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Abstract—As climate change accelerates and the energy
crisis deepens, electric vehicle adoption is growing rapidly with
strong governmental support. However, this growth is straining
electricity networks, prompting expensive infrastructure
upgrades and a need for smart charging solutions, including
Grid-to-Vehicle and Vehicle-to-Grid. This research synthesizes
residential vehicle travel patterns from statistical data to model
the electrical demand profile from uncoordinated charging,
capturing the diversity in driving behaviour. It then develops
scalable models for unidirectional and bidirectional smart
charging to assess their impact on system reliability and their
capacity credit within a probabilistic Monte Carlo framework.
The case studies additionally present sensitivities on smart
charging participation, electric vehicle uptake, and installed
wind capacity. Results show that both smart charging concepts
enhance reliability and that their capacity contributions grow
with increased user engagement and wind generation, though
the benefits plateau beyond certain thresholds.

Keywords—electric vehicles, Monte Carlo, reliability, smart
charging, vehicle-to-grid.

I. INTRODUCTION

The growing adoption of electric vehicles (EVS), to help
combat air pollution and decarbonise part of the transport
sector, presents both challenges and opportunities for future
power systems, particularly in relation to charging behaviours
and their implications for system reliability and planning. To
assess the potential impact of EVs on the network and inform
future expansion planning, it is essential to accurately model
EV travel and charging behaviours. Charging behaviour varies
significantly depending on the context — residential,
workplace, destination, or rapid charging — with residential
charging predicted to account for 58-64% of total charging
events by 2030 [1]. Accurate demand characterisation requires
inputs including arrival and departure times, state of charge
(SoC), battery capacity, and rated charging power [2].

Several studies have used travel survey data [3], [4], [5] or
EV trials with GPS loggers [6], [7] to derive usage patterns,
though sample sizes remain limited and may not reflect
current trends. Alternatively, probability distributions have
been used to model vehicle arrival-departure and travel
distance [8], [9]. Assumptions around initial SoC at plug-in
vary widely, with some studies underestimating it due to
comparisons with traditional fuel vehicles behaviours [10] or
conversions of daily mileage into charging demands [6], [2].
Based on the SwitchEV trial statistics, over 50% of EVs begin
charging with more than 53% SoC [11].
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Uncoordinated or uncontrolled charging assumes users
plug in as soon as their journey ends, with 70% of EVs
following this pattern [12], often charging at rated power until
reaching 90-98% SoC [6], [11], though studies caution
against charging to full capacity due to battery life concerns
[13]. In contrast, unidirectional smart charging, known as
Grid-to-Vehicle (G2V), enables dynamic charging control
within user-defined constraints, using either centralised [2],
[14] or decentralised strategies [15]. In research, objectives
range from peak shaving [16], [17] and cost reduction [18],
[19], to minimising power losses [20] and greenhouse gas
emissions [21], [22]. The user experience is also sometimes
considered [23].

Bidirectional smart charging, or Vehicle-to-Grid (V2G),
extends these benefits by allowing EVs to discharge back to
the grid, enhancing peak shaving potential [16] and supporting
system flexibility. It introduces new constraints such as depth
of discharge (DoD) to limit the effects of battery degradation
[13], [24]. Participation levels in V2G are still low due to user
concerns about battery wear and cost-effectiveness, with only
up to 45% of users expected to engage in V2G by 2050
compared to 67-92% for G2V [1], [25].

To quantify the impact of EV integration on power system
adequacy, reliability metrics such as Loss of Load Expectation
(LOLE), Expected Energy Not Supplied (EENS), and
Expected Demand Not Served (EDNS) are commonly
employed [3], [26], [27]. These are especially relevant to
Great Britain’s (GB’s) adequacy-focused reliability standard
of <3 hours LOLE per year. Furthermore, the contribution of
smart charging to system security is evaluated using capacity
value indicators including Effective Load Carrying
Capability, Equivalent Firm Capacity, and Capacity Credit
(CC) [28], [29], which collectively help assess how EVs can
support system adequacy and meet decarbonisation targets.

This study develops models for uncoordinated, G2V, and
V2G charging strategies and integrates them into a Monte
Carlo-based probabilistic reliability assessment framework to
evaluate the contribution of optimised EV charging to power
system security of supply. Residential vehicle travel patterns
are synthesised from statistical data to capture diversity in
driving behaviour, which is crucial for accurately modelling
EV charging demand. In the case studies, inputs from the GB
power system are used to quantify the contribution of G2V
and V2G to system adequacy for different smart charging
participation rates, and to evaluate the impact of EV uptake
and wind generation capacity on system reliability.
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Il. METHODOLOGY

A. System Modelling

Gas-fired, coal-fired, and nuclear generators were
modelled as two-state Markov Chains, shown in Fig. 1.
Assuming outages and repairs follow a Poisson process, the
transition rates A and u are constant and equal the reciprocal
of the Mean Time to Failure (MTTF) and Mean Time to
Repair (MTTR) properties of generators. These rates were
multiplied by the simulation time step At to obtain transition
probabilities for the discrete-time model. Unit availabilities
(a) were calculated using (1). Total available conventional
power generation at every time period t (P; ;) was obtained
using (2), where P; and s; € {0,1} denote the installed
capacity and state of unit i, and N, is the number of units.
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Fig. 1 Discrete-time two-state Markov Model of conventional generators.
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Wind and solar generation were modelled following the
bias-corrected reanalysis approach in [30] that yields hourly
capacity factors obtained from [31] for solar, onshore wind,
and offshore wind. These factors were applied to scale the
corresponding installed capacities of renewable generation in
each simulated time period t. Energy storage availability was
assumed to be 90%, while its operation is modelled according
to [32] with the aim to minimise Energy Not Supplied during
scarcity events while assuming that charging occurs during
periods of excess generation. Finally, hourly base demand was
obtained from historical data.

B. EV Charging Demand

A primary driver for residential EV charging demand is
driving behaviour; Therefore, the demand model was built
based on journey data, as for example obtained from [33] in
our case studies. Assuming that EVs are charged immediately
after the last journey of the day, the statistical data can be
transformed into electrical demand for uncoordinated EV
charging for a typical weekday and weekend day [5]. This was
done for N, groups of EVs with similar arrival and departure
times and assuming a homogeneous residential EV fleet with
50 kWh capacity and access to 7 kW chargers. The resulting
average demand curve is shown in Fig. 2.
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The smart charging models optimise the uncoordinated
demand curve, as done in [2], to improve system adequacy.
The effect of G2V is to flatten the demand curves in Fig. 2
only when a generation shortage occurs, as modelled with (3)

— (7). The objective function takes the quadratic form to both

minimise the demand and average the load distribution.
Notably, constraint (7) ensures that the total energy drawn
during a smart charging period is the same as it would have
been under uncoordinated charging during that period.
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The V2G modelling was performed similarly in (8) — (16),
with the exception that contracted EVs are able to discharge
to the grid. The SoC in each t was updated with (14) and
constrained with (15). Like with G2V, consistency with the
energy required under uncoordinated charging was
maintained with (16).
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Fig. 2 Average uncoordinated EV charging demand.
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In the above equations, t; is the time period when a LOL
event occurs and smart charging is employed, T is the length
of the operation of smart charging, t, and t, are the arrival
and departure times, respectively. Then, p?%s¢ is the system
non-EV demand, N; is the number of EV groups, N; is the
number of EVs in group i, and o is the participation rate
denoting the percentage of EVs participating in smart
charging schemes. For G2V, p{Z¥ is the charging demand of
each EV in group i at time ¢. Similarly, p/Z°* and p{Z¢~
denote charging and discharging power under V2G. Finally,
SoC and SoC are the minimum and maximum allowed SoC,
whereas n* and n~ are charging and discharging efficiencies.

C. Probabilistic Framework

Smart charging concepts were evaluated using a
probabilistic reliability assessment framework based on time-
sequential Monte Carlo simulations. The framework estimates
LOLE and EENS from N, independently simulated years of
system operation. A random system state, as described with
(17), was evaluated at every period t with a progression of At.
Total generation (G;) and demand (D,) were computed at
every t and used to determine LOL and ENS, according to
(18) and (19). The expected values for the reliability metrics
were then calculated with (20) and (21).
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The difference between EV charging concepts arises in the
treatment of LOL events. With uncoordinated charging, LOL
and ENS were recorded as observed, whereas with G2V and
V2G, EV charging is first optimised for the duration of the
original LOL event before reliability indices were recorded.

Adopting the approach in [32], CC was used to quantify
the contribution to security of supply. It represents the amount
of conventional generation that could be replaced by
contracting EV smart charging capacity to maintain reliability
at the same level. As summarised in Fig. 3, firstabase LOLE
is obtained for the system with uncoordinated EV charging.
Then, the Monte Carlo simulation with a smart charging
concept of choice was performed, iteratively removing
100 MW of gas-fired generation until the updated LOLE is
within a pre-defined tolerance of the base LOLE.

Uncoordinated
EV charging

Time-Sequential
Monte Carlo

Enable
G2V or V2G

Remove 100MW
gas generation

Fig. 3. Framework for quantifying the contribution of smart charging
concepts to security of supply.

I1l. CASE STUDIES

The case studies aim to make general observations on the
role and value of smart charging concepts in the context of
system adequacy. Nonetheless, inputs were derived from the
GB power system in 2022, where only generation units with
relatively large capacities were considered. Conventional
generation units and their technical parameters listed in
TABLE 1. are obtained from [28], [34], and [35]. Solar
installed capacity was assumed 14.3 GW, onshore and
offshore wind 13.4 GW for each [36], and 3.1 GW of energy
storage capacity. The half hourly GB demand profile was
extracted from [37] with a peak of 46.1 GW. To analyse a
future system with a higher EV uptake, the projected number
of battery EVs in 2030 in the Future Energy Scenarios (FES)
[2] was used, which is 11.9 million.

TABLE I. CONVENTIONAL GENERATION ASSUMPTIONS
Installed
Number R MTTF MTTR a
Fuel type - capacity o

of units (GW) (h) (h) (%)

Coal 3 3.8 600 100 86

Gas 45 30.8 1250 60 95

Nuclear 7 77 8000 150 98

Based on journey data observations, N, = 190 EV groups
were assumed, charging every four days under the conditions
that SoC = 0.3 and SoC = 0.95, with n* =75~ = 0.9. The
Monte Carlo simulation was implemented in Matlab with
Ny = 3000 and At = 0.5h.

A. Evaluation of the Contribution of EV Smart Charging
Concepts to Security of Supply

There is significant uncertainty regarding the behaviour of
EV users, including their charging habits and willingness to
participate in controlled charging. Therefore, in this section,
the contribution of G2V and V2G to system adequacy for
different smart charging participation rates is evaluated.

Uncoordinated EV charging demand modelling shows that
the charging and base load peaks coincide. This results in a
total peak demand increase of 8.77 GW, as demonstrated for
a 7-day period in Fig. 4. Additionally, the integration of EVs
increases the peak-valley difference in the load profile, posing
challenges to system adequacy and requiring significant
investment in additional generation and network capacity.

In comparison, unidirectional smart charging can shift the
peak demand to the valley of the curve as demonstrated in Fig.
5. Instead of starting to charge immediately upon returning
home in the evening, EVs absorb energy at night when fewer
appliances are in use. This notably flattens the demand curve.
As EV participation rate decreases, the peak shaving effect of
G2V decreases as well. The load curve could be completely
flattened if all electric cars commit to V2G as shown in Fig.
6. This is due to the discharge capability, which allows EVs to
supply the grid with remaining electricity in their batteries
during high demand periods, potentially preventing LOL
events. Similar to unidirectional charging, the effect depends
on the participation rate.
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Fig. 4. A 7-day demand curve with uncoordinated EV charging.
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Fig. 5. The impact of G2V participation rate on the system demand curve.



Base demand
Total demand (base + uncoordinated EV)
— Optimised total demand (base + V2G)

Time (h) Time (h)
(b) Participation rate=0.6 (a) Participation rate=1

Fig. 6. The impact of V2G participation rate on the system demand curve.

Given the previous observations, the study analysed the
contributions of G2V and V2G to system reliability under
different participation rates. The results are illustrated in Fig.
7, where the zero-participation rate case corresponds to
uncoordinated charging. The results indicate that V2G has
significant advantages over G2V in maintaining system
reliability. It is also observed that as V2G engagement exceeds
60%, reliability indices remain nearly unchanged. To quantify
the capability of smart charging concepts to maintain system
operation security under different participation rates, CC was
computed and presented in Fig. 8. The results demonstrate
that the capacity value of G2V increases consistently with
growing participation. For V2G, CC initially increases rapidly
due to the discharging capabilities, before its contribution to
system adequacy plateaus at high levels of participation.

150 : : 60
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I V2G EENS
L \ 4
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EENS (GWh)

50

25

0% 20%  40%  60%  80%  100%
Participation rate
Fig. 7. Effect of smart charging participation rate on reliability metrics.
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Fig. 8. Capacity credit of G2V and V2G.

B. Investigation of the Impact of Wind Capacity and EV
Uptake on System Reliability

In addition to network reinforcements, additional
generation capacity will be required to meet the large

electrical demand of the future EV fleet, especially when
concentrated during several evening hours coinciding with the
system demand peak. As electricity sectors are shifting to
renewable energy sources, scaling wind generation will be
crucial for many power systems worldwide. Therefore,
sensitivities were performed to analyse the impact of
increasing wind capacity and residential EV uptake on the
contributions of G2V and V2G to security of supply. The
assumptions are drawn from the scenario projections in the
FES data workbook for 2030 to 2050 [1], with residential EV
numbers ranging from 12 million to 30 million in 4.5 million
increments, and wind capacity increasing from 26 GW to
130 GW in steps of 26 GW.

In both G2V and V2G scenarios, with the same level of
EV penetration, an increase in installed wind capacity initially
leads to a quick rise in CC, which then plateaus. For instance,
in the G2V scenario, the CC increases by about 10% as wind
capacity grows from 26 GW to 52 GW with 30 million EVs
integrated into the GB power system. However, this increase
diminishes as wind capacity continues to grow. When wind
capacity reaches 78 GW, each additional 26 GW of wind
power only results in a 3 — 4% increase in security of supply.
This effect is more pronounced with higher EV penetration.
Identifying the inflexion point is important for power system
planners aiming to design a low-carbon system with the
socially optimal mix of technologies.

IV. CONCLUSIONS

This paper evaluates the impact of EV integration on the
reliability of the GB power system under both uncoordinated
and smart charging strategies. Residential charging profiles
were derived from realistic weekday and weekend arrival-
departure patterns, and optimisation-based models for G2V
and V2G were developed to flatten the aggregated demand
curve, while maintaining user constraints. Time-sequential
Monte Carlo simulations were performed to compute key
reliability metrics and to quantify the contribution of smart
charging to system adequacy as CC.

Two case studies investigated the effects of smart charging
participation rates, EV penetration, and wind generation
capacity. The results indicate that both smart charging
strategies significantly reduce the occurrence and intensity of
LOL events compared to uncoordinated charging, with V2G
offering enhanced performance as evidenced by its higher CC.
As user participation in smart charging schemes increases,
contributions to security of supply grow rapidly but eventually
plateau, suggesting technology saturation. Similarly, while
G2V and V2G CCs increase with greater EV uptake and wind
capacity, marginal gains diminish and eventually stabilise at
high wind penetration levels.

Despite its promise, V2G integration faces barriers in
regulatory clarity, infrastructure readiness, and user
engagement as current charging behaviour remains passive
with limited incentives for active participation in grid services.
Nevertheless, for the case of GB, the FES pathways involve
ambitious levels of V2G required to meet net-zero goals,
implying that a strong policy pull for enabling technologies
and behavioural shifts can be expected. To maximise system
reliability benefits, planners and aggregators should prioritise
scaling V2G infrastructure and incentivising participation in
smart charging schemes. Strategic coordination between EV
deployment and renewable integration will be essential to
avoid diminishing returns at high penetration levels.
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