

City, University of London Institutional Repository

Citation: Pigaglio, M., Ascgil, O., Krol, M., Rene, S., Lange, F., Peeroo, K., Sadre, R.,

Stankovic, V. & Rivière, E. (2025). PANDAS: Peer-to-peer, Adaptive Networking Allowing
Data Availability Sampling within Ethereum Consensus Timebounds. Paper presented at the
ACM/IFIP International Middleware Conference, 15-19 Dec 2025, Tennesee, USA.

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/36073/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

PANDAS: Peer-to-peer, Adaptive Networking Allowing Data
Availability Sampling within Ethereum Consensus Timebounds

Matthieu Pigaglio
UCLouvain

Belgium

Onur Ascigil
Lancaster University

United Kingdom

Micha! Król
City, University of London

United Kingdom

Sergi Rene
Datahop Labs

United Kingdom

Felix Lange
Ethereum Foundation

Germany

Kaleem Peeroo
City, University of London

United Kingdom

Ramin Sadre
UCLouvain

Belgium

Vladimir Stankovic
City, University of London

United Kingdom

Etienne Rivière
UCLouvain

Belgium

Abstract
Layer-2 protocols such as rollups can help address Ethereum’s
throughput limits. An efficient data availability layer is key for
layer-2 support in Ethereum, but broadcast methods do not scale. A
promising approach is the selective distribution of layer-2 data and
its verification by data availability sampling (DAS). Integrating DAS
with Ethereum consensus is, however, a challenge, as data must be
shared and sampled within 4 seconds of each consensus slot.

We propose PANDAS, a practical approach to integrating DAS
with Ethereum without modifying Ethereum’s core protocols. PAN-
DAS disseminates layer-2 data and samples its availability using
lightweight, direct exchanges. Its design accounts for message loss,
node failures, and unresponsive participants. Our evaluation in a
1,000-node cluster and simulations for up to 20,000 peers show that
PANDAS allows layer-2 data dissemination and sampling under
planetary-scale latencies within the 4-second deadline.

CCS Concepts
• Computer systems organization → Peer-to-peer architectures;
Fault-tolerant network topologies.

Keywords
Ethereum, Data Availability Sampling, Peer-to-peer, Performance

ACM Reference Format:
Matthieu Pigaglio, Onur Ascigil, Micha! Król, Sergi Rene, Felix Lange,
Kaleem Peeroo, Ramin Sadre, Vladimir Stankovic, and Etienne Rivière.
2025. PANDAS: Peer-to-peer, Adaptive Networking Allowing Data Avail-
ability Sampling within Ethereum Consensus Timebounds. In 26th ACM
Middleware Conference (Middleware ’25), December 15–19, 2025, Nashville,
TN, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3721462.3770769

This work is licensed under a Creative Commons Attribution 4.0 International License.
Middleware ’25, December 15–19, 2025, Nashville, TN, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1554-9/25/12
https://doi.org/10.1145/3721462.3770769

1 Introduction
Ethereum, the largest blockchain supporting smart contracts, cur-
rently supports adding less than a few tens of transactions per second
to its main (layer-1) chain. Complementarily to layer-1 scalability
improvements [32, 54], expanding support for layer-2 protocols [30]
is now a priority for the Ethereum community [22].

Layer-2 protocols such as side chains and rollups have the po-
tential to process a large number of transactions [30, 37]. These
protocols periodically produce compressed or batched layer-2 trans-
action data, which they make available via layer-1 data availabil-
ity mechanisms. For instance, participants in an optimistic rollup
can download this data, verify its correctness, and submit fraud
proofs [25, 39, 49].

The throughput of layer-2 protocols depends on how much data
they can attach to layer-1 blocks. Previously, the only solution was
adding layer-2 data as costly calldata transactions. These transac-
tions competed for permanent block space with other layer-1 trans-
actions, such as ETH transfers. In March 2024, the EIP-4844 pro-
posal [10] introduced the notion of blobspace. Layer-2 data can now
be shared as opaque binary objects (blobs). Blobs are broadcast
separately and referenced by blob-carrying transactions in the block,
which include cryptographic commitments to referenced blob con-
tent. Nodes participating in consensus verify these commitments and
make blob data available to layer-2 participants for a limited time
(4,096 epochs, ↑18 days). While improving over calldata transac-
tions in terms of costs and supported volume, EIP-4844 still requires
blob data to be broadcast and received by all nodes.

A key target of Ethereum is to scale data availability support. The
Danksharding roadmap [23] aims to support up to 32 MB blob data
attached to every layer-1 block. To avoid broadcasting this volume
of data globally, blob data is erasure-coded, split, and distributed
as collections of cells, so that each node holds only a fraction of
the data. This shift introduces a new challenge: no single node can
independently verify the availability of the full blob. This verifica-
tion remains, nonetheless, necessary to attest to the validity of the
corresponding block. To address this, Ethereum plans to adopt data
availability sampling (DAS), wherein nodes collect random sample
cells from the network until they reach overwhelming confidence

https://doi.org/10.1145/3721462.3770769
https://doi.org/10.1145/3721462.3770769
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3721462.3770769

Middleware ’25, December 15–19, 2025, Nashville, TN, USA Pigaglio et al.

that the complete data can be reconstructed. The Danksharding tar-
get parameters imply sending 140 MB of erasure-coded cells to the
network, with each node randomly sampling 73 cells (40 KB).

Integrating DAS and Ethereum consensus is a challenge. The
need for each node to collect randomly selected samples results in a
multitude of exchanges over high-latency links. At the same time,
Ethereum’s consensus imposes tight time constraints. A new block
is generated every 12 seconds. A committee must validate each new
block within the first four seconds after it is created. Validating the
availability of associated blob data after this deadline (named the
trailing fork-choice rule [16]) may lead to reverting validation and
consensus decisions due to its unavailability. Modifying Ethereum
consensus to account for this possibility unfortunately opens the
door to new attacks based on ex-ante reorganizations [15]. Thus,
to avoid changes to the consensus protocol, DAS must ideally be
completed within four seconds of the corresponding block creation,
allowing committee members to attest to block validity and blob data
availability simultaneously (named the tight fork-choice rule [16]).

Contribution. We demonstrate that DAS can integrate with Ethereum
and meet Danksharding’s objectives under the tight fork-choice rule.
Blob data can be disseminated and sampled within the first four
seconds of a consensus slot, allowing nodes to confirm blob and
block data correctness at the same time. This removes the need to
adapt Ethereum’s consensus for delayed availability decisions.

We present PANDAS, a peer-to-peer protocol that supports DAS
in Ethereum. PANDAS builds upon the following key features:

• It aligns with recent Ethereum evolutions, including Proposer-
Builder Separation (PBS) [24, 33], which introduces powerful
builders responsible for preparing block and blob data and
ordinary proposers elected by Proof-of-Stake consensus [21].
PANDAS leverages builders for efficient seeding of blob data.

• It uses Ethereum nodes to host and sample blob data using
peer-to-peer interactions. In contrast to proposals under dis-
cussion for improving data availability layers in Ethereum [14,
41], PANDAS employs direct (one-hop) communication, us-
ing connectionless networking (UDP) rather than gossip-
based broadcast mechanisms available in Ethereum [60]. In-
teractions adapt to nodes’ unavailability and faults, meeting
the 4-second deadline in adverse environments or under in-
consistent network views by different participants.

• PANDAS supports Ethereum’s objectives of decentralization
and scalability. Nodes’ requirements stay well within the
hardware and bandwidth recommendations of Ethereum [6].
Requirements for builders align with the typical capacities of
public cloud instances and do not increase with system size.

We implement PANDAS over libp2p [5], the network stack of
the Ethereum Geth client [4], and deploy 1,000 nodes on an 80-server
cluster using representative emulated WAN latencies. Additionally,
we utilize a simulator whose results are cross-validated against proto-
type deployments. This enables us to confidently explore results for
up to 20,000 nodes. Our evaluation shows that PANDAS meets the 4-
second sampling deadline at all nodes at moderate scales and for the
vast majority of nodes at large scales, while maintaining low load on
builders and nodes. In contrast, baseline solutions based on Gossip-
Sub [60] or the Kademlia DHT [47] do not scale as well, incurring
higher overhead and failing to meet the 4-second deadline even at

moderate network sizes. Experiments involving a significant fraction
of unresponsive nodes and inconsistent views further demonstrate
that PANDAS’s operations are robust against faults and free-riders,
meeting the 4-second deadline for the majority of nodes even when
up to 50% of the nodes are misbehaving, and systematically detect
data unavailability.

Outline. This paper is organized as follows. We present prelimi-
naries about Ethereum, layer-2 protocols, and PBS (Section 2). We
detail the DAS principles and the Danksharding objectives and an-
alyze the associated networking and communication requirements
(Section 3). We present our model and assumptions, and detail our
design objectives (Section 4). PANDAS uses a deterministic assign-
ment of blob data to nodes (Section 5). It operates in three phases,
from the seeding of blob data by a builder to nodes consolidation
of this data and its sampling (Section 6). PANDAS uses direct and
efficient but unreliable UDP communications. An adaptive fetching
protocol arbitrates between request redundancy and time constraints
(Section 7). We evaluate PANDAS and compare it to baselines (Sec-
tion 8). We discuss our results (Section 9) before covering related
work (Section 10) and concluding (Section 11).

Code availability. Our implementation of PANDAS, its simulator,
and reproducibility material are all available open source [51].

2 Preliminaries
We provide an overview of Ethereum, its consensus, the Proposer-
Builder Separation principle, and layer-2 protocols.

Ethereum. Ethereum is an open blockchain using Proof-of-Stake
(PoS) consensus [21]. Holders of ETH, Ethereum’s virtual currency,
can lock 32 ETH (their stake) or more to operate a validator, i.e., a
virtual entity participating in the validation of new blocks.

Time in Ethereum is divided into slots of 12 seconds and epochs
of 32 slots. In every slot, a new block is added to the blockchain.
A subset of validators is deterministically selected to participate
in each consensus slot. One of them, the proposer, is responsible
for forming and spreading a new block. Some validators produce
attestations of this new block, while others collect these attestations
and publish aggregate decisions. As a result, consensus is split into
three phases: (1) the broadcast of a new block and its verification
by the committee; (2) the propagation and collection of attestations;
and (3) the generation and broadcast of aggregate decisions. Each
phase accounts for a third of the slot duration, i.e., 12/3 = 4 seconds.

Servers called full nodes, or simply “nodes” for the rest of this
paper, participate in the Ethereum network. Nodes can, but do not
have to, host validators. A node is identified by its IP address and
a public key, which are shared through Ethereum Node Records
(ENR) propagated through the network and stored in the underlying
Kademlia DHT [42, 47]. While nodes can collect all ENRs by crawl-
ing the DHT [11, 19, 55, 59], the association between a node and a
specific validator should not be public [34]. Deanonymizing the link
between the two leads to security threats such as DDoS or targeted
abuse of slashing mechanisms [50]. All nodes, whether they host a
validator or not, use the consensus committee’s aggregate decisions
to determine whether a block is accepted.

The dissemination of new blocks, attestations, and aggregate
decisions is supported by GossipSub [60], a peer-to-peer overlay
that enables multi-hop, controlled flooding of data.

PANDAS: Peer-to-peer, Adaptive Networking Allowing Data Availability Sampling in Ethereum Middleware ’25, December 15–19, 2025, Nashville, TN, USA

tx1
tx2
...

txn

builder P

H

txs

node supporting
validator elected as proposer

transactions gossip
broadcast

all nodes

new block

Figure 1: Proposer-Builder Separation (PBS). The proposer,
elected based on stake, selects a block among those prepared by
builders. The block is broadcast by gossip to all nodes.

Proposer-Builder Separation. Forming new blocks is increasingly
computationally expensive, particularly with the rising importance
of Maximal Extractable Value (MEV) [31]. Any node hosting a
validator that can be elected as a proposer would need to provision a
powerful server. It is essential to prevent such hardware and band-
width requirements from leading to a concentration of consensus
power among a limited number of actors. Proposer-Builder Separa-
tion (PBS), illustrated in Figure 1, addresses this risk by separating
the role of building a block and the role of proposing it for con-
sensus. This enables a few dedicated builders to form new blocks
while maintaining decentralized consensus among many nodes that
host validators, which only require modest computational and net-
working capacities, as defined, e.g., by EIP-7870 [6]. With PBS,
the node supporting the proposer selects one of the blocks prepared
by builders. The block is then broadcast to all nodes using Gossip-
Sub. Today, PBS is responsible for around 90% of Ethereum block
creation [33, 44], principally through the MEV-Boost network [28].
Builders receive block construction fees for blocks selected by pro-
posers and accepted by consensus; therefore, they are incentivized
to produce correct blocks.

Layer-2 protocols. The throughput of Ethereum’s chain (i.e., layer-
1) is limited to the number of transactions that can fit in a block.
Layer-2 protocols move some of the transaction handling and valida-
tion processes to a separate layer while benefiting from the security
and decentralization of the layer-1 chain. There exist many variants
of layer-2 protocols [30, 37].

Rollups are exemplary layer-2 solutions that process transactions
off-chain. They publish the resulting state together with a commit-
ment via a call to a smart contract in a regular layer-1 transaction.
Furthermore, the compressed transactions are shared through a data
availability mechanism. Rollup variants include optimistic ones [25]
posting compact hashes of transactions’ states, e.g., Arbitrum [39]
and Optimism/Bedrock [49], and ZK rollups [18] posting zero-
knowledge proofs of validity, e.g., ZkSync [46] or Polygon [52].
The volume of layer-2 transactions that can be anchored to the
layer-1 chain is directly linked to the volume of blob data that can
be made available. This data needs to be available for a sufficient
time for a protocol’s participants to verify it (e.g., verifying the ZK
proof [18, 46, 52] or generating a fraud proof [25, 39, 49]). Unlike
regular layer-1 transactions, however, layer-2 data does not need to
persist indefinitely nor be verified for correctness by layer-1 nodes.

3 Data Availability Sampling
Ethereum’s current mechanism for attaching layer-2 data to layer-1
blocks is EIP-4844 (Proto-Danksharding) [10]. It attaches a limited
number of data blobs (binary objects) to each block. This blob data
is broadcast to all nodes. Nodes hosting committee members must

tx1
tx2
...

txn
txs

new block

transactions

extended blob (140 MB)layer-2 data

KZG
proof

blob (32 MB)

Cx,y

KZGP

erasure-
coded cell

256

25
6

512

512

KZG
commitment

KZGC

Figure 2: Builder preparatory operations for DAS. 32 MB of
data is aggregated in a blob of 256↓256 cells, extended to 512↓512
cells using erasure coding. Each resulting cell includes a proof
(KZGP) linking it with the Kate-Zaverucha-Goldberg commit-
ment (KZGC) in the corresponding blob-carrying transaction.

validate the corresponding commitments contained in blob-carrying
transactions. To keep the costs of operating a node reasonable and
preserve decentralization, EIP-4844 limits the number of 128-KB
blobs to 3 (on average) and 6 (maximum) or to 0.375 and 0.75 MB
of data.

The Ethereum roadmap aims for a significant scale-up of the vol-
ume of data that can be attached to each block, under the Dankshard-
ing proposal [23]. This proposal targets up to 32 MB of blob data
attached to each block. It is intimately linked to PBS and relies on
builders’ computational and networking power to collect, aggregate,
and share layer-2 data. With such volumes, fully disseminating blob
data to all nodes is no longer realistic. Instead, each node receives
and stores a subset (shard) of it. For an individual node, receiving a
subset does not guarantee the availability of the complete blob data.
Data Availability Sampling (DAS) is what enables this verification.
It consists of three phases. First, the blob is extended using erasure
coding. Second, each shard of extended blob data is distributed
to a subset of nodes for hosting. Third, nodes collect samples, al-
lowing them to consider the data they do not host available (or
reconstructable) with an overwhelming probability.

The target parameters are compromises between computational
costs for builders, scalability, and supported volume, discussed in
the Ethereum community [13, 27]. Figure 2 details the construction
of blob data under these parameters. The blob aggregates 32 MB
of data, split into cells of 512 B, organized as a 256 ↓ 256 matrix.
Releasing only a subset of blob data is a data withholding attack. The
base blob is highly amenable to such an attack, as sharing all but one
cell makes some data unavailable, threatening the security of layer-2
protocols. To prevent data withholding and allow data reconstruction
after losses, the blob is extended using a two-dimensional Reed-
Solomon erasure code [61]. Each row and column doubles in size
but can now be reconstructed from any 50% of its cells. The resulting
extended blob is now a 512↓512-cell matrix. In addition to the 512 B
of data, each cell includes a 48 B Kate-Zaverucha-Goldberg proof
(KZGP) [40]. This proof links the cell’s content to a commitment
(KZGC) registered in a layer-1 blob-carrying transaction. In total,
the extended blob is (512 ↓ 512) ↓ (512 + 48) = 140 MB in size
including 12 MB of KZGPs.

Following the dissemination of extended blob data, nodes verify
its availability by attempting to download randomly chosen cells.
Collecting more random samples means higher confidence in the
availability or reconstructability of blob data. The number of cells to
sample depends on the maximum acceptable rate of false positives,
i.e., of incorrectly determining availability. The minimal amount

Middleware ’25, December 15–19, 2025, Nashville, TN, USA Pigaglio et al.

minimal reconstructable blob maximal non-reconstructable blob

256
25

6

can reconstruct
using erasure code

cannot reconstruct

257

25
7

available data

Figure 3: The minimal data enabling reconstruction (left), and
the maximal data preventing it (right).

of data necessary to enable reconstruction is half of the cells for
either 256 distinct rows or 256 distinct columns, as illustrated by
Figure 3-left (note that collecting any 256 ↓ 256 = 65, 536 cells may
not provide this guarantee). The maximal amount of data that can
be shared while preventing reconstruction is the 512 ↓ 512 matrix
minus a 257 ↓ 257 square sub-matrix, as illustrated by Figure 3-
right. If a fraction 𝐿 of cells was not shared in the network, the
probability of not hitting an unavailable cell with 𝑀 samples is (1↔𝐿)𝐿 .
The false positive probability for availability sampling is, therefore,
upper-bounded by

∏𝐿↔1
𝑀=0 1 ↔ 257↓257

512↓512↔𝑀 . Discussions in the Ethereum
community [20] suggest using 𝑀 = 73 samples, which gives an upper
bound false positive probability lower than 10↔9. This corresponds
to 73 ↓ 560B = 40 KB worth of samples collected per node.

4 PANDAS: Objectives and Overview
PANDAS is a peer-to-peer protocol that integrates DAS with Ethereum
without requiring modifications to its consensus mechanisms. PAN-
DAS targets the parameters proposed by the Ethereum community
and listed in the previous section [13, 20, 27]; Its design can easily
adapt to variations of these parameters, within reasonable bounds set
by the hardware profile of nodes. This section presents our assump-
tions, details our objectives, and gives an overview of PANDAS.

4.1 Model and Assumptions
This work is based on the following models and assumptions.

System model. The network comprises 𝑁 nodes. Aligned with
Ethereum, the system is open, but each node 𝑂𝑀 ↗ 𝑁 is identified
by an ID 𝑃, i.e., a cryptographic hash of its public key. Nodes pe-
riodically advertise to store (and refresh) their ENR records in the
underlying Kademlia DHT. The ENR of a node contains its ID, pub-
lic key, and contact information (IP and port). Nodes can be reached
directly using this contact information.

The assignment of validators to nodes must remain unknown [34].
Therefore, it must be impossible to distinguish nodes that host val-
idators from those that do not. To maintain decentralization, nodes
must have commodity hardware and network capacities.1

Dedicated builders propose blocks. For every slot, the elected pro-
poser selects one block from a builder 𝑄. Builders have significantly
better capacity and connectivity than nodes (e.g., a medium-range
cloud instance with a recent multicore CPU and 10 Gbps network
upload capacity). The selected builder 𝑄 is responsible for sending
extended blob data to the network of nodes. After that, nodes interact
peer-to-peer to exchange this data for retrieval and DAS.

Network views. Each node, including builders, maintains a list of
all nodes in the system as its view𝑅 , i.e.,𝑅𝑁 is builder 𝑄’s knowledge

1EIP-7870 [6] provides guidelines for Ethereum nodes of 4 TB SSD storage, 32 GB
memory, and 50 Mbps (download) and 15 Mbps (upload) capacities.

of existing nodes, and 𝑅𝑂1 is that of a node 𝑂1. Views are filled by
periodically crawling the DHT [19], which typically takes about a
minute [11, 55, 59]. Views can be inconsistent (for any two nodes 𝑂1
and 𝑂2, we do not assume that 𝑅𝑂1 = 𝑅𝑂2 , and similarly for builders).
They may also be incomplete (𝑅 ↘ 𝑁 ≃ 𝑁) and contain departed
nodes (𝑅 ↔ 𝑁 ω ⇐). However, thanks to the periodic crawls, views
constantly converge towards the actual set of nodes.

Fault/attack model. We consider rational Byzantine behaviors for
all participants, i.e., incorrect participants may deviate from the
protocol but follow their economic interests (i.e., maximizing gains
in terms of rewards while avoiding resource expenditures). Nodes
may crash in a fail-silent mode [53] or simply act as freeriders and
refuse to respond to some or all incoming requests. Builders aim to
obtain block construction rewards while spending as few resources
as possible. A selected builder can attempt a data withholding attack,
i.e., avoid sharing some or all of the blob data to save on operational
cost or because it did not produce it. However, under our rational
assumption, a builder does not attempt to send incorrect data to the
network, as doing so would be against its economic interests (i.e,
this will be detected when checking KZGP and lead to no rewards,
while still incurring bandwidth costs).

4.2 Objectives
The primary objective of PANDAS is to ensure that dissemination
and sampling occur within four seconds of creating a block, and that
layer-2 clients can easily retrieve blob data. In addition:

• [Robustness] Sampling must meet the 4-second deadline
even with a large fraction of unresponsive nodes and/or when
nodes and builders have inconsistent views.

• [Scalability] Timing guarantees must hold with increasing
system size, and the load imposed on nodes and builders must
remain compatible with hardware profiles recommended for
decentralization [2].

• [Flexibility] Participating entities may be free to implement
local strategies for interacting with other system members,
aligning with their financial incentives.

We target the tight fork-choice rule [16], i.e., DAS sampling
is required before attesting to a block by committee members: a
block with valid transactions but unavailable data is attested as
invalid. As a result, we do not modify the consensus protocol beyond
adding sampling as a verification step for nodes hosting committee
member validators. This contrasts with the trailing fork-choice rule
that postpones sampling to later, and requires non-trivial changes
to consensus to be able to revert blocks with unavailable blob data.
Similarly, we do not wish to modify Ethereum’s discovery protocols
(i.e., the DHT holding ENRs) and assume nodes use unmodified
crawl mechanisms to collect their views [11, 55, 59].

4.3 PANDAS in a nutshell
The high-level principles of PANDAS are illustrated by Figure 4. At
the beginning of a slot, the node hosting the elected proposer selects
a block from one of the builders (✁). This block is disseminated
via a dedicated, system-wide GossipSub channel (✂). At the same
time, the same node requests the builder to publish blob data in the
network. The builder seeds the network with extended blob cells,
using direct communication to nodes in its view (✃). Every node is

PANDAS: Peer-to-peer, Adaptive Networking Allowing Data Availability Sampling in Ethereum Middleware ’25, December 15–19, 2025, Nashville, TN, USA

P

elected
proposer broadcast

block
using
gossip

txs

seeding
of blob cells

generates
block

peer-to-peer
sampling of cells

1

2

3

4

builder

Header

Figure 4: Distributed interactions following the selection of a
new block by the proposer (✁). In parallel to the gossip block
dissemination (✂), the builder distributes extended blob data
to nodes in the network (✃). All nodes interact peer-to-peer to
consolidate their assignment and collect random samples (✄).

t=8s

1

time

t=0

4

t=4s t=12s

1

sampling of 73 random cells

block selected by proposer
dissemination of block by gossip

next block

3 seeding by builder of extended blob cells

⚠ 4-second limit for block verification and sampling

2

consensus

attestation propagation attestation aggregation

: reception of seed cells triggers the next two parallel phases

4 consolidation of missing custodied cells

Figure 5: Timeline of events within a slot. Starting from the
selection of a new block by the proposer (time 0, ✁), two concur-
rent processes start for nodes that must both terminate within
4 seconds: block dissemination (✂) and extended blob data dis-
semination (✃), consolidation, and sampling (✄).

assigned a subset of cells that it must keep in custody for the rest of
the network. The builder may send only a subset of this assigned
data to each node directly. To serve all assigned data, nodes fetch
missing cells from other nodes through consolidation (✄). In parallel,
nodes select 73 cells randomly and send requests to nodes whose
responsibility includes them, implementing the sampling phase.

Figure 5 represents the timeline of operations. The dissemination
and verification of block and blob data are concurrent. Nodes initiate
consolidation and sampling when they receive their seed cells from
the builder. A node supporting an active validator can vote for a
block if the block verification and the data availability sampling are
successful before the 4-second deadline.

As ENRs do not allow distinguishing between nodes supporting
validators and nodes that do not, all correct nodes are expected to
custody data as long as they are registered in the DHT. We also as-
sume all correct nodes perform DAS. In particular, we avoid having
only committee members performing DAS, as it would reveal the
association between validators in the committee and nodes [34].

Communication between all actors in PANDAS is based on one-
way UDP networking with no signalling overhead (i.e., there is no
establishment of connections or keep-alive messages). We stress
that all Ethereum nodes already use UDP in the discovery protocol
required to join the network [29]. Blob data is public and, therefore,

sent unencrypted, avoiding a time-consuming encrypted channel
establishment. Messages are authenticated with a digital signature
using the recipient’s public key. KZGPs further allow the authen-
ticity of the received blob data to be verified. Peer-to-peer requests
may fail silently due to packet loss or incorrect nodes. To alleviate
this and meet the deadline, PANDAS relies on builders adopting
efficient seeding strategies, reconstructing cells using the erasure
code, and nodes employing an adaptive fetching strategy that adapts
request redundancy and aggressiveness to the available time budget.
Similarly, the impact of freerider nodes that do not participate in
custody and consolidation is mitigated by redundancy. Incorrect
nodes that forfeit the sampling phase only reduce the system load.

In the following sections, we detail the components of PANDAS.
We start with the deterministic association between blob data and
nodes (Section 5). Then, we present the three phases of seeding, con-
solidation, and sampling (Section 6). We finally detail the adaptive
fetching strategy (Section 7).

5 Cell to Nodes Assignment
The first component of PANDAS is an assignment between blob data
and nodes. A function 𝑆 (𝑂𝑀) returns a list of cells from the 512↓512
matrix.Node 𝑂𝑀 is tasked with their custody, i.e., hosting and serving
these cells for sampling queries and access by layer-2 participants.

All nodes and builders know 𝑆 . We set two requirements for
𝑆: it must be deterministic and short-lived. Determinism means
𝑆 (𝑂𝑀) must be computed identically by two nodes 𝑂𝑃 and 𝑂𝑁 even if
𝑅𝑂𝐿 ω 𝑅𝑂𝑀 .2 Short-liveness means that the assignment must change
periodically and be unpredictable. This prevents the emergence of
attacks based on eclipsing nodes in charge of specific cells [45, 62]
or censorship of specific data [58].

Even though adjacent cells likely contain data for distinct layer-2
protocols, storing them together on the same node favors efficient
reconstruction, as it requires fetching multiple cells from the same
row or column. Thus, PANDAS assigns complete rows and columns
to each node. The number of rows and columns assigned to each
node is a globally known parameter. By default, we use eight distinct
rows and columns per node. Each node hosts 8↓ 512 + 8↓ (512↔ 2)
cells, i.e., 8, 176 ↓ (512 + 48) ⇒ 4.4 MB of data per slot.3

To enable determinism and short-liveness, the assignment 𝑆 is a
pseudo-random sortition, as used by Ethereum consensus. For every
epoch, a globally verifiable, pseudo-random sortition decides which
nodes will be members of committees or proposers in each slot. This
decision uses a pseudo-random number generator (PRNG) and an
epoch seed known one epoch in advance (32 slots, ⇒6.4 minutes)
from a combination of random values proposed by validators (i.e.,
the “RANDAO” state [17]). PANDAS builds upon this mechanism
by seeding the assignment function 𝑆 for an epoch 𝑇 with its corre-
sponding epoch seed s𝑄 . We extend the definition of 𝑆 to include the
epoch number, i.e., 𝑆 (𝑂𝑀 , 𝑇) generates eight distinct rows and eight
distinct columns for 𝑂𝑀 using a PRNG seeded by s𝑄 .

2Using consistent hashing, as in DHTs, does not meet this requirement: if 𝑂𝐿 knows a
node 𝑂𝑁 that 𝑂𝑀 does not know, 𝑂𝐿 may associate cells to 𝑂𝑁 that 𝑂𝑀 associates to 𝑂𝐿 .
3Blob data is kept for 4,096 epochs (131,072 slots), thus each node must custody
⇒ 559 GB of data, but never more as old data is discarded. In contrast, the size of the
layer-1 chain is ⇒1.5 TB and will continue to increase. Both fit within the 4 TB of SSD
space recommended by EIP-7870 [6]. In the long run, custody of layer-2 data is more
economical in terms of disk space than increasing layer-1 block size.

Middleware ’25, December 15–19, 2025, Nashville, TN, USA Pigaglio et al.

B

<latexit sha1_base64="ruc0yoJEn1Z5ruVAc/AQXfccAEU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqyH6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A2qOM/Q==</latexit>n <latexit sha1_base64="4jeZjtm1pgsCCYz70fGNihGknZA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSg+pX+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14tUqtfvLcv0mj6MAp3AGF+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwABio2i</latexit>n2
<latexit sha1_base64="UhtGKd8rNkKDDK+/+XMpf+Pp1cY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2pQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9erd/XKg03j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/8ZjZI=</latexit>n4

<latexit sha1_base64="LjAaTf433kr+EJ2gMbR4dK7nrwE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9W/7JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wrd1fVepuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwD9lY2R</latexit>n3
<latexit sha1_base64="qB64SbrOw3+XwIfohCUad91EDz8=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vjw4rEF+wFtKJvtpF272YTdjVhCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/Pbj6g0j+W9mSToR3QoecgZNVZqPPVLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVa8aqXauCrX3DyOApzCGVyAB9dQgzuoQxMYIDzDK7w5D86L8+58LFrXnHzmBP7A+fwB5GGM9Q==</latexit>x

<latexit sha1_base64="sqIhL4KVWvV2gBckLGle3uIl4D8=">AAACBnicbVDLSgMxFM34rPU16lKEYBHqpsxIqS4LblxWsA/oDEMmzbShSWZIMmIZZuXGX3HjQhG3foM7/8a0nYW2HggczrmHm3vChFGlHefbWlldW9/YLG2Vt3d29/btg8OOilOJSRvHLJa9ECnCqCBtTTUjvUQSxENGuuH4eup374lUNBZ3epIQn6OhoBHFSBspsE8eoEcF9BQdclT1MhFkrjeItarnXn4e2BWn5swAl4lbkAoo0ArsLxPGKSdCY4aU6rtOov0MSU0xI3nZSxVJEB6jIekbKhAnys9mZ+TwzCgDGMXSPKHhTP2dyBBXasJDM8mRHqlFbyr+5/VTHV35GRVJqonA80VRyqCO4bQTOKCSYM0mhiAsqfkrxCMkEdamubIpwV08eZl0Lmpuo9a4rVeaTlFHCRyDU1AFLrgETXADWqANMHgEz+AVvFlP1ov1bn3MR1esInME/sD6/AFXMphf</latexit>

x → ω({n1...4})

minimal

<latexit sha1_base64="ruc0yoJEn1Z5ruVAc/AQXfccAEU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqyH6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A2qOM/Q==</latexit>n <latexit sha1_base64="4jeZjtm1pgsCCYz70fGNihGknZA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSg+pX+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14tUqtfvLcv0mj6MAp3AGF+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwABio2i</latexit>n2
<latexit sha1_base64="UhtGKd8rNkKDDK+/+XMpf+Pp1cY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2pQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9erd/XKg03j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/8ZjZI=</latexit>n4

<latexit sha1_base64="LjAaTf433kr+EJ2gMbR4dK7nrwE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9W/7JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wrd1fVepuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwD9lY2R</latexit>n3 single

redundant
(r=2)

<latexit sha1_base64="ruc0yoJEn1Z5ruVAc/AQXfccAEU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqyH6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A2qOM/Q==</latexit>n
<latexit sha1_base64="4jeZjtm1pgsCCYz70fGNihGknZA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSg+pX+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14tUqtfvLcv0mj6MAp3AGF+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwABio2i</latexit>n2

<latexit sha1_base64="UhtGKd8rNkKDDK+/+XMpf+Pp1cY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2pQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9erd/XKg03j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/8ZjZI=</latexit>n4

<latexit sha1_base64="LjAaTf433kr+EJ2gMbR4dK7nrwE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9W/7JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wrd1fVepuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwD9lY2R</latexit>n3

<latexit sha1_base64="ruc0yoJEn1Z5ruVAc/AQXfccAEU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqyH6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A2qOM/Q==</latexit>n <latexit sha1_base64="4jeZjtm1pgsCCYz70fGNihGknZA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSg+pX+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14tUqtfvLcv0mj6MAp3AGF+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwABio2i</latexit>n2
<latexit sha1_base64="UhtGKd8rNkKDDK+/+XMpf+Pp1cY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2pQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9erd/XKg03j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/8ZjZI=</latexit>n4

<latexit sha1_base64="LjAaTf433kr+EJ2gMbR4dK7nrwE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9W/7JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wrd1fVepuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwD9lY2R</latexit>n3

direct seeding
by builder

seeding
policies:

extended blob

Figure 6: Three seeding policies. The “minimal” policy splits the
first half of each row or column amongst known peers having it
in their assignment. The “single” policy splits the entire row or
column. The “redundant” policy shares each split to 𝑈 nodes.

6 PANDAS Protocol Phases
We detail the PANDAS protocol phases: seeding, consolidation, and
sampling, illustrated in Figures 4 & 5. The latter two are concurrent.

6.1 Seeding phase
The interactions start with an initial seeding phase. This phase starts
when a proposer selects a block from a builder 𝑄. In parallel to
gossiping the block to the network, the proposer asks 𝑄 to seed the
corresponding blob data to the network. All nodes know the pro-
poser’s identity and public key before the slot starts. However, they
do not know who 𝑄 is. Due to the strict time constraints, nodes cannot
wait to receive the block via gossip to learn this information and start
accepting blob data. To allow nodes to distinguish legitimate blob
data, the proposer provides the builder with a digital signature bind-
ing 𝑄’s identity (including its IP address) to the proposer’s private
key. This signature is attached to every seeding message.4

In a naive approach, the selected builder 𝑄 could send all cells
in 𝑆 (𝑂, 𝑇) to every node 𝑂 ↗ 𝑅𝑁 . The necessary outgoing bandwidth
now depends on the size of the builders’ view, close to or equal
to that of the entire network. With ⇒4.4 MB per node (eight rows
and eight columns) and, say, 10,000 known nodes, the necessary
bandwidth budget is 42.9 GB (343.7 Gb). With a 10 Gbps connection,
as available with modern, medium-end cloud instances, the process
takes more than 30 seconds, largely missing the 4-second deadline.

A better approach is to send a fixed amount of data to the net-
work and determine a level of redundancy for the cells within each
row and column. For a row (or column) 𝑉 , 𝑄 decides which cells
of 𝑉1, . . . , 𝑉512 to send to the network and with what degree of re-
dundancy. It dispatches these cells to the nodes assigned to 𝑉 in the
current epoch 𝑇 that it knows, i.e., 𝑅𝑁 (𝑉) = {𝑂 ↗ 𝑅𝑁 | 𝑉 ↗ 𝑆 (𝑂, 𝑇)}.
Each node in𝑅𝑁 (𝑉) receives only a subset of its assigned cells. There-
fore, each node must still fetch the missing cells from its peers, a
process we call consolidation, detailed in the following subsection.

Seeding policies. Figure 6 illustrates three example policies. We
stress that, according to the flexibility objective of PANDAS, actors
should be able to rationally select a strategy based on their economic
interest. In the case of the builder, the objective is to maximize
the probability of obtaining block rewards (linked to the success of
DAS), while minimizing the expenditure of resources.

4While the proposer’s signature allows verifying the legitimacy of 𝑁, the correctness of
the received cells’ KZGP from 𝑁 cannot be checked against the KZGC before receiving
the block and its blob-carrying transactions. It is, however, not in the builder’s interest
to send fake blob data that will eventually cause it to lose the rewards.

extended blob

cells to consolidate

cells to sample

seeded cells

<latexit sha1_base64="4jeZjtm1pgsCCYz70fGNihGknZA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSg+pX+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14tUqtfvLcv0mj6MAp3AGF+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwABio2i</latexit>n2

<latexit sha1_base64="UhtGKd8rNkKDDK+/+XMpf+Pp1cY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2pQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9erd/XKg03j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/8ZjZI=</latexit>n4

<latexit sha1_base64="LjAaTf433kr+EJ2gMbR4dK7nrwE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9W/7JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wrd1fVepuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwD9lY2R</latexit>n3

received

received

received

(optional)
consolidation boost

received from builder: to be fetched from peers:

Figure 7: Consolidation and sampling phases must fetch cells
from other nodes. Information from the builder consists of initial
cells and an optional consolidation boost map.

A “minimal” policy sends a single copy of half of the cells of
𝑉 , i.e., 𝑉1, . . . , 𝑉256 (i.e., the minimal amount of data necessary to
reconstruct the row or column). The builder splits 𝑉1, . . . , 𝑉256 into
|𝑅𝑁 (𝑉) | parcels of adjacent cells and distributes them randomly to up
to 256 nodes in𝑅𝑁 (𝑉). It repeats the process for all rows and columns.
The total amount of data sent out is 256↓ 256↓ (512 + 48) = 35 MB.
This strategy fails to make data available if even a single message is
lost. We primarily use it as a baseline for the builders’ costs.

A second, “single” policy leverages the redundancy allowed by
the erasure code. It operates similarly to the minimal policy but
sends a single copy of all of the cells of each row or column 𝑉 , split
to up to 512 nodes in 𝑅𝑁 (𝑉). In total, it sends out the size of the
extended blob, i.e., 140 MB. This strategy’s rationale is that even
if half of the cells are lost, nodes can still reconstruct the row or
column using the erasure code.

The third, “redundant” strategy, adds further redundancy by send-
ing 𝑈 copies of each cell. It starts from the single policy, splitting
the cells of 𝑉 between nodes in 𝑅𝑁 (𝑉). Then, each parcel is further
assigned to 𝑈 ↔ 1 randomly selected distinct nodes in 𝑅𝑁 (𝑉). We use
𝑈 = 8 by default. The outgoing bandwidth usage for the builder is
1,120 MB = 1.09 GB.

6.2 Consolidation phase
The objective of the second phase, consolidation, is for a node 𝑂 to
rapidly get hold of all the cells of rows and columns assigned by
𝑆 (𝑂, 𝑇). Thanks to the erasure code, collecting half of the cells of a
given row or column is sufficient to consolidate it.

Consolidation begins at 𝑂 upon receipt of seed cells from builder
𝑄. If 𝑂 receives a request from another node linked to a slot for which
it has not yet received its seed cells, it activates a timer (we use a
default value of 400 ms). Consolidation starts without seed data if
the timer expires before 𝑂 receives cells from 𝑄, either due to packet
loss or because 𝑄 does not yet know 𝑂 (i.e., 𝑂 ε 𝑅𝑁).

The orchestration and timing of requests for fetching missing
cells are delegated to PANDAS’s fetching strategy, shared with the
sampling phase, and detailed in the next section.

To fetch missing cells, 𝑂 contacts peers with overlapping rows
and columns, 𝑊𝑂 (𝑉) = {𝑂⇑ ↗ 𝑅𝑂 | 𝑉 ↗ 𝑆 (𝑂, 𝑇) ⇓ 𝑉 ↗ 𝑆 (𝑂⇑, 𝑇)}. In
a view with 10,000 nodes assigned eight rows and eight columns
each, each row or column is assigned to 10000↓ (8+8)

512↓2 ⇒ 156 nodes on
average. Depending on the builder’s seeding strategy, each may have
received only a subset of the data. Asking many peers for cells may
increase the chances of “hitting” the ones that received the needed
cells via seeding, but it leads to many duplicates. In contrast, asking

PANDAS: Peer-to-peer, Adaptive Networking Allowing Data Availability Sampling in Ethereum Middleware ’25, December 15–19, 2025, Nashville, TN, USA

only a few random peers may require the selected nodes to finish
their consolidation to respond, leading to a lengthy response delay.

A fast and effective consolidation aligns with the economic in-
terests of the builder. It improves the odds that sampling finishes
on time, and the builder may send less data to the network. We
improve these two factors with consolidation boosting, as illustrated
by Figure 7. The builder 𝑄 attaches to the seeding message to 𝑂 a
map CB. For every row and column 𝑉 ↗ 𝑆 (𝑂, 𝑇), CB(𝑉) lists the cells
received by other nodes 𝑂⇑ ↗ 𝑅𝑁 where 𝑉 ↗ 𝑆 (𝑂⇑, 𝑇). The consolida-
tion boosting map CB enables 𝑂 to identify which nodes are likely to
receive specific cells more quickly and prioritize them for requests.

6.3 Sampling phase
The third phase of PANDAS is the sampling phase. It starts at the
same time as consolidation and takes place concurrently.

Node 𝑂 randomly selects 73 cells to sample. This selection must
be unpredictable (i.e., unlike 𝑆). For every sample, 𝑂 can determine
the nodes hosting an intersecting row or column in 𝑅𝑂 . In a 10,000-
node network, 156 nodes on average can have a copy of a given
cell. The selection of targets for sampling and the orchestration
and scheduling of requests are delegated to PANDAS’s fetching
algorithm that we describe next.

7 Adaptive Fetching
Both consolidation and sampling require fetching cells from other
nodes. We detail an adaptive fetching algorithm that handles both
collections simultaneously, and recommend default parameters.

The fetching algorithm inputs a set of cell identifiers, as illustrated
by Figure 7. In addition, it may receive a consolidation boost map
CB. The algorithm aims to retrieve all cells before the 4 s deadline.

Target nodes are identified by a node 𝑂 from its view𝑅𝑂 using the
assignment 𝑆 . Some of these nodes may be offline or unresponsive.
As PANDAS uses connectionless communications using UDP, the
network may silently lose queries or response messages. Sending
queries for cells sequentially bears the risk of missing the deadline.
On the contrary, sending queries to multiple nodes that hold a copy
of each desired cell generates a swarm of messages in the network.
This leads to congestion risks, suggesting the need for a compromise
between cautious fetching initially and a more aggressive approach
with more redundant queries as the deadline approaches.

Consolidation processes at different nodes are executed concur-
rently. A queried node 𝑂𝑀 may have a cell 𝑋 in its assignment 𝑆 (𝑂𝑀 , 𝑇)
but have not yet received it from the builder or through consolidation.
Nodes receiving a query for assigned cells they do not yet have buffer
this query and respond when they can (if the cells are never received,
they never respond, i.e., there is no negative acknowledgment). Thus,
a querying node may allow sufficient slack time for queried nodes
to respond, particularly when time is early in the slot.

Fetching algorithm. Fetching operates in rounds, as illustrated in
Figure 8. It adapts query redundancy and timeouts as time progresses
and the deadline nears. For this purpose, each round 𝑃 is associated
with a timeout 𝑌𝑀 and a redundancy factor 𝑍𝑀 . Algorithm 1 details the
process at a node 𝑂. The FETCH procedure receives a set of cells to
fetch 𝑎 and an optional consolidation boost map CB (line 1). Node
𝑂 considers as queryable nodes all of its view 𝑅𝑂 upon the initial
call to FETCH, saved as a working copy 𝑏 (line 2). Any node in 𝑏

<latexit sha1_base64="ruc0yoJEn1Z5ruVAc/AQXfccAEU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqyH6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A2qOM/Q==</latexit>n

CB
<latexit sha1_base64="4jeZjtm1pgsCCYz70fGNihGknZA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSg+pX+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14tUqtfvLcv0mj6MAp3AGF+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwABio2i</latexit>n2

<latexit sha1_base64="UhtGKd8rNkKDDK+/+XMpf+Pp1cY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2pQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9erd/XKg03j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/8ZjZI=</latexit>n4

<latexit sha1_base64="LjAaTf433kr+EJ2gMbR4dK7nrwE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9W/7JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wrd1fVepuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwD9lY2R</latexit>n3

<latexit sha1_base64="4jeZjtm1pgsCCYz70fGNihGknZA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSg+pX+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14tUqtfvLcv0mj6MAp3AGF+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwABio2i</latexit>n2

<latexit sha1_base64="LjAaTf433kr+EJ2gMbR4dK7nrwE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9W/7JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wrd1fVepuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwD9lY2R</latexit>n3

<latexit sha1_base64="UhtGKd8rNkKDDK+/+XMpf+Pp1cY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2pQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9erd/XKg03j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/8ZjZI=</latexit>n4

<latexit sha1_base64="WxaGc8BCYMM737DgGHn928SaBRA=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lEqseiF48V7Ie0oWy2k3bpbhJ2J0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFBE0UaCETqKBqUBCOxjfzvz2E2gj4ugBJwn4ig0jEQrO0EqPPVAJTgxgv1xxq+4cdJV4OamQHI1++as3iHmqIEIumTFdz03Qz5hGwSVMS73UQML4mA2ha2nEFBg/mx88pWdWGdAw1rYipHP190TGlDETFdhOxXBklr2Z+J/XTTG89jMRJSlCxBeLwlRSjOnsezoQGjjKiSWMa2FvpXzENONoMyrZELzll1dJ66Lq1aq1+8tK/SaPo0hOyCk5Jx65InVyRxqkSThR5Jm8kjdHOy/Ou/OxaC04+cwx+QPn8wc8b5C2</latexit>

;

<latexit sha1_base64="OyMcX2wSn0IQJsOdIFLeLbgUhYA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BQTwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU147U+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/KXqVcqV+WqjdZHHk4gVM4Bw+uoAr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZ4DjNU=</latexit>

F
<latexit sha1_base64="OyMcX2wSn0IQJsOdIFLeLbgUhYA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BQTwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU147U+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/KXqVcqV+WqjdZHHk4gVM4Bw+uoAr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZ4DjNU=</latexit>

F
<latexit sha1_base64="OyMcX2wSn0IQJsOdIFLeLbgUhYA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BQTwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU147U+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/KXqVcqV+WqjdZHHk4gVM4Bw+uoAr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZ4DjNU=</latexit>

F
<latexit sha1_base64="OyMcX2wSn0IQJsOdIFLeLbgUhYA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BQTwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU147U+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/KXqVcqV+WqjdZHHk4gVM4Bw+uoAr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZ4DjNU=</latexit>

F
<latexit sha1_base64="OyMcX2wSn0IQJsOdIFLeLbgUhYA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BQTwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU147U+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/KXqVcqV+WqjdZHHk4gVM4Bw+uoAr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZ4DjNU=</latexit>

F

<latexit sha1_base64="GhjJ4kCLNWbjEVXfQxfgxNR6gdc=">AAACE3icbVC7SgNBFJ2NrxhfUUubwSCIRdgViaJN0MYygnlANoTZyU0yZPbhzF0xLPsPNv6KjYUitjZ2/o2TR6GJBwYO55zLnXu8SAqNtv1tZRYWl5ZXsqu5tfWNza389k5Nh7HiUOWhDFXDYxqkCKCKAiU0IgXM9yTUvcHVyK/fg9IiDG5xGEHLZ71AdAVnaKR2/shFeMAETGZIOUh5nlK3B3d00BbUvZi4KHzQaTtfsIv2GHSeOFNSIFNU2vkvtxPy2IcAuWRaNx07wlbCFAouIc25sYaI8QHrQdPQgJktrWR8U0oPjNKh3VCZFyAdq78nEuZrPfQ9k/QZ9vWsNxL/85oxds9aiQiiGCHgk0XdWFIM6agg2hEKOMqhIYwrYf5KeZ8pxtHUmDMlOLMnz5PacdEpFUs3J4Xy5bSOLNkj++SQOOSUlMk1qZAq4eSRPJNX8mY9WS/Wu/UxiWas6cwu+QPr8weGT56W</latexit> ev
er

y
ce

ll
:
→

k i
ti

m
es

sc
or

es

decreasing timeouts, increasing redundancy

<latexit sha1_base64="zhIGpTkytGHZnaRE5Zvn9wDjG7o=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWAVXEhJpFQ3QsGNywr2AW0Ik+mkHTqThJkbsYS68VfcuFDErX/hzr9x+lho64ELh3Pu5d57gkRwDY7zbeWWlldW1/LrhY3Nre0de3evoeNUUVansYhVKyCaCR6xOnAQrJUoRmQgWDMYXI/95j1TmsfRHQwT5knSi3jIKQEj+fYB+O5V2XFwB9gDZFKPzvDASK5vF52SMwFeJO6MFNEMNd/+6nRjmkoWARVE67brJOBlRAGngo0KnVSzhNAB6bG2oRGRTHvZ5IMRPjFKF4exMhUBnqi/JzIitR7KwHRKAn09743F/7x2CuGll/EoSYFFdLooTAWGGI/jwF2uGAUxNIRQxc2tmPaJIhRMaAUTgjv/8iJpnJfcSqlyWy5Wj2dx5NEhOkKnyEUXqIpuUA3VEUWP6Bm9ojfryXqx3q2PaWvOms3soz+wPn8A4g6VKw==</latexit>

t1 = 400ms, k1 = 1
<latexit sha1_base64="XDg8yJOXW4fyn/j5aFtxsY8KEzY=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWAVXEhJilQ3QsGNywr2AW0Ik+mkHTp5MHMjllA3/oobF4q49S/c+TdO2iy09cCFwzn3cu89Xiy4Asv6NgpLyyura8X10sbm1vaOubvXUlEiKWvSSESy4xHFBA9ZEzgI1oklI4EnWNsbXWd++55JxaPwDsYxcwIyCLnPKQEtueYBuNWrqmXhHrAHSAM1OcOjTHLNslWxpsCLxM5JGeVouOZXrx/RJGAhUEGU6tpWDE5KJHAq2KTUSxSLCR2RAetqGpKAKSedfjDBJ1rpYz+SukLAU/X3REoCpcaBpzsDAkM172Xif143Af/SSXkYJ8BCOlvkJwJDhLM4cJ9LRkGMNSFUcn0rpkMiCQUdWkmHYM+/vEha1Ypdq9Ruz8v14zyOIjpER+gU2egC1dENaqAmougRPaNX9GY8GS/Gu/Exay0Y+cw++gPj8wfjg5Us</latexit>

t2 = 200ms, k2 = 2
<latexit sha1_base64="lSC3aY321QizVXhbTngfiMDs0To=">AAACDHicbVDLSgMxFM34rPVVdekmWAUXpczYUt0UCm5cVrAPaEvJpJk2NJkZkjtiGeYD3Pgrblwo4tYPcOffmGm70NYDIYdzziW5xw0F12Db39bK6tr6xmZmK7u9s7u3nzs4bOogUpQ1aCAC1XaJZoL7rAEcBGuHihHpCtZyx9ep37pnSvPAv4NJyHqSDH3ucUrASP1cHvpxqVBOqo5t4y6wB4ilTgp43C9VS+lVrpZNyi7aU+Bl4sxJHs1R7+e+uoOARpL5QAXRuuPYIfRiooBTwZJsN9IsJHRMhqxjqE8k0714ukyCz4wywF6gzPEBT9XfEzGRWk+ka5KSwEgveqn4n9eJwLvqxdwPI2A+nT3kRQJDgNNm8IArRkFMDCFUcfNXTEdEEQqmv6wpwVlceZk0L4pOpVi5Ledrp/M6MugYnaBz5KBLVEM3qI4aiKJH9Ixe0Zv1ZL1Y79bHLLpizWeO0B9Ynz+P6piv</latexit>

t3,4 = 100ms, k3 = 3, k4 = 4

Figure 8: Node 𝑂 determines a set of nodes to query at each
round, adapting query redundancy and timeouts.

Algorithm 1 Adaptive fetching at node 𝑂 in epoch 𝑇.
1: procedure FETCH(𝑅 , CB)
2: 𝑆 ⇔ 𝑇𝑂 ; 𝑀 ⇔ 1 # Queryable nodes and round number
3: while 𝑅 ω ⇐ ⇓ 𝑀 < 𝑀max do # Until all fetched or too many rounds
4: for each 𝑈 ↗ 𝑆 do # Assign scores to queryable nodes
5: 𝑈cells = {𝑉 (𝑈, 𝑄) ≃ 𝑅 } # Cells of interest ...
6: 𝑈score = ↖𝑈cells ↖ # ... score is number of cells
7: if CB𝑃 ω ⇐ then # If node in consolidation boost map ...
8: 𝑈score ⇔ 𝑈score + (|𝑅 ↘ CB𝑃 |) ↓ cb_boost
9: # ... boost score for each cell received by seeding

10: sort 𝑆 by decreasing node score as 𝑈1, . . . ,𝑈 |𝑄 |
11: 𝑊 = ⇐;𝑋 = 𝑅 ; 𝑌 = 1 # Query Plan and cells Under redundancy
12: while𝑋 ω ⇐ ⇓ 𝑌 ↙ |𝑆 | do # Should/can plan more queries
13: if (𝑈 𝑅 .cells ↘𝑋) ω ⇐ then # At least one cell of interest
14: 𝑊 ⇔ 𝑊 ∝ (𝑈 𝑅 ,𝑈 𝑅 .cells ↘𝑋) # Plan query
15: 𝑋 ⇔ {𝑍 ↗ 𝑅 | | {𝑎 ↗ 𝑊 | 𝑍 ↗ 𝑎 .cells} | < 𝑏𝑆 }
16: # Update set of cells with insufficient redundancy
17: 𝑌 ⇔ 𝑌 + 1 # Consider next node in sorted 𝑆
18: for each 𝑎 in 𝑊 do # Send out queries from the query plan
19: QUERYCELLS(𝑎 .node,𝑎 .cells) # UDP async. query
20: 𝑆 ⇔ 𝑆 \ 𝑎 .node # Nodes are queried only once
21: SLEEP (ti) ; 𝑀 ⇔ 𝑀 + 1 # Wait before next round
22: return (𝑅 ω ⇐) # Success if all cells fetched within round limit
23: procedure UPONRECEIVE(𝑐) # Receiving a set of cells𝑐
24: 𝑅 ⇔ 𝑅 \𝑐 # Receive new cells
25: while ′ row or column 𝑑 with [256 : 512) cells do # Can use code
26: 𝑑 ⇔ RECONSTRUCT(𝑑 ,𝑒) # Reconstruct full row/column
27: 𝑅 ⇔ 𝑅 \ {𝑍 ↗ 𝑑 } # No need to fetch reconstructed cells

will be queried at most once. The fetching process is in three steps:
scoring, planning, and execution.

In the scoring step (lines 4 to 10), queryable nodes in 𝑏 are
assigned a score, i.e., the number of their assigned cells still missing
for 𝑂 (lines 5 and 6). If a consolidation boost was received, nodes are
given a score boost of cb_boost for each cell declared as seeded by
the builder and missing from 𝑎 (lines 7 and 9). The set of queryable
nodes is then sorted by decreasing score values (line 10).

The planning step (lines 11 to 17) prepares the set of queries as
a set 𝑐 . Each planned query 𝐿 ↗ 𝑐 is associated with a node 𝐿 .node
and queried cells 𝐿 .cells. Each missing cell from 𝑎 must be queried
from 𝑍𝑀 nodes. Starting from the node with the highest score, 𝑑1,
the step greedily selects nodes with cells of interest as long as this
criterion is not met. For this, it maintains a set 𝑒 listing the cells
for which insufficient redundancy currently exists in 𝑐 . A node 𝑑 𝑌
is planned to be queried for cells with insufficient redundancy (line
14), before updating 𝑒 (line 15).

Finally, the execution step sends out the queries asynchronously
(lines 18 to 20) before waiting for 𝑌𝑀 ms before the next round. A
queried node is removed from 𝑏 and is not used again. Upon correct
reception by the target node, the handler either responds with the
queried cells if all are available or buffers the query for a delayed
reply. The response is received by the UPONRECEIVE function as

Middleware ’25, December 15–19, 2025, Nashville, TN, USA Pigaglio et al.

a set of cells 𝑊 (lines 23 to 27).5 When receiving new cells, the
algorithm checks if an incomplete row or column now contains 256
or more cells (line 25) and, if so, reconstructs them (line 26).

Default parameters. The fetching algorithm is primarily parame-
terized by the round durations and query redundancy vectors 𝑌 and
𝑍 , as well as the score boost for consolidation cb_boost. We use the
following universal parameters, but stress that nodes could select
them differently, e.g., based on local connectivity.

In the first round, 𝑃 = 1, the strategy aims to maximize the num-
ber of cells received (and reconstructed) using as few messages as
possible (i.e., 𝑍1 = 1). We use a duration of 𝑌1 = 400ms based on es-
timated time for the builder to send out initial cells and on inter-node
latencies, as we will detail in Section 8. In subsequent rounds, we
reduce this time by half but no lower than 100ms, i.e., 𝑌2 = 200ms
and ∞𝑓 ∈ 3, 𝑌 𝑌 = 100ms (up to 𝑌50). Similarly, we increase the aggres-
siveness of queries by increasing the redundancy factor by two every
round until a maximum of 10, i.e., 𝑈2 = 2, 𝑈3 = 4, . . . ,∞𝑓 ∈ 6, 𝑈 𝑌 = 10.
Finally, we set cb_boost = 10, 000 to give an overwhelming advan-
tage to nodes with seeded cells of interest.

8 Evaluation
We structure our evaluation around the following claims:

• C1: PANDAS completes DAS within 4 s and supports the
tight-fork choice rule under Danksharding requirements.

• C2: PANDAS bandwidth requirements for nodes are below
Ethereum suggestions for decentralization (50/15 Mbps down-
load and upload per EIP-7870 [6]) and, for builders, below
typical cloud offerings (10 Gbps upload).

• C3: PANDAS satisfies C1 even under a high percentage of
free-riding or failed nodes and with highly inconsistent views.

• C4: PANDAS satisfies C1–C3 scaling up to 20,000 nodes.
• C5: Relying on existing peer-to-peer overlays (GossipSub [60]

and Kademlia [47]) for DAS does not allow satisfying C1.
PANDAS [51] is implemented in Go, extending libp2p [5], the

network stack of the Ethereum Geth client [4]. Block dissemination
relies on libp2p’s GossipSub implementation.

We aim to evaluate PANDAS in a real-world environment and
verify its scalability in large networks. Achieving both objectives
with the PANDAS prototype would require a prohibitive amount
of resources. We thus opt for a hybrid approach. We deploy 1,000
instances of PANDAS in a cluster, emulating representative WAN
latencies. To evaluate PANDAS up to 20,000 nodes, we use a simu-
lator, whose accuracy is validated against the deployment results.

8.1 Prototype deployments
We run 1,000 PANDAS instances on a cluster of 80 servers, each
equipped with an 18-core Intel Xeon Gold 5220 CPU and 96 GB
of RAM. This level of consolidation (13 instances per server) was
selected through careful load testing to avoid CPU contention and
increased latencies compared to non-consolidated deployments.

Network emulation. We use network emulation using tc to repro-
duce WAN settings. There is no publicly available data on node-to-
node latencies in the Ethereum network. However, a recent large-
scale measurement campaign [43] has collected all-pair latencies
5For clarity, we omit in Algorithm 1 the verification checks performed when receiving
𝑐 (e.g., verifying the cells KZMPs if/when the block header is available).

in IPFS [9], a planetary-scale storage system that shares the scale
and decentralization objectives of Ethereum. We use this trace for
our network emulation. Round-trip latencies range from 8 ms to
438 ms with an average of 64 ms. The topology contains 10,000
vertices, to which we assign nodes randomly. We limit each node
connection to 25 Mbps. We deploy a builder as a dedicated server,
with a connection capped to 10 Gbps, assigning it to a vertex in the
topology randomly selected among the 20% with the best average
latency to all other nodes, i.e., nodes likely deployed in a cloud. UDP
communication in the cluster is subject to a packet loss rate of 3%,
according to our observations.

Evaluation metrics. Our primary metric of interest is the distri-
bution of completion times for PANDAS’s three phases, from the
moment the builder is selected. The time to seeding is when a node
has received its initial seed data. Time to consolidation and time
to sampling refer to the periods when a node has received (or can
reconstruct) its assigned eight rows and columns, and its 73 ran-
dom cells, respectively. Additionally, we monitor the bandwidth
costs and the number of messages for all nodes and the builder. We
consider a fault-free scenario in this section, where all nodes partic-
ipate in the protocol and have a complete view of the system (i.e.,
∞𝑂 ↗ 𝑁 ,𝑅𝑂 = 𝑁). For all experiments, we present distributions over
10 slots (i.e., 10 cycles of seeding, consolidation, and sampling).

Phases timing. Figure 9 presents the distributions of times to seed-
ing, consolidation, and sampling. We consider the three seeding
strategies of Section 6.1: minimal, single, and redundant with 𝑈 = 8.
Only solid lines are of interest in this section; dashed ones represent
simulator results that we will discuss in the next section. We illus-
trate the distribution of the reception time of the block via a global
GossipSub channel (initiated by a randomly chosen node serving as
the proposer), for comparison purposes, in Figure 9a.

We observe that the time to seeding is similar for the three strate-
gies, as our builder’s available bandwidth is not a bottleneck (the
amount of data sent out is 36.6 MB, 149 MB, and 1,208 MB, re-
spectively, for the three strategies). We observe an impact on the tail
of the distributions: the maximum time to seeding is 700, 819, or
936 ms, respectively, for the three strategies (99th percentiles, or P99,
are 698, 705, and 715 ms). The “step” around 64 ms corresponds to
nodes assigned to well-connected vertices in the emulated topology,
which are typically nodes deployed in the same cloud and/or region
as the builder. Overall, all nodes receive their seed cells before the
end of the first second of the slot.

We present the time to consolidation both from the reception of
the seed data by a node (Figure 9b) and from the beginning of the
slot (Figure 9c). The builder provides the consolidation boosting
map to the nodes. We can observe the impact of the builder’s seeding
strategy. The minimal strategy results in a consolidation taking up to
2,213 ms (P99=1,756 ms) from the reception of the seed data, and
the single strategy has a maximum time of 2,046 ms (P99=1,595 ms).
In contrast, the redundant strategy reduces this time to 1,985 ms
(P99=1,558 ms). Median times to consolidation for the minimal,
single, and redundant strategies (from the beginning of the slot) are
1,178 ms, 1,072 ms, and 869 ms, respectively.

The time to sampling distribution, our primary metric of interest,
is given by Figure 9d. This distribution depends on the builder’s

PANDAS: Peer-to-peer, Adaptive Networking Allowing Data Availability Sampling in Ethereum Middleware ’25, December 15–19, 2025, Nashville, TN, USA

(a) Seeding (from start) (b) Consolidation (from seeding) (c) Consolidation (from start) (d) Sampling (from start)

Figure 9: Distribution of times for the three phases of PANDAS across all nodes, for the three seeding strategies. All times are from the
start of the slot, except for Figure 9b where time is counted from the reception of the seed cells (as shown by Figure 9a).

Figure 10: Distribution of messages and traffic volume for fetch-
ing across nodes, for different seeding strategies.

seeding strategy, which impacts the time to consolidation. The min-
imal strategy results in a maximum of 3,341 ms (P99=2,303 ms);
still, 100% of the nodes fetch their samples by the deadline. The
single strategy also meets the deadline, with a maximum delay of
3,062 ms (P99=2,068 ms). Finally, the redundant strategy matches
the deadline safely for all nodes, with a maximum of 3,009 ms
(P99=2,020 ms). The median times to sampling are, respectively,
1,235 ms, 1,122 ms, and 882 ms. The reduction in sampling times
with increased availability of seed cells (via increased redundancy)
is due to reduced contention on peer bandwidth, which in turn speeds
up the fetching operation. We observe, however, that if the block
dissemination latency (Figure 9a) were to be added to these times,
meeting the 4 s deadline would be at risk for many nodes, even with
the redundant strategy. This confirms our claim that DAS must start
concurrently to block dissemination if we are to integrate it with
consensus under the tight fork-choice rule.

Bandwidth consumption. Figure 10 presents the distribution of
the number of messages used by nodes in the fetching phase, and
the corresponding traffic volume, summed for both directions. The
redundant seeding strategy results in fewer messages exchanged
between nodes and, as a result, lower bandwidth requirements. This
is because more nodes already hold the requested cells, which re-
duces the need for retries (i.e., fewer rounds) during consolidation
and sampling. Even with the single seeding strategy, which only
marginally differs from the minimal one, the requirements are far
below EIP-7870 recommendations; the maximum traffic volumes
are 2.26, 2, and 1.99 MB for the three strategies.

Fetching analysis. Table 1 presents an analysis of the progress
of fetching for the first four rounds. All values discussed in this
paragraph are averages over the 1,000 nodes, together with the
standard deviation. We use the redundant seeding strategy, and nodes
receive 2420 cells (± 180). Starting from 4,174, the number of
requested cells decreases as the coverage of 𝑎 (i.e., set of cells to
fetch) increases, either through reception or reconstruction (e.g.,
615 reconstructed cells in the first round). We distinguish between

Round 1 2 3 4

Messages sent 341± 20 261± 58 185± 35 113± 22
Cells requested 4174± 100 2426± 96 923± 63 294± 40
Replies received in round 228± 22 143± 14 120± 20 69± 25
Replies received after round 107± 39 114± 25 56± 20 61± 3
Cells received in round 2420± 180 949± 170 535± 82 191± 22
Cells received after round 1128± 113 1478± 91 383± 52 23± 8
Received cells duplicates 0± 0 187± 42 142± 29 64± 12
Cells reconstructed 615± 126 566± 90 86± 29 32± 17
Cumulative coverage of 𝑅 56% 81% 96% 99%

Table 1: Fetching algorithm performance in successive rounds
(values averaged over all nodes, ± is the standard deviation).

(a) Time to sampling (b) Messages in and out

Figure 11: Comparison of the performance of adaptive fetching,
as used by PANDAS, and a non-adaptive approach.

replies received in a round 𝑃, i.e., before the timeout 𝑌𝑀 expires, and
after. The latter case leads to redundant requests but illustrates the
tradeoff between caution and eagerness Algorithm 1 implements.
A majority of requests result in replies before the timeout, and a
majority of cells are received on time in the round. Receptions after
the round generally occur with a significant delay; adjusting timeouts
to account for such tail latencies leads to lower success rates. While
Table 1 only shows the first four rounds—after which 99% of the
nodes have completed fetching—the process requires up to 6 rounds
for the slowest nodes (P90=3, P99=4).

Impact of adaptive fetching. We evaluate in Figure 11 the impact
of adaptive fetching. We consider the redundant seeding policy, i.e.,
the green distribution in Figure 11a is the same as in Figure 9d.
For comparison, we employ a constant fetching strategy, which
utilizes a fixed timeout for all rounds (𝑌 = 400 ms) and a fixed
redundancy (𝑍 = 1), as represented in black. The constant strategy
uses fewer messages, as it asks only a minimum of one node for each
missing cell in each round, and leaves more time for nodes to respond.
However, it drastically impacts the time to sampling, resulting in a
maximum of 4,129 ms (P99=3,513 ms, median=1,546 ms), and some
nodes miss the deadline. This illustrates the interest of dynamically

Middleware ’25, December 15–19, 2025, Nashville, TN, USA Pigaglio et al.

(a) Time to sampling (b) Messages

Figure 12: Distribution of time to sampling and messages com-
pared to baselines based on GossipSub and the Kademlia DHT.

adapting aggressiveness and redundancy to cope with the tight time
constraints imposed by the tight fork-choice rule.

Comparison to baselines using existing P2P layers. We finally
compare our approach to two alternative methods based on the use
of existing peer-to-peer protocols available in libp2p.

Some proposals for data availability support in Ethereum [14,
41, 56], that we will further discuss in Section 10, suggest using
GossipSub [60] for the partial dissemination of blob data. We instan-
tiate this idea by having all nodes subscribe to GossipSub channels
corresponding to each unit of custody—that is, each group of eight
rows and eight columns as assigned by 𝑆 . We disable explicit con-
solidation, but instead rely on GossipSub’s gossiping within each
channel to disseminate the assigned cells, and use the same sampling
phase as in PANDAS. Therefore, the main difference is that the dis-
semination of seed cells occurs through peer-to-peer gossip within
each channel, rather than through direct seeding by the builder as
in PANDAS. In this 1,000-node network, each GossipSub channel
involves approximately ↑ 16 nodes assigned to the corresponding
unit of custody. The builder sends 𝑈 = 8 copies of each unit of cus-
tody to the nodes in the corresponding GossipSub channel, which
is configured with the default fanout of eight peers. As a result, the
builder’s outgoing traffic volume is the same as in the redundant
seeding strategy of PANDAS, i.e., eight times the total blob size.

Another possible approach [12] is to use the Kademlia DHT [47]
for storing and retrieving cells using multi-hop routing. We imple-
ment it by mapping rows and columns to one dimension and splitting
it into parcels of 64 adjacent cells. Parcels are then stored in the
DHT by the builder using the put(key) operation. To ensure a fair
comparison with PANDAS and the GossipSub baseline, the builder
performs eight put(key) operations per parcel, storing it at each of
the eight closest peers to the hash of the parcel’s contents—therefore,
the builder uses the same total bandwidth as in the other approaches.
Nodes are responsible for the range of keys (and, therefore, parcels)
assigned by the DHT, and we disallow consolidation. Sampling uses
get(key) operations to fetch necessary parcels.

Figure 12 shows the distribution of time to sampling for PANDAS
using the redundant seeding strategy (𝑈 = 8) and for the two base-
lines, as well as the distribution of the number of messages. With
1,000 nodes, 24% of GossipSub nodes and 17% of DHT nodes fail
to complete sampling within the 4 s deadline. The average sampling
delay for GossipSub nodes is 3,660 ms (P99=3342 ms), while PAN-
DAS nodes complete sampling significantly faster, i.e., on average
in 882 ms (P99=1935 ms), with all nodes completing well within
the 4 s deadline. In terms of messaging, the DHT and GossipSub
baselines incur significantly higher overhead in the number of mes-
sages compared to PANDAS. On average, PANDAS, GossipSub,
and DHT nodes send 1,613, 2,370, and 3,021 messages. For the DHT

(a) Time (b) Fetching messages (c) Fetching bandwidth

Figure 13: Simulation of seeding, consolidation, and sampling
times for PANDAS with a various number of nodes.

baseline, the messaging overhead of storing and retrieving parcels is
especially high due to multi-hop routing (i.e., DHT traversal).

8.2 Large-scale simulations
In addition to the prototype deployment detailed in the previous
subsection, we implement PANDAS protocols in PeerSim [48], a
Java simulator for large-scale evaluation of peer-to-peer systems [51].
This implementation closely follows the one over libp2p. We also
implement the two baselines detailed above.

We simulate the same latency trace as for the deployment.6 We
also enforce a fixed 3% loss rate for UDP packets as experienced in
the testbed. When running on a server with 256 GB of memory, the
simulator can scale up to 20,000 nodes.

Simulator validation. First, we validate that the simulator results
match those of the deployments. In all plots of Section 8.1, dashed
lines report the results obtained with 1,000 simulated nodes. In all
cases, the two lines are (almost) indistinguishable. Our evaluations
at smaller scales (not shown) have the same property. The validation
of simulation results at moderate scales gives us confidence in the
simulator’s ability to provide accurate results at higher scales.

Scaling. We investigate PANDAS’s scalability from 1,000 to 20,000
nodes. Figure 13 presents the distribution of times to seeding, con-
solidation, and sampling using the redundant seeding strategy (Fig-
ure 13a) and the corresponding messages (Figure 13b) and band-
width (Figure 13c). With 10,000 nodes, the current scale of the
Ethereum network [3], all nodes successfully sample before the 4 s
deadline. With 20,000 nodes, 10% fail to meet the deadline, mapping
to nodes with poor simulated connectivity (connected from remote
area of the geo-distributed network). We identify the scattering of
seed data and the cost of consolidation as the primary reasons, as
nodes have to contact more peers to collect their rows and samples,
and take more time before being able to answer sampling requests.
Nodes located in clouds do not suffer from significantly higher
times, highlighting the need to host validator-supporting nodes in
well-connected infrastructure.

The impact of the increasing scattering of seed cells with larger
network sizes is also reflected in Figure 13b and Figure 13c, which
show the number of messages and traffic volumes for fetching cells
during consolidation and sampling. The average number of messages
per node for networks of 1K, 3K, 5K, 10K, and 20K nodes is 1,956,
2,231, 2,247, 2,291, and 2,443, respectively. The corresponding peak
traffic volumes are 1.9, 2.1, 2.2, 2.2, and 2.4 MB over the entire
slot. We observe that even in the most demanding scenario with 20K

6When using more than 10,000 nodes, we reuse vertices randomly for the assignment.

PANDAS: Peer-to-peer, Adaptive Networking Allowing Data Availability Sampling in Ethereum Middleware ’25, December 15–19, 2025, Nashville, TN, USA

(a) Time to sampling (b) Messages (c) Bandwidth

Figure 14: Simulation of blob dissemination time for PANDAS
and the two baselines, for various number of nodes.

(a) Dead nodes (b) Out-of-view nodes

Figure 15: Simulation of time to consolidation and time to sam-
pling for increasing numbers of dead and out-of-view nodes, in
a 10,000-node network.

nodes, the maximum traffic volume is transmitted in approximately
2.2 seconds, keeping the average bandwidth requirement well within
the EIP-7870 recommendations [6].

Comparison to baselines. Figure 14 compares PANDAS to the
two baselines in scales up to 20,000 nodes. Results for 1,000 nodes
are consistent with the ones for testbed deployment reported in
Figure 12. While the GossipSub-based baseline meets the deadline
for a majority of nodes with 1,000 nodes, it fails to do so starting
with 5,000 nodes. However, it plateaus for higher node counts, as
GossipSub topics become more efficient with a higher number of
participants. The DHT-based baseline is unable to meet deadlines
for most nodes at all scales and shows linearly increasing times to
sampling for increased system sizes. For both systems, the gap to
PANDAS in terms of time-to-sampling latency widens as the system
size grows. The number of messages is also significantly higher for
the baselines than for PANDAS, with important variability for the
GossipSub-based baseline as the system size increases.

Behavior under faults. We evaluate PANDAS’s robustness under
two types of faults: dead nodes and out-of-view nodes.

In the dead nodes scenario, a fraction of nodes is assumed to have
crashed and do not respond to any messages. This also corresponds
to the case of free-riding nodes, which do not wish to spend upload
bandwidth to answer requests. The builder and the remaining correct
nodes are unaware of these failures. Therefore, the builder seeds data
to all nodes, including the dead ones, and includes them in consoli-
dation boost maps. As a result, some seed cells are lost, and correct
nodes may attempt to contact dead nodes during fetching, leading
to timeouts and retries. On the other hand, in the out-of-view nodes
scenario, all nodes are correct and receive their assigned seed cells
from the builder. However, each node only has an incomplete view
of the network, and these views are not consistent. For example, if
20% of nodes are out of view, each node is only aware of a randomly

chosen 80% of the full node set. This affects both consolidation and
sampling, as requests may fail if the sender lacks knowledge of a
suitable peer.

In Figure 15, we vary the proportion of dead or out-of-view nodes
from 0% to 80% (in 20% increments) and measure the impact on
both time to consolidation and sampling. The network size is 10,000
nodes. We observe that for 0%, 20%, 40%, 60%, and 80% of dead
nodes, 92%, 83%, 74%, 45%, and 27% of nodes complete sampling
within the 4-second deadline, respectively. In the case of out-of-view
nodes, for 0%, 20%, 40%, 60%, and 80% of nodes being out of view,
92%, 83%, 67%, 47%, and 25% of nodes complete sampling within
the deadline, respectively.

In both scenarios, we observe that beyond 50% dead or out-of-
view nodes, over half of the correct nodes fail to meet the deadline,
which would prevent consensus from being reached and cause the
blockchain to stall. These scenarios are, however, unlikely in practice
and would impact other key mechanisms, such as block dissemina-
tion, thereby preventing consensus from succeeding anyway. A more
likely scenario of temporary latency spikes could delay sampling
completion for a small fraction of nodes in a given slot but would not
cause persistent unavailability. Lagging nodes can perform multiple
rounds of sample fetching per 12s slot, enabling them to catch up
once network conditions stabilize.

Summary. Our evaluation using a prototype deployment and large-
scale simulations of PANDAS and two baselines confirms our claims.
PANDAS supports DAS within 4 s for all nodes (up to 10,000) and
the vast majority of them (for 20,000), and enables the tight fork-
choice rule (C1 and C4). The bandwidth requirements for builders
and nodes are below Ethereum recommendations and compatible
with its decentralization objectives under the PBS principles (C2 and
C4). The evaluation of fault scenarios shows that PANDAS supports
these claims with a significant fraction of failed or out-of-view nodes
(C3 and C4). In contrast, the two baselines fail to meet these criteria,
especially as the system size increases (C5).

9 Discussion
We discuss PANDAS and classical decentralized systems concerns.

Sybils. A node in Ethereum, and thus PANDAS, does not have to
support validators to participate in peer-to-peer interactions, e.g.,
block dissemination. This opens possibilities for Sybil attacks, where
an attacker operates multiple nodes to bias the system operation.

Sybils can perform general attacks, where they join the DHT and
GossipSub channels and stop answering queries or forwarding data,
disrupting the system merely by their overwhelming presence. Our
evaluation shows that PANDAS is robust against many nodes that
ignore sampling and consolidation requests, provided the builder
uses sufficient redundancy in its seeding strategy. Proposals for
increasing IP diversity in Ethereum’s discovery mechanisms [42]
could strengthen this robustness.

A targeted use of Sybils consists of carefully placing them in the
peer-to-peer network to prevent specific nodes from interacting with
it (an Eclipse attack) or to censor specific information [35, 45, 58,
62]. PANDAS makes the network fully connected and randomizes
exchanges, making Eclipse attacks irrelevant. This contrasts with
designs based on GossipSub trees, where an attacker could position
its Sybils as the first neighbors of the builder and disrupt the early

Middleware ’25, December 15–19, 2025, Nashville, TN, USA Pigaglio et al.

dissemination of blob data. Another targeted attack scenario targets
specific content. In PANDAS, disrupting the sharing of specific
blob data would require (1) knowing before blob data dissemination
which cell will contain such data and (2) positioning Sybil nodes in
the network to make the corresponding row and column difficult to
reconstruct (i.e., disallow fetching half of its cells). Condition (1)
does not hold as the cell location is known only upon reception of the
block. Condition (2) would require the attacker to generate enough
identities to control the corresponding row and column, which is
highly improbable considering that 𝑆 changes unpredictably every
6.5 minutes, less time than what ENR crawling requires.

Limiting openness. As one of PANDAS goals is to avoid modifi-
cation to Ethereum core mechanisms, it follows its open-network
design. An alternative design could limit participation to validator-
holding nodes and restrict other nodes to being only observers. This
would drastically reduce any potential risk associated with Sybil at-
tacks, as an attacker can only generate one identity for every 32 ETH
they hold. It would, however, limit decentralization by switching to a
semi-permissioned system, where only stakeholders can participate.
Proof-of-validator [38] is an anonymous credential scheme based
on zero-knowledge proofs (ZKP). It could enable this limitation if
integrated with node discovery, i.e., the crawl of the DHT for ENRs.
This approach would come at a significant complexity cost, even for
an observer (i.e., gathering the list of validators and verifying a ZKP
for every crawled ENR).

Handling free riders. Nodes using the system while contributing
minimal resources, or free riders, are unavoidable in decentralized
systems [36]. We evaluated that PANDAS is robust to a large fraction
of free-riding nodes in Section 8.2. In Ethereum, block and blob
building, proposal, and validation are incentivized through monetary
rewards; however, there is no incentive for interactions within the
peer-to-peer network (e.g., for correctly answering ENR discovery
requests in the DHT). Similarly, PANDAS does not have incentives
for nodes to participate in the consolidation, sampling, and hosting
of blob data. Also departing from our objective of no modification
to Ethereum, a possible direction to include incentives for DAS op-
erations would be to extend the above-mentioned proof-of-validator
mechanisms with proof-of-custody incentives [26].

10 Related Work
We begin by outlining alternative proposals for implementing data
availability layers in Ethereum. Then, we explore the broader history
and foundational literature on data availability sampling.

Alternative data availability layers. The Ethereum community
has mainly explored gossip-based mechanisms for data availabil-
ity. PeerDAS [56], scheduled for deployment in the forthcoming
Fusaka fork, applies one-dimensional (row-wise) erasure coding and
introduces column-based sampling across 128 GossipSub subnets,
with each subnet responsible for a single column—that is, a vertical
slice across all blobs in the block. Validators are deterministically
(and statically) assigned to subnets and verify the availability of
their assigned columns when a block is proposed. Because sampling
relies on GossipSub dissemination, PeerDAS can only support small
blob sizes (up to six 128 KB blobs) and cannot scale to the 32 MB
blobs envisioned for full Danksharding. SubnetDAS [14], in con-
trast, is only a conceptual proposal outlined in a research forum

post. It extends PeerDAS with two-dimensional coding but replaces
column sampling with row-and-column assignments: each validator
attests availability solely on the basis of receiving its designated row
and column. This removes random sampling from the consensus
path, which weakens security guarantees, as validators may attest
positively even if large portions of the blob remain unavailable.

Alternative network-layer mechanisms for DAS have also been
evaluated. A recent study [12] highlights the inefficiencies of us-
ing the Kademlia DHT [47] for DAS, particularly the overhead of
seeding cells to nodes involving traversing the DHT.

Data availability sampling. The idea of verifying data availabil-
ity by sampling a block extended with erasure coding was intro-
duced by Al-Bassam et al. [8] and later adopted by LazyLedger [7],
which evolved into Celestia [1]. Celestia employs a centralized
approach in which validators—highly resourceful “super” nodes
retrieve and store the complete blob data, while light clients sample
from these nodes. Unlike PANDAS’s collaborative model, where
sampling and storage responsibilities are distributed, Celestia’s de-
sign incurs overhead that grows linearly with participation and blob
size. FullDAS [41], outlined in a research forum post, is another
proposal aimed at scaling Danksharding to large blob sizes through
gossip-based dissemination combined with a request/response sam-
pling protocol. However, the sampling process is only sketched
rather than specified with a concrete algorithm, and critical aspects
such as how custody is assigned, what transport protocol is used,
and the timing requirements for sampling remain underspecified,
making it unsuitable as a baseline for experimental comparison.

Alternative sampling methods have also been explored. Hon-
eybee [63] focuses on Sybil-resistant peer sampling via verifiable
random walks, assuming random cells must be fetched from random
peers. By contrast, PANDAS selects random cells but leverages their
deterministic assignment to peers. Honeybee’s interactive verifica-
tion at each hop introduces potential latency, limiting its suitability
for strict timing constraints. Sheng et al. [57] propose a different
model in which a group of oracle nodes collectively store erasure-
coded blobs and provide access to clients, assuming at least half of
the oracles are honest.

11 Conclusion
We presented PANDAS, a practical approach to integrated data avail-
ability sampling (DAS) in the consensus workflow of Ethereum
under the demanding Danksharding objectives. By favoring direct
and lightweight communications between nodes, builder-led blob
data dissemination, and adaptive fetching mechanisms, PANDAS
allows large amounts of layer-2 data to propagate in the Ethereum
network and be verified as available under the strict timing con-
straints imposed by Ethereum consensus.

This work opens interesting perspectives, among which is the
design of adaptive policies. We presented and evaluated different
fixed strategies for the builders and the nodes to follow. However, the
design could support automatic adaptation mechanisms that select
or update parameters based on, for example, observed networking
and fault ratio conditions.
Acknowledgments: We thank our shepherd, Kaiwen Zhang, and the Middleware 2025
reviewers for their feedback. This work was supported by the Ethereum foundation
(grant #FY22-0753), Belgian Wallonia CyberExcellence (grant #2110186), and CHIST-
ERA/FNRS SCEAL projects.

PANDAS: Peer-to-peer, Adaptive Networking Allowing Data Availability Sampling in Ethereum Middleware ’25, December 15–19, 2025, Nashville, TN, USA

References
[1] Celestia. the first modular blockchain network. https://celestia.org/.
[2] Ethereum full node vs. archive node. https://www.quicknode.com/guides/

infrastructure/node-setup/ethereum-full-node-vs-archive-node.
[3] Ethereum node tracker. https://etherscan.io/nodetracker.
[4] Go Ethereum. Official Go implementation of the Ethereum protocol. https://geth.

ethereum.org/.
[5] libp2p: A modular network stack. https://libp2p.io.
[6] EIP-7870: Hardware and bandwidth recommendations. https://eips.ethereum.org/

EIPS/eip-7870, January 2025.
[7] Mustafa Al-Bassam. LazyLedger: A distributed data availability ledger with

client-side smart contracts. arXiv preprint arXiv:1905.09274, 2019.
[8] Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi. Fraud

and data availability proofs: Detecting invalid blocks in light clients. In Intl. Conf.
on Financial Cryptography and Data Security, FC. Springer, 2021.

[9] Juan Benet. IPFS: content addressed, versioned, P2P file system. arXiv preprint
arXiv:1407.3561, 2014.

[10] Vitalik Buterin, Dankrad Feist, Diederik Loerakker, George Kadianakis, Matt
Garnett, Mofi Taiwo, and Ansgar Dietrichs. EIP-4844: Shard blob transactions.
https://eips.ethereum.org/EIPS/eip-4844, 2024.

[11] Mikel Cortes-Goicoechea and Leonardo Bautista-Gomez. Discovering the
Ethereum2 P2P network. In 2021 Third International Conference on Blockchain
Computing and Applications, BCCA. IEEE, 2021.

[12] Mikel Cortes-Goicoechea, Csaba Kiraly, Dmitriy Ryajov, Jose Luis Muñoz-Tapia,
and Leonardo Bautista-Gomez. Scalability limitations of Kademlia DHTs when
enabling Data Availability Sampling in Ethereum, 2024.

[13] Francesco D’Amato. From 4844 to Danksharding: a path to scal-
ing Ethereum DA. https://ethresear.ch/t/from-4844-to-danksharding-a-path-to-
scaling-ethereum-da, December 2023.

[14] Francesco D’Amato and Ansgar Dietrichs. SubnetDAS - an intermediate DAS
approach. https://ethresear.ch/t/subnetdas-an-intermediate-das-approach/17169,
2023.

[15] Francesco D’Amato and Luca Zanolini. Recent latest message driven ghost:
Balancing dynamic availability with asynchrony resilience. In 2024 IEEE 37th
Computer Security Foundations Symposium (CSF), pages 127–142. IEEE, 2024.

[16] Francesco D’Amato, Luca Zanolini, and Roberto Saltini. DAS fork-choice. https:
//ethresear.ch/t/das-fork-choice/19578, May 2024.

[17] Ethereum. Randao: Ethereum random number generator. https://github.com/
randao/randao, 2022.

[18] Ethereum. Zero-knowledge rollups. https://ethereum.org/en/developers/docs/
scaling/zk-rollups/, 2024.

[19] Ethereum. Discv4 ENR periodic crawls. https://github.com/ethereum/discv4-dns-
lists, 2025.

[20] Ethereum community. DAS query analysis notebook. https://colab.research.
google.com/drive/1Di1-hBae8tZr1tZqcu1JqYycOFy8FdAy, 2024.

[21] Ethereum foundation. The Merge: Ethereum switch to proof-of-stake. https:
//ethereum.org/en/upgrades/merge/, 2023.

[22] Ethereum foundation. Ethereum roadmap. https://ethereum.org/en/roadmap/,
2024.

[23] Ethereum foundation. Ethereum roadmap: Danksharding. https://ethereum.org/
en/roadmap/danksharding/, 2024.

[24] Ethereum foundation. Ethereum roadmap: Proposer-builder separation. https:
//ethereum.org/en/roadmap/pbs/, 2024.

[25] Ethereum foundation. Optimistic rollups. https://ethereum.org/en/developers/
docs/scaling/optimistic-rollups/, 2024.

[26] Dankrad Feist. Proofs of custody. https://dankradfeist.de/ethereum/2021/09/30/
proofs-of-custody.html, 2021.

[27] Dankrad Feist. New sharding design with tight beacon and shard block integration.
https://notes.ethereum.org/@dankrad/new_sharding, 2022.

[28] Flashbots. MEV-Boost in a Nutshell. https://boost.flashbots.net, 2024.
[29] Ethereum Foundation. Node discovery protocol v5 - wire proto-

col. https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md#
udp-communication.

[30] Ankit Gangwal, Haripriya Ravali Gangavalli, and Apoorva Thirupathi. A survey of
Layer-two blockchain protocols. Journal of Network and Computer Applications,
209, 2023.

[31] Vincent Gramlich, Dennis Jelito, and Johannes Sedlmeir. Maximal extractable
value: Current understanding, categorization, and open research questions. Elec-
tronic Markets, 34(1):49, 2024.

[32] Abdelatif Hafid, Abdelhakim Senhaji Hafid, and Mustapha Samih. Scaling
blockchains: A comprehensive survey. IEEE access, 8:125244–125262, 2020.

[33] Lioba Heimbach, Lucianna Kiffer, Christof Ferreira Torres, and Roger Watten-
hofer. Ethereum’s proposer-builder separation: Promises and realities. In Internet
Measurement Conference, IMC, pages 406–420. ACM.

[34] Lioba Heimbach, Yann Vonlanthen, Juan Villacis, Lucianna Kiffer, and Roger
Wattenhofer. Deanonymizing Ethereum validators: The P2P network has a privacy
issue. In USENIX Security Symposium, 2025.

[35] Sebastian Henningsen, Daniel Teunis, Martin Florian, and Björn Scheuermann.
Eclipsing Ethereum peers with false friends. In 2019 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW), pages 300–309. IEEE, 2019.

[36] Cornelius Ihle, Dennis Trautwein, Moritz Schubotz, Norman Meuschke, and Bela
Gipp. Incentive mechanisms in peer-to-peer networks—a systematic literature
review. ACM Computing Surveys, 55(14s):1–69, 2023.

[37] Maxim Jourenko, Kanta Kurazumi, Mario Larangeira, and Keisuke Tanaka. SoK:
A taxonomy for Layer-2 scalability related protocols for cryptocurrencies. Cryp-
tology ePrint Archive, Paper 2019/352, 2019.

[38] George Kadianakis, Mary Maller, Andrija Novakovic, and Suphanat Chunhapa-
nya. Proof of Validator: A simple anonymous credential scheme for Ethereum’s
DHT. https://ethresear.ch/t/proof-of-validator-a-simple-anonymous-credential-
scheme-for-ethereums-dht/16454, August 2023.

[39] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Ed-
ward W Felten. Arbitrum: Scalable, private smart contracts. In 27th USENIX
Security Symposium, 2018.

[40] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commit-
ments to polynomials and their applications. In Intl. conf. on the theory and app.
of cryptology and info. sec., ASIACRYPT, 2010.

[41] Csaba Kiraly, Leonardo Bautista-Gomez, and Dmitriy Ryajov. FullDAS - towards
massive scalability with 32MB blocks and beyond https://ethresear.ch/t/fulldas-
towards-massive-scalability-with-32mb-blocks-and-beyond/19529/1, May 2024.

[42] Micha! Król, Onur Ascigil, Sergi Rene, Alberto Sonnino, Matthieu Pigaglio,
Ramin Sadre, Felix Lange, and Etienne Riviere. Disc-NG: Robust service discov-
ery in the Ethereum Global Network. In 9th European Symposium on Security
and Privacy, EuroS&P, pages 193–215. IEEE, 2024.

[43] Probe Lab. Final report: NAT hole punching measurement cam-
paign. https://github.com/plprobelab/network-measurements/blob/master/results/
rfm15-nat-hole-punching.md, 2023.

[44] Labrys.io. MEV Watch. https://www.mevwatch.info, 2024.
[45] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource eclipse attacks

on Ethereum’s peer-to-peer network. IACR Cryptology ePrint Archive, 2018(236).
[46] Matter Labs. zkSync. https://zksync.io, 2024.
[47] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information

system based on the XOR metric. In International Workshop on Peer-to-Peer
Systems, IPTPS. Springer, 2002.

[48] Alberto Montresor and Márk Jelasity. PeerSim: A scalable P2P simulator. In Proc.
of the 9th Int. Conference on Peer-to-Peer, P2P, 2009.

[49] Optimism. https://www.optimism.io, 2024.
[50] Ulysse Pavloff, Yackolley Amoussou-Guenou, and Sara Tucci-Piergiovanni.

Byzantine attacks exploiting penalties in Ethereum PoS. In 2024 54th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
pages 53–65. IEEE, 2024.

[51] Matthieu Pigaglio, Onur Ascigil, Micha! Król, Sergi Rene, Felix Lange, Kaleem
Peeroo, Ramin Sadre, Vladimir Stankovic, and Etienne Rivière. PANDAS proto-
type and simulator. https://github.com/CloudLargeScale-UCLouvain/PANDAS,
2025.

[52] Polygon. https://polygon.technology, 2024.
[53] David Powell. Failure mode assumptions and assumption coverage. In Predictably

dependable computing systems, pages 123–140. Springer, 1995.
[54] Gabriel Antonio F Rebello, Gustavo F Camilo, Lucas Airam C de Souza, Maria

Potop-Butucaru, Marcelo Dias de Amorim, Miguel Elias M Campista, and Luís
Henrique MK Costa. A survey on blockchain scalability: From hardware to
layer-two protocols. IEEE Communications Surveys & Tutorials, 2024.

[55] Codex.storage Research. Crawling the Ethereum DISCV5 network, fast. https:
//ethresear.ch/t/crawling-the-ethereum-discv5-network-fast/20962, 2024.

[56] Danny Ryan. PeerDAS – a simpler DAS approach using battle-tested P2P compo-
nents. https://ethresear.ch/t/peerdas-a-simpler-das-approach-using-battle-tested-
p2p-components/16541, 2023.

[57] Peiyao Sheng, Bowen Xue, Sreeram Kannan, and Pramod Viswanath. ACeD:
Scalable data availability oracle. In Financial Cryptography and Data Security,
FC. Springer, 2021.

[58] Srivatsan Sridhar, Onur Ascigil, Navin Keizer, François Genon, Sébastien Pierre,
Yiannis Psaras, Etienne Rivière, and Micha! Król. Content censorship in the
interplanetary file system. In Network and Distributed System Security Symposium,
NDSS, 2024.

[59] Dennis Trautwein. Nebula: A network agnostic DHT crawler and monitor. https:
//github.com/dennis-tra/nebula, 2025.

[60] Dimitris Vyzovitis, Yusef Napora, Dirk McCormick, David Dias, and Yiannis
Psaras. Gossipsub: Attack-resilient message propagation in the Filecoin and
ETH2.0 networks. arXiv preprint arXiv:2007.02754, 2020.

[61] Stephen B Wicker and Vijay K Bhargava. Reed-Solomon codes and their applica-
tions. John Wiley & Sons, 1999.

[62] Karl Wüst and Arthur Gervais. Ethereum eclipse attacks. Technical report, ETH
Zurich, 2016.

[63] Yunqi Zhang and Shaileshh Bojja Venkatakrishnan. Honeybee: Decentralized
peer sampling with verifiable random walks for blockchain data sharding. arXiv
e-prints, pages arXiv–2402, 2024.

https://celestia.org/
https://www.quicknode.com/guides/infrastructure/node-setup/ethereum-full-node-vs-archive-node
https://www.quicknode.com/guides/infrastructure/node-setup/ethereum-full-node-vs-archive-node
https://etherscan.io/nodetracker
https://geth.ethereum.org/
https://geth.ethereum.org/
https://libp2p.io
https://eips.ethereum.org/EIPS/eip-7870
https://eips.ethereum.org/EIPS/eip-7870
https://eips.ethereum.org/EIPS/eip-4844
https://ethresear.ch/t/from-4844-to-danksharding-a-path-to-scaling-ethereum-da
https://ethresear.ch/t/from-4844-to-danksharding-a-path-to-scaling-ethereum-da
https://ethresear.ch/t/subnetdas-an-intermediate-das-approach/17169
https://ethresear.ch/t/das-fork-choice/19578
https://ethresear.ch/t/das-fork-choice/19578
https://github.com/randao/randao
https://github.com/randao/randao
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://github.com/ethereum/discv4-dns-lists
https://github.com/ethereum/discv4-dns-lists
https://colab.research.google.com/drive/1Di1-hBae8tZr1tZqcu1JqYycOFy8FdAy
https://colab.research.google.com/drive/1Di1-hBae8tZr1tZqcu1JqYycOFy8FdAy
https://ethereum.org/en/upgrades/merge/
https://ethereum.org/en/upgrades/merge/
https://ethereum.org/en/roadmap/
https://ethereum.org/en/roadmap/danksharding/
https://ethereum.org/en/roadmap/danksharding/
https://ethereum.org/en/roadmap/pbs/
https://ethereum.org/en/roadmap/pbs/
https://ethereum.org/en/developers/docs/scaling/optimistic-rollups/
https://ethereum.org/en/developers/docs/scaling/optimistic-rollups/
https://dankradfeist.de/ethereum/2021/09/30/proofs-of-custody.html
https://dankradfeist.de/ethereum/2021/09/30/proofs-of-custody.html
https://notes.ethereum.org/@dankrad/new_sharding
https://boost.flashbots.net
https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md#udp-communication
https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md#udp-communication
https://ethresear.ch/t/proof-of-validator-a-simple-anonymous-credential-scheme-for-ethereums-dht/16454
https://ethresear.ch/t/proof-of-validator-a-simple-anonymous-credential-scheme-for-ethereums-dht/16454
https://ethresear.ch/t/fulldas-towards-massive-scalability-with-32mb-blocks-and-beyond/19529/1
https://ethresear.ch/t/fulldas-towards-massive-scalability-with-32mb-blocks-and-beyond/19529/1
https://github.com/plprobelab/network-measurements/blob/master/results/rfm15-nat-hole-punching.md
https://github.com/plprobelab/network-measurements/blob/master/results/rfm15-nat-hole-punching.md
https://www.mevwatch.info
https://zksync.io
https://www.optimism.io
https://github.com/CloudLargeScale-UCLouvain/PANDAS
https://polygon.technology
https://ethresear.ch/t/crawling-the-ethereum-discv5-network-fast/20962
https://ethresear.ch/t/crawling-the-ethereum-discv5-network-fast/20962
https://ethresear.ch/t/peerdas-a-simpler-das-approach-using-battle-tested-p2p-components/16541
https://ethresear.ch/t/peerdas-a-simpler-das-approach-using-battle-tested-p2p-components/16541
https://github.com/dennis-tra/nebula
https://github.com/dennis-tra/nebula

	Abstract
	1 Introduction
	2 Preliminaries
	3 Data Availability Sampling
	4 PANDAS: Objectives and Overview
	4.1 Model and Assumptions
	4.2 Objectives
	4.3 PANDAS in a nutshell

	5 Cell to Nodes Assignment
	6 PANDAS Protocol Phases
	6.1 Seeding phase
	6.2 Consolidation phase
	6.3 Sampling phase

	7 Adaptive Fetching
	8 Evaluation
	8.1 Prototype deployments
	8.2 Large-scale simulations

	9 Discussion
	10 Related Work
	11 Conclusion
	References

