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ABSTRACT

This thesis investigates the addition of experience learning components to types of
general problem solver which have been advocated by the Artificial Intelligence
community for use in planning domains. The learning components considered preserve
the general applicability of a problem solver while allowing for it to improve it’s efficiency
when applied to a particular domain. Various heuristic acquisition methods are
presented, as well as three types of problem solver; together they have all been
implemented in a large integrated system called "FM".

A specific aim is to demonstrate that a particular planning and learning configuration can
significantly improve its efficiency by the automatic acquisition of strong heuristics,
using a novel heuristic aquisition method. The body of the thesis concentrates on this
particular configuration which proved successful in a range of planning applications.



INTRODUCTION

In early 1986, after being engaged for some time in a study of
Machine Learning, I had concluded that most of the research
carried out in the area lacked immediate evaluation Dbecause
systems were not fixed to a performance component. For example, a
majority of work published in Concept Induction did not include
applications for the induced concept descriptions which could act

as evaluators for the quality of learning.

On the other hand, in the general-problem-solving area, little
work had been carried out on systems which could perform automatic
search improvement through experience. Early work on the Soar
project [Laird et al 84] indicated that it was possible for
general problem solvers to improve their performance significantly
in this way; at about the same time Korf [Korf 85] suggested that
as well as implanting problem solvers with weak heuristics, to
maintain their generality but improve their efficiency they should
also be equipped with weak methods for generating strong
heuristics (he introduced the phrase 'weak methods for learning'
to describe this).

It seemed natural to attack both these issues with one system, and
therefore I composed a research plan [McCluskey 86] with the

following proposal as its main conclusion:

'[I propose] ..the construction of a "heuristic-learning planning
shell" which would tackle the efficiency/generality/power trade-
off problems in the following way: The shell would be applicable
to a class of problem domains; when it attempts problems in a
particular domain it starts by applying the traditional weak
methods of general heuristic search but from experience develops a
strong model with which to guide subsequent searches’

The general aim of this thesis 1is therefore to investigate the
usefulness of experience learning techniques when applied to
general problem solving systems; specifically the thesis aims to
demonstrate that a particular general planner configuration can
significantly improve its efficiency by the automatic acquisition
of strong heuristics (c-chunks), when supplied with an application
domain. This work improves on previous research in that the
c-chunks created are very general but useful heuristics, which
are refined in the light of future problem solving. Being general,
they minimise matching costs yet are more widely applicable than,
for example, heuristics which would Dbe obtained wusing pure
Explanation Based Learning techniques of [Mitchell 86]

I followed the path of 1learning through experience Dbecause
natural intelligence is inextricably bound to this type of
learning; but also experience-based methods have focus. What is to
be learned is determined by previous experience or use; systems

should improve their performance with the particular type of



problem in. which they have had experience. This contrasts with
preprocessing methods which lack direction or bias. It is also
consistent with the idea that the set of relevant problems should
be much smaller that the set of possible problems for experience
learning to be worthwhile ([Van der Velde 86], p.13, puts forward
this idea in his work on the conversion from deep to shallow
knowledge in a second generation expert system)

I assume the reader is familiar with basic concepts in the field
of Machine Learning, and in particular the relationship between
the sub-field studied here and other sub-fields: other works have
adequately covered this, e.g. [Carbonell 837, [Mitchell 83]. I
have restricted this thesis to learning from the problem solving
trace which is generated in finding successful action sequences,
or operator sequences, as we shall call them. As with natural
learning about problem solving, this demands that simpler problems
are posed initially. Apart from setting the problems, no other
user intervention is required.

Contents Overview

Chapter 1 provides a gentle introduction to the idea of states and

operators, and introduces the ©problem specification language
('task framework') for my FM problem solving system shown in

figure 0/1, which has the Strips-assumptions at the heart of its

operator representation. Then the three control strategies, which
form the performance components, are described. These are the
(quite standard) best-first state space search ('FOR'), goal

directed linear search ('MEA'), and goal directed constraint
posting non-linear search ('NLP'). The latter, being the most
complex of these, is defined and implemented using a constructive
formal specification, described in [McCluskey 88a] and appendix
D. 5.

Chapter 2 forms a basis for the succeeding chapter Dby defining
basic chunks and macros. The established idea of using goal
regression on declaratively specified operators to create
heuristics is formally defined for any FM-specified operator
schemas. A simple example is used to clarify this form of chunk
and macro creation.

Chapter 3 1is the core of this thesis: it describes a developed,
reasonably successful attempt at meeting the proposal quoted above
from [McCluskey 86], for a linear goal directed search strategy.
The heuristic acquisition method described in 3.1 1is novel: useful
heuristics for an operator, being the last in a successful sub-
sequence of operators, are approximated Dby the similarities
between the weakest precondition of the sequence and the
operator’s precondition; then they are backed up by a Dbackground
knowledge base, and strengthened by a discrimination technique
which draws on both successful and failed operator instantiations
from the problem solving trace.
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The techniques in 3.1 produce heuristic preconditions for operator
- goal combinations which must be refined and integrated. In 3.2
I define a general form for heuristic rules, and incremental
learning techniques which perform the optimisation and refinement
of the initial heuristics.

3.3 provides test runs from two sample applications which show the
system significantly improving its performance in both the time
and space needed to solve tasks. Comparisons are made between
various planner configurations: with no heuristic acquisition,
with handcrafted heuristics and with heuristic acquisition wusing
chunking algorithms

Chapter 4 1is exploratory in its scope, in that it 1investigates
heuristic acquisition in the more powerful non-linear planner. It
explores how transforms in partial plan space can be declaratively
specified, and uses the idea of transform regression and
Explanation-Based Generalisation to show how heuristic
preconditions for these transforms can be constructed from old
transform solution sequences.

Chapter 5 contains my general conclusions, a comparison of FM with
some rival work, and directions for future work.

The six papers comprising appendix D are an important part of
this work and are considered to support this thesis submission.
For example, the non-linear planner is defined in appendix D.5
and should be read as a prerequisite to understanding chapter 4.
Likewise appendix D.6, the FM User Guide, supports material in
section 1.1. Appendices will be referred to when needed either
through their name or via the reference section.

Final ©Note: All of this thesis is my own work (i.e. all the
written material, appended papers, program implementations
including all of the FM implementation, application definitions,

test runs, handcrafted rules etc.)



1. THE TASK FRAMEWORK AND PERFORMANCE COMPONENTS

1.1 The FM Framework

In this chapter I develop the representational framework for the
FM problem solving and planning system. I will use the framework
to define the three performance components for which heuristic
acquisition will be discussed in chapters 2,3 and 4.

This particular section defines the task framework " (I,G,E,O0S)",
which will be referred to throughout the rest of the thesis. Apart
from developing notation, the chapter contains introductory
material, included for completeness, which can be skipped by those
familiar with Strips-type frameworks.

1.11 State Representation

A STATE DESCRIPTION ’'S' is defined to be a conjunction of ground,

i.e. fully instantiated predicates. It models the changeable
facts in some application, at a certain point in time. For
example in the application of stacking blocks on a table, the

state description that represents figure 1/1 could be:

on (a,b) &on (b, table) ftclear (a) ftclear(c) &
on (c,table) &clear (d) &on (d, table). -1(1)

Persistent facts such as ’clear (table)’ may be omitted but made
implicit in the action representation described in 1.2.

We supplement state descriptions with an ENVIRONMENT 'E' which
defines the unchanging background facts of an application. In the
blocks world this may trivially contain typing information, but in
other applications this may be any persistent information deemed

relevant. The environment for the block’s world could be:

type of (a,block) &type of (b,block) &
type.of (¢c,block) &type of (d,block) -1(2)

Both the environment and states may each be supplemented by set of
rules, which are primarily for the wuse of FM’s learning
components. Thus we may split E and S:

(facts)

E = E. +
S. (facts) +

f E.r (rules)
S = f S.r

(rules)

but note that the problem solving components must be supplied with

the full theory as ground facts, and so we assume:

Theory(E) = E.f and
Theory(S) = S.f,

that 1is the rules should only show the connections between facts
already present (see appendix A for examples of domains with

10



figure 1/1: A blocks world

P1 p2 p3
tilel tile2 tile3

p4 p5 p6
tiled tile8 tile6

P7 p8 P9
blank tile7 tile9

figure 1/2: An Eight Puzzle state



rules, and for examples of rule syntax).

Another example application is the children's ©puzzle, commonly
known as the Eight Puzzle; the state shown in figure 1/2 1is
represented by:

at(tilel,pl) &at(tile2,p2) &at(tile3,p3) &at(tiled,pd) &
at (tile8,pbd) &at(tileb,pb) &at (blank,p7) &at (tile7,p8) &
at (tile9,p9). -1(3)

The environment for this puzzle can be represented as:
next (pl, p2) &next (pl,p4) &next (p2,p3) &next (p2,p5) &
next (p3,p6) &.... type of (pl,position)&type of (p2,position)é&...

type of (tilel,tile)&type of (tile2,tile)&. .. etc -1(4)

Of course it 1is easy to devise other representations for these
problems

An Initial State 'I' 1is any state description from which problem
solving begins. 1(1) and 1(3) can be considered initial states.

A  Goal Condition 'G' is a conjunction of ground predicates
specifying a SET of state descriptions, to which problem solving
must be directed (although G may contain existentially quantified
variables for the performance component specified in 1.23).

Examples of goal conditions for the blocks and eight puzzle worlds

are:
on (b, c) &on (a,b) -1(5)
at(tilel,pl) &at(tile2,p2) &at(tile3,p3) &at(tiled,p4d) &

at(blank,pb)&at (tile6,pb) feat(tile7,p7) &at(tile8,p8)s&
at(tile9, p9) -1(6)

The set of states specified are exactly those that contain the
goal condition. Several state descriptions satisfy 1(5), but 1(6)
specifies precisely one state - the usual goal for this puzzle.
1.12 Operator Representation

I will model actions in these worlds as operators that change
state descriptions instantaneously. A most convenient way is Dby

simply having an operator:

delete predicates from the old state to which the action is
applied;

- add predicates to "create" the new state.

Any unaffected predicates therefore remain true in the new state.

12



This form of operator side-steps a famous problem in A.I. called
The Frame Problem', which is encountered when we try to model
everything in a first order logic. In such a formulation, every
operator would have to have attached to it a set of 'frame axioms'
which mention each predicate that is unaffected - making operators

of unmanageable size.

Since this representation is declarative, it also makes it easier
for the system to reason about its operators. The most general
form of an Operator in FM 1is a 7-tuple, having three

preconditions and three postconditions:

( name: <name> (<parameters>) ,

filter: <filter preconditions>

check: Environmental preconditions>,

precon: <state preconditions”

padd: <add set>,

add: <side effects>,

del: <delete set> )
The last six components are sets of predicates. Each component of
an operator 0 can be referred to by its component name, or for

brevity by a selector function: say O.n, 0.e, 0.f, O.p, O.a, O.s

and O.d respectively.

0.e, 0.f, and O.p are the preconditions for the operator. We
stipulate that the filter predicates O.f must be identical to a
subset of O.p (0.f will only be used in goal directed search, and
performs a similar function to the preconditions in SIPE's
operators [Wilkins 84]). O.a and O.s constitute the full add-set

for the operator.

Parameters in operators are represented Dbelow with capital
letters. They have SCOPE throughout the whole of the tuple; one
may think of the operator as being represented as a logic term.
The name must contain at least all those parameters that occur in
the precondition, so that the instantiation of O.n yields a unique
application of the operator. Two special predicates are recognised
by the system: 'ne (X.Y)' meaning X is not equal to Y, and a
*type of' predicate with the obvious meaning. For instance when
FM learns new operators or rules it knows that parameters of
different types can't be instantiated to the same constant, and so

don't need any further binding restrictions.

Using this representation, two blocks world operators could be

13



defined as:

name: unstack (Blockl, Block2),

check: type of (Blockl,block) &type of (Block2,block) &
ne (Blockl,Block?2),

filter: nil,

precon: on (Blockl,Block?2) &clear (Blockl),

padd: on (Blockl,table) &clear (Block2),

add: nil,

del: on (Blockl,Block?2)

name: stack (Blockl, Block2),

check: type of (Blockl,Block)&type of (Block2,Block) &
ne (Blockl,Block?2),

filter: nil,

precon: on (Blockl,Obj ect) &clear (Blockl) &clear (Block?2)

padd: on (Blockl,Block?2) &clear (Object),

add: nil,

del: on (Blockl,Object) &clear (Block2) )

An operator for legally moving the tiles in the Eight Puzzle is:

( name: move (Tile,P1l,P2)
check: next (P1,P2) &ne(Tile.blank) &type of (Pl.position) &
type of (P2,position) &type of (Tile,tile),
filter: nil,
precon: at (blank,P2) feat (Tile,Pl) ,
padd: at (blank,Pl) &at (Tile, P2) ,
add: nil
del: at (blank, P2) &at (Tile, P1) ) -1(8)

(see appendix A for more examples)

1.130perational Semantics

An OPERATOR APPLICATION of operator 0 on state description S with
respect to environment E is possible if there exists a ground
instance O' of 0 such that S contains O’.p and E contains O’ .e,
i.e. S satisfies the preconditions of 0. In general there may be
more than one such ground instance, but application of instance 0'
to S can be defined as the following state description (N.B. av)
will be the symbols used for set union and difference,

and
respectively):
Oo’[s] = { S -0O0".d} UO'.aUO'.s

In other words O’ [S] is the state produced by first removing the
instantiated operator’s delete set from S, then adding 1its

add set and side effects to S.

14



A TASK is defined as a four-tuple (I,G,E,0S):

( initial state, goal condition, environment, operator set

e.g. (1(1), 1(5), 1(2), 1(7)) 1is a task:

A task (I,G,E,03) is ACHIEVED when a sequence of operator
instances O’ (1) ... O’ (n-1), O0'(n), taken from set 0S, is found,

such that O’ (n) [0’ (n-1) [ ... O0'"(1) [ I ] ... 1] contains G.

O0f course this expanded STRIPS-type framework is still a little
'"loose'. It should be pointed out, for example, that a necessary
condition for task achievement is that each predicate in the
goal condition can unify with a predicate in some operator's add
set. More details of this framework can be found in the FM user

guide [McCluskey 88b] and in appendix D.6.

1-2 The Performance Components

I shall now describe the three planners that were used in the
experimental work that lead to this thesis, using the notation of

the task framework defined above. Their implementation is given in

appendix C.
1.21The State Space Search: FOR

FOR contains the simple strategy of best-first search through the
space of states. It starts by generating all states from the
initial state by every possible instantiation of operators from
the operator set, then expanding each of the generated states
likewise. Each state is actually represented within a node
containing information such as the operator sequence required to
reach it, and the cost of that particular partial solution.

Optionally, the following features may be included in this search:

(1) The user can supply an operator's inverse so that the strategy
will avoid applying an operator and then its inverse sequentially.

In the environment E, the user states:
inverse( O.n, O0'.n)

for example:
inverse ( move (Tile,P1l,P2), move(Tile,P2,P1l)),

This will stop sub-sequences being generated which move a tile to
a square then immediately move it back again. Of course, because
of the declarative representation for operators, generation of

inverses could be easily automated and executed during a pre-

processing stage.

(2) The strategy can keep a list of all states expanded, and check

through them to make sure an identical one is not re-expanded.

15



This heuristic can cause more matching overheads than its worth in

some problem domains and so is optional.

So costly is this strategy that acquiring heuristics by experience
(see chapter 2) only works well on domains such as the 8-puzzle!.

1.22 The Goal Directed Search: MEA

MEA 1is so named because it implements some of the principles of
'Means-Ends Analysis! in a similar fashion to STRIPS [Fikes et al
727 . Specifically it forms the difference between a goal state
and initial state as a set of predicates; then it treats the
preconditions of the operators that achieve one or more of the

difference predicates as new goal conditions.

Hence the backward search of FM proceeds in a goal reduction
manner, starting with the initial goal, through a space of goal
nodes. This space 1is searched by storing 'open' nodes in a
priority queue. Elements are given an initial priority depending
on a weak heuristic, represented as a rule below, which depends

on the initial state of that node and the goals it must solve.
In the version of MEA used in chapter 3, this was simply:

priority = large number -
2* (no. of goal predicates not solved by initial state)

To ensure fairness, the priorities are all incremented after each

node expansion.
Each goal node can be modelled as a 5-tuple:

(Goal, Initial State, Ancestors, Purpose, Trace),

The Trace records attempts to solve the Goal; these are made up by
combining operator subsequences together, which solved subsets of
Goal. The Purpose records why the goal node was created, which can

be of two types:

(a) to solve the unsatisfied preconditions of an operator;

(b) to solve a Goal from an advanced Initial State (not I in
(I,G,E,08)) in which one or more of Goal’s predicates has Dbeen
achieved

The 'Ancestor’' slot is simply a record where the node’s ancestry
is  kept. One use of this slot is to allow MEA to identify nodes
with recurring goals and delete them from the search.

Goals, expressed as conjunctions of predicates, are initially
assumed to Dbe decomposable: when a goal node is activated,
operator instantiations which add goal predicates have their
unsatisfied preconditions form another goal node, unless they are

16



figure 1/3: Goal Node processing in MEA (">" means "contains")



already satisfied in which case those operators are applied to the
initial state and the result recorded in the trace. If the

parent’s main goal is solved as a result, the process recurses.

When the trace of a goal node eventually contains a state
satisfying its goal (via an operator sequence Os), we say that the
goal node is solved, and all nodes which are successors of it are
removed from the search. If it was activated to solve an operator
O's preconditions, then the sequence Os + 0 is applied to the goal
node’s parent’s initial state and the result recorded in the

parent’s trace.

A goal node’s initial state may be the state inherited from a
parent node, or may be an advanced state partially satisfying the
parent’s goal. The latter is the case when goals cannot be solved
by simple decomposition; MEA examines the trace and forms new goal
nodes whose goal predicates are inherited but whose initial states
are selected from intermediate states taken from the parent’s
trace. This type of search ensures that when a node is solved, the
attempts to solve the node’s goal are declaratively available in

the trace for scrutiny by learning components.

The whole process of goal node expansion is shown in the process
diagram of figure 1/3. The level above this 1is the top 1level
strategy: it simply chooses the next node to expand as the one

with the highest priority.

1.23 The Non-Linear Goal Directed Search: NLP

NLP is defined precisely in [McCluskey 88a, appendix D.5], using a
model-based specification method. We assume that the reader has
studied this paper, as it is background to to chapter 4, and

contains all the necessary notation.

One important detail that is left out of the paper is its

comparison with the work from which it is derived. e.g. is the
specification for goal achievement in NLP as powerful as Chapman’s
original in [Chapman 87]. The theorem below shows that it is. As
far as comparing the FM task framework with Chapmans ’'Tweak’, the
former 1is more structured in that it allows a background
environment E, whereas Chapman’s relied on simply operators and
states

Theorem:

NLP’'s goal achievement specification can achieve any goals that
Chapman’s Modal Truth Criterion (M.T.C.) can [Chapman 87]

Proof:
First we state the Modal Truth Criterion in FM’s notation. Given a

partial plan PP = pp(0s,Ts,Ps,As,Es), a task specification
(I,G,E,08), and taking an operator 0 to be of the (slightly

18



simplified) form (0.n,0.e,0.p,0.a,0.d), then if (P.0O) 1is in Ps, A

in Os:
P is achieved at operator 0 in PP by A (called ’'achieved(P,0,A)’)
if there exists A in Os:

[ (there exists Q in A.a: P = Q) &
before(A.0.Ts) &
for all C in Os:
[before (0.C.Ts) V
for all Q in C.d:
[not (unify(Q,P,Es) V
there exists WK in Os:
[before (C,WK,Ts) & before(WK.O.Ts) &

there exists R in WK.a:

[P=Q => P=R] | ] ] ]
The modal operators (originally in Chapman’s M.T.C.) are included
implicitly in the definitions of predicates 'before' and ’'unify’
which are given in [McCluskey 88a, appendix D.5]

Lemma :
In whatever situation a white-night (WK) has to be used for goal
achievement, it can be taken to be the asserter A.

Considering the diagram:
-—— > C--—=> A----> C----> WK--—-> (P) O----> C--—-> .....

C represents possible positions for clobberers - i.e. those
operators whose delete list contains a predicate Q which could
possibly unify with P. If a clobberer cannot be necessary before
A  or necessary after O, then the only other way of goal

achievement for P is by WK: if Q unifies with P, then WK has a

predicate in its add list which can be made identical with P.

But in every situation where this latter case follows, we may
choose WK to be the asserter instead of A. At worst this causes
more instantiation of the partial plan (as admitted by Chapman

himself in [Chapman 87]), so 1t can be seen that this does not

lessen the power of the planner.

So taking A = WK we have: achieved(P,0,3) =

there exists A in Os:
[ (there exists Q in A.a: P = Q) & before(A,0,Ts) &
for all C in Os:
[before(0,C,Ts) V
for all Q in C.d:
[not (unify(Q,P,Es) V
there exists A in Os:
[before(C,A,Ts) & before(A,0,Ts) &
there exists R in A.a:
[P=Q0 => P=R] ] ] ] ]
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But P-Q in A.a in the first conjunction, and ;before(A,0,Ts)' is

true by the second, hence:

achieved(P,0,A) =
there exists A in Os:
[ (there exists Q in A.a: P = Q) & before(A,0,Ts) &
for all C in Os:
[before(0,C,Ts) V
for all Q0 in C.d:
[not (unify(Q,P,Es) V
there exists A in Os:
[before(C,A,Ts) &

true & true

and since before(C,A,Ts) does not depend on Q this is logically
equivalent to

there exists A in Os:
[ (there exists Q in A.a: P = Q) &
before(A,0,Ts) &
for all C in Os:
[ C =0V
C =AYV
before(0,C,Ts) V
before(C,A,Ts) V
(for all Q in C.d: not(unify(Q,P,Es)) ]

which is my specification of goal achievement. QED.
This specification is an integral part of the constructive

specification given in NLP, and it is verified that the design and
implementation are faithful to it in [McCluskey 88a,appendix D.5].
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2 THE BASIS OF CHUNK AND MACRO FORMATION WITHIN FM

2.1 Background to Chunk creation

In this chapter the chunking method developed is used exclusively
m FOR, the forward state space search, but the other chunking
techniques developed later are based on it and wuse the same
notation. The material 1is mostly foundational, for those not
familiar with heuristic/macro generation from goal regression, but

ns such contributes to the body of the thesis in chapter 3.

The theory of Explanation Based Generalisation (EBG) was
postulated in [Mitchell 86] and has had considerable influence
since then (see [Hirst 87], [DeJong and Mooney 87] for example)

Since it is already a familiar theory to Machine Learning workers,
we use it's framework to explain the basis of chunk and macro
creation in FM. Essentially this corresponds with my original idea
of "model based generalisation of a successful operator sequence's
weakest precondition" [McCluskey 87b p.136], which means that the
generalisation is justified by the operator and environment model

supplied by the user.

Recall that there must be four components involved in EBG
(following [Mitchell 86]):

(a.) the target concept: what is to be learned;

(b) operationality criteria: the form in which the learned concept

description must be encoded, the operational description of (a);

(c) the domain theory: a 'deep' body of knowledge containing a

non-operational definition of (a);
(d) an example of (a). ..2(1)

The process of EBG is first to build a proof tree showing that (d

is an example of (a), (drawing from the theory in (c)) such that
all leaves in the tree are in form (b). Then each 1leaf 1is
generalised as much as possible without falsifying the proof, and
finally the acquired heuristic is defined as
conjunction of generalised leaves —> concept °.2(2)

Mitchell et al, using their LEX2 system, exemplify how EBG 1is
applied to heuristic acquisition in [Mitchell et al 86, p. 62-65].
We will use the same line of argument, but generalise to systems
of FM's power (recall that unlike FVM, LEX2 was tied to a specific
application 1i.e. Symbolic Integration, which has a fixed goal,
rewrite rules as operators, and a relatively simple generalisation
space for operator preconditions). Consider the solution sequence
to some task (I,G,E,08), paired with the corresponding

intermediate state descriptions:
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where O(i) [S(i-1)] = S(i), S(n) contains G, S(0) = I.

Using 2(1) we have:

(a) is a heuristic precondition for 0(i) defining the set

{ S : 0(i) 1is the correct operator to apply

when in state S to achieve goal G }
(b) is a generalised state expression;

(c) is the set of general axioms for state space search, as in
[Mitchell et al 86, p.62] as well as the specific regression

theory developed in section 2.2 following;
(d) is [(0(1),s(1)), ... ,(0(1),s(1)), ... (O(n),S(n))l,

Following [Mitchell et al 86, p63], the main operational 'leaf' 1in

the proof tree is:

matches( (S(i-1) U E) ,
regress (0 (i), regress (0 (i+1l),.. regress(0(n),G).. )) )

.2(3)

where 'regress' 1is defined in 2.2 below, and matches (S,C) means C

is some condition that is satisfied by S; if C and S are simple
sets of ground predicates, then this is equivalent to 'S contains
c'. If ¢ contains variables, then this is equivalent to 'there

exists some instantiation of C which is contained by S'.

(S(1i-1),q9) is then regarded as an instance of the set of all
(State, Goal condition) pairs under domain definition of E and O0S,
to which 0(i) is best applied. From the proof tree it can be seen
that we are using no other characteristic of S except this match,

so any state that matches the regression expression will also do.

2-2 Regression

We define the regression of a conjunction of ground predicates G

through an operator 0 as its weakest precondition written

"wp(O!G) ":
wp(0,G) = { G’: 0 is applicable to G and 0[G'] contains G}

This is analogous to the weakest precondition used in the program

proving literature (e.qg. [Gries 83]): wp(0,G) specifies the set of

all states such that execution of command(s) 0 from any one of
them will terminate in a state satisfying G.

Regression works well where there is a declarative definition for
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operators ([Porter and Kibler 85] use the word "transparent" to

describe appropriate operator schemas); in program proving the
axiomatic semantics of control constructions are used. For FM,
where 0 is a totally instantiated operator from O0S, and S is a

state expression:

°ES] = (S - 0.d) U 0O.a U O.s

and since O.p U O0O.e are supposed to be the necessary and
sufficient condition for O’s application, it follows that the
weakest precondition is the conjunction of ground predicates given

by the set:

wp(0,G) = (G - (0.a U O.s)) U O.p U O.e ..2(4)
Now consider the case of a sequence of operators [o(1y, ey
O(n)]. Following [Gries 83, page 115] we can define:
WP (EO(1), .... O0(n)],G) =
wp (0 (1) ,wp(0(2), ... wp(O0(n-1),wp(0(n),G)) ... ))
Letting:
P(0) = G
pl) = wp(0(n),G)
P(2) = wp(0(n-1),wp(0(n),G))
P(3) = wp(0(n-2),wp(0(n-1),wp(0(n),G))) etc,

and for any operator 0, let O.as = O.a U O.s, then from 2(4):

P(l) = (P(0) - O(n).as) U O(n).p U 0(n).e

p(2) = (P(1) - O(n-1).as) U O0(n-1).p U 0(n-1).e

P(3) = (P(2) - 0(n-2).as) U 0(n-2).p U 0(n-2).e etc, and hence
P(0) = G and for 1 <= j <= n,

p(j) = (P(j-1) - O(n-j+1).as) U O(n-j+1).p U O0(n-J+1).e, ..2(5)
If we define wp([O(i), ... ,0(n)],G) = WP(i,n), then (see fig 2/1)
WP(i,n) = P(n-i+l) = (P(n-i) - O(i).as) U O0(i).p U 0(1i).e ..2(6)

In fact we will separate these out into two disjoint components:

WP(i,n) = WPs(i.n) U WPe(i,n), where:

WPe(i,n) = O0(i).e U ... U O0O(n).e

WPs (i,n) = P(n+i-1) - WPe(i,n) .2(7)
This construction is well defined because FM’'s operators

components must be restricted to conjunctions of ©predicates,
avoiding the problems of obtaining disjunction through regression
as mentioned in Porter and Kibler’s critique of analytical goal

regression [Porter and Kibler 85]
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0(1) | |

figure 2/1: Build-up of weakest preconditions

p1 p2 p3
tileS tile2 tile3

p4 pS P6
tilel blank tile4

P7 p8 P9
tile8 tile7 tile5

figure 2/2: An Initial State for the Eight Puzzle
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2.3The 8-Puzzle Example

We will wuse the 8-puzzle example introduced in chapter 1 to
demonstrate the ideas of chunk creation. (The similarity to Soar's
chunks for this type of strategy can be seen by referring to [Laird
86] which also uses the 8-puzzle problem as an example application

domain).

Recall that the board has 9 numbered positions (pl,p2,..,p9) on
which there are 8 numbered tiles (tilel,tile2,..,tile8) and a
'blank'. The idea is to find a sequence of moves (i.e. swapping a
tile with the blank horizontally or vertically) linking a pair of

states, (I,G).

Let I be as shown in figure 2/2, let G = at(tilel,p7), then FM with
the FOR search strategy will output the solution sequence of

operators

[move (tile7,p8,p5) , move (tile8,p7,p8) .move (tilel,pd,p7)]

Using the equations 2(7) and the operator definitions in appendix

A, we have:

WPs (1, 3)

at(tile7,p8) &at (blank,pb) &at(tile8,p7) &at (tilel,pd)
WPe (1, 3)

next (p4,p7) &next (p8,p5) ftnext (p7,P8) &ne (tilel,blank) &
ne(tile8,blank) &ne(Tile7,blank)

and hence an 'ungeneralised chunk' is formed as
(0(i),G,WPs(i,n),WPe(i,n)) for n = 3 and i = 1,2 and 3.

In future problem solving, if the current state S contains
WPs (i, n) and the current goal = G, then 0 (1) is the operator
instantiation that should Dbe chosen to continue the search
(WPe (i,n) 1is superfluous in this ungeneralised version).

2.4 Chunk Generalisation and Use

To recap, our regression equation 2(5) can be applied to a
solution sequence for any task (I,G,E,O0S); for i, 1 -< i1 =< n, it
will produce the subset of S(i-1)&E.f which 1is necessary and
sufficient for 0(i), ... ,0(n) to succeed, that is the expression

WP (i, n).

This 1is a generalised expression in the sense that it specifies
Bthe set of all states which contain it. It can be generalised
further: recall from section 1.13 that for an operator to be

applicable, its preconditions much match the current state and
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environment. Using this matching that proves each 0(J) is
applicable, for 1 =< j =< n, wherever a constant in S(j-1) was

substituted for a wvariable in O(j).p or O(j).e, the constant can

be generalised to a variable, without falsifying the proof. This
is Jjustified because any property of the particular identity of
bhe constant used would be stated in O(j).e and will itself Dbe

generalised to the same variable, becoming a binding constraint.
Whenever a constant matched a constant in the proof, however, this
must stay in unchanged. Also the following restrictions are
imposed:

“Identical constants must be generalised to the same variable
instance only when they were both substituted for the same

variable instance in some operator's preconditions;

“To perform 'careful' generalisation (as defined in [Kodratoff
847), different variable instances from 0(j) should have binding
restrictions added to the target chunk, so that they may not be

instantiated to the same constant later, when the chunk is in use.
Since FM’'s variables should be given a type in the domain
definition this restriction is not needed unless the wvariables

are of the same type.

STRIP'S macrops system violated the second rule and over-

generalised macro operators (as pointed out in [Fikes et al 721)
The generalisation operator we have just described will be called

GP: it carefully generalises constants to variables in an
ungeneralised chunk as long as the precondition proofs of the
original solution sequence are not violated.

A simple chunk is then defined as the logical term:
Gp (G,0,WPs (i,n),WPe(i,n)) for i = 1,2, .. n-1.
A chunk C can be used in future searches to expand a state space S

generated in the search for a solution to some task (I,G,E,O0S) as
follows: Given a chunk C = (Gc',0c',Sc',Ec'"), If there exists a

ground instantiation of C, say (Gc,0c,Sc,Ec), such that

G = Gc
& S => sc
& E => Ec

then apply Oc. .2 (8)

Alternatively, chunks may be used within future searches in test
mode: all new states are created, and ones which are created

through operators that satisfy 2(8) are chosen to expand next, the

others discarded or given a lower priority.

Expand mode 1s more efficient in the sense that it avoids
generating states in the first place; on the other hand generate
and test mode is desirable if chunks are heuristics favouring
expansions rather than considering them as dead certainties. The
latter is true in the case of the C-chunks described in chapter 3.
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2(8)'s first conjunction could be generalised to 'G contains Gc'

which would allow chunks to apply to subsets of the main goal: in
the context of other interfering goal predicates, however,
operator instantiations recommended may not turn out to be the

best ones

Back to example 2.3. Assuming that names starting with capitals

are variables, then
GP(G,0(1) ,WPs(1,3),WPe(1,3)) =

(chi.move (Tile7,P8,P5),
at(Tilel, P7),
at (Tile7,P8) &at (blank, P5) &at (Tile8,P7) sat (Tilel, P4),
next (P4,P7) &next (P8,P5) &next (P7,P8) &ne (Tilel,blank) &
ne(Tile8.blank) &ne (Tile7.blank) &ne (P4,P7) &
ne (P4, P8) &ne (P4, PS) &ne (Tilel,Tile8) &ne (Tilel,Tile7) &
ne (P7,P8) &ne (p7,P5) &ne (Tile8,Tile7) &ne (P8, P5) )

GP(G,0(2) ,WPs (2,3) ,WPe(2,3)) =

(ch2,move (Tile7,P8,P5),
at (Tilel, P8),
at (Tile7,P8) &at (blank,P5) &at (Tilel,p7),
next (p7,P8) &ne (Tilel,blank) &next (P8, P5) &
ne (Tile7,blank) &ne (p7,P8) &ne (p7,P5) &
ne(Tilel,Tile7) &ne (P8, P5) )

Here we see that constant 'blank' is not generalised since it
appears as a constant in the operators. The 'ne' predicate adds
the appropriate binding restrictions mentioned above. Note that
this is a logical term 1in the sense that each component shares
variable identifiers, and constants in the goal and operator slots

are generalised with ones in the other two components.

Bor an example of chunk use, consider the task where I is shown in

figure 2/2, G = at(tile2,p3) and E and OS are as in appendix A.
In search FOR, from the initial state I, the operators generated
would be:

{ move(tiled,p6,p5), move(tile2,p2,p5),
move (tile7,p8,p5), move(tilel,pd,p5) }

Matching the operator move(tile4,p6,p5) and goal G with chi we

have

(chi ,move (tiled,p6,p5),
at(tile2,p3),
at (tiled,p6) &at (blank,pb) &at (Tile8,p3) &at(tile2,P4)
next (P4,p3) &next (p6,p5) &next (p3,p6) &ne (tile2,blank) &
ne (Tile8,blank) &ne(tiled,blank) &ne (P4,p3) &
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ne (P4,p6) &ne (P4, p5) &ne(tile2,Tile8) &ne (tile2,tiled) &
ne (p3,p6) &ne (p3,p5) &ne (Tile8,tiled) &ne (p6,pd)

and since I matches the third component of «chi with bindings
tile3/Tile8 and p2/P4, making the expression

next (p2,p3) &next (p6,p5) fenext (p3,p6) &ne (tile2,blank) &
ne (tile2.blank) &ne(tiled,blank) &ne (p2,p3) &
ne (p2,p6) &ne (p2,pd) &ne (tile2, tile3) &ne(tile2,tiled) &
ne (p3,p6) &ne (p3,p5) &ne (tile3, tiled) &ne (p6,p5)

consistent with E. Since none of the other operator instances
instantiate the chunk to give a consistent match with I or E, then

the first operator will be chosen for application. ch2 will
likewise choose the correct operator at the next step, and infact
the goal will be solved with no search. This shows a simple
example of chunking, taken directly from the FM implementation,
demonstrating what 1s termed ’'symmetrical transfer' in [Laird
86] .

2.5 Closed Macro Creation

Since chi above held the weakest precondition of the sequence of
operators with respect to the generalised goal, it could have put

forward the rest of the sequence as the solution immediately. A
structure 1n FM that can in fact do this is called a "closed
macro’ (introduced in [McCluskey 87a] and [McCluskey 87c]). It 1is

a compiled operator which takes the place of the sequence 0(1i),
o 0(n). Closed macros take a form similar to that of a

primitive operator:

( macroN( <all wvariables occurring in WP(i,n) and G> )

check: WPe (i, n)

macrop: <list of primitive operators>

precon: WPs (i, n)
padd: G

add: Sn - (SO U @)
del: nil )

For example, FM could form a macro analogous to chi:
( macrol (Tile7,P5,Tile8,P8,Tilel,P4,P7)
check: next (P4,P7) &ne (Tilel,blank) &next (P7,P8) &

ne (Tile8,blank) &ne(Tile7,blank) &ne(P4,P7) &ne (P4,P8) &
ne (P4,P5) &ne (Tilel,Tile8) &ne (Tilel,Tile7) &ne (P7,P8) &
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ne (P7,P5)fne(Tile8,Tile7) &ne (P8, P5)
macrop: [move(Tile7,P8,P5),move(Tile8,P7,P8),move (Tilel,P4,P7)J

precon: at(Tile7,P8)&at (blank,P5)fat(Tile8,P7) &at(Tilel,P4)

padd: at (Tilel, P7)
add: at (blank, P4) &at (Tile8,P8) &at (Tile7, P5)
del: nil )

When FM creates a macro for the FOR or MEA strategies, it need not

construct a delete set, since when an operator 1is applied, the
primitive sequence in the ’'macrop' slot is used. However, for the
Non-linear planner NLP, a delete set WP(i,n).d is built wusing

analogous regression equations to 2(5):

WP(i,n).d = Pd(n-i-1) = (Pd(n-i) - 0O0(i).as ) U 0(i).d and
Pd(l) = 0(1).d

This is Dbecause NLP reasons about the temporal ordering of
operators using all their components, and so needs a declarative
version of the delete set. Macros thus defined can be used in two

ways in future search:

(a) as chunks, in the sense that if the current goal-state-
environment combination matches the macro’s padd-precon-check
components respectively, then the primitive sequence will Dbe
applied (or in the case of the goal directed searches, added to
the current partial solution).

(b) just 1like a ©primitive operator, in any of the search

paradigms

case (a) suits the FOR strategy and the 8-puzzle problem, but is
generally a less flexible method of knowledge acquisition than
chunking, for two reasons: firstly, chunking amasses preconditions
for particular operators, which can be integrated (as will be seen
in section 3.2), whereas the closed macro is too rigid; secondly,
chunks may be generalised further and used in situations that do

not demand the rest of the operator sequence to be added.

In case (b), macros change long searches with low branching
factors, to shorter Dbushy searches, and if created and used
indiscriminately soon cause a search explosion. Minton in [Minton
85] sensibly suggests that their formation must be selective; his

MORRIS system stores successful operator sequences and creates
macros from the most often occurring subsequences (called script
Macros) . Although we presume MORRIS’S macro construction was
similar to ours, it is not quite clear how the purpose predicates
(FM's 'padd set) would be derived for these sequences.

Another reason that a macro would be built in the MORRIS system is
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to accomplish some conjunction of goals that proved difficult to
solve. This is a similar idea to that of Iba’s system [Iba 85]
His simple precondition for macro creation was that the primitive
operator sequence left most of the state invariant but changed
some crucial aspect. An example of this would be in the creation
of macros for the 8-Puzzle (as investigated in [Korf 85]). Good
candidate operator sequences would be those that moved a tile from
one square to another, leaving others that were already in ’goal'
positions in place. This use of macros, although quite efficient
for finding a solution to tasks with interacting goals, is prone
to find solutions many times longer than an optimal solution (as
found in Korf's Rubik's Cube example in [Korf 85]).

The problems mentioned above were encountered when wusing macro
creation in FM on the application domains listed in appendix A:

as a result of them the emphasis in the rest of this thesis will
be placed on the more successful chunking techniques.
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3. SEARCH CONTROL ACQUISITION IN LINEAR GOAL DIRECTED PLANNING
3.1 C-chunk Creation and Use
3.11 Introduction

The demise of the general problem solver in the 70's was partly
due to the fact that weak methods alone were not sufficient to
maintain an acceptably low level of search. There were attempts to
combat the search problem using pre-processing techniques on the
initial domain definition, e.g. the ABSTRIPS system [Sacerdoti 74]
which generated predicate abstraction levels; or the REFLECT
system [Dawson and Siklossy 77]: this looked for inconsistent goal
predicate pairings, then during an exhaustive goal directed
expansion, goals nodes containing such a pair would be discarded.
These systems seemed to perform well but lacked focus: on the
other hand there are convincing arguments for experience-
learning systems in such works as [Carbonell 83] and [Van der
Velde 86]. Carbonell describes a computational model which directs
the experience of problem solving into a learning mechanism. This

mechanism compiles and stores a problem's solution in a form

suitable for re-use Dby analogy with new problems. Van de Velde
neatly sums up his arguments for experience learning in
'second generation expert systems' ([Van de Velde 86] page
13) "the translation from deep to shallow knowledge is only
worthwhile if there are far less relevant problems that
possible ones" - the relevant ones will be found only by
experience,

The intended function of the chunk described in chapter 2 was that
it should form a heuristic precondition for a generalised goal and
operator by matching on the 'current state’ in the search space.
In contrast linear goal directed searches are through spaces of
'goal nodes' of various types, each node consisting of (at least)
such information as an unachieved goal set, an initial state and a
sequence of operators; inevitably this does not allow the
straightforward matching of the simple chunk, since search is
through a space of goal nodes.

Hence the reason for my development of an experience-based,
general method for learning heuristics to cut down goal directed
search, one that would find operational reasons why one operator/
operator instantiation is to be preferred over another, and could
do so for any domain defined by the task specification of chapter
1 (the term 'operational' is used here with a similar meaning to
that used in the definition of E.B.G. in [Mitchell et al 86] p.51,
x-e. an operational description is one which can be readily matched
with some part of the working memory of a problem solver)
My work developed through two stages: I devised b-chunk creation
as a method of extending the use of equation 2(6) of chapter 2 to
goal directed searches [McCluskey 87b], [McCluskey 87d1]; and
recently evolved this into a more efficient version, incorporating

incremental rule repair. I shall call the latter version the 'c-
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chunk' simply to distinguish it from the others.

In a typical goal directed search, a goal node is expanded,
creating new goal nodes, by collecting all operator instantiations
that solve one or more of the predicates in the set of unachieved
goals (i.e. contain the predicate in their add-set). As stated in
[Minton and Carbonell 87], there are four distinct choice points

in this type of search:

Whichnode N to expand next?

Whichgoal predicate P in N to achieve?

Which operator 0 that achieves P, to add to N2

Which set of operator bindings should be applied to 0?

=swWw N

Acquiring strong heuristics for Step 2 was originally addressed by
the ABSTRIPS system mentioned above, where predicates acquired
abstraction levels, and during search the next goal predicate was
chosen according to which had the highest abstraction value.
Creating 'goal structure' in this way may deal effectively with

choice of goal, but not how to achieve it.

Thus I decided to concentrate on the crucial choices 3 & 4, where
search control is badly needed, to cut down the number of new
nodes created thus eventually eliminating choice 1. In 'concept

learning' terms, I address the problem of learning an operational

concept (one that matches on the initial task specification) of
which 1is the best operator and instantiation for that operator,

with respect to achieving a particular goal.

3.12 Example Objectives

Roughly, the intended purpose of our chunking mechanism 1is to
capture the most general conditions under which a certain operator

instance should be used to achieve a certain goal. This I will
define as the target concept for the operator-goal combinations. I

will give some simple examples of choice in goal directed search,
and guess, by examining the domain definitions from appendix A,

some operational reasons why a particular choice is the Dbest. In
this way I will attempt to hand craft a rule for particular goal

predicates; later we shall see how the c-chunk mechanism automates
this through experience, for domains which has been stated within

the FM framework.

For example, consider our robot world domain defined in appendix
A. It may be required to learn under what most general conditions
a robot should choose a particular door D to push a box B through
into rooom R, thus achieving ’'in room(B,R)’. Consider figure 3/1:

Here the goal is simply 'in room(boxl,room2)’. Of the three
choices of operator instantiation, (shown Dby the arrows),
pushthrudoor (boxl,door25,room2)’ is obviously the best, an

operational reason we might venture, as being:
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rooml room2 room3

door12 door23
door14
roomd door25
room4
box1 (robo)
figure 3/1: A robot world fragment
rooml room2 room3
Fboxll
door12
door23
door24 | door25 door35
room4 \ room5 roomo6
door45 door56

(robot)

figure 3/2: Another robot world fragment
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"in room(boxl,room5) &
connect (room2, room5,door25) &
fits thru(boxl,door25)’

On further reflection we might come up with a description of the

target concept as:

0 is the best door to push B through into R if

D can be reached, and is the nearest to B, by a path which
includes only doors (including D) through which B fits.

For simplicity we define 'nearness' by equating each operator with

unit cost. An operational description might be:

to achieve in room(B,R), for any B, D, R, where type of (B,box),

type of (D,door) and type of (R, room)

{ in room(B,R1l) &connect (R,R1,D) &fits thru(B,D)

not ( there exists D’

in room(B,R1l) ftconnect (R,R1, D")&fits thru(B,D’) )&
in room(B,R1l) &connect (R,R2,D) &fits thru(B,D) &
connect (R2,R1,D1l) &fits thru(B,Dl)

Y

not ( there exists D', D"
..... etc

\Y%

etc }

=> choose pushthrudoor (B,D,R)

Even this series is not quite correct - the problem of closed
doors means that it may be cheaper to go through an extra room to

avoid having to open a series of closed doors and therefore enter
by a different D! Where the domain contained a room connected to

another by two doors would also change the target concept: if one
is open, it should be able to discriminate in its favour against a

closed door where necessary. Thus even the robot world shows that

these target concepts are non-trivial. Examining another scenario

may help: consider figure 3/2.

Here the main goal 1is ’'in_ room(boxl,room3)’, whereas the subgoal

to be solved is ’'in room(robot, room2)'

°f the four choices of operator instantiation, (shown by the

arrows), >gothrudoor (door25,room2)’ is obviously the Dbest; an
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operational approximation to the reason is:

"connect (room2, room5,door25) &

connect (room6, room5,door56) &
in room(robot,roomé6) &
not ( there exist Z: connect (room2,roomb6,z) )’

and the reader 1is left to draft a general disjunctive rule, similar

to the 'pushthrudoor' example.

3-13 Basic C-chunk Creation

Consider operator 0(i) (1<i=<N) taken from a minimal, successful
operator sequence of size N, which has solved some task given to
0(i) must have been the correct operator choice from some set

of operator instantiations 01 = <0(j): j in l..n & n>=1}, which
were proposed at a node in goal directed search, to achieve one of
the node's goal predicates, G. The heuristic creation processes
which I shall describe search for the characteristics in the task
specification which make 0(i) the best choice from 01 to achieve

G, and so discriminate against the rest of 01

This is in contrast to using pure EBL on the problem solving trace

searching for characteristics which match the goal node that

and
explain why 0(1) was the best choice (e.g. see chapter 4 or
Cl'Iinton et al 87]). This latter approach is too easily bogged down

by the complexity and peculiar representation of nodes, and is
invariably over-specific; on the contrary I believe that learning
algorithms should not so much concentrate on correctness (as
also argued in [Van der Velde 88]) but on forming practical and

usable rules, although they may need refining in the 1light of

further experience.

The build up of useful chunks may be helped by the fact that in

MEA, a solution sequence to any solved sub-task can be a candidate

f°r chunk creation, and may cause the creation of up to N-1 chunks
(recall from chapter 1! that each node in the goal directed search
is itself a sub-task). For instance a situation can arise when a
sub-goal solution which is not on the main solution path gives
rise to chunk creation. Consider the and/or tree, representing
part of a solution trace, in figure 3/3. Here a subgoal of nodel
may be solved through nodes 4 and 5, and chunk(s) may be created,
even though the solution path for the main task may consequently
Turn out to be along a different path.

At some nodes (e.g. node5), 01 may have been a singleton, in which
case a chunk is not made. This may be because the operators have
been well refined Dby the user (e.qg. 'gotodoor', 'close' of
The robot world in appendix A only ever cause the generation of
°uly one Cbiid node during goal directed search) or that chunks
have already cut down the search. The simple rule is that where
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AND

eventual solution

node4
t v
node5 nodeb6 node7
node solved

figure 3/3: and/or tree

GP(O(i),G,C(i),0(i).e)
strengthening
| 1 algorithm
GP(O(i),G,W1(j),W2(j)) ---discriminating chunk

GP(0(i),G,WPs(1,i), WPe(1,i))

(0(i),G,WPs(1,i),WPe(1,i))

(O(i),G,LE)
figure 3/4: generalisation hierarchy
WPs(1,i)
| O(i).p
WPs(1,i)

o(i).p’|

figure 3/5: The residual predicate sets
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there was no branching in the solution trace, then no chunks are
created. This causes the rate of chunk creation to be reduced, as

they are effectively used.

The discriminant components which are derived Dby chunking are
conditions on the initial state I and and environment E, and stem

from the goal regression and generalisation processes used in

chapter 2. For the b-chunk this discriminant is derived from the
similarities Dbetween WPs(l,n) and WPs(i,n) (see 2(7) and consult
[McCluskey 87d1], figures 2 and 3), whereas for the c-chunk,
WPs (1,1) and 0(i).p are used. The final goal predicate wused to

derive WPs(l,1i) 1is that predicate for which 0(i) was added to the

search to achieve.

Similarities are enhanced using a 'strengthening algorithm'; two
such algorithms are detailed below. The core of a c-chunk's

heuristic precondition on states is defined as:
C(i) = {P in WPs(l,i) : 0(i).p&S.r => P} .3

To produce C(i), the present algorithm uses the rules in S.r to
increase the set 0(i).p, then intersects these ground predicates
with WPs(1l,1). A possible chunk is then proposed as (compare with
2(7)):

GP(O(1i) .n,G,C(1),0(1i) .e)

The core, however, along with the environmental conditions O(i).e,
gives only a generalised approximation as to why an operator is
needed to achieve a goal, and success depends heavily on the
particular domain's representation, and the rules in S.r. The
chunk at this stage is reminiscent of the weak heuristic 'choose
the operator which has the most preconditions already achieved by
the initial state' which is actually included as a weak heuristic
in MEA. To improve on this, I devised algorithms A and B to

strengthen the chunk’s latter two components.

The strengthening algorithms specialise expressions C(i) and
0(i).e ( = wWl(0), W2 (0) ) until they reach expressions W1l (7j) and
W2 (3) which discriminate in favour of the correct choice if wused

in exactly the same task. Following figure 3/4, The instance to be
generalised is represented at point (a). At point (b) it has been
generalised to include only those predicates that were necessary
and sufficient for the operator sequence to be applied, up to and

including 0(i) .

Systems based strictly on EBG, such as Prodigy, would presumably
only produce an equivalent of point (c), when learning from
success 1.e. the generalisation of (b)'s constants to variables,
where it does not invalidate the sequence 0(1) .. 0(i)'s
precondition's proof ([Minton & Carbonell 87] p.231 show the
acquisition of this type of heuristic for a blocks world example
which we reproduce in section 5.2). In (c), however, there is

generally information which just relates to the satisfaction of
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intermediate operator preconditions, and is irrelevant to the

final operator 0(i). In fact, the last two components of (c) are
identical to the state and environmental preconditions of a
closed macro (see section 2.5 or [McCluskey 87c]).

My chunking techniques start with the expression at point (e) and
specialise 1it, using a strengthening algorithm, until it
discriminates against choices in the original solution at point
(d). Although the algorithms are essentially general to specific,
in some cases C(i) may already be too specific - for instance when
it produces a conjunctive component of a disjunctive target
concept. In fact the discriminating chunk at point (d) may still
only be an approximation to the target concept - methods of chunk
repair and refinement are explained in 3.2. An outline of my two

'general to specific' algorithms are given Dbelow, and their

implementations are in appendix C.

Algorithm A

First let us define the following two 'residual' sets (see figure

3/5):

WPs(l,i)'" = WPs(l,i) - 0(i).p
O(i).p' = O(i).p - WPs(l,1i)

This algorithm adds predicates from WPs(l,i)' to C(i), and adds
environment relations to the last component of the chunk that
connect 0(i).p' and WPs(1,i)’, finding relevant connections

between them using association chains.

Thus the idea 1is to look for connections Dbetween features in
WPs (1,1) and O(i).p that do not appear in the initial chunk.

Following Vere 1in [Vere 77] (see also figure 3 in appendix D.4),
an association chain between two predicates X and Y, with
respect to a set of Dbackground facts F, is a sequence of
predicates C1,C2, ... Cm, such that

Cl =X Cn=Y, Ci inF, 1 < i <m
and for all k, 1 < k < n, Ck-1,Ck,Ck+1 is such that:
there exists terms x and y in Ck such that
x is a term in Ck-1 &
y 1s a term in Ck+1l &

not (x = y). 3(2)

An example of a chain, with F = E.f in appendix A.l, is C1,C2,C3,

where
Cl = in_ room(boxl,rooml)

C2 = connects (rooml, room2,doorl2)
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C3 = at door (boxl,door23,room2)
and where x = rooml and y = room2

Algorithm A is shown in figure 3/6: note the use of only a subset
of the environment E for the association chain's background facts
F - in fact those parts used in operator application proof Dbefore

and including 0 (1)

The algorithm strengthens the initial chunk along two dimensions:
the inner loop starts with F assigned to only O0(1).e, and
gradually increments this to the full sequence {0(i).e U .. U
0(l).e}, if necessary. This reflects the fact that discriminating
conditions will naturally be found 'near' i, and ensures that it
will not be over-specialised. The outer loop lengthens the

association chain allowed.

Algorithm B

As previously mentioned in [McCluskey 87bl, the complexity
problems involved in building association chains limited their
size. To combat this, algorithm B was developed as A's successor.
Specifically, B is computationally less expensive because
extra features which strengthen the core (defined by 3(1)) are
obtained directly from operator applications' preconditions,
rather than using relational chains. Inside the single
loop of B it can Dbe seen that the most complex operations are
intersection and term listing. Growing association chains, on the
other hand, 1is in general an exponential problem, and only

viable for small chains.

If we first define

TS(wff) = (t : t is a term appearing in wff}-,

C(i,k) = {P in WPs(l,i) : O(k).p&E => P}, 1 < k =< i,
then the basic idea is to specialise C(i) (= C(i, 1)) towards
WPs (1,1) by adding predicates of WPs(l,i) that appear 1in the
preconditions of operators 'behind' 0(i), i.e. adding C(i,i-1),
then C(i,1-2) etc, until the chunk discriminates. Any predicates

that are added to C(i) are supported by environmental predicates
from operator preconditions that contain common terms (see figure
3/7).

The resultant C-chunk from either algorithm is defined as
GP(0,G,Wl(J),W2(J)) ..3(3)

where GP is the generalisation operator defined in section 2.4.

To recap: a c-chunk is a 4-slot logical term; it is formed from a
successful problem solving trace of a goal reduction search, and
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procedure strengthen_A;

/* initialise chunk components */
WI(0):=C(i);

W2(0):= O(i).e;

j  :=0;

while (GP(O,G,W1(j),W2(j)) is not a discriminating chunk)
& (j < complexity bound) do:

| =

F = O().e;

k =i

while  (GP(O,G,W1(j),W2(j)) is not a discriminating chunk)
& (k>1) do:
k  n= k-
F=FUO(k).e

(X, Y) ={x, y: xis a predicate in WPs(1,i)’,
and x is related to some predicate z in O(i).p’ by an
association chain x,y,z of length j+2 in F };
W1(j) =W1(-1)&X;
W2(j) =W2(-1)&Y
end while;
end while;

end strengthen_A.

figure 3/6: strengthening algorithm A

procedure strengthen_B;

/* initialise chunk components */
W1(0):=C(i);
W2(0):={P . Pisin O(i).e &
( TS(P) intersect TS(W1(0)) <> empty_set) };
j  =0;

while (GP(O,G,W1(j),W2(j)) is not a discriminating chunk & j<i) do
| =]+,
)J( :=JC(i,i—j);
Y:={P : Pisin O(i-j) .e &
( (TS(P) intersect TS(X)) <> empty_set) 1}
W1(j) =W1(-1)&X;
W2(j) =W2(j-1)&Y
end while

end strengthen_B.

figure 3/7: strengthening algorithm B
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used as a heuristic to guide future searches by matching its slots
with components of a goal node.

Specifically, it is formed from the context of an operator
application 0 which achieved some sub-goal G at the end of a
solution sub-sequence of operators. The chunk's third and fourth
components are extracted from the state and environmental parts
of the weakest precondition of the sub-sequence; predicates
extracted are ones which appear 1in operator preconditions
towards the end of the sub-sequence, and which seem to be the
reason why operator 0 was used to achieve goal G.

Chunk use will now be defined in the following section.

3.14 The Use of c-chunks

The meaning of ’'a discriminating chunk' in 3/7 is made precise by
our definition of the use of chunks. Consider the set of operator
instantiations 01 = {0(Jj): j in 1l..n & n > 1 } which have Dbeen
proposed in the goal directed expansion of some node with initial
state S, to solve one of the node's goal predicates, G; also
assume that none of the O(j)’s have preconditions satisfied by S
(if an operator were applicable, then it would be applied and the
advanced state would be stored in the node's trace, as explained

in chapter 1). A chunk is defined as discriminating if it favours
one and only one member of 01. A chunk (O',G',Wl,W2) that matches
the operator 0(i) and the node's three components, in the

following way, favours that instantiation:

there exists some variable binding set t:

(0(1) = [0']t) =&

(G = [G']t) &

(S => [wWllt) &

(E => [W2]t) .3(4)

As defined, if 0(i) 1is the only instantiation to be favoured, then
the chunk is discriminating and 0(i) will be the one chosen to
continue goal directed search. Of course the same chunk, or
others, may advise more one operator instantiation, in which case
all favoured paths will be followed (the various combinations are

elaborated later, in section 3.23)

3.15 C-chunk examples
We will use the scenario of figure 3/2 to clarify the chunk idea.
If the initial state 1is as shown, and the goal is

in room(boxl,room3), then using E and 0S defined in appendix A.1,

FM will output the following operator sequence as the solution:

{0(1), 0(2), ... O0(11)} =

{gotodoor (door56, room6), gothrudoor (door56,roomb5)
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gotodoor (door25, room5), gothrudoor (door25,room2)

gotodoor (doorl2, room2), gothrudoor (doorl2,rooml)

goto (boxl), pushtodoor (boxl,doorl2),

pushthrudoor (boxl,doorl2,room2), pushtodoor (boxl,door23,room2)
pushthrudoor (door23,box1l,room3) }

Chunk formation will occur whenever there was a choice of

operator/operator instantiation in the search generated for this

solution. If there were no existing chunks, then in fact there
would have been four choice points: we will show chunk creation
for two of these - 0(9) and 0(11). For more examples consult

section 3.3.

Chunk creation first uses equations 2(7) to construct the weakest

preconditions

WPs (1, 9)

in room(boxl,rooml)£in room(robot,room5)£
open (doorl2) £open (door25) £open (door56),

WpPe (1,9) = connect (rooml, room2,doorl2)£fits thru(boxl,doorl2)L
connect (room2,room5,door25) £
connect (room5, room6,door25) £type of (boxl,box)
WPs(1,11) = in room(boxl,rooml)£in room(robot, room5)£
open(door23) fopen (doorl2) fopen (door25) £open (door56)
WPe (1 ,11) = connect(rooml,roomZ,doorl2)£fits_thru(boxl,door12)£

connect (room2,room5,door25) £fits thru (boxl,door23) £
connect (room2, room3,door23) £type of (boxl,box) £

connect (room5, room6, door25)
Since 0(9).p =
at door (robot,doorl2, rooml) £next to (robot,boxl)
fopen (doorl2)££in room (boxl,rooml)
then from 3(1) and the robot-world environment E in appendix A&,
C(9) = in room(boxl,rooml)fopen (doorl2)

and a discriminating c-chunk would be formed:

GP (pushthrudoor (boxl,doorl2, room2),
in_ room(boxl,room3),Wl(0),W2(0)) =

ch (ch9, pushthrudoor (B,D,R),
in room(B,R)
open (D) £in_room (B, R1),
connect (R1,R2,D) £type of (Bl,box)£fits thru(Bl,D))

This discriminates against the other candidates:

{ pushthrudoor (boxl,door23,room2), pushthrudoor (boxl,door25,room2)
pushthrudoor (boxl,door24, room2) }
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This example produced a discriminating heuristic without the need
for strengthening; if we examine C(11), however, this will not
immediately lead to a good heuristic; without strengthening, this
chunk will look like:

ch(chll’, pushthrudoor (B1l,D23,R3),
in room(B1,R3),
open (D23),
connect (R2,R3,D23) &type of (Bl,box) )
which does not discriminate between the two operator instances

{pushthrudoor (box1l,door34, room3), pushthrudoor (boxl,door23,room3),

The strengthening algorithm B for example, would terminate for j=2

and output:

W1l(2)

open (door23) &in room(boxl, rooml) &open (doorl2)

W2 (2) = connect (rooml,room2,doorl2)&fits thru(boxl,doorl2)s&
fits thru(boxl,door23) &connect (room2,room3, door23) &

type of (boxl,box)
which produce the discriminating chunk:

ch( chll, pushthrudoor (B1,D23,R3),
in room(B1,R3)
open (D23) &in room(B1,R1) &open (D12)
connect (R1,R2,D12) &fits thru(Bl,D12) &
fits thru(Bl,D23) &connect (R2,R3,D23) &
ne (D12, D23) &ne (R1,R3) &type of (Bl,box))

Sometimes discriminating features are found which are only
supportive or co-incidental to the target concept. Although
occurrences are minimalised (since the algorithm 1is searching
through predicates which are in the weakest precondition) section

3.2 shows how FM can refine imperfect rules.

We shall now give a simple example of the use of chll, in future
problem solving. Consider figure 3/1, with the goal of
‘in room (boxl,rooml)’. Then two operator instances would be

immediately generated during search:
{pushthrudoor (box1l,doorl4, rooml), pushthrudoor (boxl,doorl2,rooml) }

chll discriminates between these two and favours the correct
choice pushthrudoor (boxl,doorl2, rooml) because chll instantiates

to

ch (chll,pushthrudoor (boxl,door23, rooml)
in room(boxl,rooml),
open (door23) &in_room(boxl,R1) &open (D12)
connect (R1,R2,D12) &fits thru(boxl,D12) &
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fits thru(boxl, door23) feconnect (R2, rooml, door23) &
ne (D12,door23) &ne (R1,rooml) &type of (boxl,box))

and a consistent binding exists for the state component (R1 =
room5, D12 = door25) and so for the further instantiated
environment component (R2 = room?2)

3.16 Evolution of the Chunking Technique

Before developing c-chunks any further, I will show how they have
evolved from my previous work on b-chunks. I originally designed

b-chunks [McCluskey 87a] as being analogous to chunks which aid
forward search - they both rely on the same kernal, the 'WPs(i,n)’
of section 2; they also both take into account the final goal. An

advantage of this was thought to be that they could be wused to
propose operators to generate a skeleton solution to a problem

before search Dbegan, similar to the ideas of Carbonell in
[Carbonell 83]. This would change their test role in a "generate
and test' search to one of operator generation. As probably

happened in Carbonell’s 1line of research, I found that the
combinatorics of search for the rest of the solution was as least
as bad as starting from scratch - this also proved to be the case
when using chunks to generate an advanced partial plan within a

general non-linear planner (see chapter 4)

I will not describe the b-chunk in depth here, since the two forms
are very similar, and the material is covered in [McCluskey 87b]

[McCluskey 87d] which support this thesis. I will, however, 1list
the important differences, using the terminology already developed
for creating a chunk with respect to an operator 0(i):

3.161: The 'goal slot' of the b-chunk was occupied by the main
goal predicate(s) of the goal node’s solution sequence (a goal
node tree was shown in figure 3/3), not necessarily the one 0 (1)

was invoked to achieve.
3.162: WPs (1,n) and WPe(l,n) were used instead of WPs(1l,1) and
WPe (1,i) respectively. This would include extra information from

the second part of the solution sequence, after the action of
0(1).

3.163: 0(i).p was expanded to WPs(i,n).

The b-chunk was then created using the same processes as explained
in section 3.13. For example the core of a b-chunk was:

C(i) = {P in WPs(l,n) . (WPs(i,n) & E) => P}

Referring to 3(4), a b-chunk favours an operator instantiation

if:

there exists some binding set t:
(0 = [0']t) &
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(S => [Wljt) &
(E => [W2]t) &
(([G"]t => G) V
(there exists Gl: ancestor of (G1l,G) & [G'Jt => [Gl])

This is not a straightforward match (unlike 3(4)) because the Db-
chunk stores the 'final goal G', and uses it as an extra
constraint. The final disjunction includes an 'ancestor'

relation, which allows the chunk's goal to unify with any
ancestor goal encountered in the search - making the chunk more
generally applicable. Also there was the possibility that the
final goal was a conjunction of predicates, hence the need for the

implication in the last conjunction.

Early tests on several different 'toy' worlds, lead to the

following conclusions about the b-chunk:

3.164: Although 1in some circumstances the correct choice of an
operator/operator instantiation does depend on the main goal of
the task, as well as on the rest of the specification, using the
goal as a further constraint causes the target concept
generalisation space to be too complex and disjoint - in fact it
tends to multiply the chunks needed. A circumstance where the main
goal may be important is when it consists of two interfering
subgoals; this may be overcome, however, with separate heuristics
to deal with goal ordering such as abstraction.

3.165: The constraints that are gathered from the successful
operator sequence to form a b-chunk, for some operator 0, consist
of predicates used in application proofs both before and after 0
in the sequence. Those that are from after 0 tend to Dbe

irrelevant and make the chunk overspecific.

3.166: B-chunks don't record which goal predicate an operator was
added to achieve in the original search. This causes no problem if
a user 1is constrained to structure the operators so that each has
only one non-side effect (e.g. only having one predicate on the
'padd' 1list of FM operators), but seems unreasonable in general,
since the spirit of this work is for the system itself to make

such operational decisions.
Finally, we recap the make-up of b-chunks:

Like c-chunks, they are 4-slot logical terms formed from a
successful problem solving trace of a goal reduction search; they
are used as heuristics to guide future searches by matching their

slots with components of a goal node.

They are Theuristics formed from the context of an operator
application (say 0) which occurred in some solution sequence of
operators (say in solving a main goal G). As with c-chunks, their
third and fourth components are extracted from this context, but
in contrast they are made from similarities between:
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—the generalised weakest precondition of the WHOLE sequence of

operators that solved G; and

—the weakest precondition of the sub-sequence of operators after

(and including) 0.

3.2 Chunk Refinement

3.21 Introduction: the Form of Heuristic Rules

Refinement and acquisition control of chunks into a rule set will
now be discussed, as any expanding rule base needs at least some

form of redundancy control and a truth maintenance component.

It should be obvious from the examples above that chunking does
not immediately acquire a perfect operational version of the
target concept: recall the example in 3.15 that created chll. If
in the original initial state (in figure 3/2), door34 had been
closed, then the weak chunk chll' would have discriminated between
the two operator instances. This is not too serious, however,
since (following 3.15) if the chunk chll' is applied to operators
that solve goal ’'in room(boxl,rooml)' in figure 3/1, then the
chunk’s lack of discrimination in this case would send it to be
specialised as described in 3.23 below.

I therefore wview chunk refinement wunder the umbrella of
incremental concept learning (it should follow chunk creation as
suggested in [McCluskey 87b]) and feel that a planner should
improve its performance both analytically and experimentally.

This is because analytic goal regression only generates a
sufficient condition for goal achievement, and is very often over-
specific. To this end, the integration of concept learning and
analytic goal regression has already been encouraged in Dboth
[Boswell 86] and [Porter and Kibler 85]. Let us first review the
structure of the stored c-chunks. In the earlier part of this

chapter we modelled a chunk (0,G,W,W') as a kind of decision rule

of the form:
IF G & W & W match their corresponding task components
then add 0 under the bindings of these matches ..3(5

This is too primitive, because the heuristic store must be in a
form suitable for change and repair as more successful sequences

are analysed. In general, several chunks may be made for the same
operator-goal pair, and would together form an evolving,
disjunctive rule. Rules may also have to be repaired, in cases

where they are too general. To accommodate this we draw on the idea
of evolutionary, automated knowledge refinement as proposed in
[Michalski 85]. He defines censored production rules of the form:
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if <premise>
then <decision>
unless <censor>

Building on this idea of the censor, our evolving knowledge base
is defined as a collection of heuristic rules, each of the form:

" ( 1if G then
(if (W1,Wl’) unless <list of exceptions> V
if (W2,W2') unless <list of exceptions> V
..... \Y
if (Wn,Wn’) unless <list of exceptions> )

then choose 0 ) "

.3(6)
where it is implicit that G, Wi, Wi' match a node's goal, initial
state and environment, respectively.

This representation allows the problem of 'overlapping rules' to

be solved incrementally. For instance, following [Boswell 86,pp52-
53], given two learned heuristic rules:

If P1 then apply operator 01;
If P2 then apply operator 02;

it is argued that if Pl and P2 are not disjoint and 01 leads to a
shorter solution, then the rule set should be changed to:

If Pl then apply operator 01;
If P2f£not(Pl) then apply operator 02;

I will wuse the exception slot of 3(6) to deal with overlapping
chunks in a similar way (see 3.23(c)). Given this more general
form, we redefine the use of an individual chunk: it favours an
operator instantiation if and only if it satisfies 3(4) AND none
of the chunks in its exception list favour a different operator

instantiation.

Incremental chunk creation and use will drive the repair or
modification of Theuristic rules of this form, and will help them
to converge towards their target concepts. Basically, heuristic
rules can evolve in three ways: they can be generalised by the
addition of new chunks, specialised by chunk strengthening, or
specialised by exception addition. Using the rule representation
just discussed, this will be dealt with in section 3.23, while in

the next section we will describe rule optimisation.

3.22 Rule Optimisation
The purpose of optimisation is to make heuristic ©rules more

efficient while preserving their meaning. If R is a rule in 3(6)

format then define:
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Theory(R) = { S : S is a state description and (S,E.f) is
matched by some pair (Wi.Wi’) in R,

and none of its exceptions }

An optimisation operation T is thus axiomatised by the following

invariant, for any rule R:
Theory(R) = Theory( T applied to R)

Some operations are given below, together with examples of their

use:

Tl: Using the rules specified in environment E.r, remove redundant

predicates in each chunk.

For example consider the chunk chi which is taken from our results
of 3.3:

ch(chl, gothrudoor (x(1),x(2)), in room(robot,x(2)),
open (x (1)) &in_ room(robot,x(3))
ne (x(3),x(2))&ne (x(5),x(1l)) &ne (x(2),x(4)) &ne (x(3),x(4)) &
connect (x(3),x(4),x(5)) &type_of (x(4),room) &
connect (x(4),x(2),x (1)) &type of (x(3),room) &
type of (x(2),room)&type of (x(5),door) &
connect (x(4) ,x(3),x(5)) &connect (x(2) ,x(4),x (1)) )

the rules from the robot world in appendix A shorten this to:
ch(chl, gothrudoor (x(1),x(2)), in room(robot,x(2)),
open (x (1)) &in_ room(robot,x(3)),
ne (x(3),x(2))&ne(x(5),x(1))
connect (x(4),x(3),x(5))"connect (x(2),x(4),x(1)) )
T2: Re-order the predicates in each chunk for efficiency.
Our chunk becomes (its final form is in section 3.3):
ch ( chi, gothrudoor(x(l),x(2)), in room(robot,x(2))
open (x (1)) &in room(robot,x(3)),
connect (x(3),x(4),x(5)) &connect (x(4) ,x(2),x(1))&
ne (x(3),x(2))&ne (x(5),x (1)) )
T3: Re-order the chunks within a rule for efficiency.
FM keeps a record of the heuristic worth of each chunk within a
heuristic rule, and uses this to bias its use, 1i.e. the most used

chunks, being the most probable to give a match, are tried first.

T4: Use Dbackground rules specified in environment E to merge

chunks.
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For larger implementations it would also be advisable to cut down
the number of chunks using environment/state rules such as:

type of (X,door) —> closed(X) V open(X).
Then given two chunks:

ch ( chi, gothrudoor(x(1l),x(2)), in room(robot,x (2))
open(x(l)) &in room(robot,x(3))
connect (x(3),x(4),x(5))"connect (x(4),x(2),x(1)) &
ne (x(3),x(2)) &ne(x(5),x (1)) )

ch ( ch2, gothrudoor (x(1),x(2)), in room(robot,x(2))
closed(x (1) &in room(robot, x(3))
connect (x(3),x(4),x(5)) &connect (x(4),x(2),x (1)) &
ne (x(3),x(2))&ne(x(5),x (1)) )

these would simply merge to:

ch ( ch3, gothrudoor(x(1l),x(2)), in room(robot,x(2))
in room(robot,x(3)),
connect (x(3), x(4),x(5)) &connect (x(4),x(2),x(1))&
ne (x(3),x(2))&ne(x(5),x(1)) )

I define a predicate relation to be sparse 1if the number of
instances of it in E is much smaller that the number of possible

instances. For example 'connect' in appendix A is sparse - there
are 18 instances of it whereas there are (no. of objects)**3
possible.

It 1is then obvious that T2 can make a significant amount of
difference to the matching cost of rules by re-ordering chunks'
predicates so that the sparse relations are matched first.
Naturally, relations with the largest arity tend to be also the
most sparse; this particular optimisation rule has had the most

impact on the experimental results outlined below.

3.23 Rule Repair

Chunks are domain dependent heuristics created by a weak (general)

learning method. They can Dbe viewed as generalisations in
'operator x goal x state x environment' space. As the environment
is a fixed body of facts, this component acts as a constraint on
the state expression’s variables. Figure 3/8 represents a

simplification of the way some fictional chunks approximate a
particular target concept (i.e. where the goal predicate name and

operator name have been fixed)

Due mainly to FM’s generality and more powerful operators, simple

incremental induction methods, epitomised by the wversion space

technique of LEX [Mitchell 83], cannot be used. For example,
operator parameters, rather than operators alone, are chosen
by chunks
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Related to the more general, powerful representational factor
mentioned above is the disjunctive nature of target concepts. In
the version space paradigm, an example inside the space allows the
concept 'lower bound' to be generalised so as to cover it, or on
the other hand, a counter example causes the specialisation of
the concept’s ’'upper bound (see [Mitchell 83] for more details of
the version space method applied to problem solving). If this
method were to be used in the scenario of figure 3/8, e3 should
generalise ch-2 towards ch-1, but this clearly is not correct
because of the disjunctive nature of the target concept.

A more drastic measure is rule subsumption: if ch-2 is created
from example e2, after ch-1, then it can be seen from the diagram
that ch-1 subsumes ch-2, i.e. ch-1 covers more ground instances
than ch-2. In some of those ground instances, however, ch-1 may
either offer more than one operator instantiation, or worse the
wrong one, hence it 1is be wise to keep ch-2. On the other hand,
deleting ch-1 and keeping ch-2 does not seem profitable, since

ch-1 covers more of the target concept.

We will show how rule repair can give a partial answer to this
problem, and deal with over-general or over-lapping rules. We have
already seen how chunk creation and strengthening processes help to
'home 1in' on conjunctive parts of the target concept quickly (see
figure 3/4), and how a heuristic rule may be disjunctive to match

this.

First, consider figure 3/9 which shows the main cases where
chunks are created or incremented when applied to search
reduction. In the figure, "'node' represents an expanded node

which has been encountered during goal directed search but is also
on the solution path to some task; and each arc a choice of
operator and instantiation that was generated at that node.

In case (a) no chunks have been used, whereas (b) 1is the desirable
case where a chunk has indicated the correct path. In (c), a chunk
has indicated the correct path, but other chunks C' and C" have
fired for incorrect paths. In (d), the chunk is too general and
has fired for more paths than the solution. Finally (e) represents

a chunk C' which has incorrectly fired.

FM performs an analysis on the trace of a planning session and

deals with these eventualities as follows:

(a) A chunk is made (cf. section 3.13), optimised (cf. section

3.22, Tl and T2), and augments the relevant heuristic rule.

(b) The heuristic worth of C is incremented (cf. section 3.22,

T3) .

(c) The heuristic worth of C is incremented and C is added to C!'
and C" 's Clist of exceptions> slots (see expression 3(6)).
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el,e2,...
examples

state x environment space

figure 3/8: chunks approximating a goal’s target concent
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figure 3/9: main types of chunk use (in each case S marks the successful branch)
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Occasionally, since the the rules acquired are generally
incomplete, circular exceptions may be recorded. In this case FM
will generalise both rules so as not to include eirher exception.

(d) Chunk C is passed to the strengthening algorithm, with the set
of operator instantiations (01 in 3.1) restricted to those that
the chunk has favoured (the first three branches in the diagram)
C is specialised so that it would subsequently discriminate
between the three branches (the exception to this is where the
branches lead to a solution of the same length - this causes a
dilemma for the learner, and is discussed later in 3.321)).

(e) A chunk 1s made as in (a) with C added to its list of
exceptions. This option 1is only available when:
* FM is in 'learning mode' only - i.e. where the MEA search does

not use chunks' advice but registers it and builds heuristic rules

up accordingly.

* FM is in ’'learning and planning mode' but chunks do not cut
branches down but simply favour instances heuristically.
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3.3 Experimental Results

3.31 Introduction

Although several other domains have been specified to FM (as
listed in appendix A, these include Tower-of-Hanoi, 8-Puzzle,
Blocks worlds, Macbeth World) we have chosen two particular ones
to show the power of the c-chunk with the MEA strategy (of course
these applications are simply 'micro-worlds’, that is they make
simplifying assumptions when compared with the more complex real

world)
1. A robot-room world (figure 3/10), an augmented version of the
one 1in [Sacerdoti 73]. This was chosen for several reasons-

-similar worlds appears several other times in the literature,
making it somewhat of a 'bench-mark' (e.qg. [Fikes et al 727,
[Dawson & Siklossy 77]).

-the target concepts to be learned are not trivial (as we saw in

section 3.1).

2. A warehouse world (figure 3/11); this involves tasks such as
moving crates from one part of the warehouse to another, which
means having to plan a route to a truck, plan the trucks route to
the crate, pick up the crate, remove obstructions along the way

etc. This was chosen because:

-like the robot world, it has a convenient spatial representation,

and is therefore more intelligible.
-it 1s a more complex world than the robot worlds.

-it does not seem to have Dbeen modelled elsewhere in the

literature, and is therefore somewhat 'fresh'!

3.32 The Robot World Experiments

Although many variations and representations of plan layout,
initial state and environment are possible, I show a particular
one which in detailed by the I,E,0S of appendix A.1l, and
graphically shown in figure 3/10. I have tried variations along
the representational and arrangement dimensions of this domain,
and obtained similarly encouraging results as presented Dbelow,

because of the generality of the c-chunking method.

The following criteria were taken into account when selecting the

sample tasks:
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big_box
door12 " door23
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door45 door56
door47 \door57 door67

room7

Figure 3/10: robot world
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1. put less demanding tasks at the beginning of the session;
2. do not have tasks with complex, interfering multiple goals.

Criterion 1. was included since it seems more 'natural' for a

learning system to be presented with less demanding tasks first.

Criterion 2. was included since the c-chunk in its present form is
not aimed at advising on goal interactions, and MEA (unlike NLP)
is not particularly adept at solving them.

The task lists presented below reflected these criteria,
(especially list 1). The initial states, environment and operator

sets are given in appendix A.

Each task consists of one or more goal predicates to be achieved
from a 'current' state; once a solution is found, the state 1is
incrementally updated by applying the solution sequence to it.
Output from some of the test runs 1is supplied in appendix B. We

tried various configurations with the sample tests:

Configuration NO-CHUNKING:

This is MEA, the goal directed, linear problem solver with no
learning components. It is, however, equipped with two weak
heuristics: 'nodes with most goals satisfied in the initial state

should be expanded first' and 'nodes that contain circular goals
should be deleted'  This configuration is the lowest common
denominator for all the configurations below.

Configuration A:

MEA 1is equipped with c¢-chunk creation under strengthening
algorithm A. Only association chains of the minimum length 3 are
allowed (i.e. the complexity bound in 3/7 set to '2'). Rule

refinement as specified in 3.2 1is implemented.

Configuration B:
MEA is equipped with c¢-chunk creation under strengthening
algorithm B, and rule refinement as specified in 3.2.

Configuration HAND-CRAFTED:

This is Configuration B but with an initial set of hand crafted c-
chunks, obtained through studying the environment and operator set

given in appendix A.l.

Note that the CPU times given in the results tables are the
totals; this includes applying each problem's solution
sequentially to the initial state to arrive at a final state which
contains the goal; and also any heuristic acquisition, repair and
use that might be taking place.
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Running 1in interpreted Prolog on a Sun 3/50 workstation, with
plenty of diagnostic reporting, the implementation speeds are
obviously not for absolute but relative comparison. Also, the
addition of other weak, possibly preprocessing techniques, such as
hierarchical operator and goal structure, would speed up all the

results uniformly.

Task Listl:

in room(robot, room2);

in room (boxl,room2);

in room (box2,room3);

in room(big box, room3);

in room(boxl,room6) &closed (door56);
in room(robot, room7);

in_ room (boxl,room3);

in room(box2,room7)

next to(box2,big box):

= © © 1 o Ul W N

0: in room(boxl, room6) &
in room(box2, room7) &

in room(box2, room7) ;

Task List2:
1: in room(boxl, room3).
2: in_ room(box2, roomé6) &

in room(robot,room6) &
closed (door56) &
closed (door67)
3: in room(boxl, room5) &
in room(big box,room5).
4. in room(box2, room3) &
closed (door23) &
closed (door35)
5: in room(robot,rooml) &
closed (doorl?2).
6: next to (boxl,box2)&
in room(box2, room5)
T: in room(boxl, room7) &
in room(box2, room7) &
in room(big box,roomé6)
8: in room(big box,room7) &
next to(big box,boxl) &
in room(box2, room6).
9: in room(boxl, rooml) &
in room (robot,room2) &
closed (doorl2).
10: in room(big box,rooml) &
next to(big box,boxl)&

in room(box2,roomb) .
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RESULTS FOR TASK LIST1

NO-CHUNKING CONFIG. A CONFIG. B HAND-CRAFTED
TASK NO ICPU NODES ICPU NODES ICPU NODES ! CPU NODES
&SOLN | TIME EXPAND- ITIME EXPAND- ITIME EXPAND- ITIME EXPAND-
SIZE IUSED ED 1USED ED 1USED ED 1USED ED
1: 5 59s 20 I 67s 20 [ 65s 20 L 27s 5
2: 5 25s 5 L 27s 5 I 29s 5 | 27s 5
3: 7 75s 10 | 62s 9 | 63s 9 ! 68s
4: 12 185s 28 [ 200s 28 [ 203s 28 [ 87s 14
5: 9 102s 18 [ 77s 15 [ 78s 15 L T72s 14
6: 4 35s 12 [ 19s 4 [ 17s 4 [ 22s
7: 9 485s 58 [ 340s 45 | 51s 9 [ 59s 9
8: 5 98s 14 | 99s 13 [ 31s 5 l 36s 5
9: 5 96s 15 [ 78s 12 I 33s 6 | 38s
10: 23 *oxx *x [ 599s 106 | 407s 68 | 452s 63

Avge soln size: 8.4

(N.B. »444» means that program ran out of space, after at least
2000s of CPU time and 200 nodes expanded)

RESULTS FOR TASK LIST2

NO-CHUNKING CONFIG. A CONFIG. B HAND-CRAFTED
TASK ICPU NODES ICPU NODES ICPU NODES I CPU NODES
&SOLN ITIME EXPAND- ITIME EXPAND- ITIME EXPAND- ITIME EXPAND-
SIZE 1USED ED 1USED ED 1USED ED 1USED ED
1: 7 1 88s 25 I 101s 25 [ 99s 25 I 40s 8
2: 11 | 131s 21 [ 108s 17 104s 17 I 84s 15
3: 15 11056s 161 [ 367s 68 | 367s 65 | 252s 42
4: 11 | 291s 39 [ 82s 16 I 82s 16 I 82s 16
5: 7 | 45s 14 [ 53s 13 [ 51s 13 I 41s 11
6: 11 | 541s 71 [ 96s 18 I 94s 18 [ 100s 24
7: 12 1 772s 99 ! 210s 43 | 208s 43 [ 196s 40
8: 10 | 104s 19 [ 86s 13 . 87s 13 . 59s 12
9: 14 | 332s 44 [ 171s 29 [ 170s 29 [ 151s 26
10: 22 i *x | 472s 78 ! 480s 78 . 372s 64
Avge soln size: 12 operators
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RESULTS FOR TASK LIST11 RESULTS FOR TASK LIST21

CONFIG. A CONFIG. B CONFIG. A CONFIG. B
TASK |CPU NODES ICPU NODES [ | CPU NODES . CPU NODES
&SOLN ITIME EXPAND-ITIME EXPAND-|| TIME EXPAND-| TIME EXPAND-
SIZE 1USED ED 1USED ED {| USED ED ! USED ED

f f | i
1: 5 ! 26s 5 I 23s 5 I 55s 15 36s 5
2: 5 | 25s 5 | 24s 5 I 26s 5 l 30s 5
3: 7 | 83s 10 | 68s 9 I 47 s 7 | 48s 7
4: 12 ! 84s 14 [ 165s 23 | 229s 28 | 228s 28
5: 9 | 84s 15 . 76s 15 |1 8ls 14 I 99s 14
6: 4 20s 4 | 17s 4 I 22s 4 | 31ls 4
T: 9 357s 44 | 60s 10 |1 74s 10 81ls 10
g: 5 | 108s 13 I 3ls 5 [ 36s 5 I 35s 5
9: 5 41s 6 I 34s 6 i 39s 6 | 39s 5
10 23 471s 72 | 414s 68 Il 588s 90 647s 86

RESULTS FOR TASK LIST 22 RESULTS FOR TASK LIST12

CONFIG. A CONFIG. B CONFIG. A CONFIG. B
TASK ICPU NODES ICPU NODES [ | CPU NODES ! CPU NODES
&SOLN ITIME EXPAND-MITIME EXPAND- || TIME EXPAND-EITIME EXPAND'
SIZE 1USED ED 1USED ED [ | USED ED 1USED ED

]

! i
1: 7 I 85s 20 I 114s 18 11 43s 8 . 36s 8
2: 11 | 94s 15 [ 120s 15 1l 109s 17 . 79s 15
3: 15 | 304s 59 | 280s 42 I 273s 44 | 244s 42
4: 11 ! 82s 16 | 82s 16 [ 1 89s 16 | 79s 16
5: T ! 45s 11 | 55s 11 |1 41s 11 | 38s 11
6: 11 | 103s 18 I 127s 18 Il 143s 32 I 124s 32
T: 12 1 192s 40 | 223s 40 11 257s 47 | 184s 40
8: 10 I 87s 13 . 87s 13 1 le4s 28 . 58s 12
9: 14 | 182s 28 [ 229s 28 I 187s 26 [ 141s 26
10: 22 | 498s 78 | 566s 64 {1 522s 78 | 425s 78
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3.321 Discussion of Results

It should first be noted that my hand crafted heuristic rules

(given in appendix A) cut down CPU time and expanded nodes by up

to a factor of 6, averaging at over 3 for this level of task
complexity (these factors, in fact, generally rise as the task
complexity goes up). Occasionally, in simpler tasks, the rules

may only give similar performance to the basic problem solver -
this is where the implanted weak heuristics are sufficient to cut

down search completely.

Chunk creation in configuration B is shown to dramatically cut
down times also, the last five times of B for listl even beating
HAND-CRAFTED. This 1is because of the higher matching cost of a
more comprehensive rule set held by the latter, and 1is an
indication that (in more complex worlds) learning from experience
of relevant problems is preferable than preprocessing techniques.
Configuration A has shakey results as over-specific chunks were
created initially, slowing down learning and causing more repair
to have to take place towards the end of the task 1list.

More evidence that the acquired rules are well on the way to the
target concepts is given in 3(7) below. These are Configuration
B’s rules after list 1; they should be compared to the the hand-

-

crafted in appendix B (note that identifiers beginning with x

are variables).

IF GOAL = in room(robot,x(l)) THEN
/2/ IF ( in room(robot,x(2)),
connect (x(2),x(1),x(3)) ) unless <> OR
/1/ IF ( in_room(robot,x(2)) &open (x(3)),
connect (x(2),x(4),x(5))fconnect(x(4),x(1l),x(3))&
ne (x(2),x(l))£fne(x(5),x(3)) ) unless </2/>
THEN CHOOSE gothrudoor (x(3),x (1))

IF GOAL = in room(x(l),x(3)) THEN
/3/ IF ( in room(x(1l),x(4)) &open(x(2)),
connect (x(4),x(3),x(2)) &type of (x(1),box)
&fits thru(x(l),x(2)) ) unless <> OR
/5/ IF ( in room(x(l),x(4))&open (x(2)),
connect (x(4) ,x(5),x(6))£connect (x(5),x(3),x(2))£
fits thru(x(l),x(6))&type of (x(1l),box)s&fits thru(x(l),x(2))£
ne(x(4),x(3))fne(x(6),x(2)) ) unless </3/> OR
/6/ IF ( in room(x(l),x(4)),
connect (x(4),x(3),x(2))£type of (x(1),box) &
fits thru(x(l),x(2)) ) unless <>
THEN CHOOSE pushthrudoor (x(1l),x(2),x(3)) ..3(7)

Task 1list 2 was chosen to test heuristic acquisition with more

difficult tasks of several goal conjunctions. The operator set and
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environment remain the same, and the initial state is given in

appendix A.l

Approximating the absent CPU time to be 2000s, the hand crafted
rules perform on average nearly four times faster than the Dbasic

planner, in this harder 1list of tasks.

This time algorithms A and B seem to match each other closely for
speed, and in fact acquired similar heuristic rules. The exception
was chunk /7/ (in 3(2) below) - this could only be acquired by the
more powerful algorithm B, Dbecause of the limit on association
chain length in algorithm A. Again the performance figures show
that acquired heuristics quickly start to approximate the hand -
crafted ones. For instance, after only two tasks to learn from,
the time taken to solve task 3 has been cut from 1056 seconds to
367 seconds using either algorithm (remember that the latter
figure is not only problem solving time but also includes time
taken for chunk acquisition and refinement from the solution of
task 3 !).

In task 6 a curious situation arose: A and B actually produced
fewer nodes than HAND-CRAFTED. Further investigation showed that
one of my handcrafted rules was faulty - I had assumed that the
target concept for "in_ room (Box, Room)' was very similar in
structure to ’‘in_ room(robot, Room)' - in fact this is incorrect
with the operator set used in appendix A. FM found it was less
effort pushing a box into a room through two open doors (4
operators) than one closed door (5 operators), and made chunks
accordingly. This can be seen by examining the rules acquired
using algorithm B from 1list2 (shown below in 3(8)); contrast chunk
/1/ with /6/: for the latter, the status of the door dosen’t

matter, whereas the 'open' condition is present in the former.

IF GOAL = in room(robot,x(2)) THEN
/3/ IF (in_room(robot,x(3))&open (x (1)),
connect (x(3),x(2),x (1)) ) unless <> OR
/6/ IF ( in room(robot,x(3)),
connect (x(3),x(2),x (1)) ) unless <> OR
/2/ IF ( in room(robot,x(4)) &open (x (1)) &open (x(3)),
connect (x(4),x(5),x(3)) &connect (x(5),x(2),x(1)) &
ne(x(4),x(2))&ne(x(3),x (1)) ) unless </3/6/> OR
/5/ IF (in room(robot,x(3)) &open (x (1)),
connect (x(3),x(4),x(5)) &connect (x(4) ,x(2),x(1))&
ne (x(3),x(2)) &ne (x(5),x(1)) unless </3/6/> OR
/7/ IF ( in room(robot,x(5)) &open (x(3)) &open (x(4)) &open (x (1)),
connect (x(5),x(6),x(3)) &connect (x(6),x(7),x(4))&
connect (x(7),x(2),x(1l))&ne(x(5),x(7))&ne(x(5),x(2))
&ne (x(3),x(4))&ne(x(3),x(1)) &
ne (x(6),x(2))&ne(x(4),x(1)) ) unless <>
THEN CHOOSE gothrudoor (x(1),x(2))
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IF GOAL = in room(x(l),x(3)) THEN
/1/ IF ( in room(x(1l),x(4)) &open(x(2)),

connect (x(4),x(3),x(2)) &type of (x(1),box) &

fits thru(x(l),x(2)) ) unless <> OR
/4/ IF ( in room(x(1l),x(5)) &open (x(4)) &open (x(2)),

connect (x(5),x(6),x(4)) &connect (x(6),x(3),x(2))&

fits thru(x(1l),x(4))&type of (x(1l),box)&

fits thru(x(1l),x(2))é&ne(x(5),x(3))

&ne (x(4),x(2)) ) unless </1/> OR

THEN CHOOSE pushthrudoor (x(1),x(2),x(3)) ..3(8)

The second pair of tables were constructed after both task 1lists
had been executed again, but this time the acquired heuristics
rules from the first runs were used. Rule acquisition continued,
so that more chunks could be formed if necessary, and rules could
be further refined. Task 1listXY means task listY is run with

heuristics acquired from execution of 1listX.

Although performance is similar to hand-crafted rules, one or two
tasks still lag behind, even in LIST11 where exactly the same

tasks are given again. This is because of chunk interaction -
situation type (c) 1is occurring (see section 3.2, figure 3/9);
once these corrective exceptions are made, this problem
disappears.

A more important problem may occur where a task has multiple
solutions of equal length. In listl/task4/B a chunk advises two
paths to follow, and is subsequently called in for strengthening.
There is a dilemma: should the planner search exhaustively to make
sure that the non-solution path does not lead to an equal solution
(each time this occurs!) as did the Lex system [Mitchell 83] or

should it always apply the strengthening algorithm?. There does

not seem to be any definitive answer to this, since searching for
every possible solution is obviously expensive if not impossible.
I decided on the following compromise for the actual
implementation:

* don’t look down each path - this is far too slow if the learning
time 1s being taken as an integral part of the planning time (as

in our case)

* send the advising chunk to be strengthened. If the paths are
indeed equal, the algorithm may find no distinguishing features,
in which case the chunk is re-instated, and not allowed to Dbe
strengthened again. If there are distinguishing features, these
are of course added; this means that at worst an over-specific
chunk would be developed (but no more so than would be developed

using strict E.B.G.!).
Another problem with chunks, which has plagued learning systems at

least as far back as STRIPS with Macrops [Fikes et al 72] 1is the

overhead in matching cost of 1learning components. As the
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application domains we consider become more complex, chunks will

have to Dbe created with a hierarchical structure, as will

operators and the rest of the domain definition. Our chunk
optimisation routines (specified in 3.2) alleviate this:
reordering predicates so that the sparse ones are matched first,
and reordering chunks so that the most commonly used and simplest
are tried first. However, we found that the matching cost of the
hand-crafted chunks was much lower because of an incorrect, but
efficient assumption we had made: Compare chunk /7/ in 3(8) above
with it’s counter-part in the hand-crafted set (appendix B):

/7/ IF ( in room(robot,x(5)) &open (x(3)) &open (x(4)) &open (x (1)),
connect (x(5),x(6),x(3)) &connect (x(6),x(7),x(4))&
connect (x(7),x(2),x (1)) &ne (x(5),x(7))&ne(x(5),x(2))
&ne (x(3),x(4))&ne(x(3),x(1)) &
ne(x(6),x(2))&ne(x(4),x(1)) ) unless <>

THEN CHOOSE gothrudoor (x(1l),x(2))

Two of the three 'open' conditions in /7/ have free variables, and

cause a considerable overhead in matching, which is not present in

the hand crafted (over general) rule above. In my implementation
the state condition is matched, then the environment (i.e. a
procedural implementation of equation 3(4)) Thus the correct
instantiation would generally only be found after some
backtracking. I tried merging the state and environment conditions

of chunks, then ordering their predicates according to sparseness:

but this did not alleviate the problem, since structuring the
chunk into ’changeable’' and ’'non-changeable' components had itself
Structuring the chunk further so that components
"free'

been efficient.
have a slot in which to place predicates which contain only

variables, seems to be the answer.

In comparison, Minton and Carbonell [Minton and Carbonell 87]

treat the problem differently: their Prodigy system uses feedback

on the problem solving time a rule saves vs. 1its matching cost; 1if

this comparison is adverse, the system may delete a rule all

together.

A final problem encountered by c-chunk creation in the robot world
is that of picking the wrong discriminating feature. Obviously the
probability is lessened by the goal regression procedure,
'backwards-directed  strengthening, but may still occur; This
Winston’s arch-learning program

and by

problem was highlighted in
[Winston 75]: the trainer was expected to present counter examples
with Jjust one major discriminatory feature (although Winston

claimed the program would keep alternatives and 'backtrack’ if

necessary) . In his system, the counter examples presented are

analogous to our incorrect paths. The the problem is: how can the

learner pick out which features are co-incidental, and which

discriminate
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In the case of my implementation used for the tests, this problem
is dealt with effectively since chunk creation is incremental and
heuristic rules are refined: erroneous heuristics simply make
learning slower and may initially lead to non-minimal solutions.
This 1is since chunks are learned and used immediately; one way of
eradicating the effects of a ’'bad chunk' is by introducing a
learning session, where tasks are solved in learning mode only,
where heuristics are acquired but not used (earlier learning
programs like LEX [Mitchell et al 83] seem to only work in this
manner) . To exemplify this, and to show the incremental chunking
mechanism is reasonably robust to this sort of 'noise’ I created a

new configuration:
Configuration ’'Bad

MEA is equipped with c-chunk creation under strengthening
algorithm B, and rule refinement as specified in 3, 2; it is
supplied with the chunks obtained from listl, and the two bad

chunks given below:

ch(chl, gothrudoor (x(1),x(2)),
in room(robot,x(2)),
in room(x(0),x(3)) &open (x (1)),
connect (x(3),x(2),x (1)) &type of (x(0),box) )

ch (ch2, pushthrudoor (x (1) ,x(2),x(3)),
in _room(x(1l),x(3)),
in room(robot,x(4)) &open (x(2)),
connect (x(4),x(3),x(2)) &type_of (x(1),box) &
fits_thru(x(l),x(2)) )

List2 was then executed; since this is analogous to test listl2, I

will call the results list!2’

RESULTS FOR TASK LIST12'

NO-CHUNKING CONFIG.'BAD CONFIG. B HAND-CRAFTED
TASK  ICPU NODES ICPU NODES TICPU NODES | CPU NODES
&SOLN ITIME EXPAND- ITIME EXPAND- ITIME EXPAND- ITIME EXPAND-
SIZE IUSED ED JUSED ED JUSED ED IUSED ED
1: 71 88s 25 | 63s 15 | 36s 8 . 40s 8
2: 11 | 131s 21 | 122s 18 1 79s 15 . 84s 15
3: 15 11056s 161 | 271s 44 | 244s 42 252s 42
4: 11 | 291s 39 . 88s 16 | 79s 16 82s 16
5 7 45s 14 | 41s 11 . 38s 11 . 41s 11
6: 11 | 541s 71 | 146s 32 [ 124s 32 100s 24
7012 1 772s 99 | 254s 47 | 184s 40 1965 40
8: 10 | 104s 19 | 163s 28 . 58s 12 59s 12
9: 14 | 332s 44 . 199s 28 | 141s 26 151s 26
100 22 | *+* Y& 4625 70 . 425s 78 372s 64
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These results compare well alongside the 1listl2 results, and
indicate that the chunk refinement technique can cope with ’'noisy’
or bad chunks. The residual rule set after these tasks have Dbeen
executed are supplied in appendix B. The reader will see that the

original chunks have been 'exceptioned out’

In conclusion, despite the problems listed, all these results
in the robot world show that c-chunk creation works extremely well
in this domain, with the performance of algorithm B being
generally better than A. LIST1/B and LIST12/B give most
encouraging results: six out of the first ten times being better
than hand-crafted, and by the second 10 tasks the times are better
than the hand-crafted in 8 out of 10 cases. This is as expected:
the 20 different tasks by and large increase in difficulty (with
the exception of LIST1/10).

3.33 The Warehouse World Experiments

This domain proved to be more complex than the robot world since
the number of goal interactions among preconditions was much
higher. Also the number of target concepts (operator - goal
combinations) 1is much higher at over twenty. This became apparent
when I attempted to handcraft rules by studying the domain, and
the final set of chunks (in appendix B) was far from ideal; in
fact in the test runs, the handcrafted set benefited greatly from
chunk acquisition. My experience with trying to produce optimal
control rules seems to concur with others who have tried this
exercise (e.g. [Carbonell 88]): letting FM produce the chunks was

far easier!

Again two task lists, list3 and 1list4 were chosen and executed.
This was a random choice except for the criteria as discussed in
the previous robot experiments, and ensuring that the Dbasic
problem solver could actually solve the problems themselves.

The configurations chosen were:

Configuration NO-CHUNKING: as in the robot world.

Configuration B: MEA is equipped with c¢-chunk creation wunder
strengthening algorithm B, and rule refinement as specified in
3.2. Learning and problem solving times are shown separately this
time (in the robot world learning time was not significant,

averaging at less than ten per cent of the total).

Configuration HAND-CRAFTED: as in the robot world.

Again the CPU times given are inclusive. An initial world and
environment 1is shown in figure 3/10, and the full domain
definition 1is in appendix A.2. Sample results are included in

appendix B.
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figure 3/11: warehouse world
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The task lists were:

LIST3:

1: in_ truck

2:  at(truck,s8).

3: loaded (truck, crate3,sl6)
4: at (crate3,s8)

5:  loaded (truck, crate2,s7)
6: at (crate2,s9)

1 stacked (crate2,shelf 10).
8: stacked(crate2,shelf 14).
9:  on floor (cratel,slO)

10: stacked(crate3,shelf7).
LIST4:

1: at (truck, so6).

2: stacked (crate2,shelf?7)
3: stacked (cratel,shelf 14)
4. loaded (truck,crate3,s!2).
5: on floor (crate3,s2)£

at (crate2,s4)
6: stacked (crate3,shelf6).
T: on_floor (crate2,sl)&
on_ floor (crate3,s9)
8: on_ floor(cratel,s2).
9: stacked (crate3,shelf9) &
loaded (truck, cratel,sl?2).
10: stacked(cratel,shelfl0) &
stacked (crate2,shelfo).

The initial states for 1list3 and list4 were, respectively:

unloaded (truck) &unloaded (crane)fon_ floor (driver,s9) &

on_ floor (crate2,sl2)&on_ floor (crate3,sl6)&on floor (cratel,sl)&
at (cratel,si)fclear(sl0) &clear (s3)fat (driver,s9) &

clear (s4) &clear (sb) &clear (s7) &at (truck, s2) &at (crate2,sl2) &

at (crate3,sl6) &clear (sld) &clear (s6) &clear (sll) &

clear (s8) &clear (sl3) &at (crane,sld) &clear (slb)

unloaded (truck) &unloaded (crane) &on_floor (driver,sl2) &

on_ floor (crate2,s2) &on_ floor (crate3,s8)fon floor(cratel,sl)£f
at(cratel,si)&clear (sl0O) &at (driver,sl2) &clear (s5)£

clear(s7) &at (truck,sio) &at (crate2,s2) &at (crate3,s8) £

clear (sld)fclear(s6)fclear(slI)fclear (s4)fclear(sll3) &

clear (s3)fclear(s9)fat (crane,sld) &clear(slh)
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RESULTS FOR TASK LIST3

NO-CHUNKING CONFIG. B HAND-CRAFTED
TASK NO|CPU NODES ICPU NODES |TOT. NODES
&SOLN ITIME EXPAND- ITIME EXPANDED ITIME EXPAND-
SIZE IUSED ED IPROB.SOLV; LEARNING IUSED ED
1 3 70s 9 70s 9s 9 81ls 9
2 3 36s 5 35s 10s 5 36s 4
3 5 53s 5 53s 5s 5 62s 5
4 2 20s 2 I 19s 4s 2 l 18s 2
5 3 116s 12 [ 124s 7s 12 [ 104s 10
6 3 44s 7 [ 42s 11s 7 | 50s 6
7 2 35s 3 [ 32s 3s 3 I 35s 3
8 6 379s 32 | 386s 12s 32 ! 350s 31
9: 7 701s 94 [ 389s 24s 48 376s 48
10: 1 472s 60 | 181s 2s 23 | 1led4s 23
RESULTS FOR TASK LIST4
NO-CHUNKING CONFIG. B HAND-CRAFTED
TASK NOICPU NODES ICPU NODES ITOT. NODES
&SOLN ITIME EXPAND- ITIME EXPANDED ITIME EXPAND-
SIZE IUSED ED IPROB.SOLV. LEARNING 1USED ED
1: 7 383s 42 | 384s 16s 42 | 466s 42
2: 5 72s 10 I 67s 10s 9 [ 72s 9
3: 1 168s 29 . 165s 33s 27 [ 199s 25
4 1 462s 58 [ 106s 31s 12 [ 147s 13
5: 7 11480s 80 11435s 34s 80 11007s 66
6: 9 764s 56 [ 750s 24s 56 [ 720s 53
7: 10 704s 82 [ 631ls 24s 69 | 669s 65
8: 7 11319s 138 1 279s 11s 43 [ 313s 43
9: 8 91s 17 . 96s 15s 14 [ 1l6es 14
10: 13 [2086s 151 [ 597s 41s 58 [ 632s 55
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RESULTS FOR TASK LIST33

NO-CHUNKING CONFIG. B HAND-CRAFTED
TASK NOICPU NODES ICPU NODES [ TOT. NODES
&SOLN ITIME EXPAND- ITIME EXPANDED ITIME EXPAND-
SIZE 1USED ED IPROB.SOLV; LEARNING IUSED ED
1: 3 70s 9 25s Is 3 81ls 9
2: 3 36s 5 39s Is 4 36s 4
3: 5 53s 5 51s 2s 5 ! 62s 5
4: 2 20s 2 1 15s Is 2 ! 18s 2
5: 3 116s 12 | 35s Is 3 104s 10
6: 3 44s 7 [ 22s Is 3 50s 6
7: 2 35s 3 I 30s Is 2 I 35s 3
8: 6 379s 32 [ 94s 5s 10 ! 350s 31
9: 7 701s 94 [ 199s 14s 20 | 376s 48
10: 7 472s 60 [ 163s 2s 23 [ 1led4s 23
RESULTS FOR TASK LIST43
NO-CHUNKING CONFIG. B HAND-CRAFTED
TASK NOICPU NODES ICPU NODES ITOT. NODES
&SOLN ITIME EXPAND-ITIME EXPANDED ITIME EXPAND-
SIZE 1USED ED [ PROB. SOLV; LEARNING 1USED ED
1 3 70s 9 71s 9s 9 81ls 9
2 3 36s 5 35s 8s 4 36s 4
3 5 53s 5 51s 2s 5 62s 5
4 2 20s 2 | 19s 4s 2 18s 2
5 3 116s 12 [ 118s 7s 13 104s 10
6 3 44s 7 . 5ls 7s 6 50s 6
1 2 35s 3 [ 25s Is 4 35s 3
8 6 379s 32 ! 53s 2s 9 350s 31
9 i 701s 94 [ 170s 19s 20 376s 48
10: 7 472s 60 [ 239s 2s 26 le4s 23
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RESULTS FOR TASK LIST44

NO-CHUNKING CONFIG. B HAND-CRAFTED
TASK NO!CPU NODES ICPU NODES ITOT. NODES
&SOLN ITIME EXPAND- ITIME EXPANDED ITIME EXPAND-
SIZE 1USED ED IPROB.SOLV. LEARNING IUSED ED
1: 7 383s 42 I 107s 6s 10 | 466s 42
2: 5 72s 10 83s 6s 10 L 72s 9
3: 7 168s 29 130s 26s 18 [ 199s 25
4: 7 462s 58 81s 16s 8 I 147s 13
5: 7 1480s 80 452s 20s 44 11007s 66
6: 9 764s 56 ! 134s 3s 13 [ 720s 53
7. 10 704s 82 [ 176s Ts 20 | 669s 65
8: 7 11319s 138 48s 2s 7 I 313s 43
9: 8 91s 17 79s 2s 9 I 1l6s 14
10: 13 12086s 151 [ 441s 39s 43 | 632s 55
RESULTS FOR TASK LIST34
NO-CHUNKING CONFIG. B HAND-CRAFTED
TASK NO!CPU NODES | CPU NODES ITOT. NODES
&SOLN ITIME EXPAND-ITIME EXPANDED ITIME EXPAND-
SIZE 1USED ED IPROB.SOLV. LEARNING 1USED ED
1: 7 383s 42 I 5009s 17s 42 | 466s 42
2: 5 72s 10 [ 114s 2s 15 | 72s 9
3: 7 168s 29 ! 75s 9s 13 [ 199s 25
4: 7 462s 58 [ 141s 32s 12 [ 147s 13
5: 7 11480s 80 11461s 12s 76 11007s 66
6: 9 764s 56 | 558s 1l6s 47 I 720s 53
7: 10 704s 82 | 464s 12s 53 | 669s 65
8: 7 11319s 138 | 230s 4s 35 | 313s 43
9: 8 91s 17 | 84s 15s 13 [ 1les 14
10: 13 12086s 151 | 450s s 45 ! 632s 55
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3.331 Discussion of Results

The results again show that the presence of c-chunking generally
increases the time and space efficiency of problem solving, but
with this domain, improvement is not as smooth nor as quick,
although in some cases it can be very large (list44/B/task8 for
example) . The handcrafted rules were poor compared to the
robot world, and relied on automatically created c-chunks to

improve their performance.

List3/B took until task 9 to use any of its acquired chunks, and
then the last two tasks showed a marked improvement. The reason
for this 1is seen by considering the other runs for this list: the
first seven tasks in list3 are mostly too simple to need strong
heuristics. The larger problems 8, 9 and 10, however, benefit from
them; in retrospect, if I were to bias 1list3 to show chunk
acquisition in a better light, then I would have made tasks 1-7

more complex!

List4/B includes some dramatic improvements: for example after
only learning from 3 problems, task 4 1is solved in just over one
fifth of the expanded nodes that were taken in 1list4/no-chunking.
Task 5 unfortunately did not benefit at all, whereas task 8’s time

is cut down by a factor of almost 5.

The test runs which use previous experience show that problem
solving time and learning time generally decrease (except as
previously mentioned, where tasks are too simple to benefit) e.g.
after a shakey start, Iist34/B outperforms Iist4/B, whereas list44
is dramatically better than both of these.

Similar problems cropped up in warehouse as discussed in 3.321: as
in the robot world, refinement of chunks was not smooth, the
major cause being the matching problem. In particular, long
relational chains «could Dbe generated wusing algorithm B, if
discriminating factors were purely spatial. For example, moving a
crate from sl6 to sl3 involves a repetition of operator
"drive load' over several spaces. The weakest precondition of the
solution sequence would contain a long spatial chain (of relation
"next’) which would cause a large matching overhead, if it were

picked out by the strengthening algorithm.

To deal with this, a limit was placed on the size of relational
chains which could be produced during the strengthening algorithm.
This Dbrought it into line with algorithm A&, whose association
chains already have a complexity limit. Although it is actually a
problem of the inadequacy of representing spatial relations using
propositional and not analogue means, some automatic control for
combinatorics in matching is inevitable. Unfortunately, this in
turn means that discriminating features of a weakest precondition
which are relationally far from the final goal will not be picked
up by strengthening.
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3.34 Conclusions

The experiments above are evidence that creating, using and
refining c-chunks increases the efficiency of a general planner in
the particular domain to which it is applied: tasks which share
similarities are solved in decreasing time. In a sense chunking
also increases the power of the planner since more difficult tasks
can be solved than previously, because the the chunks also cut
down on the number of expanded nodes. Other general conclusions
are that more experience leads to more refined heuristics and does
not tend to 'clog up' the system, and in the robot world at least,
the acquired heuristic rules converge towards the hand crafted

target concepts.

As stated in 3.32 and 3.33, the task lists were chosen at random
except for the «criteria stated in 3.32. In particular they were
not carefully selected to give good performance.

The difference in learning curve between the robot and warehouse
domains can be reduced to two major differences: in the robot
world there were only essentially two target concepts that needed
to be learned, in the warehouse there are nearer twenty; also, in
the more complex world some chunks were not made because of over-

long chains of relations.

Finally I will suggest some improvements to c¢-chunking which

should go some way towards solving the problems encountered.
To summarise the problems from 3.32 and 3.33:
1. Learning is slowed because of chunk interaction;

2. Generated chunks may include features which should not be

included in the target concept.

3. multiple equal length solutions can, on occasion, cause

strengthening where it is not needed.

4. the overhead in matching cost of some chunks 1is high.

Two strategies which go some way to solving problem 1. and 2.

respectively are as follows:

1. In the present system, an operator instance only has to Dbe
matched by one chunk for it to be favoured for expansion; instead
the set of all chunks that favour operators could be recorded,

with a speed-up in rule refinement, since more examples (chunks
that favour the correct path) and counter examples (chunks that
need specialising because they favour the wrong path) of the

target concept would be available.

2. During the strengthening process, a chunk in made after the
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FIRST discriminating feature is found. If this process would be
allowed to continue, picking out other discriminating features and
creating more chunks for the same target concept, it would ensure
that no important features were missed, at the expense of
creating more chunks. Further experience would single out the

chunks nearest the target concept.

Both these methods, however, would cause an overhead: the first in
problem solving time, which is more critical, and the second in

learning time.

Problem 3. may be solved by using a more powerful general planner
instead of MEA, one that produces a partially ordered operator set
as a solution (thus specifying a set of equal length solutions):
it would give the learner better information from which to extract

heuristics, as pointed out in 4.1 below.

I would speculate that problem 4. is an issue of basic domain
representation: it may be attacked Dby the introduction of
abstraction levels, or some form of automatic representation
change such as that used in constructive induction (defined in
[Michalski et al 83]). Cruder techniques have been advocated such
as deleting heuristics which prove worthless over a period of
problem solving (e.g.[Minton 85]). Deleting chunks which have not
been successfully used in the last IN' problems had occurred to ne,
and most certainly would have cut down some matching time (e.qg.
task 1 in Iist34/B) but appears crude: addition of ad hoc
optimisation rules for these two particular domains may have made
the results more attractive, but would not have benefited the

overall thesis.
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4., TOWARDS HEURISTIC ACQUISITION IN NON-LINEAR PLANNERS

4.1 Introduction

Experimental research into learning and planning has predominantly
been carried out with linear performance systems. A non-linear
planner (NLP) has a number of advantages as the performance
component of a learning system. For instance, an NLP can solve
more complex problems than usual goal directed 1linear planners
i.e. those which try to find solutions to goal predicates without
the power to 1interleave these with solutions to other goal
predicates. Under certain constraints, the finding of an optimal
solution in polynomial time and space using NLP can be guaranteed
(as proved in [Chapman 87]). Also, the output of a linear planner
may be misleading to a learning component that accepts it, because
of its over commitment to ordering; in the linear planner of the
chapter before, when the first solution 1is found, planning

stops and this solution is used for chunking. It seems
unreasonable to carry on and search for multiple minimal
solutions, without knowing of there existence, or when to
terminate. But better quality heuristic acquisition would be

obtained from the analysis of the correct partial order or least
committed sequence of operators, where any completion of the
sequence can form a solution, such as that output from my

constraint posting NLP.

This chapter is mostly speculative: using the system as described
in chapter 1.23 and appendix D.5, I discuss the type of choices
made in the goal achievement components of NLP, explore one method
of heuristic acquisition, and develop an example from a prototype
implementation (N.B. [McCluskey 88a] or appendix D.5 is background

to this chapter and introduces all the relevant notation)

4.2 The Search through Partial Plan Space

Our NLP has to make several types of choices during search and
partial plan generation, and some are similar in nature to those

discussed in 3.1, 1i.e.

1 — Which node (partial plan) PP to expand next?
2 — Which goal predicate P in PP to achieve?

As stated previously, 1 can be addressed indirectly by creating
less partial plans, and 2 1is alleviated by the addition of
hierarchy (indeed our original version of NLP has already been

extended to an hierarchical planner called HNLP see [Fox 88]).

The choices involved in goal achievement itself are different,
however, and these are the ones we will investigate. Referring to
NLP’s specification we can deduce the types of choice available to
a goal achievement algorithm implementing it; consider an arbitrary
partial plan PP = pp(0s,Ts,Ps,As,Es) generated during the search
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for a solution to task (I,G,E,08). If P 1is an unachieved
precondition predicate of 0 in Os (i.e. (P,0) 1is in Ps), then in

trying to achieve goal P at 0 we can choose:

—to use an existing operator instance within Os (if possible),
or
—+to add a new operator to Os, from OS. —4(1)

Both of these choices may themselves involve choices. Once an
operator A has been selected, is present in the partial plan, and
has Dbeen partially instantiated so that it's add-list will
necessarily assert P, there are choices involved in 'de-
clobbering' P. For instance, if an operator instance C in Os can
possibly delete P, a choice must be made to:

—-constrain Ts so that C is necessarily before A

——constrain Ts so that 0 is necessarily before C

—constrain Es so that nothing in C's delete list unifies with P

-4(2)

Adding a new operator from OS to a partial plan is the only way

that otherwise necessarily achieved preconditions can be
clobbered. Each P in Ps must therefore be de-clobbered every time
a new operator 1is added - this again may entail choices of

constraint addition such as the three described in 4(2)

The discussion above implies that c-chunks may not be wuseful in
cutting down the search space of the NLP. After experimenting with
this possibility, I reached the following conclusions:

a. C-chunks cannot be generated in the same way as they are in
linear goal directed search, since failed paths at the 'state

space' level are not available.

b. The NLP 1is a constraint posting planner, meaning choices
between operator instantiations are postponed, and therefore the
main application of the c-chunk, to choose between instantiations,
is not present in the search. Chunks can, however, choose a
particular operator in favour of others, and may also be used in
'generate mode’. In the latter case, they generate promising

operator instantiations and add them to the partial plan.

c. As mentioned in b., chunks in generate mode do help the search,
but unfortunately miss the main source of combinatorics: this is
invariably in the choice of temporal and variable constraints

possible during the declobbering stage.

From 3. it follows that an approach to heuristic acquisition in
this type of planner must be integrated with NLP; in effect,
generated heuristics should advise on all the choices in goal

achievement. The approach we shall investigate relies on applying
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the state space paradigm to partial plan space: each choice
considered in 4(1) and 4(2) will actually correspond to the
application of a ’'partial plan space operator’. These 'operators
produce new nodes by changing the components of a partial plan and
are in effect the procedural implementation of part of our NLP
specification in appendix D.5; to avoid confusion with planning

operators we will call them ’'transforms’

In general, given a partial plan PP = pp(0Os,Ts,Ps,As,Es), a
transform produces a new partial plan of the form (see figure 4/1)

PP' = pp(0s+0p, Ts+T, Ps-(P,0)+Pre(Op), As+(P,0), Es+B)

where PP 1is wvalid (refer to the defining data type invariant in
A.5) and:

* Op 1is a operator instance, and Op.a contains a

predicate unifying with P;

* T is a temporal partial order on Os+O0p;

* B is a set of variable constraints;

* Pre(0) = { (P,0): P is a precondition predicate of operator 0};
(..any of the above components may also be null)

* (p,0) is a member of Ps

4.3 Heuristic Acquisition using EBG

We have effectively re-represented non-linear planning as a state
space search at a higher level (i.e. 1in partial plan space). Since
the transforms have been stated declaratively, the technique of
Explanation Based Generalisation can be used, as in chapter 2, in
which to substantiate our approach to heuristic acquisition.
Recall that there must be four components involved in EBG (from
2(1)):

(a) the target concept: what is to be learned;

(b) operationality criteria: the form in which the learned concept

description must be encoded;

(c) the domain theory: a 'deep' non-operational definition of the

target concept;
(d) an example of the target concept.
In the partial plan space these will be:

(a) a matching condition defining the set of partial plans for

which an operator H of form:
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figure 4/1: Partial Plan Space
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(+0p,+T, = (P,0) +Pre (Op) ,+(P,0), +B)
is useful, in other words an operational definition of

{PP : PP is a valid partial plan, PP is not a 'goal state'
(i.e. not(PP.Ps = { }) and H(PP) 1is on the
minimal solution path };

(b) a description which matches with (and thus defines a set of)

partial plans;
(c) problem solving rules such as in [Mithchell et al 86]
- for all PP, solved(PP) if and only if PP.Ps = { }.

- for all PP, solvable(PP) if and only if
(solved (PP) V there exists operator
H such that H(PP) 1is solvable)

together with rules specific to the NLP, e.g. the specification of

'goal achievement';

(d) a partial plan PPO and operator H1 such that H1(PPO) is on the
optimal solution path from PPO:

pPO -- H1----> PPI ---H2----> ....---Hn----> PPn

Having posed the problem in the same terms as Mitchell et al's
seminal paper, we conclude from the proof tree ([Mithchell et al
86] page 63) that the heuristic condition for applying H1I to a
partial plan PP is:

matches ( PP, regress (Hl,regress(H2, ... regress (Hn,PPn) cea)) .

This can be used as a heuristic precondition in 'generate and test
mode' in future planning: if Hl is a member of a set of transforms
generated for plan PP, then H1(PP) will be chosen as the next node

in the search space 1if PP matches the regression expression.

There are complications, however: the language of all wvalid
partial plans 1is complex and does not readily admit a convenient
concept description language; also transforms are not stored or
known a priori, and in fact are theoretically infinite in number.
But I will now address another important issue - how to evaluate
the expression 'regress (H,PP)' for any valid partial plan PP and

transform H.

A transform H = (+0p,+T,-(P,0)+Pre(Op),+(P,0),+B) applied to PP,
by definition, achieves goal P at operator 0 in H(PP). The
regression of the final transform Hn from last partial plan
PPn = pp(0s,Ts,Ps,As,Es) 1is the precondition for its application
minus the addition it makes to the partial plan i.e. it is given

by the actual instances of Os, Ts and Es used in the proofs of the
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goal achievement specification (see section 1.3), minus the parts
added by it.

Hence if Os', Ts’, Es' are the actual subsets of Os, Ts, Es

respectively, used in the specification proofs, then
regress ((+0p,+T,-(P,0)+Pre(Op),+(P,0),+B), pp(0s,Ts,Ps,As,Es))
= (0Os'-0Op, Ts’-T, Ps+(P,0)-Pre(Op), As-(P,0), Es’+B) = Rn

Continuing in a similar fashion to the the regression technique

discussed in 2.2, if
Hn-1 = (+0p’,+T’,-(P’,0')+Pre(Op’),+ (P’,0’),+B’) then
regress( Hn-1, regress(Hn , pp(0Os,Ts,Ps,As,Es))
= Rn U
(0s"-0p’, Ts"-T’, Ps+(P' .0")-Pre(Op’), As-(P’.0’), Es"+B'),

where 0Os", Ts" and Es" are the subsets of PPn-1's relevant

components used in the specification proofs.

Finally, we can make the recursive definition:

regress (H1,regress (H2, ... regress(Hn,PPn) ...)) =

regress (H2, ... regress (Hn,PPn) ...))

U (Os"-Op, Ts"-T, Ps+(P,0)-Pre(Op), As-(P,0), Es"+B) .. 4(3)
where HO = (+0p,+T,-(P,0)+Pre(Op),+(P,0),+B), and and Os", Ts" and
Es" are the subsets of PPO’s relevant components used in the

specification proofs.

4(3) can be built for any final subsequence of the achieving
transforms, Hi, .. Hn, 1 =< i =< n, and is a 'generalised partial
plan’ which specifies the set of partial plans which contain it.
Using the same argument as that in chapter 2, the regression
expression can be generalised further by generalising objects in
the transforms as long as the proofs of the preconditions for each

transform is not violated.

4.4 An Example Application

The implementation of NLP has one efficiency feature which limits
the full reconstruction of transforms: partial plan variables are
also prolog variables, and so their instantiations are lost. This
could be remedied by the use of a meta-interpreter (e.g. like that
used in [Krawchuk and Witten 88]) but my implementation for
simplified transforms is adequate to throw light on some major
problems facing this approach, without the need for this extra
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complexity. In fact the meta-interpreter of [Kedar-Cabelli. and
McCarty 87] was tried on NLP, using the prolog implementation as a
specification of the performance component. Unfortunately a
combination of the complexity of the target program and the use of
some 'procedural bits' proved too much for this approach. Instead
the implementation of the partial plan abstract data type was
extended to include a component which recorded those parts of a

partial plan accessed and changed during goal achievement.

The example below is taken from the test runs. We use the block’s
world example, and take the specific task to be the well known
'Sussman’s Anomaly’. E and 0S are defined in appendix A.8: note
that a simpler list format representation is used for operator
schemas than presented in chapter 1, so that addition of operator
instantiations to partial plans is more efficient. A routine is
included in the same appendix defining the change between

this representation and that of FM.

If I = on(a, table) &on(c,a) &on (b, table) ftclear (c) &clear (b)
G = on(a,b)&on (b, c)

then the transforms to achieve this task specification are,
(written in the simplified form (+Op,+T,+(P,0))

H1 = (puton(b,c),[], (on(b,c).goal))
H2 = (puton(a,b),[], (on(a,b),goal))

H3 = (none, [], (clear(c),puton(b,c)))

HO = (none, [t (newtower (c,a) ,puton(b,c) )], (clear (c),newtower (c,a)))
H10 = (none, [], (on(c,a),newtower (c,a)))

Now partial plan PP1O is (where opl, op2, op7, init, goal are
simply identifiers)

PP(
(init,init, ],

[on (a,table),on(c,a),on(b,table),clear(c),clear(b)],[]),
(goal,goal, [(on(a,b) ,on(b,c)] ,0O,11),
(opl,puton(b,c), [on (b, table),clear(b),clear(c) ],

[on(b,c),clear (table) ], [on (b, table),clear(c)]),
(op2,puton (a,b), [on(a,table) .clear(a),clear (b)]

[on(a,b),clear (table) ], [on(a.table),clear(b)]),
(op7,newtower (c,a), [on(c,a),clear(c)], [clear(a),on(c,table) ],

[on(c,a)]l) 1,

[t(op7,0pl), t(op7,0p2), t(opl,op2)]>
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L1,

[(on(c,a),op7), (clear(c),op7), (on(a,table),op2), (clear(a),op2),
(clear (b),op2), (on(b,table),opl), (clear(b),opl)
(clear(c),opl), (on(a,b).goal), (on(b,c),goal)]l, []1 ).

and using our regression formula:
regress (PP10,H10) =

(Os contains [init, puton(b.c), puton(a.b), newtower (c,a) 1),
(init contains on(c,a)) & (Ts contains [t (newtower (c,a),puton(b,c)),

t (newtower (c,a) ,puton(a,b))])

After generalisation along the lines of the EBG theory, as applied
to forward search as detailed in chapter 2, this could generate

a heuristic such as:

for all (distint) operator instantiations 01,02,03,
for all predicates P, IF

(Os contains [init, 01, 02, 03 ]) &
(init adds P) &

(Ps contains P) &

(T's contains [t (03,01), t(03,02)]) THEN

use transform (none, [], (P, 03))

4.5 Discussion and Future Work

This chapter has been mainly speculative, although the regression
equation described has been implemented on top of the basic NLP. A
clean, novel approach to speeding up planning in domain
independent constraint posting planners (as typified by NLP) is
proposed by the automatic construction of search control rules in
partial plan space. These rules would store not only the
conditions under which certain operators are needed, but also the
correct choices of temporal and variable constraints. But major

problems face the development of this line of research:

(1) the regression of transforms leads in general to disjunctive
formulae, since there is usually more than one way that goals may
be declobbered. For instance, in the example above, sub-goal
on(c,a) may be declobbered by the fact that it is not deleted Dby
either puton(a,b) or puton(b.c), rather than using the temporal
constraints. Therefore there are alternatives, and choosing one

leads to an over-specific heuristic.

(2) the generalisation space for partial plans is non-trivial!
Compared with early examples of generalisation spaces, such as
LEX's spaces of algebraic expressions [Mitchell 831, or

generalisation wusing Michalski’s VL logic (in [Michalski et al
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83]1), a space of generalised partial plans would be quite complex

to construct, search and manipulate.

Other forms of learning in plan space have been advocated: an
interesting model of learning and problem solving 1is described
(but not implemented!) in [Carbonell 83]; the thesis is as
follows: a problem solver should initially use weak methods to

solve problems, but then use past solutions to similar problems
as a starting point for future problem solving. Problems are
judged to be similar to past problems by a difference function,
which depends on such features as goal conditions and initial
problem states. When a solution to a past problem is used for a
new problem, problem solving progresses through 'problem space' by
incrementally adjusting the o0ld solution wuntil it is changed
into a full solution to the new problem. Carbonell introduced a
variety of ©problem space operators to accomplish this, including
ones to insert and delete bits of the solution.

The incremental adjustment is then meant to improve using concept
learning techniques, where successful adjustments are considered
as positive examples, etc (as in the typical concept learning
paradigm) . Carbonell's work on this seems to have lead to later
work on derivational analogy in PRODIGY (referred to in figure 5.1
below).

Now NLP can be used in three modes:
1-simple best first search through partial plan space;

2-search as in 1-, but using chunks or EBG-generated heuristics

(as discussed in 4.3) to cut down search branching;

3-search as in 1-, but after chunks are created from operator
solution sequences, they are used to suggest operator inclusion in

later planning, as mentioned in 4.2 conclusion b.

Mode 3- is similar to Carbonell's 1line of research: rather
than wuse chunks for 'generate then select' mode, examination
of the new task (I,G,E,0S) can instantiate the left hand side of
chunks (refer to the chunk form given in 3(5)) so that their right
hand side can be used to compile an advanced partial plan from
which to start problem solving, consisting of an initial

operator set Os'.

An experimental implementation of this, however, showed up a
serious problem: given an arbitrary goal P to solve, using the goal
achievement algorithm, there is still a choice between using an
operator from the partial solution to solve P or adding another

operator - it is not necessarily true that an operator from the
'advanced partial solution' should solve P. This leads to more
choices than in the basic search: choices in 4(1) and 4(2) do not

go away, but increase because of the extra operators in the partial
plan. We found that using an old plan which is 'close' to a new
problem (as measured by some a priori rules) is generally no more

efficient than heuristically improving search or even search from
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first ©principles. The general conclusion is therefore to favour
heuristic acquisition techniques that cut down search in the NLPs,

and some of my future work will run along these lines.
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5. CONCLUSIONS

5.1 General Conclusions

The work from which this thesis is compiled spanned a wide
investigation of experience-based performance improvement in
standard, general-problem-solving paradigms. It entailed designing
and implementing FUNM, a large learning and planning system, which
was used as a testbed for performance improvement techniques, and
resulted in the construction of five types of heuristic

acquisition components, respectively creating:

** the closed macro (chapter 2 and appendices D.l1 and D.3)
** the basic chunk (chapter 2 and appendix D.2)

** the b-chunk (appendices D.2 and D.4)

** the c-chunk (chapter 3)

** the NLP heuristics (chapter 4)

The specific aim of this thesis was to investigate the hypothesis
that a general planner could significantly improve it's efficiency
through successful experience when presented with a domain
specification, by acquiring domain dependent heuristics. Chapter
3 of this thesis describes a type of heuristic acquisition that
supports our hypothesis, at least for a certain class of
planners and application domains; consequently in the write-up
emphasis has been placed on the automatic creation of
heuristic control rules, formed with c-chunks, for goal
directed linear systems. Without doubt this has been the more
successful line of the research. Of the two main technique types,
chunk creation and macro creation, the former proved most
successful for a simple reason: chunks cut down search - that is
they attack the central cause of a general problem solver's
inefficiency. On the other hand closed macros are more generally
applicable - they «can be used in all three types of ©planner
without change, whereas a different version of the chunk is needed
for each type of search. On the whole, however, tests with FM
involving macros, or using chunks to create initial ©partial
solutions, bring with them their own combinatorial problems, and

consequently make their general application difficult.

Next I will 1list what I believe to be the most important
achievements of FM's c-chunks, which are supported Dby the
experimental results in both the test domains of section 3.3.
Problems encountered with this method were discussed at the end of
that section, along with possible ways of overcoming them, so I

will concentrate here on the positive results:

5.11: they generally show monotonicity in efficiency improvement,
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and avoid falling into a similar trap that apparently happened to
Macrops acquisition of [Fikes et al 72]: the system would become
bogged down with combinatorics as more Macrops were formed, and
spend more time in matching heuristic's preconditions than it
would have done 1in problem solving from first principles (to
paraphrase [Porter and Kibler 84, p.278]'s argument, following
[Fikes et al 72]). Although some matching problems were inevitably
encountered in chunking, this had little to do with the amount of
training examples, but the inadequate propositional representation
of a spatial domain (cf. section 3.33) ; indeed over the course of
many training examples, fewer and fewer chunks are formed as
experience Dbuilds up the heuristic rules and less choice points
(which initiate chunking) are recorded during search.

5.12: the learned heuristics show a high degree of 'across-task
transfer'. The tests' speedy marked improvement in problem solving
efficiency is evidence of this, and is a result of the generality
bias inherent in the strengthening algorithms. Recently I have
encountered supporting research for generality bias away from
strict EBL in the 'Progressive Refinement' learning techniques of
[Van der Valde 88] (also see 5.33): for certain domains the author
advocates forfeiting the correctness of EBL for over-

generalisation and then forced specialisation (i.e. rule repair!).

5.13: the accumulation of chunks into heuristic rules is an
incremental method, and 1s relatively noise-immune. This was
tested in section 3.32 by the addition of some erroneous chunks
before a batch of test problems were executed, and performance

still approximated to the ordinary learning curve.

5.14: rule acquisition is relatively immune to problem ordering:
experiments in both the domains of 3.3 show that useful rules are
acquired when task lists are tried in either order; ideally, of

course, simple problems should be given first.

While it is probably the case that a general problem solver which
acquired heuristics for a particular domain could hardly reach the
efficiency 1level of a special purpose domain specific knowledge-
based system, much time and effort would be saved in handcrafting
the rules; in fact the handcrafted rules designed for two sample
domains were extremely laborious to construct. In the case of the
warehouse domain they turned out to be erroneous and incomplete,
and had to be de-bugged through testing (in a similar fashion to

application domain construction).

In a sense, work on control rule acquisition is complementary to
work on domain level, inductive rule acquisition, a good example
of which is given in [Michalski and Chilausky 80]. There 1is also
an analogous situation in the area of program transformation which
is concerned with the derivation of an efficient program from a
declarative program specification: handcrafting a program will
produce a more efficient implementation than automatic
transformation from the specification, although the latter is more

desirable
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I have demonstrated through the experiments in 3.3 that the C-
chunk method has been successful for a particular goal directed
implementation, and the particular framework of >(I,G,E,0S)>, but
claim that it can Dbe generalised to general problem solving

systems bearing the following characteristics:

5.15: the overall search strategy must be goal directed, in which
operator instantiations that achieve goals are wused to extend

search through a space of goal nodes in a best first manner;

5.16: the operator schemas themselves must be declaratively
specified, and should be reasonably consistent models of some

actions;

5.17: effective planning should be possible on simple problems

using weak heuristics only.

5.15 ensures that the c-chunk strengthening method can be adopted,
i.e. failed operator instantiations can be recorded and used for
discrimination purposes, while 5.16 allows weakest preconditions
to Dbe constructed easily. Finally, Condition 5.17 is for
"bootstrapping' heuristic acquisition, in that the system must be

able to solve simple problems from which to learn.

Part of the second condition has, however, been weakened for FM by
the work of [Porteous 87]: during plan execution, if an operator
could not be applied because of a mismatch between FM's Dbeliefs
and the 'real' world (which was modelled by some separate data
structure), then replanning would take place (see reference for
details). Some complementary work has been carried out on operator
precondition repair in [Carbonell and Gil 87] and is shown as the
'Experimentation' module in figure 5/1; in standard FMN, however,
the task framework in assumed to be complete and consistent.

As well as failing point 5.15, both NLP and FOR flounder opn 5.17.
NLP was most disappointing: the combinatorics of temporal
combinations and choices in constraint posting made it an order of

magnitude slower than MEA.
5.2 Comparisons
5.21 Prodigy

As far as I can tell from the literature, there are few research
groups which have attempted to create a domain independent
learning and planning system that strengthens weak heuristics with

acquired control knowledge through experience.

One such general planning system that learns by experience is the
Prodidgy program referred to previously, created at CMU by wvarious
authors including Minton, Carbonell, Etzioni, Knoblock and Kuokka
discussed in [Minton and Carbonell 87], and in [Minton el al 87].

The work on Prodigy was carried out in parallel with my own, the
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major difference being in scale!

The top level architecture of the whole system is shown in figure
5/1 and is taken from [Carbonell 88]. Various types of knowledge
acquisition components have been integrated into the one system:
including a learning-by-experimentation module, which refines
the system's domain information which had been incorrect or
incomplete [Carbonell And Gil 871; and it also contains a
derivational analogy component, following Carbonell’s earlier work
on analogy [Carbonell 83]. It is obviously a large implementation,
at the heart of which is a Strips-type general planner, not
dissimilar to MEA.

The "search control rule' acquisition sub-system is analogous to
FM’s chunk creation processes, and consists of three components:

Explanation-based Learning to acquire the initial control rule,

Compression to optimise it and Evaluation to monitor its
usefulness. The main advantages of this sub-system are that EBL’s
"target concepts' like ’'operator-succeeds’, 'operator fails' can

be given ’'declaratively' to the system via a set of rules, and
that different modes of rule use can be set up - e.g. operator

preference or rejection.

Learning from success is weak but is substantially improved by
learning from failure - in fact the two together seem similar to
FM’s c-chunk creation (c-chunks use operator failure implicitly in
the strengthening algorithms). As referred to in section 3.2,
[Minton and Carbonell 87]'s example developed from a blocks world
application produces a very specific chunk. It 1is reproduced
below: it’s informal meaning is ’'to hold a block X which is on a
block Y, unstack(X,Y) is the correct operator to add to the goal
directed search if currently a block W is on X, the arm is empty
and W is clear. Minton and Carbonell denote this rule as:

OP-SUCCEEDS (OP, G, NODE) if
MATCHES (OP, UNSTACK(X,Y)) &
MATCHES (G , HOLDING (X) ) &
KNOWN (NODE, ON(X,Y) &O0ON (W,X) &CLEAR (W) &ARMEMPTY
In FM notation, this is equivalent to chunk:
ch( chi, UNSTACK(X.Y), HOLDING (X),
ON (X, Y) &ON (W, Z) &CLEAR (W) &ARMEMPTY, nil)
From the same solution sequence, FM would create a C-chunk thus:
ch( chi, UNSTACK(X.Y), HOLDING(X),

ON(X,Y) &ARMEMPTY, TYPE (X,block) &TYPE (Y,block) &NE (X,Y))

This rule is more general (containing only 2 conditions instead of

4) and nearer part of an optimal control rule, which would not
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figure 5/1: the prodigy system
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include the irrelevant fact 'ARMEMPTY'.

Unlike FVM, Prodigy creates 'correct' rules relying on strict EBL
and does not incrementally refine or repair them by any
generalisation/specialisation techniques. As shown in the figure,
it does optimise rules, in fact in a similar way to FM. Prodigy
also monitors the amount of CPU time they save, deleting them if
they prove not to be effective (this is a little puzzling since
effectiveness could only be judged if the problem solver searches
exhaustively trying all paths in an ordinary problem solving

session).

5.22 Soar

The Soar problem solving program has similarities to FM in that it
uses experience learning to improve performance. In fact my use of
the term 'chunk' arose from this work. Like Prodigy, this system
was also created at CMU, arising from the doctoral dissertations
of Laird and Rosenbloom, and was developed by a large team (e.g
see [Steier et al 87] for latest developments, a paper which has

has nine authors!).

Soar has one learning mechanism: 'chunking'. Chunks are created by
analysing successful solutions, but rather than just for heuristic
control rules, they are created for 'decisions' in all aspects of
Soar's problem solving behaviour. The creation process is carried
out in three steps (following [Laird et al 86]):

(1) collect conditions which were used in processing Dbefore the

solved goal, and actions which were the 'result of the goal'
(2) variable-ise identifiers;
(3) perform chunk optimisation.

Soar has been used in many applications, including the usual toy
problems, but also non-trivial applications such as speeding up
the 'Rl1' expert system [Rosenbloom et al 85]. When applied to the
8-puzzle problem, for example, it seems to produce similar
behaviour to FM when equipped with the FOR search and closed macro
acquisition: 'macrol' created by FM and reproduced in section 2.7
corresponds to Soar’s 'with-column symmetry transfer' explained on

p.39 of [Laird et al 86]

Unlike Prodigy’s control rule acquisition, Soar is not so
theoretically transparent, but does have a clear advantage: Soar

creates decisions for every choice it must make and it is
therefore claimed to be a universal learning mechanism, chunking
as 1t does on all levels of the system. From the literature, it is
difficult to extract exactly what the specification language for
Soar applications 1is, and in what form the chunks appear. To quote
[Laird et al 86], p.31: "When the problem solver knows what its

no

doing, everything works fine,

88



5.23 Progressive Refinement

Another incremental, evolutionary approach to learning in problem
solving is the Progressive Refinement of [Van der Velde 88]. Here
the acquisition of ’'heuristic associations' is described, the main
application being second generation diagnostic expert systems,

rather than planning domains.

He divides previous similar work into learning control knowledge

and learning shortcuts, putting his work firmly into the latter
category. Although only FM’s closed macros fall into his "short-
cut' category, there are similarities with my research. The system
learns from problem and solution pairs, relying on Dbackground
knowledge of the domain, and makes deliberate over-generalisations
of learned heuristics (especially for domains which he classes as
non-critical and non-diverse), then forces specialisation in the
face of incorrectness. Similarly, my C-chunk algorithm often
produces over—-general chunks, which are simpler, leaner and
practically correct, but of course may be subsequently specialised

in the rule repair module.

5.3 Future Directions

The primary future objective 1is to evolve the control rule
acquisition mechanism specified in chapter 4 into an efficient
general representation that will increase the efficiency of NLP
while preserving its advantages of non-linearity. The main snag in
using strict E.B.G. in partial plan space is that the acquired
heuristics are too specific and detailed to allow efficient

matching when they are in use.

I would also like to use FM with MEA in a large embedded domain,
perhaps 1in a real robot manipulation task area, but before this
can be accomplished, the c-chunking method needs to be perfected,
along the lines discussed in the conclusions of section 3.3. In
the 1limit c-chunking would most certainly require an automatic
representation change facility for the domain definition, when for
example, chains of relations in target concepts become unwieldly.
Indeed I would go as far as to say that the success of FM with c-
chunks in those domains to which it has been applied 1is due
mainly to the fact that target concept approximations can be
formed relatively easily in the predicate language defined by the
user. This is reminiscent of Lenat’s conclusions in his re-
analysis of his AM discovery system [Lenat and Brown 83]: he
admitted that a major reason why it had worked well was that the
Lisp representations were ’'close’ to the mathematical world in

which AM was exploring!
Since FM’s chunk is not a 'universal learning mechanism, we also

need heuristic acquisition for other aspects of the system that
involve decisions e.g. decisions about which linear ordering to
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choose to solve a conjunction of goal predicates.

Finally I will elaborate on future work needed to improve the
performance components. The main task when wusing FM 1is in
developing a consistent domain specification. This is a non-
trivial task, and in future could be alleviated by work in two

directions
* automatic tools for specification development and checking;

* automatic domain knowledge acquisition components, where FM is
embedded in an outside environment and receives feedback.

The first direction would have helped the construction of the two
test domains considerably, whereas 'debugging’ the operator
schemas, for instance, had to be done by trial and error,
Specifically, procedures that perform the following functions are

needed:

* to check operators leave state descriptions in a consistent form
with respect to domain facts and rules, after their application;
for example, consider the simple structuring rule in the warehouse

domain:

"for all Objects, Positions
on floor (Object,Position) -> at (Object,Position)"

Any operators that change an Objects position, and fail to change
both the facts in this rule, would be spotted as inconsistent Dby

the check procedures, using this rule as an axiom.

* to check domain facts I.f and E.f and the domain rules I.r and

E.r are consistent with each other.

For MEA and NLP to cope with more complex domains, the addition of
goal hierarchy and operator abstraction levels is necessary. In a
sense this is simply to add another (powerful) 'weak heuristic',
and should complement control rule creation. As mentioned in
chapter 4, my non-linear planner has already been expanded to the
hierarchical planner 'HNLP' described in [Fox 88], and work is in
progress to add chunking components to this. The Prodigy system
discussed above in 5.2, and shown in figure 5/1, has likewise been
extended to allow hierarchically structured domains, but is still
tied to a linear Strips-type planner [Carbonell 88]. Similarly,
other weak heuristics, such as the addition of rules to detect
inconsistent goal conjunctions, complement my approach: the true
'Heuristic-learning, Problem Solving Shell' will be formed by
combining weak heuristics for learning with traditional goal
oriented and hierarchical weak methods. Extending the expressive
power of the FM framework is another possible future direction,
and integrating planners that Dbreak out of the 'Strips

assumptions', with learning components, yet another.
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APPENDIX A.l: THE ROBOT WORLD

frame(

name: robot worldOl,

type: context,

/* E.f i— */

always

type of (rooml,room) &type of (roomZ2,room)

&type of (room3,room) &type of (room4,room)

&type of (roomb,room) £type of (room6,room)

&type of (room7,room) &type of (door23,door)

&type of (door24,door) &étype of (door25,door)

&type of (door35,door) &type of (door45,door)

&type of (door56,door) &type of (doorl2,door)

f£type of (door4d7,door) &type of (door57,door)

&type of (door67,door) £type of (box2,box)

ftype of (big box,box) &type of (boxl,box)
&connect (room2, room3,door23) feconnect (room3, room2,door23)
ftconnect (room2, roomé4,door24) ftconnect (room4, room2,door24)
~connect (room2, room5,door25) feconnect (room5, room2,door25)
&connect (room6, room5,door56) feconnect (room5, room6,door56
~connect (room5, room3,door35) ftconnect (room3, room5,door35)
&connect (room5, room4,door45) &connect (room4, room5,door45

(

)
&connect (room4, room7,door47) “connect (room7,room4, door4d7)
feconnect (room5, room7,door57) &connect (room7,room5,door57)
~connect (room6, room7,door67) feconnect (room7,room6,door67)
ftconnect (rooml, room2,doorl2) f£connect (room2,rooml,doorl?2)
&fits thru(boxl,door24)&fits thru(boxl,door23)
£fits thru(boxl,door25)&fits thru(boxl,door56)
£fits thru(boxl,door4d5)£fits thru(boxl,door35)
&fits thru(boxl,door4d7)£fits thru(boxl,door57)
&fits_thru(boxl,doorl2)£fits thru(boxl,door67
&fits th.ru (box2,6 door24) «fits thru(box2, door23)
&fits thru(box2,door25)£fits thru(box2,door56)
£fits_thru(box2,door45) &fits thru(box2,door35)
&fits thru(box2,door47)&fits thru(box2,door57)
&fits thru(box2,doorl2) &fits thru(box2,door67)
&fits thru(big box,door24)
&fits thru (big box, door25)£fits th.ru (big box, door56)
&fits thru(big box,door35)
£fits thru(big box,door47)£fits thru(big box,door57
&fits thru(big box,doorl2)&fits thru(big box,door67),
/* S.x i— */
axioms: [at door(0,D,R),in_ room(0,R),
next to(01,02) &in room(01,R),in room(02,R)
next to(02,01) &in_room(0l1,R),in room(02,R) ] ).
/* E.r :— */
env_axioms ([ [connect (X,Y, ), ne(X,¥Y)],
[connect ( ,Y5,25), ne(Y¥5,25)],
[connect (X4, ,Z4), ne(X4,z4)],
[connect (X1,Y1,21), connect(Y1l,XI,ZzZ1l)],
[connect ( ,Y2, ), type of(Y2,room)],

[connect( , ,Z3), type of (Z3,door)]]
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/* initial world for listl */
init world(
in room (boxl,room4) &in_ room (box2,room4) &
in room(big box,rooml)&in room(robot,roomb) &
closed (door67) &open (doord7) &open (door57) &closed (door4db) &
closed (door56) &open (door35) &closed (doorl2) &
open (door23) &open (door25) &open (door24)
).

/* initial world for list2 */
init world(
in room(boxl,room2) &in room(box2,room2) &in room(big box,roomd) &
in room (robot,roomé) &open (door67) &open (doord7) &
open (door57) &open (door4d5) &open (door56) &
open (door35) &open (doorl?2) &
open (door23) &open (door25) &open (door24)
).

/* LIST OF OPERATORS (0S) */

frame|
name: gothrudoor (D,R),
type: operator,
filter: nil,
check: connect (R1,R, D),
precon: at door (robot,D,R1) &
open (D)
padd: in room(robot,R),
add: next to(robot, D),
delete: at door (robot, ,
&next to(robot, )
&in_room (robot, )
).
frame|

name: gotodoor (D,R),

type: operator,

filter: nil,

check: connect (R, ,D),

precon: in room(robot,R),

padd: at door (robot,D,R),

add: nil,

delete: at door (robot,
&next to(robot, )

)
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framel

frame|

frame|

name:

type:

filter:

check:

precon:

padd:
add:

delete:

name:
type:

filter:

check:

pushthrudoor (Ob, D, To_room),
operator,

nil,

type of (Ob,box) &

fits_ thru(Ob, D) &
connect (R, To room, D),
at door (0b,D,R) &

in room (0b, R) &

next to (robot ,0b)&
open (D),

in room(0Ob, To_room),
in room (robot,To room) &
next to (robot,0Ob),

at _door (robot, , )

&at door (0b, , )
&next to (robot, )

&next to(Ob, )

&next to(_,0b)
&in_room(robot, )
&in_room(0b, )

pushtodoor (Ob, D,R),
operator,

nil,

type of (Ob, box) &

connect (R, ,D),

precon:

padd:
add:

delete:

name:

type:

filter:

check:

precon:

padd:
add:

delete:

in room(0Ob,R) &
next to (robot,0b)
at door (0b, D,R),
next to(robot, Ob),
at door (0b, , )
&next to(robot, )
&next to(0b, )
&next to(_,0b)

open (D),
operator,
nil,

type of (D,door) &connect (R,

closed (D) &

at door (robot, D, R),
open (D),

nil,

closed (D)

&next to(robot, )
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frame|

frame(

frame(

name: pushtobox (0bl,00b2),

type: operator,

filter: nil,

check: type of (Obi,box) &
type of (0b2,box) &
ne (0bl, 0b2),

precon:
next to(robot,0Obi)é&
in room(0b2,R) &
in room(Obl,R),
padd: next to (0bl,0b2),
add: next to (robot,0bl),

delete: at door (robot
&at door (0Obl
&next to(robot, )
&next to(Obl, )
&next to(_,0bl)

name: goto(X),
type: operator,
filter: nil,
check: type of (X,box),
precon: in room(X,R) &
in room(robot,R),
padd: next to (robot,X),
add: nil,
delete: at door (robot
&next to(robot, )

name: close (D),
type: operator,
filter: nil,

check: type of (D,door) &connect (R,

precon: open (D) &
at door (robot, D, R),
padd: closed (D),
add: nil,
delete: open(D)
&next to(robot, )
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APPENDIX A.2 THE WAREHOUSE WORLD

/* KAk KAk Kk AKhkkKk Kk warehouse environment KAk KAkAK KA AR XA AKXk KKK */

frame(

name: warehouse,

type: context,

/* E.f:— */

always
type of (cratel,crate)
&type of (crate2,crate)
&type of (crate3,crate)
&type of (si,space)
&type of (s2,space) &type of (s3,space)
&type of (s4,space) &type of (shelf6, shelf)
&type of (s6,space) &type of (s7,space)
&type of (shelf7,shelf)
&type of (s8,space) &type of (s9, space)
&type of (shelf9, shelf)
&type of (s10,space) &type of (shelfl0, shelf)
&type of (sl2,space) &type of (sl3, space)
&type of (sl4,space) &type of (shelf 14, shelf)
&type of (sl6,space)
&pickup point (s6)&
&pickup point (s9)
&pickup point (s10)
&pickup point (sl14)

&connect (s6,shelf6) &connect (shelf6, s6)
feconnect (s10, s6) £connect (s6,s10)
~“connect (s10,s9) &connect (s9,s10)

feconnect (s9,shelf9) &connect (shelf9, s9)
~connect (sl4,s10) &connect (sl10,s14)
&connect (s10,shelfl0)“connect (shelfl0,sl0)
~“connect (s1l4,shelfld4) &connect (shelfld, sl4)

&next (sl,s2) &next (s2,sl)
&next (s2,s3) &next (s3,s2)
&next (s4,s3) &next (s3,s4)
fenext (s6,s7) &next (s7,s6)

&next (s8,s7) &next (s7,s8)

&next (s9,s10) &next (s10,s9)

&next (sl4,sl13) &next (sl13,s14)

&next (s13,s9) &next (s9,s13)

&next (s6,s2) &next (s2,s6)

&next (s6,s10) &next (s10,s6)

fenext (sl1l4,s10) &next (s10,sid)

&next (s3,s7) &next (s7,s3)

&next (s8,s4) &next (s4,s8)

&next (s8,s12) &next (sl2,s8)

&next (sl6,sl12) &next (sl2,s16)

S&between (s7,s6,shelf6) &§between (s3,s7,shelf7)
sbetween (s13,s9,shelf9) &ébetween (s13,si4,shelfld)
&between (s9,s10,shelfl0),
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/* s.r — ¥/

axioms: [loaded(truck,B,Y),at(B,Y),
on floor (X1,Y1l),at(X1,Yl),
loaded(crane,Y2,22) ,at (crane, 22)
loaded(crane,Y6,%26),above floor(¥Y6,726),
stacked (X3,Y3),at (X3,Y3)
in trucké&at (truck,¥Y5),at (driver,¥5) |

/* Er i— ¢/
env_axioms (| [next (X,Y), ne(X,Y)]
[next (X3,Y3), next(Y3,X3)]
[between (X1,X2, ),next (XI, X2)]
[connect (X4,X5), connect (X5,X4) ] ]

/* an initial state for the warehouse world */

init world(
unloaded(truck) &
unloaded (crane) &
on floor(driver,sl3)&
on_ floor (crate2,sl2)&
on_floor (crate3,sl6)&
on floor(cratel,sl)s
at (cratel,sl) &
clear (s10) &
clear (s3) &
at (driver,sl3) &
clear (s4) &
clear (s5) &
clear (s7) &
at (truck, s2) &
at (crate2,sl2) &
at (crate3,slo) &
clear (sl4) &
clear (s6) &
clear(sll) &
clear (s8) &
clear (s9) &
at (crane, sld) &
clear (slb)
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/* LIST OF OPERATORS (0S) */

/*1*/frame (

name: load (B, X,Y),

type: operator,

filter: at (B, X),

check: type of (B,crate)s&
next (X,Y) &
type_ of (X, space) &
type of (Y, space),

precon:
in trucké&
on_ floor (B,X) &
unloaded (truck) &
at (truck,Y),
padd: at (B,Y) &loaded (truck,B,Y) &clear (X) ,
add: nil,
delete: on floor(B,X)&
at (B, X) &
unloaded (truck)
).
/*2*%/frame|
name: unload (B, Y, X),
type: operator,

filter: nil,

check: type of (B,crate)s&
next (X,Y) &
type of (X,space)é&
type of (Y, space),

precon:
clear (X) &
in trucké&
loaded (truck, B,Y),
padd: unloaded (truck) &on floor (B,X) &at (B,X),
add: nil,

delete: loaded(truck,B,Y)&
clear (X) &
on_floor(B,Y) &
at (B,Y)
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/*3*/frame|
name

type:

filter:

check:

precon:

padd:
add:

delete:

/*4*/frame|
name
type:
filter:
check:

precon:

padd:
add:

delete

get in(X,Y),
operator,
at (truck,Y),

type of (X,space) &
type of (Y, space)s&
next (X, Y),

at (driver, X) &
on_floor (driver X) &
at (truck,Y),

in_ truck,

clear (X) &at (driver,Y),
on_ floor (driver,X) &

at (driver,X)

get out (Y,X),
operator,

nil,

type of (X, space) &
type of (Y, space) &
next (X,Y),

in trucké&

clear (X) &

at (truck,Y),

on_ floor (driver, X),
clear (X) &at (driver, X),
in trucké&

clear (X) &

at (driver,Y)

98



/*5+4/frame (

name: drive load(B,X,Y) ,
type: operator,

filter: nil,

check

next (X,Y) &

type of (X, space) &
type of (Y, space)&
type of (B,crate),

precon:
in trucké
loaded(truck, B,X) &
clear(Y),
padd: loaded (truck,B,Y) &at (B,Y) ,
add: at (driver,Y) ftclear (X) feat (truck, Y) ,
delete

at (driver,X) &
loaded(truck,B,X) &
at (B, X) &

at (truck, X) &

clear (Y)

).

/*6*/frame|

name: drive (X,Y),

type: operator,

filter: nil,

check:
type of (X, space)&
type of (Y, space) &
next (X,Y),

precon:
in trucks
unloaded(truck) &
at (truck, X) &
clear (Y),

padd: at (truck,Y) feclear (X),

add: at (driver,Y),

delete

at (driver,X) &
at (truck, X) &
clear (Y)
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/*7*/frame (

name: walk(X,Y),

type: operator,

filter: nil,

check: next (X,Y) &
type of (X,space)s&
type of (Y, space),

precon: at (driver.X)
&on_floor (driver,X) &

clear (Y),
padd: at (driver,Y),
add: on_floor(driver,Y)&clear(XL
delete:
at (driver,X) &on floor (driver,X)&
clear (Y)
).
/*8*/frame|
name: lift up(B,Y),
type: operator,
filter: nil,
check:
pickup point (Y) &
type of (B,crate),
precon:
unloaded(crane) &
at (crane,Y) &
on floor(B,Y),
padd: above floor (B,Y) &loaded (crane,B,Y) ,
add: nil,

delete: unloaded(crane) &
on floor (B,Y)

/*9* /frame (

name : 1ift down (B),
type: operator,
filter: above floor(B,Y)&at (B, Y),
check:
type of (B,crate),
precon:
above floor (B,Y) &
loaded (crane,B,Y),
padd: on_floor (B,Y) &éunloaded (crane),
add: nil,

delete: loaded(crane,B,Y) &
above floor (B,Y)
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/*10*/frame (
name
type:
filter:
check:

precon:

padd:
add:
delete

).

/*11*/frame (
name:
type:
filter:
check:

precon:

padd:
add:

delete:

).

/*12*/frame (
name
type:
filter:
check:

precon:

padd:
add:
delete:

move.crane (X,Y),
operator,

nil,

pickup point (X) &
pickup point(Y)s&
connect (X,Y),

at (crane,X) &
unloaded (crane),
at (crane,Y),
nil,

at (crane,X)

crane_stack (B, X, S),
operator,

nil,

pickup point (X) &
connect (X, S) &

type of (S,shelf)s&
type of (B,crate),

loaded (crane,B,X),
stacked (B, S) funloaded (crane),

nil,
loaded (crane, B,X)

crane unstack(B,Y,S),

operator,
stacked (B, S) &above floor (B, Y),

connect (S,Y) &
type of (S,shelf)s&
type of (B,crate),

unloaded (crane) &
stacked (B, S) &

at (crane,Y),
loaded (crane,B,Y),
nil,
unloaded(crane) &
stacked (B,S)
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/*13*/frame (
name: truck stack(B,X,Y,Z),
type: operator,
filter: nil,

check:
between(X,Y,7) &
type of (X, space)&
type of (Y, space)&
type of (Z,shelf)s&
type of (B,crate),
precon:
at (truck, X) &
unloaded(truck) &
in trucké&
on floor(B,Y),
padd: stacked (B, 2),
add: above floor(B,Y),
delete
on floor (B,Y)
).
/*14*/frame (

name: truck unstack(B,X,Y,Z),
type: operator,
filter: stacked(B.Z),

check:
between(X,Y,7) &
type of (X, space)&
type of (Y, space)&
type of (Z,shelf)s&
type of (B, crate),
precon:
at (truck, X) &
unloaded (truck) &
in_ trucké&
stacked (B.Z),
padd: on_ floor (B,Y),
add: nil,
delete

stacked (B, Z) &
above floor (B,Y)
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APPENDIX A.3 THE 8-PUZZLE

frame(

name: eight puzzle

type: context,

always

axioms

).

next (pl,p2)

&next (p2,pl)
&next (pl, p4)
&next (p4,pl)
&next (p5,p2)
ftnext (p2,pb)
&next (p3,p2)
&next (p2,p3)
&next (p3,p6)
&next (p6,p3

&next (p6,p>5

(

(

&next (p5,p6

&next (p6,p9

&next (p9, p6
(

&next (p9,p8

&next (p8,p5
&next (p5,p8
&next (p7,p8

&next (p4,p7
&next (p7,p4

)
)
)
)
)
)
&next (p8,p9)
)
)
)
)
)
)
&next (p4,pb5)

(
(
(

(
&next (p8,p7
(

(

(

(

&next (p5,p4)

&type of (tilel,tile
&type of (tile2,tile
&type of (tile3,tile
&type of (tiled,tile
&type of (tileé6,tile
&type of (tile7,tile
&type of (tile8,tile
&type of (tileb,tile

&type of (pl,p)
&type of (p2,p)
&type_of (p3,p)
&type of (p4,p)
&type of (p5,p)
&type of (p6,p)
&type of (p7,p)
&type of (p8,p)
&type of (p9,p)

>

(]
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/* this info is needed for efficient forward search

inverse (

move (X,Y,%Z), move(X,Z,Y) ).

init world(

/* OPERATOR

frame|

at
at
at
at

tile3,p3) &
tile2,p2)&
tile6,pl) &

(
(
(
(tilel, p4d) &

at(tile7,p8) &
at (tile5,p9) &
at (tile4d,pb) &
at (blank,pb) &
at(tile8,p7)

).

name:

type:

filter:

check:

precon:

padd:
add:

delete:

).

(0s8) */

move (T, S, D),

operator,

nil,

next (S,D) &ne (T,blank),
at (T, S)f£at (blank, D),
at (T, D) &at (blank, S),
nil,

at (T, S) &at (blank, D)
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APPENDIX A.4 A BLOCKS WORLD

frame (

name: blocksl

type: context,

always
type of (a,box)
&type of (b, box)
&type of (c,box)
&type of (d,box)
&type of (e,box)

axioms: CJ) .

init world(
on(a, table) # on(d, table) &
on (e, table)# on(c,a)é&
on (b, table) &clear (c) &
clear (e) #clear (d) &
clear (b)
).

/* LIST OF OPERATORS (0S) */

frame|
name: puton (0bl, 0b2) ,
type: operator,
macrop: []
check: ne (0bl, 0b3) &ne (0b2, 0b3) &
ne (0bl,0b2) #type of (Obi,box) &
type of (0b2,box),
precon: on(0bl, 0b3) #clear (0bl) &
clear (0b2),
padd: on (0bl, 0b2),
add: clear (0b3),
delete on (0Obi,0b3)&clear (0b2)
).
frame(
name: newtower (Obl, 0b2),
type: operator,

macrop: [,

check: type of (0b2,box) #type of (Obi,box) &
ne (0bl, 0b2),

precon: on(0bl,0b2)#clear (0bl),

padd: clear (0b2),

add: on (Obl,table),

delete on(0bl, 0b2)

).
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APPENDIX A.5 THE TOWER OF HANOI PUZZLE

frame(

name: tohl

type: context,

always:

axioms:

type of (pl.pole)

&type of (p2,pole)
&type of (p3,pole)
&type of (dl,disc)
&type of (d2,disc)
&type of (d3.disc)

(

(
&type of (d4,disc)
&type of (basel.base)

&type of (base2,base)

&type of (base3,base)

&smaller (dl,basel)
&smaller (dl,base2)
&smaller (dl,base3)
&smaller (d2,basel)
&smaller (d2,base2)
&smaller (d2,base3)
&smaller (d3,basel)
&smaller (d3,base?2)
&smaller (d3,base3l)
fesmaller (d4,basel)
&smaller (d4,base2)
&smaller (d4,base3)
&smaller (dl,d2)

&smaller (dl,d4)

&smaller (d2,d4)

&smaller (d3,d4)

&smaller (d2,d3)

&smaller (dl,d3),

[ ontop (X,Y) &on (Y, P),on (X, P),
ontop (X,Y) &on (X, P),

on (Y, P)

inverse ( movel (D,P1l,P2) .movel (D.P2,P1l) ).

init world(

top (dl) & top (base2) &

on (basel,pl) &top (base3) &

on (base2,p2) &on (base3,p3) &
on(dl,pl)&on(d2,pl) &
on(d3,pl) &on(d4,pl) &

ontop (dl,d2) &
ontop (d2,d3) &
ontop (d3,d4) &
ontop (d4,basel) ).
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/* OPERATOR (0S) */

frame(
name: movel (D, Obl, 0b2, P1l,P2),
type: operator,
filter: [,
check: type of (P1l,pole) &
type of (P2,pole) &
type of (D,disc) &
smaller (D,0bl) &
ne (P1,P2),
precon:
top (D) &
top (Obl) &
on (D, Pl) &
ontop (D, 0b2) &
on (0bl,P2),
padd: on (D, P2),
add: top (0b2) &
ontop (D.Obl),
delete on(D,Pl)&
ontop (D, 0b2) &
top (Obl)
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APPENDIX A.6 MACBETH WORLD

frame|
name: story of macbeth,

type: context,

always:

type of (macduff,person)

&type of (macbeth lady,person)

&type of (macbeth, person)

&type of (duncan, person)

&type of (a_dagger,weapon)

&type of (a_dagger,object)

&is strong (macbeth)

&is evil (macbeth lady)

&1s_strong (duncan)

&is_strong(macduff

&knows (macbeth, macduff)

&knows (macbeth,duncan)

ftknows (macbeth lady.macduff

ftknows (macduff,duncan)

ftknows (macbeth lady,duncan)

&married(macbeth lady,macbeth)

&can_influence (macbeth lady,macbeth)
)

axioms: [ ]

).

init world(
has (macbeth lady,a dagger) &
has motive (macbeth lady) &
nearby (macbeth,duncan) & nearby (macduff,duncan) &
alive (macbeth) &alive (macduff) &
alive (duncan) & alive (macbeth lady) ).

/* LIST OF OPERATORS (0S) */

frame(
name: kill(Killer,Inst.Killed),
type: operator,
filter: [],
check: type of (Killer,person)&
type of (Killed, person) &
is strong(Killer)é&
type of (Inst,weapon)é&
ne (Killer.Killed),
precon: has(Killer,Inst) &
next to(Killer,Killed)&
has motive (Killer),
padd: dead (Killed),
add: murderer (Killer),
delete: alive(Killed) ).
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frame(

name: give motive (Accomplice.Killer) ,

type: operator,

filter: @O,

check: type of (Killer,person) &
type of (Accomplice.person) &
type of (Weapon, weapon) &
is_evil (Accomplice) &
can_influence (Accomplice.Killer),

precon: has motive (Accomplice),

padd: has motive (Killer),

add: needs (Killer,Weapon),

delete: nil

).

frame|
name: meet (P1l,P2)
type: operator,
filter: []
check: type of (Pl,person)é&
type of (P2.person),
precon:
nearby (P1l,P2),
padd: next to(Pl,P2),
add: nil,
delete: nil
).
frame(

name: give (Giver,Obj.Given),

type: operator,

filter: [],

check: type of (Giver,person)”
type of (Giver.person) &
type of (Obj.weapon),

precon: has (Giver,0bj) &needs (Given, Obj),

padd: has (Given, Obj),

add: nil,

delete: has (Giver,Obj)

).
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APPENDIX A. 7: BOX WORLD

/* This

frame|

inversef
inverse (
inverse (

inverse (

operators are equivalent to Minton's IJCAI 87 (p229)

name: blocks worldl,

type: context,

always
type of (box2,box)
&type of (box5,box)
f£type of (box4,box)
&type of (boxl,box)
&type of (box3,box),

axioms: [

).

pickofffloor (X),putonfloor (X
putonfloor (X),pickofffloor (X
pickoffbox (X,Y),putonbox (X,Y
putonbox (X,Y) ,pickoffbox (X,Y

)
)
)
)

env_axioms ( []]) .

/* init

init wor

world for blocks */

1d(

handemptyé&

onfloor (

box3) &

onfloor (box4) &

onfloor (

box5) &

ontop (boxl,box2) &

ontop (box2,box3) &

clear (box4) &

clear (box5) &

clear (boxl)

frame|

name : putonbox (Obl,0b2),
type: operator,

macrop: [],

check:

type of (Obi,box) &
type of (0b2,box) &ne (0bl, 0b2),
precon: clear (0b2) &
holding (Obl),
padd: ontop (0bl,0b2)
add: handemptyé&clear (Obl),
delete: clear (0b2) &
holding (Obl)

no

ones*/



frame(
name; pickoffbox (0bl, 0b2),
type: operator
macrop: [,
check:
type of (Obi,box) &
type of (0b2,box) &ne (0bl, 0b2),
precon: clear (0bl)é&

handemptyfe
ontop (0bl,0b2)

padd: clear (0b2) &holding (0bl),

add: nil,

delete: clear (0bl) &
handemptyfe
ontop (0bl,0b2)

).

frame|

name; pickofffloor (Obl),

type: operator,

macrop: [,

check: type of (Obi,box),

precon: clear (0bl)é&
handemptyft
onfloor (Obl),

padd: holding (Obl),

add: nil,

delete: clear (0bl) &
handemptyfe
onfloor (Obl)

) o

frame(

name: putonfloor (Obl),

type: operator,

macrop: []

check: type of (Obi,box)

precon: holding (Obl),

padd: handempty,

add: clear (0bl) &éonfloor (0bl),
delete: holding (Obl)

).
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APPENDIX A.8 NLP BLOCKS WORLD

(This is the representation used for NLP with EBL,

and below it is given the procedure that changes from FM
representation to this one.)

env ( [ type_ of (a,box)
+type_of (b, box)
,type_of (c,box)
,type of (d.box)
.type.of (e,box) ] ).

/* 1init world for blocks */

init world(
[ on(a,table), on(c,a),
on (b, table), clear (c), clear (b)] ).

operator (puton( 125545, .125560), [ne( 125545, .125641),
ne(.125560, .125641) ,ne( 125545, .125560),

type.of (_125545,box),type.of (.125560,box)] ,

[on( 125545, .125641) ,clear(.125545) ,clear( 125560)],
[on( 125545, .125560) ,clear( 125641)1] ,

[on( 125545,,125641) ,clear( 125560)]).

operator (newtower (.126467, 126482) ,
[type.of (.126482,box) .type.of(.126467,box),
ne( 126467, .126482)1,
[on( 126467,.126482),clear(.126467)1,
[clear( 126482),on( _126467,table)],
[on( 126467,.126482)]).
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/* procedure for changing rep'’'s */

- op(700,xfx
- op(100,xfy, <
change (Infile, Outfile)
see (Infile),
read (
frame| name: N,
type: operator,
macrop:
check: EnvA,
precon:PreAh,
padd: AA,
add: Adda,
delete: DelAd) ),
andtolist (EnvA, Env) ,
andtolist (PreAh, Pre) ,
andtolist (AA,RD),
andtolist (AddA, Add),
andtolist (DelA,Del),
append (A, Add, Added),
tell (Outfile),

write( operator( N,

Env,
Pre,
Added,
Del)),
write(’.’),nl,change(Infile,Outfile)
changed, Outfile) :- tell(Outfile) ,told.

/**k“*****‘*************k***k***‘*****k*'k**‘k**************************/

andtolist (nil, []) :- !
andtolist (X&Y, [X|Z]) :-!, andtolist (Y, Z)
andtolist (X, [X]) := !,

append( [] ,L,L) :-!.
append ([H|T], L, [H|Z]) :- append(T,L,Z),!.
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/* APPENDIX B.l */
/* Results of list 1 with chunking, algorithm B */

no. of expanded nodes: 20

taskfile: 1listl2 taskno: taskl of length 5

goal: 1in room(robot,room2) by: [gotodoor (door56,roomé6) ,open (door56)
gothrudoor (door56,room5) ,gotodoor (door25,room5) ,gothrudoor (door25,room2) ]

CPUsed=65 secs

no. of expanded nodes: 5

taskfile: 1istl2 taskno: task2 of length 5

goal: in room(boxl,room2) by: [gotodoor (door24,room2),

gothrudoor (door24, room4) .goto (boxl) ,pushtodoor (boxl,door24, room4),
pushthrudoor (boxl,door24,room2) ]

CPUsed=28 secs

no. of expanded nodes: 9

taskfile: 1list 12 taskno: task3 of length 7

goal: in room(box2,room3) by: [gotodoor (door24,room2),

gothrudoor (door24, room4) ,goto (box2) ,pushtodoor (box2,door24, room4),
pushthrudoor (box2,door24, room?2) .pushtodoor (box2,door23, room?2)

pushthrudoor (box2,door23, room3) ]
CPUsed=63 secs

no. of expanded nodes: 28

taskfile: 1listl2 taskno: task4 of length 12

goal: in room(big box,room3) by: [gotodoor (door23,room3),

gothrudoor (door23,room2) ,gotodoor (doorl2, room2) ,0open (doorl2),
gothrudoor (doorl2, rooml) ,goto (big box),pushtodoor (big box,doorl2,rooml)
pushthrudoor (big box,doorl2, room2),pushtodoor (big box,door25,room2)
pushthrudoor (big box,door25,room5),pushtodoor (big box,door35,room5),

pushthrudoor (big box,door35,room3) ]
CPUsed=201 secs

no. of expanded nodes: 15
taskfile: 1listl2 taskno: task5 of length 9
goal: in room(boxl,room6)&closed(door56) by: [gotodoor (door23, room3),

gothrudoor (door23,room2) ,goto (boxl) ,pushtodoor (boxl,door25,room2),
pushthrudoor (box1l,door25,room5) , pushtodoor (boxl,door56,roomb5)
pushthrudoor (boxl,door56, roomé6),gotodoor (door56,room6) ,close (door56)]

CPUsed=75 secs

no. of expanded nodes: 4
taskfile: 1listl2 taskno: task6 of length 4
goal: in_room(robot,room3) by: [open (door56) ,gothrudoor (door56,roomb5)

gotodoor (door35, room5) ,gothrudoor (door35, room3) ]
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CPUsed=17 secs

no. of expanded nodes: 9
taskfile: 1listl2 taskno: task7 of length 9
goal: in room(boxl,room3) by: [gotodoor (door35,room3)

gothrudoor (door35,room5) ,gotodoor (door56,room5),

gothrudoor (door56,room6) ,goto (boxl),pushtodoor (boxl,door56,roomé6),

pushthrudoor (boxl,door56,room5) ,pushtodoor (boxl,door35,room5),
pushthrudoor (boxl,door35,room3) ]

CPUsed=50 secs

no. of expanded nodes: 5
taskfile: 1listl2 taskno: task8 of length 5

goal: in room(box2,room7) by: Egoto (box2),pushtodoor (box2,door35,room3),

pushthrudoor (box2,door35,room5) .pushtodoor (box2,door57,roomb5)
pushthrudoor (box2,door57,room7)]

CPUsed=30 secs

no. of expanded nodes: 6

taskfile: 1listl2 taskno: task9 of length 5

goal: next to(box2,big box) by: [pushtodoor (box2,door57, room7),
pushthrudoor (box2,door57,roomb5) ,pushtodoor (box2,door35,room5)
pushthrudoor (box2,door35,room3) ,pushtobox (box2,big box) ]

CPUsed=33 secs

no. of expanded nodes: 68
taskfile: 1list!2 taskno: tasklO of length 23

goal: in room(boxl,room6)&in room(box2,room6) &in room(big box, room6)

[goto (boxl),pushtodoor (boxl,door35,room3)
pushthrudoor (boxl,door35, room5) .pushtodoor (boxl,door56, roomb5)
pushthrudoor (boxl,door56,room6) ,gotodoor (door56,roomé)

gothrudoor (door56,roomb5) ,gotodoor (door35, roomb)

gothrudoor (door35, room3) ,goto (box2) ,pushtodoor (box2, door35,room3)

pushthrudoor (box2,door35, room5) , pushtodoor (box2,door56,roomb5)
pushthrudoor (box2,door56,roomb6) ,gotodoor (door56,roomé6)
gothrudoor (door56, room5) , gotodoor (door35, roomb),

by:

gothrudoor (door35,room3),goto (big box),pushtodoor (big box,door35,room3),

pushthrudoor (big box,door35,room5) ,pushtodoor (big box,door56,room5)

pushthrudoor (big box,door56,roomb) ]

CPUsed=415 secs

/* APPENDIX B.l1 */
/* rule set after execution os listl, addition of

2 bad heuristics and execution of list2 */

chlOgothrudoor (x(1),x(2))in_ room(robot,x (2))
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in room (robot,x(3))&closed (x(4)) &open (x (1))
connect (x(3),x(5),x(4)) &connect (x(5),x(2),x (1)) &ne(x(3),x(2))&ne(x(4),x(1))

ch20gothrudoor (x(1),x(2))in_ room(robot,x(2))
in room(robot,x(3))
connect (x(3),x(2),x(1))

chl02gothrudoor (x(1),x(2))in_room(robot,x (2))
in_room(robot,x(3))&open(x(4))£open(x(lﬂ
connect (x(3),x(5),x(4))"connect (x(5),x(2),x(1))&ne(x(3),x(2))&ne(x(4),x (1))

ch _bad2gothrudoor (x(1),x(2))in_room(robot,x(2))
in room(x(3),x(4)) &open (x (1)
connect (x(4),x(2),x (1)) &type of (x(3),box)

ch30pushthrudoor (x (1) ,x(2),x(3))in_room(x(1l),x(3))
in room(x(1l),x(4)) &open (x(2))
connect (x(4),x(3),x(2)) &type_of (x(1) ,box) &fits thru(x(l),x(2))

ch50pushthrudoor(x(l),x(2),x(3))in_room(x(l),x(B))

in room(x(1l),x(4))&closed(x(5)) &open (x(2) )

connect (x(4) ,x(6),x(5)) &connect (x(6),x(3),x(2))&fits thru(x(l),x(5))£
type of (x(1),box)&fits thru(x(l),x(2))£fne(x(4),x(3))£Lne(x(5),x(2))

ch60pushthrudoor(x(l),x(2),x(3))in_room(x(l),x(3))
in _room(x(1l),x(4))
connect (x(4),x(3),x(2)) &type_of (x(1),box)&fits_thru(x(l),x(2))

ch80pushthrudoor (x(1),x(2),x(3))in room(x(1l),x(3))

in room(x(l),x(4))&in room(robot,x(3))£fopen (x(5))&open(x(2))
connect (x(4),x(6),x(5)) &connect (x(6),x(3),x(2)) &

fits thru(x(l),x(5))&type of (x(1l),box)&fits thru(x(l),x(2))&
ne (x(4),x(3))&ne(x(5),x(2))

ch badlpushthrudoor (x(1),x(2),x(3))in_room(x(l),x(3))
in room(robot,x(4)) &open (x(2))
connect (x(4),x(3),x(2))&type of (x(1),box)£fits thru(x(l),x(2))

chlpushthrudoor (x(1),x(2),x(3))in room(x(1l),x(3))

in room(x(1l),x(4)) &open (x(5)) &open (x(2)

connect (x(4),x(6),x(5))£connect (x(6),x(3),x(2))&fits thru(x(1l),x(5))&
type of (x(1),box)£fits thru(x(l),x(2))&ne(x(4),x(3))&ne(x(5),x(2))

ch50 4 0 discrim

ch bad2 1 0 discrim
chl02 10 10 strengthened
ch80 7 30 strengthened
ch badl 1 10 discrim
chl0 1 30 discrim

ch60 4 20 discrim

chi 2 10 multiples

ch30 2 180 discrim
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ch20 1 190 discrim
chlOl 9 30 discrim

chlO has exception ch20
ch70 has exception ch30
ch50 has exception ch30
chl0l has exception ch30
ch90 has exception ch20

ch bad2 has exception chl02
ch bad2 has exception ch20
chl02 has exception ch20
ch badl has exception ch30
chi has exception ch30

chi has exception ch60
ch60 has exception chlOl

/* APPENDIX B.2 */
/* results for listd4 */

no. of expanded nodes: 10

taskfile: 1list taskno: taskl of length 7

goal: at(truck,s6) by: [get in(sl2,s16),drive(sl6,s12),
load (crate3,s8,s12),unload(crate3,sl2,sl6),drive (s12, s8)
drive (s8,s7),drive(s7,s6)]

CPUsed=107 secs

CPUsed=6 secs

no. of expanded nodes: 10

taskfile: 1list taskno: task2 of length 5

goal: stacked(crate2,shelf’) by: Edrive(s6,s7),drive(s7,s3),
load(crate2,s2,s3),unload (crate2,s3,s7),truck stack(crate2,s3,s7,shelf7)]
CPUsed=83 secs

CPUsed=6 secs

no. of expanded nodes: 18

taskfile: 1list taskno: task3 of length 7

goal: stacked(cratel,shelfl4) by: [drive (s3,s2),load(cratel,si,s2),
drive load(cratel,s2,s6),drive load(cratel,s6,s10),
unload(cratel,slO,sid),1lift up(cratel,sid),

crane_stack (cratel,sl4,shelfl4)]

CPUsed=130 secs

CPUsed=26 secs

no. of expanded nodes: 8

taskfile: 1list taskno: task4 of length 7

goal: loaded(truck,crate3,sl2) by: Edrive(sl0,s6),drive(s6,s2),
drive (s2,s3),drive (s3,s4),drive (s4,s8),drive(s8,s12) ,
load(crate3,sl6,s12)]

CPUsed=81 secs

CPUsed=16 secs

no. of expanded nodes: 44

117



taskfile: 1list taskno: task5 of length 7

goal: on_ floor(crate3,s2)&at(crate2,s4) by: [drive load(crate3,sl2,s8),
drive load(crate3,s8,s4),drive load(crate3,s4,s3),

unload (crate3,s3,s2),truck unstack(crate2, s3,s7,shelf7),
load(crate2,s7,s3),drive load(crate2,s3,s4)]

CPUsed=452 secs

CPUsed=20 secs

no. of expanded nodes: 13

taskfile: 1list taskno: task6 of length 9

goal: stacked(crate3,shelf6) by: [move crane(sl4,sl0),

move crane (sl10,s6),unload(crate2,s4,s8),drive (s4,s3),
load(crate3,s2,s3),drive load(crate3,s3,s7),unload(crate3,s7,s6)
1lift up(crate3,s6),crane.stack(crate3,s6.shelf6)]

CPUsed=134 secs

CPUsed=3 secs

no. of expanded nodes: 20

taskfile: 1list taskno: task7 of length 10

goal: on_ floor(crate2,sl)&on floor(crate3,s9) by: [load (crate2,s8,s7)
drive load(crate2,s7,s3),drive load(crate2,s3,s2)
unload(crate2,s2,si),crane unstack(crate3,s6,shelf6),

lift down(crate3d),load(crate3,s6,s2),drive load(crate3,s2,s6),

drive load(crate3,s6,s10),unload(crate3,sl0,s9)]

CPUsed=176 secs

CPUsed="7 secs

no. of expanded nodes: 7

taskfile: 1list taskno: task8 of length 7

goal: on floor(cratel,s2) by: [move crane(s6,s10),move crane(slO,sl4),
crane.unstack (cratel,sl4,shelfld4),1lift down (cratel),
load(cratel,sl4,sl0),drive load(cratel,slO,s6),unload(cratel,s6,s2)]
CPUsed=48 secs

CPUsed=2 secs

no. of expanded nodes: 9

taskfile: 1list taskno: task9 of length 8

goal: stacked(crate3,shelf9)£floaded(truck,cratel,sl2) by:
[move crane(sl4,sl10),move crane(sl0,s9),1ift up(crate3,s9),

crane_stack(crate3,s9,shelf9),load(cratel,s2,s6),

drive load(cratel,s6,s7),drive load(cratel,s7,s8)

drive load(cratel,s8,s12)]

CPUsed=79 secs

CPUsed=2 secs

no. of expanded nodes: 43

taskfile: 1list taskno: tasklO of length 13

goal: stacked(cratel,shelfl0) &stacked(crate2,shelf6) by:

[move crane(s9,s10),drive load(cratel,sl2,s8),drive load(cratel,s8,s7)
drive load(cratel,s7,s6),unload(cratel,s6,s10),1ift up(cratel,slO) ,
crane_stack(cratel,sl0,shelfl0),move crane (sl0O,s6),

drive (s6,s2),load(crate2,sl,s2),unload(crate?2,s2,s6),

lift up(crate2,s6),crane_stack(crate2, s6.shelf6)]

CPUsed=441 secs
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CPUsed=39 secs

/* acquired chunks after execution of list4d ¢/

chx3drive (x(1),x(2))at (truck,x(2))
at (driver, x (1)) &unloaded (truck)
type.of (x(1),space) fetype.of (x(2),space) &next (x(1),x(2))

chx23drive (x(1),x(2))at (truck,x(2))
at(truck,x(1l))£in truckfclear (x(2))
type.of (x (1), space) &type of (x(2),space)fnext (x(1),x(2))

chx2drive (x(1),x(2))at (truck,x(2) )

at (driver,x(3)) &clear (x(2)) &unloaded (truck)

type.of (x(3),space)fnext (x(3),x (1)) &type of (x(2),space) &
next (x(1l),x(2))&ne(x(3),x(2))

chxldrive (x(1),x(2))at (truck,x(2)]

at (driver,x (3)) &clear (x(2)) &clear (x (1)) £funloaded (truck)
type.of (x(3),space)fnext (x(3),x(4)) &next (x(4),x(1l))&
type.of (x(1l),space) fetype.of (x(2),space) &next (x(1),x(2))&
ne(x(3),x(1l))&ne(x(3),x(2))&ne(x(4),x(2))

chxlldrive (x(1l),x(2))at (truck,x(2))
in.trucké&clear (x(2)) &clear (x (1)) &unloaded (truck)

next (x(3),x (1)) &type of (x(1),space) &type of (x(2),space) &
next (x(1l),x(2))&ne(x(3),x(2))

chxl2drive (x(1l),x(2))at (truck,x(2) )

in trucké&clear (x(3)) &clear(x(1l))&clear (x(2)) &unloaded (truck)
next (x(4),x(3)) &type of (x(3),space) &next (x(3),x (1)) &
type.of (x(1),space) &type of (x(2),space) f£next (x(1),x(2))%&
ne(x(4),x(l)) &ne(x(4),x(2)) &ne (x(3),x(2))

chy3drive load(x(1l),x(2),x(3))loaded(truck,x(1l),x(3))
at (truck,x(2)) &in_ truck&unloaded (truck)
next (x(2),x(3)) &type of (x(2),space)fne(x(3),x(2))

chxl7drive load(x(1l),x(2),x(3))at(x(1l),x(3))
at(truck,x(2))&in_truck&clear(x(3))&unloaded(truck)
next (x(4),x(2))£next (x(2),x(3)) &étype of (x(2), space) &
type.of (x(3),space) &ne (x(4) ,x(3))

chxl5drive load(x(l),x(2),x(3))loaded (truck,x(1l),x(3))
loaded(truck,x(l),x(4))&in_truck&clear(x(3))&clear(x(Z))&clear(x(S)

next (x(4),x(5)) &type of (x(4),space) &next (x(5),x(2)) &type of (x(5), space) &
next (x(2),x(3)) &type_of (x(2) ,space) &type of (x(3),space) &

type.of (x(1l),crate) &ne(x(4),x(2))&ne(x(4),x(3)) &ne(x(5),x(3))

chx!6drive load(x(1l),x(2),x(3))loaded(truck,x(1l),x(3))
loaded (truck,x(1),x(4))&in_truckfclear (x(3))&clear (x(2)
next (x(4),x(2)) &type of (x(4),space)£fnext (x(2),x(3))£
type.of (x(2),space) fttype.of (x(3),space)£f
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type of (x(1l),crate)&ne(x(4),x(3))

chx2ldrive load(x(1),x(2),x(3))loaded(truck,x(1),x(3))

at (truck,x(4))#on floor(x(1l),x(5))&in truck#clear(x(2))&clear (x(3))
type of (x(4),space) #next (x(4),x(2)) &next (x(5),x(2))&

type of (x(5),space) #next (x(2),x(3)) &type of (x(2) .space) #

type of (x(3),space) &type of (x(1),crate) &ne(x(4),x(5))&
ne(x(4),x(3))&ne (x(5),x(3))

chx9drive load(x(1l),x(2),x(3))loaded(truck,x(1l),x(3))
on floor(x(l),x(4))&in truck&clear (x(3)) &unloaded (truck)
next (x(4),x(2)) &type of (x(4),space) #next (x(2),x(3)) &
type of (x(3),space) &type of (x(1),crate)#ne(x(4),x(3))

chy2drive load(x(1l),x(2),x(3))loaded (truck,x(1l),x(3))
at(truck,x(4))&in_trucké&clear (x(3)) &unloaded (truck)
next (x(4),x(2)) &type of (x(4),space) &next (x(2),x(3))&
type of (x(3),space)é&ne(x(4),x(3))

chy8drive load(x(1l),x(2),x(3)) loaded (truck,x (1) ,x(3))
in truck#clear (x(3))feclear (x(2))
next (x(4),x(2)) &next (x(2),x(3)) &type of (x(2),space)&
type of (x(3),space)#ne(x(4),x(3))

chy9drive load(x(1l),x(2),x(3))loaded(truck,x(1l),x(3))

on floor(x(1l),x(4))&in truck#clear (x(2))&clear(x(3))&unloaded (truck)
next (x(5),x(2)) &next (x(4),x(6)) &type of (x(4) .space) #

next (x(6),x(2)) &next (x(2),x(3)) &type of (x(2),space) #
type_of(x(3),space)&type_of(x(l),crate)#ne(x(4),x(2))&

ne (x(5),x(4))&ne (x(5),x(6))#ne(x(5),x(3)) &ne (x(2),x(4))s&

ne (x(2),x(6)) &ne(x(4),x(3)) &ne(x(6),x(3))

chyllunload(x(1),x(2),x(3))on floor(x(1l),x(3))
on_floor(x(1l),x(4))&in_truck#unloaded (truck)
next (x(4),x(2)) &type of (x(4),space) &type of (x(1),crate)&ne(x(2),x(4))

chx5unload(x (1) ,x(2),x(3))on floor(x(l),x(3))
on_floor(x(l),x(4))&in_truck#clear(x(2))#clear(x(3))&unloaded(truck)
next (x(4),x(2))&type of (x(4),space) &type of (x(1l),crate)#

next (x(3),x(2))&type of (x(3),space) &type of (x(2),space) #ne(x(4),x(3))

chx20unload(x(1),x(2),x(3))on floor(x(1l),x(3))

on floor(x(1l),x(4))&in_trucké&clear (x(3)) &clear (x(2))

next (x(4),x(5)) &type of (x(4),space) ftnext (x(5),x(2))&

type of (x(1l),crate) #next (x(3),x(2)) &type of (x(3) .space) #
type of (x(2),space)&ne(x(4),x(3))#ne(x(4),x(2))&ne(x(5),x(3))

chylunload(x(1l),x(2),x(3))on_floor(x(l),x(3))

at (truck,x(4)) #in truck#clear (x(2)) #clear (x(3)) #unloaded (truck)
next(x(4),x(5))#typeiof(x(4),space)&next(x(5),x(2))&

next (x(3),x(2))#type of (x(3) .space) &type of (x(2) .space) #
ne(x(4),x(3))&ne(x(4),x(2))&ne(x(5),x(3))

chy5unload(x (1) ,x(2),x(3))on floor(x(l),x(3))
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at (truck,x(4)) &in truck&clear (x(3)) &clear (x(2)) &unloaded (truck)
next (x(5),x(4)) &next (x(4),x(2)) &type of (x(4),space)&

next (x(3),x(2)) &type of (x(3),space) &type of (x(2), space) &

ne (x(5),x(3)) &ne (x(5),x(2)) &ne(x(4),x(3))

chx22load(x(1),x(2),x(3))loaded(truck,x(1l),x(3))
on floor(x(1l),x(2))&in truck

type of (x(1l),crate)&next (x(2),x(3))&

type of (x(2),space) &type of (x(3) .space)

chx18load (x (1), x(2),x(3))loaded(truck,x(1),x(3))

at (truck,x(3))&in trucks&unloaded (truck)

type of (x(1),crate) &next (x(2),x(3))&type of (x(2),space) &
type of (x(3) .space)

chx4load(x(1l),x(2),x(3))clear (x(2))
at(driver,x(B))&on_floor(x(l),x(Z))&unloaded(truck)

type of(x(1l),crate)&next (x(2),x(3))&type of (x(2),space) &
type of (x(3) .space)

chx10load(x (1) ,x(2),x(3))loaded (truck,x(1l),x(3))

on floor(x(1l),x(2))&in truck&unloaded (truck)

type of (x(1l),crate)&next (x(2),x(3)) &type of (x(2),space) &
type of (x(3) .space)

chx6crane stack(x(l),x(2),x(3))stacked(x(1l),x(3))

at (crane,x(2))

connect (x(2),x(3)) &type of (x(3),shelf) &

type of (x(1),crate)&ne(x(2),x(3))&pickup point(x(2))

chxl9crane stack(x(1l),x(2),x(3))stacked(x(1),x(3))
nil

connect (x(2),x(3))&type of (x(3),shelf) &

type of (x(1),crate)&ne(x(2),x(3)) &pickup point (x(2))

chy4lift down(x(l))on floor(x(l),x(2))
above floor(x(l),x(2))&at (crane,x(2))

type of (x (1) .crate)

chy6lift down(x(l))on floor(x(l),x(2))
above floor (x(1l),x(2))
type of (x(1) .crate)

chy7crane unstack(x(1l),x(2),x(3))loaded(crane,x(1),x(2))
stacked(x (1l),x(3)) &unloaded (crane)

connect (x(3),x(2)) &type of (x(3),shelf) &

type of (x(1l),crate)&ne(x(2),x(3))

chx3 1 0 discrim
chx4 1 0 discrim
chx5 2 0 discrim
chx6 3 0 discrim

chx10 3 10 discrim
chxll 4 0 discrim
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chx12 4 0 discrim
chxl 1 10 discrim
chx2 1 20 multiples

chx1l7 5 0 discrim
chx20 6 0 discrim
chx21l 6 0 discrim
chx23 6 0 discrim
chyl 1 0 discrim
chy2 1 0 discrim
chy4 1 0 discrim

chy5 2 0 discrim

chy3 1 10 discrim
chx18 5 20 discrim
chy6 2 0 discrim

chy7 2 0 discrim

chy8 3 0 discrim

chy9 3 0 strengthened
chx9 3 20 multiples

chx1l5 5 10 multiples
chxl6 5 10 multiples
chxl9 6 30 discrim
chyll 4 0 discrim
chx22 6 10 discrim

chy8 has exception chxl5
chy8 has exception chxl6
chy8 has exception chx22
chy3 has exception chx22

/* APPENDIC B.3 */
/* handcrafted rules for robot world */

ch (chl0,gothrudoor( 406551, 406552),in room(robot, 406552),
in_room(robot,XX),connect(XX,U,W)&connect(U,.406552,.406551)&
ne (XX, 406552) &ne (W, .406551)) .

ch (ch20,gothrudoor( 406551, 406552),in room(robot, 406552),
in room(robot, 406558),connect( 406558, 406552, 406551)).

ch (ch30,pushthrudoor( 406551, 406552,7),
in room( 406551,7) ,in room( 406551,0),
connect (U, 7, .406552) &étype of (.406551,box) &fits thru( 406551,.406552)).

ch (ch50,pushthrudoor (.406551, .406552, Z2),

in room(.406551,7),in room( 406551,0),

connect (U,W,V) ftconnect (W, Z2, .406552) &

fits thru( 406551,V)&type of (.406551,box) &

fits thru( 406551, .406552) &ne (U, 7Z) &ne(V,.406552)) .

ch (chl1l00,pushthrudoor (X,Y, Z)

in room(X,Z),in room(X,U),

connect (U,W,V) fconnect (W, Z1,Y1l) &connect (21,%Z,Y) &
fits thru(X,Yl)&fits thru(X,V)&type of (X,box) &
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fits thru(X,Y)£ne (U, Z) &ne(V,Y) &ne (Y, Y1) £ne (Y1,V)).

ch (ch200,gothrudoor (YD, YY),in room(robot,YY),
in room(robot,XX),connect (XX, U, W) £connect (U, Y, X) &
connect (Y, YY, YD) &ne (YD, X) &ne (YD, W) &ne (XX, Y) &ne (W, X) )

ch record(chlQ,1,40,multiples)
ch record(chl00,1,40.multiples).
ch_record(ch200,1,80.multiples)
ch record(ch20,1,80,multiples)
ch record(ch50,4,70,multiples).
ch record(ch30,2,80,multiples).

ch _ex(chl0,ch20)
ch _ex (ch50,ch30).

ch ex(ch200,ch20).
ch ex(chl00,ch30)
ch ex(ch200,chl0).
ch ex(chl00,ch50)

/* attemp at handcrafted rules for ’'warehouse' world */
/* load *e*xkexkex/

ch (chl00, load (X1,X2,X3),loaded (truck, X1, X3),

at (truck,X3),
type of (XI,crate) &next (X2,X3) &type of (X2,space) &type of (X3,space) ).

ch(chi01l, load (X1,X2,X3),loaded (truck, XI, X3) ,

at (truck,X4) &clear (X3),

next (X4,X3) &

type of (XI,crate) &next (X2,X3) &type of (X2,space) &type of (X3,space) ).

ch(chi02, load (X1,X2,X3),loaded (truck, XI,X3) ,

at (truck,X4) &clear (X3) &clear (X5),

next (X4,X5) &next (X5, X3) &

type of (XI,crate)fnext (X2,X3) &type of (X2,space) Ltype of (X3, space) &
type of (X4, space) &type of (X5,space)).

/* unload (1) ex**e*fx*x/

ch (chl05,unload (X1,X2,X3),on_ floor (XI,X3) ,
at (truck, X2) &loaded (truck, XTI, X2)
type of (XI,crate)fnext (X2,X3)&type of (X2,space) &type of (X3,space) | .

ch(chl06,unload(X1,X2,X3),on floor (XI,X3) ,
at (truck,X4)fclear (X2) &loaded (truck, XI,X4) ,

next (X4,X2) &
type of (XI,crate)fnext (X2,X3) &type of (X2, space) &type of (X3, space) ).
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/* unload (2) *********/
ch(chl08,unload (X1,X2,X3),at (X1,X3),

at (truck,X2) &loaded (truck, XTI, X2)

type of (XI,crate)&next (X2,X3)&type of (X2, space) &étype of (X3,space)

ch(chl109,unload (X1,X2,X3),at (X1,X3),

at (truck,X4) &clear (X2) &loaded (truck, XI,X4) ,

next (X4,X2) &

type of (XI,crate) &next (X2,X3) &type of (X2, space) &type of (X3, space)

/* drive **********/

ch (ch200,drive (XI,X2),at (truck,X2),

at (truck, X1l) &clear (X2),

type of (XI,space) &type of (X2, space) fenext (XI, X2) ).

ch (ch201,drive (XI,X2),at (truck,X2)
at (truck,X4) &clear (X1),
next (X4,X1) &

).

)

type.of (XI,space) &next (XI,X2) &type of (X2,space) &type of (X4, space) ).

ch(ch202,drive (XI,X2),at (truck,X2),

at (truck, X5) &clear (X1l) &clear (X3)

next (X5,X3) £next (X1,X3) &

type of (XI,space) &next (X1,X2) &type of (X2,space) &type of (X3,space) &
ne (X5,X1) &ne (X2, X3) &ne (X5,X2)).

/* drive load */

ch (ch302,drive load(X1l,S2,83),loaded (truck, XI,S3),
in truckfclear (S3)£loaded(truck,X1l,s),

next (S, S2) £type of (S, space) &next (S2,83)&

type of (S3,space) &type of (XI,crate)&ne(S,S3)).

ch (ch305,drive load(X1l,S82,S83),at (X1,83),

in truckfclear (S3)£loaded(truck,Xl,S)

next (S,82) £type of (S,space) &next (52,83) &

type of (S3, space) &type of (XI,crate)fene(S,S3)).

ch(ch301,drive load(X1l,S2,S3),loaded (truck, XI,S3),
loaded (truck, XI,S)£in_ truck&clear (S8) &

clear (S3) &clear (S2) &unloaded (truck),

next (S,58) &type of (S,space) £next (S8,52) £

next (S2,53) &type of (S2,space) £type of (S3, space) &
type of (XI,crate)£fne(S,S2)&ne(S,S3)£ne(S8,S53))

ch (ch306,drive load(X1l,S2,83),at (XI,S3),

loaded (truck, XI,S)£in trucké&clear (S8) &clear (S3) &

clear (S2) &unloaded (truck),

next (S,S8) £type of (S,space) £next (S8,52) fenext (S2,83) &
type of (S2,space) &type of (S3,space) &type of (XI,crate)s
ne (S, S2) £ne (S, S3) £ne (S8, S3) ).

ch ex(ch201,ch200)
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ch ex(ch202,ch201) .
ch ex (ch202,ch200) .

ch ex(chl02,chlOl) .
ch_ex(chl02,chl00) .
ch ex(chl01,chl00) .

ch ex(chl06,chl05) .
ch ex(chl09,chl08) .

ch record(ch200,1,0,multiples)
ch record(ch201,1,0.multiples) .
ch record(ch202,1,0,multiples)
ch record(chl0O,1,0,multiples) .
ch record(chl01,1,0,multiples).
ch record(chl02,1,0.multiples) .
ch record(chl05,1,0,multiples) .
ch record(chl06,1,0,multiples)
ch record(chl08,1,0,multiples)
ch record(chl09,1,0.multiples) .
ch record(ch301,1,0,multiples)
ch record(ch302,1,0.multiples)
ch record(ch305,1,0,multiples) .
ch record(ch306,1,0.multiples)
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APPENDIX C: PROGRAM LISTINGS

The Separate NLP EBL implementation

MODULE NAME USED IN., FUNCTION
nlpd NLP with E.B.L. driver for NLP with E.B.L.
nlpO NLP with E.B.L. top level strategy through

partial plan space

nlpl NLP with E.B.L. goal achievement within
a partial plan

nlp2 NLP with E.B.L. implementation of partial
plan abstract data type

nlp3 NLP with E.B.L. utilities
nlpl NLP with E.B.L. heuristic aquisition
procedures

The FM Implementation

bootc MEA, FOR, NLP boot file for the FM
system

fenv MEA, FOR enviromental variables

fme MEA the MEA strategy

fused MEA c-chunk use (called by

fmc)

f comp MEA c-chunk optimisation

driver mec MEA provides a user interface

driver help MEA, FOR provides a user help
facility

fchmea MEA c-chunk creation
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faugmac MEA c-chunk strengthening

futile MEA, FOR utilities

fmacgr MEA, FOR macro creation
fuse FOR basic chunk use
fexh FOR state space search
driver f FOR user interface

(other files which implement NLP within the FM framework are not
included for brevity, and because they are similar to NLP EBL

given above.)

127



/************* nlpd nlpd nlpd nlpd nlpd nlpd *****************/

***********‘k‘k*************‘k‘k***************/

/* driver for NLP with E.B.L.

init world(I),nl,init count,

write ('This is the non-linear planner..'),nl,
write('with E.B.L..."),nl,

write ('My current world is '),nl,write(I),nl
nl,write ('Enter list of goal(s)>"),

read (G),

trans (G,goal,Gpp), /* put goal into internal rep'n*/
/* of Ps in partial plan */
assert (ppwP (O ,O1,00,,0) ) ,
/* now CALL MAIN PREDICATE in TOP LEVEL with initial partial plan*/
nlp( [pp(x( [1,0,01,01),
[, [opi(init,init, OO ,1, O), opi(goal, goal, I, [],0)1,

0, Gpp, [l,env( [1,00) 1).

nl,write('Enter LIST of goal(s)>"'),b.

/* this is called after nip has succeeded */

write out(pp( ,H,Os.Tcons, , , ))
retract (init world(I)),
setof (Opl, linearops (Os,Tcons, Opl), [OlRest]),
applyopseq(0,1, S),
write ('By sequence of operators '),nl,nl,write(O),nl,nl
write('goal is satisfied, new state is’),
nl,nl,write(S),nl,
assert (init world(s)),
write ('other sequences '),nl,wlist (Rest),nl

learn (H,0s).

/******************njpo nlpo nlpo nlpo _ TOP LEVEL****#********/
/* for NLP Wlth E'B'L.******************************************/
nlp (PPs)

empty (PPs),

write ('failure - task is impossible’),
nlp (PPs)

member (PP, PPs),
all goals achieved (PP),
write out (PP).

nlp (PPs)
remove partial plan (PPs, PP,PPsO)
get unachieved predicate (PP, P,0)
achieve all(p,0,PP, PPsl),
append (PPsO,PPsl, PPs2) ,
nlp (PPs2).
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nlp (PPs)

remove partial plan (PPs,

get unachieved predicate (PP,

PP, PPsO),
P,0),

nl,write (‘goal failed***see fredal'),
tell (fredal) ,write (P),write (0),nl,
writepp (PP),nl,nl,tell (user),

nlp (PPsO).

/*******+*****local utilities**"k**k**k******************/

empty ( []

).

all goals achieved(PP)

/*remove partial plan ([PPIPPsO]
/* simple heuristic:
remove_partial_plan([PPIPPS],

min pp (PP,plan (PPl.Scorel),

get Ps (PP, 1

get Ps (PP, Ps)
get Os (PP, 0s)
length (Ps, PL)
length (0s, OL)
Score 1is OL+PL,

for all els(PPs,min_pp,plan (PP,Score),

write (S3),

removel (PPmin, [PPIPPs],
plan (PP1l,Scorel))

get Ps (PP, Ps),
get Os (PP, Os),
length (Ps, PL),
length (Os, OoL) ,
Score?2 1is OL+PL,
Score2 >= Scorel,!

min pp (PP,plan( , Scorel),

get unachieved predicate (PP,

get Ps (PP, Ps),
get Os (PP, 0s) ,
length (Ps, PL),
length (0Os, OL),

Score?2 1is OL+PL,
Score2 < Scorel,!

get Ps (PP, Ps),

find plan that minimises

PPmin, PPsO)

PPsO) .

plan (PP, Score?2))

P.0)

most_inst (Ps,g(P,0)),

PPmin, PPsO) .*/

|Os |+ IPsI

plan (PPmin, SS)),

/* achieve asserts new plans as prolog clauses since

this makes the wvariables therein,

achieve_ all (P, O, PP,
achieve all(P,0, PP),

PPs)

setof (X, retract (newplan (X)), PPs)
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/*achieve all(P,0,PP)
init pp trans,
achievel (init, P, 0O, PP, PPO)
init pp trans
init rec (PPO, PP1),
assert (newplan (PP1l)),
fail. */

achieve all (P,0,PP)
init pp trans,
achievel( ,P,0O,PP, PPO),
init_pp_trans,
init rec(PPO, PPl),
assert (newplan (PP1l)),
fail

achieve all(p,0O,PP)
init pp trans,
achieve?2 (P, 0, PP, PPO),
init pp trans,
init rec(PPO, PP1),
assert (newplan (PP1)),
fail

achieve all( , , ).

K Kk k kK Kk ok ok ok ok ok ok Kk ok ok Kk kK Kk kk ok Kk Kk k ok ok ok k ok ok ok Kk ok ok ok ok ok ok K Kk ok
top LEVEL END +

/*****+***+*+******nTpl nlpl nlpl nlpl nlpl ********************/

[ KK KKK A KA KAk x4 x kX GOAL ACHIEVEMENT BY EXISTING QP*** %k k ks xskxsknsk /

/* The specification of this program is written as a series of

post conditions on the R.H.S. of the code */

/* apart from simple retrieve fns this relies on the correct

implementation of six predicate:
unify (P,Q,Ts);
unify (P,Q,PP, PPO) ;
before (P,Q,Ts);

before (P, Q, PP, PPO) ;
constraint, Q, PP, PPO) ;
insert op (P, PP, A, PPO)
*/
achievel (A, P,0, PP, PP6)
get el Os (PP, a), /* there exists A in Os:
achieve (P,0,A, PP,  PP3), /* achieve(P,0,An)

add el As(P,0,PP3, PP4),
del el Ps(P,0,PP4 PP5),

/* for monitoring only.

sift out (PP5,PP51),

get history (PP, H1),
increment count (N1),
append (H1, [N1],H),

rep history (PP51,H, PP6),
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retract (pp_trans (XI,X2,X3,X4,X5)),
assert (ppA(H,A,XI, X2,X3,X4,X5)),

store rec (PP6),

tell (freda),

nl,write (ppA(H,A,XI, X2,X3,X4,X5)),nl
nl,write(P),write(0),
writepp (PP6) .tell (user) ,
write(.),ttyflush.

achieve (P,0,A, PP, PP5)

get_el add(a, PP, Q), /* there exists 0 in A a:*/
unify (P,Q, PP, PPI), /* nec unify(P,Q,Es) & */
before (A, 0, PP1, PP2), /* before(A,0,Ts) & */
bef rec(A,0,PP2, PP3) ,
con_rec(A,Q,PP3, PP4) ,
get Os (PP4, Os) /* for all C in Os: */
for all els(Os,

declobber (P,A,0),

PP4, PP5) . /* declobber (P,A,0,C) */

/¢ This part makes sure C is not a clobberer */
declobber( ,0, ,0,PP, PP) /¥ C =0V * /

declobber( , ,A,A,PP, PP) - /¥ C =AYV ¢/
I

declobber( , ,0,C,PP PP3)
get_Ts (PP, Ts),
before (0,C, Ts), /* before(0,C,Ts) V */
bef rec(O,C,PP, PP3),

declobber( ,A, ,C,PP, PP3)
get Ts (PP, Ts),
before (C,A, Ts), /* before(C,A,Ts) V */
bef rec(C,A,PP, PP3),

declobber(p, , ,C,PP, PP3)
get Es (PP, Es),

not ( get_el del(C,PP, Q), /*not(there exists Q in */
unify (P,Q,Es) ), /*C.d: pos_unify(Q,P,Es))*/

uni rec(P,C, PP, PP3),

/* If this point is reached then C is a clobberer;
this part CHANGES the partial plan to avoid this */

/¢ Don’t need to bother recording additions because these are recorded
for the H operator anyway - although they must still be taken

from collection of required proof objects */

declobber( , ,0,C,PP, PPO)
before (0, C, PP, PPO) . /* make before(0,C,Ts) V */
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declobber( ,A, ,C,PP, PPO)
before (C, A, PP, PPO) . /4 make before(C,A,Ts) V */

/* C.d contains at least one predicate which clobbers P .. */

declobber (P, , ,C,PP, PPO)
get del(C,PP, Cd), /* for all Q in C.d: */
for all els(Cd,
constrain (P),
PP, PPO) . /* make not (unify(P,Q,Es)) */

/******************GOAL ACHIEVEMENT end‘k‘k***********************/

/******************GOAL ACHIEVEMENT BY NEW OP**************/
achieve2 (P, 0, PP, PP8)

insert op (P,PP, A, PPI), /* there exists new A in Os:*/
achieve (P,0,A, PPI, PP4), /* achieve (P,0,A) */
get As (PP4, As), /* for all (P,0) in As: */

for all els(As,
declobber As (A),
PP4, PP5), /* declobber As (A, (P,0))*/

add el As(P,0,PP5, PPO6),
del el Ps(P,0,PP6 PP7),
/* for monitoring only.. */
sift out (PP7,PP71),
get history (PP, H1),
increment count (N1),
append (H1, [N1],H),
rep history (PP71,H, PP8),

add Os trans(A,PP8),
ret;acg(ppitrans(XI,XZ,X3,X4,X5)L
assert (ppA (H,A,XI,X2,X3,X4,X5)),
store rec (PP8),

tell (freda),
nl,write(ppA(H,A,X1,X2,X3,X4,X5)),nl
nl,write(P),write(0),

writepp (PP8),tell (user),
write(.),ttyflush.

declobber As(A,g( ,A),PP, PP) : /* A =0 V */

declobber As(A,g(_,0),PP, PP3) :-

get_ Ts (PP, Ts), /* before(0,A,Ts) V */
before (0,A,Ts),
bef rec(0,A, PP, PP3)
. _
declobber As(A,g(P,0),PP, PP3) :- /* for all Q in Ad: x/

get del (A, PP, Ad),
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for all els(Ad,
declobber pred(A,0,P),
PP, PP3), /* declobber pred(A,0,P,Q)*/

declobber pred( , ,P,Q,PP, PP)

get Es (PP, Es),
not (unify(Q,P,Es)), /* not(pos unify(Q,P,Es)) V */
declobber pred(A,0,P,Q, PP, PP3)
get el Os (PP, W) /* there exists W in Os: */
get Ts (PP, Ts),
before (A,W, Ts), /* before(A,W,Ts) & */
before (W, 0, Ts), /* before(W,0,Ts) & */
bef rec(A,W.PP, PPI),
bef rec(W,0,PPI, PP3),
get el add (W, PP, R), /* there exists R in W.a:*/
not (not (
unify (P,Q,PP, ), /* nec unify(P,Q,Es) & */
P==R ), /* s/
/* Otherwise we'll have to add constraints, now we know */
/* A is a Clobber for some P in 0, possibly before 0. */

declobber pred(A,0, , ,PP, PPO)

before (0,A, PP, PPO). /* if nec, make before(0,A,Ts) */
declobber pred( , ,P,Q,PP, PPO) :-
constraint, P, PP, PPO) . /* put constraint on P or Q */
declobber pred(A,0,P,Q, PP, PPO)
get el Os (PP, W), /* there exists W in 0Os: */
before (A, W, PP, PPI), /* make before(A,W,Ts) & */
before (W, 0, PPi, PPO), /* make before(W,0,Ts) & */
get el add(W, PPO, R), /* there exists R in W.a:*/
not (not (
unify (P, Q,PPO, ), /* nec_unify(P,Q,Es) & *x/
P == R ). /* */

/* One other possibility is where W is got by adding a new operator

altogether! we leave this out! */
/******************GOAL ACHIEVEMENT END************************‘k/

4/\***********p2 nlpz nlpz nlp2 nlp2‘k********‘k‘k‘k*********‘k‘k‘k***/
/* Partlal Plan ADT **************************/

/*
<plan rep> = pp(R,H,0s,Ts,Ps,As,Es).

R temporarily stores the change info for learner.
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H = history

<0s rep> = list of opi(<id>,<op name>,<prel>,<addL>, <delL>)
<Ts rep> = list of t(<op identifier>,<op identifier>)

<Ps rep> = list of g(<predicate>,<op_identifier>)

<As rep> = list of g(<predicate>,<op identifier>)

<Es rep> = env( ne's -binding restrictions, other restrictions

NOTE: driver must also be changed!!!!!!!

*/

/****+‘**‘+**‘*******+*‘***************+**+***************************/

get history(pp( , =L _— , H).
rep history(pp(R, ,A,B,C,D,E),H, pp (R, H,A,B,C,D,E)) .
increment count (N1)

retract (count (N)), N1 1is N+1, assert(count (N1l)),!.
init count retract (count(_)), assert(count(0)),!.
init count assert (count (0) ).

/* plan component access */

get Os(pp( , , <O = , | 0Osl)

lop(0s,0sl). /* just get operator identifiers */
lop ([opi (I, IR],[IdI A])

lop (R, A),
lop( [1,00).

get O0(Id,pp( , ,Os,A)
member (opi (I4d,A,, 0s),!.

get Ts(pp(_, Ts 1 Ts)
get_Ps(pp(_,i—»_-_ Ps _._1, Ps)
get As(pp( (—>—)r—r—»As, ), As)
get Es(pp( —r»r—»— yEs) Es)

/* plan component member access */
get el Os(pp( , ,Os,, 0)
lop (0s,0s1),

member (0,0s1)

get_el Ps(pp( /s _,_+_+Ps, , ), g(P,0))
member (g (P, 0),Ps).

get_el As (pp (_,As, ), g(P,0))
member (g (P, 0) ,As).

/* operator component access */
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get del (Id,pp( , ,Os,, Del)
member (opi (Id,Del),O0s),

/* operator component member access */

get first el add(Id,pp( , ,Os,, A)
member (opi(Id, Add, ),0s),!,
member (A, Add),!.

get_el add(Id,pp(_,_ ,Os,, A)
member (opi(Id, Add, ),0s),!,
member (A, Add).

get el del (Id,pp(_, ,Os, D)

member (opi (Id,Del), 0s),!,
member (D,Del).

/* plan component update */

rep Ts(pp(R,H,0s, ,Ps,As,Es), New, pp (R, H, Os,New, Ps,As,Es)).
rep Es(pp(R,H,0s,Ts,Ps,As, ),New, pp(R,H,0s,Ts,Ps,As,New) ).
add Ts(pp(R,H,Os,Ts,Ps,As,Es) , NewT, pp (R,H,0s, [NewT1lTs],Ps,As,Es))

add Ts trans (NewT,Os).

add _op (0,pp(R,H,C1,C2,C3,C4,C5), pp(R,H,C,C2,C3,C4,CH))
append(Cl, [0],C).

add Ps(Gs,Id,pp(R,H,0s,C2,Ps,C4,C5), pp (R, H,0s,C2,NewPs,C4,C5))
trans (Gs,Id,Gsid),
append (Gsid, Ps,NewPs),
add Ps trans(Gsid,Os),!.

add el As(pP,0O,pp(R,H,0s,Ts,Ps,As,Es), pp (R, H,0s,Ts,Ps, [g(P,0) As],Es)
add As_ trans(g(P,0),0s),!.
/* updates Es with input from a new operator */
add Es(E,pp(R,H,C1,C2,C3,C4,env(EL,E2)),
pp(R,H,C1,C2,C3,C4,env (NewE]l,NewE2)))
sortne (E, Ene,Erest),
append (Ene,E1,NewE1l),
append (Erest,E2,NewE2)

sortne( [] ,[],0).

sortne ([ne (A,B)I ER], [ne(A,B) IEne] ,Erest)
sortne (ER, Ene, Erest).

sortne ([E|ER],Ene, [E|Erest])
sortne (ER, Ene, Erest).

del el Ps(P,0,pp(R,H,0s,Ts,Ps,As,Es), prp (R, H,0s,Ts,NewPs,As,Es))

removel equiv (g (P,0),Ps,NewPs),
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writepp (pp (R,H,0s, Ts,Ps,As ,env(E1l,E2))) :-

file dump (on),nl,nl, /* flag for storing trace */
write (H),nl,

write (R),nl,nl,

wlist (Os),nl

wlist (Ts),nl,

wlist (Ps),nl,

wlist (As),

wlist (E1l),

wlist (E2),

write(’000+00000000000000000000000+00000000+000000000000000’),nl,

writepp ().

/444040Rccord for Learning #¢++ee@Fx Fxktdixdkixithixxix x5 04400640664/

/44444 ¢IMPLEMENTATION OF THE SIX AUX. FNS IN NLPL****k*&kakdxktksrs/

[xrr KKk KRk kkk* pheafore (X,Y, PP, PPO): make X nec. before Y in PPO ¢/

before (X,X, , )
,fail. /* can't put X before itself!e/
before (X, Y, PP, PP)
get Ts (PP, Ts),
before (X,Y, Ts),

before (X, Y, PP, PPO)
get Ts (PP, Ts),
not ( before (Y, X,Ts)),
add Ts (PP, t(X,Y), PPO),

/@ @*xxxxkkqgi*x  pefore(X,Y,Ts): X is nec. before Y in Ts */
/¢ before(X,Y,Ts)'s specification:
X <Y <=> X=init V Y=goal V
{ t(X,Y) in Ts V
there exists Z in Os:
t(X,2) in Ts & Z < Y }
*/

before (X,Y,Ts) i-
not (X=Y),
not (Y=1init),
not (X=goal),
befor (X,Y,Ts)

befor (init, , ) :- L
befor( ,goal, ) :- L
befor (X,Y,Ts) :-
member (t (X,Y),Ts), /44euses Ts's REP ¢é¢/
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befor (X,Y,Ts)
member (t (X,2),Ts),
befor (2,Y,Ts),

/IO KK kKKK kK kxkkxk*x* unify(P,Q, PP, PPO)

unify (P,Q, PP, pp) -
P =0
get Es (PP, Es),

not (not (consis (Es))).

/*******‘k*********** ‘k/

unify(P,Q,Es)
unify (P,Q,Es)
not (not (
P =90
consis (Es) )) .
consis (env (Ene,Econs))
env (Env),
follows (Econs, Env),
numbervars (Ene,1, ),

consist (Ene),

follows([], ).

follows ([YIR],E)
member (Y, E),
follows (R, E)

consist ([]).

consist( [ne(X,X)] 1)

!.fail.
consist ([ 1Y])

consist (Y).

*/

/***********‘k*+***********‘k*************‘k**************************/

insert op (G, PP, OP.PP4)
operator (N,
E,
P,
A,
D),
not(not( A = [GI ] )),

gensym (op, OP),

add op (opi (OP,N,P,A, D), PP,
add_Ps (P, 0P, PP1, PP2),
add_Es (E,PP2, PP4)

/* verefy G is first

in padd */

PPI),

/““““"‘Me******************************************************/

constraint, Q, PP, PP)
get Es (PP, Es),
not (unify(Q,P,Es)),
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constrain (P,Q, PP, PPO)
get Es (PP, Es),

put constraint (Q, P,Es,NewEs), /* put constraint on P or Q

rep Es (PP,NewEs, PPO) .

put constraint (Q,P,Es,NewEs)
put_c (P,Q Es,NewEs),
not (unify (P, Q,NewEs) ),
not (not (consis (NewEs))).

put _c(U,P,env(X,Y),env([ne(A,B) [X] ,Y) )
U =.. [_ITU],
P =.. [_ITP],
p_c(TU,TP,ne (A,B)).

p_c([T1l_],I[T2]_1,ne(T1,T2))

var (T1l)
p_c([T1I 1, ([T2] ],ne(T1,T2))

var (T2).
p_c([_IR1],E_|R2],0)

p_c(R1,R2,0)
p_c([l,[] .none) .

/**************************************************************/

/* Constructs a sufficient condition for achieve satisfaction */

/* present rep'n = r(P in A,O0s’,Ts‘,Es’)] */
init_rec(pp(_,H,V,W,X,Y,Z) , pp(x(EJ ,00,03,0) ,H, V. W, X, Y,Z) ).

store rec(pp(r(aA, ,C,D),H,0s, , , , ))
lop (0s,0s1)
removeL (goal.0sI.Osl),
removeL (init, 0sl1l,0s2),
assert (ppR(H,A,0s2,C,D)),!.

con_rec(A,Q, pp(r(Con,0,T,E),H,0s,W,X,Y,Z)
pp(r([c(A,Q)|Con],0,T,E),H,0s,W,X,Y,2) ) L

/* 0s?? - fill when storing?? */

bef rec(a,C,pp(r(Con,0,T,E),H,0s,W,X,Y,Z),
pp(r(Con,0O, [t(A,C)|T],E),H,08,W,X,Y,Z)) :-
not (A=init),
not (C=goal),

bef rec( , ,PP, PP).

/* member (opi (A, Opl, 0s),
member (opi (C,0p2, , , ), Os),!. */

uni rec(p,C,pp(r(Con,0,T,E),H,0s,W,X,Y,2),
pp(r(Con,0,T, [n(C,P) |E]),H,Os,W,X,Y, 7)) L
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/***********+****++end. Of adt ***************************************/

/* This section builds up the declarative form of the PP transform **/

/* form 1is pp_trans (+0s,+set of Ts,+As(=-Ps),+set of Ps,+set of Es) */

add Os trans (A,PP)
retract (pp trans( ,B,D,E,F)),
assert (pp_trans(A,B,D,E,F)),!.

add_Ts_trans(t(_,goal), ) L

add Ts_ trans(t(init, ), ) I,

add Ts_ trans(t (Opl, 0p2), )
/*member (opi (Dpi,N1, , , ), Os),
member (opi (0p2, NI —, O0s),*/
retract (pp_trans(A,B,D,E,F)),
assert (pp_trans (A, [t (0pl,0p2)IB],D,E,F)),!.

add Ps trans(Ps, )
retract (pp_trans(a,B, ,C,E))
assert (pp_trans(A,B,Ps,C,E)), .

add As trans(g(P,0p), )
/*member (opi (Op, N,, 0s),*/
retract (pp_trans(a,B,D, ,E))

assert (pp_trans(A,B,D,g(P,0p),E)) , !.

init pp_ trans

assert (pp_trans (none, [],[] ,none,0)), !.

init pp trans
assert (pp_trans (none, [],[] ,none, [1)),!.

/*************************************************/

sift out (PP, PPI)
get Es (PP, env (E1l,E2)),
remove ground preds(E1,E3),
remove_ground_preds(E2,E4L
sift (E3,NE1),
sift (E4,NE2),
rep Es(PP,env(NE1l,NE2), PPI),

remove ground preds ([XIY],Z)
is ground(X),
remove ground preds (Y, Z)
remove ground preds ([XIY], [XIZ]) :-
remove ground preds (Y, Z).
remove ground preds ([],[]).
is ground (X)
X =.. [_1Y],
is _groundL (Y).
is_groundL ( [XIT])
b
not (var (X)),
is_groundL(T).
is groundL ([]).
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increment count (N1)
retract (count (N)), Nl is N+1, assert (count (N1l)),!.
/* general predicate for removing equiv. dupes from a list

which contains perhaps uninst. vars */

sift ([1,1[1) R
sift ([X] , [X]) !
sift ([H|T], [HID])
not mem (H, T),
sift (T.0),
sift ([ _IT], 0)

sift(T,0),

not mem(E, [XI ])
E == X,
!, fail
not mem(E, [ IY])
not mem(E,Y).

not mem( ,[]).

/**+**‘k***‘k***nlp3 nlp3 nlp3 nlp3 nlp3*************************/

/‘k‘k‘k'k***‘k**********‘k‘k*‘k********‘k*‘k‘k*‘k********‘k*****************/

/* local utilities Kok ok Kk Kk ok Kk ok Kk Kk /

/* implements "for all els in list do O0P(args, el., I, O)" */
for all els( [X!Rest],Op,1,0)

Op =.. 0L,
append (0L, [X,I,II],0L1),
Pred =.. O0LI1,

call (Pred),

for all els(Rest,Op,I1,0).
for all els([], ,I,I).

/* list of goals -> g(el,Id) for all el in list
- used in plan adt and driver*/

trans ([] ,_,[]).

trans ([L|LR], Id, [g(L, Id)ILRN]) trans (LR, Id, LRN).
detrans ([1,[]).

detrans ([g (L, )ILRN], [L|LR]) detrans (LRN, LR)

/* terrible impl. of not */

not (X) call(X),!.fail.

not (_).

not (X.Y) call (X),call(Yy),!,fail

not (_, ).

not (X.Y.7) call(X),call(Y),call(z),!.fail.
not( , , )

[xRFAFFX KK pAx KXk Kkconverts a partial order into a linear sequence**xx X/
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/* patch ‘k‘**k*+*******************/

linearops (Lops, [], [N])
member (opi(_,N, , ,_ ),Lops),

not (N = init), not(N= goal), !

linearops (Lops,Tcons, Linops)
line (Tcons, LTcons),
id to name (LTcons, Lops, Linops) .

line (T, TO)
get identifsT (T, IdL),
list to set (IdL, Ids),
sortll (IdS.T, TO) .

get identifsT( [],[]).
get identifsT ([t (OPL1,0P)IGR], [OP1,0P|Y])
get identifsT(GR,Y).

/* Now make the p.o. into a lattice by adding init & goal */

sortIl(Ids,T, Ord):-
add limit (Ids,T, NewT),
sortl( [init,goal 1lids] ,NewT,[], Ordl),
removelast (Ordl, [ [0Ord]).

add limit([I|L],T, [t(I,goal),t(init,I) ! NewT])
add limit (L, T, NewT) .
add limit ([],T, T).

/* now sort the lattice */

sortl( [X] [X] ) -

sortl (IdS,T,Used, [LIR])
lowest (IdS,T,Used, L),
removelL (L, IdS, I3),
sortI(IS,T, [L1lUsed], R).

lowest (IdS,T,Used, L)
member (L, IdS),
member (t (L, ),T),
not ( member (t (X,L),T), not( member (X,Used) ) ).

lowest ([Idl ], , Id).

id to name( [], , ().
id to name ([IdIR],Lops, [Name | NR]) : -
member (opi (Id,Name, , , ),Lops),

id to name (R, Lops, NR) .

/*********+************************************************/

/* this part allows dumps to be turned off or on */

file dump (on).
fdump retract (file dump( )),
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assert (file dump (on)).
no fdump retract (file dump( )),
assert (file dump (off)).
close_files tell (freda),told.

[*FHFxxKAA* gpplies a list of ops to create a FINAL state */
applyopseq ([Op IT1],S,S2)

applyop (S,0p,SI),

applyopseq(Tl,S1,S2).

applyopseq([],S,S) L

applyop (State, Op, New) operator (Op,

remove list (Del,State,Newl),
add list (Add,Newl,New).

/**********list processing functions************************/

remove list( [DI Del],State,New) :-
remove ALL (D,State,New2),
remove list (Del,New2,New),!.

remove list( [ !Del],State,New) :-
remove list (Del,State,New),!.

remove list( [],New,New) !,
add list (Add,Newl,New)
append (Add, Newl,New2),
list to set (New2, New), !.
reverse (X.Y) reverse x (X, [],Y),!.

reverse x( [] ,C,C).
reverse x([HIT],C,R) reverse x (T, [HIC],R).

last ([E| []] ,E) :
last ([ _IT],E) last(T,E).

last2 ([E, 1, E) L
Tast2 ([_TIT],E) last2 (T, E).

append([],L,L).
append ([HIT],L, [HIZ]) append (T, L, Z).

/* removes the first unif'y occurence of El in list */

removeL (E1, [E1|T],T) I,
removel (E1, [X1T1], [X|T2]) removel (E1,T1,T2),!.

/* removes the first equiv. occurence of El in list */
removel equiv (El, [E2IT],T) El == E2, .
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removel equiv (E1l, [X IT1], [XIT2]) removel equiv(E1l,T1,T2),!.

/* removes all unif’y occurences of El in list */

remove ALL(_, [],[]).
remove ALL(El, [El IT],T1) remove ALL(EL,T,T1l),!.
remove ALL(EL, [XIT1], [XIT2]) remove ALL(EL,T1,T2),!.

remove ALL L ([ ,L,L) I,
remove ALL L ([HIT],L,L1)
remove ALL(H,L,L2),
remove ALL L(T,L2,L1),!.

removelast ([ 1,[]) I,

removelast ([XI XI], [XIY1l]) removelast (XI, Y1)

member (X, [XI 1) .
member (X, [ IL]) member (X, L) .

/*pretty print lists*/

writeL( []).

writeL ([XIY]) write (X),writeL (Y).
wlist ([X|Y]) write (X),nl,wlist (Y).
wlist (0O) .

/* This procedure changes a list to a set */

list to_set (0, []) .

list to set(ELIT],S) member (L.T),!, list to set(T,S)
list to_ set( [LIT], [LIT1]) list _to_set (T,T1)

/**************** generate Symbol predicate*************** */

gensym (Root,Atom)
getnum (Root,Num),
name (Root,Namel),
name (Num, Name?2),
append (Namel, Name2,Name),

name (Atom, Name),

getnum (Root,Num)
retract (current num(Root,Numl)),!,

Num is Numl+1,
asserta (current num(Root,Num)).

getnum (Root,1) asserta (current num(Root,1)).

/* used in weak heuristic: */
/* finds the most inst’d el' of a list by looking at simply the

second level terms i.e. g(i,o), £f(I,o), d(F,D,f) would give g(i,o)
/*PRE of most inst(X,Y)= X is 1list of >0 arity fns *x/
/*POST: Y = function which maximises {no.of const* (l1+1/arity)} */

most inst ( [G11G],B)
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value (G1.N),
m inst (G,Gl,N,B, ),

value (g (G, ),1)

atom (G),
value (g (G, ),N) /* specifically when terms are of form g(X, )
G =.. [_IL], /* and we are interested in X */

valuel (L,0,N1),
length (L, Len),
N is N1+ N1/Len,

value (G, 1)
atom (G),
it

value (G, N)
G =.. LIL],
valuel (L,0,N1) ,
length (L, Len),
N is N1+ N1/Len,

valuel ([HIT],N1,N)
nonvar (H),
N2 is N1+1,
valuel (T,N2,N)
valuel ([ IT],N1,N)
valuel (T,N1,N)
valuel ( [] ,N, N) -

/**** nlpl nlpl nlpl nlpl nlpl nlpl nlpl nlpl nlpl ****x***x*x/

learn (H, Os)
assert (wp (O,
learnl (H,0,0s).

learnl ([], T, ) retr,tell (freda),nl,write(I),write(’ transforms'),
nl,told,!.

retr retract (ppA( , , ., . . )),fail

retr retract (ppR( , ,.., , )),fail.

retr retract (wp( , , + , , )),fail.

retr.

/* start with last transform first .. */

learnl (H, I,0s)
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pPpPA (H,A,O0sA,TsA,PsA,AsA,EsA)

PPR (H,Con, 0sS, TsS,EsS),

writeppT (ppT (A, OsA,TsA,PsA,AsA,EsA)),
writeppR (ppR (Con, 0sS,TsS,EsS))

print others (H),

wp (I,WPcons, WpOs, WpTs, WpPs,WpEs)

append (WPcons,Con,WPconsO),

append (WpOs,0sS,WpOsl),

append (WpTs,TsS,WpTsl),

append (WpPs, [AsA],WpPsl), /* add achieved P to Ps*/
/*append (WpAs,AsS,WpAsl),*/

append (WpEs,EsS,WpEsl),

remove ALL L( [OsA],WpOsl,WpO0s2)
remove ALL L(TsA,WpTsl,WpTs21l),
/* remove any fact in wpT which refers to OsA - the op added*/

remove op (OsA,WpTs21,WpTs2)

remove ALL L (PsA,WpPsl,WpPs2),

remove ALL L (EsA,WpEsl,WpEs21)

remove opN (OsA,WpEs21l,WpEs2)

remove opC (OsA,WPconsO,WPconsl),

list to set (Wp0s2,Wp0s3),
list to set (WpTs2,WpTs3),
list to set (WpPs2,WpPs3),
list to set (WpEs2,WpEs3),

I1 is 1+1,
/* changes names of ops to ids **/
rem identl (WPconsl,WPconsZ2,0s),
rem ident2 (WpOs3,WpOs4,0s)
rem ident3 (WpTs3,WpTs4,0s),
rem ident4 (WpPs3,WpPs4,0s),
assert (wp(Il,WPconsl,Wp0s3,WpTs3,WpPs3,WpEs3)),
writeWP (wp (I1,WPcons2,Wp0s4,WpTs4,WpPs4,WpEs3)),
removelast (H,H1),
learnl (H1,T1,0s), !

print others (H)
last2 (H, HL)
PPA (H1,X1,X2,X3,X4,X5,X6),
PPR (H1, X7,X8,X9,X10),
last2 (H1,HL),
not (H1 = H),
tell (freda),nl,nl,write('others.. . ***xFrddrdbhrdrbbhrdrhirss)y,
writeppT (ppT (X1,X2,X3,X4,X5,X6))
writeppR (ppR(X7,X8,X9,X10) )
tell (freda),nl,write (Se**kkkkkhhhkkkhhhkkhhhhkkkhhkkkhkhrkk*>)
tell (user).
print others( ).

writeppT (ppT (A,OsA,TsA, PsA,AsA,EsA)) -
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tell (freda),nl.nl.nl
write (ppT (A,OsA,TsA,PsA,AsA,EsA)),
tell (user)
writeppR (ppR(Con,0sS,TsS,EsS))
tell (freda),nl.nl.nl
write (ppR (Con,0sS,TsS,EsS) ),
tell (user).
writeWP (wp (I,WpCons,WpOs,WpTs,WpPs,WpEs))
tell (freda) .nl.nl.nl
write(I),write (WpCons),nl,
write (WpOs),nl,
write (WpTs),nl,
write (WpPs),nl
write (WpEs) ,nl,
nl,tell (user).

remove op (A, [t(I,I1l)|R],Ct(I.I1)]|NR])
not (I = A),
not (I1 = A),
remove op (A,R.NR),
|

remove op (A, [ IR],NR)
remove op (A,R.NR),
I

remove op( , [1,[]).

remove opN (init,X,X) I,

remove opN (none, X, X) !,
remove opN (A, [n(A, ) |R],NR)
remove OpN(A,R,NR),

remove OPN (A, [X IR], [XI NR] )
remove OpN (A, R,NR) ,

remove opN( , [],[]).

remove opC (init,X,X) I,

remove opC (none, X, X) !,

remove opC (A, [c(A, )IR] ,NR)
remove opC(A,R,NR),
1.

remove opC (A, [X IR], [XINR])
remove opC(A,R,NR),

remove opC(_, [],[]).

rem identl ([c(I,P) |R], [c(Name,P)I NR],Os)
member (opi (I,Name, , , ),0s),
rem identl (R,NR,Os),

rem.identl (O3, [], ).

rem ident2 ([I|R], [NameI NR],Os)
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member (opi (I,Name, , , ),0s),
rem ident2 (R,NR,0s),

rem ident2 (0,0, ).

rem ident3 ([t (I,I1)IR], [t (Name,Namel) |NR],Os)
member (opi (I,Name, , , ),0s),
member (opi (I1,Namel, , , ),0s),
rem ident3(R,NR,Os),

rem ident3( [], [I, ).

rem ident4 (Cg(P,I) |R], [g(P,Name)I NR] ,0s)
member (opi(I,Name, , , ),0s),
rem ident4 (R,NR,0s) ,

rem ident4 ( [], [1, ).

[*HFF kI KkxkKk*kk FM FH FH FM FM FM FM FM FM FM FM FM FM pM ****xx*/
[xFAF KA FA KK Ax THIS IS THE BOOT FILE FOR FM WITH C-CHUNKS*****x*/

boot (mea,0,E,I)
consult ([
r../1lp/fenv’,
'../1lp/fmc’,
"../1lp/fcm!
"../1lp/fused bk'
"../1lp/fcomp bk'
’../Ip/driver mec’,
’../lp/driver help'
’../1lp/fchmea bk’
"../1lp/faugmac'

'../Ip/futile’,
’../Ip/fmacgr’,
0,
E,

I

1).
boot (forward, 0,E, I)

consult ([
"../lp/fenv’,
r../1p/fcm’

".,/Ip/fuse’,
"../1lp/fexh’
’../lp/driver f>,
"../Ip/driver help’,
’../1lp/fchunk’

'../1lp/faugmac',
"../1lp/futile’
'../Ip/fmacgr’,
0,
E,
I
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boot (nlp,0,E,I)
consult( [
’../nip/twd’,
’../nlp/futile nlp’,
’../nlp/driver nlp'
’../nip/tweak’,
'../nlp/fmacgrd’
’../nlp/new fuse',

'../1lp/fcm!
'../lp/driver help'
'../1lp/fchunkmea'
'../Ip/faugmac',
'.,/1lp/fm

1.

consult (options),

strategy (S),

operator file (0),

environment file (E),

init file(I),

boot (S,0,E,I),

frame (name:Environment, type: context, ,,
assert (environment (Environment)).

/*
*hkkhkhkkkhkkkhhkkhkkkkx fenv fenv fenv fenv fenv fenv fenv Ak Kk khkhkkhkhkkhkhkhkkkkk*k*k
includes 'agenda' control plus problem step addition */
= op( 700, =xfx, ’":').
op( 100, =xfy, '&').

/* ENVIRONMENTAL PARAMETERS are in 'options' file */

clock (0). /* increment after each task */
activation (O). /* increment after each process finishes */
/* must be reset by driver */
numberofnodes (O). /* increment after each node expansion */
/¢ INITIAL AGENDA (PROCESS AND PASSIVE QUEUES) */
processqg(l[]).
passiveq( []) .
qg( ). /* for flagging active or passive g's */
count (0). /* used in main loop */
order store( []). /* root for fchunkmea's storing of chunk segs*/

/* MAIN LOOP FOR EVERYTHING */
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go2 () :—processq(X),

highest (X,d(P,N)).

length (X,NN),write(' ') .write (NN)
retract (count (C)),Cl is C+1,assert (count (Cl)),
((Cl > 8,nl,retract (count( )),assert(count(0))) ; true ),

removelL (d (P,N) ,X,XTI),
incremental ,X2,1) ,
retract (processqg(_))

assertz (processq(X2)),
start (P), !.fail.

go procnumber (X) ,go2 (X). /* go fails when no tasks left */

go-

processg( [ | 1), /* something left in proceeqg */

tell (user),
write (>¢** maximum no. of activations reached ***'),

retract (clock (N)),Nl is N+1,assert(clock(N1l)),!.

procnumber (X)

increment activation (X)

procnumber (X)

max_ activations (M),

activation (A),

A<M,

procnumber (X).

increment activation (X)

retract (activation (X1)),
X is X1+1,
assert (activation (X)),

highest ([d(P,N)J,d(P,N))

highest ([d(P.N) |T],2) highest (T,d(Q,M))
( (M<N,!,2=d(P,N))
z=d(Q, M) ).
increment ([d(P,N) ], [d(P.N1)],1) Nl is N+I.
increment ([d(P,N) |T], [d(P,N1) |L],I) N1 is N+I,

increment (T.L.I).

increment (

start (X) call(X),!.
start ()

/* note: process assumed not to already exist */
addprocess (P.N) retract (processg(X)).

assertz (processg([d(P,N) [X])).
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addpassive (P.N) retract (passiveq (X)),
[

assertz (passiveq ([d(P,N)IX])).

Z****************************************************/

/**‘*****‘*!m fm fm fm fm fm fm fm*****************/
/* definiton of fn to use M.E.A. on a partial soln */

/* which 1is applied only once to each task */

mea_step (X)
frame( name: X,
type: problem,
ancest:Ancest,
context: Context,
init world: I,
goal: G,
trace [],
solution: S),
del(I,G,Gl), /* only try for unachieved goals */
/* new active tasks are initiated on only the 1lst*/
/* unachieved goal predicate’s op's preconditions*/
retract (g(_)) ,assert(g(active)),
/* BOOK KEEPING */
pushtrace (PT),
tell (PT),
writeL([nl,’'node name: ’',X,' ’,'goal: ’',G,' ancestorsnll]),
wlist (Ancest),nl,
tell (user),!,
retract (numberofnodes (Nn) ) ,Nnl is Nn+1,

assert (numberofnodes (Nnl)),

expandmea (X,p (I, []1,[]),Lnewps,Gl.Context,Gl,Ancest),
success (X, G, Context,Ancest,Lnewps,S),
( (not( wvar(S) ),mac(X)) : true),/*not varS=success*/
retract (frame (name:X, type:problem,
assertz (frame (name: X,

type: problem,

ancest:Ancest

context: Context,

init world: I,

goal: G,

trace: Lnewps,

solution: S)),!.

/* M.E.A. sort of expansion */
expandmea (Pn,X,Ln,G&G1l,Context,Goal,Ancest) :- [,
expandmeal (Pn,X,Lnl,G,Context.Goal,Ancest),

expandmea (Pn, X, Ln2,Gl,Context.Goal,Ancest),
append (Lnl,Ln2,Ln).
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expandmea (Pn,X,Ln, G,Context,Goal,Ancest) :-
expandmeal (Pn,X,Ln,G.Context,Goal,Ancest)

/* Find a set of primitive ops OL whose primary add literal -> this goal
literal G. Any ops in OL which are applyable are applied. If none then
then add the OL's to the m.e.a. agenda */

expandmeal (Pn,p (Cstate, , ),Lnewps,G,Context,Goal,Ancest) -

setof (0, nonemp (0, G,Cstate, Context, Goal) ,0L),
split (Cstate,OL, Lops.Otherops,Context)
expmea (Pn, ,Cstate,Lnewps,Lops,Otherops,G,Context
Goal,Ancest)
expandmeal( , , ,G, , , ) zzz,write ('*op.f.*"),write (G)

zZzz.

expmea (Pn, ,Cstate, [],d,Otherops,G,Context,Goal,Ancest)
use heuristics (Pn,Cstate,G,Context.Otherops
Otheropsl,Ancest),
addps (Pn,Otheropsl,Cstate,Status,Context,G,Goal),
( (not(var(Status)),retract(g(_)),assert(g(passive)))
;true)
expmea (_,N,Cstate,Lnewps, L,opr s, G,Ea(Pn, , )| 1)
applyops (Cstate, Lops, Lstates),
genps (Pn,N,Lops,Lstates,Lnewps,G)
expmea (_,N,Cstate,Lnewps,Lops, , <,El)
applyops (Cstate,Lops,Lstates) ,
genps (start,N,Lops,Lstates,Lnewps,G)

/* finds an operator which can add a subgoal */

nonemp (0,G,Cstate,Context, ) :-
frame( name: 0,
type: operator,
filter: FA,
check: Ch,
precon: ,
padd: A,

hold(G,n), /* G contained in primary add 1it?*/
hold (FA,Cstate), /* FILTER */

frame (name:Context, ,always:Always, ),

hold(Ch,Always). /* check this instantiation is poss*/

nonemp (0,G,Cstate,Context,Goal) :-
usemacros (on),
eqgfirst (G,Goal),
frame( name: 0,
type: operator,
macrop: [ I ],
check: Ch,

precon:P
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eqgfirst (G,G& ).

eqfirst (G,G).

split ( ,[1,[1,01, ) . /* remove hold(P..

padd: A,
)

del (Goal,A,nil),

frame (name:Context, .always:Always, ),

hold(Ch,Always),

mea macros (Argnum),

([ (0 =.. SL,length(SL,SLl),SL1 =< Argnum)

hold (P,Cstate) ).

/* to allow macros to be mea’d */

above, and */

/* comment out opposite ’split' */

split (S, [SohI Sot], [SohlT],X,Context) :-

frame| name: Soh,
type: operator,
macrop: [ 11,
Soh =.. SL,length(SL.SL1l),
mea.macros (Argnum),
SL1 > Argnum,
split (S, Sot,T,X,Context).

split (S, [SohI Sot], [SohlT],X,Context) :-

frame( name: Soh,
type: operator,
filter: ,
check: Ch,
precon: P,
)

frame (name:Context, .always:Always, ),

hold (P, S),
hold(Ch,Always),
split (S, Sot,T,X,Context).

split (S, [SohI Sot],X, [SohIT],Context) :-

[FAFF AT KT A KA Kk xFxAxKk gdd desirable op precons as new tasks

split (S,Sot,X,T,Context).

***********/

/***********#*********************************************************/

addps (_, []

addps (Pn, [0 IT],S,St,Context,G,Goal) :-

frame( name: 0,
type: operator,
check: C,
precon: P, , , ),

frame (name:Context, .always:Always, ),

hold (C,Always), /* dinstantiation must be wvalid ¢/

frame( name: 0,
type: operator, ,
check: CI1,
precon: P1, , , ),

rev (Always.Alwaysl),
hold(Cl,Alwaysl),
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findgoals (Gpl,Gp2,S,P,Pl,Pn,G.Goal), /* finds inst. of
P for 0 */

[ (Gpl=nil,Gp2=nil) ; St=added ),

addpsO (Gpl,P,Pn,0,S,Context,G,Goal),

addpsO (Gp2,P1,Pn,0, S,Context,G,Goal)

addps (Pn, T, S, St.Context, G, Goal) .

addpsO (rxi 1, L.
addpsO(_,P,Pn,0,S,Context,G, Goal) -

gensym(aux, A)
frame (name:Pn, type:problem, ancest:Ancest _— -
asserta (
frame (name:A3,
type:problem,
ancest:[a(Pn,0,G) IAncest],
context:Context
init world:S,
goal:P,
trace: [],
solution: )

)y

/#record parallel goals to be solved, for incon. checks
shelve — must regresss II goals, not store them.
acculm goal (Pn, AG),

del (G, Goal,Goall),

for now just register top level goals (Pn = task..)
(name (Pn, [116,97,115,107 1 1),
ad (AG,Goall,NewAG) ; NewAG=AG )

assert (acculm_goal (A,NewAG)), */

/®#WEAK HEURISTIC — favour smaller goalists+/

del (S, P, PP),andtolist (PP,PPL), length(PPL, Le),
Interest is 400 - 2*Le, /*- 2*Le,+/

g (Status),

[ (Status=active,addprocess (mea step(A),Interest))

(Status=passive, addpassive (mea step(A).Interest)) ),

pushtrace (PT),
tell (PT),
writeL([nl,'child name: ’,A,' ’,'priority: ' .Interest,'

status:

-/,Status,nl]), tell (user),!.

/+ This should really be finding every distinct instantiation of

Precons that maximally intersects S,& setting Gp =Precons'

compliment

-instead it finds a max of 2 inst’ns by also reversing S.

To stop the plthora of nodes two weak heuristics are employed:
If an identical predicate has been already mea'd further up

1.

the tree,

then reject the whole c¢jn (say Gp.. = nil)

¢e4edon’t bother-- 2. If the acculmulated parallel goals are in

consistent with a Gp, then likewise set the Gp to nil +/

findgoals (Gpl,Gp2, S,P,P1l,Pn,G, Goal) :-

del (S.P.Gplt),
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rev (S, S1),
del (S1,P1,Gp2t), /* Gp's are now ground wffs

( (equivc(Gplt,Gp2t),Gp2=nil) ; true ),

( (circular(Gplt,Pn,G),Gpl=nil) ; true ),

/¢ Gplt circular —> set Gpl = nil */

*/

/4 Gplt=Gp2t —> call one nil so only achieve once

( (var (Gp2),circular (Gp2t,Pn,G),Gp2=nil) ; true ),
nil */

/* Gp2 not nil& Gp2t circular —> set Gps =

/* ( (var(Gpl),incon goal (Gplt,Pn,G, Goal),Gpl=nil)
[ (var(Gp2),incon goal (Gp2t,Pn,G, Goal),Gp2=nil)

¢/

/* shelving....

( (var(Gpl),Gpl=Gplt) ; true ),
( (var(Gp2),Gp2=Gp2t) ; true )

incon goal (Gp, Pn,G,Goal)

*/
circular (Gp, X, G)

interL(Gp, [a(_, ,G)IT])

/* remove all problem frames whose ancestory contains X’s Dad

inconsistent check (on),
acculm goal (Pn, AG)

I
.

not (AG=nil),
del (G, Goal, Goall),

(name (Pn, [116,97,115,1071 1),
ad (AG,Goall,NewAG) ; NewAG=AG | ,

inconsistent (Gp.NewAG).

/* succeeds 1if goal is in ancestory */
frame (name:X,
type:problem,
ances t @ I,

(intersect (G,Gp, ) i interL(Gp.L) ).
intersect (Gp,G, ) i interL(Gp,T).

as long as they were after the same goal G */

killps (X)

killps (X) :-

killall (Dad, G, X)

frame ( name:X,

type: problem,
ancest: [2a (Dad, ,G&G) I,
killall (Dad, G,X).
frame ( name:X,
type: problem,
ancest:
killall( , ,taskl).
frame( name:Y,
type: problem,
ancest: o . ,
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member (a (Dad, Z,G) , L),
not( Z = nil), /* deals with case when goal is trying to
be acieved from an enhanced state */

not( X =Y ),
retract (frame( name:Y,

type: problem,

ancest: T . |
killpsl (Y)

killall( , , )
killpsl (Y)

processqg (Q),
passiveq (QQ),
(
(removel (d(mea step(Y), ),Q,0Q1),
retract (processqg(Q) ),
assert (processqg(Ql)))
(removel (d(mea_ step(Y), ),QQ,Q01),
retract (passiveqg (QQ) ),
assert(passiveqg(QQ1)))
),
!, fail.

/**+******‘*+******************************************/

/* applies specific list of ops to every p.sol. in X */

apply step(X,L,LN) :- /* LN 1is list of task names */
frame( name: X,
type: problem,
ancest:Ancest,
context: C,
init world: I,
goal: G,
trace: P,
solution: S),
apply all(I, [p(I,[],[]) [P], L, LN, Lnewps, C) ,
/* (name (X, [97,117,1201 ]) ;*/ macros (Lnewps,C,I,G,X) ,
append (P, Lnewps,P1l),
success (X,G,C,Ancest,Lnewps,S)
retract (frame (name:X,type:problem, -
assertz (frame (name: X,
type: problem,
ancest:Ancest
context: C,
init world: I,
goal: G,
trace: Pl,
solution: S)).

apply all(I,[P|T],L,LN, Lnewps,Context) :-
apply 1(I,P,L,LN,Ln,Context),
apply all(I,T,L,LN,Lnl.Context),
append (Ln, Lnl,Lnewps)
apply_all(_,
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apply.l( ,p(St,0Op,N),L,LN, [p(Nsl,Opn,N2)],Context) :-
applyopseqg (L, St,Ns.Context),
last (Ns,Nsl),
append (0p, L, Opn),
append (N,LN,N2)

/* failure of seq. may mean wrong ordering so try other way */

apply 1(I,p( ,0p,N),L,LN, [p(Ns,Opn,N2)],Context) :-
applyopseqg (L, I,NsLl.Context),
last (NsLl,Nsl),
applyopseq (Op,Nsl,NsL2,Context)
last (NsL2,Ns),
append (L, Op, Opn),
append (LN, N, N2).

aAaror 1L~ a .

/********************+‘*********************************/

/* These procedures are shared by both controls */

success|(], ).
success (X,G, ,[],Lnewps,S)
follows (G, Lnewps, S),
killps(X), /* this may not remove 'top level' */
/* processes so empty processqg as well */
retract (processqg(_)),
assert (processqg( [])),
addprocess (status (X),900),
addprocess (critic (X),800),
write (X),write (' succeeds’),
clock (M) .macrofade (M).
success (X,G, ,la(An,nil, )| _ 1,Lnewps,p(St,0p,N))
follows (G,Lnewps,p (St, Op,N)),
killps (X),
write (X),write (' succeeds’),
unlockmea (An),
addprocess (apply step (An,Op,N),800)
success (X,G, , [a(An,Opr,GG)I ], Lnewps,p (St,0p,N)) -
follows (G,Lnewps,p (St,0p,N)),
killps (X),
write (X),write (' succeeds’),
unlockmea (An),
append (Op, [Opr],0L),
append (N, [t (An,GG) ],NL),
addprocess (apply step (An, OL,NL),800).
success (X,G,C,Ancest, Lnewps, )
addnewps (X,G, C,Ancest,Lnewps). /* no success,try expanding*/
/* partial solns */

/* makes a sister process to a successful one active */

unlockmea (An)
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group (An,G,7)

swapL (U) .
swapL ([H|T])

unlockmea ( ).

passiveq (Pq),

member (d (mea_step(X), ),Pq),
frame (name:X, ,ancest:[a(An, ,G)
setof (Z,group (An,G,Z), L),

swapL (L).

passiveq (Pq),
member (d (mea_step (Z), ), Pq),
frame (name:Z, ,ancest: [a (An, , G) )

retract (passiveq (Pq)),

removel (d (mea_step (H) , Pq, Pgl) ,
addprocess (mea_step (H),500),
assert (passiveq(Pgl)),

swapL (T).

/* create a new set of tasks that try to reach G from enhanced state */

addnewps (X, G,C, Ancest, [p(S,_, ) IT])

gensym(aux,A),
del cut(S,G,Gl),
not (member(a( , ,Gl),Ancest)),/*no circ goals*/
/* acculm_goal (X,AG),
asserta (acculm goal (A,AG)), -see incon. goal work */
asserta (
frame (name:A,
type:problem,
ancest:[a(X,nil,Gl) IAncest],
context:C,
init world:s,
goal:G
trace: [],
solution: )
)
addprocess (mea_step (A),500),
addnewps (X, G, C,Ancest, T)

addnewps (X,G,C,Ancest, [ _[T]) :-

addnewps (_, ,

macrofade (N)

addnewps (X, G,C, Ancest, T).

.

:- macrofade is(on),

frame( name: 0,

type: operator,

macrop: [MI ],
N > M-1,
nl,write(0),write (' gone'),
retract (frame ( name: 0,

type: operator,
macrop: M1,

fail
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macrofade is (off).
nl.

macrofade (_)
macrofade ()
follows (G, [p(X,Y,N) |T],S)

(hold (G.X),

S = pEXY,N)) ;

follows (G,T,S).

/* put the new nodes into p(,,) format */

genps(_,_, (1. 01,1,

genps (Y, _, [OplOpt], [SrisSt], [p(Sr, [Op], [t(Y.G)]) IT],G)
genps(Y, ,0Opt,St,T,G).

/* ordering predicate not used at the moment */
/* orderg (G&H,Gl&G3) !,

maxi (G&H, Gl),

del (G1l,G&H,G2),

orderg (G2,G3).
orderg (G,G).
maxi (G&H, Max) !,

ord (G.N),

maxi (H, H1),

ord (H1.M),

( (N>M,!, Max = G) ; Max = HLI ).
maxi (G,G). ¢/

/* femfemfemfemfemfemfemfemfemfemfemfemfem */

/* this control will have chunks leading the search for a soln */

cea (Goal, I,E)
frame (name:E, always:C, ),
xxx (0L, Goal, I, C),
/*get _opp(OL, ,I,C,Goal) ,*/
tell (fredlO) .write (OL),nl.nl, tell (user) .
xxx (0L, Goal, I, C)
setof (0,get _op(0,Goal,I,C),0L).
ceal(_, _, ).
get op(0,Goal, I,E)
ch(,0,G,p,C),
del (Goal,G,nil),
hold(P.I),
hold(C,E).
/*
get_opp ([1, (1, _,_/, ).
get opp([0|R], [Res IR1],I,E,Goal)
ch(,0,G,p,C),
del (Goal,G,nil),
hold (C.E),
del (I,P,Res),
get opp(R,R1,I.E.Goal).
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4
/* for a particular problem, store all applicable rules */

make heurs
init world(I),
environment (E),
frame (name:E, , :E1, ),
delete_old_heuristics,
tell (fred20) ,write(I),nl,nl,write(E),nl,
make new (I,E1l).
delete old heuristics
retract (oxr
fail
delete old heuristics.
make new (I,E)
ch(Nm,0,G,I1,E1),
hold(Il,1),
not (not (hold(E1,E)))
( pr( ,G,0,E1l) ;

assert (pr (Nm,G,0,E1)),tell (fred20),nl,write (pr (Nm,G,0,E1)),

nl,write ('from chunk....’),nl,write(ch(Nm,0,G,I1,E1l)),nl,nl ),
fail. /4 might have to put in a recursive call here instead*/
make new( , ) tell (fred20),told,!.
/*e*xex*x* fuse fuse fuse fuse fuse fuse fuse KKK AT KA KK KA KT XA

/* Version for new-b-chunks post 28/7/88 -no ancestory*/
/* 'A' is superflouous *é*ex*xx/
/* tries to cut down alternative mea operator inst’s using chunks;
cutting down is irrevocabe at the moment although the
chks are just heuristics. Also, choose the one(s) that
satisfies most chks in the event of a tie */
use heuristics(Pn,Cstate,Goal,C,0in,Oout, ) :-
/* treat macros separately */
usechunks (on),
separate (Oin,Mac,Prim),
chks (Pn,Cstate,Goal,C,Mac,0Outl)
chks (Pn,Cstate,Goal,C,Prim, Out2),
append (Outl,Out2,0out).
use heuristics (Pn,Cstate,Goal,C,0in,0in, ) :-
usechunks (off),
separate (Oin,Mac,Prim),
chks (Pn,Cstate, Goal,C,Mac, ),
chks (Pn,Cstate,Goal,C,Prim, ) .

— 2 =< = ,0in,0in) usechunks (off),chunking is (off).
chks( ,0in, Oin) length (Oin,N),N =< 1.
chks (Pn, ,G, ,0in,0in)

not( <¥ax C___ ., ),

tell (fredb),
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nl,write (chunk used(Pn,none,G,0in,[])),
nl,tell (user),

assert (chunk used (Pn,none,G,0in, []]).
/* no chunks abroad */

chks (Pn,Cstate,Goal,C,0in,Oout) :-
uel (Cstate,Goal,C,0in,Scores, Used chs),
max (Scores,M), /* finds max no. of a list */

chks2 (Pn, Goal.Scores,0in, Oout,M, Used chs)

chks2 (Pn,G, ,0in,0in,0, )
tell (fredb),
nl,write (chunk used(Pn,none,G,0in, 1)),
nl,tell (user),
assert (chunk used(Pn,none,G,0in, [])),!.
chks2 (Pn,G,Scores,0in,Oout,M,Used chs2) :-
collect (Oin, Scores, M, Oout2),
except ch(Used chs2,0out2,Used chs2,0out,Used chs),
length (0Oin, LI),length (Oout,L2),
L3 is L1-L2,writelL( ['uc’,L3,’'-',LI,L2," '1),
tell (fredb5),wlist (0in),nl,wlist (Oout) .tell (user)
assert (chunk used (Pn, some,G,0in,Used chs)),

ucl ( ,

uel (Cstate,Goal,C, [0 IOT], [1INT], [c(0.Chunk)IUsed chs]) :-
frame (name:C, ,always:Always, ),
uc2 (Cstate,Goal,C,0,Chunk,Always),
tell (fredb),nl,write (Chunk),nl,
write('used on ') ,write(0),nl,tell (user),
ucl (Cstate,Goal,C.OT,NT, Used chs),
¢

uel (Cstate,Goal,C, [ |OT], [0!NT],Used chs) :-
uel (Cstate,Goal,C,0T,NT,Used chs),
1

uc2 (Cstate,Goal, ,0,ch(Name,0,Goal,s,Ch) .Always)
ch (Name, 0, Goal, S, Ch),
hold (S,Cstate),
hold(Ch,Always),

/* gets rid of chs that are excepted by others in Used chs */

except.ch(Used chs,Oout,Used.chs,Oout,Used.chs) -
length (Used chs,1),
I

except.ch (Used.chs, [0IOR], [c(0O,ch(N, , , , ))IL],ORl,Ll1)
ch ex(N,Ex ch),
member (c(_,ch(Ex.ch, , , , )),Used.chs),
except.ch(Used.chs,OR,L,OR1,LI).

except ch (Used chs, [0IOR], [CIL], [0 IOR1] , [CI LI]) :-
except.ch (Used.chs,OR,L,OR1,LI) .

except_ch(_, O, [], [1, [])

160



collect (O, [1, ,0O).

collect ([0inIOL], [Max INL],Max, [0inIOL1])
collect (OL,NL,Max,OLl).

collect ([ IOL], [ INL].Max,OLl)
collect (OL,NL.Max.0OLl).

separate( [],[],[]).
separate ([0110L], [011M],P)
frame (name : O 1 .macrop:[ I 1

separate (OL,M, P)
separate( [01 IOL],M, [011P])
separate (OL,M, P)

/*save op 1if 1its score=Max*/

/*otherwise discard */

/ #** SUBSUMES AND **fcomp*fcomp*fcomp*fcomp** ** % k%% &k kx*x* /

/4*¢ COMPRESSES CHUNKS **** &k ks kskdkdoxs /

compress (ch (N,0, G,Ps,Pe) ,Mode) :-
compress_ chunks (off),

(ch( ,0,G,Ps,Pe) ; subsume(ch(N,O0,G,Ps,Pe).Mode)),!.

compress (ch(N,0,G, Psi, Pe) .Mode)
env_axioms (L),
use_env (Pe, Pe, Pe2, L),
/* put reins at front ..*/
pred ord2 (Pe2, Ped),
pred ord3 (Pe4,Pe3),
pred ord2(Psl,Ps4),
pred ord3(Ps4,Ps),
remove (nil, Ps,Psb5)
remove (nil, Pe3,Pel),

(ch( ,0,G,Ps5,Pel) ; subsume(ch(N,0,G,Ps5,Pel),Mode)),!.

pred ord3 (Pe, X&Pel)
remove bt (X,Pe,Pe3),

X =.. Y.
length(Y.L)
L > 3,

pred ord3(Pe3,Pel),!.
pred ord3(Pe, Pe) ',
pred_ord2 (Pe,X&Pel)

remove bt (X, Pe, Pe3),

X =.. Y.

length (Y, L),

L > 2,

pred ord2(Pe3.Pel),!.
pred ord2 (Pe,Pe) !,

get chunks( [ch(A,S,D,F,G) IC])
retract (ch(A,S.D.F.G)),
get chunks (C),!.

get chunks([]) ',

use env (P&Pe.Pel.PeRes.L)
not ( not( env_follows (P,Pel,L) ) ),
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rem_equiv (P, Pel,Pe2)
use_env (Pe,Pe2,PeRes, L),

use env (P&Pe,Pel,P&PeRes, L)
use_ env (Pe,Pel,PeRes,L), !
use env(P,Pe,nil, L)
not ( not( env_follows(P,Pe,L) ) ), L

use env (P, ,P, ) L

env_follows (P, Pstart,L)
numvars (Pstart,1, ),
env_followsl (P, Pstart,L)
env_followsl( , ,I[]) !, fail.
env_followsl (P,Pstart, [[A,P]TI ]) :-
hold (A, Pstart),!.
env_followsl (P, Pstart, [ [Rest])

env_foliowsl (P, Pstart,Rest).

/*****-k*********************************l

/*will have to sort out 'Mode' before using again..*/
subsume (ch (N,A,B,C,D),M)

subsume chunks (off),

chunk assert(ch(N,A,B,C,D),M),!.
subsume (ch (N,A,B,C,D),M)

not (ch (_ ,, /* no chunks made */

chunk assert(ch(N,A,B,C,D), M),!.

subsume (ch (N, A,B,C,D), )
get chunks(Cs),
subsumel ([ch(N,A,B,C,D) 1,Cs),
subsume old(ch(N,A,B,C,D),Cs),

subsume_ old(ch(N,A,B,C,D),Cs)

—Fz N\,

subsume 1 (Cs, [ch(N,A,B,C,D)]).
subsume old( ,Cs)

put chunks (Cs)

put chunks( [ch(A,S,D,F,G) IC])
asserta(ch(A,S,D,F,G))
put chunks (C),!.

put chunks( []) I,

get chunks([ch(A,S,D,F,G) IC])
retract (ch(A,S,D,F,G)),
get chunks (C),!.

get_chunks([]) L

subsumel ([Cl IC2],C)
not ( subsumed(Cl1l,C)),
chunk assert (Cl),
subsumel (C2,C)
subsumel ([_IC2],C)

162



subsumel (C2,C).
subsumel([, ) :- L

subsumed (ch (N, O, G, Ps, Pe),C)
numvars (ch (N,0,G, Ps,Pe) , 1,
exp env (Pe,Pel),
adcut (Ps,Pel,PP),
subsumedl (N,0, G, PP,C),

subsumedl (Name, 0,G,C1, [ch(N,O0,G,Ps,Pe) | J)
ch record (Name, ,S1),
ch record(N, ,S2),
S2 > s8I,
adcut (Ps,Pe, PP),
del (Cl,PP,nil), /* PP is more gen than Cl */

write (N),

write (' has subsumed '),write (Name),nl,

tell (fred21),nl,write (N),

write(' has subsumed ’),write (Name),nl,tell (user),!.

subsumedl (Name, 0,G,C 1 I CL] )
subsumedl (Name, O, G,C1l,CL)

chunk assert( ,non discrim)
retract (weak ch(N,A,B,C,D)),
retract (ch record(N,N1,N2, ))
tell (user),write(N),write (' failed to strengthen'),nl,
/* chunk has been sent for strengthening..*/
/* ..its done no good */
assert (ch (N,A,B,C,D)),
assert (ch record(N,N1,N2, multipies)),

chunk assert( .multiples)
retract (weak ch(N,A,B,C,D)),
retract (ch record(N,N1,N2, )),

tell (user),write (N),write (' failed to strengthen'),nl
/* chunk has been sent for strengthening..*/
/* ..its done no good */
assert(ch(N,A,B,C,D)),
assert (ch record(N,N1,N2,multiples)),
I
chunk assert(ch(N,A,B,C,D) .discrim)
/* chunk has been sent for strengthening..*/
retr ex(N),
retract (ch record(N, , , )),
current num(task, Num),
gensym(ch, New)
assert (ch_record(New,Num, 0,strengthened) ),
write (N),write (' strengthened to '),write (New),nl

assert (ch (New,A,B,C,D)).

163



retr ex(N) retract (ch ex(N, )).fail.
retr ex(N) retract (ch ex( ,N)),fail

retr ex( )

/*usual case .. ¢/
chunk assert(ch(N,A,B,C,D),M)
max chain size (N1),
not (big chains (D,N1)),
assert (ch(N,A,B,C,D)),
write (N),write (' made’),nl,
current num(task,Num),
assert (ch record(N,Num, 0,M)),

chunk assert (ch(N,
nl, write(N) ,write(' chains too big’),nl.

big chains (D,N)
andtolist (D.DL),
rem all(ne( , ),DL,DL1),
rem all (type of( , ).DL1.DL2),
big c(DL2,N)
big c(D,N)
member (DM.D),
count inst (DM, D,C),
c > N.

rem all (X,DL,DL1)
removel (X, DL, DL2) ,
rem all (X,DL2,DL1), !
rem all( ,DL,DL).

count inst (DM, [DM1DR],C)
count inst (DM,DR,Cl) ,
C is Cl1+1,!

count inst (DM, [ [DR],C)
count inst (DM,DR,C) , !.

count inst( , ,0)

[*FxFxHkkxkx*kkxx*x drive driver driver driver driver driver ***¥xkkkkxkkkkkxkkkk /

/* This drives the simulation of a robot environment */

/* version with new chunks */

environment (C),
init world(I),nl,
write (JMy environment is called ') ,write(C),nl,
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write ('My current world is ’),nl,write(I),nl
task (C,I).
bfile environment (C),init world(I),nl,
write ('My environment is called ’),write(C),nl,
write ('My current world is ’),nl,write(I),nl
retract (numberofnodes (_)),
assert (numberofnodes (0)),
task file(FI),see(FI),read(G),taskl(C,I,G),bfile
bfile.

task(C,I) :-
retract (numberofnodes (_)),
assert (numberofnodes (0)),
nl,write ('Enter task or "h" for help>’),
read(G),

help(G,C,I). /* see driver help */

tasklend of file) :-
task file(FI),see(FI),seen,!, fail
taskl (C, I,G)
gensym (task.T),
assert|
frame( name: T,
type: problem,
ancest: [],
context: C,
init world: I,
goal: G,
trace: [,
solution: )
),
retract (processqg(_)),
assert (processq([d(mea_step(T),1000)])),
assert (acculm goal (T,nil)),
I >g°>
abolish (acculm goal, 2)
numberofnodes (Nn),
retract (activation( )),
assert (activation(0)),
writeL([nl,'no. of expanded nodes: ' ,Nn,nl]),

tell (fredl00),
writeL( [nl,’'no. of expanded nodes: ’,Nn,nl]),
frame( name: T,
type: problem,
ancest:
context: C,
init world:
goal: G,
trace: ,
solution:p (S, Om,Tr)),
length (Om, OmL),
task file (FI),
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writeL(E'tfile: ’,FI,' no: ’,T,' of length ’,OmL]),nl,
writeL (E'goal: ’,G,' by: ’,0m,' trace ’,Trl),

tell (fredb),writeL ([T,' over ***x*x*xx*x*xx*x/1) te]] (user),
not (var (3)),

write ("task finished’),nl,

(print stats ; true ), /* true for C-prolog */

new chunk(I,Om,Tr,G,C),

replacemacs (Om, Omm, C),

write ('By sequence of operators

’

write ('goal '),write(G),write( i

nl,nl,write(S),nl,
retract (init world( )),
assert (init world(Ss)),

(print_stats ; true ). /*

print stats :-
statistics (runtime, [ ,CP]), CPused is fix(CP/100),

/*

*/

taskl (

/‘k***‘k**‘k****‘k

’

true f

), nl,nl,write (Omm),nl

s satisfied, state is’),

or C-prolog */

tell (fredl00) ,writelL (E'CPUsed=’' .CPused,' secs ']),nl,tell (user)
writel (['CPUsed=’,CPused,' secs ’']),nl.
statistics (runtime , CP]), CPused is fix(CP/100),

statistics (clause_ store, [XI,X2]),
statistics (global stack, [X3,X4]),
statistics(local stack, [X5,X6]),

writelL (E'CPUsed=' .CPused,’' secs,

C is fix (100%* (X2/X1)),
G is fix (100* (X4/X3)),
L is fix (100* (X6/X5)),
statistics (trail, [X7,X8]), T is fix (100* (X8/X7))
Space left: ']),

tell (fredlOO) ,writelL (E'CPUsed=’' .CPused,’

writeL (['C=’",C, G=',G,'l. L=",L,"N

T=',T,

secs ’']),nl,tell (user),
"7.7,nl] ).

;) see (user),nl,nl,write (' **TASK FAILURE**'),nl,nl

storefs (fred4,problem, 8) .see (user),

write ('see fred4 for problem dump’).

help(h,C, )

gather (Pads,Ens),
write info (C,Pads,Ens)

I
LY

b.

help(end of file,C,I)

taskl (C,I,end of file).

driver help driver help driver help *****#kxdkrxdxxix/

help (G, ,I)
hold(G.I),
nl,write(G),write('is already true!’),nl,nl,
i,
b
help (G, C,_)

not (poss_achieve (G,C)),
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gather (Pads,Ens),

writeL(Cnl,’"’,G,'"",' is not a wvalid task!’,nl,nl]),
write info (C,Pads,Ens),

i

LY

b.

help (Gexp,C,I)
/* exp state (G,Gexp),*/
nl,write (Gexp),nl,
!, taskl(C,I,Gexp). /* TASK1l IS IN ALL DRIVERS */

write info (C, Pads,Ens)
write (JTasks may be any conjunct of .. '),nl,nl,
andtolist (Pads, L),
wlist (L), nl
write (with environmental restrictions including.. '),nl.nl,
andtolist (Ens,EnsL),
select write (EnsL),
frame (name:C, ,always:Always, ),
writeL ([> etc .. etc .. and environment Always,nl]).

select write([type of (A,B)IT]) :-
writeL (['type of is '.B,’; 1),
select write(T)

select write ([ IT]) :-
select write(T).

select write([]) nl,

poss_achieve(nil, )
poss_achieve (G,C)
frame( , , ,check:W, ,padd:X, , ),
frame( , ,always:Always, ),
del (X,G,SmallerG),
not (SmallerG = G),
hold(wW,Always),
poss_achieve (SmallerG,C)

poss_achieve (nil, ).

gather (Pads,Ens) :-
gathered (Pads, Ens),
I

gather (Pads,Ens) :-
setof (X,collect (X),PL),
numvars (PL,1, ),
gatherl (PL, Pads,Ens),
assert (gathered (Pads,Ens)),
i

collect (£(W,X)) :-
frame( , , ,check:W, ,padd:X, , )
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gatherl ([£(E.P) |T].PAO.PAl)
gatherl (T,PA2,PA3),
ad (P,PA2,PAO),
ad (E, PA3,PAI).
gatherl ([],nil,nil).

kkkk ghk ghky kk kakagkghhhkkhhhhhk g hk gk ghkk | kghhkkghhkhk ghhhkhkhkhhkkkkkkk
[P0+ 9T 9 ¢ TT6TeTTTHT T e ¢ /

/****x*xxx*x fchmea fchmea fchmea fchmea fchmea ****x*kkkks*/
/* This contains the new (***post 8/88**) problem solution chunker for
backward search methods.*/

new chunk(I,0L,TL,G,C)
chunking is (on),
length (0L, Le) ,Le > 1,
tell (user),nl.write(’..chunking..’) ,nl,
new chunkOO (I,0L,TL,G,C),
tell (user),nl,write ('chunking finished’),nl
remove ch used,!.
new <chunk (_
remove ch used retract (chunk used( , , , , )) .fail.

remove ch used.

new_ chunkOO (I,0L,TL,G&GR,C)
andtolist (G&GR, GL),
member (t (_,Gl),TL),
member (G1,GL),
removelL (G1,GL.GL1),
listtoand (GL1,GA),
split up to(TL,t( ,Gl),TL1l,TL2),
length (TL1.LN)
split to no(OL,LN,OL1l,0L2),
new_ chunkO(I,OLl,TL1l,C, IN)
new_chunkO00 (IN, 0L2, TL2,GA,C).
new chunkOO (_, I,
new_ chunkOO(I,0L,TL,G,C)

not (G = & ),
new_chunkO(I,OL,TL,C, ).
new chunkQO (_ — write ('**exception in new chunkOO**’),

new_chunkO(I,OL,TL,C,LS)
applyopseql (OL, I,SL),
removelast 1 (SL,SL1,LS),
reverse (0L, REV_0)
reverse (TL,REV_TL),
reverse|( [I ISL1],REV_S),
get Len(REV_O,REV_S,C.REV_E.REV P)

new_ chunkl (C.I,REV_O,REV.TL,REV_S,REV_E,REV_P),
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new.chunkl( , , == 1 I,
new.chunkl (C,IS, EO IOL], [TITL], [SISL],EEI EL], [PI PL])

new chunk2 (C,IS, [0 IOL],T, [SISL],EEIEL], [P PL]),
|

.
new.chunkl (C, IS, OL.TL.SL, EL.PL).
new.chunkl (C, IS E 10L] ,E ITL] ,E ISL] ,E (EL] , [PL]) :-

new.chunkl (C,IS,0OL,TL,SL,EL,PL)

new chunk2 (C,IS, EO!OL] ,t(T,G) , [SISL].EChecklEL],EPP11PL]
/* some chs used */
chunk used (T, some,G, ,CL)
member (c (0, ),CL),
removeL (c(0,ch(N, , , , )),CL,CL1),
by
retract (ch_record(N, TC.Score M)) ,
Scorel is Score + 10,
assert (ch record(N,TC,Scorel,M)),
put_ excep (N,CL1),
strengthen(CLl,N,C,IS,EOIOL],t(T,G),ESISL],ECheck!EL],EPP11PL]).

new chunk2 (C,IS,EOIOL],t (T,G),ESISL],EChecklEL] ,EPP11PL])

/* this part finds P = {Ps in WP1:PP&E("PP1 in preds) => Ps } */
chunk used (T, none,G,0Ochoices, ),
length (Ochoices,LOch),LOch > 1,
member (0, Ochoices),
getprec (G,EOIOL],ES1SL],C,WP1lis, ,ConstsL),
list.to.set (Constsl,ConstL),
(intersection (PP1,WPlis,P) ; P = nil ),
generalise (0,ConstL, Og),
generalise (G,ConstL, Gg),
generalised, ConstL, Pg) ,
generalise (Check, ConstL, Checkqg),!,
andtolist (Check.ChL) , /* this part ensures min. genn */
generalisel (ConstL,ChL, ,Cv),/* by adding not eq. literals to */
list to set(Cv,Cvl), /* the check literals */
add ne(Cvl,Nel),
slim(Nel,Ne2), /¢ del. some ne's */
remove (nil,Ne2,Ne),
ad (Checkg,Ne,Chi),
gensym(ch,CH),
tell (fred2),writel (Ech(CH,Og,Gg,Pg,Chi),'. ']),told,
tell (fred21),
writeL (Ech (CH,Og,Gg, Pg,Chi), ~']),nl,nl,tell (user),
see (fred2),
read(ch (CH,01,G1l,P1l,Checkl)),
seen,
assert (poss_ch(CH,01,G1,P1l.Checkl)),

(discrim (Ochoices,ECheck ! EL],nil.ConstlL,IS,WP1lis,G,C,0,Check, PPI,P);

ndiscrim(Ochoices,EL, PL, Check, PPI,ConstlL, IS, WP1lis,G,C,0)),
i

new chunk2(C,IS,EO1O0L],t(T,G),ESISL],EChecklEL],EPP11PL])
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/* this part finds P = {Ps in WP1:PP&E("PPI in preds) => Ps } */
use_ chunks (off), /* in case we have bad chunk ¢/
chunk used (T, some, G,0choices,BadC),

length (Ochoices, LOch),LOch > 1,
member (0, Ochoices),

getprec (G, [0 IOL], [SISL],C,WPlis, ,ConstsL),

list to set (ConstsL,ConstL),

(intersection (PP1,WPlis,P) ; P = nil ),
generalised,ConstL, Og) ,
generalised,ConstL, Gg) ,
generalised,ConstL, Pg) ,

generalise (Check,ConstL,Checkqg),!,

andtolist (Check, ChL), /* this part ensures min. genn */
generalisel (ConstL,ChL, ,Cv),/* by adding not eq. literals to */
list to set (Cv,Cvl), /* the check literals */

add_ne(Cvl,Nel),

slim(Nel,Ne2), /* del. some ne’s ¢/

remove (nil,Ne2, Ne),

ad(Checkg,Ne,Chi),

gensym(ch.CH),

tell (fred2),writeL([ch(CH,Og, Gg, Pg,Chi). 'l),told,

tell (fred21),

writeL([ch(CH,Og,Gg,Pg,Chl), ’. ']),nl.nl,tell (user),

see (fred2),

read (ch (CH,01,G1,P1,Checkl)),

seen,

assert (poss_ch(CH,01,G1,P1l.Checkl)),

(discrim (Ochoices, [ChecklEL],nil.Constl,IS.WPlis,G,C,0,Check, PPI,P);
ndiscrim(Ochoices,EL, PL,Check, PPI,ConstL, IS,WP1lis,G,C,0)),
tell (fredlOO) ,nl,write ('**BAD CH ')>

write (BadC),nl,write (CH), nl,tell (user),
put_excep (CH, BadC),

strengthen (
strengthen (CI.1, N, /* only one choice-chunk—*/
not (member (c( ,ch(N, , , , )),CL1)).
strengthen (CL1,N,C, IS, [010L],t( ,G), [SISL], [Check ! EL], [PPI|PL])
strengthen chunks (on),
not (ch_record(N, , ,strengthened)),
not (ch record(N,multiples)),
ch(N,01,G1,P1l,Checkl),
0 = 01,
frame (name:C, ,always:EN, ), /* vars not already done by */
hold(P1.IS) ,
hold (Checkl, EN),
get chN(CL1,N,Ochl),
getprec (G, [0|OL], [S|SL],C,WPlis, ,ConstsL),
list to set(ConstsL,ConstL),
(intersection (PP1,WPlis,P) ; P = nil ),
retract (ch (N, 01,G1l, P1.Checkl)),
assert (poss_ch (N,01,G1,P1l.Checkl))
assert (weak ch(N,01,G1,P1l.Checkl)),
(discrim( [01Ochl], [ChecklEL],nil,ConstL,IS,WPlis,G,C,0O,Check, PPI,P);
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ndiscrim( [0/ Ochl],EL, PL,Checkl,P1l,ConstL, IS, WP1lis,G,C,0)),
stremgthern ™ , .

put excep(, []).

put_excep (N, [c(_,ch(NL, , , , ))ICL]) /* alredy exception */
ch ex(NL,N),
put excep (N,CL).

put _excep (N, [c( , =2 (DN 1 I CL]) /* retract 1if circular */
retract (ch _ex(N,N1)),
put_ excep (N,CL).

put_excep (N, [c(_,ch(N, , , , ))ICL]) /¢ will strengthen ..*/
put_excep (N,CL).

put _excep(N, [c(_,ch(N1l, , , , ))ICL])

assert(ch ex(N1,N)),write(ch ex(N1,N)),nl,
put excep (N,CL).

get chN( [c(0, =X 2 (I , )IR] N, [0IOchl]) :-
get chN(R,N,Ochl),!.
get chN([_IR],N,Ochl) :-
get chN(R,N,Ochl),!.
get_chN([],_,[]).

get Len([011T], [SIT1],C, [Chi ICh2], [PrlIPrR])

frame (name =z O L check:Chi,precon:Pr, , , ),

hold (Pr, S), /* These 3 lines instantiate */
frame (name:C, ,always:A, ), /* vars not already done by */
hold(Chl, A7), /* op parameter instants *x/

exp state(Pr,Prl),
get Len(T,T1,C,Ch2, PrR).

get _Len( []1,_,_,[1,[]) I,

/* nfaugmac ****nfaugmac ****nfaugmac **** */

/4 augments a macro precon. */

/* This part find whether the formed chunk needs strengthening */
/* NOTE: post 8/88: — WPi/WPil are just Oi.pre/Oi.prel */

ndiscrim( ,

not(poss ch( , , , , )),!.
/4 acculm version +endbit (in case of 2=paths)*/
ndiscrim(0OSL, [E1], [P1],EA,PA,ConstL,IS,WP1,G,C,0) :-
adcut (E1,EA,EAR),
adcut (P1,PA,PAA),
discriml (EAA, PAA,ConstL,IS,WP1,G,C,0,0SL),

discrim3 (EAA, PAA,ConstL,IS,WP1,G,C,0,0SL).
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ndiscrim (OSL, [El [ER], [P1IPR],EA,PA,ConstL, IS, WP1,G,C,0)
adcut (E1,EA, EAR),
adcut (P1,PA,PAA),
discriml (EAA, PAA,ConstL,IS,WP1,G,C,0,03L)
ndiscrim(0SL, ER, PR, EAA,PAA,ConstL, IS, WP1,G,C,0).

discriml (EAA, PAA,ConstL, IS, WP1,G,C,0,0SL)
one ucl (IS,G,C,0S8L, Scorel),
sum (Scorel, N),
discrim2 (N, EAA, PAA,ConstL,WP1,G,C,0)

discrim2 (1
retract (poss_ch(Nm,Al,A2,A3,A4)),

compress (ch (Nm,Al,A2,A3,A4),discrim),!. /* at last chunk is made.

discrim2(_,EAA, PAA,ConstL,WP1,G,C,0)
new_aug_chunk (EAA, PAA, ConstL,WP1,G,C, 0)

discrim3( ,

Ad s drmm 3 ( » /* get here - non-disc chunk */
retract (poss_ch(Nm,Al,A2,A3,A4)),
compress (ch (Nm,Al,A2,A3,A4) .multiples),!.

one_ucl(_,_,_,[1, [ L

one.ucl (Cstate,Goal,C, [0 I0OT], [NINT]) -
frame (name:Calways:Always, ),
( (one_uc2 (Cstate,Goal,0,Always), N=1)
i N=o )y
one.ucl (Cstate,Goal,C.OT,NT),!.

one uc2 (Cstate,Goal,0,Always)
poss _ch( ,0,Goal,S,Ch), /*MAY CHANGE TO del (G,Goal..*/
hold (S,Cstate),
hold(Ch,Always)

Z************************************* * *********/

/* Note: WPil is simO in IJCAI paper or C(i) in ML one */

new_aug_chunk (EAA, PAA,ConstL,WP1,G, ,0) :-

(intersection (PAA,WP1,P) ; P = nil ),!,

get terms (P,TL1l), /* TL1 = list of terms in P */
list to set (TL1,TL), /* get rid of dupes ¢/

get preds with terms (TL,EAA,ER)

generalised, ConstL, Og) ,
generalise (G,ConstL, Gg),
generalised, ConstL, Pg))

generalise (ER,ConstL, Checkqg),!,

andtolist (ER.ChL), /¢ this part ensures minimal gen'n */
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generaliselL (ConstL, ChL, ,Cv),/* by adding 'ne' literals to */
list to set(Cv,Cvl), /4 the 'check' literals */
add_ne (Cvl,Nel),

slim(Nel,Ne2), /*DIRTY way of del'ing some ne's */

remove (nil,Ne2,Ne)

ad (Checkg,Ne, Chl),

retract (poss ch(Nm, , , , )),

tell (fred2),writelL([ch (Nm,Og,Gg,Pg,Chi),’. ']),told,
see (fred2),read(ch (Nm, Ogl,Ggl,Pgl,Checkgl)) .seen,
tell (fred21l),write ('enhanced chunk:—-'),nl,

writel (Ech (Nm, Og, Gg,Pg,Chl),'. ']),nl.nl,tell (user),
assert (poss_ch (Nm, Ogl, Ggl,Pgl,Checkgl)),!.

get.terms (X&Y, T)
x =.. E_ITL],
get terms (Y,T1),
append (TL,T1,T).
get_terms (X,7)
X

get preds with.terms (TL,E&A,E&R) -
get terms (E,ET),
member (M, ET),
member (M, TL),
get preds with terms(TL,A,R) ,!.
get preds with terms(TL, &A,R) :-
get preds with terms(TL,A,R) .
get preds with terms(TL,E,E)
get terms (E,ET),
member (M, ET),
member (M, TL),!.
get preds with terms(_, ,nil) .

/* Ak Kk hkhkhkkkkkhkk K%k futlle futlle futlle futlle Kk Kk Kk hkhkkkkkkkk Kk */

/* utility fns-used by more than one part +++++++++ */
not (X) X, !.fail.

not ().

/* write out list of terms ¢/
writeL (EnlIY]) nl,writeL(Y).
writeL ([X IY]) write (X),writeL(Y).
writeL (EJ) I,

/* call list of goals */
call 1list ([C1|T]) call(Cl),call-1ist(T).
call-1list( []).

append( [] ,L,L) .
append ([HIT],L, [HIZ]) append (T, L, Z).

sum(EJ,0) 1.
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sum ([HIT],N) sum(T,N1),N is NI + H.

intersect (SI, S2,X) elem (X,Si),elem(X,32).

intersection(X,Y,I) setof (I1,intersect(X,Y,II),L),listtoand(L,I).

i([] 0) /* intersection for lists */

i([E| T] ,Y, [E|T1]) /* NOTE: error., e.g. 1i([x,vy], [x], []) succeeds!!*/

member (E,Y),

t)

i(T,Y,T1).
i([_1T],Y,2) i(T,Y,2).
i equiv( [], ) fail,!. /* succeeds if there’s a common equiv mem*/

i equiv ([EI 1,Y)
eq member (E,Y),

i equiv ([ _IT],Y) i equiv (T,Y).

eq member (E, [YT ])

E ==Y,!.

eq member (E, [ IT])
eq_member (E,T),!.

listtoand( [],nil)./¢ could just have one of these but ordering matters */
listtoand ([X],X) 1,
listtoand ([XIY],X&T) !, 1isttoand (Y, T).

andtolist (nil, []).
andtolist (X&Y, [XIZ]) andtolist (Y.Z).
andtolist (X, [X]) I,

/* removes 1lst occurence of a list el */

/¢ fails if no occurence */

removel (E1, [E1 IT],T) I

removel (E1, [XIT1], [XIT2]) removeL (E1,T1,T2).
removelast( [ 1,[]) L

removelast ( [XI XI], [XIY1l]) removelast (XI,Y1l).
removelastl( [L] , [] ,L) I,

removelastl( [XIXI], [XIY1l],L) removelastl (X1,Y1,L).

/* list utilities specific to 'fchmea' ¢/

split up to([t( ,G)ITLR],t( ,G),[t( ,G)],TLR) !,

split_up to( [XITLR],t( ,G),[X ITL1],TL2) :-
split up to(TLR,t( ,G),TL1,TL2) .

split to no (0L, 0, [],0L) I,
split to no ([0 IOL],N, [0 IOL1],0L2) -
N1 is N-1,
split to no(OL,N1,0L1,0L2).

member (X, [X] _]).
member (X, [ IL]) member (X, L) .
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/% finds max in a List of nos, fails if empty list */
max ( [N],N) :- !
max ( [NINL],M) :- max (NL.M1),( (N>M1,N=M) ; (M1=M) )

/* 'i' has already been written */
interL ([E|X],Y, [E|Z]) member (E,Y),interL(X,Y,Z).

interL (

elem(X,Y& )elem(X,Y).

elem (X, &C):-!,elem(X,C)
elem (X.X).
/* fails if P is not == to a Pl in arg2 */

rem equiv (P,Pl&Pr,Pr) :-
P == Pl,

rem equiv (P,Pl£Pr,Pl&Prl)
rem equiv (P,Pr,Prl).

rev(X,Y) :- rev x(X,nil,Yl),remove(nil,Yl,Y),!.
rev_x (X&Y,C,R) rev_x(Y,X£C,R).
rev_x(X,C,X&C).

reverse (X,Y) reverse x (X, [],Y),!.
reverse x( [],C,C).
reverse x([HIT],C,R) reverse x (T, [HIC],R)

/* checks equiv of 2 ground f£-exps */
equivc(X,Y) del (X,Y¥,nil),!,del (X,Y,nil),!.
/* checks to see whether 2 feexps are inconsistent */

inconsistent (G& ,Gl)

inconsist (G,GP), hold(GP,Gl),!.
inconsistent (_&Gg,Gl)

inconsistent (Gg, Gl).
inconsistent (G, Gl)

inconsist (G,GP), hold(GP,Gl),!.

vars_in (X&Y) ((X =.. Z,vars_inl(Z)) ; vars_in(Y)),!.
vars_in(X) X =.. Z,vars_inl (2)
vars inl ([HIT]) ( var(H) ; vars inl(T) ).

/* pre: ithlist(i,j,x,y) input i=pos. of first in list, y 1is el. of x*/
ithlist (I, I, [X|_],X)

ithlist(I,J, [_IL],X) I1 is 1+1,ithlist(I1,J,L,X).

/* post: dithlistd, j,x,y) ouput j = pos(y in x) + 1 -1 */

/* This procedure changes a list to a set ¢/
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list to_set ([], O) I
list to set ([L|T],S) member (L,T),!,list to set(T,S)
list to _set ([LIT], [L|T1]) list to set (T,T1)

/* numbervars ¢/

numvars (A, B, C) numvarsl (A,B,C),!.
numvarsl (x (N) ,N,N1)
N1 is N+1.
numvarsl (Term,N1,N2)
nonvar (Term)
functor(Term, ,N)
numvarsl (0,N, Term,N1,N2)
numvarsl (N,N, ,NI1,N1).
numvarsl (I,N, Term,N1,N3)
I < N,
IT is 1+1,
arg(Il.Term,Arqg),
numvarsl (Arg,N1,N2),
numvarsl (I1,N.Term,N2,N3)

/* generate symbol predicate */

gensym (Root,Atom)
getnum (Root,Num),
name (Root,Namel),
name (Num, Name?2),
append (Namel,Name?2,Name) |,

name (Atom, Name).

getnum (Root,Num)
retract (current num(Root,Numl)), !,
Num is Numl+1,

asserta (current num(Root,Num)).

getnum (Root,1) asserta (current num(Root,1)).

[xxxFxxxx% finds all applicable operators in state S */
findops (Cstate,Lops,Context) :- setof(0,f(0,Cstate,Context),Lops)
f£(0,S3,Context) usemacros (off),

frame( name: 0,
type: operator,

filter:.,
check: Ch,
precon: P,
padd:

I)I

hold (P, S),
frame (name:Context, ,always:Always, ),
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hold(Ch,Always)
f(0,3,Context) usemacros (on),
frame( name: 0,
type: operator,

—>

check: Ch,
precon: P,
padd:

hold (P, S),
frame (name:Context, ,always:Always, ),
hold(Ch,Always).

/* finds instantiations of <argl>& S s.t. <argl> follows from S -
or if it 1is always true in that context. On bactracking this
will try for an alternate intantiation of course, but note that

the most general S will not nec. appear first !! */
hold(nil&X,Y) :- hold(X,Y). /* nil IS REALLY TRUE */
hold(nil, ).
hold(ne(U,V)&Y,S) :-!, not(U == V),hold(Y,S)
hold(ne (U,V), ) :-!, not(U == V).
hold (X&Y,S) :- elem(X,S),hold(Y,S).
hold(X,S) :- elem(X,S).

/***kxkxxkkx gpplies a list of ops to create a seq of states */

/* Note seq. will fail if unapplicable or one of addlists is superfluous*/

applyopseq( [Op IT1],S, [SI IT2],Context) :- !, £(0Op, S,Context)
applyop (8,0p,SI),!,
applyopseq(T1l,SI,T2,Context)

applyopseq( [1,_,[1,_) := L

/#**F*xpx 4k gpplies a list of ops to create a seq of states */

/* as above but no precondition checking*/

applyopseql( [Op IT1],S, [SI IT2]) -
applyop (S,0p,S1),
applyopseql (T1,SI,T2)

applyopseql ( []I_I [y = L

/*x*xkxkx* gpplies each op to create a list of new states */

applyops (State, [OpI 01], [Ns IT]) :- applyop(State,Op,Ns)
applyops (State, 01, T).

applyops(_, [1,I[]).

/* MACROS ARE OUT FOR NOW

applyop (State,Op,Ns) :- frame( name: Op,

type: operator,
macrop: [ IL],
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applyopseql (L, State,SS),
last (SS.Ns).

*/

applyop (State, Op, Ns) frame( name: Op,
type: operator,
filter:
check: ,
precon:
padd: Padd,
add: Add,

delete Del),
del (Del, State,Nsl)
ad (Add, Padd, Tadd),
ad(Tadd,Nsl,Ns).

/* del(X,Y,Z) Z is Y-Z, where X and Y are SETS feed */
/¢ seems to work ok for an instantiated S on backtracking */
/* last results show that later alternatives generated are rubbish */

del (X,Y,Z) :- del3(X,Y,Z1l),remove(nil,zl,Z)

del3 (X&D,S,Ns) :- !,del2 (X,3,Nsl),del3(D,Nsl,Ns).

del3 (X,S,Ns) :- del2(X,S,Ns)

del2 (X,S,Z) :- elem(X,S),remove (X,S3,7Z)

del2 (X,S,S) :- not(elem(X,S)).

del.cut(A,B,C) :- del(A,B,C),!.

remove (nil,X&nil,X) :- !. /*copes with removing nil *x/

remove (X, X&S,S) - .

remove (X,Y&S,Y&z) :- !,remove(X,S,Z)

remove (X, X,nil) :- .

remove (nil, X, X). /* this is so rem. nil will always succeed */

remove bt (X,X&S,S).
remove bt (X,Y&S,Y&z) :- remove bt (X,S,7Z).
remove bt ( , & , ) :-!,fail.

remove bt (X,X,nil) :- .
/************/

ad (X&A,S,Ns) :- elem(X,S),ad(A,S,Ns).
ad (X&A,S,X&Ns) :- ad(A,S,Ns)
ad(X,5,3) :- elem(X,S).

ad(nil,s,S)
ad(sS,nil,s)
ad (X, S,X&S)
adcut (Ps,Pe,PP) :-

ad (Ps, Pe, PP),!.

last([E| O] ,E
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last ([ IT],E) last (T, E).

/* adds extra predicates to a state which are implied implicitly */

exp state (I,0) frame( , , ,axioms: L),expsi(I,0,L).
expsl (0,0, [])
expsl (1,0, [Pre,Post IR])
del (I,Pre,nil),
ad (Post,1,01),
expsl (01,0,R).
expsl1 (I, 0, [, IR]) :-
expsl(I,0,R).

/* adds extra preds to environment facts which are implied implicitly */

exp_env (Pe, Pe2)
env_axioms (L),
expel (Pe,Pel, L),
adcut (Pe,Pel,Pe2),

expel (_,nil, O) I,
expel (Pe,B&Pel, [ [A,B]IL])

hold (A.Pe),

expel (Pe, Pel, L),
expel (Pe,Pel, [ IL])

expel (Pe,Pel,L).

/* collects all the constants in a cjn of preds into a list */

get consts (P&PS,CL) get con(P,CLl),get consts (PS,CL2),
append (CL1,CL2,CL),!.

get consts (P,CL) get con (P,CL),!.

get con (P,CL) P =.. [ IT], get conl(T,CL).

get _conl( [],I[]).

get conl( [CIT], [Cl1CL]) not (var (C)),get conl (T,CL).

get conl ([ IT],CL) get conl(T,CL).

2y x/

/* chunk utilities */

dchunks retract(ch( , , , , )),fail.

dchunks.

lchunks (F) tell (F),1lchsl([]),lrec,lexch,told.

lchsl (X) ch( ,A, , , ),not (member(A,X)),lchs(A),lchsl ([AI X]).
lchsl ().

lchs (A) ch(z,A,B,C,D),numvars (ch(Z,A,B,C,D) ,1, ),write(Z),

write (A),write(B),nl,write(C),nl,write(D),nl,nl, fail.
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lchs( ).

lrec nl,nl,ch record(A,B,C,D),writeL ([A,’ r,c,” ’,D]),nl,fail
lrec

lexch nl,nl,ch ex(A,B),writeL([A,' has exception ’,B]),nl,fail
lexch.

/#save chs for use in other task*/

st chunks (F) tell (F),schs,srec,sexch.nl, told,
tell(init adv),init world(I),write(init world(I)),
write(’. ’'),nl,told.

schs ch(Z,A,B,C,D),
write (ch(z,A,B,C,D)),
write('. '),nl,fail
schs .
srec ch record(A,B,C,D),write(ch record(a,B,C,D)),

write(’. ’'),nl,fail

srec

sexch :-ch ex(A,B),write(ch ex(A,B)),
write(’. '),nl,fail

sexch.

/#progress of a task

progrss (File) processq(X), writeout (File,X).
writeout (File, [HIT]) :-

*/

/* status of a problem */

status (P) frame (name: P, bt ra ce = T,solution: 3),
tell (fred),
pw (T),
var (3),
addprocess (status (P),75),

tell (user).

status (P) :- frame (name: P t© r—ma c <. _,solution: p(X,Y,2)),
tell (fred),
nl,nl,write ('solution****x*kxkkkkdkxkr) ni,
write (' state:’),nl,write(X),nl,
write (' ops:’),nl,wlist(Y),nl,
write (' cost: '),write(Z),nl,nl,nl

tell (user)

pw(lp(X,Y,2)|T]) :- write('partial trace:-'),nl,
write (' state:’),nl,write (X),nl
write (' ops:’),nl,wlist(Y),nl,
write (' cost: '),write(Z),nl,nl,nl,
pw (T).
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pw(O) .

wlist ([X]Y]) write (X),nl,wlist (Y).
wlist ( []).

/* pretty list frames to file F ONLY for succ/fail lists */
writeframes (F) tell (fredl),listing (frame),told,
see (fredl),tell (F) .read (Fr),

wfs (Fr),told, seen.

wfs (end of file).

wfs (Frame) pp (Frame) ,read (Next) ,wfs (Next).
rp (F) Fo=.. [frame IT],write (' frame (>),nl.nl,
ppi(T),write (! ).'"),nl,nl.

ppl ([N, type:operator, suec:3, fail:F1])
write (N),nl,nl,
write ('succesful contexts:'),nl,nl

wlrs (S),
write('failed contexts:'),nl,nl,
wlrs (F).
ppi(T) :- wlist (T).
wlrs( []) .
wlrs([r(G,S,0,P) |L]) write (P),tab (5),write(G),tab (5),
write(0),nl,nl,wlss(S),nl,nl,wlrs(L).
wlss (X&Y&Z) write (X),write('&’),write(Y),nl,wlss(Z).
wlss (X) write(X),nl,nl.

/* prints to File all frames of type T with arity A */

storefs (File,T,A)
tell (File),
functor (X, frame, A),
call (X),
X =.. [, ,type:T| 1,
X =.. Y,
wlist (Y),nl,fail.
storefs (File, , )
tell(File),told.

/F A+

/* Kk Kk khkkhkkkkhkkk kK fmacgr fmacgr fmacgr fmacgr fmacgr khkkkhkAhkhkkhkkkhkkhkxk*k */

/* This file contains a procedure to make solutions
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into MACRO OPERATORS FMACGTR R

-- Uses fred4 as a scratch file

-- This version uses 'goal regression'

mac (X) frame (name: X,
type: problem,
ancest: ,
context: C,
init world: I,
goal: GG,
—>
solution: 3),
macl (S,C, I,GG,X).

macros (R,C,I,G,X) :-
producemacros (on),
macros 1 (R,C,I,G,X).

macros (_ ,.

macros 1( [p(S,0, )IR],C,I,G,X) :-

¢/

del (S,G,G) ,writelL ([’ *mac*-no goals solved by op ’,0,nl,S,nl,G]),

macros 1(R,C,I,G,X),
macros 1 ([p( ,0, )IR],C,I,G,X) :-

length (0,1),

macrosl (R,C,I,G,X).
macros 1 ([p(S,0, )IR],C,I,G,X) :-

intersection”® G,GG),

gensym (X, XX),

macl (p(s,0, ),C,I,GG,XX),

macros 1 (R,C,I,G,X).

macros 1L (_ , -
macl (p(S,0Lm, ),C,I,GG,X) :-
producemacros (on),

nonvar (S),
length (0Lm, Len),

replacemacs (OLm, OL, C), /4 primitives->macs,update mac’score*/

!, Len >1, /* original opseq must be > 1 */

del (I, GG,G),
applyopseqgl (OL, I,SS1),
removelast (SSI, SS),

reverse ([I ISS],SSR),
reverse (0L, OLR),

/* T N N

w

getprec (G,0LR,SSR,C, WPsl,Ch,ConstLD),

list to set(ConstLD,ConstL),

/4 no precon check */

Ch = WPel */
/* old method below */

/*getprecon (OL, Pre,Ch, [T ISS],C),Pre= 0Ol.pre+ (0i.pre-0(i-1).add) */

applyopseql (OL,WPs1l,FL),
last (FL,Finalstate),

/*Ch are acculmutated perman.cons.*/



del (WPsl,Finalstate,Add) , /* Add = Finalstate - Pre */
del (G,Add,Sadd),

generalise (WPsl.ConstL,P1l),
generalise (Ch,ConstL,Chll),
generalised,ConstL, A2) ,

generalise (Sadd,ConstL,Al), /* consts which are not in ConstL
/* are turned into variables */
generalisel (ConstL,OL,0Ll1,V4), /* generalize op seq. 1instances
& collect vars in V4x/

list to set (V4,V5), /* assume NO CONSTS IN UNINST. OPS NAMES
Vo =. . [X|V5],

andtolist (Ch,ChL), /* this part ensures minimal gen'n
generaliseL (ConstL, ChL, ,Cv),/* by adding not equal literals to
list _to _set(Cv,Cvl), /* the 'check' literals

add_ne (Cvl,Nel),

slim(Nel,NeZ2),

remove (nil,Ne2,Ne),

ad (Chll,Ne,Chl),

possible macro(X,V,0Ll1,Chi,P1l,A2.Al).

possible macro( , , €O I . 1 -

frame (name:
type: operator,
macrop: [ IOL1],
check: _,
precon:
padd:
add:
delete:
).

possible macro (X,V,0L1,Chi,P1,A2,Al) :-

clock (Time), /* attach a value to a macro */

Ti is Time +2, /* currently 2 more than task no. */
tell (X),

write ( frame (name: V,

type: operator,
macrop: [TiIOL1],
check: Chi,
precon: Pl,
padd: A2,
add: Al,
delete nil)),
write('.'),nl,told, /* turns upper case into vars!!
see (X) .read (TERM) ,seen, assert (TERM) ,

tell (X), [/* KHRxkk**k report new macro Frxkxkxk x/

write (V),nl,nl,

write ('check: '),write(Chl),nl,
write ('precon: '),write(Pl),nl
write ('padd: '),write(A2),nl

write('add: '),write(Al),nl

write ('macrop: '),write(OLl),nl
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told.

add ne([_1,nil).
add _ne ([X]Y],2) add.nel (X,Y,21),add ne(Y,22),ad(21,22,7).

add nel( ,[],nil).
add nel (X, [Y],ne (X,Y)].
add nel (X, [ZIY],ne (X,2)£Z1)
add nel (X,Y, Z1).

slim(ne(U,V) &Y, ne (U,V)&Z)
name (U, [Ul] ]),name(V, [ULI ]),slim(Y,Z).
slim(ne( , )£Y,2) slim(Y, 7).
slim(ne(U,V),ne (U,V))
name (U, [U1I ]),name(V, [U1l ]) .
slim( ,nil).

/* - - -
getprec (Abs, [01!T], [S!IT1] ,C,Abs4,Ch,ConstL) :-

functor (01,Fun,NN),/* ops must be unique */
functor (Ou, Fun,NN) ,/* must look at uninst’ed operator */
frame (name: Ou, EV,precon:PV, , , ),

get consts(PV,CS1l),get consts(EV,CS2),

append (CS1,CS2,CS),

frame (name : O 1 , check:Chi,precon:Pr,padd:PA,add:AD, ),

hold (Pr, S), /*These 3 lines instantiate */
frame (name:C, ,always:A, ), /*vars not already done by */
hold(Chl.n), /*op parameter instants */

del (PA, Abs,Absl),

del (AD, Absl,Abs2),

ad (Pr,Abs2,Abs3),

getprec (Abs3,T,T1,C,Abs4,Ch2,CSC),
append (CSC,CS,ConstL),
ad(Chl,Ch2,Ch).

getprec(Abs ,[], , , Abs,nil,[]) :- .

/* getprecon( [011T],P,Ch, [SIT1],C) :-
frame (name = O 11 check:Chi,precon:Pr, , , ),
hold (Pr,S),
frame (name:C, ,always:A, ),
hold (Chl,A),
getpre( [011T],P1,Ch2,T1,nil,C),
ad(Chl, Ch2,Ch),
ad(Pr,P1,P).
getpre( [01,02],P1,Ch, [S],Astore,C) :-
frame (name: O 1. _, padd:PA,add:A, ),
frame (name:02, , ,check:Ch,precon:Pr, , , ),
hold(Pr.S),
frame (name:C, ,always:Always, ),
hold(Ch,Always),
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ad (PA,A,AR),

ad (AA,Astore,Al),

del (Al, Pr,P1l).

getpre ([01I[021T]],P2,Ch, [SIT1],Astore,C)

frame (name = O 1 padd:PA,add:A, )
frame (name:02, , ,check:Ch2,precon: =/ =x—,
hold (Pr.S),

frame (name:C, ,always:Always, ),
hold (Ch2,Always),

ad (PA,A,AR),

ad (AA,Astore,Al),

del (Al, Pr,Pl),

getpre ([02 IT],P,Ch3,T1,AL1,C),
ad(Ch2,Ch3,Ch),

ad (P1,P,P2). */
/* This part changes constants to variables NB: only l-depth */
/* by turning the 1st letter to a capital. */
/* —-the first parameter must be a &-exp constants considered */

generalise(nil, ,nil).
generalise (X&Y,ConstL,X1&Y1l) :-

X =.. [HIT],
genlist (ConstL,T,TLl, ),
XI =.. [HIT1],!,

generalised,ConstL, Y1) .

generalised,ConstL, XI) :-

X =.. [HIT],
genlist (ConstL,T,T1, ),
XI =.. [HIT1].

generaliselL (ConstLl, [XIY], [XIIY1],L2) :-

X =.. [HIT],
genlist (ConstL,T,T1,LI),
XI =.. [HIT1],!,

generalisel (ConstL,Y,Y1,L3),
append (L1,L3,L2).
generaliseL(_, [1,[1,[]).

genlist (_, [1,[],[1).

genlist (ConstL, [H|T], [Hl IT1], [H1|T2])
not (var (H) ),
not (member (H, ConstL)) /4CHECK H IS NOT A SPECIAL CONST */
name (H, [I1J]),
I1 is I - 32,
name (H1, [I11J]),
genlist (ConstL,T,T1,T2).
genlist (ConstL, [HIT], [HIT1],L) :-
genlist (ConstL,T,T1,L).

/¢ take a list of instantiated ops and replace any macros with their

primitives */

replacemacs( [],[], ).
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replacemacs ([0 IOL],T1,C)
frame (name:0, ,macrop:[ |[T] .check:Ch,,
increment(0),
frame (name:Calways:Always, /4 instantiate params*/
hold(Ch,Always),
replacemacs (0L, T2,C),
append (T, T2,T1).
replacemacs ([0 IT], [O|T1],C)
replacemacs (T, T1,C).

increment (O)
functor (0, Fun, NN),
functor (Ou, Fun, NN) ,
retract (frame (name: Ou,
type: operator,
macrop: [NIT],

check: Ch,

precon: P,

padd: PA,

add: A,

delete D)),
N1 is N+1,

asserta( frame (name: Ou,
type: operator,
macrop: [N1IT],
check: Ch,
precon: P,
padd: PA,
add: A,
delete: D)).

/********** feXh fexh fexh fexh ****************/

/¢ —-- breadth first forward search with a check for duplicate states
(sift predicate) ¢/
/* NOTE: THIS IS DIFFERENT FROM LP’S- THE SEMANTICS OF INVERSE OPERATORS
HAVE BEEN PUT INTO ENVIRONMENT*/
/* definiton of fn to expand a partial soln exhaustively */

exhaustive step(X) :-

frame( name: X,
type: problem,
ancest:Ancest,
context: C,
init world: I,
goal: G,
trace: PO,
solution: 8),

( (PO=[],P=[p(L,[],0)]) : P = PO ),

/¢ print no. of open nodes ¢/

length (PO, Le) ,write (' #') write (Le) ,write (
lowcost (P, Pic),
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/* add one to expanded n
retract (

Nodi is

ode count */
numberofnodes (Nod) ),
Nod +1,

assert (numberofnodes (Nodi) )

expand (Pic, Lnewps, G, C),

removel (
([ (Lnewp

Plc,P,Pl),
s=[] ,P2=Pl) ; append(Lnewps,Pl,P2) ),

ex_success (X, G, Lnewps, S),

retract (

frame (name:X, type:problem, -

tell (fred3),wlist (P2),told,

assertz (

frame (name: X,
type: problem,
ancest:Ancest,
context: C,
init world: I,
goal: G,
trace: P2,

solution: S)).

expand( p(Cstate,Y,N),Lnewps,G,C) :-

genps(_, , [1,8,0, )-

length (Y, Le),writeL(['OL"' Lel),
findops (Cstate,Lops,C)
fastsift (Y, Lops,Lopsl),

use_heuristics(Cstate,G,C,Lops 1,Lops2, forward)

applyops (Cstate, Lops2, Lstates), !,
/*sift (Lops,Lstates,Lopsl,Lstatesl),*/
genps (Y, N,Lops2,Lstates,Lnewps,G).

genps (Y,N, [OpI Opt], [Sr!St], [p(Sr,Oxr,N1)IT],G) :-

append (Y, [Op],0r),
pathcost (Sr,0r,N,N1,G),
genps (Y,N,Opt, St, T,G).

/* take into account number of goals solved */
length (Or,Len) ,del (S,G,Left),andtolist (Left,L),

pathcost (S,0r, ,N1,G) :-

follows (G, [p(X,Y,N)IT],S

length (L.NN),N1 is 2*NN +Len.

) -
(hold (G, X),
S = p(X,Y,N)) ;
follows (G, T, S).

Y).*/

/* asslist (Lstates). -only needed if all states are being saved
asslist([]) .
asslist ([X]Y]) :- gensym(cs,CS),write(CS),assert(state(X)),asslist(

ex.success (X,G,Lnewps, S)

- follows (G,Lnewps, S),
wipestates,
addprocess (critic (X),800),
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addprocess (chunk (X) ,800),
/*addprocess (status (X),900),*/
addprocess (mac (X), 900)

wipestates retract (state(_)) .fail
wipestates
ex_success (X, , , )

addprocess (exhaustive step (X),200).
/* regenerates itself? */

fastsift( [],X,X).
fastsift(_, I, [1).
fastsift ([Y1l| 1,[0 IOL],OL1)

inverse (0,Y1),

fastsift( [Y1lI ],0L,0OLl).
fastsift ([Y1I ], [01OL], [0 IOL1]) :-

fastsift( [Y1lI_1,0L,0Ll).

/* gets rid of states that have been seen before — */

sift ([1,01,01,01).
sift ([_IR1], [SIR2],0L,SL)
state (ST),
del (5,S8T,nil),
sift (R1,R2,0L,SL).
sift ([O|R1] , [SIR2] , [0IOL] , [SISL])
sift (R1,R2,0L,SL).

/* gets rid of an operator that is just the inverse of the last one-*/

fastsift(_, [1,[1,01,01).
fastsift(cs, [ _IR1], [SIR2],OL,SL)
hold(s.CS),
fastsift (CS,R1,R2,0L,SL) .
fastsift (CS, [0IR1] , [SIR2] , [0]OL] , [SISL])
fastsift (CS,R1,R2,0L,SL).

/* find lowest cost of list of p(<states>,<ops>,<n>) */

lowcost ([p(X,Y,N)],p(X,Y,N)) !,
lowcost( [p(X,Y,N)IT],Z) lowcost (T,p (X1,Y1,N1)),
( (N<N1 ,!, Z=p(X,Y,N)) ;
Z=p(X1,Y1l,N1) ).

JFRFFKAF KA K xAFx drive driverf driverf driverf driverf driver ***xxskxx/

/* FORWARD SEARCH */

b environment (C),init world(I),nl,
write ('My environment is called '),write(C),nl,
write ('My current world is ’),nl,write(I),nl,
task (C,I).
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bfile environment (C),init world(I),nl,
write ('My environment is called ’),write(C),nl,
write ('My current world is ’'),nl,write(I),nl
see ('list.tsk’),task(C,I),bfile.

bfile

task (C, I)
retract (numberofnodes (_)),
assert (numberofnodes(0)) ,
nl, write('Enter task or "h." for help>'),
read (G),

help(G,C,I). /* see driver help */

taskl,end.of file)
see ('list.tsk’),seen,!,fail
taskl (C,W,G)
gensym (task.T),
assert|
frame( name: T,
type: problem,
ancest: [],
context: C,
init world: W,
goal: G,
trace: [],
solution: )
).
retract (processqg( )),

assert (processqg([d(exhaustive step(T),1000)])),

.go.
numberofnodes (Nn),

retract (activation(_)),
assert (activation (0)),
writeL([nl,’'no. of expanded nodes: Nn.nl]),
frame( name: T,
type: problem,
ancest:
context: C,
init world: ,
goal: G,
trace: ,
solution:p(S,0m, )),
not (var (S)),
replacemacs (Om, 0,C),
write ('By sequence of operators ’'),nl,nl,write(0),nl,nl
write (‘goal ’),write(G),write('is satisfied, state is’),
nl,nl,write(S),nl,
retract (init world( )),
assert (init world(S)),
(print stats ; true ). /* true for C-prolog */

print stats :-
statistics (runtime, [ ,CP]), CPused is fix(CP/100),
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statistics (clause store, [XI,X2]), C is fix(100*(X2/X1)),
statistics (global stack, [X3,X4]), G is fix (100* (X4/X3)),
statistics(local stack, [X5,X6]), L is fix(100*(X6/X5)),
statistics (trail, [X7,X8]), T is fix (100* (X8/X7)),
writeL (['CPUsed=’,CPused,' secs, Space left: ']),
writeL(['C=',C,'l, G=',G,']l. L=",L,'7. T=',T, '7.”,nl] ).

taskl( , , ) nl nl write(' **TASK FAILURE**'),nl,nl,
storefs (fred4,problemnm, 8),
write('see fred4 for problem dump').

/#**x*e*** fchunk fchunk fchunk fchunk fchunk fchunk ****xkxxk*x*/
/* uses numerous routines from FMACGR */

/* This contains the problem solution chunker for

forward search methods- the chunk can then contain

the subset of the state (-in which it was applied

successfully) which was nec. for the success of the

rest of the op sequence.

*/
chunk (X) :- chunking is (off).
chunk (X) :- chunking is (on)

frame( name: X,XI,X2,context:Context
init world: I,
goal: G,
trace: T,
solution: p(S,0L,C) ),
removelast (0L, 0L1),
applyopseql (OL1,I,SL),
rechunks (I,G,0L, [I ISL],Context).

/4 records chunks */

rechunks (I,G, [0 IT1], [SIT2],C) :-
reverse ([0 IT1],0LR)
reverse ([SIT2],SLR),
getprec (G,0LR, SLR, C,P,Check,ConstLD)
list to_ set (ConstLD,ConstL),
/* only for mea -- intersection(PP,I,P), */
generalised, ConstL, Og), /* also note inters. (x,y,nil) fails!*/
generalised, ConstL, Gg) ,
generalised,ConstLl, Pg) ,
generalise (Check,ConstL, Checkqg),

andtolist (Check.ChL), /4 this part ensures minimal gen'n */
generaliseL (ConstL, ChL, ,Cv), /*by adding not eqg.literals to */
list to set(Cv,Cvl), /* the 'check' literals */

190



add ne(Cvl,Nel),

slim(Nel,Ne2), /* dirty way (by 1st letter) of del'ing some ne’s */
remove (nil,Ne2,Ne),

ad (Checkg,Ne,Chi),

gensym(ch, Nm),

tell (fred) ,writelL([ch (Nm,Og,Gg,Pg,Chl),'. ']),told,
see (fred),read(ch(Nm,01,G1,P1l,Checkl)), seen,
( ch(,01,G1,P1,Checkl) ; assert(ch(Nm,01,G1,P1,Checkl)) ),!,
rechunks (I,G,T1,T2,C).
rechunks (I C) .

/******************* * Kk k kk kK Kk **£ND* *hkhkhkhkkhhkkhkhkkhkxkhkkkhkxkhkxkhx *‘k/
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"MACHINE LEARNING OF HEURISTICS
IN GENERAL PROBLEM SOLVERS”

by T.L.McCLUSKEY of the
DEPARTMENT OF COMPUTER SCIENCE,
CITY UNIVERS 1TY,LONDON E. C. 1 ENGLAND

ABSTRACT
This paper explores methods of heuristic learning within
general problem solvers with the following (CSTR1PS-1ike’)

constraints: operators are represented by structured precondition,
delete and add components: states and environments are represented
in first order logic; goals and initial states may vary from
problem to problem.

I'n contrast research has focussed on heuristic | earning in
domain specific problem solvers which typical 1y carry out a
forward state space search towards a fixed goal. Their appl ication

domains have general vy been puzzles or mathematical rewrite
problems. This work has shown techniques arising from concept
generalisation and goa regression to be useful in the creation

of heuristics.

Genera | problem solvers are notoriously slow and prone to
combi natorial explosion since to maintain their general ity they
are supp!ied only with weak (syntactic) heuristics. In an attempt
to overcome this efficiency vs. generality trade-off, some
researchers have proposed that a general problem solver could be
equ i pped with “weak’ learning components whose task it is to

create strong domain-specific heuristics either by experience or
di scovery.

We have explored this thesis using a problem solver shell

called FM which has been supplied with wvarious learning
components, |t has been applied to several domains. creating
heuri stics by experience and subsequent 1y improving its
efr i ci ency. Thi £ paper will outline the system’s architecture and

show examples of the heuristics learnt.

Details or two important and complementary learning
heuristics which are used to improve the performance of FM’s goal
reduction search strategy will be discussed: (a) the creation of
heuristics to prune operator choices; and (b) the compilation of
operator sequences into macros and their selective use.- !



1. INTRODUCTION

The research of which this paper forms a part seeks to

discover methods of learning that can be integrated into state
space general problem solvers, Specificaliy we are interested in
weak learning heuristics (discussed in [Korf 85] and [Langley 85])
which can form part of a problem solver shell and subsequent 1y
help it acquire stronger problem solving heuristics when app 1i ed
to any specific domain. We wish to concentrate on heuristic
| earning that is not restricted to one search strategy. that

works in domains that demand varied goals and can t ransfer

learning to new domains.

This constitutes a different approach to much recent

heuristic learning in problem solvers (e.g. [Mitchel | et al 833.
[Korf 853. [Langley 85]). Their systems typical 1v improve in
domains with a fixed goal. employ a more speciali sed

representation scheme, and a forward search strategy.

A success!ul weak learning heuristic i ncorporated into a
genera | prob 1em solver or this kind is the creation of macro-
operators (e.g. the Macrop of [Fikes et al 72] or the Bigop of
[Dawson & Sikiossy 77J). Recently, research interest in this old
idea of abstracti ng. generalising and storing past successful
ope rator sequences has been revived (e.g. [Minton 85] or in a
“dispersed’ form [Laird et al 86]). In this way macro-operators
are formed from experience. al though other approaches involving

puz =z1e problems use discovery methods (Elba 85].[Korf 853). or
preprocessing ([Dawson & Siklossy 77])

We maintain in accordance with [Korf 85] that acquiring
useful macro-operators is but one of several weak i earning
heuristics which must be available to what we term a "heuristic-
I earning problem solver shelll for it to improve its performance
within a particular domain: it must build up a large well
organised, operational body of knowledge to gain problem solving

efficiency.

This paper proposes a new weak learning heuristic for goa !
reduction state space problem solvers which creates what we call

’b-chunks’ These are dispersed search control heuristics gained
through experience, bearing a similarity to the chunks of [Laird
et al 86 ] but appearing within the problem solver shell as

distinct and complementary components to macros.

We have built a modular problem solver shel! called FM  which
al 1ows states, goals and environments to be expressed as
conjunctive expressions and production rules and operators
expressed in terms of structured add, delete and precondition
predicates, Domains are of course interchangeable as are control
stategies ( state space or goal reduction, along with their
associated weak problem solving heuristics) and weak learning

heuristics such as macros and chunks.



RELATED WORK
2.1 Macrops

Evidently Samuel’s famous draughts program [Samuel 59] first
implemented the general technique of learning by re-using
previously stored solutions. but two important sophistications
over simply storing a problem-solution pair were introduced by the
method of macro operator or “Macrop’ creation in [Fikes et al 721:

-abstracting out any details in the initial problem state
that do not contribute to the finding of a solution,

-the selective generalisation of certain constants occurring in
the problem?’s solution.

Both these techniques will increase the generality of the
solution procedure. but the Ilatter is not straightforward, 1t
depends on the constant appearing as an arbitrary member of some
particular type in the solution' s operator sequence and so can be

generalised to a variable with that type res ion.
Generalisation is justified since no operator in the solution
sequence ref erred to the constant specifically but only to its
type.

The situation where distinct constants of the same type
over - genera ! ised to independant variables crops up in [Fikes

72J where two ad hoc techniques for avoiding iner'f iciency
inconsistency caused by this are suggested. [Laird et al 86]
[Kodratoff 85] for example, argue for this distinction to be kept,
adding a binding restriction that prohibits variable

instantiations to be equal

Another feature of the Macrops was their open representation
within STRIPS as “triangle tables’ which allowed subsequences of
operators to be later re-used. This method of storing “open
macros’ for the purpose of re-using arbitrary subsequences has
been criticised in [Minton 85] and [Carbonell 83] on the grounds
of inefficiency, although Iin the original paper the representation
was also used for its benefits in monitoring pian execution.

Macros
Recent y research into the formation of macro operators in
state space problem solving has been re-vital i sed In the Morris

program of [Minton 85] useful parts of a solution sequence are
compiled and generalised into a macro which has the same structure
as a primitive operator and can only be used as one. We ca.P-l this
a ’closed macro* in contrast with STRIPS’s Macrops. Morris defines
a userul operator in the following way: it keeps a record of past
solutions and makes macros out of any two operator subsequences
that unify after generalisation. The macro set is pruned by
deleting the least successfully used macros.



Significant improvement in problem solving within simulated
robot worlds is achieved but there are drawbacks in using closed
macros as the sole learning component:

-search trees shorten but grow bushy since distinct
instantiations of goal achieving macros proliferate. A shift in
problem representation is effectively made.but within which a weak
heuristic evaluation function is generally inadequate.

-solutions which comprise of closed macros are prone to
produce non optimal paths (even after. checks for redundant
primitive operator sequences have been made) .

2.3 Chunks

The chunks created by Soar [Laird et a 86 ] i mprove the
system?’s subsequent problem solving behaviour by providing search
control knowledge. They are formed using similar ideas of
abstraction and generalisation involved in macro creation, but the
learnt components are stored in a dispersed manner. We outline
part of their technique below.

During problem solving, when a non-trivial goal is solved, a
production rule (chunk) is created for each correct operator
choice in the problem solving trace (i.e. along the solution
path). i ts condition part is built from ’aspects of the situation
that existed prior to a goal and which were examined during the
processing or a goal [ibid p.23], and the action is to recommend
the application or the operator. Constants occurring in the
production are then carefully generalised. When in subsequent

problem solving a choice between operator applications has to be
made. a chunk can recommend its associated operator iif the chunk’s
precondition matches the current situation.

This form of dispersed, compiled knowledge has certain
advantages over the macro because it helps search with existing
operators rather than (in the extreme case) thickening search with
extra operators.

2.4 More specialised work on strategy acquisition

Many researchers have concentrated on problem solvers that
attempt to solve fixed goals, employ a forward directed search
strategy and a specific representation scheme. ( see [Langley 85
for recent advances), Applications are typified by the symbolic
integration system LEX which modifies its search heuristics by
analysing the trace of a successful solution. It may. generalise
the concept of a useful heuristic for an operator’s application if
that operator appeared in the solution sequence: or specialise the
concept so as not to admit the re-use (within a similar context)
of an operator which was found to lead away from the solution
sequence. (see [Mitchell S3] for details]).



The success of systems such as these relies partly on 3
special concept description language (c.d.l) being supplied within

which types or operator bindings are partially ordered. They
improve by experience, narrowing the interval in this ordering
(for each operator) and therefore becoming more selective about
the situations when operators are applied ( see [Bundy 82] for a

comparison or early work).

Our experience has shown that the transfer of techniques
developed in the work referred to above, to our *STRIPS’ like
formulation, is a difricult task for the following reasons:

a. Assume that a goal has been achieved by the application of

a sequence of operators, The occurrence of an operator in this
solution sequence, in general, depends on the goal condition, the
operator binding and the state description in which it was
applied. A c.d.l. in which useful’generalisations can take place

wou Ild therefore need to involve all these .components.

b. In a backward search space starting from a goal condition
the nodes are not complete state descriptions but “goal ke rnels’
(as explained in [Dawson & Siklossy 77]). The heuristics learnt,

therefore. must be tailored to act in the Ilatter problem space.

More recently, some systems of this type (see [Porter and
Kibler 84]. [Porter and Kibler 85] or [Mitchel ! 83J) have resorted
to goal regression techniques to create chunks of know ! edge
encapsulating operator application heuristics. through the
genera li sation of one example solution The sysitemi” s set of
operators must be in (or be transformed into) a form where their
semantics are declaritively available, so that it can reason
backwards rrom the goal, and hence build an “justification™ for
the generalisation (an instance of “Explanation Based Learning™®
described in [Mitchell et al 86]). This process is similar to the

build-up of a macro precondition explained below in section 4. 1.

3. THE ARCHITECTURE OF FM

The design decisions reflected in FM’s i mpl ementation were
made to al low the addition of various Ilearning components as well
as providing an effective problem solver shell. At present the
control can perform a state space or goal reduction search, the

latter explained below.

3.1 GUAL NODE SEARCH IN FM

The backward search of FM proceeds in a goal reduction
manner. starting with the initial goal, through a space of goal
nodes (similar to the one in [Dawson & Siklossy 77]). Each goal

node can be modelled as a 6-tup 1e:



(ldentifier. Goal. Initial State, Ancestors. Purpose, Trace),

The Trace records attempts to solve the Goal. whereas the
Purpose records why the goal node was created (typically to solve
the unsatisfied preconditions of an operator), Goals, expressed as

conjunctions of predicates. are initially assumed to be
decomposable: when a goal node is acti vated, operator
instantiations which add goal predicates have their unsatisfied
preconditi ons form another goal node, unless they are already

satisf ied in which case those operators are appl ied to the initial
state and the result recorded in the trace.

When the .trace of a goal node eventual |y contains a state

satisfying its goal (via an operator seque.nce Os). we say that the
goal node is solved. and all nodes which are ancestors of it are
removed from the search. If it was activated to solve an operator
O’s preconditions, then the sequence goa
node’s parent’s initial state and the

parent s trace.

A goal node’ s initial state may be the state inherited from
a parent node, or may be an advanced state partially satisfying
the parent’s goal. The | atter is the case when goals cannot be
solved by simple aecompositon: FM examines the trace and rorms new
goal nodes whose goal predicates are inherited but whose initial
states are selected from intermediate states taken from the
parent’s trace.

The kind of representation of goal nodes described above aids

both the formation and use of strong heuristics. The trace is
avaiftable for analysis and criticism after the solution of each
goa! node. allowing within-trial transfer of learning to take
place (as in [Laird et al 84]). In our implementation of FM we
have experimented with the formation of closed macros, b-chunks
and also subgoa! ordering heuristics at this stage, but we shall

limit our discussion to the first two.
a. MACROS 114 FM
4.1 Construction

Macros are created and stored when goal nodes are solved and

then they are immediately available for problem solving. They are
of the closed variety. compiled from the succe ss f ul operator
sequence into a primitive operator format, The major part of this
compilation process is in building up a precondition M.p (a set of
predicates) of a macro M. This can be accomplished iIin a forward
fashion by collecting up those preconditions or primitive

operators not supplied by an earlier operator’s add-list, Consider
8 sequence of n fully instantiated operators between n+1 states.
where U and mean set union and subtraction, and oC 1).p.
UCi].a stand for the precondition predicates and add predicates of
operator i respectively. Then:



M.p = 0[1].p U (O[21.p O[1].a) U (0[37.p - (O[1].a U U[2].a))

--- U (O[n].p - «O[1J.a U ... U O[n-1] .ay)
Another. more efficient method for forming M. p (implemented
in FM) is to use a goal! regression procedure. ff G is the set of

goa ! predicates for the solution sequence then:

Pn where PO = G
(Pi-1 - O[n*1-i]l. ¢ U ClItn-H-iJ.p , i = 1 to n

M. p
Pi

In this context, the methods give equivalent results.

A compiled macro is then carefully generalised as outlined in
2.1. Identical constants are generalised to the same variable
throughout the macro. but equality binding restrictions are added
where variables of the same type are generalised from distinct
cons tants.

4.2 Use

A backward directed search works well if, for each goal
predicate G, the number or operator instantiations that achi eve G
is low (or can be kept low by heuristic pruning). Macros which

break this rule are therefore exluded from the search ([Minton 85]
pP.596 complains or the same problem) although they may, of course,
be used at any goal node whose initial state satisfies their
preconditions.

A record or the frequency of use is kept for each macro and
the least used are deleted periodically, This method is similar to
that of Minton’s tor ’“S-Macros’', but while still keeping the most
useful macros, it does not involve storing every problem?’s
solution.

5. THE CHUNKS OF FM
B-Chunks are I earnt in FM to provide heuristics for the

search strategy outl ined in section 3. They differ from the chunks
of SOAR described in [Laird et al 86] in both construction and

use: in FM’s goal directed search they are created to be
distinct and complementary heuristics to that of macros. The
absence of such a learning component in STRIPS with Macrops is
criticised in [Porter and Kibler 84]. Minton’s Morris system
[Minton 85] apparently uses a ’“built-in’ heuristic evaluation

function.

Chunks can be also created when FM executes a state space
search. In this case. although it is difficult to compare; their
structure with SOAR’s since this would require; a precise
definition of the Ilatter, their use and performance seem similar.



5.1 Construction

Cons ider ul 1j (1<1 n) taken rrom an operator sequence
Oil], uL2J .- LU[n] which achi eves a goa ! node with goal
Predicate (s) G) rrom a ini tial state 1. We build a b-chunk
(OCiJ” .G .P) for each Ol | using simi far methods to those

outfined in 4.1:

P = | intersected with the macro precondition of the
sequence O[iJ.OLi+1Jduns OLnJ.
<0CiJ’ .G . P) = the generalisation, or (C[id.G.P) where

identical constants are changed to the same variable names etc.
A chunk to guide state space search is constructed in the
same manner except that P is simply the operator sequence’s macro

precondi tion.

Liti J°s b-chunk’®s third component may be roughly described as

those predicates which were present in the goal node’s iNnitial
state and that were also involved in the achievement of G after
Ofi-11J. This includes environment information (which is a s sumed
to be a part of every state) that has been used in t he

satisfaction of the operators’s preconditions.
5.2 Augmented B-chunks

In some situations the b-chunk, as presented in 5.1, mav not
be discriminatory if used on an identical problem to which it was
formed. This tends to happen toward the end of an operator
sequence when important similarities with the initial state are
lost. We are at present experimenting with a procedure that
augments the chunks by adding to P extra initial state pred i cates
and ’association chains from the environment (see [Vere 77]) that
Jink them to predicates of the macro precondition.

5.3 Use

B-chunks are consufted when the prob 1em solver finds multiple

instantiations or the same operator to achieve a goal predicate
Gp. but none or the preconditions are comp 1etely satisfied ta
syntactic weak heuristic, such as favouring the instantiations
with the fowest number of preconditions, is general 1y inadequate >
A b-chunk (U1,G1.P> ravoijrs an operator instantiation 0 applied to
a goal node ir P logical 1y follows from ! (the initial state;
under the variable bindings obtained by the successful matching of
01 to 0 and G1 to Gp or one of Gp’s ances tors. The

instan tiation(s) r avoured by the most chunks is then ..chbsen to
form a new goal node.

In conclusion, b-chunks can record the important similarities
among the environment. iNnitial state and goal obtained rrom
successful proolem solving. in a form usable for future goal
directed search.



6. EXAMPLES

present two examples from different domains. Note capital
stand for variables in the chunks and macros shown.

6.1 The 8-puzzle

This example shows the creation and use of chunks in state
space search and the simifarity to Soar’s chunks for this type of
stategy. ( see [Laird 86] which afso gives details of the 8-puzzie
problem). Basically the board has 9 numbered positions (
pl-p2.._..p9) on which there are 8 numbered tiles (11.12....t8) and
a ’“blank*. The idea is to find a sequence of moves (i.e swapping
a tile with the biank horizontal |y or vertically) !inking a pair

of states. (S.QG).

pl . p2 : p3
p4 : P5 . p6 figure 1. The 8-puzzle board.
o p? . p8 . p9
A state can be specified by the formula: at(tx.p1)&at(ty ,p2)&...,
the topology by next(pl.p2)&<next(pl,p4)&t. . and an operator

move (ti lex. py, pz) means swap tilex (which is on py) with the blank
which must be on an adjacent postion pz.

The goal is Tat(tl,ph)&at(t2,p2)&. . &at(biank.pS=&.. ' and to
solve this the system must solve the decomposable goals

G1= a t(b1ank. p5),

G2= at(blank,pb5)&at(t1._pl),

G3= at(blank.p5)&atktl.phH)&at(t2,p22).
G4= -.. etc (see [Korf 852 for details)

To sol ve these goals rrom arbitary positions FM can create a
series of chunks through its search experience. Consider the
problem (1 -G2) where f = at(blank,p5)&a t(11,p2)&. . (anything).
Using only weak heuristics FM finds the correct operator sequence.
and creates chunks such as (ignoring some details):-

t moved 1.X1.X2.7;
at(T4,X4);
at(T1.Xl) &a t(blank.X2)&at(T2,X4)&at(T4.X3)n.
next(X2.X3)&next(X3.X4)&next(X4,XDH&next(Xl,X22).).

If the system is subsequently given the problem 11’ .G'2) where
1 = at(blank.p5)&at(t1,p4)& ...(anything) then no choices in the
search will appear since chunks including the one above advise the
correct operator bindings through each step in the state space
search. This sort of improvement is termed symmetrical transrer
in [Laird 86 J.



Robot World

This example gives an idea of how domain specific heuristics
can be built up in a simulated robot world similar to that found

in (Fikes et al 72). The system is asked to simulate a robot
performing various box-moving tasks in the world descr ibed in
figure 2.
:room1 1room2 [ room3
L | figure 2:a robot worid
X X N\ -
1room4 'r oom5 'roomB
' \ \ :
f
| | f 1
[ room? f
FM learns various useful macros by experience such as

(ignoring some details):-

mac-liRoomx,Box,Door.Roomy) is
preconditions: Roomx connects Roomy by Door &
Box is in Roomx on the floor & the Door is
open & the robot is in Roomy;
action: Puts Box in Roomy next to the Robot
primitives : gotodoor(Door,Roomy),
gothrudoor(Door,Roomx),
goto(Box ),
pushtodoor(Box,Door,Roomx),
pushthrudoor(Box,Door,Roomy).

B-chunks are Ilearnt by experience as described above. They advise
on the best instantiations of these macros during search e.g this
chunk reates to the macro above (again some details are lert out.):

mac-1iRooml, Box 1,Doorl_.Room2) ;
Box is in RoomB:
Boxl is in Rooml on the foor & Doorl is open Rooml
connects Room2 by Doorl & Room2 connects RoomS

This advises Iinstantiations for the macro that would move the
box to to a room next to the one of its goal position-, and advises
against any instantiations that do not conform to this.



6. FUTURE WORK

Experiments have shown that impressive results are achieved
when chunks are created tor macros, because the number of possible
instantiations of macros in the backward search tends to be much
higher than primitives, and so the need for heuristic pruning is
greater. To assess the rut| power of the b-chunk we mus t
investigate:

-methods oT chunk creation for macros that avoids any
combinatorial explosion in the learning phase.

-concept learning to genera 1i se existing chunks where

appropriate (e.g. the example chunk is too specific in that it
insists on open doors;.

7. CONCLUS! ON

We have presented a new weak learning heuristic for state
space, general problem solvers for use in goal directed reasoning,
Given a particular domain, this weak method can create strong
heuristics. in the torm of b-chunks, through the experience of
successrul problem solving, These chunks record for each operator
and generalised goal pair, the adviseable instantiations for
operator variables, by storing important environment and iNnitial

state information.
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The Anatomy of a Weak Learning Method for use in Goal
Directed Search

t .I . McClus key
Department of Computer Science, The City University, London,
England, EC1 OHB.

Abstract

We present an overview of a problem solving system that has been built to explore
the potential of experience-based, weak methods for learning. One such method, that of
creating heuristics from experience, is described in depth with the help of examples.
This method creates heuristics to improve goal directed search by analysing why an
operator appeared in a successful sequence. Heuristics are formed by the model-based
generalisation of similarities between the operator’s weakest precondition and a
problem’s specification. An algorithm is presented which uses background knowledge of
the application domain to strengthen these similarities.

1. Introduction

The objective of this research is to explore the learning of heuristics by
experience, and the hypothesis that a general problem solver shell can create
useful domain dependent heuristics by such experience. To this end we have
designed and implemented such a shell called FM. When applied to an application
domain, it uses weak methods to acquire strong problem solving heuristics
through experience, resulting in improved performance. FM can form heuristics
to bring about improvements in search, representation change and goal ordering.
In section 2 we present an overview of its architecture; in section 3 we describe
at length, with the help of examples, the anatomy of one such weak method for
reducing search within a goal directed control strategy.

Similar lines of research have been followed in the last few years which have
inspired this work (Korf, 85; Laird, Rosenbloom & Newell, 86; Langley, 85;
Carbonell, 83). They involve combining learning components with typical A.l.
paradigms of Problem Solving, which are consequently used as the performance
element for the learning techniques. A parallel effort is the development of the
so called second generation expert system; here rules for shallowing reasoning
can be created and modified incrementally from a deep application model when,
during problem solving, the present rule set fails (e.g. Van de Velde 86). This
work is aimed at improving knowledge intensive systems, and oriented towards
the creation of rules within a knowledge base, rather than the improvement of
search and representation in search intensive systems.

Our problem solver shell has been equipped with weak learning methods and
designed and implemented with the following characteristics: it accepts
application domains in the form of an environment (facts and rules) and a set of
structured, transparent operators (in the sense of Porter & Kibler 84). Problems
are posed as initial state and goal condition pairs, and either a state space or
problem space search strategy can be selected. A dual format for learnt
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heuristics is used: they are formed explicitly for search guidance but also appear
implicitly through representation changes in the application domain’s operators.

2. An Overview of FM

The main modules of FM are shown in figure 1, arrows showing data flow in
and out of the two main processes; each component is present in modular form
and therefore easily changed. A brief description of components is given below
with the help of a simple robot world example shown in figure 2. FM has been
tested with typical micro-worlds (e.g the Eight Puzzle, Tower of Hanoi, various
robot worlds and blocks worlds). It exhibits learning during and after problem
solving sessions (the former type has helped problem solving within that
session); it forms heuristics that apply to problems with different initial and goal
states, and also to both scaled up and reconfigured environments. Methods for
learning three types of heuristic are being investigated: for search guidance, for
representation change in operators and for goal decomposition.

Figure 1. The FM achitecture

rooml box1 room2 room3
/

| room5A room6 robot|

room4
21 box2

Figure 2: A Robot World
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A goal and initial state are stated as conjunctions of literals in first order logic;
e.g. goal = in_room(box1,room6)&closed(door56),
initial state = in_room(box1,room1)&in_room(robot,room6)&...open(door56)&...

The environment is a collection of facts and rules which act as background
knowledge and include the typing taxonomy of objects;

e.g. environment = type_of(box1,box)&...type_of(room1,room)&...
connects(room5,room6,door56)&fits_thru(box1)door56)&...
(in_room(X,R)&next_to(X,Y) -> in_room(Y,R))&...
(at_door(X,D,R) -> in_room(X,R))&...

An operator O has five main parts, (O.e, O.p, O.a, O.s, O.d), representing
environmental preconditions, main preconditions, add-list, side effects and
delete-list, respectively. They are all specified as conjunctions of literals
containing variables whose scope ranges throughout the operator, and are
assigned a STRIPS-like semantics; (note: capital letters are used within
predicates to represent variables in this paper)

e.g. pushthrudoor(B,D,R) =
(connects(R,R1,D)&fits_thru(B,D),
at_door(B,D,R1)&next_to(robot,B)&open(D), in_room(B,R),
in_room(robot,R), at _door(B,D,R1)&at_door(robot,D,R1)&next_to(B,X)& ...)

Currently there are two kinds of learning techniques implemented: compiling
operators into macros in primitive operator format and creating new heuristics
which appear as various types of chunks. Details of the former are presented in
(McCluskey, 87), along with a description of the main goal reduction-type control
strategy employed in FM. Chunks, which are so named since they are created
from a successful problem solving sequence and advise on the future use of an
operator, are explained in the next section.

3. Chunks in FM

3.1 State Space Chunks

We will describe the construction of a simple chunk, which can be used by
FM as a heuristic in a state space search strategy, because it provides
background for the b-chunks explained in 3.3. Bearing a similarity to the chunk
of SOAR (Laird, Rosenbloom & Newell, 86), they form heuristic preconditions for
(operator, goal) pairs by the model-based generalisation of a successful operator
sequence’s weakest precondition.

The construction is made in two stages: Firstly, given a sequence of fully
instantiated operators (O(i). 1=<i =<n} achieving goal predicates G, form the
quad Q = (O(i), G, WPs(i), WPe(i)) for each i. Here WPs(i), WPe(i) are the state
and environment components of the weakest precondition WP(i) of the operator
sequence (O(j) : i =<j =< n), respectively, defined here by:

WPs(i) = P(n+1-i) where P(0) = G,
P@() = (P(-1) = (O(n+1-j).a & O(n+1-j).s)) & O(n+1-j).p:
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and WPe(i) = O(i).e&O(i+1).e& .. &O(n).e.

The symbols and mean set difference and set union, respectively.
Since we are dealing with conjunctions of ground literals these operations are well
defined.

Secondly, Q is generalised into a chunk in the following way: Every constant
symbol that occurs in (O(j) : i=<j=<n) as a result of substitution for an operator
variable, in the original proof of the operator preconditions, is generalised to a
variable, with identical constants turning to identical variables, throughout Q. If
two constants s, t of the same type occur, then they may be generalised to
variables S, T, but an extra predicate 'not_equal(S,T) is added to WPe(i). This
has the special meaning that the variables may not be later instantiated to the
same constant and, together with the other collected constraints in WPe(i),
ensures a minimum generalisation.

3.2 Use of State Space Chunks

FM uses its constructed chunks described above in a forward state space
search. Consider S, a conjunction of ground literals representing the ’current
state’, in a search for goal state or condition G, with respect to an environment
E. Assume that the set of operator(s’) instantiations that may be applied to S is
Os; then any O in Os that maximises the size of the following set of chunks is
heuristically favoured to form a successor to S:

{(O’,G’,WPs,WPe): (O,0’)t unifies for some substitution sett such that G
contains (G’)t, S contains (WPs)t and E contains (WPe)t}

In other words the operator(s’) instatiantions that 'match’ the most chunks are
chosen to continue the search.

Chunks created for application domains that warrant a state space search can
significantly reduce search times. We have applied FM to such domains as the
Eight Puzzle and achieved results supporting the claims of (Laird, Rosenbloom
& Newell, 86). Below is a sample chunk created during problem solving in the
Eight Puzzle world which would correspond to their ’'symmetrical transfer of
learning, involving a cyclic movement of three tiles:
ch1 = (move(T1,X1,X2),

at(T4,X4),
at(T1,X1)&at(blank,X2)&at(T2,X4)&at(T4,X3),
next(X2,X3)&next(X3,X4)&next(X4,X1)&next(X1,X2)&
type_of(T1,tile)& ...type_of(X1,position)&...) .

Only one simple operator is needed with the relational representation we are
using (i.e. move a tile T from position P1 to P2):
move(T,P1,P2) =
(next(P1,P2)&type_of(T tile)& .... at(T,P1)&at(blank,P2),
at(T,P1)&at(blank,P2), , at(T,P1)&at(blank,P2))
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3.3The B-chunk

FM is equipped with a goal reduction strategy which can search through a
space of nodes representing partial solutions to a problem (McCluskey, 87).
Nodes may be generated by adding an operator that achieves desirable goal(s)
to a parent’s partial solution. The goal of the new node is to solve the operator’s
preconditions (similar to the goal node search of (Dawson & Siklossy, 77)). Nodes
may also be generated to change operator ordering in the face of conflicting
goals, or to add a whole sequence of operators which solve one particular
subgoal. The chunks described above do not, of course, apply here since they
rely on the idea of matching a current state. To improve the goal reduction
search FM analyses a successful operator sequence that solves some goal node
(modelled simply as (State, Goal, Environment) below), and creates b-chunks.

The general idea is as follows: Consider a fully instantiated operator sequence
(O(i): 1=<i=<n) that solves some goal node (S,G,E). For each O(i), the features
occurring in (S,G,E) which seem to be the reasons why O(i) occurred in the
sequence, are stored in the form of a b-chunk. Another problem (or node)
(S’.G’.E’), which matches this chunk (see 3.4 for the precise definition of
matching), would then have that particular operator proposed (along with the
constraints embedded in the chunk) to be part of the solution sequence. In the
present version of FM, however, the chunk is used more as a operator
application discriminator than a proposer i.e. chunks cut down the branching
factor of goal directed search.

We will now introduce an example operator sequence that will be used to
clarify the b-chunk idea. Using the figure 2 as a diagramatic description of the
initial state, with G= in_room(box1,room3), let
{0(1), 0(2), ... 0(11)} = {gotodoor(door56,room6), gothru(door56,room5), ...

pushthru(door23,box1,room3)}.

Using similar techniques to section 3.1 above, we form the core, C(i), of a
b-chunk’s heuristic precondition on states as the conjunction of the set:

{P in WPs(1) : WPs(i))&E => P}

e.g. consider 0(9) = pushthru(box1,door12,room2) above. Then with
WPs(9) = at_door(box1,door12,room1)&open(door12)& ...,
E = (at_door(X,Y,Z) -> in_room(X,Z2)))& ....
WPs(1) = in_room(box1,room1)&open(door12)& ....
we have C(i) = in_room(box1,room1)&open(doori12)&open(door23).

A b-chunk is now formed by generalising (0(i),G,C(i),WPe(i)) as in 3.1. The
chunk for the above example would be:

ch2 = (pushthru(B1,D1,R2),
in_room(B1,R3),
in_room(B1,R1)&open(D1)&open(D2),
connect(R1,R2,D1)&connect(R2,R3,D2)&fits_thru(B1,D1)& ... ).
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This chunk would discriminate against other possible operator instantiations
in the goal directed search since it incorporates similarities to the initial state
that only pushing the box from rooml would satisfy. Chunks formed from
operators that occur towards the end of a sequence usually turn out not to be
discriminatory. In this case, FM ’strengthens’ them by the following iterative
process:

W1(0):=C(i); W2(0) = WPe(i); j:=1;
repeat
(X, Y) :={x, y : x is a predicate in {WPs(i) -- C(i)} and is related to some
predicate in WPs(1)J by an association chain y of length j in E);
WA1(j) =W1([-1)&X; W2(j) =W2(-1)&Y; j:=j+1
until either the generalised chunk (O,G,W1(j),W2(j)) is
discriminatory, or some complexity bound is reached.

The technique of using association chains is explained in (Vere, 77). The
stengthening process adds important features that connect WPs(i) and WPs(1) to
the last two components of the chunk. Consider creating a chunk for
pushthru(box1,door23,room3) occurring as 0(11) in our example. Then C(i) =
open(door23) which would not discriminate against pushthru(box1,
door35,room3). After the action of this process (for j=1 only) the chunk is now
more useful:

ch3 = (pushthru(B1,D1,R1),
in_room(B1,R1),
in_room(B1,R3)&open(D1)&open(D2),
connects(R1,R2,D1)&connects(R2,R3,D2)&fits_thru(B1,D1)& ... )

3.4 The Use of B-chunks

Consider an operator instantiation O which has been proposed as part of a
solution sequence to a node (S,G,E). B-chunks that match the operator and the
node’s three components in the following way, favour that instantiation (similar to
3.2): for b-chunk (O’.G’.WPs.WPe) we require (0,0’)t to unify for some
substitution set t such that G, or one of the ancestors of (S,G,E)’s goals, contains
(G’)t, S contains (WPs)t and E contains (WPe)t . Consider our simple example
again, after the eleven operator sequence to transport the box into room3 has
been ’executed’. During the solving of a new task ’'in_room(box2,room3)’, the
chunk *ch3 will advise in favour of the operator instantiation
pushthru(box2,door35,room5), since it conforms to the chunk’s constraints within
this task specification.

4. Conclusions and Future Work

We have given an overview of a general problem solver shell employed in
exploring weak methods for learning, and described a novel method, that of
creating b-chunks, for cutting down search in goal directed systems. B-chunks
integrate well with another method used in FM, that of closed macro creation
(McCluskey, 87), since they advise on the use of both primitive and macro
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operators. This is important since although the latter reduce the depth of search,
the branching factor increases, and so the need for an improving heuristic is
more acute. B-chunks can be adapted to advise on goal ordering and we hope to
to extend their application to non-linear planning processes. We also envisage
optimising the chunks created using techniques fron Incremental Concept
Induction and further feedback monitoring.

We have sidestepped many problems e.g. the system relies on successful
operator sequences before learning can begin, and makes the assumption that
sequences are optimal. It has been useful testing FM on micro-worlds, since
experimenting with different learning methods and representation shifts is easier,
but we are at present embedding it in a ’real world' robot inspection problem.
Regarding the implementation, we have found that the complexity of the
strengthening algorithm given in 3.4 constrains its use to small values of ’j’, and
its performance depends heavily on the initial domain representation. Finally, the
system, as described, has been implemented and runs in C-Prolog.
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COMBINING WEAK LEARNING HEURISTICS IN
GENERAL PROBLEM SOLVERS

t .I. McClusk ey

ABSTRACT

This paper is concerned with state space problem solvers that achieve generality by
learning strong heuristics through experience in a particular domain. We specifically
consider two ways of learning by analysing past solutions that can improve future
problem solving: creating macros and the chunks. A method of learning search
heuristics is specified which is related to 'chunking’ but which complements the use of
macros within a goal directed system. An example of the creation and combined use of
macros and chunks, taken from an implemented system, is described.

| INTRODUCTION

Integrating ideas and techniques devoloped in Machine Learning, with those of
Problem Solving, has attracted substantial recent research effort (e.g. [Laird et al 86],
[Korf 85], [Langley 85], [Mitchell et al 83]). An important aspect is the revival of the
‘general’ problem solver. Its demise was due in part to the failure of its weak heuristics
to tackle problems of complexity in some given application domain; now it returns
equipped with not just weak problem solving heuristics but with weak heuristics for
learning strong, i.e.domain dependent, heuristics. The latter may take the form of useful
shifts in the problem space representation (a simple example is the learning of macro
operators) or improving search through a particular space by the acquisition of search
control heuristics. Thus, while its generality is maintained, learning may improve the
problem solver’s efficiency during the application to a particular domain. This is the
approach we have taken in the construstion of a "heuristic learning problem solver shell
called FM; it can acquire strong heuristics from problem solving experience when it is
applied to specific domains. A complementary approach is to acquire or discover them
during a preprocessing stage as in [Iba 85], [Korf 85]) and [Dawson & Siklossy 77].

FM’s application domains can have variable initial and goal states. Applications are
interchangeable by specifying domain environments, states and goals as expressions in
first order logic, and operators in terms of structured add, delete and precondition
predicates. Control stategies may be interchanged (e.g. forward best-first or goal
reduction) as can weak learning methods such as macro and chunk creation.

This constitutes a more general approach to recent work on heuristic learning in
problem solvers (e.g. [Mitchell et al 83], [Korf 85]), where systems typically improve in
domains with a fixed goal, employ a more specialised representation scheme, and a
forward state space search strategy. This paper will outline FM’s goal directed search
and describe how macros and chunks are created and used as complementary
heuristics during that search.



I GOAL NODE SEARCH IN FM

The backward search of FM proceeds in a goal reduction manner, starting with the
initial goal, through a space of goal nodes (similar to those in [Dawson & Siklossy 77]).
Each goal node can be modelled as a 6-tuple:

(identifier, goal, initial state, ancestors, purpose, trace).

The trace records attempts to solve the goal, whereas the purpose records why the goal
node was created (typically to solve the unsatisfied preconditions of an operator). Goals,
expressed as conjunctions of predicates, are initially assumed to be decomposable:
when a goal node is activated, operator instantiations which add goal predicates have
their unsatisfied preconditions form another goal node, unless they are already satisfied
in which case those operators are applied to the initial state and the result recorded in
the trace.

When the trace of a goal node eventually contains a state satisfying its goal (via an
operator sequence Os), we say that the goal node is solved, and all nodes which are
ancestors of it are rempved from the search. If it was activated to solve an operator O’s
preconditions, then the sequence Os + O is applied to the goal node’s parent’s initial
state and the result recorded in the parent’s trace.

A goal node’s initial state may be the state inherited from a parent node, or may be
an advanced state partially satisfying the parent’s goal. The latter is the case when goals
cannot be solved by simple decompositon; FM examines the trace and forms new goal
nodes whose goal predicates are inherited but whose initial states are selected from
intermediate states taken from the parent’s trace.

The kind of representation of goal nodes outined above aids both the formation and
use of strong heuristics. The trace is available for analysis and criticism after the
solution of each goal node, allowing ’within-trial transfer of learning’ (see [Laird et al 84])
to take place. In our implementation of FM we have experimented with the formation of
closed macros, ’b-chunks’ and also subgoal ordering heuristics at this stage, but we
shall limit our discussion to the first two.

Il CLOSED MACRO CREATION

We consider a closed macro operator to be an operator sequence that has been
compiled and generalised into a form similar to that of a primitive operator (in contrast to
the ’open' macrops of [Fikes et al 72]). This sequence forms part of a past solution, in
the case of learning by experience, which includes fully instantiated operators and
intermediate states. Here the compilation involves finding the sequence’s weakest
precondition through the intermediate states and using it as the macro’s precondition.
Within this certain constants can then be selectively generalised using a technique
similar to the Explanation-Based Learning of [Mitchell et al 86].

Systems that learn closed macros ([Minton 85], [Iba 85]) seem to demonstrate
significant improvement in problem solving within robot and puzzle worlds but there are
pitfalls in using this technique as the sole learning component:

-search trees do shorten but unfortunately grow bushy since distinct instantiations of
macros proliferate. (This is reminisent of the effect of paramodulation, a ’macro
inference rule’ in Theorem Proving, which combines resolution with the axioms of
equality, but when used in search changes long thin trees to short bushy ones!).



-solutions which comprise of closed macros are prone to produce non-optimal paths
even after checks for redundant primitive operator sequences have been made.

We claim that such problems may be overcome by the learning of strong heuristics
such as chunks to complement the use of macros.

Macros are created and stored in FM when goal nodes are solved, and then are
immediately available for use in problem solving. Each are compiled from a successful
operator sequence into a primitive operator format. The major part of this compilation
process is in building up the precondition M.p (a conjunction of predicates) of a macro
M. This is accomplished by a procedure modelled on goal regression equations:

M.p = Pn where PO = G and
Pi = (Pi-1 -- O[n+1-i].a) U O[n+1-i].p ,i=1ton

where U and mean set union and difference, OJi].p, O]i].a stand for the
precondition and add predicates of operator i respectively, and G the goal predicates for
the solution sequence.

Constants that appeared as arbitrary members of some particular type in the
solution's operator sequence are carefully generalised to a variable with that type
restriction (following [Kodratoff 84]). Generalisation is justified since no operator in the
solution sequence referred to the constant specifically but only to its type. Identical
constants are generalised to the same variable throughout the macro, but equality
binding restrictions are added where variables of the same type are generalised from
distinct constants, so that they may not be instantiated to the same constant when in
use. Macros are then incorporated into future problem solving as primitive operators,
although some may later be deleted if rarely used.

IV B-CHUNK CREATION

The chunks created by FM improve the system’s subsequent problem solving
behaviour by providing search control knowledge. They are formed during the goal
directed search and advise on the search through partial solutions. The absence of such
a learning component in STRIPS with Macrops is pointed out in [Porter and Kibler 84]
and Minton’s Morris system [Minton 85] apparently combines only weak search
heuristics with the use of macros.

Consider OJi] (1<i<n) taken from an operator sequence O[1],0[2]......0O[n] which
achieves a goal node (with goal predicate(s) G) from a initial state | within a domain
environment E (E is a set of facts and rules constituting background knowledge for a
particular application). A b-chunk (O[i]’; G’; P’) is built for each OJi] to the following
specification: consider a function ‘sim’.

sim : CP x CP x CP x NatO --> CP
where CP is the space of conjunctions (or sets) of predicates, and
sim(X,Y,E,0) = (P in Y: P logically follows from X&E)
sim(X,Y,E,N) = sim(X,Y,E,N-1) union
(y el. of Y, e subset of E :y is related to an x in X
by an association chain e of length N}
Then P= sim(M(i),M(1),E,K) where M(j)= the macro precondition (see section lll) of
sequence OJj],0O[j+1], ...,O[n]; K >= 0, and finally

(Olil’; G’; P’) = the careful generalisation of (O[i]. G; P).



When K = 0 then Q[i]'s chunk’s third component may be roughly described as those
predicates which were present in the goal node’s initial state and that were also involved
in the achievement of G after O[i-1]. This includes environment information (which is
assumed to be a part of every state) that has been used in the satisfaction of the
operator's preconditions. FM initially forms P with K=0 and then checks to see if the
resulting chunk would be discriminatory if used to solve the same goal node again. If it is
not the case then K is incremented and P is augmented with predicates using an
‘association chain’ technique similar to that described in [Vere 77].

B-chunks are then used during subsequent search when FM finds multiple operators
(or operator instantiations) are available to achieve a goal predicate Gp, but none of
their preconditions are completely satisfied. A b-chunk (01; G1; P) will favour an
operator instantiation O applied to a goal node if P logically follows from I&E under the
variable bindings obtained by the successful matching of 01 to O, and G1 to either Gp or
one of Gp’s ancestors. The instantiation(s) favoured by the most chunks is then chosen
to form a new goal node.

V COMBINED USE OF LEARNT HEURISTICS

To clarify the combined use of closed macros and b-chunks we use a simple
example. We applied FM to a robot world using a similar operator set to [Fikes et al 72].
After box moving tasks it forms macros such as:

( name: macro21(Rm1, Dr1,Rm2,Box,Dr2,Rm3),
preconditions: in_room(Box,Rm1)&next_to(robot,Box)
&connect(Rm1,Rm2,Dr1)&connect(Rm2,Rm3,Dr2) ....
add: in_room(Box,Rm3),
side_effects: in_room(robot,Rm3), ... ).

Macro21 is equivalent to the primitive sequence:
{pushtolBox.Drl.Rml), pushthru(Box,Dr1,Rm2),
pushto(Box,Dr2,Rm2), pushthru(Box,Dr2,Rm3) }.

In solving the goal ’in_room(boxA, room4) from the situation in figure 1, macro21
constitutes the part of the solution shown by an arrow. One b-chunk (where K=1 in
section |V) created to advise on its use is (note: we leave out some details; capital
letters denote variables):

( macro21(Rm1, Dr1,Rm2,Box,Dr2,Rm3) ;
in_room(Box,Rm3) ;
in_room(Box,Rm4)&connect(Rm4,Rm1,Dr3)&
connect(Rm1,Rm2,Dr1)&connect(Rm2,Rm3,Dr2)& ...)

In a future problem, this chunk will support the inclusion of instantiations of macro21
in partial solutions which conform to its constraints. For instance, consider task
in__room(boxB,room6). It can be seen by the description of chunk use in section IV that
instance macro21(room4,door47,room7,boxB,door67,room6) is favoured by the chunk
shown above to form the first part of a solution, resulting in a filtering out of any other
undersirable instantiations. Note that this chunk suggests the initial position of the robot
is irrelevant.



*~macro21(room3,door37,room7,boxA,door47,room4)

figure 1. (Note: doorXY connects roomX and roomY)

VI CONCLUSIONS

We have described a goal directed search which allows the use of weak methods for
learning. Given a particular domain, these weak methods create strong heuristics, in the
form of macros and b-chunks, through the experience of successful problem solving.
The chunks record for each operator and generalised goal pair, the adviseable
instantiations for operator variables. They do this by storing important similarities among
the environment, initial state and goal in a form usable for future goal directed search.
The number of possible instantiations of macros in the backward search tends to be
much higher than primitives, and so the need for this heuristic pruning is greater.

We have used FM in several applications in which it builds up strong domain
dependent heuristics by experience. Of particular note is the b-chunks’ high degree of
accross-task transfer of learning. This is because they record quite general similarities
between the components of a problem space such that when these similarities are
encountered again the choice of (macro) operator instantiation can be determined.
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The Anatomy of a Weak Learning Method

for Use in Goal Direefed Search
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research area:

Learning from problem solving experience; related to
research in [1],[2],[3],[4].

poster topic:

Outline description of a general problem solving shell
called FM which has been built to experiment with various
learning methods.

Details of one such learning method (the b-chunk) for
use in task domains requiring goal directed problem
solving strategies.

theses being investigated:

(1) A general problem solver can significantly improve its
Performance through experience in a particular domain,
using weak methods for creating problem solving
heuristics in areas such as:

- search control
- representation change

- goal ordering

(2) Useful operator heuristics can be learnt from the
hiodel based generalisation of similarities between a solved
Problem’s specification and the reasons why the operator
appeared in the solving sequence.



FM’s inputs:

- task ... (initial state, goal condition) = (S,G)
- environment... (facts,rules) = (E.f.E.r)

- operators ... (environmental conditions, preconditions,
adds, side-effects, deletes) =
(O.e, O.p, O.a3, O.s, O.d)

- search stategy ... currently either means-end goal
directed, or best first forward.

figure 1. flow diagram of the FM shell



FM’s representations:

Components of operators, states, environment facts and
goals are predicate conjunctions.

Search strategies can be interchanged but must be based
around search through "goal nodes", which roughly
represent partial solutions.

FM’s current weak learning techniques:

Macro creation: formation of powerful operators from
subsequences of more primitive ones, built in the same
format.

Chunk creation: formation of operator heuristics containing
favourable goal, current state and environment information
for use in state space search.

B-chunk creation: formation of operator heuristics
containing favourable goal, initial state and environment
information for use in goal directed search.

FM has been used in:

typical robot worlds (see example 1)
blocks worlds

'tower of hanoi' puzzles

‘eight’ puzzles

story model (see example 2)



The B-chunk
The form of a chunkis ( O, G, W1, W2), where
- O is the parameterized operator name
- G is the goal condition
- W1 is an initial state condition
- W2 is an environment condition

and the quad has been carefully generalised.

FM uses them to help find plans. Roughly, a b-chunk
Proposes the inclusion of an operator O with the variable
3indings that occured from the successful matching of W1,
G, W2 to the current task definition and environment S, G,
E, respectively.

A b-chunk is built for operator O(i) out of a sequence
0(1), O(n), starting with

(0(i), G, W1(0), WPe(i) )

as the the root (see figure2), and then applying
strengthening and generalising processes to it.



Building B-chunks (1)
Consider a successful operator sequence
0(1), .... O(n) for task (S,G).
Let WPs(i) = WP( [Oi,...,On], G ):
E.f (facts)
WPe(1)
WPe(i)

E.r (rules)

environment

figure 2: collecting weakest preconditions

Using ‘transparent operators, we have:

WPs(i) = P(n+1-i) where

P(O)=G,

P() = ( 1 (0(n+14)).a&0(n+1-j).s) ) & O(n+1-)).p

WPe(i) = O(i).e&...&0(n).e



Building B-chunks (2)

To build a b-chunk for operator O(i), 1<i<=n, we start with
the quad of ground predicates:

(O(i), G, W1(0), W2(0)) where
W1(O) ={ P in WPs(1) : WPs(i)&E.r=> P} and
W2(0) = WPe(i)

W1(0O) and W2(0) are strengthened with the following
algorithm which uses an association chain technique [5]:

1
gepeat
(X, Y) :={x, y . x is a predicate in WPs(i).R and
is related to some predicate in WPs(1).R
by an association chain y of length j in E.f};
W1(j) =W1(-1)&X;
W2(j) =W2(-1)&Y;
| =]+
un!til either the generalised chunk (O,G,W1(j),WZ2())) is
discriminatory, or some complexity bound is reached.

WPs(1)
W 1 |
| i

(-a,..) (**b,..)
WPs(i)

figure 3: chunk build-up through associations



Example 1: robot world

rm1 rm2 rm3
robot box
I
rm4 rmb rmo

figure 4. part of a robot world

Assume the usual STRIPS-like model, with the initial state
as in figure 4. FM solves goal "in_room(box,room6)" using
a nine operator sequence, during which b-chunks are
formed, e.g. for operator "pushthru”, marked by an arrow:

(pushthru(Box,Door35,Rm5),

in_room(Box,Rm6),
in_room(Box,Rm2)&open(Door56)&open(Door35)&..,
connect(Rm5,Rm6,Door56)&connect(Rm3,RmS,Door2)&
connect(Rm2.Rm3.Door23)&type of(Rm2,room)&...)

This advises a certain instantiation for the operator within
a new problem which matches the chunk’s goal, state and
environment components. It discriminates against the
instantiation “pushthru(box,door45,rm5)" being examined
in a similar problem.



Example 2: story model

This application for FM was inspired by an example in [6]:
reasoning with a simplified storyline from Shakespeare’s

Macbeth.

Operators were created representing actions such as “kill",
"motivate” and "give", e.g. kill(Killer,Weapon,Killed) has
preconditions "has(Killer, Weapon)&has (Killer, Motive) &
near(Killer,Killed)".

An environment was created containing the obvious
taxonomic, property and relational information.
FM was given, and solved, the following task,

(wants(lady _macbeth,duncan,dead)&has(lady macbeth,
a _dagger)&has(macduff, sword)&allve(duncan)&
murdered(duncan) )

A typical b-chunk formed after solving this goal was:

( Kill(Murderer,Weapon,Murdered),

killed(Murdered),

wants (Accomplice, Mu rdered,dead)& has (Accomplice,
Weapon),
married(Murderer,Accomplice)&can_influence(Accomplice

'Mu rderer) &is_evil (Murderer) &not_equal( Mu rderer,
Murdered)& )

This chunk could have the more general interpretation
"Someone can be killed by an evil person if currently the
person’s wife wants the someone dead, has a weapon and
can infuence her husband", rather than being only a
heuristic for future search.



Results and Conclusions

The development of FM is still at an early stage (1 year
old!) but results are encouraging with respect to the
generality of the weak learning methods.

The b-chunks' strength lies in their ability to embody
relationships between operator sequences preconditions
and initial states, using an environment as background
knowledge. In all the applications mentioned, chunks have
increased FM’s performance in both similar and more
complex tasks to those from which they were learned.

One of the biggest problems is in the proliferation and
complexity of the chunks created; we envisage this can be
alleviated by inductive concept learning.
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ABSTRACT

The specification, design and implementation of Intelligent
Systems has much to gain from the field of Formal Methods
in Software Development. Such rigorous methodologies are
well suited to the symbolic processing typically found in artificial
intelligence applications. This paper describes the development
of an application independent non-linear planner from a formal
specification, relying on logical transformation to arrive at an
executable logic program. We propose that this example acts
as a paradigm for the development of similar problem solving

systems.

1.INTRODUCTION

A Non-Linear Planner (NLP) is a problem solver which searches for a solution to
a problem by generating a space of partial plans, where each partial plan is a
collection of partially ordered and partially instantiated operators. The NLP
technique was popularised by Sacerdoti’s NOAH system in [9], and later work
(e.g. [1]) has reinforced the method. We refer the reader to these references for
background information.

Logic Programming is recognised as a powerful implementational paradigm for
symbolic applications. It’s logical base and non-deterministic flavour make it
closely related to specification languages. One such feature, used in this paper, is
to apply logical transformation to derive a logic program from a specification.
Simple examples of its advantages in program correctness are often quoted in the
literature (e.g. [4]) ; we are supplementing this with an interesting and non-trivial
example: that of rigorously implementing an NLP.

We consider an NLP domain independent if a user can supply the declarative
definition of a domain (for example by supplying a set of ’strips-type’ operators as
'n [3]). It is conjunctive if it expects its goal and initial state to be specified as a
conjunction of predicates. The primary operation of a conjunctive, domain
independent NLP is called ’goal achievement’: that is making an outstanding goal
in a partial plan true at some point in its operator partial ordering. Recently, a
modal logic specification of goal achievement, called the ’Modal Truth Criterion’
was postulated in by Chapman in [1]. Our work draws from Chapman’s paper the
essence of his Modal Truth Criterion, but while his concern is chiefly the
properties of the specification (e.g. completeness), we concentrate on the
rigorous design and implementation aspects.

The content of this paper is as follows: first we introduce a notational framework
for problem solving, then constructively describe the central data type in an NLP:
the partial plan. After outlining a top level algorithm for the NLP, we define a data
type invariant for all valid partial plans, then use this to concisely specify the
central operations in the planner, those of goal achievement. Next we construct a
top level executable logic program for goal achievement using the underlying



semantics of logic programming to preserve the meaning of the specification.

2. PROBLEM SOLVING NOTATION

The input to an NLP is the language of 'task specifications’ We define a task
specification to be the quad (I,G,E,OS), where | is an initial state, G is a goal
condition, E is an environment, and OS is an operator set. We will assume that |
and G are conjunctions of predicates; E is a conjunction of ground predicates,
representing the unchanging information in an application, and OS is a set of
operator schemas, representing actions, and conforming to the ’strips
assumptions’ [3]. A common example application for this type of framework is that
of a simulated robot world. Here OS would contain an operator schema for each
type of action the robot may perform, and E would contain background knowledge
such as room connections and object typing.

An operator schema O can be represented as a logical term of the form
(0.n,0.e,0.p,0.a,0.d) where O.n is the schema’s name, and the other
components are sets of predicates corresponding to environment and state
preconditions, add and delete sets, respectively. A solution to a task specification
(I,G,E,OS) is then a partially ordered set of instantiated operators taken from OS,
such that when applied to | in a sequence conforming to the partial order, they
will produce a state containing G. For more details of this problem solving
framework, and its use in as a performance element in a heuristic acquisition
system, see [6].

3. THE STRUCTURE OF A PARTIAL PLAN

An NLP searches through a space of partial plans for a solution to some task
(I,G,E,OS). We define the structure of a partial plan as a logical term of the form
pp(Os,Ts,Ps,As,Es) where:

(i) Os is a set of partially instantiated operators, where each has a unique
identifier, and is an instance of a schema in OS. Two special operators called ’init
and ’goal are the only exceptions: init contains an add set, representing the
task’s initial state I, and goal contains a set of precondition predicates,
representing the main goal G.

(i) Ts specifies a consistent partial order on the set Os, representing temporal
precedence. For two operator instances 01 and 02 from Os, a temporal relation
can be denoted ’t(01,02)’. We can then define predicate before(X,Y,Ts), meaning
that X is necessarily before Y in the partial order specified by Ts:

for all operators X,Y and sets of binary relations on them Ts (of the form t(X,Y)):
before(X,Y,Ts) <- { member(t(X,Y),Ts) V

there exists operator Z:

( member(t(X,Z2),Ts) & before(Z,Y,Ts) )}.

The operators init and goal are by definition the lower and upper bounds of the
temporal partial order Ts, respectively:

for all O in Os-{init,goal): (before(0,goal, Ts) & before(init,0,Ts))

(iii) Ps is a set of pairs (P.O) where each P is an unachieved precondition of
some operator O from Os. If the goal condition G is a conjunction g1&g2& ... gn,



then initially Ps is set to {(gl.goal), (g2.goal), ... (gn.goal)}. Whenever an operator
instance is added to a partial plan, its preconditions O.p are added to Ps, in this

form.

(iv) As is a set of pairs (P.O) where each P is an achieved precondition of
some operator O from Os. The definition of precondition achievement is given

in section 5 below.

(v) Es is a set of predicates which constrain operator variables. For example, as
operator instances are added to Os, their environmental preconditions, along with
any necessary variable constraints, are added to Es. These constraints must be
consistent with the task’s environment E (note that operator variables have scope
throughout the partial plan, since we model it as a logical term). We can then
define the following second order predicate ’unify’:

for all predicates P and Q:
unify(P,Q,Es) <- P and Q can possibly unify under the
constraints imposed by Es and E.

4. A SIMPLE TOP LEVEL ALGORITHM FOR THE NON-LINEAR PLANNER

For any task (l,g1&g2&..&gn,E,OS), search starts with an initial partial plan
called PPi, its Os consisting of the two special operators init and goal, and Ps
initialised to {(g1,goal), (g2.goal), ... (gn.goal)}. Stripped of any particular search
heuristics, a basic top level non-determinnistic algorithm is as follows:

procedure nlp(PPi, PPg);
Store = { PPi };
LOOP
i Remove a partial plan pp(Os,Ts,Ps,As,Es) from Store;
2 Choose a (P.O) from Ps;
3 Achieve P at O by adding a new operator instance to Os
and/or further constraining Ts and/or Es;
4 Add all new partial plans generated by step 3 to Store;
UNTIL there exists partial plan PPg in Store whose Ps is empty.
end nip. -4.1
More sophisticated search methods may be used instead of this algorithm, but
we are not concerned with this level. Step 3 is the major concern of the rest of the
RjaL%er: it contains the ’'goal achievement operations’, and is at the heart of an\7/

5. THE PARTIAL PLAN INVARIANT

This section rigorously defines the partial plan data type, and therefore delimits
the search space of the algorithm in section 4. Section 3 construted a model for
the partial plan using ’abstract mathematical objects’ in the usual VDM-type
approach (see [5] for an introduction to this approach to program design).
Because our target implementation will be in a logic programming language
specifically Prolog, we need hardly refine the data type as it is already
implementable; the only exception to this is the use of lists to model sets, which is
an adequate refinement.

We now define a data type invariant for the partial plan, which is true for any



initial partial plan, and will be preserved by the main partial plan operations.
Roughly, a valid partial plan is one in which Os contains the two special operator
instances, denoting the initial state and goal conditions, and all other elements of
Os are partially bound operator instances from OS; Ts must specify a consistent
partial order on Os, Ps and As must form the disjoint union of the operators
preconditions, every precondition predicate in Ps must be achieved and Es must
be consistent with the task environment E. Hence we define the invariant condition

as follows:
INV(pp(Os,Ts,Ps,As,Es)) = (a)&(b)&(c)&(d)&(e)&(f)&(g) where
(@) = for all O in Os-(init.goal). (there exists O' in OS and
variable bindings set s: O = (O’)s )
(b) = for all 01,02 in Os: not(before(01,02,Ts)) V not(before(02,01,Ts))

(c) = for all O in Os-{init,goal): before(init,O0,Ts) & before(0,goal,Ts)

(d) = for all P in O.p: member((P,0),Ps) V member((P,0),As)

(e) = Ps intersect As = {}

(f) = forall (P,0)in As: there exists A in Os: achieved(P,0,A))

(9) = there exists some binding set t: ( E-> (Es)t) V Es = {} -5.1

Finally, we need to define the condition in 5.1(f), that of achieved(P,O,A)". This
is derived from the semantics of the strips-type operator schemas. Our definition
is a simpler but slightly weaker version of Chapman’s Modal Truth Criterion
[Chapman 87]. Informally, P is achieved at O by some operator A in Os if A is
necessarily before O, A.a contains P, and there is no operator C possibly between
O and A such that C.d possibly contains P (if such a C does exist it is'called a
‘clobberer’).

More formally, given a partial plan pp(Os,Ts,Ps,As,Es), a task specification
(1,G,E,O0S), and recalling the form of an operator O i.e. (0.n,0.e,0.p,0.a,0.d);
then if (P.O) is in Ps, A in Os:

achieved(P,0,A) =
(there exists Q in A.a: P =Q) &
before(A,0,Ts) &
(for all C in Os: declobber(P;0,A,C))

where declobber(P,0,A,C) =
(C=0)V (C=A)V before(O.C.Ts) V before(C,A,Ts) V
(for all Q in C.d: not(unify(Q,P,Es)) -5.2

6. A CONSTRUCTIVE SPECIFICATION OF THE PARTIAL PLAN OPERATIONS

The invariant defined above now allows us to precisely specify the three main
constructor operations within partial plan space, those that generate partial plans.
In fact 6.2 and 6.3 below specify the generation of valid partial plans which contain
one more achieved precondition than the input partial plan, whilest preserving the
achievement of the rest; thus they makes progress towards a solution partial plan
(one in which Ps={}) in a goal directed fashion.



To produce an initial partial plan from a task specification;

INIT: {tasks) ---> { partial plans }
explicitly defined by INIT(l,g1&g2&..gn,E,OS) =
pp( { init, goal},{}.{ (g1.goal), .. (gn.goal)},{}.{})- -6.1

The reader is left to check that INV( INIT(l,g1&g2&..gn,E,0S)) is trivially satisfied.
To produce partial plans that achieve a goal by constraining existing operators:

ACHIEVE1: {predicates} x {operator instances) x {partial plans) --->
sets of {partial plans)

ACHIEVE1(P,O,PP) = PP’
where PP = pp(Os,Ts,Ps,As,Es)j, PP = pp(Os’,Ts’,Ps’,As’,Es’) and
pre- ACHIEVE1: member((P,0),Ps)
post-ACHIEVE1: there exists binding set t such that:

Os' = [Os]t &

Ts' contains [Ts]t &

Es’' contains [Es]t &

As' = [As + (P,O)]t &

Ps = [Ps - (P,O)t &

there exists A in Os: achieved([P]t,[O]t,[A]t) -6.2

By our remark above it is clear that 6.2 makes progress towards termination; we
must now investigate the validity of INV(PP’), given INV(PP) and the pre- and post
conditions. 5.1(a) and (e) are trivially satisfied; 5.1(f) is satisfied since (from 5.2)
for any (P,O) in As, addition of more legal variable or temporal bindings to a partial
plan can never make the condition achieved(P,O,A) false. This is because the two
main predicate before(X,Y,Ts) and notfunify(P,Q,Es)) are of ’necessary’ modality
(as defined in section 3). Finally we note that the conditions 5.1(b),(c) and (g) on
Ts' and Es' are not necessarily true by our specification, and so should be
considered as extra post-conditions on 6.2 (in fact they amount to integrity
constraints).

To produce partial plans that achieve a goal by adding a new operator:

ACHIEVEZ2: {predicates} x {operator instances) x {partial plans) --->
sets of {partial plans)
ACHIEVEZ2(P,O,PP) = PP
where PP = pp(Os,Ts,Ps,As,Es)), PP = pp(Os’,Ts’,Ps’,As’,Es’) and
pre- ACHIEVE2: member((P,0),Ps)
post-ACHIEVEZ2: there exists binding set t, and A in OS such that:
Os'=[0s+A]t &
Ts' contains [Ts]t &
Es' contains [Es]t &
As =[As + (POt &
Ps' = [Ps - (P,0) + {(P,A) : Pis in ApJJdt &
achieved([P]t,[O]t,[A]t) &
for all (P’,O’) in [As]t: declobber_As([A]t,(P’,0’)) -6.3

Similar arguments about the validity of INV(PP’) hold as for 6.2, except that the
addition of a new operator from OS may invalidate 5.1(f).The condition
declobber_As(A,(P.O)) is there to check this: that each achieved P at O is still
achieved after A is added to Os. This stipulates that O is necessarily before A, or
if not, for any predicate in A.d that may unify with P, some achieving operator W



exists which is in between A and O and which adds P. This can be formalised:

declobber_As(A,(P,0)) <-
before(0,A,Ts) V (A=0) V
for all Q in A.d:
not(unify(P,Q,Es)) V
there exists W in Os:
before(A,W,Ts) &
before(W,0,Ts) &
there exists R in W.a and binding set t:
(P=Q)t-> (R=P)t -6.4

The expression (P = Q)t -> (R = P)t means that if P can be made to unify with Q
under bindings t, then R unifies with P under this same substitution.

7. A DESIGN FOR ACHIEVE1

To translate the specifications to a sequential top level procedural design,
essentially we let each predicate act as the post-condition to individual
procedures, taking care that no previous post-condition is undone by the action of
a following procedure; the declarative semantics of a logic program will thus
preserve the logic of the specification. These procedures use input and output
partial plan variables (PP, PP1 etc in 7.1) which allow conditions that do not hold in
the input partial plan to be constrained to hold in the output partial plan.

This is similar to changing a context free grammar specification into a language
parser (see chapter 9 in [2] for example). The correctness of the following design
then depends on the correctness of the individual procedures: i.e. each line In the
specification acts as a post-condition for its corresponding procedure. Also each
procedure acting on components Ts and Es must be subject to the integrity
constraints (see remark below 6.2). As a convention, we treat output variables in
procedures as the right hand parameters; the top level design for 6.2 is then:

achieve1(P,0,PP, PP3) :-

get_el_Os(PP, A), /* there exists A in Os: */
achieved(P,0,A,PP, PP1), /* achieved(P,0,A) &
Os' = 0Os &

Ts' contains Ts &

Es’ contains Es & */
add_el_As(P,O,PP1, PP2)* /*As' =As + (P,O) & 7
del_el Ps(P,0,PP2, PP3). /* Ps”= Ps - (P,0) 7 -71

Note that the primes on output values now refer to those values in the output of
their corresponding procedure, and are not necessarily the same as in 6.2. Also,
we leave out the extra detail of the substitutions, since components of the output
partial plan are subject to a unique set of bindings, as they are being modelled by
elements of a logical term.

To transform expressions of the form ’there exists X in Set we employ a
simple retrieve operation on the Set and allow the logic program bactracking
mechanism to find the correct instance. The retrieves that we use have obvious
meaning, for example:

get_el_Os(PP, A) . get A, an element of Os from PP
get_el_add(A,PP, Q) :getQ, an element of A.a from Os in PP



For an expression of the form’for all X in S: Condition”we define a higher
order predicate 'for_all_els(Set, Condition) to mean that Condition is true for each
element in the Set. Then ’for_all_els' can be operationalised by the addition of
input and output parameters as introduced above. The Condition will then be
supplied with three extra parameters: a set member, and an input and output
partial plan. Following 5.2, the design for ’achieved' is then (we shall leave out the
primes on post-conditions where they are not necessary):

achieved(P,O0,A,PP, PP3) :-
get el _add(A,PP, Q),
unify(P,Q,PP, PP1),
before(A,0,PP1, PP2),

/* there exists Q in A.a: 7
FP=Q&

7
/* before(A.0.Ts) & 7
get Os(PP2, Os), /* for all C in Os: 7
for_all_els(Os, declobber(P,A,0),

PP2, PP3). /* declobber(P,A,0,C) 7 -7.2

In operationalising the specifications, we have chosen a least committment
method: this means that the declobber(P,A,0,C) predicate should be in two
sections, one to check if any of its conditions are satisfied (in which case the
predicate is satisfied without need to constrain the partial plan - hence the use of
the cut ’!"), and the other to constrain the partial plan to satisfy the predicate if
necessary. Any of these legal constraints are allowed and can be obtained through
backtracking:

oV 7
AV 7

declobber( , ,0,0,PP, PP) :- | /* C
declobberf A, ,APP, PP) :- I. /*C
declobber(_, ,0,C,PP, PP) -
get_Ts(PP, Ts),
before(O.C,Ts),!.
declobber(_,A, ,C,PP, PP) -
get Ts(PP, Ts),
before(C,A,Ts),l.
declobber(P,_, ,C,PP, PP) :-
get_Es(PP, Es),
not( get_el_del(C,PP, Q), /* not(there exists Q in 7
unify(P,Q,Es) ), /* C.d: unify(Q,P,Es)) 7
declobber( ,0, ,C,PP, PPO) -
before(O,C,PP, PPO).
declobber( , ,A,C,PP, PPO) -

/* before(0,C,Ts) V 7

/* before(C,A,Ts) V 7

/* make before(0,C,Ts) V 7

before(C,A,PP, PPO). /* make before(C,A,Ts) V 7
declobber(P, , ,C,PP, PPO) -
get_del(C,PP, Cd), [*forall QinCd: 7
for_all_els(Cd,
constrain(P),
PP, PPO). /* make not(unify(P,Q,Es))7

‘constrain’ adds any possible variable constraints (conforming to enviromnment
EE), when necessary, to block the unification of P and a predicate from C’s delete
set. Its specification is:

constrain: {predicates} x {predicates} x {partial plans) ---> {partial plans),
post- constraint,Q,pp(Os,Ts,As,Ps.Es), pp(Os’,Ts’,As’,Ps’,Es’)) =
not(unify(P,Q,Es’)),

and the data type invariant also demands that Es' satisfy condition 5.1(g).



8. A DESIGN FOR ACHIEVEZ2

The transformation of 6.3 and 6.4 to a top level procedure proceeds as in
section 7; conditions are changed to procedures with input and output partial plan
variables, and the corresponding parts of the specification act as post-conditions
for the output partial plan. The top level procedural design for ACHIEVE?Z2 is then:

achieve2(P,O,PP, PP5)
insert_op(PP, A.PP1), /* there exists A in OS:
Os -0Os +A &
Ts' contains Ts &
Es’' contains Es &
Ps" = Ps +{(P,A):P is in A.p} 7

achieved(P,0,A,PP1, PP2), /* achieved(P,0,A) & 7
get_As(PP2, As),
for_all_els(As, /* for all (P’,0’) in As: 7
declobber_As(A),
PP2, PP3), /* declobber_As(A,(P’,0’)) 7
add_el_As(P,O,PP3, PP4), /* As’= As + (P.O) 7
del_el_Ps(P,0,PP4, PP5). /* Ps' = Ps" - (P.O) 7 -8.1

We leave the reader to refine specification 6.4 in the same manner. Assuming
that the user defined operators composing OS (from task specification (I,G,E,OS))
are available as facts of the form operator(N,E,P,A,D), as described in section 2,
the refinement of insert_op is:

insert_op(PP, A,PP3) -

operator(An,Ae,Ap,Aa,Ad), /* there exists A in OS: 7
gensym(op.A), /* utility for generating names 7
add_op(op(A,An,Ap,Aa,Ad),PP PP1),/* Os’=0s + A & 7
add_Ps(Ap,A,PP1, PP2), /* Ps”=Ps + {(P,A): P in Ap} &7
add_Es(Ae,PP2, PP3). /* Es’ contains Es &
Ts’contains Ts */ -8.2

The final two post-conditions are satisfied since the partial plan ’add’ operations
increment the input partial plan (in fact Ts' = Ts). That there is a consistent
binding over the whole of the output partial plan (not stated explicitly here but in
specification 6.3) is due to the use of a logical term as plan representation. The
efficiency of 8.2 is greatly increased if a check is made that A’s add set contains a
predicate that can possibly unify witl\P from 8.2.

We must check the invariance of 5.1: ’add_Ps' does not violate 5.1(d) or (e)
since the precondition pairs are unique, and they are taken from the already added
operator OP. ’add_Es' adds uninstantiated environmental preconditions to Es, so
5.1(g) will hold, as obviously there must exist some bindings that make an
operator’s preconditions consistent with E.

5.1(f) could be falsified, since the added operator may well clobber some
members of As. This part of the invariant is re- achieved, however, by procedure
'declobber As’, as explained above.

9. THE PARTIAL PLAN ABSTRACT DATA TYPE

We have two tasks left: to implement the partial plan ADT, and the partial order
and unification procedures used in sections 7. and 8., according to their proper
specifications. Our choice of constuction for the partial plan (a five slot logical



term, each slot containing a set) is immediately representable in Prolog; all that is
required, as stated in section 5, is to represent the sets by lists. The add and
retrieve operations may simply be implemented by facts, e.g. get Ts(PP, Ts) is
implemented as:

get Ts(pp(_,Ts,Ts).

Conforming to section 3(i), operators in Os should be augmented with an
identifier when added to the partial plan (this is accomplished by the ’'gensym’
utility in 8.2); this can be used to represent that operator instance in the
representation of partial order Ts.

Implementation of partial order procedures

The specification of before(X,Y,Ts) is outlined in section 3. It is a predicate and
does not change the ’current partial plan, hence will not upset the data type
invariant; in its complete form it is:

before(X,Y,Ts) <-
not(X =Y) & not(Y = init) & not(X = goal) &
[ { member(t(X,Y),Ts) V
there exists operator Z:
(member(t(X,Z2),Ts) & before(Z,Y,Ts))} |.

Using logical transformation, and an auxiliary predicate before’(X,Y,Ts), we
change this to Horn clauses thus:

before(X.Y.Ts) <- not(X =Y) & not(Y = init) & not(X = goal) & before’(X,Y,Ts).
before’(X,Y,Ts) <- member(t(X,Y),Ts).
before’(X,Y,Ts) <- member(t(X,Z),Ts) & before(Z.Y.Ts).

and syntactic changes will render this executable. The four slot version of 'before’
uses this predicate, and has a similar implementation.

Implementation of unification procedures

Both the unification predicate and procedure use Prolog’s unification
mechanism. Since this will at most further constrain variables, any unifications
previously made cannot be undone, and so this will not violate any achieved
conditions. Part (g) of 5.1, however, has to be preserved or else the unification
must fail. When checking for unification or consistency we use a Prolog trick so as
not to needlessly bind any variables in the partial plan: the predicate is called
twice by the ’'not operator, preserving the logic, but losing the bindings in the
predicate’s satisfaction. We therefore state their implementations as follows:-

unify(P.Q.Es) - not(not( P = Q, consistent(Es) )).
unify(P,Q,PP, PP) - P =Q, get Es(PP, Es), not(not( consistent(Es))).

and leave the implementation of predicate consistent(Es) to the reader, where
consistent(Es) <- (there exists bindings t : E -> (Es)t),
since this will depend on the implementational details of the environment E. For

example, consider a unification which wrongly binds a typed variable: E may
contain the correct typing of objects in the planner’s application domain, say E



contains ’type_of(doorA,door) and Es contains 'type_of(X,box)’. If X is a variable
in P or Q which becomes bound to ’doorA’ through their unification, then
consistent(Es) and subsequently unify(P,Q,Es) will be forced to fail, since
'type_of(doorA,box)" is not satisfied by E.

10. REMARKS AND CONCLUSIONS

In effect we have shown, by example, a rigorous method for the development of
computational models in planning systems, and demonstrated the use of logical
transformation to construct an executable logic program. The choice of an
implementable high level data stucture - the logical term, and the closeness of
Prolog to the original logic specification, remove much effort in verifying the top
level designs and the final implementation. The example application was also less
troublesome because of the availability of a ’tight specification. A full
implementation can be found in [8].

This methodology gives the usual advantages with respect to implementation
correctness. Extensibility is also improved: shifts in the specification and
extensions to the partial plan data type can be easily made and verified.

The specification can be used to show clearly where choices occur in partial
plan generation, and so where heuristics are needed; it may also be used to
generate explanations as to why a solution was found. We are exploring both
these avenues using the implemented NLP as the performance component within
a machine learning system [7].
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THE FM PROBLEM SOLVING ENVIRONMENT

USER GUIDE

version 1.2

1. Introduction

2. The Problem Specification Language

3. FM’s Implementation

4. Running FM

1. Introduction

The FM environment provides problem solving and learning
mechanisms which can be harnessed to a user defined application.

This tutorial document will explain how to ufee the
problem solving capabilities, leaving the learning components
to a later release. 1t shows the user:

- how to specify an application in FM;

- how to run FM applications.

The reader is assumed to have some familiarity with ALl and
Problem Solving. For a relevant introduction see for example:
Introduction to Aurtificial Intelligence’, E.Rich, McGraw-Hill,

1984. FM can run in ’NIP° or C-prolog (see section 3).



2. The Problem Specification Language.

FM’s approach is related to the °*STRIPS family of problem solvers.
A particular task is defined by two components:

- an initial state
- a goal condition

The specification of any application must be written as two separate
components. These are:

- an operator set
- an environment

We next describe these four components individually.

271_ The_ Initial State

We define a state description as a conjunction of ground predicates.
It models some notionally unique world in an application.

Its syntax is:
init_worid(<conjunction of predicates=>).
e.g. in a box world application this could be:

init_worlid(
onfloor(box4)&handempty&
onfloor(box3)&onfloor(box2)&
onfloor(box1 )&ontop(box5,box 1)&
cl ear(box2)&c! ear(box3)&

clea r(box4)&clear(box5)

).

An initial state is simply a state description from which problem
solving starts.

2.2 The Goal Condition

A goal condition is a conjunction of predicates which the problem solv
tries to achieve. It does so by searching for a list of ground operato
such that when they are applied sequentially to the initial state,
they wvill produce a state which contains the goal condition.

A necessary condition for a goal condition to be achieved is that each
of its components predicates are present in the add list of some

operator.



2.3 The Operator Set

This specifies the actions that can be made by the ’agent being
modelled in the application. General constraints on the operators
include the ’STRIPS assumptions, i.e. each operator models an
instantaneous action and includes every effect of it; furthermore
it is assumed that the only changes occurring in the application
are made by by the operators.

To alleviate the computational complexity of the problem solving
algorithms, each component of the operator is restricted to
predicate conjunctions rather than the full first order logic of
the original STRIPS formulation.

Each operator has the following free format syntax:

frame(
name: <name>(<parameter-1 ist>) ,
type : operator,
filter: <conJunction of predicates>
c heck: <condJunction of predicates>
precon:. <condJunetion of predicates=>
padd : <condJunction of predicates>
add : <condJdunction of predicates>
delete: <condunction of predicates>
) .

where:
Conjunction of predicates> =

Nnil |
<predicate=> |
<predicate>&<conJunction of predicates>=>

Parameters must start with a capital letter and obey Prolog’s
syntax for variables. Predicate symbols must be likewise written
according to Prolog’s syntax. These predicates are all user
defined except for two, *ne(X,Y)?, which is interpreted by FM as
meaning X is not equals to Y, and ’type_of(X,Y)', which is
defined in the environment (see below).

An example operator fromm a “box world' application is:

frame(

name : puton box(Ob1,0b2),

type: operator,

Ffilter: nil.

check: type__of(Ob 1,box)&
type of(0Ob2,box)&ne(0b1,0b2),

precon : clear(Ob2)&
holding(Ob1),

padd : ontop(Ob1,0b2),

add : handempty&clear(Ob1),

delete: clear(Ob2)&
holding(Ob1),

).



This models the putting down of an object by some imagininary
robot arm onto another box. (see directory ’boxes’ ,file ’fops?,
in the FM implementation).

2,3J__Application of FM Operators.

STRIPS-type operators have clear semantics; this allows them to be
easily manipulated by learning components, and to by-pass the
famous ’“Frame Problem?”. There are basically three components to
the operator:

— 1. Preconditions: This contains the predicates that must be true
before application of the operator is allowed.

In FM these are factored out into:

check’ predicates: these are the unchanging facts/constraints that
must be satisfied by the environment;

Filter predicates: these are a subset of the precon predicates
below. In a goal directed search, the operator will only be added
to a current partial plan if the filter predicates are true in the
current initial state.

precon’ predicates: these are the facts that must be satisfied

by the ’current’ state description.

—-11. Delete-list: This contains the predicates that, when the
operator is applied to a state, will be removed from the state.

-111. Add-list: This contains the predicates that, when an operator
is applied to a state, and the delete list has been removed, are
then added to make up the new state.

In FM these are factored out into:

'padd’ predicates: These are ’“primary add predicates, that is the
most important ones that the operator adds.

add’ predicates: These are the predicates that the user considers
as side affects, which are not the chief purpose of the operator.

N.B. The preconditions of an operator may be satisfied by a state
under more than one instantiation.

Example:

We can apply our example operator to the state:
hoi di ng(box4)&onf1oor(box3)&onfloor(bofl2)&
onfloor(box1)&ontop(box5,box1)&
clear(box2)&clear(box3)&c1ea r(box5)

in three different ways!



If we chose ’'putonbox(box4 , K box5)' then the resulting state would be:

onfloor(box3)&onfloor(box2)&handempty&
onf 1 oor(boxl)&ontop(box5,box 1)&ontop(box4 ,box5)&
clear(box2)&clear(box3)&clear(box4)

2 -4 The Enwvironment

The environment is a collection of unchanging facts or constraints
about the application. Usually this may Just contain variable
typing information.

Its syntax is that of a Prolog term of the form:

frame( name: <name>,
type: context,
always: <conjunction of predicates=,
axioms: <list of rules> )-

An example from the boxes world is:

frame( name: blocks_worid1,
type: context,
always:
type_of(box2,box)&type_of(box5 , box)
&type_ of(box4,box)&type of( box 1,box)
Stype of(box3,box),
axioms: [])-

The axioms slot can be filled by a list of rules modelling the
application. It is chiefly used by learning components, and so
discussion will be detained until the next version of this

document. The reader is advised to consult some of the sample
applications in fm_user for more complex environments.

3 FM's Implementation

3.1 Getting started

FM can be found in a unix directory structure called 'fm_user”. It is
available for copying to a users directory from ‘csgould' pathname
"1ee/fm_user”. fm_user is a collection of directories; two are called
Ip’ and ’nip’ and contain Prolog source files. The other directories
are sample applications.

Once you have copied the FM structure, you may create your own
application by the following procedure:

a. Create a new directory for your application inside fm_user,
and change directory to it.

b. Create your operator set, environment and initial state in three



sepate files, e.g.

operator set is in 'ops?’;

environment is in file ’env?;

iNnitial state is in 'init ;

Don’t forget to follow the syntax for Prolog terms,

for instance, make sure each operator in your operator set
is terminated by a full stop.

c. Copy two files ‘'options' and 'boot" from a sample application to

your directory - e.g. using directory 'boxes’ the commands would be:
cp -./boxes/options
cp -./boxes/boot

At this point your should have five files in your new directory.
Finally, you must adjust the options file to suit your application.

3.2 The Options File

This is a file of Prolog terms providing control

over current choices available to the user. FM is primarily a

exper imental system, and the user is warned not to change any options
apart from the first four, without seeking further help. The first
four terms in the file are:

strategy(<search type=>).
operator_file(<=file_name>) .
environment_file(<file_name=>=).
init file(<file_name>).

<search type> may be either

Nnip’ .. to choose the non-linear problem solver;
mea’ .. to choose the goal directed Ilinear problem solver;
‘forward' .. to choose the breadth first problem solver.

For example, for the file names in 3.1, you should change the first
four lines of the options file to:

strategy(mea).
operator_file(ops).
envi ronment_file(env).
init_ file(in1t).

This chooses the mea problem solver, which at the moment is by far
the most efficient!



4. Running FM

To run the FM system, you must first change directory to that of your
desired application.

If using the NIP system, invoke prolog by typing ’nip”, then type
L. -/lp/bootni p'] .

This wvill load in the prolog files, and will take about two
minutes.
If you are using C-prolog, type the ’prolog command to invoke prolog
then type:
[boot] .

To start your application, simply type “b. followed

by a return; you will be asked to enter a task (a conjunction of
predicates followed by a full stop). After FM has solved your task
(be patient!), you may enter another by typing ’“b.” again.

Note that the next task will start from the advanced state

containing your last goal condition.
Here is an example trace, using mea search, and the boxes example.

Script started on Thu Feb 25 15:33:09 1988
cssun5% nip

Edinburgh Prolog, version 1.5 (1st June 1987)
Al Applications Institute, University of Edinburgh

| ?- [boot].
options consulted: 2008 bytes 0.50 seconds

™™ Junk )

./Ip/boot consulted: 88588 bytes 137.75 seconds
boot consulted: 88608 bytes 137.77 seconds
yes

| ?- b.

This is the non-linear planner..

My environment is called boxes_1

My current world is

onf1 oor(box4)&handempty&onfioor(box3)&onfl1oor(box2)&
onfloor(box 1)&ontop(box5,box 1)&clear(box2)&c1ea r(box3)
Sclear(box4)&clear(box5)

Enter task or "h" for help=ontop(box2,box5).

ontop(box2,box5)
1****expanding init size 0



planning completed
By sequence of operators

(pickofffloor(box22),puton box(box2 , box5) ]
goal ontop(box2,box5) is satisfied, new state is

handempty&cl ear(box2)&ontop(box2,box5)&onfloor(box4)&
onfloor(box3)&onfloor(box1)&ontop(box5,boxl)&clear(box3)
&clear ( box4)

10 plans generated

yes
| ?- b.

This is the non-linear planner..

My environment is called boxes_1

My current world is

handempty&cl ear(box22)&ontop(box2,box5)&onf loor(box4 )&
onfloor(box3)&onfloor(box1)&ontop(box5,boxl)&clear(box3)
&cl1ea r(box4 )

Enter task or “h" for he1p=hoiding(box5)&ontop(box2, box3).
hoid i ng(box5)&ontop(box2,box3)

planning completed
By sequence of operators

[pickoffbox(box2,box5),puton box(box2,box3) , pickoffbox(box5,box1)]
goal hoiding(box5)&ontop(box2,box3) is satisfied, new state is

clear(box1)&holding(box5)&clear(box2)&ontop(box2, box3)
&onfloor(box4)&onfloor(box3)&onfloor(box 1)&c1£a r(box4)
19 plans generated

yes
| ?-
Prolog terminated

cssun5%
script done on Thu Feb 25 16:40:37 1988



