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Abstract: Artificial intelligence (Al) has emerged as a key driver of modern technological
development, with widespread applications across various domains, including civil engineering.
Structural engineering, a subdiscipline of civil engineering, requires the evaluation of the
suitability of different structural components before the final construction phase and during
recycling processes. Traditionally, this evaluation relies on laboratory experiments and highly
complex numerical simulations, which are often impractical due to space and time constraints,

equipment complexity, and high costs. To address these challenges, researchers worldwide have
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developed Al-based solutions for applications such as structural damage detection and the
prediction of failure loads and patterns. These solutions offer predictive accuracy comparable to
that of experimental and numerical analyses. This review presents a detailed analysis of 100 Al-
integrated studies in structural engineering conducted between 2020 and 2024, with a focus on
concrete, steel, and composite structures, particularly building frames. The study summarizes the
performance benchmarking of commonly used Al algorithms, such as neural networks, genetic
algorithms, tree-based algorithms, and boosting methods, reporting accuracy scores above 0.80
(out of 1.00), and highlights average accuracy values of 0.90 for optimized and hybrid Al
approaches. Additionally, the review explores emerging Al applications, including retrofitting
technologies, buckling-restrained braces, dampers, column-beam connections, and life-cycle
assessment. Critical analysis identifies key limitations of recent Al-based research, especially
those implemented regionally, and proposes novel solutions to overcome existing challenges.
Keywords: Artificial Intelligence, Structural Engineering, Reinforced Concrete Structures, Steel
Structures, Structural Safety

1 Introduction

Artificial Intelligence (Al) was first conceptualized by a group of scientists at a conference at
Dartmouth College in 1956 [1] to develop intelligent systems capable of reasoning and exhibiting
human-like intelligence [2]. Significant interest and growth in Al emerged through U.S. Defense
Advanced Research Projects Agency (DARPA) funding from 1962 [3] (Figure 1). However,
between 1970 and 1980, Al research stagnated due to limited high-performance computing
resources, and DARPA funding was discontinued following the critical “Lighthill Report”, which
reported Al to have failed to achieve its purpose [4]. From the 1980s, Al experienced a resurgence

driven by the evolution of some early methods (e.g., expert systems and cybernetics) and practical
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industrial applications [2]. Nevertheless, between 1987 and 1993, Al faced another decline caused
by unrealistic expectations and limited computational power [5]. Later, subsequent advances in
Information Technology (IT) and the industrial revolution enabled significant progress in Al [6].
Today, the availability of faster, cost-effective, and more powerful processing systems has

facilitated the widespread adoption of AI [7].

Al encompasses a broad range of methods, including—but not limited to—machine learning (ML),
neural networks (NN), deep learning (DL), data mining, knowledge discovery and advanced
analytics, rule-based modeling and decision making, fuzzy logic, knowledge representation,
reasoning under uncertainty, expert systems, case-based reasoning, text mining and natural
language processing, visual analytics, computer vision and pattern recognition, hybrid approaches,
and optimization techniques [&]. These techniques are closely associated with disciplines such as
computer science, information theory, cybernetics, linguistics, and neurophysiology [9]. By
integrating the capabilities of these methods, Al can mimic human intelligence and apply human-
inspired reasoning and algorithms to solve complex engineering problems [10]. Researchers
worldwide are actively developing innovative Al approaches that are cost-effective, rapid, robust,
and highly accurate [11]. Sarker [8] provided a comprehensive review of Al-based modeling in

real-world applications.

In recent years, ML, DL, and NN have been extensively applied in civil engineering subfields,
including structural, geotechnical, transportation, water supply, and hydraulic engineering. Recent
studies have reviewed Al developments and applications in these areas. Pan and Zhang [12]
conducted a scientometric analysis of Al-related publications from 1997 to 2020, highlighting AI’s
potential in automation and construction engineering and management. Manzoor et al. [13]

reviewed 105 studies from 1995 to 2021, focusing on AI’s role in sustainable development. Xu et
3
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al. [11] presented a systematic review on intelligent architectural design, structural health
monitoring, and disaster prevention, emphasizing computer-vision-based advancements. Vadyala
et al. [14] investigated the integration of ML methods with physics-based models to address data
shift problems in supervised learning and proposed a physics-informed ML approach. Rezania et
al. [15] discussed pioneering software, Al-related terminology, and parameters affecting
progressive structural collapse. More recently, Harle [16] provided an overview of Al applications
across some areas of civil engineering, including analysis and design, construction management,

geotechnical engineering, and transportation planning, with a focus on ML and genetic algorithms.

Artificial Intelligence in Civil Engineering
®[( 1987 )

Concrete Structures
[1987: expert systems] [1990: neural networks] [2006: machine
learning] [2016: deep learning]

®( 1986 |

Steel Structures
[1986: expert systems] [1993: neural networks] [1994: machine
learning] [2018: deep learning]

®( 1989 ]

H Composite Structures
[1989: expert systems] [1995: Neural Network] [2007: machine
| learning] [2020: Deep Learning]
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Figure 1. Historical timeline and evolution of artificial intelligence (Al) in structural
engineering.
Al has been applied in structural engineering for decades, particularly in the design of structural

systems that account for critical factors such as load application characteristics, service life
4
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expectancy, durability against environmental effects, and fire-induced issues [17-20]. It serves as
a powerful tool for generating efficient and accurate preliminary structural design predictions,
reducing the reliance on cumbersome experimental setups, and enhancing safety measures during
laboratory testing. Moreover, Al reduces the demand for high-precision instruments, which are
often unavailable in many institutions and industries. For example, large-scale fire tests on
structural frames cannot typically be conducted in laboratory settings, forcing researchers to rely
on small-scale experiments and assumptions. Al can overcome such limitations by processing
large-scale variable inputs and producing highly accurate predictions. However, as emphasized in
this review, Al-based results must be validated against experimental and code-based outcomes,
particularly in light of challenges such as data shift, domain shift, and extrapolation risk [18,21].
As illustrated in Figure 1, Al was first applied to structural engineering in the early 1990s through
expert systems, particularly for concrete, steel, and composite structures. In subsequent years,
advanced methods such as ML, DL with NN were increasingly adopted in structural engineering.
Following the first major Al revolution in 2012, DL has become increasingly prevalent in

structural health monitoring (SHM) and structural damage detection.

In terms of AI’s development and application within structural engineering, a review study
examined four novel ML algorithms in structural system identification, SHM, structural vibration
control, and structural design and prediction between 2017 and 2020 [22]. Another review [23] on
fundamental ML techniques addressed a wide range of applications, including structural analysis
and design, SHM, damage detection, fire resistance assessment, evaluation of mechanical
properties, and concrete mix design. A more recent review [24] focused exclusively on ML
applications in SHM. A comprehensive literature review [25] covering Al, ML, and DL discussed

commonly used algorithms in structural engineering across more than 200 sources. Although the
5
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study conducted a scientometric analysis to map the best practices from several scholarly works,
its primary focus was on supervised learning methods up to the year 2021. However, these reviews
only partially addressed recent trends of Al in structural engineering for material- and component-
level analysis. They did not provide an in-depth discussion of structural components such as
reinforced concrete, steel, and composite frames exposed to fire or seismic effects for the published
studies during 2020-2024. Similarly, they did not explicitly consider innovative approaches such
as Al integration with buckling-restrained braces (BRBs), viscoelastic dampers, retrofitting

technologies (e.g., fiber-reinforced jacketing), beam—column joints, or life-cycle assessment

(LCA) of buildings.
600 Published Articles on Prominent Al 350
Algorithms in Structural Engineering 200 = Neural Networks (NN)
500 A78 Genetic Algorithm (GA)
250 Tree Alogithms
400 355 B Boosting Methods
200
300 267
208 150
177
200 146 100
115 122
87 44
- I I I | . | | ‘
0 I I 0 I I I I - - ] I L] I
20152016 2017 2018 2019 2020 2021 2022 2023 2024 20152016 2017 2018 2019 2020 2021 2022 2023 2024
(a) (b)

Figure 2. Published article trends in Structural Engineering (Scopus-sourced, 2015-2024): (a)
overall use of prominent Al algorithms, (b) categorized by specific methods (NN, GA, tree-
based, and boosting algorithms).

As presented in Figure 2a, based on Scopus search results, published articles on prominent Al
algorithms (NN, GA, tree-based algorithms, and boosting algorithms) in structural engineering
have increased significantly from 2015 to 2024. The number of published articles in the last five

years (2020-2024) has increased by 2.72 times in comparison to 2015-2019. Figure 2b illustrates
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a similar upward trend for each prominent group of algorithms. Research on NN has grown most
dramatically, increasing by approximately 4.8 times during 2020—2024 compared with 2015-2019.
Tree-based algorithms also expanded substantially, with a 3.2-fold increase, while GA showed
only modest growth of about 1.3 times. Boosting methods, which were rarely applied before 2019,
experienced the strongest relative growth, rising nearly 11-fold over the last five years. These
findings highlight a clear trend: NN and boosting methods are being adopted at accelerating rates,
GA continues to attract steady interest, and tree-based approaches are strengthening as
complementary techniques. Since previous review articles only covered trends up to 2020 [22],
with partial updates through 2021 [25], this present study focuses specifically on 2020-2024, when

the number of Al-related publications in structural engineering increased most sharply (Figure 2).

) o . . —» Research gaps in recent review papers
Start with reviewing recent review articles

based on keywords: ‘Al; ML; DL, ‘Civil
Engineering’, ‘Structural Engineering’ Selection of Review timeline between
the year ‘2020-2024"

Preliminary
Review

‘_

—H Google Scholar - Scopus =  Wiley Online Library
+ + +
Keywords: ‘Al'; ‘Reinforced Concrete Structure’, ‘Steel Structural Frame’, ‘Composite
Structural Frame’, ‘Life Cycle Assessment’

+
‘Al' specific keywords: ‘Concrete Mix Design; Concrete Mechanical Properties’,
‘Durability; Fire Resistance of Materials’, ‘Structural Response under Lateral Loads’,
‘Environmental and Economical Impact Analysis’

+

Total Number of Articles: Filter applied by title, keywords and abstract |n =150 |

Identification

‘_

¥ Duplicate Removed | n=10|

Title and

— Abstract Article excluded based on Absence of keywords: ‘Frost Durability

(n=200) L Resistance’, ‘Carbonation Depth’, ‘Compression on Composite Column’,

‘Shear capacity of Composite Slab’, ‘Behavior of Beam-Column Joint’
In=20]

Full Text Evaluation for Eligibility|[n=120| =  Articles Excluded [n=20 |

— Article Included in this Review | n =100 | = End

Included #— Eligibility +— Screening

Figure 3. PRISMA flow diagram for the reviewed articles.
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Following the PRISMA flow diagram (Figure 3), five steps are followed as the formal review
protocol of this study (i.e., preliminary, identification, screening, eligibility and inclusion). Firstly,
the preliminary stage involved analyzing recent review articles on Al in civil and structural
engineering to identify research gaps. The review timeline was set to 2020-2024, given the sharp
rise in Al applications during this period (Figure 2) and the absence of prior reviews covering this
interval. Identification of relevant studies was carried out using keywords such as Al in reinforced
concrete structures, steel structural frames, composite structural frames, and LCA. Additional
topic-specific keywords—such as concrete mix design, concrete mechanical properties,
durability, fire resistance of materials, structural response under lateral loads, and life cycle
impact analysis—were also employed, yielding 150 candidate papers. The screening process
involved removing duplicates (n = 10) and excluding irrelevant topics (n = 20), including works
focusing on frost durability resistance, carbonation depth, compression on composite columns,
shear capacity of composite slabs, and behavior of beam—column joints. Next, eligibility was
confirmed through full-text evaluation, resulting in the exclusion of an additional 20 articles.
Ultimately, this review selected 100 papers, prioritizing studies that compared Al predictive results

against laboratory-scale experimental and numerical datasets.

The application of Al in structural engineering is diversifying through innovative approaches such
as its integration with BRBs, viscoelastic dampers, retrofitting technologies (e.g., fiber-reinforced
jacketing), beam—column joints, and LCA of buildings. For example, Al has been applied in
seismic protection systems to enhance energy dissipation and resilience using dampers and BRBs.
In retrofitting, Al-driven models assist in identifying structural weaknesses and recommending
cost-effective strengthening strategies. For beam—column connections, Al improves the prediction

of joint behavior under cyclic loading. Al has also been introduced in small-scale LCA studies to
8
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evaluate sustainability and long-term structural performance. In this context, the present review
highlights the limitations, challenges, and potential solutions for such emerging applications. It
also addresses practical implications of Al, barriers to its adoption, and prospects for industry
implementation. Specifically, the study evaluates prediction accuracy in terms of the coefficient
of determination (R?), the number of databases used, and key input parameters or governing factors
across various applications (e.g., mechanical and durability properties of concrete members, fire-
induced effects on structural components, seismic impact-based design, and LCA of structures).
In addition, it examines accuracy levels achieved by optimized versions of traditional Al models.
This review does not cover Al research trends for 2025, nor does it address structural health
monitoring, remote sensing, or construction automation. Although R’ is adopted as the primary
performance benchmark, other evaluation metrics inconsistently applied across the literature (e.g.,
RMSE, MAPE) are not considered. Likewise, variations in dataset size and characteristics among
studies (e.g., for durability assessment of concrete or fire-induced effects) are not discussed in
detail, as the focus remains on comparative evaluation of prominent algorithms with key input

parameters.

In view of these considerations, this paper provides a comprehensive analysis of effective Al
methodologies in structural engineering, emphasizing advancements between 2020 and 2024.
Section 2 presents a critical overview of widely adopted Al techniques. Section 3 evaluates the
predictive accuracy of these models relative to traditional numerical simulations, experimental
data, and design codes, with applications in concrete, reinforced and composite concretes, and
steel structures, as well as in structural response to lateral loads and LCA. A summary of
comparative structural analyses using Al methods is also included. Section 4 discusses limitations

of current Al-driven research and the potential implications for industry. For the first time, it
9



180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

highlights future research directions such as Al applications in retrofitting technologies, BRBs,
dampers, easy-to-dismantle beam—column connections, and LCA-driven sustainability
assessments. By bridging the gap between Al advancements and structural engineering challenges,
this review aims to serve as a practical guide for researchers and engineers seeking to integrate Al
into structural analysis, design, and sustainability practices.

2  Overview of Basic AI Techniques Relevant to Structural Engineering

This section introduces the Al techniques most commonly applied in structural engineering and
discusses their applications in detail. It begins with the general process of Al model development
(Section 2.1), followed by brief introductions to the widely used Al techniques in structural
engineering (Sections 2.2-2.8). Finally, the evaluation of model accuracy and precision is
addressed (Section 2.9).

2.1 Model Development

A well-structured model development process (Figure 4) is essential for generating reliable
predictions. The process begins with data retrieval and preprocessing, which are critical because
model performance largely depends on data quality. Typical preprocessing tasks include outlier
detection and treatment, data encoding, feature scaling, feature engineering, and partitioning the
dataset into training and testing subsets to ensure suitability for modeling. The next stages involve
algorithm selection and model training using the training data. Training is usually performed
iteratively, with hyperparameter tuning to optimize performance until satisfactory cross-validation
(CV) results are achieved. Finally, the model’s performance is evaluated using a separate test

dataset, and predictions are generated for comparison with the observed outcomes [26]. This

development framework is common to all AI models and serves as the foundation for the

evaluation methods described in subsequent sections.
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Figure 4. Artificial intelligence (Al) model development in structural engineering.

2.2 Neural Networks (NN) Architecture

To handle complex data relationships, NN consist of artificial neurons interconnected in a specific
topology, designed to mimic the behavior of the human nervous system and adopting a structure
analogous to the human brain. Artificial neural networks (ANNSs), a basic form of NN, leverage
their self-learning capability to produce highly accurate results as the amount of experimental data
increases. By managing high dimensional data, ANN can solve highly nonlinear classification and
regression problems, as well as complex relationships. Essentially, an ANN can be considered an
information-processing system with specialized neurons for receiving external input and

generating output [27].
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Figure 5. Artificial neural networks (ANN) structure (adapted from [28]).
As illustrated in Figure 5, an ANN model consists of an input layer, one or more hidden layers,
and an output layer, interconnected with randomly assigned weights and biases. For the input layer,
the number of neurons (nodes) are equal to the number of variables of the specific problem to be
solved. The product of the inputs and their respective weights is added to the deviation (bias). For
the hidden layer that lies between the input and output layers, a predefined activation function is
applied to the nodes to process the inputs. The optimal weights and biases are determined through
training to minimize the error between the outputs and targets. The training is considered complete
when the model achieves the desired performance with the smallest errors. The output layer
produces the final response from the network when the model is considered suitable for generating

predictions from unknown data [19].

ANN s can be classified based on the number of hidden layers, i.e., single layer perceptron for one
hidden layer or multilayered perceptron (MLP) for two or more hidden layers [29]. Since an MLP

is a deep ANN that has excellent ability of function approximation, it can be used in diverse
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225  engineering applications. It implements nonlinear transformations to convert input variables to an
226 expected output. As shown in Figure 6, similar to ANN, each layer of an MLP network contains
227  several nodes (neurons) or processing elements that may be partially or fully connected. A
228  feedforward process is executed between nodes of different layers, with each neuron processing
229 an input and generating an output, which is then used as the input for the next neuron. The
230  connection strength or weight between nodes includes independent values that are modified
231 throughout the training stage in a process known as backpropagation. This combined process of
232 forward signal propagation and backward error correction is referred to as feedforward
233 backpropagation (FFBP). The optimum set of weights, yielding the smallest errors, is subsequently

234 used to perform predictions with new data [30].
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Figure 6. Representative multilayered perceptron—artificial neural networks (MLP-ANN)

framework (adapted from [31]).
235  Nonlinear autoregressive exogenous (NARX) is a dynamic recurrent ANN which can capture

236  inherent intricate relationships between inputs in its memory and effectively predict the outputs.
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Especially for nonlinear discrete time series, NARX ANN can serve as a dynamic modeling tool
that encloses multiple layers with feedback connections [32]. As shown in Figure 7, two primary
configurations exist: (a) the open-loop or series-parallel mode (NARX-SP) represents a stable
network in which actual target values from previous tests are fed back during training process, and
(b) the closed-loop or parallel mode (NARX-P) represents a network where predicted outputs are
fed back as inputs for the feedforward neural network and incorporated in the output regressor due
to the absence of true outputs for new data. Thus, the NARX-P mode is an FFBP network with a
feedback connection from output to input. As such, it can generate final predictions using the

training and test data from the NARX-SP mode [31].
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Figure 7. Nonlinear autoregressive exogenous—artificial neural networks (NARX-ANN)

frameworks: (a) NARX-SP; (b) NARX-P (adapted from [31]).
Long short-term memory recurrent neural network (LSTM-RNNSs) is a variant of the recurrent
neural network (RNNs), and its basic modeling pattern is the same as that of ANNs. However,
LSTM-RNNs consist of several decisive hidden layers apart from the input and output layers, as
well as a group of LSTM cells with four interrelated units, i.e., an internal cell, an input gate, a
forget gate, and an output gate (Figure 8). By utilizing a self-recurrent connection, the internal cell
remembers the cell state at the former time step, while the input gate regulates the input activation

flow into the internal cell state. The forget gate allows the LSTM cell to forget or reset the cell
14
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memory, as necessary. The tangent gate or tanh (hyperbolic tangent) function transforms values
(compressing between -1 and 1) before values are read from cell state. The output gate normalizes

the flow of output activation into the LSTM cell output [33].

-

- oot e

input gate

Figure 8. Long short-term memory (LSTM) cell diagram (adapted from [33]).

2.3 Machine Learning (ML) and Deep Learning (DL) Algorithms

ML encompasses four types of learning methods, i.e., supervised, unsupervised, semi-supervised
and reinforcement learnings [7]. In supervised learning that accounts for approximately 70% of
ML applications, the algorithm is trained on an experimental dataset containing both inputs and
outputs. The model predictions are compared with the true outputs to identify the errors, and the
learning process is refined accordingly. Patterns are assessed to predict labeled information for
additional unlabeled data. In contrast, unsupervised learning involves exploration of data for
pattern identification in the absence of historical labels. This approach is well-suited for
transactional data. Popular unsupervised learning algorithms (e.g., self-organizing maps, nearest-
neighbor mapping, k-means clustering, and single-value decomposition) have been used to
segment textual topics, recommend items, and identify data outliers. Semi-supervised learning

follows a pattern similar to, but its amount of unlabeled information is much higher than, the
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supervised learning. Classification, regression, and prediction models are trained using this
learning method. Reinforcement learning aims to learn the best options available by adapting a
trial-and-error process involving three primary mechanisms: the learner or decision maker,
environmental components, and actions. The goal of the learner is to adopt the best actions
available to produce the expected result within a pre-scheduled time, following the most suitable
pattern [7].

DL is a branch of ML that employs unsupervised networks to learn from unstructured or unlabeled
data [34]. It starts with the input layers that are connected to a series of hidden layers through
nonlinear activation functions. The activation functions generate approximation forms that allow
gradient-based optimization. Results from the optimization process are displayed as final output.
The main objective of DL architecture is to learn the feature illustration of input data and achieve
implicit representation that best generates an output Y = f(XiL; In;w;; + b;), where f is the
activation function, [n; represents ith input signal, b; represents bias value of jth neuron, w;;
represents connecting weights between In; and b; [35].

Multiple hidden layers create deep neural networks (DNN) and more hidden layers result in deeper
networks [34]. A variation of DNN is convolutional neural networks (CNN) which is specialized
for image recognition. CNNs mimic the visual cortex to distinguish and classify images. The
architecture consists of two main sections: feature learning and classification (Figure 9). Initially,
input images pass through the feature extraction network, where convolutional layers transform
the images and pooling layers reduce dimensionality. The resulting feature maps are then fed into
classification layers to generate predictions. In classification layers, flatten layer converts the 2D
feature maps into a 1D vector allowing fully connected layers to process them as input. Soft-max

layer produces probabilities for each class such as no visible cracks (connections), micro-cracks
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(partial degradation) and significant cracks (full separation) are processed as rigid, semi-rigid and

damaged joints, respectively. [36].
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Figure 9. Basic convolutional neural networks (CNN) model architecture (adapted from [36]).

2.4 Naive Bayes (NB) and K-nearest Neighbors (KNN)

NB is a simple multiclass linear classification algorithm that is based on Bayes’ theorem [32]. Its
learning process can be simplified using generative assumptions and parameter estimations. By
using Bayes optimal classifier, the required number of equations of NB increases exponentially
with an increase in the number of features. Hence, by simplifying Bayes classier through
appropriate assumptions in equations, the number of features can be significantly reduced.
However, modifying one feature does not alter other features, as this method neglects possible
correlations between features [26]. In contrast, KNN is a nonparametric ML algorithm that is used
for both classification and regression, and it does not incorporate assumptions regarding the
decision on boundaries [37]. For each test instance, the algorithm identifies the K most relevant
data points (nearest neighbors) within the training dataset and predicts outcomes based on the most
frequently occurring class among these neighbors. This approach, often referred to as the majority

rule, is conceptually similar to the probabilistic reasoning used in Bayesian methods [38].
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2.5 Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)

GA and PSO are another type of Al methods that are broadly used for optimization and searching.
GA is a strategic model based on the principles of genetic evolution [39], focusing on the principles
of survival of the fittest and adaptation. GA continuously produces new groups of genes
(populations of chromosomes or strings) to perform a task by formulating old groups of genes. A
GA contains three parts: (i) coding and decoding of variables into strings, (ii) evaluating the fitness
of each solution string, and (iii) applying genetic operators (crossover, mutation) to generate the
generations of next solution strings [40]. To derive accurate solutions (Figure 10), an appropriate
number of chromosomes (strings) must be selected, which are obtained in multiple phases. First,
the necessity of reproducing a string is assessed based on its fitness function. If the optimal solution
is not reached, a crossover operation creates modified offspring by combining parent genes, and
mutation introduces additional variability. This process is repeated until an optimal solution is

obtained [41].

Selection Crossover Mutation
| String 1 H String 1 7
| String 2 String 2 3
String 2 |—>| String 2 I I String 2
String 4 String 4 String 4 String 4
| String n | | String n | | String n | | String n |
After New
Crossover Population

Figure 10. Operational structure of genetic algorithm (GA) (adapted from [42])
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Genetic programming (GP) is an extension of GA in which solutions are represented as computer
programs, whereas GA typically produces numeric strings as solutions. The classical version,
known as tree-based GP, constructs models as trees consisting of functions and terminals with a
root node (Figure 11). After generating an initial set of random models, successive generations are
created using mutation, crossover, and reproduction, and the best program across all generations
is selected as the output [43]. Gene expression programming (GEP) is a developed version of GP
first invented by Ferreira [44] where new generations of models created by GP are represented as
linear strings that are decoded and expressed as nonlinear entities (trees) [45]. Multi-expression
programming (MEP) is a more advanced linear GP approach, where a single chromosome can
encode multiple programs. Fitness values are evaluated across these programs to identify the

optimal solution [46].

Root Node o

Functional Node o

Terminal Nodes e @

Figure 11. A tree-structured genetic programming (GP) model (adapted from [43]).

PSO resembles GA and is inspired by communal behavior of animals with five main features [41]:
(1) Proximity: Simple calculations are performed in definite time and space; (ii) Stability: The
system does not react to every environmental change; (ii1) Quality: Significant changes in the
environment are detected to ensure solution quality; (iv) Diverse response: No singular limitation
exists in system response to environmental changes; (v) Adaptability: Changes in the environment

are considered during optimization.
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2.6 Gaussian Process Regression (GPR) and Multivariate Adaptive Regression Spline
(MARS)

GPR is a nonparametric model that systematically quantifies the prediction uncertainty of
nonlinear high-dimensional problems with small simplistic samples. It has a simple training
process by selecting appropriate functions according to the pattern in the training data. By setting
the initial values and optimizing the hyperparameters using the input training data, prior
distributions are determined, and prior model is transformed into posterior model, respectively.
Thus, GPR offers adaptability in hyperparameter selection with flexible nonparametric inference.
Finally, it performs its prediction using the regression prediction model [19]. Another method,
MARS, is suitable for generating solutions to problems with continuous numerical outcomes and
high input dimensions. Similar to GPR, it can perform nonparametric and nonlinear regression. It
partitions the input space into subgroups and fits piecewise regression models within each
subgroup using basic functions. This process enables MARS to capture complex data structures
and identify potential interactions among input variables across all degrees [19].

2.7 Tree Algorithm-based Models and Boosting Methods

Decision trees (DT), also referred to as regression trees (RT), are nonparametric models that solve
classification and regression problems by recursively splitting data into a hierarchy of simple
decisions based on one or more input features. A typical DT structure is shown in Figure 12 and
involves two key steps: (1) tree-building: training dataset is partitioned into non-overlapping
regions, and (2) tree-pruning: reduces overfitting by trimming unnecessary branches of the tree
[37]. Random forest (RF), also called an ensemble of decision trees, consists of multiple DTs

operating together (Figure 12).
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Figure 12. Tree pattern of random forest (RF) model (adapted from [47]).

Each tree generates predictions on new data, and the final output is obtained via majority voting
for classification or averaging for regression. Overfitting in individual trees is mitigated because
multiple trees contribute to the final result [47]. The performance and robustness of DTs and other
single predictive models can be significantly enhanced using ensemble ML methods. One such
method is the bagging regressor (BR), which primarily relies on bootstrap aggregating. In this
process, multiple copies of the original dataset are generated through resampling (bagging) [48].
Data points are randomly selected from the original dataset with replacement to create bootstrap
samples, suggesting some original data may not appear in certain samples. Finally, base models
(e.g., DTs) are then trained on these samples, and predictions on new data are combined, typically
using majority voting for classification or averaging for regression [49]. Bagging reduces variance,

variability and noise in predicted output by training multiple models in slightly different data [50].

Apart from BR, some boosting techniques can enhance the performance of DT by merging a set
of weak classifiers to form a strong classifier. Among them are adaptive boosting (AdaBoost),
extreme gradient boosting (XGBoost), light gradient boosting method (LGBoost), natural gradient

boosting (NGBoost), gradient boosting regressor (GBR), categorized boosting (CatBoost), and

21



381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

histogram gradient boosting (HGBoost) [51]. In AdaBoost, all observations are weighted equally,
and the model is retained by correctly classifying the incorrectly classified observations with
higher weights than usual. In this manner, the learners are trained using the weighted classification
accuracy of the previous learners [52]. In contrast, the remaining methods mentioned above are
variants of gradient boosting (GB) framework which performs gradient optimization on the
contribution of each weak learner to reduce the overall error of the strong learner (Figure 13) [53].
XGBoost leverages the misclassification error of the prior model, although the need for successive
model training leads to slow processing. LGBoost operates leaf-wise rather than depth-wise, thus
providing more precise but complex trees aiming at computational efficiency. It poses enhanced
training speed, greater efficiency, improved precision, lower memory consumption and
competence to process large datasets [54]. NGBoost generalizes GB to estimate the parameters of
a conditional probability distribution as target for a multiparameter boosting algortihm [55] and
GBR deals with regression problems [56]. CatBoost can control the categorical features of the
input parameters during the training phase by operating in the preprocessing stage [37]. HGBoost

employs histrogram based methods interpreted by DT to handle efficient bulk dataset [51].

A &B AR

Ensemble Prediction
Gradient Boosting Prediction

Figure 13. Gradient boosting (GB) pattern (adapted from [47]).
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2.8 Support Vector Machine (SVM)

SVM was developed by Vapnik [57] that uses optimal separating hyperplane to separate positive
and negative classes of datapoints with the farthest possible two marginal boundary lines (Figure
14). Support vectors are derived from datapoints representing the separating hyperplanes in a
transformed space [26]. Figure 14(a) shows several possible classifiers separating the datapoints,
while one optimal separating hyperplane separates the data with maximum margin as further
shown in Figure 14(b). SVM can also be operated through regression applications as support vector
regressor (SVR) [56]. As an extension of SVM, SVR aims to find a hyperplane with a specific
number of dimensional space (input parameters) that classifies the training datasets in different
classes. It differs from SVM as it targets a flat type of hyperplane that accepts the data points

within or on the margins and rejects data points outside the margins [58].

Optimal classifier "

— Marginal boundary line

class

e *

J——=» Support vector

Possible
classifiers

u
Negative
class

Marginal boundary lmeqh\
(a) (b)
Figure 14. Decision boundary from support vector machine (SVM) (adapted from [59]).

2.9 Key Performance Metrics and Model Validation Techniques

2.9.1 Performance Evaluation

There is no predefined method for determining the optimal architecture of a model. However, the
accuracy of a model layout can be evaluated using several performance criteria, such as root-mean-
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square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and
coefficient of determination (R’). RMSE quantifies the magnitude of errors and is sensitive to
outliers. MAE utilizes a scale similar to that of the data to compute the variance between predicted
and target values. MAPE measures the range of errors in percentages. R’ represents the proportion
of the difference in predicted values that can be explained by the model. These metrics can be

mathematically expressed as follows:

RMSE = \/% ST (e, — &,)? Eq. (1)
MAE =Sy | e = &l Eq.(2)
MAPE == 3, |%| Eq. (3)
Rzzl—g;zzi:—::z:;zé=% m oo Eq. (4)

where m, n, € — €, e,, and €,, denote the number of data points, the data sample index (runs from
1 to m), the difference in mean of observed values, the target value, and the predicted value,
respectively. Although various evaluation metrics have been identified [189], RMSE, MAE,
MAPE, and R’ remain the most widely used for Al-predicted results in engineering applications
[190,191]. However, these metrics have limitations. For example, RMSE is not always appropriate
for comparing accuracy across time series [192], while MAPE can be unreliable and misleading
[193]. R? is dimensionless, allowing comparison across heterogeneous target variables (e.g., MPa,
mm/m, %) and enabling cross-dataset benchmarking. Nevertheless, earlier surveys reported that,
although R’ is the most commonly used metric in engineering, it can sometimes be biased,
insufficient, and misleading; meanwhile, other metrics also present challenges [194]. In fact, no

single metric can be considered universally superior [195]. In this study, most structural
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engineering papers published between 2020 and 2024 consistently reported R’ as the primary
benchmark for evaluating predictive accuracy, typically alongside complementary metrics such as
RMSE, MAE, and MAPE. R’ is unitless, with values ranging from 0.0 to 1.0 [196]. For RMSE,
the normalized values below about 5% are generally regarded as excellent predictive accuracy and
for MAE, lower values (e.g., < 0.1 for displacement prediction) demonstrate strong alignment with
engineering tolerances [227]. For general cases, MAPE values under 10-15% are frequently
considered acceptable, while errors above 20-25% indicate weaker model performance [228].
2.9.2 Model Robustness and Accuracy

Although R’ is a popular and intuitive measure of accuracy in Al-based structural engineering
models, it is important to recognize its limitations to ensure proper interpretation. First, R’ values
are scale-dependent, meaning that the same R’ can correspond to very different levels of absolute
error across datasets, which limits cross-study comparisons [208]. Second, it naturally increases
with model complexity, even when added predictors are not meaningful, making it sensitive to
overfitting unless paired with adjusted R’ or error-based metrics [209]. Third, it is insensitive to
systematic bias: a model can consistently underpredict or overpredict and still yield a high R’ if
variance trends are well captured [210]. Fourth, it does not provide information about the
distribution of errors, meaning outliers may be masked, while metrics like RMSE penalize such
deviations more strongly [210]. Finally, because R’ is bounded above by 1 but unbounded below
(—o0), negative values do not clearly quantify the degree of model inadequacy [208]. To address
these issues, structural engineering studies often report heterogeneous metrics such as RMSE,
MAE, and MAPE to complement R; for example, Yang and Liu [211] demonstrated that their
model’s high R’ was further substantiated by substantially reduced RMSE and MAE compared to

code predictions. Similarly, normalized or relative error measures help standardize error
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magnitudes across studies (e.g., RMSE or errors normalized by mean or range) so that results are
more comparable across datasets with different scales [212]. Thus, while R’ remains a valuable
benchmark for variance explanation, pairing it with error- and scale-sensitive metrics provides a
more holistic and trustworthy evaluation framework for Al applications in structural engineering.
Monte Carlo simulations (MCS) provide a robust method for evaluating model performance and
reliability. This sampling-based methodology involves performing many simulations of the same
process to converge the average of large samples to an anticipated value for infinite samples. This
approach is suitable for randomizing the sampling method of training and testing dataset for the
selected models. Subsequently, a specific number of simulations are performed with different
dataset splits for training and testing. By employing MCS, random sampling helps enhance model
accuracy by reducing errors in Al predictions. For example, if 10 samples are selected from among
100 samples that contain 50% each of two different types of data, the correct proportion of the two
types of data may not be achieved. Therefore, certain variations may appear as sampling errors in
the predictions. The random sampling process can eliminate bias in parameter selection, thereby
maximizing accuracy [60].

2.9.3 Data Minimization

The availability of input parameters generally improves the accuracy of model predictions.
However, unnecessary data, with no influence on the final prediction, can introduce system noise,
mislead the training programs, and compromise the model’s performance. The influence of such
input parameters can be regulated through a sensitivity analysis. The most widely used methods
for sensitivity analysis include the cosine amplitude method, Milne method, and generalized cross-

validation (GCV) method, as discussed in the following sections [19]:
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2.9.3.1 Cosine Amplitude Method
This method quantifies sensitivity by computing the correlation between the input and output data.

The correlation factor (R;) is calculated as:

Ri= (S0 ki) Zha e T VR Eq. (5)

where x;i is the value of the i-th input parameter corresponding to the k-th output, yx is the value
of the k-th output, and m is the total number of samples. A higher value of R; represents a stronger
correlation between the input and output parameters [19].

2.9.3.2 Milne Method

This method analyzes the effects of inputs on outputs based on the weights of the connections

between nodes, represented by a static weight matrix:

ZNh Wil

m=12Ni Iw l|
1= m

1 W]k b Eq' (6)

li Np
S oy 2D
=1 Wil

Wpm

Influence of input parameter =

where N; represents the number of input parameters (i), N, represents the number of hidden
neurons, wy; represents the weight of the connection between the input neuron / and the hidden
neuron m, Wy, represents the weight of the connections between node j and node &, and wpm
represents the weight of the connection between hidden neuron m and output neuron p [19].
2.9.3.3 GCYV method

The significance of an input parameter can be defined as the square root of the GCV of the model
with all basic functions containing the eliminated parameter, minus the square root of the GCV of
the full model. The GCV can be defined as follows:

GCV = MSE yain/(1-enp/n)* Eq. (7)

27



492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

Based on this equation, GCV depends on the mean square error of the training data (MSEain),
number of samples in the training data (n), and effective number of parameters/variables (enp)
[19].

2.9.4 Data Interpretability

As mentioned in Section 2.9.1, RMSE, MAE, MAPE, and R’ are commonly used in regression
problems to evaluate model performance. Beyond accuracy, SHapley Additive exPlanations
(SHAP) is an interpretability method that provides insights into feature contributions in regression
tasks. For example, SHAP values quantify the influence of each feature on the predicted
continuous outcome. SHAP is employed to interpret the decision-making process of complex Al
models by providing post-hoc explanations of model predictions [61]. Similar to parametric
analysis, SHAP isolates the individual contribution of each input parameter to the model’s output.
This facilitates a clear understanding of the inherent reasoning behind predictions and allows the
relative influence of each parameter on the predicted results to be distinguished [51]. Feature
importance refers to analytical techniques that quantify the relative contribution of each input
variable to the predictive performance of a machine learning model, typically through model-based
or permutation-based measures. Recent engineering studies show that such methods enable
researchers to identify which design or material parameters most strongly influence target
responses, offering insights that align with established physical or experimental understanding.
For example, Nguyen et al. [222] used SHAP on a boosting model for concrete-filled steel tube
columns and found that the most important features were exactly the expected mechanical loads
(bending moment and axial force). In other words, SHAP highlighted that these domain-critical
forces drive the model’s predictions, validating the Al with known structural physics. Similarly, a

RF-based framework for multi-distress prediction in continuously reinforced concrete pavements
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highlighted the dominance of structural and environmental variables, further emphasizing the
interpretability of feature importance in linking Al outcomes to engineering behavior [223].

However, SHAP and related interpretability methods should be applied with caution, as correlated
features may distribute importance scores misleadingly. Additionally, issues such as data leakage
during preprocessing or feature engineering can inflate interpretability results, limiting their
generalizability. On the other hand, precision and recall are frequently employed evaluation
metrics for classification problems due to their ability to capture the trade-off between false
positives and false negatives [62]. Precision represents the percentile of successful predictions for
each predicted result, while recall measures the fraction of relevant instances. Both metrics are
considered more effective when their values approach 1 [37]. Generally, regression metrics
(RMSE, MAE, MAPE, and R’) are considered separately from classification metrics (precision,
recall, and F1), with precision and recall applied only when the prediction target is categorical.
Only a small proportion of published machine-learning models undergo true external validation —
testing on wholly independent data — despite its recognized importance for unbiased performance
assessment [224,225]. This gap often reflects practical constraints, but it means many models are
evaluated only on internally held-out or cross-validated samples. Dataset sizes are frequently
inadequate [226], and most ML studies fail to justify sample-size calculations [226]. Proper
validation protocols (e.g. k-fold or nested CV) are therefore essential to mitigate overfitting and
bias [224,225]. In addition, performance reports should include measures of variability — such as
the standard deviation (SD) or coefficient of variation (CoV) of repeated runs, and 95% confidence
intervals (CI) for key metrics — rather than only point estimates [225]. Advanced techniques like
Bayesian hyperparameter optimization can help tune models efficiently, and explicit uncertainty

quantification (via bootstrapped Cls or Bayesian credible intervals) provide critical insight into
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model robustness. Finally, assessment should follow established external-validation criteria and
report overall performance indices (e.g., accuracy and calibration metrics) with their uncertainties
to fully characterize model generalizability [225].

3 Application of Al in Structural Engineering

Al is increasingly being applied to predict the mechanical properties, environmental impacts,
durability, life cycle, and service life of structural materials such as concrete, reinforced concrete
(RC), composites, and structural steel. Large-scale laboratory experiments can be complemented
with Al-based predictions to minimize testing costs and time. The following sections provide an
overview of recent studies that have employed Al models in structural engineering.

3.1 Materials Performance Prediction

3.1.1 Al in Concrete Mix Design and Mechanical Properties

Recent studies have applied various Al and ML methods—such as KNN, ANN, BR, GPR, SVM,
DT, RF, MLP, GEP, boosting, and stacking techniques—to optimize concrete mix design and
predict its mechanical properties. These approaches have primarily focused on forecasting the
compressive strength of concrete incorporating recycled aggregates and supplementary
cementitious materials (e.g., slag, silica fume (SF), fly ash, and ground granulated blast-furnace
slag (GGBFS)), using datasets ranging from 1,000 to 3,600 samples. Among these, XGBoost
[63,64] and stacking methods (an ensemble technique combining multiple models) [65] achieved
the highest accuracy, with an R? value exceeding 0.950. The most influential parameters were
concrete testing age, cement content, and the replacement ratio of recycled coarse aggregates (CA).
Similarly, high R? values of 0.960 and 0.970 were reported using GEP for SF-concrete [66] and
BR for geopolymer concrete [67], respectively. Generic CV (not specified) was applied to reduce

overfitting, but no CI or SD values were reported. The influencing parameters were cement and
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water, identified via sensitivity analysis over a dataset of 283 compressive and 149 tensile samples.
The use of multiple ML models and CV improved reliability, but the absence of explicit k-fold
details and external datasets limits generalization [66]. Onyelowe et al. [68] examined the mix
design of fly ash—incorporated concrete using statistical analysis, linear regression, and Al
algorithms, where ANN achieved the best performance (R’ = 0.92) in predicting 28-d compressive
strength. The study used 112 mix samples with binder ratios as inputs, and models were validated
by statistical comparisons, with uncertainty of 15-20 MPa (SD for compressive strength models)
and 2-3 points (environmental impact models). The governing parameters were the fly ash-to-
binder ratio and aggregate-to-binder ratio and all methods. The study demonstrated the capability
of ANN to develop a robust mix design tool for sustainable concrete with comprehensive

parametric considerations considering.

GB and XGBoost also outperformed other methods in a study by Kang et al. [69], where the water—
cement ratio and SF content were identified as the most critical parameters affecting the
compressive and flexural strength of steel fiber—reinforced concrete, based on a dataset of 220
samples. Similarly, GB was shown to be more accurate and robust in determining the flexural
strength of fiber-reinforced concrete beams, achieving a higher slope validation ratio (0.83/1). The
depth of the beam was the most influential factor, followed by the flexural reinforcement area [70].
In contrast, Khan et al. [71] reported ANN to be superior to RF, reaching an R’ of 0.990, while
using ~120 FRP beam samples with geometric, reinforcement, and material inputs. For validation,
dataset was split into training/test sets with error indices RMSE of 7.37 kN-m. This result was
further validated by Zhang et al. [72] over 134 data points, where ANN (R’ = 0.979) outperformed
GEP and existing ACI 440.11-22 [188] equations. Li et al. [73] recommended XGBoost (R’ =

0.93) for predicting the flexural strength of concrete with cementitious materials. Using SHAP
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analysis, the water—cement ratio and curing age were identified as the key factors. Khan et al. [46]
used GEP and MEP to determine the flexural capacity in FRP-strengthened beams using 200
samples. Validation was based on holdout sets, not k-fold CV. No uncertainty intervals were
provided, though strong R’ values (0.96-0.98) and low MAE demonstrated accuracy. SHAP
analysis identified beam width, depth, and reinforcement ratio as key predictors. Overfitting was
managed with evolutionary learning techniques, but the study was limited to smaller dataset size

and lack of external validation.

The prediction of split tensile strength for concrete containing different cementitious materials
(e.g., GGBFS and Portland slag), sand replacements, and recycled aggregates was examined using
up to twelve Al methods on 168, 310, 381 dataset points. The peak R’ values achieved were 0.98
(XGBoost) [74], 0.892 (extra tree regressor) [75], and 0.842 (XGBoost) [76], respectively. The
common influencing factors were water-cement ratio, curing age and ratio cementitious materials.
Nguyen et al. [56] implemented four ML methods, i.e., SVR, MLP, GBR, and XGBoost, to
determine the strength characteristics of high-performance concrete. Among these, SVR and
XGBoost offered the most accurate results (R? of 0.96-0.98) with reduced computational effort
via random-search-tuned train/test validation. Key governing factors were cement contents, blast
furnace slag, fly ash, water—cement ratio, superplasticizer, coarse and fine aggregates (FA), and
curing period. Overfitting was reduced by efficient parameter tuning and data imputation

strategies, though the absence of k-fold CV or external test sets limits robustness.

Earlier, Gholampour et al. [77] developed empirical models using GEP to predict the 28-d
compressive strength, elastic modulus, flexural strength, and splitting tensile strength of recycled
aggregate concrete (RAC). A comprehensive database with 650 compressive strength values, 421

elastic modulus values, 346 splitting tensile strength values, and 152 flexural strength values from
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previous reports was compiled to compare the performance of 34 mechanical-property models for
RAC, developed in 21 other studies. The proposed GEP model provided more accurate results than
other models on large datasets and exhibited consistency with existing code expressions. Similarly,
a hybrid GP model was developed in a study to predict the triaxial compression loading based on
330 tests on concrete samples: comparisons with earlier studies across several statistical criteria
confirmed the model’s accuracy and reliability. The GEP-based approach using only the mix-
design properties as predictors achieved R = 0.81 [17]. In another study [47], four models (RF,
NN, GB, and AdaBoost) were applied to predict the fatigue life of concrete under uniaxial
compression. The dataset, containing 1300 sets of experimental data, was split 90:10 for training
and testing. Instead of CV, the authors focused on dataset cleaning and feature analysis. Six key
input variables, related to the material and dimensional properties (compressive strength of
concrete, height-to-width ratio, and shape of test specimen) and the loading conditions (maximum
stress level, minimum stress—to—maximum stress ratio, and loading frequency), were adopted.
Maximum stress level and frequency were the most influential features. The GB model yielded
the lowest error and high predictive accuracy (R’ = 0.915) across the three datasets. Overfitting
risk was reduced by outlier filtering, though the absence of CV and uncertainty measures limits
confidence in generalization. Cascardi et al. [78] proposed an ANN-based analytical model to
predict the compressive strength of circular concrete columns wrapped with fiber-reinforced
polymer (FRP). The compressive strength of the FRP-confined concrete was influenced by the
column diameter, compressive strength and Young’s modulus of the unconfined concrete, and
thickness of the FRP jacket. A total of 465 samples were included in the database and key
parameters were column diameter, unconfined concretes’ compressive strength, thickness and

Young’s modulus of FRP jacket. The model achieved high consistency and accuracy (R of 0.83)
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when compared with results from laboratory tests and equations derived from international codes

and scientific literature.

Few researchers have used ML to assess the self-healing ability of cementitious materials. Using
results from 12 experimental studies, Rajczakowska et al. [20] compiled a detailed database with
197 records to predict the compressive strength recovery of concrete using four interpretable ML
methods: SVM, RT, ANN, and ensemble of RT. The 12 input variables were water-cement ratio,
concrete age, cement content, fine and CA, peak loading temperature and its duration, cooling
regime and duration, curing regime and duration, and volume of samples. The stability of the
models was verified through Monte Carlo analysis. The Ensembled RT achieved the highest
accuracy (R’ > 0.900) and robustness. The most influential parameters were temperature, curing
regime, curing time, and aggregate amounts. In terms of self-healing ability, Huang et al. [79]
assessed 797 bacterial self-healing concrete test results with 22 features. ML models including
GBR, SVR, RF, and DNN were compared, with GBR performing best (R’ = 0.956). 10-fold CV
and grid search optimization were applied to reduce overfitting. No CI was reported, but RMSE
was used for error estimation. Key parameters were bacteria type, healing time, crack width, and
environment. Overfitting risk was explicitly addressed with CV and sensitivity analysis, improving
robustness. Some other studies also reported promising accuracy such as GEP with an R’ of 0.938
for admixture-based concrete using 619 data points [80], and BR with an R? of 0.974 for engineered
cementitious composite based concrete using 617 crack data samples [81]. Most of the contributing
variables were associated with FA, cementitious materials (e.g., fly ash, SF, and limestone

powder), water—binder ratio, and crack width before self-healing.
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3.1.2 Durability and Fire Resistance of Materials

Predicting the long-term serviceability of structural materials is crucial for effective structural
design. Several studies have explored optimal performing methods for examining key durability
factors (DF). For example, ANN achieved an R’ exceeding 0.950 in predicting moisture exposure
using 429 observations. Regression models were tuned via Bayesian optimisation and evaluated
on a held-out test set; classification used stratified 10-fold CV. The study does not report SD/CI
for model outputs; it reports standard predictive metrics (R, MSE, RMSE, MAE). Important
influential variables include exposure duration and environmental factors (relative humidity,
temperature) alongside geometrical and material properties. The use of stratified CV and Bayesian
hyperparameter tuning reduces overfitting risk but the study provides limited formal uncertainty
quantification [82]. In similar manner, Multi Expression Programming achieved R of 0.921 and
0.977 in modeling concrete corrosion using 256 experimental records (chemical and biological
tests). Models were trained on a 50/50 split and performance reported using MSE and R? (MEP
performed best). Inputs were very small (time + pH), so influential parameters are essentially
exposure time and pH; because feature dimensionality is low the models are simpler, but the study
does not report formal uncertainty bounds (SD/CI) nor use an external test set — this limits
quantified generalization/overfitting analysis beyond train/test errors [83]. SVM (88-89%
accuracy; 204 datasets) and back propagation NN (85% accuracy; 159 specimens) were used to
predict chloride resistance [26,84]. In a study of Khan et al. [50], BR achieved an R’ of 0.999 in
predicting depth of wear with 216 datapoints, and SHAP analysis identified testing time and
specimen age as the dominant features. The study addressed overfitting by using ensembles,
objective function minimization, and external validation metrics — although the paper did not

present formal SD/CI intervals for predictions. External validation criteria and performance index
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were used to support model generalization claims. Similarly, peak accuracies were observed for
RF (R’ = 0.950) to estimate frost resistance using 100 groups of orthogonal-experimental data
samples. and for optimized ANN (R’ = 0.926) to evaluate impermeability using 417 sets of
experimental data from published literature [85,86]. In another study, hybrid ANN achieved an R’
exceeding 0.990 in modeling carbonation penetration with 532 data records, and the models were
trained with a 70/15/15 split and ten-fold CV. Uncertainty is presented via SD and fold-by-fold
MAE/RMSE (no classical CI). The top influential parameters were exposure time (<27%), CO-
concentration (=22%), and water—binder ratio (=18%). CV and validation partition were used to
limit overfitting; the hybrid ANN consistently reduced errors in comparison to plain ANN across
training, validation, test and CV folds, but the authors still recommended enlarging the database
to further lower overfitting risk [87]. Across these studies, the key parameters included duration
of exposure, volume fraction of CA, cement content, water—binder ratios, FA, supplementary
cementitious materials (SCM) content, thickness of protective layer, and ratio of environmental to
relative humidity. Liu et al. [19] predicted the frost durability of RAC based on the DF using three
soft computing models: ANN, GPR, and MARS. The database contained experimentally measured
DF values of 142 samples from 23 published studies. The ANN model (with 19 neurons) achieved
the highest accuracy (R’ = 0.951) followed by GPR, with the lowest RMSE and MAPE. Sensitivity
analysis identified air-entrainment as the most critical factor influencing frost durability.
Parametric analysis further showed that frost resistance improved with reduced recycled aggregate

replacement, higher air-entrainment, lower water—cement ratio, and an optimized sand—RAC ratio.

At elevated temperatures due to fire exposure, structural materials often lose strength and
durability. Because full-scale fire tests on structural prototypes are difficult to conduct, there is a

growing demand for numerical and Al-based predictive models. Numerous studies have explored
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Al for predicting fire-induced effects on structural components. Concrete is widely used by fire
engineers, but all concrete types may fail under extreme fire exposure [88]. Liu et al. [89] examined
the thermal spalling of steel and polypropylene fiber-reinforced concrete. Among six tested Al
models, XGBoost achieved the highest accuracy (R’ = 0.972), with polypropylene fiber content
identified as the key parameter for preventing spalling. Habib et al. [90] evaluated six classification
models on fire-exposed fiber-reinforced concrete beams using 50 experimental tests, with
AdaBoost demonstrating reasonable accuracy (R’ = 0.90), followed by GB. In another study, SVR,
RF, and DNN were employed using a compiled database to predict the fire resistance of FRP-
strengthened RC beams. DNN performed best (R’ = 0.910), with critical parameters including
geometrical features of the beam section, applied loading, and thermal properties of fire insulation
[29]. Similarly, ensemble models (XGBoost, CatBoost, LGBoost, HGBoost, GB, and RF)
achieved accuracy exceeding 0.90, outperforming traditional ML models (ANN, DT, PR, and
SVM) when trained on 21,000 data points from numerical simulations. SHAP analysis revealed
the most significant negative factors as loading ratio, FRP area, and total applied load, while the
positive factors were total area of steel reinforcement, thickness of insulation on beam sides, and

steel reinforcement cover depth [51].

Composite structures are widely used in industrial buildings and commercial spaces. Because steel
1s more prone to failure than concrete in fire exposure, construction with composite structures is
often preferred, and related Al-based research has received significant interest. Moradi et al. [91]
implemented an ANN model using 300 experimental data points to evaluate the fire resistance and
strength behavior of concrete-filled steel tubes. The model achieved R’ values of 0.967 and 0.970,
a more accurate model than the existing empirical relationships. However, these tubes require

protective fire coatings, making concrete encased steel columns superior in fire resistance. Naser
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[92,21] studied the fire behavior of RC columns using a combination of Al methods, including
intelligent PR, GP, DL, and traditional multi-linear regression. The study analyzed 112 test
observations under standard fire conditions for exposure durations of up to 5 h. The governing
factors associated with concrete performance were concrete mix proportion, components
(aggregate type and water—cement ratio), and supplementary additives (e.g., superplasticizers,
fibers, and SF). In predicting fire-induced spalling, GP achieved the highest precision (R? = 0.940),
followed by DL. Moreover, DL also performed better in predicting the relationship between the
governing factors and the fire resistance of concrete columns. Li et al. [93] developed ANN and
analytical models to predict the buckling resistance of axially loaded concrete-encased steel
columns exposed to fire conditions, considering 15200 specimens. The ANN and analytical
models achieved R’ values of 0.990 and 0.950, respectively, and showed lower dispersion (smaller
SD) than the analytical equations. Validation was conducted by an 80/20—train/test—split and by
comparison with experimental fire tests. The temperature of concrete and steel sections were
affected by concrete grade, heating time, section factor and thickness of concrete cover. The very
large synthetic dataset and direct comparison to experimental tests reduce overfitting risk, though
explicit regularization or nested-CV details were not found in the examined parts of the study.
Naser and Kodur [35] used a dataset including 494 observations, incorporating a wide range of
geometric characteristics and material properties, to develop a systematic ML (combining
ensemble of RF, XGBoost and DL) approach to enable explainable and rapid assessment of fire
resistance and fire-induced spalling of normal- and high-strength RC columns. This ensemble
could analyze 5000 reinforced columns within 60 s, achieving an R° of 0.86. Although tunnel fires
are relatively infrequent [94], the growing number of tunnels has resulted in catastrophic incidents

worldwide [95]. Wu et al. [96,97] investigated fire source behavior, hazards, and critical
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temperature fields in tunnels using LSTM-RNN and Transpose-CNN under 100 simulated tunnel
fire scenarios. The LSTM-RNN model achieved an accuracy of 0.90 with recommended 20 m
sensor spacing, while the Transpose-CNN model achieved ~0.97 accuracy with 32 sensors placed
at 5 m intervals. Both models effectively identified critical temperature fields, providing valuable

insights for safe evacuation, emergency response, and firefighting strategies.

Globally, the structural frames of most tall buildings, older buildings, and large-span warehouses
are either composed of or supported by steel components. Fire remains a critical hazard with
potentially catastrophic consequences for steel and steel—concrete interfaces. Engineers must
therefore accurately assess design parameters to ensure fire safety, a process increasingly
supported by Al-based predictive models. Fu [60] developed an ML framework incorporating DT,
KNN, and NN to rapidly predict the failure patterns of simple steel-framed buildings subjected to
fire and to assess the potential for subsequent progressive collapse. Failure patterns were defined
using the critical temperature method, and MCS and random sampling were performed to develop
a sufficiently large dataset for training and testing. The KNN and NN models provided satisfactory
predictions of the failure pattern and collapse potential of a two-story, two-bay steel-framed
building. Data driven ML models such as ANN, RF, GB and KNN have also been used to explore
the performance of the concrete-steel bond under high temperatures. Al Hamd and Warren [98]
analyzed 316 data points from previous laboratory-based studies and found GB to be the most
accurate model (R’ = 0.970), with the other models also yielding consistent results. The key input
features were concrete compressive strength, testing age, concrete surface temperature at failure,
thermal saturation ratio, bond length-to-diameter ratio, cover-to-diameter ratio, and fiber volume.
The dataset was validated with train-test split, and uncertainty was reported with RMSE of 1.08—

2.62 MPa and CoVs ranging from 18 to 74%.
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3.2 Structural Behavior Analysis

3.2.1 Al in Reinforced Concrete and Steel Structural Elements

A recent extension in GP, a GEP-based nonlinear model, was developed by Gandomi et al. [99] to
assess the shear resistance of RC beams with shear steel. The database comprised 466 experimental
measurements for both high- and normal-strength concrete beams. The proposed model
outperformed existing design-code models, achieving an R’ value approximately 0.89. Sensitivity
analysis revealed that concrete compressive strength, web width, and effective depth were the key
factors controlling the variations in the shear resistance of RC beams with stirrups. Cascardi [100]
developed an analytical ANN model to predict the in-plane shear strength of masonry panels
retrofitted with fiber-reinforced mortar. The study considered different varieties of masonry types
(by material and texture) and reinforcement, in terms of both the fiber (glass, carbon, steel, basalt,
phenylene-benzobisoxazole) and matrices (cement, lime, and hydraulic mortars). Despite the large
diversity in the input parameters, the model demonstrated high precision and accuracy (R’ = 0.91),
demonstrating robustness and sensitivity, with predictions consistent with results obtained using
international design codes. To assess rapid damage and seismic risks, and determine appropriate
retrofitting strategies, Mangalathu et al. [37] developed a comprehensive database of 393 one-
story, one-bay RC shear walls with both rectangular and non-rectangular sections. The dataset
included 152 flexural failure, 96 flexure—shear failure, 122 shear failure, and 23 sliding failure
samples. The model performances were evaluated using three metrics: global accuracy, precision,
and recall. Among the eight ML algorithms, RF achieved the highest accuracy (0.86), with a recall
of 70% and precision of 84% in identifying the flexure—shear failure mode on the test set. The
aspect ratio of the shear wall, boundary element reinforcement indices, and wall length—to—

thickness ratio were the critical factors governing the failure mode. Retaining walls provide
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permanent lateral support for vertical soil slopes in infrastructure such as roads and bridges. In one
study, a modified SVM model outperformed alternatives in determining the safety criteria of
cantilever-type retaining walls [101]. Key parameters, including cohesion, angle of shearing
resistance, angle of wall friction, and reliability index, were computed using the first-order—
second-moment method. The modified SVM predictions deviated from synthetic reference values

by less than 2%.

An ANN model was developed to predict the ultimate compressive load of rectangular concrete
filled steel tube columns in both concentric and eccentric loading. The dataset included 1,224 test
results for both long and short specimens. The model showed improved accuracy compared with
available design codes (50% reduction in RMSE), and the most influencing parameters were steel
tube dimensions, thickness, and material strength [102]. For a similar case, Asteris et al. [103]
developed three alternative models using optimized ANN with a hybrid database of 1,857
specimens. These models outperformed code-based methodologies, with reduced RMSE by 34%.
Lemonis et al. [104] developed an ANN model to predict the ultimate axial compressive capacity
of square and rectangular concrete filled tubes. The database included experimental results of
1,193 long, thin-walled and high-strength specimens. The model offered satisfactory results, with
a 20% error margin for 92% of the specimens. Sensitivity analysis revealed that the influencing
factors were the tube dimensions and steel yield limit. Ferreira et al. [105] built a finite element
(FE)-based database and trained five ML models to predict global shear capacity of a steel-concrete
composite down-stand cellular beams with precast hollow-core units. Among the models, the
Catboost regressor algorithm showed optimal performance (R of 0.982), followed by GEP (R’ of
0.953), using more than 6 geometrical features (e.g., opening diameter, web opening spacing, tee-

section height, concrete topping thickness, interaction degree, and number of shear studs above
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web opening). The FE-based database and the reliability analysis were used to quantify prediction
uncertainty at the design level, but per-prediction SD/CI numbers were not presented in the

examined portions of the study.

Lateral torsional buckling resistance, including web-post buckling and web distortional buckling
of slender cellular beam were accurately predicted (R° of 0.99) by developing ANN formula on
768 training models [106], validated with a 70/15/15 (training/validation/testing) hold-out split. A
7-neuron model was chosen for stability and practicality as overfitting risk increased with more
neurons. The key input parameters were beam dimensions, eccentricity from shear center and
moment gradient factor, and uncertainty was quantified via RMSE(1.2-2.2)/MAE(0.6-1.5)/SD.
Degtyarev [54] proposed an interactive notebook to predict elastic buckling (3645 FE datasets)
and ultimate loads (78390 FE datasets) of steel cellular beams using FE method optimized with
seven ML models (DT, KNN, RF, XGBoost, GBR, LGBoost, CatBoost). The ML models were in
remarkable agreement with the numerical data and surpassed design codes (GBR with an R’ of
0.997). The key influencing factors were beam span length, flange width, and web thickness. The
study used 10-fold CV for validation but did not report uncertainty intervals. Overfitting was
addressed with CV and model comparisons, though reliance solely on FE-generated data meant
external validation was not performed. Shamass et al. [107] implemented a MATLAB-based
graphical interface design tool by utilizing ANN with an overall accuracy of 0.932. This tool
integrated data generation from FE analysis, web-post buckling resistance predictions, and failure
mode classification of perforated steel beams with elliptical web openings. For similar case, Rabi
et al. [108] used a total of 10,764 web-post FE models on high strength steel beams. The dataset
was further employed to train and validate different ML methods (ANN, SVR, and GEP),

achieving R’ values of 0.998, 0.999, 0.977, respectively. These methods were compared with
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analytical model (R?=0.982), and a novel design model was proposed. The study used 10-fold CV
and grid search for tuning, and reported detailed statistics including SD and CoV to quantify
uncertainty and compare generalisation. SVR showed the lowest CoV and smallest RMSE in the
reported comparisons. Overfitting was explicitly assessed via CV and training/validation splits.
Degtyarev et al. [61] applied the NGBoost model to predict the probabilistic load-bearing
capacities of laterally restrained cellular beams subjected to uniformly distributed loads,
considering all possible failure modes and their interactions. A database with 14,094 numerical
simulation results was considered, and the model was further interpreted with SHAP method. The
dataset was validated with 10-fold CV (80/20 train—test split) and uncertainty was reported with
CoV (= 0.014 across test data). The model significantly outperformed the existing design

provisions with an R? of 0.999 while offering probabilistic predictions.

Le et al. [41] investigated the prediction capability of two hybrid Al models, GA and PSO,
combination with a modified ANN to determine the buckling loads of 420-MPa high-strength steel
Y-section columns with slenderness ratios of 30-80. The dataset included 57 buckling test results
from previous studies. The input variables were column length, cross-sectional geometry, and
initial geometrical deviation in the x and y directions. Both models performed well, but the PSO
combined with the modified ANN model achieved a higher R? value of 0.929. Gandomi et al. [17]
used GEP to construct an accurate empirical prediction model that could relate the load capacity
of castellated steel beams (CSB) to their geometrical and mechanical properties. Considering the
nonlinear collapsible characteristics of CSBs, the GEP model and derived equation outperformed
a multivariable linear regression and conventional constitutive models based on first-principle
investigations (e.g., elasticity and plasticity theories). Because of the repetitive nature of beam—

column connections, compact and efficient designs are required to reduce fabrication costs while
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maintaining quality. However, the vast number of connection types and loading scenarios makes
obtaining sufficient experimental data from laboratory setups impractical. Abdollahzadeh and
Shabanian [109] addressed this by using both mechanical modeling and an NN-based approach to
simulate the complex hysteresis behavior of beam—column connections with flange plates. The
combined neural network approach accurately captured the narrowed hysteresis behavior, with
RMSE = 0.712 and MAPE = 0.9166. Paral et al. [36] developed a DL-based nonparametric
approach that used continuous wavelet transforms of acceleration signal and 2D CNN for image
recognition to facilitate condition assessment of structural connections. Updated FE models were
used to train the CNN model, which successfully identified damaged locations and measured the
stiffness loss in the damaged beam-column joint. The study considered 80% training and 20%
testing data split for hold-out validation method.

3.2.2 Structural Response Under Lateral Loads

Inelastic dynamic analysis based on modern building codes is widely used to accurately determine
the seismic response of building frames. However, for large-scale structures, such analysis
becomes computationally intensive and difficult to implement. To address this challenge,
predictive models can be employed to achieve sufficiently accurate results with significantly
reduced computational demand, thereby facilitating seismic analysis and optimization of large
structures. Moreover, these models support the design and installation of structural solutions such
as retrofitting, BRBs, and dampers. In a recent study, an Al-enhanced computational method was
proposed by integrating Al with a shear building model, to determine the nonlinear seismic
response of RC frames under displacement controlled quasi-static cyclic loading and dynamic
earthquake ground motions. The database included test results of 272 RC columns. Numerical

results showed reductions of 60% and 62% in RMSE and MAE, respectively, indicating that the
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proposed method outperformed existing physics-based and classical fiber-based models. In
particular, the Al technique accurately used real-world experimental data to evaluate the lateral
stiffness, and the shear model efficiently formulated the structural stiffness matrix [110]. Another
study highlighted the capability of wavelet-weighted least squares-SVM and an FFBP-ANN to
predict the inelastic force- and displacement-based seismic responses of an 18-story RC frame.
The model was trained with design—basis and maximum ground earthquake motions. The study
showed how training sample size (75/150/225) and choice of inputs (first three natural period
combinations) affect accuracy (assessed by MAPE, NRMSE, R?). Uncertainty was expressed via
these error metrics and performance sensitivity, emphasizing robustness across sample sizes to
address overfitting risk. The ANN model achieved slightly higher accuracy (R’ = 0.999 with 225
samples) while exhibiting lower sensitivity compared with integrated SVM model [111].
Gondaliya et al. [112] applied a probabilistic framework combining classification models (ANN)
and regression models (LASSO regression, RF, and GB) to assess the seismic response of a four-
story RC building frame under epistemic uncertainty. The models achieved high accuracy, ranging
from 0.87 to 0.97. To investigate the ultimate load-bearing capacity of inadequate RC frames, six
ML models were developed and validated against experimental and numerical analyses of the
load—displacement behavior of a one-story frame. Among these, RF performed best, achieving an
R? of 0.870. The most influential input parameters were axial load, rebar diameter, and concrete
strength [113]. As a solution to such inadequate capacity of columns, additional confining pressure
can be provided by utilizing FRP-retrofitting jacketing with internal grouting, which prevents
failure under extreme seismic and blast conditions. Shin et al. [114] proposed a rapid decision-
making tool for multi-hazard assessment and mitigation using ANN models capable of rapidly

generating large datasets. The ANN-based models achieved R’ = 0.98 over 78 samples under
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seismic loading and R? = 0.99 over 83 samples under blast loading. In a follow-up study, Shin et
al. [115] developed hybrid ML models which could optimize the retrofit details within desired
performance by controlling the confinement and stiffness ratios. First, ANN was used to rapidly
generate seismic and blast responses, and then GA was employed to optimize the retrofit details
within multiple objective functions. The ANN model achieved a high regression value of 0.994
using dataset from FE simulation-based ML models. For the model, validation conducted against
full-scale dynamic seismic tests and blast tests of RC frames, and reliability reported via small

simulation variations (<12% for seismic, <3% for blast) compared to experimental tests.

Few studies have incorporated Al methods to determine seismic response of structural steel
building frames. In a recent study, a portal frame was analyzed through four machine learning
models (RF, GB, XGBoost, and DNN) to determine its top floor displacement under lateral load.
RF outperformed others (R’ = 0.987) in predicting displacement, and XGBoost also demonstrated
satisfactory performance in determining failure probability. While not explicitly stating CV, the
study used a holdout test set to validate models. Uncertainty was not reported via SD or CI; instead,
the study presented a battery of performance metrics (e.g., RMSE, MAE, and MAPE) [116]. Later,
RF was hybridized into three variants: RF dragonfly optimization algorithm (RF-DOA), RF
sparrow search algorithm (RF-SSA), and RF whale optimization algorithm (RF-WOA). RF-WOA
outperformed RF-DOA and RF-SSA, offering engineers a valuable tool for designing portal
frames with enhanced features. The study adopted a train/test split validation strategy and
compared among the hybrid models through rank analysis and regression line performance.
Uncertainty was not expressed via SD/CI, but through reliability indices and error/rank metrics.
Influential features include structural and loading variables incorporated into the RF models.

Overfitting risk was mitigated by comparing multiple hybrid configurations and leveraging
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reliability analysis, though no explicit CV was declared [117]. Seismic fragility analysis
traditionally requires sophisticated numerical models and significant computational resources. By
contrast, ML models can efficiently identify high-dimensional input variables and capture complex
nonlinear relationships. In line with this, four ML models—RF, AdaBoost, GB regression tree
(GBRT), and XGBoost—were employed to construct fragility curves based on nonlinear time-
history analyses of 616 steel moment frames subjected to 240 ground motions. The models were
trained on 56,479 datapoints, and a graphical user interface was developed using best performing
models (GBRT and XGBoost, both achieving R’ = 0.999). The inputs consisted of structural
descriptors and the first three natural periods, capturing the essential dynamic properties of the
frames. Model training and evaluation used a 70/30 holdout split, with hyperparameter tuning
performed (e.g., number of trees, and learning rate) to enhance generalization. The very large
dataset helped minimize variance and overfitting risk, and the ensemble models were chosen
specifically for their robustness. Feature-importance analysis highlighted the natural periods as
particularly influential in predicting fragility parameters. No independent experimental test dataset
was used, since all data came from simulation. However, the size and diversity of the generated
dataset strengthen external validity. The models were implemented using Scikit-learn v0.22.2 in
Python. [118]. Automatic seismic design was explored by Guan et al. [18], who developed a
nonlinear structural model to simulate the static—dynamic response of steel moment-resisting
frames (SMRF) using a Python-based end-to-end modular platform. Automatic seismic design and
analysis (AutoSDA) was implemented as the first module to generate SMRF designs (such as
section sizes and detailing) for beams, columns, and beam—column connections. The input design
parameters included building characteristics (e.g., number of stories, number of lateral-force-

resisting systems, and building dimensions), applicable loads (i.e., dead and live loads on each

47



950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

floor), and site conditions (mapped spectral acceleration). OpenSees was then used to create two-
dimensional nonlinear structural models based on these designs. This module performs nonlinear
static and dynamic analyses to comprehensively evaluate seismic performance. The model-based
framework and object-oriented programming structure made the platform easily adaptable,
efficient, reliable, and accurate. Zhang et al. [33] developed an LSTM RNN-based DL approach
to model and predict data-driven nonlinear structural seismic responses. Specifically, two schemes
were developed: LSTM-f (full sequence-to-sequence mapping) and LSTM-s (stacked sequence-
to-sequence mapping), both incorporating multiple LSTM layers and fully connected layers to
create time-dependent and causal input—output sequence models. The approach was validated
through three case studies: a nonlinear hysteretic system (100 data samples), a six-story
instrumented building with field sensing recordings (23 earthquake records) and a three-story
nonlinear SMRF (548 datasets generated via incremental dynamic analysis). Among the models,
LSTM-s demonstrated superior precision (R’ = 0.99), reliability, computational efficiency,

robustness, and scalability compared with LSTM-f and a classical ANN (MLP).

In seismic design, BRBs and supplemental dampers (e.g., steel plate, viscous and viscoelastic
dampers) are important devices that provide high stiffness, ductility, and energy dissipation to
lateral-force-resisting systems. BRBs, with a stable yielding core and an outer restraining member,
exhibit symmetrical hysteresis and absorb large inelastic deformations, significantly enhancing a
structure’s energy dissipation capacity. Steel dampers likewise provide additional damping by
stiffening the frame, absorbing vibration energy, and reducing seismic loads, which enhances
overall dynamic response and structural resilience. Moreover, the use of BRBs and dampers
together can reduce damage during earthquakes in a synergistic manner. BRBs are focused on

yielding in sacrificial braces, while dampers are responsible for dissipating energy and limiting
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displacement. In a study on BRB frames, four ML methods (RF, ANN, XGBoost, and AdaBoost)
were applied across six brace—frame configurations using 79,500 FE-based pushover analyses in
OpenSeesPy. Inputs included frame geometry, BRB core area, section properties, and loads. The
dataset was divided into 80/20 train-test splits, repeated across different configurations and for
combined data. No uncertainty intervals were reported; performance was assessed using R’,
RMSE, MAE, and MSE. A graphical interface with the most accurate model (XGBoost, R’ of
0.983-0.993) was developed, and feature importance analysis showed the base-shear to be most
significantly governed by number of stories, followed by BRBs core area. While AdaBoost
achieved perfect R’ in training, its testing accuracy dropped, indicating overfitting. XGBoost
provided the most balanced performance, reducing overfitting risk [121]. Conventional concentric
braces face several limitations, including low ductility, asymmetric behavior under tension and
compression, strength deterioration, and stiffness degradation. To address these limitations,
AlHamaydeh et al. [31] combined an FFBP with NARX-ANN to predict the nonlinear hysteric
behavior of BRBs under cyclic loading with 4 full-scale BRB specimens. Normalized brace forces
during load reversals, as a response to normalized time-delayed inputs to the NARX-ANN, were
denormalized using the auxiliary FFBP-ANN. Brace deformation was used as the input variable,
while brace forces were set as the output variable in the proposed model. The model captured both
linear deformations with corresponding linear forces and nonlinear deflections with corresponding
nonlinear forces, with predictions closely matching experimental results (accuracy between 0.969
to 0.981). The ANN-based model outperformed the traditional FE modeling approach for the
following reasons: (i) it established closed-form relationships between the input and response data;
(i1) it learned and adapted to different types of data, (ii1) it formed a simple structure, which

facilitated reconfiguration and ensured significantly faster simulation runs. Sun et al. [213] applied
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ML methods to perform seismic fragility analysis of large-scale steel BRBs. A database of 9,000
nonlinear time-history simulations was created to generate training and testing data. Input features
included ground motion intensity measures, BRB design parameters and structural responses.
Models were validated with 10-fold CV, achieving good generalization without severe overfitting.
Uncertainty was quantified through fragility curves with confidence bounds, while peak values for
predictive metrics such as R? (0.986) and RMSE (0.056) were also reported for XGBoost model.
The large synthetic dataset and CV approach reduced overfitting risk, though no real-world
external testing was performed. Tamimi et al. [214] combined FE modeling, ANN, and Monte
Carlo simulation to evaluate the seismic reliability of BRBs. Experimental tests (5 specimens)
validated the FE model, which was then used to generate simulation data. Sensitivity indices
revealed that gap size, friction coefficient, and steel core thickness were the most influential
parameters. A bias factor distribution (mean = 0.99, SD = 0.038) quantified prediction uncertainty.
Overfitting was mitigated by filtering non-influential variables before ANN training and using
Monte Carlo for robustness. Although k-fold CV was not performed, the study ensured
generalization by integrating ANN with reliability-based simulations. Anand et al. [215] developed
ML models to predict seismic engineering demand parameters (maximum inter story drift, residual
drift, and maximum and cumulative ductility) of BRBs. A database of 16,694 nonlinear time-
history analyses records of BRB frames was generated from OpenSees models. Nine ML
algorithms were tested with hyperparameter tuning via 10-fold CV on the training set, followed
by evaluation on the test set. XGBoost emerged as the best-performing model, with peak R’ values
0f 0.963 (maximum inter story drift), 0.928 (residual drift), 0.968 (maximum ductility), and 0.983
(cumulative ductility). Influential parameters identified by SHAP included spectral accelerations

at 1-5s, Arias intensity, and peak ground velocity. Overfitting was minimized through CV and the
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large dataset, but external real-world validation was not performed. Sagheer et al. [216] developed
a deep learning framework that combines ResNet for classifying BRB specimen types and LSTM
for predicting their cyclic hysteretic response. The study used experimental data from six
specimens (threaded, shaved, and notched core bars), expanded into thousands of training
sequences by resampling and segmentation. An 80/20 split was used for validation, supplemented
by dynamic hyperparameter tuning. ResNet classification reached up to 99-100% accuracy with
R?=0.993, while LSTM achieved force prediction—index of agreement values ranging from 0.979
t0 0.999, demonstrating very high fidelity. Overfitting was mitigated using dropout, pooling layers,
and sequence augmentation, though the study lacked external test data beyond the same
experimental campaign. The results showed that deep learning models provided accurate and
efficient alternatives to computationally expensive non-linear FE analyses simulations.
Mohammadi et al. [217] investigated ANN-based models to estimate seismic demands of BRBs
subjected to pulse-like ground motions. Using several hundred nonlinear dynamic analyses, the
study trained ANNSs to predict maximum inter-storey and global drift ratios as key seismic demand
parameters. Validation relied on an 80/20 train—test split, with no k-fold CV. The best ANN models
achieved peak R’ values of 0.96 for maximum inter-storey drift ratio and 0.95 for global drift ratio
in training, with corresponding test values of 0.94 and 0.93. Although no uncertainty intervals
were provided, the performance metrics (R, RMSE, MAE) indicated strong predictive accuracy.
Overfitting was reduced by optimizing ANN architecture and testing on separate holdout datasets,
but lack of external data remained a limitation.

For dampers, a recent study proposed a fast-forward approach to analyze seismic vulnerability
through FE analysis, structural design software, and ANN, with fluid viscous dampers in varied

locations of a building frame [119]. In another study, two crucial properties of a steel plate damper,
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stiffness and slenderness factor, were predicted using response surface methodology (RSM), ANN,
and evolutionary polynomial regression (EPR). The study considered elastic-inelastic-plastic
buckling modes and flexural, shear, and flexural-shear failure mechanism of concentrically braced
frames, with 33 geometric property entries. EPR showed the best performance, with R’ of 0.999
for slenderness and 1.000 for stiffness. Validation was conducted by splitting dataset into training
and validation sets with multiple error metrics, while uncertainty was expressed through
descriptive statistics and error values [120]. Onyelowe et al. [218] presented a hybrid framework
combining response surface methodology and ML models to predict the seismic performance of
steel plate dampers in concentrically braced frames. Input features included geometric and material
properties of dampers. The study used a train—test validation approach, where ANN outperformed
response surface methodology and other ML methods, achieving R’ values up to 0.99 with low
RMSE and MAE. Although uncertainty intervals were not explicitly reported, results highlighted
ANN’s superior predictive ability. Overfitting was addressed by benchmarking different methods,
though dataset size and lack of broad external testing limited generalization. Chen and Chien [219]
trained MLP and auto-regressive model with exogenous controllers for seismic response control
and validated their performance through both numerical simulations and shake-table experiments
on a single-degree-of-freedom specimen. Validation combined offline train/validation splits from
excitation data and real-time experimental closed-loop tests. The paper reports objective metrics
averaged across records (objective functions, RMSE) but does not report R’ for accuracy and
SD/CIs for uncertainty. Experimental validation was a strong mitigation against overfitting; auto-
regressive model with exogenous controllers performed faster and with similar accuracy to MLP
in tests. Shao and Andrawes [220] trained ANNS to predict the maximum displacement of a single-

degree-of-freedom reinforced concrete structure with super-elastic dampers using a large
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simulated dataset generated in OpenSees, consisting of approximately 109,000 samples derived
from 200 ground motions. The validation method was a hold-out split (70% training, 15%
validation, and 15% testing), and generalization was further tested on separate ground motions
whose parameter values differed from those in the training set. Reported uncertainty was given in
terms of RMSE and average error (best performance: RMSE =~ 0.1012, average error = 6.55% for
the 200-ground motion case). The most influential parameters were spectral acceleration and peak
ground acceleration. Hu et al. [220] built an explainable probabilistic buckling-stress predictor by
training ML models (ANN performing best: RMSE = 0.0094, R’ = 0.9952) on an FE-generated
database of ~32,400 cases. They validated FE against experiments, used Latin hypercube sampling
to propagate input uncertainties, and produced probability densities and global sensitivity analysis
indices which showed yield-stress and initial-imperfection to be the dominant uncertainty drivers.
Validation relied on held-out testing and distributional comparisons; ensembles (RF/XGBoost)
and the large database helped reduce overfitting risk. Bae et al. [122] investigated a double-coke
damper with multiple strips based on a modified radius-cut section. In this configuration,
increasing numbers of plastic hinges on a single strip increased the ductility of the entire damper,
producing a stable hysteresis diagram. Computations based on the proposed equation (for damage
index determination using parameters such as maximum strength and effective stiffness),
experimental results, and ML-derived predictions were found to be in close agreement. The fatigue
performance of the damper was assessed through a constant cyclic loading test on a specimen. The
analyses revealed a stable load—displacement hysteresis graph, a shear resistance exceeding the
theoretical value, and an increase in ductility or fractural strength. A low-cycle fatigue model was
developed using a linear regression algorithm based on ML to estimate the damage index. The

damage point was estimated based on the maximum strain and effective stiffness variation. The
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number of periodic failures was found to be in excellent agreement with the experimental results.
The model achieved over 0.90 accuracy and RMSE of 0.1 over 6 different specimens in predicting
damage points compared with test data.

3.3 Environmental and Economic Impact Analysis

Conventional LCA and lifecycle cost (LCC) analysis are the two primary approaches for
evaluating the environmental and economic feasibility of building construction. However, these
methods often rely on assumptions—such as a building lifespan of more than 50 years and the
exclusion of maintenance costs—that may result in inaccuracies in practical applications. ML
techniques offer a more reliable alternative by predicting effective lifespans and estimating costs
while accounting for variability in environmental factors (e.g., material manufacturing,
transportation, construction, operation and maintenance, demolition, and waste disposal) and
economic conditions (e.g., operational and maintenance costs). Ji and Yi[123] collected 1,812,700
records related to construction and demolition processes to analyze the lifespan of buildings using
modern prediction models, including linear regression, XGBoost, LGBoost, and DNN. For the
study area, the average lifespans of RC-structured and brick-structured buildings were found to be
22.8- and 29.3-y, respectively, significantly lower than the assumed span of 50-y. The DNN model
achieved the highest accuracy (R’ = 0.955). Onyelowe et al. [68] extensively explored the mix
design of fly ash-incorporated concrete using statistical analysis, linear regression, and Al to
predict the environmental impact. The database included 112 concrete samples, with three input
variables: fly ash-to-binder ratio, FA (sand)-to-binder ratio, and CA-to-binder ratio. ANN achieved
the best accuracy (R’ = 0.991), identifying the aggregate-binder ratio as the most influential
parameter. An increase in both the fly ash-to-binder ratio and the aggregate-to-binder ratio was

found to reduce the carbon footprint. Validation was conducted using a holdout split (90/22—
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training/validation); no k-fold or nested CV was reported. Uncertainty was presented via SDs of
inputs/outputs and residual diagnostics — the study reported residual SD bands and average error
percentages; explicit CIs were not provided. Koyamparambath et al. [204] processed 980
datapoints (784 for training) from environmental production declarations data to predict
environmental impacts for construction products with 7 vital information (e.g., name/description,
location, 3 classification levels, functional unit, and values of selected impacts category). The
study employed RF to predict environmental impacts such as photochemical ozone creation
potential (R’ = 0.70), abiotic depletion potential for fossil resources (R’ = 0.77), global warming
potential (R°=0.81), and acidification potential (R’ = 0.68). Sharif et al. [205] developed surrogate
models to predict energy consumption using ANN with 463 renovation scenarios (325 training and
138 testing datasets) generated from simulation-based multi-objective optimization. The models
achieved strong predictive accuracy with lower error rates (MSE from 0.016 to 0.124), confirming
their reliability in forecasting total energy consumption, LCC, and LCA. Another recent study
from Baehr et al. [206] predicted life cycle environmental impacts filtering 5251 datasets (60% for
training, 20% for validation, and 20% for testing) integrating ML methods (ANN, residual GPR,
and ANN-residual GPR). ANN-GPR hybrid models produced most accurate results (R? = 0.95)
with input parameters (e.g., environmental production declarations’ attributes, product class,
functional unit/reference flow, embodied fossil/renewable energy, and recycled contents).
Askarinejad and Behnia [207] implemented ML algorithms (DT, polynomial regression, SVR, and
elastic-net) as early design tools using several high-rise buildings (varying heights up to 100
floors), four different types of construction materials (concrete, steel, hybrid and timber) and

concrete with varied strength (32 to 90 MPa). DT outperformed other models with an accuracy of
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0.99 (MAE of 13 and MSE of 452). In this study, validation was carried out via hold-out splits,
and uncertainty was not quantified beyond overfitting concerns.

3.4 Summary on Comparative Structural Analysis with Al models

Al techniques, such as ANN, GEP, XGBoost, GB, RF, BR, CNN, and emerging methods like
MEP, SVR, and LGBoost have demonstrated high efficiency and robustness in predicting concrete
mix design—driven mechanical properties, durability, structural seismic response, and fire-induced
effects. As shown in Table I, NN and their optimized variants are among the most widely applied
models across these domains because they can capture highly complex nonlinear structural
behavior, predict strength and durability properties with high accuracy, and enable rapid post-
earthquake assessments that improve structural safety [124]. They also learn directly from
experimental data, offer computational efficiency by generalizing new fire scenarios and structural
configurations with diverse training datasets [125], and, in their optimized versions, provide
quantifiable and transparent insights that improve the reliability of predictions [126]. In addition
to NN, boosting methods are also widely adopted because of their ability to sequentially correct
errors from weaker models. These methods effectively capture complex relationships between
seismic parameters and structural response, efficiently handle data variability, reduce errors in
predicting damage states compared to standalone models, avoid bias to generate more stable and
generalizable predictions, and improve precision and recall in classification tasks [127]. For
durability-related studies, tree-based algorithms have been particularly effective. In the context of
seismic response, they can manage complex nonlinear interactions among structural parameters,
provide interpretable results through visualizations, and process large input datasets with relatively
low computational demand [128]. For durability analyses, they can capture interactions between

environmental conditions and material properties, identify the most critical factors contributing to
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concrete deterioration, and handle diverse datasets with limited sensitivity to outliers [129].
However, they remain underutilized for evaluating the mechanical properties of structural
members. GA and its extensions (GP and GEP) have been more commonly applied to predicting
the strength properties of concrete. GA offers a simple yet robust encoding process, GP improves
interpretability through flexible expression trees, and GEP combines the strengths of both by
capturing complex nonlinear relationships while maintaining interpretable formulations that
closely align with experimental data [130]. Among the Al methods in Table 1, deep learning—
based algorithms remain less explored across most areas of structural engineering, although they
show considerable promise in applications such as carbon footprint estimation and economic
assessment. SVM and its variants (e.g., SVR) have also demonstrated consistent robustness and
accuracy across different applications. Table 2 presents the comparative performance of these Al
techniques along with their field-specific advantages and limitations. On average, accuracy values
of about 0.80 were observed for NN, GA, tree-based and boosting algorithms, while optimized or
hybridized versions of Al algorithms achieved notably higher prediction accuracy, averaging
around 0.90.

As a continuation of Tables 1 and 2, Table 3 presents comparative metadata with an overview of
dataset size, features, validation methods, metrics, and external test indications for each Al
integrated field. From the reviewed studies, the most used feature sets included material
composition and mix proportions (cement, water, aggregates, admixtures, and age) for concrete
strength and durability, extended by geometric and loading parameters in fire-induced and
mechanical property analyses, while seismic response models predominantly relied on natural
periods and structural descriptors. In terms of validation methods, the dominant approaches were

holdout splits (typically training/testing of 70/30, 75/25, or 80/20) and 10-fold CV. The most
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frequently reported metrics were R°, RMSE, and MAE, with occasional use of MAPE, and
classification indices (basic introduction in Section 2.9.1). For external test indication, most studies
validated models only on internal datasets, with comparatively fewer works employing
independent experimental databases or literature-based test comparisons for external validation.
According to field-based data shown in Table 3, Table 4 further presents commonly used software
packages and libraries in the reviewed Al integrated fields. Across the reviewed studies,
MATLAB, Python, and Scikit-learn are found to be the most frequently used tools, often serving
as core environments for model development and data analysis. TensorFlow/Keras, XGBoost, and
SHAP are also common for deep learning, boosting, and explainability tasks, while specialized

tools like OpenSees, GeneXproTools, and EPR Toolkits appear in domain-specific applications.
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Table 1. Accuracy of prominently used Al-algorithms in structural engineering based on the

coefficient of determination (R?).

Section Section  Section Section 2.7 Section
2.2 2.3 2.5 : 2.8
Al . Z - A =2 -7
4 z = g E
Applications in the determination of <Zt E Z 25 = _CE £ §° -§ 7 References
Properties 7 2, ey 3 s 2 s s
z é - Z < K S 2 S 3 >
z 2u [CRT =< /= 7
- Mix Design-Compressive Strength 0.92 0.89 0.96 0.97 0.95 [63,66-68,131]
i)
:: § 2 Tensile Strength 0.95 0.84-0.98 0.98 [56,74-76]
& &€
A ’g_ Flexural Strength 0.98 0.81-0.98 0.99 [71,72,132,133]
E=ER
g E & Uniaxial-Triaxial Compression 0.99 0.92-0.97 [17,47,134]
=)
© Self-healing Ability 0.94 0.9-0.97 0.96 [20,79-81]
Moisture Exposure 0.95 [82]
23
E Corrosion of Concrete 0.98 [83]
<
: 5 Chloride Resistance 0.85 0.94* 0.96 0.89 [26,84,135,136]
Lag}
g :i Depth of Wear 0.99 0.97-0.99 0.99 [50,137-139]
(})Q‘ E Frost Durability/Resistance 0.96 0.95 0.96 0.98 [19,85,140,141,142]
<
E Impermeability 0.93* 0.95 0.97-0.99* 0.97 [86,143,144]
Carbonation Penetration 0.98-0.99* 0.88 0.98 [87,145-147]
B Thermal Spalling of FRP-based 1.00 0.91 0.90 0.90-0.97 [29,51,89,90]
et Concrete
~ = Fire-induced Spalling of Reinforced
; g Concrete Member 0.99 0.86 0.94 0.96 [21,52,148-150]
£ Buckling & Thermal Spalling of 0.97-0.99 0.82 0.91-0.99 [91,93,97,151,152]
€2 Composite Member i i i ) | e
g = - ———— -
&3 Buckling & Progressive Collapse of 1.00 0.96 0.90 0.99 [58,60,153,154]
E Steel Frame
Concrete-Steel Bond Strength 0.95 0.92-97 [98,155,156]
" Shear Resistance of RC Member 0.89 0.89 0.95 0.95* [99,157-159]
£
% Capacity of Masonry and RC Wall 0.95-0.99 0.8-0.94 0.97 [37,100,160-164]
D
e Safety Criteria of Retaining Wall 0.97 0.99 1.00 [101,165,166]
=]
:. k4 Compression on Composite Column 0.80-0.99 0.98-0.99* [103,104,167-169]
o £
g ;.'. Shear Capacity of Composite Beam 0.93-0.99 0.95 [105,170]
>
5 &~ Shear Capacity of Composite Slab 0.89 0.96-0.99 0.96 [172-175]
<
E Buckling of Steel Beam 0.93-0.99 0.97 0.99 [106-108,176]
=3
§ Buckling of Steel Column 0.93*-0.99 [41,177,178]
=
Behavior of Column-Beam Joint 0.99 1.00 0.87 091 [36,62,179,180]
~ Load-Deflection Response of RC 0.87-0.99 0.92 0.8-0.97 0.98 0.98 [111-113,181,182]
N, 2 Frame
PRIE N — ——
s5¢ SDet"”n"’“"“ based Fragility of 0.96-0.98 0.99 0.96-0.99  0.96-0.98%  [116,118,178,183-185]
233 teel Frame
o N ~ N SUNNEIRETIR - ~
% Nonlinear Hysteretic Behavior of 0.94-0.95 096 0.99 [27,120,186,187]
Retrofitting Systems
Section 3.3 Analysis 0.97 0.96 [68,123]

*Optimized or hybridized versions of an Al method.
Note: Peak accuracy values are considered screening R? values between 0.80 to 1.00 from Section 3. Optimized/hybrid models offering such
peak accuracies are also added in this table.
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Table 2. Summary of different AI methods across operations comparing performances, advantages, and limitations.

g Reviewed Al Performance based on the coefficient of o
g Techniques determination (R?) Advantages Limitations
2 q
2.2 NN: ANN,  Accuracy > 0.80 across all study fields e Models highly complex nonlinear structural behavior e Struggles to generalize across
RNN, KNN o Learns directly from experimental data. varied conditions, particularly
e Computationally efficient in predicting new fire scenarios and for concrete durability and
structural configurations using diverse datasets seismic response
e Optimized ANN provides quantifiable and transparent insights,
improving reliability
2.3 DL: DNN, Accuracy > 0.85 for mix design, fire-induced effects, e Captures complex nonlinear relationships, enabling accurate prediction e Sensitive to noise and
CNN beam—column joints, seismic response of RC frames, of fire-induced effects, seismic response, and beam—column joint computationally intensive,
and lifecycle analysis behavior limiting practical deployment in
o Supports life-cycle analysis by identifying hidden patterns in RC frame structural assessment
performance and durability.
2.5 GA: GP, GEP, R’ = 0.81-0.99 (concrete strength), 0.97-0.992 e Widely used for predicting strength properties of concrete. e Less commonly applied to
MEP (durability), 0.823-0.94 (fire-induced effects), 0.89— o GA offers a simple yet robust encoding process seismic response and concrete
0.97 (shear resistance and buckling of RC members) o GP improves GA with interpretable, flexible expression trees durability
o GEP combines GA and GP, capturing nonlinear relationships with
interpretable formulas closely matching experimental data
27 Tree-based R?>0.90 for concrete strength; > 0.94 for durability; e Manages intricate non-linear interactions, provides transparent e Underexplored for evaluating
Algorithms 0.87-0.99 for seismic response visualization, and processes wide input data influencing seismic the mechanical properties of
performance. structural members
e Handles large and diverse input datasets for seismic performance,
identifies key factors influencing concrete durability while remaining
robust to outliers
Boosting Accuracy > 0.91 across most domains o Sequentially corrects errors from weaker models. e High computational cost and
Methods e Captures complex relationships between seismic parameters and sensitivity to input features,
structural response. particularly ~ for  predicting
e Handles variability efficiently while reducing errors in damage  mechanical, fire-induced, and
prediction durability-related concrete
e Avoids bias, improving generalization and stability responses
o Enhances precision and recall in classification tasks
2.8 SVM, SVR Specifically, better results in determining concrete e Demonstrates high accuracy and robustness across multiple areas e Limited application to concrete

tensile strength: R’ = 0.98 (concrete tensile strength),
0.89-0.98  (durability), 0.95-0.96 (RC shear
resistance), 0.99 (steel beam buckling), 0.98 (RC
seismic response), 0.96-0.98 (steel seismic response)

properties, fire effects, and
lifecycle analysis due to
challenges in handling complex
nonlinearities and
interpretability issues
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Table 3. Comparative metadata (field-based tasks, data size, features, validation methods, metrics, external test validation)

across reviewed Al integrated fields

Data External Test
Fields Tasks set Features Validation Methods Metrics s References
. Indication
Size
Mix Design- ..
Compressive 432 glg;:ement, FA, CA, water, superplasticizer, NS MAE, RMSE, R’ No external dataset I[\izf]ees ctal
=
E‘) Strength
2 Tensile 8-9 (cement, slag, fly ash, water, Hyperparameter tuning (random 5 Nguyen et al.
f Strength NS superplasticizer, CA, FA, age) search), no explicit CV RMSE, R No external dataset [56]
28
9 = . . .
=] Flexural ~5-7 (beam width, depth, reinforcement ratio, . . . 5 Khan et al.
8 ? Strength 200 FRP parameters) Holdout (train/validation split) R°, MAE No external dataset [46]
-
=" — - - - -
- - g
) Un.1ax.1al 6 (crushing strquth, helght. width ratio, S hape, Data cleaning/averaging, no 5 No external dataset Son & Yang
= Triaxial 1298  Pearson correlation coefficient, stress ratio, . R°(0.75-0.915) . )
° . . explicit CV (literature-based) [47]
£ Compression loading frequency)
D
A . . . .
Self-healing 22 (e.g., bacteria type, healing environment, . 5 Huang et al.
- +
Ability 797 cement type, crack width, healing time) 10-fold CV + grid search R° (0.956), RMSE No external dataset [79]
. . . . Train/test split (regression), R?, MSE, RMSE, Yes — held-out test set Baghaei and
Moisture 429 8719 inputs (Geometric, mechanical, and Stratified 10-fold CV MAE; classification  (no independent external ~ Hadigheh
Exposure environmental) . . .
(classification) metrics dataset) [82]
Corrosion of Lo e 1 . . 2 No external dataset Sabour et al.
g Concrete 256  Chemical: time, pH; Biological: time 50/50 split (train/test) MSE, R (internal only) [$3]
I
5 - - — -
g Chloride 30+/ Water/cement, thilckness,. aggregate frac.tlon, Train/validation; scikit-learn DT Accuracy %, RMSE, Yes —compared with XuanRui et
o . temperature/humidity ratios, exposure time . external test results from )
— Resistance study . defaults; k-fold mentioned errors . al. [84]
) ratio literature
= Depth of 216 Cemient, fly a‘sh, water, aggregates, plasticizer, Tra.m/v.ahdatlon split + external R’ MAE, RMSE Yc.es - extemal validation K-han etal.
s Wear age/time, curing/test validation framework criteria applied [50]
=
Q N
e G b
T Durability/Re 94 4 > 1Ly ash, recy p 75/25 train/test split R?, RMSE, MAE No (train/test only) Sarkhani
= . ratio, water absorption, RCA treatment )
s sistance . .. [141]
= method, air-entraining type)
<9
5
7] ili =~ — 1 1
Impermeabilit 417 10 (water, water- gement ratio, cement, 347 train / 70 test split R’ RMSE, MAE Nf) mdepende.nt dataset Huang et al.
y aggregates, rubber size, cycles) (literature split only) [86]
Carbonation 6 inputs (cement, FA, water—binder ratio . Yes — held-out test set .
. 2 . e . 15/1 lit + 10-fol MAE, RMSE, R’ K 87
Penetration >3 CO2%, relative humidity, exposure time) TOIIS/1S split + 10-fold CV ’ SE, and CV folds azemi [§7]
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Thermal

17 inputs (e.g., mix proportions, moisture,
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Spalling of 531  specimen size, temperature, heating rate, K-fold CV + supplementary test ACCI.H?CY’ FL, Yes - 36 experimental Liu et al. [89]
FRP-based fibers, silica fume) precision/recall tests + expanded dataset
Concrete i
glr:{lliidugfd Concrete material and mix proportions, Comparisons with Yes — multiple
b1 pating geometric and configuration/size features, and Database validation vs test series P v . wp Naser &
5] Reinforced 100+ . . . . experimental independent fire test e
b= those relating to applied loading, intensity, (not k-fold) . Seitllari [21]
= Concrete heating rate, and exposure duration outeomes campaigns
§ Member 8 rate, P
g -
4= ?ﬁ;ﬁi;{g & 7 inputs (cross-sectional dimensions,
E Spalling of 15,2 thicknesses of concrete cover for steel section 80/20 train-test split R’, MAE, SD vs. 15,200 specimens Li etal. [93]
E C]())mpoii te 00 and rebars, steel area ratio, effective length, P analytical eqns (synthetic FD model) T
;? Member concrete grade, steel grade, and heating time)
B Buckling & Thermal/mechanical variables (fire
g +
£ Progressive NS temperature, maximum steel temperature, load 80/20 train-test split Accuracy, classifier Is\;lr(;ntfincaz(l:(;se rsz:ngom Fu [60]
% Collapse of Ratio, critical temperature based on the P comparison 2% 2% iﬁiin ) Y
Steel Frame Eurocode) | &
7 inputs (compressive strength under elevated
Concrete- temperature, testing age, surface temperature at . . .. 5
Steel Bond 316 failure, thermal saturation ratio A, length— 3:12111)11 -test split (no explicit k- ?j/IO/iIE’ RMSE, &', 316 experimental tests Qlaljr?;l([io%
Strength diameter ratio, cover—diameter ratio, total
volume of fiber if used)
IS{};Z?srtance of 466 Geometrical and mechanical variables Train/validation within dataset, Error metrics vs. Validated against Gandomi et
. . o . . oc
RC Member (beam/stirrup properties) sensitivity analysis codes experimental database al. [99]
w» .
,§ f/[e:ipsicnlrt;/ Z;[; d NS Masonry & FRM mechanical/geometrical Trained on lab results (no CV Accuracy/precision Yes — calibrated vs lab Cascardi et al.
2 i i itati 100
é RC Wall variables specified) qualitatively tests [100]
© Safety S
-f‘_: Criteria of NS Cohesion, angle of shearing resistance, angle 10-fold CV ﬁ;ﬁ?ﬂgzrlgiz; d Compared to reference Mishra et al.
g Retaining of wall friction, and unit weight reliability values [101]
2 moment method)
e Wall
~ - -
—_ Compression .. - Comparative .
.; on Composite NS Geometrical and material properties ANN tralr'lmg/valldatlon (noCvV performance (R?, Yes — experimental DB Lemonls etal.
E info in snippet) . [104]
= Column RMSE likely)
§ Shear 6+ geometrical/interaction vars (e.g., opening
- Capacity of dlgmeter, web Opeming spacing, tee-‘sectlon- Comparative training, reliability Perf(?rmance FE-based, compared Ferreira et al.
o Composite NS height, concrete topping thickness, interaction analvsis metrics, safety with literature [105]
2 Bea nlq) degree, number of shear studs above web y factors (1.25-1.26) N
'% opening)
2 Shear ~8-10 (e.g., slab depth, slab side length
%] s > ) .
Capacity of flexural reinforcement ratio, FRP Extemal. dataset . Shen and
. 273 . . 10-fold CV R’, RMSE, MAE compiled from multiple .
Composite type/properties, concrete compressive strength, ’ ’ . . Liang [172]
. independent experiments
Slab loading type)
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1192

R’, RMSE, MAE,

Buckling of 9744 ~10 geometric features (e.g., height, web Holdout (train/validation/test SD/Variation. a20- No external experiments ~ Shamass et al.
Steel Beam thickness, opening height/width/radius) splits) index ’ (FE model vs ANN) [177]
Bucklingof 10,7~ Mulible geometrio & matenal grades (€ 1.1 ¢y and R, RMSE,MAE, ~ FEmodel vs Euro-Code  Rabi ctal.
Steel Column 64 . ? P > Opening train/validation/test splits SD, CoV 3 (no experimental set) [108]
height, steel grade)
11 (cross-section dimensions (top/bottom
Behavior of flange widths & thicknesses, max/min section No external experiments  Neuven et al
Column- 387  heights, web thickness), elastic modulus, Holdout (train/validation/test) R’, RMSE . P guy ’
. . . (analytical dataset) [179]
Beam Joint column height and corrosion time for corroded
cases)
Load- First three natural periods (T1-T3) and
° . - . 3 .
z Deflection 300  combinations thereof; natural periods derived Holdout (varying train/test sizes) MAPE, NRMSE, R’ Synthetic (OpenS~ees) Gharchbaghi
S Response of no external experiments etal. [111]
2. from generated frames
2 RC Frame
f Deformation- First three natural periods and other structural Large synthetic dataset
g based 56,4  descriptors; inputs chosen to build 5 built from extensive Nguyen et al.
E Fragility of 79 Probabilistic Seismic Demand Models Holdout 70/30 R, RMSE, MAPE nonlinear analyses (616 [118]
a Steel Frame (PSDMs) frames x 240 motions)
2 Nonlinear
g Hysteretic 4 geometric properties of damper (e.g., plate Onvelowe et
"§ Behavior of 33 thickness, plate dimensions, and the number of ~ Holdout (train/val splits) R’, RMSE No external validation al ?l 20]
2 Retrofitting plates used.) e
Systems
. . . . 20% environmental Koyamparam
Section 3.3 Life Cycle NS Encodeq text/categ(?rlcal environmental Holdout (80/20) R production declaration as  bath et al.
Carbon Assessment production declaration features )
external holdout [204]

Note: NS refers to not specified value in a certain study. Similar studies in certain fields may include such values which are not significant for this table.

Table 4. Software packages and libraries commonly used in the reviewed studies

Al Integrated Reviewed Study Fields

Software Packages / Libraries Mentioned

Section 3.1.1 | Concrete Strength Properties

MATLAB [66, 46], Python [66, 46, 47], sci-kit learn [56, 47, 79], XGBoost [56], SHAP for explainability [46], ML ensemble methods [47],
DNN frameworks (TensorFlow/Keras/Pytorch) [79], Grid Search Algorithm (GSA) [79]

Section 3.1.2 | Durability of Concrete

MATLAB [82], Python [82], sci-kit learn [50,84], SHAP for explainability [50], Bayesian Optimisation [82], custom C++ for GP/MEP [83],
decision tree defaults [84], custom SVR with metaheuristic implementations [86,141], Alyuda Neurolntelligence [87], hybrid ANN [87]

Section 3.1.2 | Fire-Induced Effect

MATLAB [93], Python [60,89], sci-kit learn [89, 98], XGBoost [89], TensorFlow [60, 98], Keras [60]

Section 3.2.1 | Mechanical Properties of

Sections

MATLAB [172, 177], Python, sci-kit learn [108], GeneXproTools [108]

Section 3.2.2 | Seismic Response

Scikit-learn [118], FE Modeling [111], OpenSees [111], EPR Toolkits [120]

Section 3.3

| Life Cycle Carbon Assessment

Python (Selenium, SQLite) [204]
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4 Challenges and Future Directions in AI methods

Building on the future opportunities for industrial integration of Al, the prediction accuracy of Al
models at the laboratory scale can be observed from the previous section and the demonstrations
in Tables | and 2. Extensive research has applied Al methods to evaluate the properties of concrete
specimens as well as RC, composite, and steel structural members and frames. However, only
limited studies have addressed areas such as self-healing ability and concrete—steel bonding under
severe fire conditions. Similarly, seismic response analysis of steel frames with bracings, shear
capacity of RC members, and failure modes of column-beam connections have received
comparatively less attention than other Al applications. Fire-induced effects on BRBs, column—
beam connections, and LCA also remain underexplored. Nevertheless, significant potential exists
for optimized and hybridized variants of widely used algorithms, such as NN and GA-based, tree-
based models, and boosting techniques. Sections 4.1, 4.2, and 4.3 discuss the industrial
applications of Al, the Ilimitations observed in laboratory scale studies, and future

recommendations for Al integration in structural engineering.

4.1 Industrial Implications, Barriers to Adoption and Potential for Implementations

For construction projects that rely on accurately evaluating environmental factors (e.g., seismic
events), risks, and costs, Al offers significant practical advantages [197]. ML is increasingly
applied in big data analytics for risk detection and assessment, and ML models are also used in
robotics and automation. For instance, aerial drones and robotic vehicles are frequently deployed
on survey sites to generate 3D models of building structures. Al algorithms further support on-site
problem identification and provide strategic solutions that enhance efficiency. In construction
automation, Al is also applied to improve workers safety through smart wearable technologies that

monitor movement, activities, and posture, helping to prevent collisions between workers and
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heavy equipment [198]. Despite these benefits, several barriers hinder Al adoption in the
construction industry. These include the fragmented nature of the industry, challenging
environmental conditions on-site, and non-standardized building designs, all of which complicate
data collection, integration, and standardization [199]. Additional constraints include limited
technical skills, inappropriate business processes, and insufficient knowledge, making Al adoption
time-consuming, costly, and prone to errors [200,201]. Moreover, many large firms continue to
rely on traditional processes rather than automation, and subcontractors often follow the same
outdated practices [203]. On a positive side, the construction industry has been investing heavily
in Al, with an estimated USD 8 billion allocated in the five years leading up to 2019 [202]. This
investment paves the way for Al-enabled technologies such as digital twins and 3D printing, which
can significantly reduce repetitive and labor-intensive tasks. Looking ahead, future Al integration
should also target innovative fields such as fire-induced effects, seismic impact analysis, and LCA.
This study has reviewed Al-based findings in these areas using laboratory scale experimental and
numerical databases; the associated limitations and prospects are discussed in the following

sections.

4.2 Limitations in Al applications in structural engineering

Limited access to diverse and representative datasets, high costs of data collection, and data
scarcity due to legal restrictions often result in inadequate data availability. Missing data, model
bias, data drift, and errors further affect the reliability of Al predictions. These challenges, arising
from limited datasets, difficulties in maintaining data quality, and research gaps, can be

summarized as follows:

1. In studies on the mix design of sustainable concrete, only limited scale experimental

datasets have been used in recent research. The generalization performance of Al models
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for sustainable concrete preparation can only be suggested from these limited studies, and
future work should involve extensive tests on various SCMs used in concrete.
Additionally, some studies have reported missing information (e.g., inappropriate or
incomplete input variables) from experimental data which lessens the prediction accuracy
and reliability.

2. For predicting the strength and durability of concrete materials, variations are observed in
the optimal algorithms, such as XGBoost, GEP, BR, ANN, GB, MEP, SVM, and RF. The
selection of a specific Al method is often subjective and depends on researcher’s expertise.
In some cases, even the most preferred methods fail to outperform the existing design
codes. Apart from reliance of quality datasets, another issue is the time-consuming process
of parameter tuning.

3. Al-based predictions generally require large volumes of experimental data to ensure
accuracy and precision. However, data availability for specific problems is often limited
owing to laboratory constraints (e.g., fire testing facilities for fire resistance analysis). In
such cases, Al models may suffer from numerical complexities, including overfitting
training data without comparable practical test data for validation.

4. Notably, most reviewed studies compiled their datasets from prior works conducted in
different regions. However, these prior studies often differ significantly in environmental
conditions, material characteristics, and experimental setups, which may limit the
reliability and generalizability of Al models.

A few studies have incorporated random sampling and SHAP analysis, which are important

for selecting appropriate data and providing detailed explanations of model accuracy. Some

researchers have also resorted to using synthetic data to train and validate ML models due to
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the lack of real-world data. However, this approach can yield unrealistic results. Emerging
structural concepts, such as carbon-neutral and easy-to-dismantle beam—column joints, offer
promising solutions to reduce the carbon footprint across the structural lifecycle. Yet, no Al
methods have been developed to evaluate their fatigue performance, load-carrying capacity, or
associated carbon footprint.

4.3 Recommendations for Future Research in Structural Engineering

This section addresses the previously discussed limitations related to data availability and quality,

while also providing insights into potential solutions and highlighting new research opportunities:

1. Extensive research has been conducted on Al-based sustainable concrete mix design using
SCMs, byproducts, and waste materials. However, further studies are needed to assess the
applicability of single Al-based mix design approaches across different concrete types.
The use of locally available experimental data is recommended to obtain more accurate
predictions for optimum mix proportions of concrete materials. ML approaches combined
with heuristic methods, such as PSO, can further enhance prediction accuracy in mix
design.

2. The inertia in selecting Al techniques for similar problems can be reduced through
collaboration among researchers to identify the most suitable methods for specific,
concrete-related challenges. Issues related to parameter tuning can be addressed by
incorporating optimization algorithms such as GA, which can streamline the tuning
process.

3. To address numerical complexities caused by limited real-world data, Al models should
be regularly updated, supported by open-access databases that facilitate information

sharing. More diverse data points and comprehensive experimental datasets are required
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to capture a wide range of scenarios. Training models with homogeneous data obtained
under specific environmental and material conditions can improve prediction accuracy.
Additionally, random sampling can be employed to refine results after training. Raw
experimental data should be prioritized over synthetic data to ensure practical relevance.
Normalization of input variables into uniform ranges can also minimize dataset bias and
enhance model performance.

4. Existing models for fiber-reinforced concrete elements should be extended to account for
the confinement effects of different fiber-reinforced polymer configurations. For instance,
incorporating input variables such as the placement and orientation of polymer wrappings
could improve the evaluation of structural integrity and failure potential under fire
exposure.

In this study, adaptive explainable Al methods (e.g., SHAP and local explainable model-agnostic
explanations), are not discussed broadly due to limited existing research. Future studies should
explore more of these techniques. Some studies have used a single Al technique for multiple test
specimens with different criteria. Further studies can compare different Al methods to identify the
simplest and most accurate models for a specific problem. At present, most construction projects
utilize structural steel components, and future studies should focus on Al-based analysis of the
LCA and LCC of steel structures. Additionally, a promising innovative research direction can be
represented with Al-based predictions for evaluating the self-healing property, post-fire conditions
and fire-induced effects of concrete structures, and seismic response analyses of steel building
frames. Easy-to-dismantle beam-column multiple connections are crucial for reducing
construction time and labor costs, as they can minimize the requirement of bolts and rivets at

working sites. These prefabricated joints also contribute to lower carbon emissions in the lifecycle
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of structures. Al-based research can be suggested for such connections. Moreover, experimental,
theoretical, numerical, and prediction-based analysis must be conducted, and the results should be
compared to determine effective and efficient designs. Moreover, different AI methods can be
used to determine the fire effects, shear capacity, and failure modes of steel beam-column
connections and BRBs.

5 Conclusions

Al has demonstrated exceptional accuracy in structural engineering research, producing
predictions that are comparable to, and in many cases superior to, experimental tests, numerical
simulations, and design codes. In recent years (2020-2024), ANN, boosting methods, tree-based
algorithms and SVM models have been widely adopted for their strong predictive capabilities,
while MEP, SVR, BR, LGBoost, and deep learning models have also proven robust and reliable
for capturing complex structural behavior. For instance, NN and boosting methods in particular
exhibit high predictive accuracy (R’ > 0.80 and R’ > 0.90, respectively) across diverse applications,
making them the most widely applied approaches. Deep learning methods are particularly effective
in mix design, strength prediction, fire-induced effects, beam—column joints, seismic response of
RC frames, and LCA, achieving accuracy levels above 0.85. Meanwhile, GA, SVM, SVR, and
tree-based models have shown strong performance in specialized tasks, including concrete
durability, fire resistance, shear behavior, and seismic buckling, with reported accuracy ranging
from 0.80 to 0.99. Based on studies published between 2020 and 2024, the main findings can be

summarized as follows:

1. Concrete mix design and strength prediction: Tree-based algorithms are prominent,
with XGBoost, ANN, GEP, GB, BR, ensemble DT, and stacking methods achieving R’

values between 0.91 and 0.99. Key influencing parameters include curing age, cement
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content, recycled aggregate replacement ratio, SCM-to-binder ratio, aggregate-to-binder
ratio, and specimen dimensions. Integration of Al is highly significant for accurately
predicting mixing parameters that influence the strength properties of concrete.
Durability prediction: ANN demonstrates strong accuracy (R’ = 0.85-0.99) for most
durability aspects. Specific properties such as corrosion resistance, chloride permeability,
depth of wear, frost resistance, impermeability, and carbonation depth are best predicted
by MEP, XGBoost, BR, SVR, and optimized ANN models. Governing parameters include
exposure duration, aggregate fractions, cement—SCM ratios, water—binder ratios, FA,
protective layer thickness, and environmental conditions. According to these findings, Al
prediction provides reliable insights into concretes durability while highlighting the
critical role of mix parameters for long-term performance.

Fire-induced effects: Neural networks and boosting algorithms accurately predict
spalling in RC, composite, and steel structures (R* = 0.90—1.00), as well as concrete—steel
bond strength (accuracy of 0.97). Critical parameters include member geometry, applied
load and load ratios, thermal properties, fire insulation depth, and reinforcement area.
These findings show that Al-based approaches have the capacity to effectively capture the
critical factors that influence fire-induced spalling, providing a strong framework for
predictive assessment and design.

Structural behavior and failure modes: In determining mechanical properties of steel
structural beam-column joints, only a few studies have implemented CNN. Apart from
this, different algorithms show peak accuracy across different fields such as GEP, SVR
and tree algorithms for shear resistance of RC members, ANN and RF for shear strength

of masonry and RC walls, SVM and boosting methods for safety criteria of retaining walls,
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optimized ANN and boosting methods for ultimate load capacity of composite beams and
columns, and ANN-SVR for buckling failure modes of steel beam-column. Across these
applications, the most influential parameters include strength properties, section
geometry, and member aspect ratios.

Seismic response: These have been accurately predicted using classification-based,
hybrid, and optimized ANN variants for RC frames (with accuracy above 0.87), and
hybridized boosting methods for steel frames (with accuracy above 0.96). Key factors
include axial load, concrete strength, reinforcement dimensions, building characteristics,
applied loads, and site conditions. Al integration in seismic response analysis is
particularly significant, as it supports the development of innovative designs incorporating
BRBs, viscoelastic dampers, beam—column joints, and advanced retrofitting technologies.
LCA and economic analysis: LCA of carbon emissions and lifecycle cost analysis for
optimized building construction solutions can be further enhanced using high-performing
Al methods such as ANN (accuracy above 0.97) and DNN (accuracy above 0.96). By
integrating Al into LCA, it becomes possible to identify complex interdependencies
among materials, energy use, and costs, enabling more precise and strategic sustainability

decisions in construction.

With continued advancements, Al-based predictions have a strong potential to be integrated into
updated structural design codes, provided results are rigorously validated through experimental
and real-world applications.
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Al, artificial intelligence; CV, cross-validation; ANN, artificial neural network; PR, pattern
recognition; ML, machine learning; DL, deep learning; NN, neural networks; SHM, structural
health monitoring; BRBs, buckling restrained braces; LCA, lifecycle assessment; MLP, multi-
layer perceptron; FFBP, feedforward backpropagation; NARX, nonlinear autoregressive
exogenous; NARX-SP, NARX series parallel; NARX-P, NARX parallel; LSTM, long short term
memory; RNN, recurrent neural network; DNN, deep neural network; CNN, convolutional neural
network; NB, naive Bayes; KNN, K-nearest neighbors; GA, genetic algorithm; PSO, particle
swarm optimization; GP, genetic programming; GEP, gene expression programming; MEP, multi
expression programming; GPR, Gaussian process regression; MARS, multivariate adaptive
regression spline; DT, decision tree; RT, regression tree; RF, random forest; BR, bagging

regressor; AdaBoost, adaptive boosting; XGBoost, extreme gradient boosting; LGBoost, light
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gradient boosting; NGBoost, natural gradient boosting; GBR, gradient boosting regressor;
CatBoost, categorized boosting; HGBoost, histogram gradient boosting; GB, gradient boosting;
SVR, support vector regressor; SVM, support vector machine; RMSE, root-mean-square error;
MAE, mean absolute error; MAPE, mean absolute percentage error; R’ coefficient of
determination; MCS, Monte Carlo simulation; GCV, generalized cross-validation; SHAP,
shapley additive explanations; SD, standard deviation; CoV, coefficient of variation; CI,
confidence intervals; RC, reinforced concrete; FE, finite element; FA, fine aggregates; CA. coarse
aggregates; SF, silica fume; GGBS, ground granulated blast furnace slag; RAC, recycled
aggregate concrete; FRP, fiber-reinforced polymer; DF, durability factor; CSB, castellated steel
beam; SMRF, steel moment-resisting frame; EPR, evolutionary polynomial regression; LCC,
lifecycle cost; MPa, megapascal.
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