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Abstract—As climate change accelerates and the energy 

crisis deepens, electric vehicle adoption is growing rapidly with 

strong governmental support. However, this growth is straining 

electricity networks, prompting expensive infrastructure 

upgrades and a need for smart charging solutions, including 

Grid-to-Vehicle and Vehicle-to-Grid. This research synthesizes 

residential vehicle travel patterns from statistical data to model 

the electrical demand profile from uncoordinated charging, 

capturing the diversity in driving behaviour. It then develops 

scalable models for unidirectional and bidirectional smart 

charging to assess their impact on system reliability and their 

capacity credit within a probabilistic Monte Carlo framework. 

The case studies additionally present sensitivities on smart 

charging participation, electric vehicle uptake, and installed 

wind capacity. Results show that both smart charging concepts 

enhance reliability and that their capacity contributions grow 

with increased user engagement and wind generation, though 

the benefits plateau beyond certain thresholds. 

Keywords—electric vehicles, Monte Carlo, reliability, smart 

charging, vehicle-to-grid. 

I. INTRODUCTION 

The growing adoption of electric vehicles (EVs), to help 
combat air pollution and decarbonise part of the transport 
sector, presents both challenges and opportunities for future 
power systems, particularly in relation to charging behaviours 
and their implications for system reliability and planning. To 
assess the potential impact of EVs on the network and inform 
future expansion planning, it is essential to accurately model 
EV travel and charging behaviours. Charging behaviour varies 
significantly depending on the context – residential, 
workplace, destination, or rapid charging – with residential 
charging predicted to account for 58–64% of total charging 
events by 2030 [1]. Accurate demand characterisation requires 
inputs including arrival and departure times, state of charge 
(SoC), battery capacity, and rated charging power [2]. 

Several studies have used travel survey data [3], [4], [5] or 
EV trials with GPS loggers [6], [7] to derive usage patterns, 
though sample sizes remain limited and may not reflect 
current trends. Alternatively, probability distributions have 
been used to model vehicle arrival-departure and travel 
distance [8], [9]. Assumptions around initial SoC at plug-in 
vary widely, with some studies underestimating it due to 
comparisons with traditional fuel vehicles behaviours [10] or 
conversions of daily mileage into charging demands [6], [2]. 
Based on the SwitchEV trial statistics, over 50% of EVs begin 
charging with more than 53% SoC [11]. 

Uncoordinated or uncontrolled charging assumes users 
plug in as soon as their journey ends, with 70% of EVs 
following this pattern [12], often charging at rated power until 
reaching 90–98% SoC [6], [11], though studies caution 
against charging to full capacity due to battery life concerns 
[13]. In contrast, unidirectional smart charging, known as 
Grid-to-Vehicle (G2V), enables dynamic charging control 
within user-defined constraints, using either centralised [2], 
[14] or decentralised strategies [15]. In research, objectives 
range from peak shaving [16], [17] and cost reduction [18], 
[19], to minimising power losses [20] and greenhouse gas 
emissions [21], [22]. The user experience is also sometimes 
considered [23]. 

Bidirectional smart charging, or Vehicle-to-Grid (V2G), 
extends these benefits by allowing EVs to discharge back to 
the grid, enhancing peak shaving potential [16] and supporting 
system flexibility. It introduces new constraints such as depth 
of discharge (DoD) to limit the effects of battery degradation 
[13], [24]. Participation levels in V2G are still low due to user 
concerns about battery wear and cost-effectiveness, with only 
up to 45% of users expected to engage in V2G by 2050 
compared to 67–92% for G2V [1], [25]. 

To quantify the impact of EV integration on power system 
adequacy, reliability metrics such as Loss of Load Expectation 
(LOLE), Expected Energy Not Supplied (EENS), and 
Expected Demand Not Served (EDNS) are commonly 
employed [3], [26], [27]. These are especially relevant to 
Great Britain’s (GB’s) adequacy-focused reliability standard 
of ≤3 hours LOLE per year. Furthermore, the contribution of 
smart charging to system security is evaluated using capacity 
value indicators including Effective Load Carrying 
Capability, Equivalent Firm Capacity, and Capacity Credit 
(CC) [28], [29], which collectively help assess how EVs can 
support system adequacy and meet decarbonisation targets. 

This study develops models for uncoordinated, G2V, and 
V2G charging strategies and integrates them into a Monte 
Carlo-based probabilistic reliability assessment framework to 
evaluate the contribution of optimised EV charging to power 
system security of supply. Residential vehicle travel patterns 
are synthesised from statistical data to capture diversity in 
driving behaviour, which is crucial for accurately modelling 
EV charging demand. In the case studies, inputs from the GB 
power system are used to quantify the contribution of G2V 
and V2G to system adequacy for different smart charging 
participation rates, and to evaluate the impact of EV uptake 
and wind generation capacity on system reliability. 
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II. METHODOLOGY 

A. System Modelling 

Gas-fired, coal-fired, and nuclear generators were 
modelled as two-state Markov Chains, shown in Fig.  1. 
Assuming outages and repairs follow a Poisson process, the 
transition rates 𝜆 and 𝜇 are constant and equal the reciprocal 
of the Mean Time to Failure (MTTF) and Mean Time to 
Repair (MTTR) properties of generators. These rates were 
multiplied by the simulation time step Δ𝑡 to obtain transition 
probabilities for the discrete-time model. Unit availabilities 
(𝛼) were calculated using (1). Total available conventional 
power generation at every time period 𝑡 (𝑃𝐺,𝑡) was obtained 

using (2), where 𝑃𝑖  and 𝑠𝑖 ∈ {0,1}  denote the installed 
capacity and state of unit 𝑖, and 𝑁𝐺 is the number of units. 

  
Fig.  1 Discrete-time two-state Markov Model of conventional generators. 

  𝛼 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹+𝑀𝑇𝑇𝑅
=

𝜇

𝜇+𝜆
  (1)  

  𝑃𝐺,𝑡 = ∑ 𝑃𝑖𝑠𝑖,𝑡
𝑁𝐺

𝑖=1  (2)  

Wind and solar generation were modelled following the 
bias-corrected reanalysis approach in [30] that yields hourly 
capacity factors obtained from [31] for solar, onshore wind, 
and offshore wind. These factors were applied to scale the 
corresponding installed capacities of renewable generation in 
each simulated time period 𝑡. Energy storage availability was 
assumed to be 90%, while its operation is modelled according 
to [32] with the aim to minimise Energy Not Supplied during 
scarcity events while assuming that charging occurs during 
periods of excess generation. Finally, hourly base demand was 
obtained from historical data. 

B. EV Charging Demand 

A primary driver for residential EV charging demand is 
driving behaviour; Therefore, the demand model was built 
based on journey data, as for example obtained from [33] in 
our case studies. Assuming that EVs are charged immediately 
after the last journey of the day, the statistical data can be 
transformed into electrical demand for uncoordinated EV 
charging for a typical weekday and weekend day [5]. This was 
done for 𝑁𝐼 groups of EVs with similar arrival and departure 
times and assuming a homogeneous residential EV fleet with 
50 kWh capacity and access to 7 kW chargers. The resulting 
average demand curve is shown in Fig.  2. 

 
Fig.  2 Average uncoordinated EV charging demand. 

The smart charging models optimise the uncoordinated 
demand curve, as done in [2], to improve system adequacy. 
The effect of G2V is to flatten the demand curves in  Fig.  2 
only when a generation shortage occurs, as modelled with (3) 
– (7). The objective function takes the quadratic form to both 
minimise the demand and average the load distribution. 
Notably, constraint (7) ensures that the total energy drawn 
during a smart charging period is the same as it would have 
been under uncoordinated charging during that period. 

  min ∑ (𝑝𝑡
𝑏𝑎𝑠𝑒 + ∑ (1 − 𝜎)𝑁𝑖𝑝𝑖,𝑡

𝐸𝑉𝑁𝐼
𝑖=1 + ∑ 𝜎𝑁𝑖𝑝𝑖,𝑡

𝐺2𝑉𝑁𝐼
𝑖=1 )

2𝑡𝐿+𝑇
𝑡=𝑡𝐿

  (3)  

  0 ≤ 𝑝𝑖,𝑡
𝐺2𝑉 ≤ 𝑝𝑚𝑎𝑥, ∀𝑖, 𝑡 (4)  

  𝑝𝑖,𝑡
𝐺2𝑉 = 0, 𝑓𝑜𝑟 𝑡𝑖

𝑑 ≤ 𝑡 < 𝑡𝑖
𝑎  (5)  

  ∑ 𝑝𝑖,𝑡
𝐺2𝑉𝜂+Δ𝑡

𝑡𝑖
𝑑

𝑡=𝑡𝑖
𝑎 = (𝑆𝑜𝐶 − 𝑆𝑜𝐶)𝐸, ∀𝑖 (6)  

  ∑ 𝑝𝑖,𝑡
𝐺2𝑉Δ𝑡

𝑡𝐿+𝑇
𝑡=𝑡𝐿

= ∑ 𝑝𝑖,𝑡
𝐸𝑉Δ𝑡

𝑡𝐿+𝑇
𝑡=𝑡𝐿

, ∀𝑖 (7)  

The V2G modelling was performed similarly in (8) – (16), 
with the exception that contracted EVs are able to discharge 
to the grid. The SoC in each 𝑡 was updated with (14) and 
constrained with (15). Like with G2V, consistency with the 
energy required under uncoordinated charging was 
maintained with (16). 

min ∑ (𝑝𝑡
𝑏𝑎𝑠𝑒 + ∑ (1 − 𝜎)𝑁𝑖𝑝𝑖,𝑡

𝐸𝑉𝑁𝐼
𝑖=1 +

𝑡𝐿+𝑇
𝑡=𝑡𝐿

∑ 𝜎𝑁𝑖(𝑝𝑖,𝑡
𝑉2𝐺+ − 𝑝𝑖,𝑡

𝑉2𝐺−)
𝑁𝐼
𝑖=1 )

2
  (8) 

  0 ≤ 𝑝𝑖,𝑡
𝑉2𝐺+ ≤ 𝑝𝑚𝑎𝑥, ∀𝑖, 𝑡 (9)  

  0 ≤ 𝑝𝑖,𝑡
𝑉2𝐺− ≤ 𝑝𝑚𝑎𝑥, ∀𝑖, 𝑡 (10)  

  𝑝𝑖,𝑡
𝑉2𝐺+ = 0, 𝑓𝑜𝑟 𝑡𝑖

𝑑 ≤ 𝑡 < 𝑡𝑖
𝑎 (11)  

  𝑝𝑖,𝑡
𝑉2𝐺− = 0, 𝑓𝑜𝑟 𝑡𝑖

𝑑 ≤ 𝑡 < 𝑡𝑖
𝑎 (12)  

  ∑ (𝑝𝑖,𝑡
𝑉2𝐺+𝜂+ −

𝑝𝑖,𝑡
𝑉2𝐺−

𝜂− )Δ𝑡
𝑡𝑖

𝑑

𝑡=𝑡𝑖
𝑎 = (𝑆𝑜𝐶 − 𝑆𝑜𝐶)𝐸, ∀𝑖 (13)  

  𝑆𝑜𝐶𝑖,𝑡 = 𝑆𝑜𝐶𝐸 + ∑ (𝑝𝑖,𝑡
𝑉2𝐺+𝜂+ −

𝑝𝑖,𝑡
𝑉2𝐺−

𝜂− )Δ𝑡𝑡−1
𝑡=𝑡𝑖

𝑎 , ∀𝑖, 𝑡 (14)  

    𝑆𝑜𝐶𝐸 ≤ 𝑆𝑜𝐶𝑖,𝑡−1 + (𝑝𝑖,𝑡
𝑉2𝐺+𝜂+ −

𝑝𝑖,𝑡
𝑉2𝐺−

𝜂−
) Δ𝑡 ≤ 𝐸, ∀𝑖, 𝑡 (15)  

  ∑ (𝑝𝑖,𝑡
𝑉2𝐺+𝜂+ −

𝑝𝑖,𝑡
𝑉2𝐺−

𝜂− )Δ𝑡
𝑡𝐿+𝑇
𝑡=𝑡𝐿

= ∑ 𝑝𝑖,𝑡
𝐸𝑉Δ𝑡

𝑡𝐿+𝑇
𝑡=𝑡𝐿

, ∀𝑖 (16)  

In the above equations, 𝑡𝐿 is the time period when a LOL 
event occurs and smart charging is employed, 𝑇 is the length 
of the operation of smart charging, 𝑡𝑎  and 𝑡𝑑  are the arrival 

and departure times, respectively. Then, 𝑝𝑏𝑎𝑠𝑒  is the system 
non-EV demand, 𝑁𝐼  is the number of EV groups, 𝑁𝑖  is the 
number of EVs in group 𝑖 , and 𝜎  is the participation rate 
denoting the percentage of EVs participating in smart 

charging schemes. For G2V, 𝑝𝑖,𝑡
𝐺2𝑉 is the charging demand of 

each EV in group 𝑖  at time 𝑡 . Similarly, 𝑝𝑖,𝑡
𝑉2𝐺+  and 𝑝𝑖,𝑡

𝑉2𝐺− 

denote charging and discharging power under V2G. Finally, 

𝑆𝑜𝐶 and 𝑆𝑜𝐶 are the minimum and maximum allowed SoC, 

whereas 𝜂+ and 𝜂− are charging and discharging efficiencies. 

C. Probabilistic Framework 

Smart charging concepts were evaluated using a 
probabilistic reliability assessment framework based on time-
sequential Monte Carlo simulations. The framework estimates 
LOLE and EENS from 𝑁𝑌 independently simulated years of 
system operation. A random system state, as described with 
(17), was evaluated at every period 𝑡 with a progression of Δ𝑡. 
Total generation (𝐺𝑡 ) and demand (𝐷𝑡 ) were computed at 
every 𝑡 and used to determine LOL and ENS, according to 
(18) and (19). The expected values for the reliability metrics 
were then calculated with (20) and (21). 

             

Failure

 epair



𝑆𝑡 = {𝐺𝑖,𝑡
𝑐𝑜𝑎𝑙 , 𝐺𝑗,𝑡

𝑔𝑎𝑠
, 𝐺𝑘,𝑡

𝑛𝑢𝑐𝑙𝑒𝑎𝑟 , 𝐺𝑡
𝑠𝑜𝑙𝑎𝑟 , 𝐺𝑡

𝑤𝑖𝑛𝑑 , 𝐺𝑖,𝑡
𝐸𝑆 , 𝐷𝑡

𝑏𝑎𝑠𝑒 , 𝐷𝑡
𝐸𝑉}    (17)  

  𝐿𝑂𝐿𝑡 = {
1, 𝑖𝑓 𝐺𝑡 < 𝐷𝑡  
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  (18)  

  𝐸𝑁𝑆𝑡 = {
(𝐷𝑡 − 𝐺𝑡)Δ𝑡, 𝑖𝑓 𝐺𝑡 < 𝐷𝑡  
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

 (19)  

  𝐿𝑂𝐿𝐸 =
1

𝑁𝑌

∑ ∑ 𝐿𝑂𝐿𝑛,𝑡
8760/Δ𝑡
𝑡=1

𝑁𝑌
𝑛=1 Δ𝑡  (20)  

  𝐸𝐸𝑁𝑆 =
1

𝑁𝑌

∑ ∑ 𝐸𝑁𝑆𝑛,𝑡
8760/Δ𝑡
𝑡=1

𝑁𝑌
𝑛=1  (21)  

 The difference between EV charging concepts arises in the 
treatment of LOL events. With uncoordinated charging, LOL 
and ENS were recorded as observed, whereas with G2V and 
V2G, EV charging is first optimised for the duration of the 
original LOL event before reliability indices were recorded. 

Adopting the approach in [32], CC was used to quantify 
the contribution to security of supply. It represents the amount 
of conventional generation that could be replaced by 
contracting EV smart charging capacity to maintain reliability 
at the same level. As summarised in Fig.  3,  first a base LOLE 
is obtained for the system with uncoordinated EV charging. 
Then, the Monte Carlo simulation with a smart charging 
concept of choice was performed, iteratively removing 
100 MW of gas-fired generation until the updated LOLE is 
within a pre-defined tolerance of the base LOLE. 

 

Fig.  3.  Framework for quantifying the contribution of smart charging 

concepts to security of supply. 

III. CASE STUDIES 

The case studies aim to make general observations on the 
role and value of smart charging concepts in the context of 
system adequacy. Nonetheless, inputs were derived from the 
GB power system in 2022, where only generation units with 
relatively large capacities were considered. Conventional 
generation units and their technical parameters listed in 
TABLE  I. are obtained from [28], [34], and [35]. Solar 
installed capacity was assumed 14.3 GW, onshore and 
offshore wind 13.4 GW for each [36], and 3.1 GW of energy 
storage capacity. The half hourly GB demand profile was 
extracted from [37] with a peak of 46.1 GW. To analyse a 
future system with a higher EV uptake, the projected number 
of battery EVs in 2030 in the Future Energy Scenarios (FES) 
[2] was used, which is 11.9 million.  

TABLE  I.         CONVENTIONAL GENERATION ASSUMPTIONS 

Fuel type 
Number 
of units 

Installed 

capacity 
(GW) 

MTTF 
(h) 

MTTR 
(h) 

𝜶  
(%) 

Coal 3 3.8 600 100 86 

Gas 45 30.8 1250 60 95 

Nuclear 7 7.7 8000 150 98 

Based on journey data observations, 𝑁𝐼 = 190 EV groups 
were assumed, charging every four days under the conditions 

that 𝑆𝑜𝐶 = 0.3  and 𝑆𝑜𝐶 = 0.95 , with 𝜂+ = 𝜂− = 0.9 . The 

Monte Carlo simulation was implemented in Matlab with  
𝑁𝑌 = 3000 and Δ𝑡 = 0.5h. 

A. Evaluation of the Contribution of EV Smart Charging 

Concepts to Security of Supply 

There is significant uncertainty regarding the behaviour of 
EV users, including their charging habits and willingness to 
participate in controlled charging. Therefore, in this section, 
the contribution of G2V and V2G to system adequacy for 
different smart charging participation rates is evaluated.  

Uncoordinated EV charging demand modelling shows that 
the charging and base load peaks coincide. This results in a 
total peak demand increase of 8.77 GW, as demonstrated for 
a 7-day period in Fig.  4. Additionally, the integration of EVs 
increases the peak-valley difference in the load profile, posing 
challenges to system adequacy and requiring significant 
investment in additional generation and network capacity.  

In comparison, unidirectional smart charging can shift the 
peak demand to the valley of the curve as demonstrated in Fig.  
5. Instead of starting to charge immediately upon returning 
home in the evening, EVs absorb energy at night when fewer 
appliances are in use. This notably flattens the demand curve. 
As EV participation rate decreases, the peak shaving effect of 
G2V decreases as well. The load curve could be completely 
flattened if all electric cars commit to V2G as shown in Fig.  
6. This is due to the discharge capability, which allows EVs to 
supply the grid with remaining electricity in their batteries 
during high demand periods, potentially preventing LOL 
events. Similar to unidirectional charging, the effect depends 
on the participation rate. 

 
Fig.  4.  A 7-day demand curve with uncoordinated EV charging. 

 

  
Fig.  5.  The impact of G2V participation rate on the system demand curve. 
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Fig.  6.  The impact of V2G participation rate on the system demand curve. 

Given the previous observations, the study analysed the 
contributions of G2V and V2G to system reliability under 
different participation rates. The results are illustrated in Fig.  
7, where the zero-participation rate case corresponds to 
uncoordinated charging. The results indicate that V2G has 
significant advantages over G2V in maintaining system 
reliability. It is also observed that as V2G engagement exceeds 
60%, reliability indices remain nearly unchanged. To quantify 
the capability of smart charging concepts to maintain system 
operation security under different participation rates, CC was 
computed and presented in Fig.  8. The results demonstrate 
that the capacity value of G2V increases consistently with 
growing participation. For V2G, CC initially increases rapidly 
due to the discharging capabilities, before its contribution to 
system adequacy plateaus at high levels of participation. 

 
Fig.  7.  Effect of smart charging participation rate on reliability metrics. 

  
Fig.  8.  Capacity credit of G2V and V2G. 

B. Investigation of the Impact of Wind Capacity and EV 

Uptake on System Reliability  

In addition to network reinforcements, additional 
generation capacity will be required to meet the large 

electrical demand of the future EV fleet, especially when 
concentrated during several evening hours coinciding with the 
system demand peak. As electricity sectors are shifting to 
renewable energy sources, scaling wind generation will be 
crucial for many power systems worldwide. Therefore, 
sensitivities were performed to analyse the impact of 
increasing wind capacity and residential EV uptake on the 
contributions of G2V and V2G to security of supply.  The 
assumptions are drawn from the scenario projections in the 
FES data workbook for 2030 to 2050 [1], with residential EV 
numbers ranging from    million to 3  million in  .  million 
increments, an  win  capacity increasing from  6 G  to 
 3  G  in steps of  6 G .  

In both G2V and V2G scenarios, with the same level of 
EV penetration, an increase in installed wind capacity initially 
leads to a quick rise in CC, which then plateaus. For instance, 
in the G2V scenario, the CC increases by about 10% as wind 
capacity grows from 26 GW to 52 GW with 30 million EVs 
integrated into the GB power system. However, this increase 
diminishes as wind capacity continues to grow. When wind 
capacity reaches 78 GW, each additional 26 GW of wind 
power only results in a 3 – 4% increase in security of supply. 
This effect is more pronounced with higher EV penetration. 
Identifying the inflexion point is important for power system 
planners aiming to design a low-carbon system with the 
socially optimal mix of technologies. 

IV. CONCLUSIONS 

This paper evaluates the impact of EV integration on the 
reliability of the GB power system under both uncoordinated 
and smart charging strategies. Residential charging profiles 
were derived from realistic weekday and weekend arrival-
departure patterns, and optimisation-based models for G2V 
and V2G were developed to flatten the aggregated demand 
curve, while maintaining user constraints. Time-sequential 
Monte Carlo simulations were performed to compute key 
reliability metrics and to quantify the contribution of smart 
charging to system adequacy as CC.  

Two case studies investigated the effects of smart charging 
participation rates, EV penetration, and wind generation 
capacity. The results indicate that both smart charging 
strategies significantly reduce the occurrence and intensity of 
LOL events compared to uncoordinated charging, with V2G 
offering enhanced performance as evidenced by its higher CC. 
As user participation in smart charging schemes increases, 
contributions to security of supply grow rapidly but eventually 
plateau, suggesting technology saturation. Similarly, while 
G2V and V2G CCs increase with greater EV uptake and wind 
capacity, marginal gains diminish and eventually stabilise at 
high wind penetration levels. 

Despite its promise, V2G integration faces barriers in 
regulatory clarity, infrastructure readiness, and user 
engagement as current charging behaviour remains passive 
with limited incentives for active participation in grid services. 
Nevertheless, for the case of GB, the FES pathways involve 
ambitious levels of V2G required to meet net-zero goals, 
implying that a strong policy pull for enabling technologies 
and behavioural shifts can be expected. To maximise system 
reliability benefits, planners and aggregators should prioritise 
scaling V2G infrastructure and incentivising participation in 
smart charging schemes. Strategic coordination between EV 
deployment and renewable integration will be essential to 
avoid diminishing returns at high penetration levels. 
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