, chunks have 
increased FM’s performance in both similar and more 
complex tasks to those from which they were learned.

One of the biggest problems is in the proliferation and 
complexity of the chunks created; we envisage this can be 
alleviated by inductive concept learning.
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DERIVING A CORRECT LOGIC PROGRAM FROM THE 
FORMAL SPECIFICATION OF A NON-LINEAR PLANNER
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ABSTRACT

The specification, design and implementation of Intelligent 
Systems has much to gain from the field of Formal Methods 
in Software Development. Such rigorous methodologies are 
well suited to the symbolic processing typically found in artificial 
intelligence applications. This paper describes the development 
of an application independent non-linear planner from a formal 
specification, relying on logical transformation to arrive at an 
executable logic program. We propose that this example acts 
as a paradigm for the development of similar problem solving 
systems.

1. INTRODUCTION

A Non-Linear Planner (NLP) is a problem solver which searches for a solution to 
a problem by generating a space of partial plans, where each partial plan is a 
collection of partially ordered and partially instantiated operators. The NLP 
technique was popularised by Sacerdoti’s NOAH system in [9], and later work 
(e.g. [1]) has reinforced the method. We refer the reader to these references for 
background information.

Logic Programming is recognised as a powerful implementational paradigm for 
symbolic applications. It’s logical base and non-deterministic flavour make it 
closely related to specification languages. One such feature, used in this paper, is 
to apply logical transformation to derive a logic program from a specification. 
Simple examples of its advantages in program correctness are often quoted in the 
literature (e.g. [4]) ; we are supplementing this with an interesting and non-trivial 
example: that of rigorously implementing an NLP.

We consider an NLP domain independent if a user can supply the declarative 
definition of a domain (for example by supplying a set of ’strips-type’ operators as 
• n [3]). It is conjunctive if it expects its goal and initial state to be specified as a 
conjunction of predicates. The primary operation of a conjunctive, domain 
independent NLP is called ’goal achievement’: that is making an outstanding goal 
in a partial plan true at some point in its operator partial ordering. Recently, a 
modal logic specification of goal achievement, called the ’Modal Truth Criterion’ 
was postulated in by Chapman in [1]. Our work draws from Chapman’s paper the 
essence of his Modal Truth Criterion, but while his concern is chiefly the 
properties of the specification (e.g. completeness), we concentrate on the 
rigorous design and implementation aspects.

The content of this paper is as follows: first we introduce a notational framework 
for problem solving, then constructively describe the central data type in an NLP: 
the partial plan. After outlining a top level algorithm for the NLP, we define a data 
type invariant for all valid partial plans, then use this to concisely specify the 
central operations in the planner, those of goal achievement. Next we construct a 
top level executable logic program for goal achievement using the underlying



semantics of logic programming to preserve the meaning of the specification.

2. PROBLEM SOLVING NOTATION

The input to an NLP is the language of 'task specifications’. We define a task 
specification to be the quad (l,G,E,OS), where I is an initial state, G is a goal 
condition, E is an environment, and OS is an operator set. We will assume that I 
and G are conjunctions of predicates; E is a conjunction of ground predicates, 
representing the unchanging information in an application, and OS is a set of 
operator schemas, representing actions, and conforming to the ’strips 
assumptions’ [3]. A common example application for this type of framework is that 
of a simulated robot world. Here OS would contain an operator schema for each 
type of action the robot may perform, and E would contain background knowledge 
such as room connections and object typing.

An operator schema O can be represented as a logical term of the form 
(O.n,O.e,O.p,O.a,O.d) where O.n is the schema’s name, and the other 
components are sets of predicates corresponding to environment and state 
preconditions, add and delete sets, respectively. A solution to a task specification 
(l,G,E,OS) is then a partially ordered set of instantiated operators taken from OS, 
such that when applied to I in a sequence conforming to the partial order, they 
will produce a state containing G. For more details of this problem solving 
framework, and its use in as a performance element in a heuristic acquisition 
system, see [6].

3. THE STRUCTURE OF A PARTIAL PLAN

An NLP searches through a space of partial plans for a solution to some task 
(l,G,E,OS). We define the structure of a partial plan as a logical term of the form 
pp(Os,Ts,Ps,As,Es) where:

(i) Os is a set of partially instantiated operators, where each has a unique 
identifier, and is an instance of a schema in OS. Two special operators called ’init’ 
and ’goal’ are the only exceptions: init contains an add set, representing the 
task’s initial state I, and goal contains a set of precondition predicates, 
representing the main goal G.

(ii) Ts specifies a consistent partial order on the set Os, representing temporal 
precedence. For two operator instances 01 and 02 from Os, a temporal relation 
can be denoted ’t(01,02)’. We can then define predicate before(X,Y,Ts), meaning 
that X is necessarily before Y in the partial order specified by Ts:

for all operators X,Y and sets of binary relations on them Ts (of the form t(X,Y)): 
before(X,Y,Ts) <- { member(t(X,Y),Ts) V

there exists operator Z:
( member(t(X,Z),Ts) & before(Z,Y,Ts) )}.

The operators init and goal are by definition the lower and upper bounds of the 
temporal partial order Ts, respectively:

for all O in Os-{init,goal): (before(0,goal,Ts) & before(init,0,Ts))

(iii) Ps is a set of pairs (P.O) where each P is an unachieved precondition of 
some operator O from Os. If the goal condition G is a conjunction g1&g2& ... gn, 



then initially Ps is set to {(gl.goal), (g2.goal), ... (gn.goal)}. Whenever an operator 
instance is added to a partial plan, its preconditions O.p are added to Ps, in this 
form.

(iv) As is a set of pairs (P.O) where each P is an achieved precondition of 
some operator O from Os. The definition of precondition achievement is given 
in section 5 below.

(v) Es is a set of predicates which constrain operator variables. For example, as 
operator instances are added to Os, their environmental preconditions, along with 
any necessary variable constraints, are added to Es. These constraints must be 
consistent with the task’s environment E (note that operator variables have scope 
throughout the partial plan, since we model it as a logical term). We can then 
define the following second order predicate ’unify’:

for all predicates P and Q: 
unify(P,Q,Es) <- P and Q can possibly unify under the 

constraints imposed by Es and E.

4. A SIMPLE TOP LEVEL ALGORITHM FOR THE NON-LINEAR PLANNER

For any task (l,g1&g2&..&gn,E,OS), search starts with an initial partial plan 
called PPi, its Os consisting of the two special operators init and goal, and Ps 
initialised to {(g1,goal), (g2.goal), ... (gn.goal)}. Stripped of any particular search 
heuristics, a basic top level non-determinnistic algorithm is as follows:

procedure nlp(PPi, PPg);
Store := { PPi };
LOOP

1 Remove a partial plan pp(Os,Ts,Ps,As,Es) from Store;
2 Choose a (P.O) from Ps;
3 Achieve P at O by adding a new operator instance to Os 

and/or further constraining Ts and/or Es;
4 Add all new partial plans generated by step 3 to Store;

UNTIL there exists partial plan PPg in Store whose Ps is empty.
end nip. -4.1

More sophisticated search methods may be used instead of this algorithm, but 
we are not concerned with this level. Step 3 is the major concern of the rest of the 
paper: it contains the ’goal achievement operations’, and is at the heart of anv 
NLP. 7

5. THE PARTIAL PLAN INVARIANT

This section rigorously defines the partial plan data type, and therefore delimits 
the search space of the algorithm in section 4. Section 3 construted a model for 
the partial plan using ’abstract mathematical objects’ in the usual VDM-type 
approach (see [5] for an introduction to this approach to program design). 
Because our target implementation will be in a logic programming language 
specifically Prolog, we need hardly refine the data type as it is already 
implementable; the only exception to this is the use of lists to model sets, which is 
an adequate refinement.

We now define a data type invariant for the partial plan, which is true for any 



initial partial plan, and will be preserved by the main partial plan operations. 
Roughly, a valid partial plan is one in which Os contains the two special operator 
instances, denoting the initial state and goal conditions, and all other elements of 
Os are partially bound operator instances from OS; Ts must specify a consistent 
partial order on Os, Ps and As must form the disjoint union of the operators’ 
preconditions, every precondition predicate in Ps must be achieved and Es must 
be consistent with the task environment E. Hence we define the invariant condition 
as follows:

INV(pp(Os,Ts,Ps,As,Es)) = (a)&(b)&(c)&(d)&(e)&(f)&(g) where

(a) = for all O in Os-(init.goal): (there exists O’ in OS and
variable bindings set s: O = (O’)s )

(b) = for all 01,02 in Os: not(before(O1,O2,Ts)) V not(before(02,01,Ts))

(c) = for all O in Os-{init,goal): before(init,O,Ts) & before(0,goal,Ts)

(d) = for all P in O.p: member((P,O),Ps) V member((P,O),As)

(e) = Ps intersect As = {}

(f) = for all (P,0) in As: there exists A in Os: achieved(P,O,A))

(g) = there exists some binding set t: ( E-> (Es)t) V Es = {} -5.1

Finally, we need to define the condition in 5.1(f), that of ’achieved(P,O,A)’. This 
is derived from the semantics of the strips-type operator schemas. Our definition 
is a simpler but slightly weaker version of Chapman’s Modal Truth Criterion 
[Chapman 87]. Informally, P is achieved at O by some operator A in Os if A is 
necessarily before O, A.a contains P, and there is no operator C possibly between 
O and A such that C.d possibly contains P (if such a C does exist it is'called a 
’clobberer’).

More formally, given a partial plan pp(Os,Ts,Ps,As,Es), a task specification 
(l,G,E,OS), and recalling the form of an operator O i.e. (O.n,O.e,O.p,O.a,O.d); 
then if (P.O) is in Ps, A in Os:

achieved(P,O,A) =
(there exists Q in A.a: P = Q) & 
before(A,O,Ts) &
(for all C in Os: declobber(P;0,A,C))

where declobber(P,0,A,C) =
(C = O) V (C = A) V before(O.C.Ts) V before(C,A,Ts) V
(for all Q in C.d: not(unify(Q,P,Es)) -5.2

6. A CONSTRUCTIVE SPECIFICATION OF THE PARTIAL PLAN OPERATIONS

The invariant defined above now allows us to precisely specify the three main 
constructor operations within partial plan space, those that generate partial plans. 
In fact 6.2 and 6.3 below specify the generation of valid partial plans which contain 
one more achieved precondition than the input partial plan, whilest preserving the 
achievement of the rest; thus they makes progress towards a solution partial plan 
(one in which Ps={}) in a goal directed fashion.



To produce an initial partial plan from a task specification;

INIT: {tasks) ---> { partial plans } 
explicitly defined by INIT(l,g1&g2&..gn,E,OS) =

pp( { init, goal},{},{ (g1,goal), .. (gn.goal)},{},{}). -6.1

The reader is left to check that INV( INIT(l,g1&g2&..gn,E,OS)) is trivially satisfied.

To produce partial plans that achieve a goal by constraining existing operators:

ACHIEVE1: {predicates} x {operator instances) x {partial plans) --->
sets of {partial plans) 

ACHIEVE1(P,O,PP) = PP’ 
where PP = pp(Os,Ts,Ps,As,Es)j, PP’ = pp(Os’,Ts’,Ps’,As’,Es’) and 
pre- ACHIEVE1: member((P,O),Ps) 
post-ACHIEVE1: there exists binding set t such that:

Os’ = [Os]t &
Ts’ contains [Ts]t & 
Es’ contains [Es]t & 
As’ = [As + (P,O)]t & 
Ps’ = [Ps - (P,O)]t & 
there exists A in Os: achieved([P]t,[O]t,[A]t) -6.2

By our remark above it is clear that 6.2 makes progress towards termination; we 
must now investigate the validity of INV(PP’), given INV(PP) and the pre- and post 
conditions. 5.1(a) and (e) are trivially satisfied; 5.1(f) is satisfied since (from 5.2) 
for any (P,O) in As, addition of more legal variable or temporal bindings to a partial 
plan can never make the condition achieved(P,O,A) false. This is because the two 
main predicate before(X,Y,Ts) and notfunify(P,Q,Es)) are of ’necessary’ modality 
(as defined in section 3). Finally we note that the conditions 5.1(b),(c) and (g) on 
Ts’ and Es’ are not necessarily true by our specification, and so should be 
considered as extra post-conditions on 6.2 (in fact they amount to integrity 
constraints).

To produce partial plans that achieve a goal by adding a new operator:

ACHIEVE2: {predicates} x {operator instances) x {partial plans) --->
sets of {partial plans) 

ACHlEVE2(P,O,PP) = PP’ 
where PP = pp(Os,Ts,Ps,As,Es)), PP = pp(Os’,Ts’,Ps’,As’,Es’) and 
pre- ACHIEVE2: member((P,O),Ps) 
post-ACHIEVE2: there exists binding set t, and A in OS such that:

Os’ = [Os + A ]t &
Ts’ contains [Ts]t & 
Es’ contains [Es]t & 
As’ = [As + (P,O)]t & 
Ps’ = [Ps - (P,O) + {(P,A) : P is in A.pJJt & 
achieved([P]t,[O]t,[A]t) &
for all (P’,O’) in [As]t: declobber_As([A]t,(P’,O’)) -6.3

Similar arguments about the validity of INV(PP’) hold as for 6.2, except that the 
addition of a new operator from OS may invalidate 5.1(f).The condition 
declobber_As(A,(P.O)) is there to check this: that each achieved P at O is still 
achieved after A is added to Os. This stipulates that O is necessarily before A, or 
if not, for any predicate in A.d that may unify with P, some achieving operator W



exists which is in between A and O and which adds P. This can be formalised:

declobber_As(A,(P,O)) <-
before(0,A,Ts) V (A=O) V
for all Q in A.d:

not(unify(P,Q,Es)) V 
there exists W in Os:

before(A,W,Ts) & 
before(W,0,Ts) & 
there exists R in W.a and binding set t:

(P = Q)t-> (R = P)t -6.4

The expression ’(P = Q)t -> (R = P)t’ means that if P can be made to unify with Q 
under bindings t, then R unifies with P under this same substitution.

7. A DESIGN FOR ACHIEVE1

To translate the specifications to a sequential top level procedural design, 
essentially we let each predicate act as the post-condition to individual 
procedures, taking care that no previous post-condition is undone by the action of 
a following procedure; the declarative semantics of a logic program will thus 
preserve the logic of the specification. These procedures use input and output 
partial plan variables (PP, PP1 etc in 7.1) which allow conditions that do not hold in 
the input partial plan to be constrained to hold in the output partial plan.

This is similar to changing a context free grammar specification into a language 
parser (see chapter 9 in [2] for example). The correctness of the following design 
then depends on the correctness of the individual procedures: i.e. each line In the 
specification acts as a post-condition for its corresponding procedure. Also each 
procedure acting on components Ts and Es must be subject to the integrity 
constraints (see remark below 6.2). As a convention, we treat output variables in 
procedures as the right hand parameters; the top level design for 6.2 is then:

achieve1(P,O,PP, PP3) :- 
get_el_Os(PP, A), 
achieved(P,O,A,PP, PP1),

add_el_As(P,O,PP1, PP2)^ 
del_el_Ps(P,O,PP2, PP3).

/* there exists A in Os: */
/* achieved(P,O,A) &

Os’ = Os &
Ts’ contains Ts & 
Es’ contains Es & */

/* As’ = As + (P,O) & 7
/* Ps’= Ps - (P,O) 7 -7.1

Note that the primes on output values now refer to those values in the output of 
their corresponding procedure, and are not necessarily the same as in 6.2. Also, 
we leave out the extra detail of the substitutions, since components of the output 
partial plan are subject to a unique set of bindings, as they are being modelled by 
elements of a logical term.

To transform expressions of the form ’there exists X in Set we employ a 
simple retrieve operation on the Set and allow the logic program bactracking 
mechanism to find the correct instance. The retrieves that we use have obvious 
meaning, for example:

get_el_Os(PP, A) : get A, an element of Os from PP
get_el_add(A,PP, Q) : get Q, an element of A.a from Os in PP



For an expression of the form’for all X in S: Condition’we define a higher 
order predicate ’for_all_els(Set, Condition)’ to mean that Condition is true for each 
element in the Set. Then ’for_all_els’ can be operationalised by the addition of 
input and output parameters as introduced above. The Condition will then be 
supplied with three extra parameters: a set member, and an input and output 
partial plan. Following 5.2, the design for ’achieved’ is then (we shall leave out the 
primes on post-conditions where they are not necessary):

achieved(P,O,A,PP, PP3) :- 
get_el_add(A,PP, Q), 
unify(P,Q,PP, PP1), 
before(A,0,PP1, PP2), 
get_Os(PP2, Os), 
for_all_els(Os, declobber(P,A,O), 

PP2, PP3).

/* there exists Q in A.a: 7 
/* P = Q & 7
/* before(A.O.Ts) & 7
/* for all C in Os: 7

/* declobber(P,A,0,C) 7 -7.2

In operationalising the specifications, we have chosen a least committment 
method: this means that the declobber(P,A,0,C) predicate should be in two 
sections, one to check if any of its conditions are satisfied (in which case the 
predicate is satisfied without need to constrain the partial plan - hence the use of 
the cut ’!’), and the other to constrain the partial plan to satisfy the predicate if 
necessary. Any of these legal constraints are allowed and can be obtained through 
backtracking:

declobber( , ,0,0,PP, PP) :- I. /* C = 0 V 7
declobberf ,A, ,A,PP, PP) :- I. /* C = A V 7
declobber(_,_,O,C,PP, PP) :- 

get_Ts(PP, Ts), 
before(O.C,Ts),!. /* before(0,C,Ts) V 7

declobber(_,A,_,C,PP, PP) :- 
get_Ts(PP, Ts), 
before(C,A,Ts),l. /* before(C,A,Ts) V 7

declobber(P,_,_,C,PP, PP) :- 
get_Es(PP, Es), 
not( get_el_del(C,PP, Q), /* not(there exists Q in 7
unify(P,Q,Es) ),!. /* C.d: unify(Q,P,Es)) 7

declobber( ,0, ,C,PP, PPO) :- 
before(O,C,PP, PPO). /* make before(0,C,Ts) V 7

declobber( , ,A,C,PP, PPO) :- 
before(C,A,PP, PPO). /* make before(C,A,Ts) V 7

declobber(P, , ,C,PP, PPO) :- 
get_del(C,PP, Cd), /* for all Q in C.d: 7
for_all_els(Cd, 

constrain(P), 
PP, PPO). /* make not(unify(P,Q,Es))7

’constrain’ adds any possible variable constraints (conforming to enviromnment 
EE), when necessary, to block the unification of P and a predicate from C’s delete 
set. Its specification is:

constrain: {predicates} x {predicates} x {partial plans) ---> {partial plans), 
post- constraint,Q,pp(Os,Ts,As,Ps.Es), pp(Os’,Ts’,As’,Ps’,Es’)) = 

not(unify(P,Q,Es’)),

and the data type invariant also demands that Es’ satisfy condition 5.1(g).



8. A DESIGN FOR ACHIEVE2

The transformation of 6.3 and 6.4 to a top level procedure proceeds as in 
section 7; conditions are changed to procedures with input and output partial plan 
variables, and the corresponding parts of the specification act as post-conditions 
for the output partial plan. The top level procedural design for ACHIEVE2 is then:

achieve2(P,O,PP, PP5)
insert_op(PP, A.PP1),

achieved(P,O,A,PP1, PP2), 
get_As(PP2, As), 
for_all_els(As,

declobber_As(A),
PP2, PP3), 

add_el_As(P,O,PP3, PP4), 
del_el_Ps(P,O,PP4, PP5).

/* there exists A in OS:
Os — Os + A &
Ts’ contains Ts & 
Es’ contains Es &
Ps" = Ps +{(P,A):P is in A.p} 7

/* achieved(P,O,A) & 7

/* for all (P’,O’) in As: 7

/* declobber_As(A,(P’,0’)) 7
/* As’= As + (P.O) 7
/* Ps’ = Ps" - (P.O) 7 -8.1

We leave the reader to refine specification 6.4 in the same manner. Assuming 
that the user defined operators composing OS (from task specification (l,G,E,OS)) 
are available as facts of the form operator(N,E,P,A,D), as described in section 2, 
the refinement of insert_op is:

insert_op(PP, A,PP3) :- 
operator(An,Ae,Ap,Aa,Ad), 
gensym(op.A), 
add_op(op(A,An,Ap,Aa,Ad),PP 
add_Ps(Ap,A,PP1, PP2), 
add_Es(Ae,PP2, PP3).

/* there exists A in OS: 7
/* utility for generating names 7 

PP1),/* Os’= Os + A & 7
/* Ps’= Ps + {(P,A): P in A.p} &7
/* Es’ contains Es &

Ts’contains Ts */ -8.2

The final two post-conditions are satisfied since the partial plan ’add’ operations 
increment the input partial plan (in fact Ts’ = Ts). That there is a consistent 
binding over the whole of the output partial plan (not stated explicitly here but in 
specification 6.3) is due to the use of a logical term as plan representation. The 
efficiency of 8.2 is greatly increased if a check is made that A’s add set contains a 
predicate that can possibly unify witl\P from 8.2.

We must check the invariance of 5.1: ’add_Ps’ does not violate 5.1(d) or (e) 
since the precondition pairs are unique, and they are taken from the already added 
operator OP. ’add_Es’ adds uninstantiated environmental preconditions to Es, so 
5.1(g) will hold, as obviously there must exist some bindings that make an 
operator’s preconditions consistent with E.

5.1(f) could be falsified, since the added operator may well clobber some 
members of As. This part of the invariant is re- achieved, however, by procedure 
’declobber_As’, as explained above.

9. THE PARTIAL PLAN ABSTRACT DATA TYPE

We have two tasks left: to implement the partial plan ADT, and the partial order 
and unification procedures used in sections 7. and 8., according to their proper 
specifications. Our choice of constuction for the partial plan (a five slot logical 



term, each slot containing a set) is immediately representable in Prolog; all that is 
required, as stated in section 5, is to represent the sets by lists. The add and 
retrieve operations may simply be implemented by facts, e.g. get_Ts(PP, Ts) is 
implemented as:

get_Ts(pp(_,Ts,Ts).

Conforming to section 3(i), operators in Os should be augmented with an 
identifier when added to the partial plan (this is accomplished by the ’gensym’ 
utility in 8.2); this can be used to represent that operator instance in the 
representation of partial order Ts.

Implementation of partial order procedures

The specification of before(X,Y,Ts) is outlined in section 3. It is a predicate and 
does not change the ’current’ partial plan, hence will not upset the data type 
invariant; in its complete form it is:

before(X,Y,Ts) <-
not(X = Y) & not(Y = init) & not(X = goal) &

[ { member(t(X,Y),Ts) V 
there exists operator Z: 
(member(t(X,Z),Ts) & before(Z,Y,Ts))} ].

Using logical transformation, and an auxiliary predicate before’(X,Y,Ts), we 
change this to Horn clauses thus:

before(X.Y.Ts) <- not(X = Y) & not(Y = init) & not(X = goal) & before’(X,Y,Ts). 
before’(X,Y,Ts) <- member(t(X,Y),Ts).
before’(X,Y,Ts) <- member(t(X,Z),Ts) & before(Z.Y.Ts).

and syntactic changes will render this executable. The four slot version of ’before’ 
uses this predicate, and has a similar implementation.

Implementation of unification procedures

Both the unification predicate and procedure use Prolog’s unification 
mechanism. Since this will at most further constrain variables, any unifications 
previously made cannot be undone, and so this will not violate any achieved 
conditions. Part (g) of 5.1, however, has to be preserved or else the unification 
must fail. When checking for unification or consistency we use a Prolog trick so as 
not to needlessly bind any variables in the partial plan: the predicate is called 
twice by the ’not’ operator, preserving the logic, but losing the bindings in the 
predicate’s satisfaction. We therefore state their implementations as follows:-

unify(P.Q.Es) :- not(not( P = Q, consistent(Es) )). 
unify(P,Q,PP, PP) :- P = Q, get_Es(PP, Es), not(not( consistent(Es))).

and leave the implementation of predicate consistent(Es) to the reader, where 

consistent(Es) <- (there exists bindings t : E -> (Es)t), 

since this will depend on the implementational details of the environment E. For 
example, consider a unification which wrongly binds a typed variable: E may 
contain the correct typing of objects in the planner’s application domain, say E 



contains ’type_of(doorA,door)’ and Es contains ’type_of(X,box)’. If X is a variable 
in P or Q which becomes bound to ’doorA’ through their unification, then 
consistent(Es) and subsequently unify(P,Q,Es) will be forced to fail, since 
’type_of(doorA,box)’ is not satisfied by E.

10. REMARKS AND CONCLUSIONS

In effect we have shown, by example, a rigorous method for the development of 
computational models in planning systems, and demonstrated the use of logical 
transformation to construct an executable logic program. The choice of an 
implementable high level data stucture - the logical term, and the closeness of 
Prolog to the original logic specification, remove much effort in verifying the top 
level designs and the final implementation. The example application was also less 
troublesome because of the availability of a ’tight’ specification. A full 
implementation can be found in [8].

This methodology gives the usual advantages with respect to implementation 
correctness. Extensibility is also improved: shifts in the specification and 
extensions to the partial plan data type can be easily made and verified.

The specification can be used to show clearly where choices occur in partial 
plan generation, and so where heuristics are needed; it may also be used to 
generate explanations as to why a solution was found. We are exploring both 
these avenues using the implemented NLP as the performance component within 
a machine learning system [7].
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USER GUIDE

ver s i on 1 .2
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3. FM’s Implementation

4. Running FM

1 . Introduction

The FM environment provides problem solving and learning 
mechanisms which can be harnessed to a user defined application. 
This tutorial document will explain how to ufee the 
problem solving capabilities, leaving the learning components 
to a later release. It shows the user:

- how to specify an application in FM;

- how to run FM applications.

The reader is assumed to have some familiarity with A.I. and 
Problem Solving. For a relevant introduction see for example: 
’Introduction to Artificial Intelligence', E.Rich, McGraw-Hill, 
1984. FM can run in ’NIP’ or C-prolog (see section 3).



2. The Problem Specification Language.

FM’s approach is related to the ’STRIPS’ family of problem solvers. 
A particular task is defined by two components:

- an initial state
- a goal condition

The specification of any application must be written as two separate 
components. These are:

- an operator set
- an environment

We next describe these four components individually.

2^1_ The_ Initial State

We define a state description as a conjunction of ground 
It models some notionally unique world in an application.

Its syntax is: 

init_wor1d(<conjunction of predicates>).

e.g. in a box world application this could be:

init _wor1d(
onf1oor(box4)&handempty&
onfloor(box3)&onfloor(box2)&
onfloor(box1 )&ontop(box5,box 1)&
c1 ear(box2)&c1 ear(box3)&
c1ea r(box4)&clear(box5)
)•

An initial state is simply a state description from which 
solving starts.

predicates.

problem

2.2 The Goal Cond i t i on

A goal condition is a conjunction of predicates which the problem solv 
tries to achieve. It does so by searching for a list of ground operato 
such that when they are applied sequentially to the initial state, 
they will produce a state which contains the goal condition.
A necessary conditi on for a goal cond ition to be achi eved is that each 
of its components predicates are present in the add list of some 
operator.



2.3_ The Operator Set

This specifies the actions that can be made by the ’agent’ being 
modelled in the application. General constraints on the operators 
include the ’STRIPS’ assumptions, i.e. each operator models an 
instantaneous action and includes every effect of it; furthermore 
it is assumed that the only changes occurring in the application 
are made by by the operators.
To alleviate the computational complexity of the problem solving 
algorithms, each component of the operator is restricted to 
predicate conjunctions rather than the full first order logic of 
the original STRIPS formulation.

Each operator has the following free format syntax:

frame(
name: <name>(<parameter-1 ist>) ,
type : 
filter : 
c heck: 
precon: 
padd : 
add : 
delete:
) •

where:

operator,
<con Junction 
<con Junct i on 
<conJunet i on 
<con Junct i on 
<conJunct i on 
<conJunct ion

of predicates> 
of predicates> 
of predicates> 
of predicates> 
of predicates> 
of predicates>

Conjunction of predicates> = 
nil |
<predicate> | 
<predicate>&<conJunction of predicates>

Parameters must start with a capital letter and obey Prolog’s 
syntax for variables. Predicate symbols must be likewise written 
according to Prolog’s syntax. These predicates are all user 
defined except for two, *ne(X,Y)’, which is interpreted by FM as 
meaning ’X is not equals to Y’, and ’type_of(X,Y)', which is 
defined in the environment (see below).

An example operator from a ’box world' application is:

frame(
name : puton box(Ob1,Ob2),
type : operator,
filter: nil.
c hec k : type_of(Ob 1,box)&

type of(0b2,box)&ne(0b1,0b2),
precon : clear(0b2)& 

holding(0b1),
padd : ontop(0b1,0b2),
add : handempty&clear(0b1),
delete: clear(0b2)&

)•
holding(0b1),



This models the putting down of an object by some imagininary 
robot arm onto another box. (see directory ’boxes’ ,file ’fops’, 
in the FM implementation).

2,3J__Application of FM Operators.

STRIPS-type operators have clear semantics; this allows them to be 
easily manipulated by learning components, and to by-pass the 
famous ’Frame Problem’. There are basically three components to 
the operator:

— 1. Preconditions: This contains the predicates that must be true 
before application of the operator is allowed.

In FM these are factored out into:

’check’ predicates: these are the unchanging facts/constraints that 
must be satisfied by the environment;
’filter’ predicates: these are a subset of the precon predicates 
below. In a goal directed search, the operator will only be added 
to a current partial plan if the filter predicates are true in the 
current initial state.
’precon’ predicates: these are the facts that must be satisfied 
by the ’current' state description.

--11. Delete-list: This contains the predicates that, when the 
operator is applied to a state, will be removed from the state.

-111. Add-list: This contains the predicates that, when an operator 
is applied to a state, and the delete list has been removed, are 
then added to make up the new state.

In FM these are factored out into:

'padd’ predicates: These are ’primary’ add predicates, that is the 
most important ones that the operator adds.

’add’ predicates: These are the predicates that the user considers 
as side affects, which are not the chief purpose of the operator.

N.B. The preconditions of an operator may be satisfied by a state 
under more than one instantiation.

Example:

We can apply our example operator to the state:

hoi di ng(box4)&onf1oor(box3)&onf1oor(bofl2)&
onfloor(box1)&ontop(box5,box1)&
c 1 ear(box2)&clear(box3)&c1ea r(box5)

in three different ways!



If we chose ’ pu t on box ( box4 , box5 ) ' then the resulting state would be: 

onf1oor(box3)&onf1oor(box2)&handempty&
onf 1 oor(boxl)&ontop(box5,box 1)&ontop(box4,box5)& 
clear(box2)&clear(box3)&clear(box4) 

2 -_4 The Environment

The environment is a collection of unchanging facts or constraints 
about the application. Usually this may Just contain variable 
typing information.
Its syntax is that of a Prolog term of the form:

frame( name: <name>,
type: context,
always: <conjunction of predicates>, 
axioms: <list of rules> ).

An example from the boxes world i s :

frame( name: blocks_wor1d1, 
type: context,
always:

type_of(box2,box)&type_of(box5 , box) 
&type_of(box4,box)&type_of( box 1,box) 
Stype of(box3,box),

axi oms: []).

The axioms slot 
application. It 
discussion will

can be filled by a list of rules modelling the 
is chiefly used by learning components, and so 
be detained until the next version of this

document. The reader is advised to consult some of the sample 
applications in fm_user for more complex environments.

3. FM's Implementation

3.1 Getting started

FM can be found in a unix directory structure called 'fm_user’. It is 
available for copying to a users directory from 'csgould' pathname 
’1ee/fm_user’. fm_user is a collection of directories; two are called 
’Ip’ and ’nip’ and contain Prolog source files. The other directories 
are sample applications.

Once you have copied the FM structure, you may create your own 
application by the following procedure:

a. Create a new directory for your application inside fm_user, 
and change directory to it.

b. Create your operator set, environment and initial state in three 



sepate files, e.g.
operator set is in 'ops’;
environment is in file ’env’;
initial state is in ’ i n i t’ ;
Don’t forget to follow the syntax for Prolog terms, 
for instance, make sure each operator in your operator set 
is terminated by a full stop.

c. Copy two files 'options' and 'boot' from a sample application to 
your directory - e.g. using directory 'boxes’ the commands would be: 
cp ../boxes/options 
cp ../boxes/boot .

At this point your should have five files in your new directory. 
Finally, you must adjust the options file to suit your application.

3.2 The Options File

This is a file of Prolog terms providing control
over current choices available to the user. FM is primarily a 
exper imental system, and the user is warned not to change any options 
apart from the first four, without seeking further help. The first 
four terms in the file are: 

strategy(<search type>). 
operator_file(<fi1e_name>) . 
environment_file(<file_name>). 
ini t f i1e(<f i1e_name>).

<search type> may be either
’nip’ .. to choose the non-linear problem solver;
’mea’ .. to choose the goal directed linear problem solver;
'forward' .. to choose the breadth first problem solver.

For example, for the file names in 3.1, you should change the first 
four lines of the options file to:

strategy(mea).
operator_file(ops).
envi ronment_file(env).
init_file(in1t).

This chooses the mea problem solver, which at the moment is by far 
the most efficient!



4. Running FM

To run the FM system, you must first change directory to that of your 
desired application.

If using the NIP system, invoke prolog by typing ’nip’, then type
[’ . ./Ip/bootni p'] .

This will load in the prolog files, and will take about two 
minutes.
If you are using C-prolog, type the ’prolog’ command to invoke prolog 
then type:

[boot] .

To start your application, simply type ’b.’ followed
by a return; you will be asked to enter a task (a conjunction of 
predicates followed by a full stop). After FM has solved your task 
(be patient!), you may enter another by typing ’b.’ again.
Note that the next task will start from the advanced state 
containing your last goal condition.

Here is an example trace, using mea search, and the boxes example.

Script started on Thu Feb 25 15:33:09 1988
cssun5% nip

Edinburgh Prolog, version 1.5 (1st June 1987)
Al Applications Institute, University of Edinburgh

| ?- [boot].

options consulted: 2008 bytes 0.50 seconds

(*** Junk .......................... ***)

../lp/boot consulted: 88588 bytes 137.75 seconds

boot consulted: 88608 bytes 137.77 seconds

yes
I ?- b.

This is the non-linear planner..
My environment is called boxes_1
My current world is
onf 1 oor(box4)&handempty&onf1oor(box3)&onf1oor(box2)&
onf1oor(box 1)&ontop(box5,box 1)&clear(box2)&c1ea r(box3)
Sclear(box4)&clear(box5)

Enter task or "h" for help>ontop(box2,box5).

ontop(box2,box5)
1****expand1 ng init size 0



planning completed
By sequence of operators

(pickofffloor(box2),puton box(box2 , box5) ]

goal ontop(box2,box5) is satisfied, new state is

handempty&c1 ear(box2)&ontop(box2,box5)&onfloor(box4)& 
onf1oor(box3)&onfloor(box1)&ontop(box5,boxl)&clear(box3) 
&c 1 ea r ( box4 )
10 plans generated

yes
| ?- b.

This is the non-linear planner..
My environment is called boxes_1
My current world is 
handempty&c1 ear(box2)&ontop(box2,box5)&onf loor(box4)& 
onf1oor(box3)&onfloor(box1)&ontop(box5,boxl)&clear(box3) 
&c1ea r(box4 )

Enter task or “h" for he1p>hoiding(box5)&ontop(box2, box3).

hoid i ng(box5)&ontop(box2,box3)

planning completed
By sequence of operators

[pickoffbox(box2,box5),puton box(box2,box3) , pickoffbox(box5,box1)]

goal hoiding(box5)&ontop(box2,box3) is satisfied, new state is

clear(box1)&holding(box5)&clear(box2)&ontop(box2, box3)
&onf1oor(box4)&onf1oor(box3)&onf1oor(box 1)&c1£a r(box4)
19 plans generated

yes
I ?-
Prolog terminated
cssun5%
script done on Thu Feb 25 16:40:37 1988


