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Abstract
We explore how large language models (LLMs) can support real-time visual mapping of data analysis workflows. Building
on an earlier vision, we investigate if and how LLMs can decompose analytic dialogues into “analysis maps” that capture
key semantic units such as questions, datasets, tasks, and findings. Using two exemplar analyses, we test both post-hoc and
interactive strategies for generating these maps and experiment with prompting techniques for structuring and updating them.
Results, documented in Observable notebooks, suggest that LLMs can scaffold analysis-as-network meaningfully—laying the
groundwork for user-facing systems and moving beyond purely textual forms of LLM-mediated analysis.

CCS Concepts
• Computing methodologies → Collision detection; • Hardware → Sensors and actuators; PCB design and layout;

1. Introduction

Data analysis is rarely linear. Analysts refine questions, test ideas,
inspect visualizations, adjust assumptions, and pivot methods in re-
sponse to emerging insights. The growing use of LLMs in anal-
ysis creates new opportunities to trace and structure this process.
Because analysts articulate intent, observations, and reflections as
natural language prompts, the LLM interaction stream becomes
a rich source of provenance, capturing not only analysis content
but also its logic, evolution, and rationale. In our recent vision
paper [EJS∗25], we argued that this positions LLMs as not just
computational assistants but also reflective partners that help con-
struct, track, and visualize the analytic process itself. We proposed
a model in which visual representations capture the state of knowl-
edge, analytic trajectory, and semantic structure, updated dynam-
ically through LLM interaction. Such representations can support
sensemaking, communication, and collaboration in human–LLM
teams.

This paper takes first steps toward that vision. We examine
whether LLMs can decompose and interpret analysis workflows as
structured networks of semantic units of analysis—research ques-
tions, datasets, tasks, methods, findings. We test two complemen-
tary strategies—post-hoc and interactive—each with distinct ad-
vantages for experimentation and application, and evaluate how
well they extract, revise, and maintain “analysis maps” that evolve
with the dialogue.

Our contributions are: (i) A novel application of LLMs for anal-
ysis mind-mapping, showing that structured visual representations
of analytic reasoning can be generated dynamically from natural
language; (ii) A methodology for testing and comparing models,

prompting strategies, and interventions, including a post-hoc mode
for repeatable experimentation on archived analyses; (iii) An inter-
active proof-of-concept demonstrating real-time mind-map con-
struction alongside active analysis.

2. Related Work

Our work builds on long-standing goals in visual analytics (VA)
to capture and externalize analytic reasoning. Since Thomas
and Cook’s foundational call to represent the process of analy-
sis, researchers have developed ways to model analytic prove-
nance [TC05]. Provenance includes both low-level interaction his-
tories and higher-level semantic information such as questions, hy-
potheses, and findings. Ragan et al. [RESC15] provide a compre-
hensive framework for organizing such provenance to support re-
call, reproducibility, and collaboration. Andrienko et al. [ALA∗18]
further frame VA as a model-building activity centered on evolving
semantic structures.

From this, researchers have explored how structured visual
representations support cognitive offloading, sensemaking, and
knowledge transfer. Federico et al. [FWR∗17] and Andrienko et
al. [ALA∗18] highlight how semantic structure and visual exter-
nalization enhance interpretability and communication. Zhao et
al. [ZGI∗17] show how knowledge-transfer graphs support collabo-
rative handoff, while Shrinivasan and van Wijk [SVW08] advocate
for systems that scaffold VA through externalized semantic forms.
This motivation also underlies systems that help users spatially or-
ganize analytic content. Jigsaw [SGLS07] supports investigative
analysis through spatial arrangement of evidence, while Cook et
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al. [CCI∗15] combine structured workspaces with task-driven sys-
tem recommendations.

Recently, MindMap [WWS24] shows that LLMs can reflect on
dialogue and translate it into knowledge graphs, but the graphs are
used mainly internally to scaffold model inference. Our aim is dif-
ferent: we treat the evolving graph as a visual boundary object, co-
created with and interpretable by analysts. In VA, there is grow-
ing acceptance that analyst–LLM chats should materialize into ma-
nipulable visual artifacts. Systems like LEVA [ZZZ∗25] and Phe-
noFlow [KLJ∗25] record and curate the exploration process and its
outputs (e.g., rounds/steps, screenshots, cohorts) to aid reporting
and iterative exploration, but they stop short of modeling the anal-
ysis itself. Closest to our work is InsightLens [WWL∗25], which
makes the conversation navigable via insight-centric cards with
linked evidence, organized by data attributes and a two-level topic
hierarchy. We differ by representing analysis as a more general, se-
mantically typed network of questions, hypotheses, datasets, tasks,
and findings intended for human co-editing and coordination.

3. Methods

Our goal was to evaluate whether LLMs can extract and maintain
structured representations of data analysis as it unfolds. We adopted
a two-part methodology. First, we collected exemplar analyses con-
ducted with ChatGPT and subjected them to post-hoc decomposi-
tion, testing how different prompting strategies could reconstruct
and evolve an “analysis map” from the transcript. By analysis map
we mean a semantically typed network capturing key elements of
an analysis (e.g., research questions, datasets, tasks, methods, find-
ings) and their evolving relationships. Second, we implemented in-
teractive versions of this process, where analysis and mapping co-
occurred in real time. This allowed us to compare the strengths and
limitations of both modes and assess the feasibility of live mapping.

3.1. Creating and Capturing Analysis Samples

Two authors independently conducted exploratory data analyses
using ChatGPT. One examined the effects of COVID-19 on the
rise of populism; the other focused on stop-and-search practices
in London, with particular attention to racial disparities. Each ses-
sion, conducted entirely through natural language, lasted about
4 hours and resulted in 96 and 57 utterances (analyst requests
and LLM responses). This approach matches that used in In-
sightLens [WWL∗25] and aligns with our broader vision of interac-
tive, iterative co-creation of analysis flows in which evolving maps
are constructed from analyst–LLM dialogues about data.

Both analyses involved iterative refinement of goals and ques-
tions, dataset identification, and preliminary exploration. Tasks in-
cluded filtering, faceting, and visualization for hypothesis genera-
tion and interpretation. The LLM acted as an active assistant, trans-
forming data, suggesting methods, generating plots, and synthesiz-
ing early insights. Each session was fully captured, including tran-
script, artifacts (datasets, charts), and referenced materials. These
sessions form the corpus for both post-hoc and interactive decom-
position.

3.2. Post-hoc Decomposition and Experimentation

In our first experiment, we treated each analysis as a fixed object
and tested whether an LLM could reconstruct its analytic struc-
ture after the fact. The system prompt specified: (i) a list of se-
mantic units to extract (e.g., research questions, datasets, analytic
tasks, visualizations, insights); (ii) the network schema (node and
edge fields); and (iii) the expected output format—a JSON object
describing network updates via newNodes, updatedNodes,
newLinks, and referredNodes.

We experimented with two prompting dimensions. First, three
transcript segmentation strategies: (i) full transcript in one prompt
(whole), (ii) one utterance at a time (single), or (iii) each re-
quest–response pair (paired). Second, two concept refinement
strategies: while new semantic concepts always resulted in an
added node, refinements to existing concepts could be divergent
(new linked node) or in-place (update existing node with edit his-
tory). These strategies were specified in the prompts.

Experiments were run iteratively: for each analysis, we fed in
one or more pre-recorded utterances (per segmentation strategy),
received the LLM’s response, and applied updates to the network.
Each prompt included the latest utterance(s), the ten prior utter-
ances for context, and the current network state. We automated this
process via the OpenAI API.

Finally, we tested whether the LLM could revise mappings based
on corrective feedback. When we felt interpretation was particu-
larly suboptimal, we added correction requests (e.g., merge or re-
label nodes), logging these along with the triggering exchange and
including them in future prompts. This allowed us to examine re-
sponsiveness to feedback and incorporation of corrections.

All prompts, LLM responses, and evolving networks produced
during this stage can be browsed in an interactive Observable note-
book: https://observablehq.com/@rdjianu/mind-
mapping-analyses.

3.3. Interactive Analysis Mapping

To test whether live analysis mapping could work in practice, we
implemented an interactive setup where analysis and interpretation
occurred concurrently. The system responded to analyst requests as
part of an ongoing data workflow while simultaneously mapping
the exchange into a semantic network.

We tested two architectural variants. The first used two agents:
an assistant that addressed analysis queries and a scribe that inter-
preted each request–response pair and returned structured updates
(nodes and links) to the map. The second used a single dual-role
agent, prompted to both answer the query and extract a map up-
date. It returned a Markdown response for the user and a JSON
update processed in the background to evolve the network.

Unlike the post-hoc mode, this setup reflects practical integra-
tion: how such a system could support analysts without interrupting
their flow. However, it also introduces variability: because the LLM
generates new responses each time, results are harder to compare
or reproduce.

© 2025 The Author(s).
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Figure 1: Our Observable notebook captures the effectiveness of different prompts in LLM-assisted data analysis mapping. Experimenters
can step through pre-recorded analysis exchanges (left) and see how they are gradually mapped into an analysis network (right). Explanations
of the changes made to the network at each step are also captured (upper-right).

3.4. Technical Details

All experiments were conducted using OpenAI’s GPT-4.1 model
via the API. The semantic networks were visualized using a custom
D3-based force-directed layout implemented in JavaScript.

4. Results

We discuss the effectiveness of LLM-generated analysis maps un-
der two experimental settings, post-hoc and interactive, focusing
on how different prompting strategies influence quality. We assess
the model’s ability to decompose analysis dialogue into structured
maps, refine and update concepts over time, and respond to correc-
tive feedback. We note that evaluation was qualitative, by the au-
thors, without quantitative measures of semantic faithfulness. We
reflect on notable tradeoffs in granularity, interpretability, and re-
producibility.

4.1. Post-hoc Decomposition Performance

Across both analyses, LLMs were able to extract meaningful se-
mantic structure from transcript data. The whole segmentation
strategy, where the full transcript was processed at once, yielded
broad but often overgeneralized maps, missing task-level detail and
subtle shifts in research framing. In contrast, the single and paired
strategies produced more faithful and coherent structures that better
captured the analysis trajectory.

Among these, the paired strategy, where each analyst request
was coupled with the corresponding response, led to more aligned

and interpretable maps. Pairing preserved the relationship between
prompts and replies, reducing the excessive granularity of the sin-
gle strategy, which often produced speculative or redundant nodes.

Results were also shaped by the concept refinement strategy.
Divergent refinement, where each update generated a new node,
yielded detailed maps with semantically similar elements, which is
useful for tracing reasoning or supporting knowledge-graph appli-
cations. In contrast, in-place refinement generally produced more
coherent structures and let the model integrate updates more effec-
tively, likely due to fewer, more stable nodes with richer content.

When map quality degraded due to ambiguity or misinterpreta-
tion, correction prompts proved effective. Mid-decomposition ed-
its improved outcomes and were often generalized correctly by the
model in later steps. This suggests that perfect prompting is not es-
sential; lightweight, in-context feedback can meaningfully steer the
mapping process.

4.2. Interactive Mapping Outcomes

The interactive setup confirmed that real-time analysis mapping is
feasible and responsive. Of the two configurations tested, the dual-
role approach—where one LLM handled both analysis generation
and map interpretation—outperformed the two-agent setup. It was
faster and more fluid, returning network updates with analysis re-
sponses without extra processing, and avoided duplication or mis-
match by consolidating interpretation within a single model.

We were initially concerned that the LLM might struggle to dis-
tinguish network correction prompts from analysis requests, but

© 2025 The Author(s).
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this was not the case. Corrections could be interleaved directly into
the dialogue without confusion. The LLM consistently interpreted
them correctly, and we found that offering feedback mid-session
felt natural and not overly disruptive. These observations suggest
that lightweight, embedded corrections can effectively guide map-
ping without breaking the flow of analysis.

5. Discussion

Across both post-hoc and interactive setups, the model interpreted
naturalistic exchanges into structured representations of goals,
questions, data, tasks, and findings. This supports our vision that
LLMs can help externalize data analysis as a dynamic, visual pro-
cess. However, the work is preliminary and comes with limitations,
outlined below with directions for future research.

Post-hoc mapping as a testbed for experimentation: Post-
hoc decomposition offers strong control and repeatability, support-
ing systematic testing of prompting strategies on fixed inputs and
side-by-side comparison of network outputs in environments like
Observable. It also benefits from the feature-rich ChatGPT client,
which supports file handling, multimodal input, and code execu-
tion—capabilities absent from the OpenAI API. This makes post-
hoc mapping well-suited for prototyping and refining prompts be-
fore full system integration.

Interactive mapping toward real-world integration: Interac-
tive mapping mirrors real analysis and is essential for building and
evaluating future user-facing tools. It enables examination of how
analysts experience mapping, the cognitive overhead involved, and
whether evolving visual traces aid reflection or decision-making. It
also supports integrated workflows where analysts reference map
elements to drive analysis (e.g., “Can you refine this [selected]
observation into a testable hypothesis?”). Achieving this requires
coupling the model to a persistent, manipulable network, feasible
only in an interactive setup. However, the OpenAI API lacks key
agent-level features such as persistent memory, file uploads, and
visual rendering, so interactive experimentation requires non-trivial
infrastructure to replicate ChatGPT client capabilities.

Output variability and model/prompt sensitivity: Even with
identical inputs, prompts, and models, map outputs varied. Minimal
in-context feedback often improved consistency. Prompt wording
also mattered: beyond the broad strategies in Section 3.1, changes
such as clarifying node naming, summarisation, or definitions of
analytic concepts influenced results. Model choice was another fac-
tor: we began with GPT-4o, then switched to GPT-4.1 for formal
testing, noting substantial improvements in structure and coher-
ence. We did not formally or systematically study these sources of
variation—a clear limitation of this exploratory work—but doing
so remains an important avenue for future research.

Analysis sample and evaluation limitations: The analysis sam-
ple was small—two author-led analyses. While these provided con-
trolled, information-rich testbeds, the scope limits generalizability.
Prompt design was also tuned on one transcript, risking overfitting
to its style. Evaluation was purely qualitative, relying on author
inspection rather than objective measures of semantic accuracy or
reproducibility. Thus, findings should be interpreted as exploratory.
Future work should use more diverse analyses and apply rigorous

quantitative and qualitative evaluation to assess both analytic valid-
ity and user experience.

6. Conclusion

We take first steps toward LLM-supported analysis mapping by
testing whether analytic dialogue can be structured into evolving
semantic networks. Through static and interactive experiments, we
show that LLMs can extract and maintain representations of ana-
lytic structure, shaped by prompt design and granularity choices.
Our interactive prototype demonstrates real-time mapping during
analysis, laying groundwork for user-facing systems and empiri-
cal studies. Future work will pursue user studies, bidirectional map
interactions, and integration into practical analytic workflows.
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