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Abstract: Artificial intelligence (AI) has emerged as a key driver of modern technological 17 

development, with widespread applications across various domains, including civil engineering. 18 

Structural engineering, a subdiscipline of civil engineering, requires the evaluation of the 19 

suitability of different structural components before the final construction phase and during 20 

recycling processes. Traditionally, this evaluation relies on laboratory experiments and highly 21 

complex numerical simulations, which are often impractical due to space and time constraints, 22 

equipment complexity, and high costs. To address these challenges, researchers worldwide have 23 
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developed AI-based solutions for applications such as structural damage detection and the 24 

prediction of failure loads and patterns. These solutions offer predictive accuracy comparable to 25 

that of experimental and numerical analyses. This review presents a detailed analysis of 100 AI-26 

integrated studies in structural engineering conducted between 2020 and 2024, with a focus on 27 

concrete, steel, and composite structures, particularly building frames. The study summarizes the 28 

performance benchmarking of commonly used AI algorithms, such as neural networks, genetic 29 

algorithms, tree-based algorithms, and boosting methods, reporting accuracy scores above 0.80 30 

(out of 1.00), and highlights average accuracy values of 0.90 for optimized and hybrid AI 31 

approaches. Additionally, the review explores emerging AI applications, including retrofitting 32 

technologies, buckling-restrained braces, dampers, column-beam connections, and life-cycle 33 

assessment. Critical analysis identifies key limitations of recent AI-based research, especially 34 

those implemented regionally, and proposes novel solutions to overcome existing challenges. 35 

Keywords: Artificial Intelligence, Structural Engineering, Reinforced Concrete Structures, Steel 36 

Structures, Structural Safety 37 

1  Introduction 38 

Artificial Intelligence (AI) was first conceptualized by a group of scientists at a conference at 39 

Dartmouth College in 1956 [1] to develop intelligent systems capable of reasoning and exhibiting 40 

human-like intelligence [2]. Significant interest and growth in AI emerged through U.S. Defense 41 

Advanced Research Projects Agency (DARPA) funding from 1962 [3] (Figure 1). However, 42 

between 1970 and 1980, AI research stagnated due to limited high-performance computing 43 

resources, and DARPA funding was discontinued following the critical “Lighthill Report”, which 44 

reported AI to have failed to achieve its purpose [4]. From the 1980s, AI experienced a resurgence 45 

driven by the evolution of some early methods (e.g., expert systems and cybernetics) and practical 46 
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industrial applications [2]. Nevertheless, between 1987 and 1993, AI faced another decline caused 47 

by unrealistic expectations and limited computational power [5]. Later, subsequent advances in 48 

Information Technology (IT) and the industrial revolution enabled significant progress in AI [6]. 49 

Today, the availability of faster, cost-effective, and more powerful processing systems has 50 

facilitated the widespread adoption of AI [7]. 51 

AI encompasses a broad range of methods, including—but not limited to—machine learning (ML), 52 

neural networks (NN), deep learning (DL), data mining, knowledge discovery and advanced 53 

analytics, rule-based modeling and decision making, fuzzy logic, knowledge representation, 54 

reasoning under uncertainty, expert systems, case-based reasoning, text mining and natural 55 

language processing, visual analytics, computer vision and pattern recognition, hybrid approaches, 56 

and optimization techniques [8]. These techniques are closely associated with disciplines such as 57 

computer science, information theory, cybernetics, linguistics, and neurophysiology [9]. By 58 

integrating the capabilities of these methods, AI can mimic human intelligence and apply human-59 

inspired reasoning and algorithms to solve complex engineering problems [10]. Researchers 60 

worldwide are actively developing innovative AI approaches that are cost-effective, rapid, robust, 61 

and highly accurate [11]. Sarker [8] provided a comprehensive review of AI-based modeling in 62 

real-world applications. 63 

In recent years, ML, DL, and NN have been extensively applied in civil engineering subfields, 64 

including structural, geotechnical, transportation, water supply, and hydraulic engineering. Recent 65 

studies have reviewed AI developments and applications in these areas. Pan and Zhang [12] 66 

conducted a scientometric analysis of AI-related publications from 1997 to 2020, highlighting AI’s 67 

potential in automation and construction engineering and management. Manzoor et al. [13] 68 

reviewed 105 studies from 1995 to 2021, focusing on AI’s role in sustainable development. Xu et 69 
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al. [11] presented a systematic review on intelligent architectural design, structural health 70 

monitoring, and disaster prevention, emphasizing computer-vision-based advancements. Vadyala 71 

et al. [14] investigated the integration of ML methods with physics-based models to address data 72 

shift problems in supervised learning and proposed a physics-informed ML approach. Rezania et 73 

al. [15] discussed pioneering software, AI-related terminology, and parameters affecting 74 

progressive structural collapse. More recently, Harle [16] provided an overview of AI applications 75 

across some areas of civil engineering, including analysis and design, construction management, 76 

geotechnical engineering, and transportation planning, with a focus on ML and genetic algorithms. 77 

  

Figure 1. Historical timeline and evolution of artificial intelligence (AI) in structural 78 

engineering. 79 

AI has been applied in structural engineering for decades, particularly in the design of structural 80 

systems that account for critical factors such as load application characteristics, service life 81 



5 

 

expectancy, durability against environmental effects, and fire-induced issues [17-20]. It serves as 82 

a powerful tool for generating efficient and accurate preliminary structural design predictions, 83 

reducing the reliance on cumbersome experimental setups, and enhancing safety measures during 84 

laboratory testing. Moreover, AI reduces the demand for high-precision instruments, which are 85 

often unavailable in many institutions and industries. For example, large-scale fire tests on 86 

structural frames cannot typically be conducted in laboratory settings, forcing researchers to rely 87 

on small-scale experiments and assumptions. AI can overcome such limitations by processing 88 

large-scale variable inputs and producing highly accurate predictions. However, as emphasized in 89 

this review, AI-based results must be validated against experimental and code-based outcomes, 90 

particularly in light of challenges such as data shift, domain shift, and extrapolation risk [18,21]. 91 

As illustrated in Figure 1, AI was first applied to structural engineering in the early 1990s through 92 

expert systems, particularly for concrete, steel, and composite structures. In subsequent years, 93 

advanced methods such as ML, DL with NN were increasingly adopted in structural engineering. 94 

Following the first major AI revolution in 2012, DL has become increasingly prevalent in 95 

structural health monitoring (SHM) and structural damage detection. 96 

In terms of AI’s development and application within structural engineering, a review study 97 

examined four novel ML algorithms in structural system identification, SHM, structural vibration 98 

control, and structural design and prediction between 2017 and 2020 [22]. Another review [23] on 99 

fundamental ML techniques addressed a wide range of applications, including structural analysis 100 

and design, SHM, damage detection, fire resistance assessment, evaluation of mechanical 101 

properties, and concrete mix design. A more recent review [24] focused exclusively on ML 102 

applications in SHM. A comprehensive literature review [25] covering AI, ML, and DL discussed 103 

commonly used algorithms in structural engineering across more than 200 sources. Although the 104 



6 

 

study conducted a scientometric analysis to map the best practices from several scholarly works, 105 

its primary focus was on supervised learning methods up to the year 2021. However, these reviews 106 

only partially addressed recent trends of AI in structural engineering for material- and component-107 

level analysis. They did not provide an in-depth discussion of structural components such as 108 

reinforced concrete, steel, and composite frames exposed to fire or seismic effects for the published 109 

studies during 2020-2024. Similarly, they did not explicitly consider innovative approaches such 110 

as AI integration with buckling-restrained braces (BRBs), viscoelastic dampers, retrofitting 111 

technologies (e.g., fiber-reinforced jacketing), beam–column joints, or life-cycle assessment 112 

(LCA) of buildings. 113 

  114 

Figure 2. Published article trends in Structural Engineering (Scopus-sourced, 2015–2024): (a) 115 

overall use of prominent AI algorithms, (b) categorized by specific methods (NN, GA, tree-116 

based, and boosting algorithms). 117 

As presented in Figure 2a, based on Scopus search results, published articles on prominent AI 118 

algorithms (NN, GA, tree-based algorithms, and boosting algorithms) in structural engineering 119 

have increased significantly from 2015 to 2024. The number of published articles in the last five 120 

years (2020–2024) has increased by 2.72 times in comparison to 2015–2019. Figure 2b illustrates 121 
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a similar upward trend for each prominent group of algorithms. Research on NN has grown most 122 

dramatically, increasing by approximately 4.8 times during 2020–2024 compared with 2015–2019. 123 

Tree-based algorithms also expanded substantially, with a 3.2-fold increase, while GA showed 124 

only modest growth of about 1.3 times. Boosting methods, which were rarely applied before 2019, 125 

experienced the strongest relative growth, rising nearly 11-fold over the last five years. These 126 

findings highlight a clear trend: NN and boosting methods are being adopted at accelerating rates, 127 

GA continues to attract steady interest, and tree-based approaches are strengthening as 128 

complementary techniques. Since previous review articles only covered trends up to 2020 [22], 129 

with partial updates through 2021 [25], this present study focuses specifically on 2020–2024, when 130 

the number of AI-related publications in structural engineering increased most sharply (Figure 2).  131 

  132 

Figure 3. PRISMA flow diagram for the reviewed articles. 133 
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Following the PRISMA flow diagram (Figure 3), five steps are followed as the formal review 134 

protocol of this study (i.e., preliminary, identification, screening, eligibility and inclusion). Firstly, 135 

the preliminary stage involved analyzing recent review articles on AI in civil and structural 136 

engineering to identify research gaps. The review timeline was set to 2020–2024, given the sharp 137 

rise in AI applications during this period (Figure 2) and the absence of prior reviews covering this 138 

interval. Identification of relevant studies was carried out using keywords such as AI in reinforced 139 

concrete structures, steel structural frames, composite structural frames, and LCA. Additional 140 

topic-specific keywords—such as concrete mix design, concrete mechanical properties, 141 

durability, fire resistance of materials, structural response under lateral loads, and life cycle 142 

impact analysis—were also employed, yielding 150 candidate papers. The screening process 143 

involved removing duplicates (n = 10) and excluding irrelevant topics (n = 20), including works 144 

focusing on frost durability resistance, carbonation depth, compression on composite columns, 145 

shear capacity of composite slabs, and behavior of beam–column joints. Next, eligibility was 146 

confirmed through full-text evaluation, resulting in the exclusion of an additional 20 articles. 147 

Ultimately, this review selected 100 papers, prioritizing studies that compared AI predictive results 148 

against laboratory-scale experimental and numerical datasets. 149 

The application of AI in structural engineering is diversifying through innovative approaches such 150 

as its integration with BRBs, viscoelastic dampers, retrofitting technologies (e.g., fiber-reinforced 151 

jacketing), beam–column joints, and LCA of buildings. For example, AI has been applied in 152 

seismic protection systems to enhance energy dissipation and resilience using dampers and BRBs. 153 

In retrofitting, AI-driven models assist in identifying structural weaknesses and recommending 154 

cost-effective strengthening strategies. For beam–column connections, AI improves the prediction 155 

of joint behavior under cyclic loading. AI has also been introduced in small-scale LCA studies to 156 
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evaluate sustainability and long-term structural performance. In this context, the present review 157 

highlights the limitations, challenges, and potential solutions for such emerging applications. It 158 

also addresses practical implications of AI, barriers to its adoption, and prospects for industry 159 

implementation. Specifically, the study evaluates prediction accuracy in terms of the coefficient 160 

of determination (R2), the number of databases used, and key input parameters or governing factors 161 

across various applications (e.g., mechanical and durability properties of concrete members, fire-162 

induced effects on structural components, seismic impact-based design, and LCA of structures). 163 

In addition, it examines accuracy levels achieved by optimized versions of traditional AI models. 164 

This review does not cover AI research trends for 2025, nor does it address structural health 165 

monitoring, remote sensing, or construction automation. Although R2 is adopted as the primary 166 

performance benchmark, other evaluation metrics inconsistently applied across the literature (e.g., 167 

RMSE, MAPE) are not considered. Likewise, variations in dataset size and characteristics among 168 

studies (e.g., for durability assessment of concrete or fire-induced effects) are not discussed in 169 

detail, as the focus remains on comparative evaluation of prominent algorithms with key input 170 

parameters. 171 

In view of these considerations, this paper provides a comprehensive analysis of effective AI 172 

methodologies in structural engineering, emphasizing advancements between 2020 and 2024. 173 

Section 2 presents a critical overview of widely adopted AI techniques. Section 3 evaluates the 174 

predictive accuracy of these models relative to traditional numerical simulations, experimental 175 

data, and design codes, with applications in concrete, reinforced and composite concretes, and 176 

steel structures, as well as in structural response to lateral loads and LCA. A summary of 177 

comparative structural analyses using AI methods is also included. Section 4 discusses limitations 178 

of current AI-driven research and the potential implications for industry. For the first time, it 179 
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highlights future research directions such as AI applications in retrofitting technologies, BRBs, 180 

dampers, easy-to-dismantle beam–column connections, and LCA-driven sustainability 181 

assessments. By bridging the gap between AI advancements and structural engineering challenges, 182 

this review aims to serve as a practical guide for researchers and engineers seeking to integrate AI 183 

into structural analysis, design, and sustainability practices. 184 

2 Overview of Basic AI Techniques Relevant to Structural Engineering 185 

This section introduces the AI techniques most commonly applied in structural engineering and 186 

discusses their applications in detail. It begins with the general process of AI model development 187 

(Section 2.1), followed by brief introductions to the widely used AI techniques in structural 188 

engineering (Sections 2.2–2.8). Finally, the evaluation of model accuracy and precision is 189 

addressed (Section 2.9). 190 

2.1 Model Development 191 

A well-structured model development process (Figure 4) is essential for generating reliable 192 

predictions. The process begins with data retrieval and preprocessing, which are critical because 193 

model performance largely depends on data quality. Typical preprocessing tasks include outlier 194 

detection and treatment, data encoding, feature scaling, feature engineering, and partitioning the 195 

dataset into training and testing subsets to ensure suitability for modeling. The next stages involve 196 

algorithm selection and model training using the training data. Training is usually performed 197 

iteratively, with hyperparameter tuning to optimize performance until satisfactory cross-validation 198 

(CV) results are achieved. Finally, the model’s performance is evaluated using a separate test 199 

dataset, and predictions are generated for comparison with the observed outcomes [26]. This 200 

development framework is common to all AI models and serves as the foundation for the 201 

evaluation methods described in subsequent sections. 202 
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Figure 4. Artificial intelligence (AI) model development in structural engineering.  

2.2 Neural Networks (NN) Architecture 203 

To handle complex data relationships, NN consist of artificial neurons interconnected in a specific 204 

topology, designed to mimic the behavior of the human nervous system and adopting a structure 205 

analogous to the human brain. Artificial neural networks (ANNs), a basic form of NN, leverage 206 

their self-learning capability to produce highly accurate results as the amount of experimental data 207 

increases. By managing high dimensional data, ANN can solve highly nonlinear classification and 208 

regression problems, as well as complex relationships. Essentially, an ANN can be considered an 209 

information-processing system with specialized neurons for receiving external input and 210 

generating output [27]. 211 
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Figure 5. Artificial neural networks (ANN) structure (adapted from [28]). 

As illustrated in Figure 5, an ANN model consists of an input layer, one or more hidden layers, 212 

and an output layer, interconnected with randomly assigned weights and biases. For the input layer, 213 

the number of neurons (nodes) are equal to the number of variables of the specific problem to be 214 

solved. The product of the inputs and their respective weights is added to the deviation (bias). For 215 

the hidden layer that lies between the input and output layers, a predefined activation function is 216 

applied to the nodes to process the inputs. The optimal weights and biases are determined through 217 

training to minimize the error between the outputs and targets. The training is considered complete 218 

when the model achieves the desired performance with the smallest errors. The output layer 219 

produces the final response from the network when the model is considered suitable for generating 220 

predictions from unknown data [19]. 221 

ANNs can be classified based on the number of hidden layers, i.e., single layer perceptron for one 222 

hidden layer or multilayered perceptron (MLP) for two or more hidden layers [29]. Since an MLP 223 

is a deep ANN that has excellent ability of function approximation, it can be used in diverse 224 
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engineering applications. It implements nonlinear transformations to convert input variables to an 225 

expected output. As shown in Figure 6, similar to ANN, each layer of an MLP network contains 226 

several nodes (neurons) or processing elements that may be partially or fully connected. A 227 

feedforward process is executed between nodes of different layers, with each neuron processing 228 

an input and generating an output, which is then used as the input for the next neuron. The 229 

connection strength or weight between nodes includes independent values that are modified 230 

throughout the training stage in a process known as backpropagation. This combined process of 231 

forward signal propagation and backward error correction is referred to as feedforward 232 

backpropagation (FFBP). The optimum set of weights, yielding the smallest errors, is subsequently 233 

used to perform predictions with new data [30]. 234 

 

Figure 6. Representative multilayered perceptron–artificial neural networks (MLP-ANN) 

framework (adapted from [31]). 

Nonlinear autoregressive exogenous (NARX) is a dynamic recurrent ANN which can capture 235 

inherent intricate relationships between inputs in its memory and effectively predict the outputs. 236 



14 

 

Especially for nonlinear discrete time series, NARX ANN can serve as a dynamic modeling tool 237 

that encloses multiple layers with feedback connections [32]. As shown in Figure 7, two primary 238 

configurations exist: (a) the open-loop or series-parallel mode (NARX-SP) represents a stable 239 

network in which actual target values from previous tests are fed back during training process, and 240 

(b) the closed-loop or parallel mode (NARX-P) represents a network where predicted outputs are 241 

fed back as inputs for the feedforward neural network and incorporated in the output regressor due 242 

to the absence of true outputs for new data. Thus, the NARX-P mode is an FFBP network with a 243 

feedback connection from output to input. As such, it can generate final predictions using the 244 

training and test data from the NARX-SP mode [31]. 245 

  

Figure 7. Nonlinear autoregressive exogenous–artificial neural networks (NARX-ANN) 

frameworks: (a) NARX-SP; (b) NARX-P (adapted from [31]). 

Long short-term memory recurrent neural network (LSTM-RNNs) is a variant of the recurrent 246 

neural network (RNNs), and its basic modeling pattern is the same as that of ANNs. However, 247 

LSTM-RNNs consist of several decisive hidden layers apart from the input and output layers, as 248 

well as a group of LSTM cells with four interrelated units, i.e., an internal cell, an input gate, a 249 

forget gate, and an output gate (Figure 8). By utilizing a self-recurrent connection, the internal cell 250 

remembers the cell state at the former time step, while the input gate regulates the input activation 251 

flow into the internal cell state. The forget gate allows the LSTM cell to forget or reset the cell 252 

(a) (b) 
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memory, as necessary. The tangent gate or tanh (hyperbolic tangent) function transforms values 253 

(compressing between -1 and 1) before values are read from cell state. The output gate normalizes 254 

the flow of output activation into the LSTM cell output [33]. 255 

 

Figure 8. Long short-term memory (LSTM) cell diagram (adapted from [33]). 

2.3 Machine Learning (ML) and Deep Learning (DL) Algorithms 256 

ML encompasses four types of learning methods, i.e., supervised, unsupervised, semi-supervised 257 

and reinforcement learnings [7]. In supervised learning that accounts for approximately 70% of 258 

ML applications, the algorithm is trained on an experimental dataset containing both inputs and 259 

outputs. The model predictions are compared with the true outputs to identify the errors, and the 260 

learning process is refined accordingly. Patterns are assessed to predict labeled information for 261 

additional unlabeled data. In contrast, unsupervised learning involves exploration of data for 262 

pattern identification in the absence of historical labels. This approach is well-suited for 263 

transactional data. Popular unsupervised learning algorithms (e.g., self-organizing maps, nearest-264 

neighbor mapping, k-means clustering, and single-value decomposition) have been used to 265 

segment textual topics, recommend items, and identify data outliers. Semi-supervised learning 266 

follows a pattern similar to, but its amount of unlabeled information is much higher than, the 267 
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supervised learning. Classification, regression, and prediction models are trained using this 268 

learning method. Reinforcement learning aims to learn the best options available by adapting a 269 

trial-and-error process involving three primary mechanisms: the learner or decision maker, 270 

environmental components, and actions. The goal of the learner is to adopt the best actions 271 

available to produce the expected result within a pre-scheduled time, following the most suitable 272 

pattern [7]. 273 

DL is a branch of ML that employs unsupervised networks to learn from unstructured or unlabeled 274 

data [34]. It starts with the input layers that are connected to a series of hidden layers through 275 

nonlinear activation functions. The activation functions generate approximation forms that allow 276 

gradient-based optimization. Results from the optimization process are displayed as final output. 277 

The main objective of DL architecture is to learn the feature illustration of input data and achieve 278 

implicit representation that best generates an output  𝑌 = 𝑓(∑ 𝑙𝑛𝑖𝑤𝑖𝑗 + 𝑏𝑗
𝑛
𝑖=1 ), where 𝑓  is the 279 

activation function, 𝑙𝑛𝑖  represents ith input signal, 𝑏𝑗  represents bias value of jth neuron, 𝑤𝑖𝑗 280 

represents connecting weights between 𝑙𝑛𝑖 and 𝑏𝑗 [35]. 281 

Multiple hidden layers create deep neural networks (DNN) and more hidden layers result in deeper 282 

networks [34]. A variation of DNN is convolutional neural networks (CNN) which is specialized 283 

for image recognition. CNNs mimic the visual cortex to distinguish and classify images. The 284 

architecture consists of two main sections: feature learning and classification  (Figure 9). Initially, 285 

input images pass through the feature extraction network, where convolutional layers transform 286 

the images and pooling layers reduce dimensionality. The resulting feature maps are then fed into 287 

classification layers to generate predictions. In classification layers, flatten layer converts the 2D 288 

feature maps into a 1D vector allowing fully connected layers to process them as input. Soft-max 289 

layer produces probabilities for each class such as no visible cracks (connections), micro-cracks 290 
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(partial degradation) and significant cracks (full separation) are processed as rigid, semi-rigid and 291 

damaged joints, respectively. [36]. 292 

 293 

Figure 9. Basic convolutional neural networks (CNN) model architecture (adapted from [36]). 294 

2.4 Naïve Bayes (NB) and K-nearest Neighbors (KNN) 295 

NB is a simple multiclass linear classification algorithm that is based on Bayes’ theorem [32]. Its 296 

learning process can be simplified using generative assumptions and parameter estimations. By 297 

using Bayes optimal classifier, the required number of equations of NB increases exponentially 298 

with an increase in the number of features. Hence, by simplifying Bayes classier through 299 

appropriate assumptions in equations, the number of features can be significantly reduced. 300 

However, modifying one feature does not alter other features, as this method neglects possible 301 

correlations between features [26]. In contrast, KNN is a nonparametric ML algorithm that is used 302 

for both classification and regression, and it does not incorporate assumptions regarding the 303 

decision on boundaries [37]. For each test instance, the algorithm identifies the K most relevant 304 

data points (nearest neighbors) within the training dataset and predicts outcomes based on the most 305 

frequently occurring class among these neighbors. This approach, often referred to as the majority 306 

rule, is conceptually similar to the probabilistic reasoning used in Bayesian methods [38]. 307 
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2.5 Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) 308 

GA and PSO are another type of AI methods that are broadly used for optimization and searching. 309 

GA is a strategic model based on the principles of genetic evolution [39], focusing on the principles 310 

of survival of the fittest and adaptation.  GA continuously produces new groups of genes 311 

(populations of chromosomes or strings) to perform a task by formulating old groups of genes. A 312 

GA contains three parts: (i) coding and decoding of variables into strings, (ii) evaluating the fitness 313 

of each solution string, and (iii) applying genetic operators (crossover, mutation) to generate the 314 

generations of next solution strings [40]. To derive accurate solutions (Figure 10), an appropriate 315 

number of chromosomes (strings) must be selected, which are obtained in multiple phases. First, 316 

the necessity of reproducing a string is assessed based on its fitness function. If the optimal solution 317 

is not reached, a crossover operation creates modified offspring by combining parent genes, and 318 

mutation introduces additional variability. This process is repeated until an optimal solution is 319 

obtained [41]. 320 

 321 

Figure 10. Operational structure of genetic algorithm (GA) (adapted from [42]) 322 
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Genetic programming (GP) is an extension of GA in which solutions are represented as computer 323 

programs, whereas GA typically produces numeric strings as solutions. The classical version, 324 

known as tree-based GP, constructs models as trees consisting of functions and terminals with a 325 

root node (Figure 11). After generating an initial set of random models, successive generations are 326 

created using mutation, crossover, and reproduction, and the best program across all generations 327 

is selected as the output [43].  Gene expression programming (GEP) is a developed version of GP 328 

first invented by Ferreira [44] where new generations of models created by GP are represented as 329 

linear strings that are decoded and expressed as nonlinear entities (trees) [45]. Multi-expression 330 

programming (MEP) is a more advanced linear GP approach, where a single chromosome can 331 

encode multiple programs. Fitness values are evaluated across these programs to identify the 332 

optimal solution [46]. 333 

 334 

Figure 11. A tree-structured genetic programming (GP) model (adapted from [43]). 335 

PSO resembles GA and is inspired by communal behavior of animals with five main features [41]: 336 

(i) Proximity: Simple calculations are performed in definite time and space; (ii) Stability: The 337 

system does not react to every environmental change; (iii) Quality: Significant changes in the 338 

environment are detected to ensure solution quality; (iv) Diverse response: No singular limitation 339 

exists in system response to environmental changes; (v) Adaptability: Changes in the environment 340 

are considered during optimization. 341 
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2.6 Gaussian Process Regression (GPR) and Multivariate Adaptive Regression Spline 342 

(MARS) 343 

GPR is a nonparametric model that systematically quantifies the prediction uncertainty of 344 

nonlinear high-dimensional problems with small simplistic samples. It has a simple training 345 

process by selecting appropriate functions according to the pattern in the training data. By setting 346 

the initial values and optimizing the hyperparameters using the input training data, prior 347 

distributions are determined, and prior model is transformed into posterior model, respectively. 348 

Thus, GPR offers adaptability in hyperparameter selection with flexible nonparametric inference. 349 

Finally, it performs its prediction using the regression prediction model [19]. Another method, 350 

MARS, is suitable for generating solutions to problems with continuous numerical outcomes and 351 

high input dimensions. Similar to GPR, it can perform nonparametric and nonlinear regression. It 352 

partitions the input space into subgroups and fits piecewise regression models within each 353 

subgroup using basic functions. This process enables MARS to capture complex data structures 354 

and identify potential interactions among input variables across all degrees [19]. 355 

2.7 Tree Algorithm-based Models and Boosting Methods 356 

Decision trees (DT), also referred to as regression trees (RT), are nonparametric models that solve 357 

classification and regression problems by recursively splitting data into a hierarchy of simple 358 

decisions based on one or more input features. A typical DT structure is shown in Figure 12 and 359 

involves two key steps: (1) tree-building: training dataset is partitioned into non-overlapping 360 

regions, and (2) tree-pruning: reduces overfitting by trimming unnecessary branches of the tree 361 

[37]. Random forest (RF), also called an ensemble of decision trees, consists of multiple DTs 362 

operating together (Figure 12). 363 
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 364 

Figure 12. Tree pattern of random forest (RF) model (adapted from [47]). 365 

Each tree generates predictions on new data, and the final output is obtained via majority voting 366 

for classification or averaging for regression. Overfitting in individual trees is mitigated because 367 

multiple trees contribute to the final result [47]. The performance and robustness of DTs and other 368 

single predictive models can be significantly enhanced using ensemble ML methods. One such 369 

method is the bagging regressor (BR), which primarily relies on bootstrap aggregating. In this 370 

process, multiple copies of the original dataset are generated through resampling (bagging) [48]. 371 

Data points are randomly selected from the original dataset with replacement to create bootstrap 372 

samples, suggesting some original data may not appear in certain samples. Finally, base models 373 

(e.g., DTs) are then trained on these samples, and predictions on new data are combined, typically 374 

using majority voting for classification or averaging for regression [49]. Bagging reduces variance, 375 

variability and noise in predicted output by training multiple models in slightly different data [50]. 376 

Apart from BR, some boosting techniques can enhance the performance of DT by merging a set 377 

of weak classifiers to form a strong classifier. Among them are adaptive boosting (AdaBoost), 378 

extreme gradient boosting (XGBoost), light gradient boosting method (LGBoost), natural gradient 379 

boosting (NGBoost), gradient boosting regressor (GBR), categorized boosting (CatBoost), and 380 
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histogram gradient boosting (HGBoost) [51]. In AdaBoost, all observations are weighted equally, 381 

and the model is retained by correctly classifying the incorrectly classified observations with 382 

higher weights than usual. In this manner, the learners are trained using the weighted classification 383 

accuracy of the previous learners [52]. In contrast, the remaining methods mentioned above are 384 

variants of gradient boosting (GB) framework which performs gradient optimization on the 385 

contribution of each weak learner to reduce the overall error of the strong learner (Figure 13) [53]. 386 

XGBoost leverages the misclassification error of the prior model, although the need for successive 387 

model training leads to slow processing. LGBoost operates leaf-wise rather than depth-wise, thus 388 

providing more precise but complex trees aiming at computational efficiency. It poses enhanced 389 

training speed, greater efficiency, improved precision, lower memory consumption and 390 

competence to process large datasets [54]. NGBoost generalizes GB to estimate the parameters of 391 

a conditional probability distribution as target for a multiparameter boosting algortihm [55] and 392 

GBR deals with regression problems [56]. CatBoost can control the categorical features of the 393 

input parameters during the training phase by operating in the preprocessing stage [37]. HGBoost 394 

employs histrogram based methods interpreted by DT to handle efficient bulk dataset [51]. 395 

 396 

Figure 13. Gradient boosting (GB) pattern (adapted from [47]). 397 
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2.8 Support Vector Machine (SVM) 398 

SVM was developed by Vapnik [57] that uses optimal separating hyperplane to separate positive 399 

and negative classes of datapoints with the farthest possible two marginal boundary lines (Figure 400 

14). Support vectors are derived from datapoints representing the separating hyperplanes in a 401 

transformed space [26]. Figure 14(a) shows several possible classifiers separating the datapoints, 402 

while one optimal separating hyperplane separates the data with maximum margin as further 403 

shown in Figure 14(b). SVM can also be operated through regression applications as support vector 404 

regressor (SVR) [56]. As an extension of SVM, SVR aims to find a hyperplane with a specific 405 

number of dimensional space (input parameters) that classifies the training datasets in different 406 

classes. It differs from SVM as it targets a flat type of hyperplane that accepts the data points 407 

within or on the margins and rejects data points outside the margins [58]. 408 

 

Figure 14. Decision boundary from support vector machine (SVM) (adapted from [59]). 

2.9 Key Performance Metrics and Model Validation Techniques 409 

2.9.1 Performance Evaluation 410 

There is no predefined method for determining the optimal architecture of a model. However, the 411 

accuracy of a model layout can be evaluated using several performance criteria, such as root-mean-412 

(a) (b) 
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square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and 413 

coefficient of determination (R2). RMSE quantifies the magnitude of errors and is sensitive to 414 

outliers. MAE utilizes a scale similar to that of the data to compute the variance between predicted 415 

and target values. MAPE measures the range of errors in percentages. R2 represents the proportion 416 

of the difference in predicted values that can be explained by the model. These metrics can be 417 

mathematically expressed as follows: 418 

RMSE = √
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where m, n, ē − ē𝑛, 𝑒𝑛, and ê𝑛 denote the number of data points, the data sample index (runs from 419 

1 to m), the difference in mean of observed values, the target value, and the predicted value, 420 

respectively. Although various evaluation metrics have been identified [189], RMSE, MAE, 421 

MAPE, and R2 remain the most widely used for AI-predicted results in engineering applications 422 

[190,191]. However, these metrics have limitations. For example, RMSE is not always appropriate 423 

for comparing accuracy across time series [192], while MAPE can be unreliable and misleading 424 

[193]. R2 is dimensionless, allowing comparison across heterogeneous target variables (e.g., MPa, 425 

mm/m, %) and enabling cross-dataset benchmarking. Nevertheless, earlier surveys reported that, 426 

although R2 is the most commonly used metric in engineering, it can sometimes be biased, 427 

insufficient, and misleading; meanwhile, other metrics also present challenges [194]. In fact, no 428 

single metric can be considered universally superior [195]. In this study, most structural 429 



25 

 

engineering papers published between 2020 and 2024 consistently reported R2 as the primary 430 

benchmark for evaluating predictive accuracy, typically alongside complementary metrics such as 431 

RMSE, MAE, and MAPE. R2 is unitless, with values ranging from 0.0 to 1.0 [196]. For RMSE, 432 

the normalized values below about 5% are generally regarded as excellent predictive accuracy and 433 

for MAE, lower values (e.g., < 0.1 for displacement prediction) demonstrate strong alignment with 434 

engineering tolerances [227]. For general cases, MAPE values under 10–15% are frequently 435 

considered acceptable, while errors above 20–25% indicate weaker model performance [228]. 436 

2.9.2 Model Robustness and Accuracy 437 

Although R2 is a popular and intuitive measure of accuracy in AI-based structural engineering 438 

models, it is important to recognize its limitations to ensure proper interpretation. First, R2 values 439 

are scale-dependent, meaning that the same R2 can correspond to very different levels of absolute 440 

error across datasets, which limits cross-study comparisons [208]. Second, it naturally increases 441 

with model complexity, even when added predictors are not meaningful, making it sensitive to 442 

overfitting unless paired with adjusted R2 or error-based metrics [209]. Third, it is insensitive to 443 

systematic bias: a model can consistently underpredict or overpredict and still yield a high R2 if 444 

variance trends are well captured [210]. Fourth, it does not provide information about the 445 

distribution of errors, meaning outliers may be masked, while metrics like RMSE penalize such 446 

deviations more strongly [210]. Finally, because R2 is bounded above by 1 but unbounded below 447 

(–∞), negative values do not clearly quantify the degree of model inadequacy [208]. To address 448 

these issues, structural engineering studies often report heterogeneous metrics such as RMSE, 449 

MAE, and MAPE to complement R2; for example, Yang and Liu [211] demonstrated that their 450 

model’s high R2 was further substantiated by substantially reduced RMSE and MAE compared to 451 

code predictions. Similarly, normalized or relative error measures help standardize error 452 
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magnitudes across studies (e.g., RMSE or errors normalized by mean or range) so that results are 453 

more comparable across datasets with different scales [212]. Thus, while R2 remains a valuable 454 

benchmark for variance explanation, pairing it with error- and scale-sensitive metrics provides a 455 

more holistic and trustworthy evaluation framework for AI applications in structural engineering. 456 

Monte Carlo simulations (MCS) provide a robust method for evaluating model performance and 457 

reliability. This sampling-based methodology involves performing many simulations of the same 458 

process to converge the average of large samples to an anticipated value for infinite samples. This 459 

approach is suitable for randomizing the sampling method of training and testing dataset for the 460 

selected models. Subsequently, a specific number of simulations are performed with different 461 

dataset splits for training and testing. By employing MCS, random sampling helps enhance model 462 

accuracy by reducing errors in AI predictions. For example, if 10 samples are selected from among 463 

100 samples that contain 50% each of two different types of data, the correct proportion of the two 464 

types of data may not be achieved. Therefore, certain variations may appear as sampling errors in 465 

the predictions. The random sampling process can eliminate bias in parameter selection, thereby 466 

maximizing accuracy [60]. 467 

2.9.3 Data Minimization 468 

The availability of input parameters generally improves the accuracy of model predictions. 469 

However, unnecessary data, with no influence on the final prediction, can introduce system noise, 470 

mislead the training programs, and compromise the model’s performance. The influence of such 471 

input parameters can be regulated through a sensitivity analysis. The most widely used methods 472 

for sensitivity analysis include the cosine amplitude method, Milne method, and generalized cross-473 

validation (GCV) method, as discussed in the following sections [19]: 474 
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2.9.3.1 Cosine Amplitude Method 475 

This method quantifies sensitivity by computing the correlation between the input and output data. 476 

The correlation factor (Ri) is calculated as: 477 

where xik is the value of the i-th input parameter corresponding to the k-th output, yk is the value 478 

of the k-th output, and m is the total number of samples. A higher value of Ri represents a stronger 479 

correlation between the input and output parameters [19]. 480 

2.9.3.2 Milne Method 481 

This method analyzes the effects of inputs on outputs based on the weights of the connections 482 

between nodes, represented by a static weight matrix: 483 
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∑
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where Ni represents the number of input parameters (i), Nh represents the number of hidden 484 

neurons, wml represents the weight of the connection between the input neuron l and the hidden 485 

neuron m, 𝑤𝑗𝑘  represents the weight of the connections between node j and node k, and wpm 486 

represents the weight of the connection between hidden neuron m and output neuron p [19]. 487 

2.9.3.3 GCV method 488 

The significance of an input parameter can be defined as the square root of the GCV of the model 489 

with all basic functions containing the eliminated parameter, minus the square root of the GCV of 490 

the full model. The GCV can be defined as follows: 491 

GCV = MSEtrain/(1-enp/n)2                                           Eq. (7) 
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Based on this equation, GCV depends on the mean square error of the training data (MSEtrain), 492 

number of samples in the training data (n), and effective number of parameters/variables (enp) 493 

[19]. 494 

2.9.4 Data Interpretability 495 

As mentioned in Section 2.9.1, RMSE, MAE, MAPE, and R2 are commonly used in regression 496 

problems to evaluate model performance. Beyond accuracy, SHapley Additive exPlanations 497 

(SHAP) is an interpretability method that provides insights into feature contributions in regression 498 

tasks. For example, SHAP values quantify the influence of each feature on the predicted 499 

continuous outcome. SHAP is employed to interpret the decision-making process of complex AI 500 

models by providing post-hoc explanations of model predictions [61]. Similar to parametric 501 

analysis, SHAP isolates the individual contribution of each input parameter to the model’s output. 502 

This facilitates a clear understanding of the inherent reasoning behind predictions and allows the 503 

relative influence of each parameter on the predicted results to be distinguished [51]. Feature 504 

importance refers to analytical techniques that quantify the relative contribution of each input 505 

variable to the predictive performance of a machine learning model, typically through model-based 506 

or permutation-based measures. Recent engineering studies show that such methods enable 507 

researchers to identify which design or material parameters most strongly influence target 508 

responses, offering insights that align with established physical or experimental understanding.  509 

For example, Nguyen et al. [222] used SHAP on a boosting model for concrete‐filled steel tube 510 

columns and found that the most important features were exactly the expected mechanical loads 511 

(bending moment and axial force). In other words, SHAP highlighted that these domain‐critical 512 

forces drive the model’s predictions, validating the AI with known structural physics. Similarly, a 513 

RF-based framework for multi-distress prediction in continuously reinforced concrete pavements 514 
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highlighted the dominance of structural and environmental variables, further emphasizing the 515 

interpretability of feature importance in linking AI outcomes to engineering behavior [223]. 516 

However, SHAP and related interpretability methods should be applied with caution, as correlated 517 

features may distribute importance scores misleadingly. Additionally, issues such as data leakage 518 

during preprocessing or feature engineering can inflate interpretability results, limiting their 519 

generalizability. On the other hand, precision and recall are frequently employed evaluation 520 

metrics for classification problems due to their ability to capture the trade-off between false 521 

positives and false negatives [62]. Precision represents the percentile of successful predictions for 522 

each predicted result, while recall measures the fraction of relevant instances. Both metrics are 523 

considered more effective when their values approach 1 [37]. Generally, regression metrics 524 

(RMSE, MAE, MAPE, and R2) are considered separately from classification metrics (precision, 525 

recall, and F1), with precision and recall applied only when the prediction target is categorical. 526 

Only a small proportion of published machine‐learning models undergo true external validation – 527 

testing on wholly independent data – despite its recognized importance for unbiased performance 528 

assessment [224,225]. This gap often reflects practical constraints, but it means many models are 529 

evaluated only on internally held‐out or cross‐validated samples. Dataset sizes are frequently 530 

inadequate [226], and most ML studies fail to justify sample‐size calculations [226]. Proper 531 

validation protocols (e.g. k‐fold or nested CV) are therefore essential to mitigate overfitting and 532 

bias [224,225]. In addition, performance reports should include measures of variability – such as 533 

the standard deviation (SD) or coefficient of variation (CoV) of repeated runs, and 95% confidence 534 

intervals (CI) for key metrics – rather than only point estimates [225]. Advanced techniques like 535 

Bayesian hyperparameter optimization can help tune models efficiently, and explicit uncertainty 536 

quantification (via bootstrapped CIs or Bayesian credible intervals) provide critical insight into 537 
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model robustness. Finally, assessment should follow established external‐validation criteria and 538 

report overall performance indices (e.g., accuracy and calibration metrics) with their uncertainties 539 

to fully characterize model generalizability [225]. 540 

3 Application of AI in Structural Engineering 541 

AI is increasingly being applied to predict the mechanical properties, environmental impacts, 542 

durability, life cycle, and service life of structural materials such as concrete, reinforced concrete 543 

(RC), composites, and structural steel. Large-scale laboratory experiments can be complemented 544 

with AI-based predictions to minimize testing costs and time. The following sections provide an 545 

overview of recent studies that have employed AI models in structural engineering. 546 

3.1 Materials Performance Prediction  547 

3.1.1 AI in Concrete Mix Design and Mechanical Properties 548 

Recent studies have applied various AI and ML methods—such as KNN, ANN, BR, GPR, SVM, 549 

DT, RF, MLP, GEP, boosting, and stacking techniques—to optimize concrete mix design and 550 

predict its mechanical properties. These approaches have primarily focused on forecasting the 551 

compressive strength of concrete incorporating recycled aggregates and supplementary 552 

cementitious materials (e.g., slag, silica fume (SF), fly ash, and ground granulated blast-furnace 553 

slag (GGBFS)), using datasets ranging from 1,000 to 3,600 samples. Among these, XGBoost 554 

[63,64] and stacking methods (an ensemble technique combining multiple models) [65] achieved 555 

the highest accuracy, with an R2 value exceeding 0.950. The most influential parameters were 556 

concrete testing age, cement content, and the replacement ratio of recycled coarse aggregates (CA). 557 

Similarly, high R2 values of 0.960 and 0.970 were reported using GEP for SF-concrete [66] and 558 

BR for geopolymer concrete [67], respectively. Generic CV (not specified) was applied to reduce 559 

overfitting, but no CI or SD values were reported. The influencing parameters were cement and 560 



31 

 

water, identified via sensitivity analysis over a dataset of 283 compressive and 149 tensile samples. 561 

The use of multiple ML models and CV improved reliability, but the absence of explicit k-fold 562 

details and external datasets limits generalization [66]. Onyelowe et al. [68] examined the mix 563 

design of fly ash–incorporated concrete using statistical analysis, linear regression, and AI 564 

algorithms, where ANN achieved the best performance (R2 = 0.92) in predicting 28-d compressive 565 

strength. The study used 112 mix samples with binder ratios as inputs, and models were validated 566 

by statistical comparisons, with uncertainty of 15–20 MPa (SD for compressive strength models) 567 

and 2–3 points (environmental impact models). The governing parameters were the fly ash-to-568 

binder ratio and aggregate-to-binder ratio and all methods. The study demonstrated the capability 569 

of ANN to develop a robust mix design tool for sustainable concrete with comprehensive 570 

parametric considerations considering. 571 

GB and XGBoost also outperformed other methods in a study by Kang et al. [69], where the water–572 

cement ratio and SF content were identified as the most critical parameters affecting the 573 

compressive and flexural strength of steel fiber–reinforced concrete, based on a dataset of 220 574 

samples. Similarly, GB was shown to be more accurate and robust in determining the flexural 575 

strength of fiber-reinforced concrete beams, achieving a higher slope validation ratio (0.83/1). The 576 

depth of the beam was the most influential factor, followed by the flexural reinforcement area [70]. 577 

In contrast, Khan et al. [71] reported ANN to be superior to RF, reaching an R2 of 0.990, while 578 

using ~120 FRP beam samples with geometric, reinforcement, and material inputs. For validation, 579 

dataset was split into training/test sets with error indices RMSE of 7.37 kN-m. This result was 580 

further validated by Zhang et al. [72] over 134 data points, where ANN (R2 = 0.979) outperformed 581 

GEP and existing ACI 440.11-22 [188] equations. Li et al. [73] recommended XGBoost (R2 = 582 

0.93) for predicting the flexural strength of concrete with cementitious materials. Using SHAP 583 
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analysis, the water–cement ratio and curing age were identified as the key factors. Khan et al. [46] 584 

used GEP and MEP to determine the flexural capacity in FRP-strengthened beams using 200 585 

samples. Validation was based on holdout sets, not k-fold CV. No uncertainty intervals were 586 

provided, though strong R2 values (0.96–0.98) and low MAE demonstrated accuracy. SHAP 587 

analysis identified beam width, depth, and reinforcement ratio as key predictors. Overfitting was 588 

managed with evolutionary learning techniques, but the study was limited to smaller dataset size 589 

and lack of external validation. 590 

The prediction of split tensile strength for concrete containing different cementitious materials 591 

(e.g., GGBFS and Portland slag), sand replacements, and recycled aggregates was examined using 592 

up to twelve AI methods on 168, 310, 381 dataset points. The peak R2 values achieved were 0.98 593 

(XGBoost) [74], 0.892 (extra tree regressor) [75], and 0.842 (XGBoost) [76], respectively. The 594 

common influencing factors were water-cement ratio, curing age and ratio cementitious materials.  595 

Nguyen et al. [56] implemented four ML methods, i.e., SVR, MLP, GBR, and XGBoost, to 596 

determine the strength characteristics of high-performance concrete. Among these, SVR and 597 

XGBoost offered the most accurate results (R2 of 0.96–0.98) with reduced computational effort 598 

via random-search-tuned train/test validation. Key governing factors were cement contents, blast 599 

furnace slag, fly ash, water–cement ratio, superplasticizer, coarse and fine aggregates (FA), and 600 

curing period. Overfitting was reduced by efficient parameter tuning and data imputation 601 

strategies, though the absence of k-fold CV or external test sets limits robustness. 602 

Earlier, Gholampour et al. [77] developed empirical models using GEP to predict the 28-d 603 

compressive strength, elastic modulus, flexural strength, and splitting tensile strength of recycled 604 

aggregate concrete (RAC). A comprehensive database with 650 compressive strength values, 421 605 

elastic modulus values, 346 splitting tensile strength values, and 152 flexural strength values from 606 
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previous reports was compiled to compare the performance of 34 mechanical-property models for 607 

RAC, developed in 21 other studies. The proposed GEP model provided more accurate results than 608 

other models on large datasets and exhibited consistency with existing code expressions. Similarly, 609 

a hybrid GP model was developed in a study to predict the triaxial compression loading based on 610 

330 tests on concrete samples: comparisons with earlier studies across several statistical criteria 611 

confirmed the model’s accuracy and reliability. The GEP-based approach using only the mix-612 

design properties as predictors achieved R2 = 0.81 [17]. In another study [47], four models (RF, 613 

NN, GB, and AdaBoost) were applied to predict the fatigue life of concrete under uniaxial 614 

compression. The dataset, containing 1300 sets of experimental data, was split 90:10 for training 615 

and testing. Instead of CV, the authors focused on dataset cleaning and feature analysis. Six key 616 

input variables, related to the material and dimensional properties (compressive strength of 617 

concrete, height-to-width ratio, and shape of test specimen) and the loading conditions (maximum 618 

stress level, minimum stress–to–maximum stress ratio, and loading frequency), were adopted. 619 

Maximum stress level and frequency were the most influential features. The GB model yielded 620 

the lowest error and high predictive accuracy (R2 ≈ 0.915) across the three datasets. Overfitting 621 

risk was reduced by outlier filtering, though the absence of CV and uncertainty measures limits 622 

confidence in generalization. Cascardi et al. [78] proposed an ANN-based analytical model to 623 

predict the compressive strength of circular concrete columns wrapped with fiber-reinforced 624 

polymer (FRP). The compressive strength of the FRP-confined concrete was influenced by the 625 

column diameter, compressive strength and Young’s modulus of the unconfined concrete, and 626 

thickness of the FRP jacket. A total of 465 samples were included in the database and key 627 

parameters were column diameter, unconfined concretes’ compressive strength, thickness and 628 

Young’s modulus of FRP jacket.  The model achieved high consistency and accuracy (R2 of 0.83) 629 
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when compared with results from laboratory tests and equations derived from international codes 630 

and scientific literature. 631 

Few researchers have used ML to assess the self-healing ability of cementitious materials. Using 632 

results from 12 experimental studies, Rajczakowska et al. [20] compiled a detailed database with 633 

197 records to predict the compressive strength recovery of concrete using four interpretable ML 634 

methods: SVM, RT, ANN, and ensemble of RT. The 12 input variables were water-cement ratio, 635 

concrete age, cement content, fine and CA, peak loading temperature and its duration, cooling 636 

regime and duration, curing regime and duration, and volume of samples. The stability of the 637 

models was verified through Monte Carlo analysis. The Ensembled RT achieved the highest 638 

accuracy (R2 > 0.900) and robustness. The most influential parameters were temperature, curing 639 

regime, curing time, and aggregate amounts. In terms of self-healing ability, Huang et al. [79] 640 

assessed 797 bacterial self-healing concrete test results with 22 features. ML models including 641 

GBR, SVR, RF, and DNN were compared, with GBR performing best (R2 = 0.956). 10-fold CV 642 

and grid search optimization were applied to reduce overfitting. No CI was reported, but RMSE 643 

was used for error estimation. Key parameters were bacteria type, healing time, crack width, and 644 

environment. Overfitting risk was explicitly addressed with CV and sensitivity analysis, improving 645 

robustness. Some other studies also reported promising accuracy such as GEP with an R2 of 0.938 646 

for admixture-based concrete using 619 data points [80], and BR with an R2 of 0.974 for engineered 647 

cementitious composite based concrete using 617 crack data samples [81]. Most of the contributing 648 

variables were associated with FA, cementitious materials (e.g., fly ash, SF, and limestone 649 

powder), water–binder ratio, and crack width before self-healing. 650 
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3.1.2 Durability and Fire Resistance of Materials 651 

Predicting the long-term serviceability of structural materials is crucial for effective structural 652 

design. Several studies have explored optimal performing methods for examining key durability 653 

factors (DF). For example, ANN achieved an R2 exceeding 0.950 in predicting moisture exposure 654 

using 429 observations. Regression models were tuned via Bayesian optimisation and evaluated 655 

on a held-out test set; classification used stratified 10-fold CV. The study does not report SD/CI 656 

for model outputs; it reports standard predictive metrics (R, MSE, RMSE, MAE). Important 657 

influential variables include exposure duration and environmental factors (relative humidity, 658 

temperature) alongside geometrical and material properties. The use of stratified CV and Bayesian 659 

hyperparameter tuning reduces overfitting risk but the study provides limited formal uncertainty 660 

quantification [82]. In similar manner, Multi Expression Programming achieved R2 of 0.921 and 661 

0.977 in modeling concrete corrosion using 256 experimental records (chemical and biological 662 

tests). Models were trained on a 50/50 split and performance reported using MSE and R² (MEP 663 

performed best). Inputs were very small (time ± pH), so influential parameters are essentially 664 

exposure time and pH; because feature dimensionality is low the models are simpler, but the study 665 

does not report formal uncertainty bounds (SD/CI) nor use an external test set — this limits 666 

quantified generalization/overfitting analysis beyond train/test errors [83]. SVM (88–89% 667 

accuracy; 204 datasets) and back propagation NN (85% accuracy; 159 specimens) were used to 668 

predict chloride resistance [26,84].  In a study of Khan et al. [50], BR achieved an R2 of 0.999 in 669 

predicting depth of wear with 216 datapoints, and SHAP analysis identified testing time and 670 

specimen age as the dominant features. The study addressed overfitting by using ensembles, 671 

objective function minimization, and external validation metrics — although the paper did not 672 

present formal SD/CI intervals for predictions. External validation criteria and performance index 673 
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were used to support model generalization claims. Similarly, peak accuracies were observed for 674 

RF (R2 = 0.950) to estimate frost resistance using 100 groups of orthogonal–experimental data 675 

samples. and for optimized ANN (R2 = 0.926) to evaluate impermeability using 417 sets of 676 

experimental data from published literature [85,86]. In another study, hybrid ANN achieved an R2 677 

exceeding 0.990 in modeling carbonation penetration with 532 data records, and the models were 678 

trained with a 70/15/15 split and ten-fold CV. Uncertainty is presented via SD and fold-by-fold 679 

MAE/RMSE (no classical CI). The top influential parameters were exposure time (≈27%), CO2 680 

concentration (≈22%), and water–binder ratio (≈18%). CV and validation partition were used to 681 

limit overfitting; the hybrid ANN consistently reduced errors in comparison to plain ANN across 682 

training, validation, test and CV folds, but the authors still recommended enlarging the database 683 

to further lower overfitting risk [87]. Across these studies, the key parameters included duration 684 

of exposure, volume fraction of CA, cement content, water–binder ratios, FA, supplementary 685 

cementitious materials (SCM) content, thickness of protective layer, and ratio of environmental to 686 

relative humidity. Liu et al. [19] predicted the frost durability of RAC based on the DF using three 687 

soft computing models: ANN, GPR, and MARS. The database contained experimentally measured 688 

DF values of 142 samples from 23 published studies. The ANN model (with 19 neurons) achieved 689 

the highest accuracy (R2 = 0.951) followed by GPR, with the lowest RMSE and MAPE. Sensitivity 690 

analysis identified air-entrainment as the most critical factor influencing frost durability. 691 

Parametric analysis further showed that frost resistance improved with reduced recycled aggregate 692 

replacement, higher air-entrainment, lower water–cement ratio, and an optimized sand–RAC ratio. 693 

At elevated temperatures due to fire exposure, structural materials often lose strength and 694 

durability. Because full-scale fire tests on structural prototypes are difficult to conduct, there is a 695 

growing demand for numerical and AI-based predictive models. Numerous studies have explored 696 
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AI for predicting fire-induced effects on structural components.  Concrete is widely used by fire 697 

engineers, but all concrete types may fail under extreme fire exposure [88]. Liu et al. [89] examined 698 

the thermal spalling of steel and polypropylene fiber-reinforced concrete. Among six tested AI 699 

models, XGBoost achieved the highest accuracy (R2 = 0.972), with polypropylene fiber content 700 

identified as the key parameter for preventing spalling. Habib et al. [90] evaluated six classification 701 

models on fire-exposed fiber-reinforced concrete beams using 50 experimental tests, with 702 

AdaBoost demonstrating reasonable accuracy (R2 = 0.90), followed by GB. In another study, SVR, 703 

RF, and DNN were employed using a compiled database to predict the fire resistance of FRP-704 

strengthened RC beams. DNN performed best (R2 = 0.910), with critical parameters including 705 

geometrical features of the beam section, applied loading, and thermal properties of fire insulation 706 

[29]. Similarly, ensemble models (XGBoost, CatBoost, LGBoost, HGBoost, GB, and RF) 707 

achieved accuracy exceeding 0.90, outperforming traditional ML models (ANN, DT, PR, and 708 

SVM) when trained on 21,000 data points from numerical simulations. SHAP analysis revealed 709 

the most significant negative factors as loading ratio, FRP area, and total applied load, while the 710 

positive factors were total area of steel reinforcement, thickness of insulation on beam sides, and 711 

steel reinforcement cover depth [51]. 712 

Composite structures are widely used in industrial buildings and commercial spaces. Because steel 713 

is more prone to failure than concrete in fire exposure, construction with composite structures is 714 

often preferred, and related AI-based research has received significant interest. Moradi et al. [91] 715 

implemented an ANN model using 300 experimental data points to evaluate the fire resistance and 716 

strength behavior of concrete-filled steel tubes. The model achieved R2 values of 0.967 and 0.970, 717 

a more accurate model than the existing empirical relationships. However, these tubes require 718 

protective fire coatings, making concrete encased steel columns superior in fire resistance. Naser 719 
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[92,21] studied the fire behavior of RC columns using a combination of AI methods, including 720 

intelligent PR, GP, DL, and traditional multi-linear regression. The study analyzed 112 test 721 

observations under standard fire conditions for exposure durations of up to 5 h. The governing 722 

factors associated with concrete performance were concrete mix proportion, components 723 

(aggregate type and water–cement ratio), and supplementary additives (e.g., superplasticizers, 724 

fibers, and SF). In predicting fire-induced spalling, GP achieved the highest precision (R2 = 0.940), 725 

followed by DL. Moreover, DL also performed better in predicting the relationship between the 726 

governing factors and the fire resistance of concrete columns. Li et al. [93] developed ANN and 727 

analytical models to predict the buckling resistance of axially loaded concrete-encased steel 728 

columns exposed to fire conditions, considering 15200 specimens. The ANN and analytical 729 

models achieved R2 values of 0.990 and 0.950, respectively, and showed lower dispersion (smaller 730 

SD) than the analytical equations. Validation was conducted by an 80/20–train/test–split and by 731 

comparison with experimental fire tests. The temperature of concrete and steel sections were 732 

affected by concrete grade, heating time, section factor and thickness of concrete cover. The very 733 

large synthetic dataset and direct comparison to experimental tests reduce overfitting risk, though 734 

explicit regularization or nested-CV details were not found in the examined parts of the study. 735 

Naser and Kodur [35] used a dataset including 494 observations, incorporating a wide range of 736 

geometric characteristics and material properties, to develop a systematic ML (combining 737 

ensemble of RF, XGBoost and DL) approach to enable explainable and rapid assessment of fire 738 

resistance and fire-induced spalling of normal- and high-strength RC columns. This ensemble 739 

could analyze 5000 reinforced columns within 60 s, achieving an R2 of 0.86. Although tunnel fires 740 

are relatively infrequent [94], the growing number of tunnels has resulted in catastrophic incidents 741 

worldwide [95]. Wu et al. [96,97] investigated fire source behavior, hazards, and critical 742 



39 

 

temperature fields in tunnels using LSTM-RNN and Transpose-CNN under 100 simulated tunnel 743 

fire scenarios. The LSTM-RNN model achieved an accuracy of 0.90 with recommended 20 m 744 

sensor spacing, while the Transpose-CNN model achieved ~0.97 accuracy with 32 sensors placed 745 

at 5 m intervals. Both models effectively identified critical temperature fields, providing valuable 746 

insights for safe evacuation, emergency response, and firefighting strategies. 747 

Globally, the structural frames of most tall buildings, older buildings, and large-span warehouses 748 

are either composed of or supported by steel components. Fire remains a critical hazard with 749 

potentially catastrophic consequences for steel and steel–concrete interfaces. Engineers must 750 

therefore accurately assess design parameters to ensure fire safety, a process increasingly 751 

supported by AI-based predictive models. Fu [60] developed an ML framework incorporating DT, 752 

KNN, and NN to rapidly predict the failure patterns of simple steel-framed buildings subjected to 753 

fire and to assess the potential for subsequent progressive collapse. Failure patterns were defined 754 

using the critical temperature method, and MCS and random sampling were performed to develop 755 

a sufficiently large dataset for training and testing. The KNN and NN models provided satisfactory 756 

predictions of the failure pattern and collapse potential of a two-story, two-bay steel-framed 757 

building. Data driven ML models such as ANN, RF, GB and KNN have also been used to explore 758 

the performance of the concrete-steel bond under high temperatures. Al Hamd and Warren [98] 759 

analyzed 316 data points from previous laboratory-based studies and found GB to be the most 760 

accurate model (R2 = 0.970), with the other models also yielding consistent results. The key input 761 

features were concrete compressive strength, testing age, concrete surface temperature at failure, 762 

thermal saturation ratio, bond length-to-diameter ratio, cover-to-diameter ratio, and fiber volume. 763 

The dataset was validated with train-test split, and uncertainty was reported with RMSE of 1.08–764 

2.62 MPa and CoVs ranging from 18 to 74%. 765 
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3.2 Structural Behavior Analysis 766 

3.2.1 AI in Reinforced Concrete and Steel Structural Elements 767 

A recent extension in GP, a GEP-based nonlinear model, was developed by Gandomi et al. [99] to 768 

assess the shear resistance of RC beams with shear steel. The database comprised 466 experimental 769 

measurements for both high- and normal-strength concrete beams. The proposed model 770 

outperformed existing design-code models, achieving an R2 value approximately 0.89. Sensitivity 771 

analysis revealed that concrete compressive strength, web width, and effective depth were the key 772 

factors controlling the variations in the shear resistance of RC beams with stirrups. Cascardi [100] 773 

developed an analytical ANN model to predict the in-plane shear strength of masonry panels 774 

retrofitted with fiber-reinforced mortar. The study considered different varieties of masonry types 775 

(by material and texture) and reinforcement, in terms of both the fiber (glass, carbon, steel, basalt, 776 

phenylene-benzobisoxazole) and matrices (cement, lime, and hydraulic mortars). Despite the large 777 

diversity in the input parameters, the model demonstrated high precision and accuracy (R2 = 0.91), 778 

demonstrating robustness and sensitivity, with predictions consistent with results obtained using 779 

international design codes. To assess rapid damage and seismic risks, and determine appropriate 780 

retrofitting strategies, Mangalathu et al. [37] developed a comprehensive database of 393 one-781 

story, one-bay RC shear walls with both rectangular and non-rectangular sections. The dataset 782 

included 152 flexural failure, 96 flexure–shear failure, 122 shear failure, and 23 sliding failure 783 

samples. The model performances were evaluated using three metrics: global accuracy, precision, 784 

and recall. Among the eight ML algorithms, RF achieved the highest accuracy (0.86), with a recall 785 

of 70% and precision of 84% in identifying the flexure–shear failure mode on the test set. The 786 

aspect ratio of the shear wall, boundary element reinforcement indices, and wall length–to–787 

thickness ratio were the critical factors governing the failure mode. Retaining walls provide 788 
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permanent lateral support for vertical soil slopes in infrastructure such as roads and bridges. In one 789 

study, a modified SVM model outperformed alternatives in determining the safety criteria of 790 

cantilever-type retaining walls [101]. Key parameters, including cohesion, angle of shearing 791 

resistance, angle of wall friction, and reliability index, were computed using the first-order–792 

second-moment method. The modified SVM predictions deviated from synthetic reference values 793 

by less than 2%.  794 

An ANN model was developed to predict the ultimate compressive load of rectangular concrete 795 

filled steel tube columns in both concentric and eccentric loading. The dataset included 1,224 test 796 

results for both long and short specimens. The model showed improved accuracy compared with 797 

available design codes (50% reduction in RMSE), and the most influencing parameters were steel 798 

tube dimensions, thickness, and material strength [102]. For a similar case, Asteris et al. [103] 799 

developed three alternative models using optimized ANN with a hybrid database of 1,857 800 

specimens. These models outperformed code-based methodologies, with reduced RMSE by 34%. 801 

Lemonis et al. [104] developed an ANN model to predict the ultimate axial compressive capacity 802 

of square and rectangular concrete filled tubes. The database included experimental results of 803 

1,193 long, thin-walled and high-strength specimens. The model offered satisfactory results, with 804 

a 20% error margin for 92% of the specimens. Sensitivity analysis revealed that the influencing 805 

factors were the tube dimensions and steel yield limit. Ferreira et al. [105] built a finite element 806 

(FE)-based database and trained five ML models to predict global shear capacity of a steel-concrete 807 

composite down-stand cellular beams with precast hollow-core units. Among the models, the 808 

Catboost regressor algorithm showed optimal performance (R2 of 0.982), followed by GEP (R2 of 809 

0.953), using more than 6 geometrical features (e.g., opening diameter, web opening spacing, tee-810 

section height, concrete topping thickness, interaction degree, and number of shear studs above 811 
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web opening). The FE-based database and the reliability analysis were used to quantify prediction 812 

uncertainty at the design level, but per-prediction SD/CI numbers were not presented in the 813 

examined portions of the study. 814 

Lateral torsional buckling resistance, including web-post buckling and web distortional buckling 815 

of slender cellular beam were accurately predicted (R2 of 0.99) by developing ANN formula on 816 

768 training models [106], validated with a 70/15/15 (training/validation/testing) hold-out split. A 817 

7-neuron model was chosen for stability and practicality as overfitting risk increased with more 818 

neurons. The key input parameters were beam dimensions, eccentricity from shear center and 819 

moment gradient factor, and uncertainty was quantified via RMSE(1.2-2.2)/MAE(0.6-1.5)/SD. 820 

Degtyarev [54] proposed an interactive notebook to predict elastic buckling (3645 FE datasets) 821 

and ultimate loads (78390 FE datasets) of steel cellular beams using FE method optimized with 822 

seven ML models (DT, KNN, RF, XGBoost, GBR, LGBoost, CatBoost). The ML models were in 823 

remarkable agreement with the numerical data and surpassed design codes (GBR with an R2 of 824 

0.997). The key influencing factors were beam span length, flange width, and web thickness. The 825 

study used 10-fold CV for validation but did not report uncertainty intervals. Overfitting was 826 

addressed with CV and model comparisons, though reliance solely on FE-generated data meant 827 

external validation was not performed. Shamass et al. [107] implemented a MATLAB-based 828 

graphical interface design tool by utilizing ANN with an overall accuracy of 0.932. This tool 829 

integrated data generation from FE analysis, web-post buckling resistance predictions, and failure 830 

mode classification of perforated steel beams with elliptical web openings. For similar case, Rabi 831 

et al. [108] used a total of 10,764 web-post FE models on high strength steel beams. The dataset 832 

was further employed to train and validate different ML methods (ANN, SVR, and GEP), 833 

achieving R2 values of 0.998, 0.999, 0.977, respectively. These methods were compared with 834 
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analytical model (R2 = 0.982), and a novel design model was proposed. The study used 10-fold CV 835 

and grid search for tuning, and reported detailed statistics including SD and CoV to quantify 836 

uncertainty and compare generalisation. SVR showed the lowest CoV and smallest RMSE in the 837 

reported comparisons. Overfitting was explicitly assessed via CV and training/validation splits. 838 

Degtyarev et al. [61] applied the NGBoost model to predict the probabilistic load-bearing 839 

capacities of laterally restrained cellular beams subjected to uniformly distributed loads, 840 

considering all possible failure modes and their interactions. A database with 14,094 numerical 841 

simulation results was considered, and the model was further interpreted with SHAP method. The 842 

dataset was validated with 10-fold CV (80/20 train–test split) and uncertainty was reported with 843 

CoV (≈ 0.014 across test data). The model significantly outperformed the existing design 844 

provisions with an R2 of 0.999 while offering probabilistic predictions.  845 

Le et al. [41] investigated the prediction capability of two hybrid AI models, GA and PSO, 846 

combination with a modified ANN to determine the buckling loads of 420-MPa high-strength steel 847 

Y-section columns with slenderness ratios of 30-80. The dataset included 57 buckling test results 848 

from previous studies. The input variables were column length, cross-sectional geometry, and 849 

initial geometrical deviation in the x and y directions. Both models performed well, but the PSO 850 

combined with the modified ANN model achieved a higher R2 value of 0.929. Gandomi et al. [17] 851 

used GEP to construct an accurate empirical prediction model that could relate the load capacity 852 

of castellated steel beams (CSB) to their geometrical and mechanical properties. Considering the 853 

nonlinear collapsible characteristics of CSBs, the GEP model and derived equation outperformed 854 

a multivariable linear regression and conventional constitutive models based on first-principle 855 

investigations (e.g., elasticity and plasticity theories). Because of the repetitive nature of beam–856 

column connections, compact and efficient designs are required to reduce fabrication costs while 857 
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maintaining quality. However, the vast number of connection types and loading scenarios makes 858 

obtaining sufficient experimental data from laboratory setups impractical. Abdollahzadeh and 859 

Shabanian [109] addressed this by using both mechanical modeling and an NN-based approach to 860 

simulate the complex hysteresis behavior of beam–column connections with flange plates. The 861 

combined neural network approach accurately captured the narrowed hysteresis behavior, with 862 

RMSE = 0.712 and MAPE = 0.9166. Paral et al. [36] developed a DL-based nonparametric 863 

approach that used continuous wavelet transforms of acceleration signal and 2D CNN for image 864 

recognition to facilitate condition assessment of structural connections. Updated FE models were 865 

used to train the CNN model, which successfully identified damaged locations and measured the 866 

stiffness loss in the damaged beam-column joint. The study considered 80% training and 20% 867 

testing data split for hold-out validation method. 868 

3.2.2 Structural Response Under Lateral Loads 869 

Inelastic dynamic analysis based on modern building codes is widely used to accurately determine 870 

the seismic response of building frames. However, for large-scale structures, such analysis 871 

becomes computationally intensive and difficult to implement. To address this challenge, 872 

predictive models can be employed to achieve sufficiently accurate results with significantly 873 

reduced computational demand, thereby facilitating seismic analysis and optimization of large 874 

structures. Moreover, these models support the design and installation of structural solutions such 875 

as retrofitting, BRBs, and dampers. In a recent study, an AI-enhanced computational method was 876 

proposed by integrating AI with a shear building model, to determine the nonlinear seismic 877 

response of RC frames under displacement controlled quasi-static cyclic loading and dynamic 878 

earthquake ground motions. The database included test results of 272 RC columns. Numerical 879 

results showed reductions of 60% and 62% in RMSE and MAE, respectively, indicating that the 880 
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proposed method outperformed existing physics-based and classical fiber-based models. In 881 

particular, the AI technique accurately used real-world experimental data to evaluate the lateral 882 

stiffness, and the shear model efficiently formulated the structural stiffness matrix [110]. Another 883 

study highlighted the capability of wavelet-weighted least squares-SVM and an FFBP-ANN to 884 

predict the inelastic force- and displacement-based seismic responses of an 18-story RC frame. 885 

The model was trained with design–basis and maximum ground earthquake motions. The study 886 

showed how training sample size (75/150/225) and choice of inputs (first three natural period 887 

combinations) affect accuracy (assessed by MAPE, NRMSE, R2). Uncertainty was expressed via 888 

these error metrics and performance sensitivity, emphasizing robustness across sample sizes to 889 

address overfitting risk. The ANN model achieved slightly higher accuracy (R2 = 0.999 with 225 890 

samples) while exhibiting lower sensitivity compared with integrated SVM model [111]. 891 

Gondaliya et al. [112] applied a probabilistic framework combining classification models (ANN) 892 

and regression models (LASSO regression, RF, and GB) to assess the seismic response of a four-893 

story RC building frame under epistemic uncertainty. The models achieved high accuracy, ranging 894 

from 0.87 to 0.97. To investigate the ultimate load-bearing capacity of inadequate RC frames, six 895 

ML models were developed and validated against experimental and numerical analyses of the 896 

load–displacement behavior of a one-story frame. Among these, RF performed best, achieving an 897 

R2 of 0.870. The most influential input parameters were axial load, rebar diameter, and concrete 898 

strength [113]. As a solution to such inadequate capacity of columns, additional confining pressure 899 

can be provided by utilizing FRP-retrofitting jacketing with internal grouting, which prevents 900 

failure under extreme seismic and blast conditions. Shin et al. [114] proposed a rapid decision-901 

making tool for multi-hazard assessment and mitigation using ANN models capable of rapidly 902 

generating large datasets. The ANN-based models achieved R2 = 0.98 over 78 samples under 903 
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seismic loading and R2 = 0.99 over 83 samples under blast loading. In a follow-up study, Shin et 904 

al. [115] developed hybrid ML models which could optimize the retrofit details within desired 905 

performance by controlling the confinement and stiffness ratios. First, ANN was used to rapidly 906 

generate seismic and blast responses, and then GA was employed to optimize the retrofit details 907 

within multiple objective functions. The ANN model achieved a high regression value of 0.994 908 

using dataset from FE simulation-based ML models. For the model, validation conducted against 909 

full-scale dynamic seismic tests and blast tests of RC frames, and reliability reported via small 910 

simulation variations (<12% for seismic, <3% for blast) compared to experimental tests. 911 

Few studies have incorporated AI methods to determine seismic response of structural steel 912 

building frames. In a recent study, a portal frame was analyzed through four machine learning 913 

models (RF, GB, XGBoost, and DNN) to determine its top floor displacement under lateral load. 914 

RF outperformed others (R2 = 0.987) in predicting displacement, and XGBoost also demonstrated 915 

satisfactory performance in determining failure probability. While not explicitly stating CV, the 916 

study used a holdout test set to validate models. Uncertainty was not reported via SD or CI; instead, 917 

the study presented a battery of performance metrics (e.g., RMSE, MAE, and MAPE) [116]. Later, 918 

RF was hybridized into three variants: RF dragonfly optimization algorithm (RF-DOA), RF 919 

sparrow search algorithm (RF-SSA), and RF whale optimization algorithm (RF-WOA). RF-WOA 920 

outperformed RF-DOA and RF-SSA, offering engineers a valuable tool for designing portal 921 

frames with enhanced features. The study adopted a train/test split validation strategy and 922 

compared among the hybrid models through rank analysis and regression line performance. 923 

Uncertainty was not expressed via SD/CI, but through reliability indices and error/rank metrics. 924 

Influential features include structural and loading variables incorporated into the RF models. 925 

Overfitting risk was mitigated by comparing multiple hybrid configurations and leveraging 926 
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reliability analysis, though no explicit CV was declared [117]. Seismic fragility analysis 927 

traditionally requires sophisticated numerical models and significant computational resources. By 928 

contrast, ML models can efficiently identify high-dimensional input variables and capture complex 929 

nonlinear relationships. In line with this, four ML models—RF, AdaBoost, GB regression tree 930 

(GBRT), and XGBoost—were employed to construct fragility curves based on nonlinear time-931 

history analyses of 616 steel moment frames subjected to 240 ground motions. The models were 932 

trained on 56,479 datapoints, and a graphical user interface was developed using best performing 933 

models (GBRT and XGBoost, both achieving R2 = 0.999). The inputs consisted of structural 934 

descriptors and the first three natural periods, capturing the essential dynamic properties of the 935 

frames. Model training and evaluation used a 70/30 holdout split, with hyperparameter tuning 936 

performed (e.g., number of trees, and learning rate) to enhance generalization. The very large 937 

dataset helped minimize variance and overfitting risk, and the ensemble models were chosen 938 

specifically for their robustness. Feature-importance analysis highlighted the natural periods as 939 

particularly influential in predicting fragility parameters. No independent experimental test dataset 940 

was used, since all data came from simulation. However, the size and diversity of the generated 941 

dataset strengthen external validity. The models were implemented using Scikit-learn v0.22.2 in 942 

Python. [118]. Automatic seismic design was explored by Guan et al. [18], who developed a 943 

nonlinear structural model to simulate the static–dynamic response of steel moment-resisting 944 

frames (SMRF) using a Python-based end-to-end modular platform. Automatic seismic design and 945 

analysis (AutoSDA) was implemented as the first module to generate SMRF designs (such as 946 

section sizes and detailing) for beams, columns, and beam–column connections. The input design 947 

parameters included building characteristics (e.g., number of stories, number of lateral-force-948 

resisting systems, and building dimensions), applicable loads (i.e., dead and live loads on each 949 
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floor), and site conditions (mapped spectral acceleration). OpenSees was then used to create two-950 

dimensional nonlinear structural models based on these designs. This module performs nonlinear 951 

static and dynamic analyses to comprehensively evaluate seismic performance. The model-based 952 

framework and object-oriented programming structure made the platform easily adaptable, 953 

efficient, reliable, and accurate. Zhang et al. [33] developed an LSTM RNN-based DL approach 954 

to model and predict data-driven nonlinear structural seismic responses. Specifically, two schemes 955 

were developed: LSTM-f (full sequence-to-sequence mapping) and LSTM-s (stacked sequence-956 

to-sequence mapping), both incorporating multiple LSTM layers and fully connected layers to 957 

create time-dependent and causal input–output sequence models. The approach was validated 958 

through three case studies: a nonlinear hysteretic system (100 data samples), a six-story 959 

instrumented building with field sensing recordings (23 earthquake records) and a three-story 960 

nonlinear SMRF (548 datasets generated via incremental dynamic analysis). Among the models, 961 

LSTM-s demonstrated superior precision (R2 = 0.99), reliability, computational efficiency, 962 

robustness, and scalability compared with LSTM-f and a classical ANN (MLP). 963 

In seismic design, BRBs and supplemental dampers (e.g., steel plate, viscous and viscoelastic 964 

dampers) are important devices that provide high stiffness, ductility, and energy dissipation to 965 

lateral-force-resisting systems. BRBs, with a stable yielding core and an outer restraining member, 966 

exhibit symmetrical hysteresis and absorb large inelastic deformations, significantly enhancing a 967 

structure’s energy dissipation capacity. Steel dampers likewise provide additional damping by 968 

stiffening the frame, absorbing vibration energy, and reducing seismic loads, which enhances 969 

overall dynamic response and structural resilience. Moreover, the use of BRBs and dampers 970 

together can reduce damage during earthquakes in a synergistic manner. BRBs are focused on 971 

yielding in sacrificial braces, while dampers are responsible for dissipating energy and limiting 972 



49 

 

displacement. In a study on BRB frames, four ML methods (RF, ANN, XGBoost, and AdaBoost) 973 

were applied across six brace–frame configurations using 79,500 FE-based pushover analyses in 974 

OpenSeesPy. Inputs included frame geometry, BRB core area, section properties, and loads. The 975 

dataset was divided into 80/20 train-test splits, repeated across different configurations and for 976 

combined data. No uncertainty intervals were reported; performance was assessed using R2, 977 

RMSE, MAE, and MSE. A graphical interface with the most accurate model (XGBoost, R2 of 978 

0.983-0.993) was developed, and feature importance analysis showed the base-shear to be most 979 

significantly governed by number of stories, followed by BRBs core area. While AdaBoost 980 

achieved perfect R2 in training, its testing accuracy dropped, indicating overfitting. XGBoost 981 

provided the most balanced performance, reducing overfitting risk [121]. Conventional concentric 982 

braces face several limitations, including low ductility, asymmetric behavior under tension and 983 

compression, strength deterioration, and stiffness degradation. To address these limitations, 984 

AlHamaydeh et al. [31] combined an FFBP with NARX-ANN to predict the nonlinear hysteric 985 

behavior of BRBs under cyclic loading with 4 full-scale BRB specimens. Normalized brace forces 986 

during load reversals, as a response to normalized time-delayed inputs to the NARX-ANN, were 987 

denormalized using the auxiliary FFBP-ANN. Brace deformation was used as the input variable, 988 

while brace forces were set as the output variable in the proposed model. The model captured both 989 

linear deformations with corresponding linear forces and nonlinear deflections with corresponding 990 

nonlinear forces, with predictions closely matching experimental results (accuracy between 0.969 991 

to 0.981). The ANN-based model outperformed the traditional FE modeling approach for the 992 

following reasons: (i) it established closed-form relationships between the input and response data; 993 

(ii) it learned and adapted to different types of data, (iii) it formed a simple structure, which 994 

facilitated reconfiguration and ensured significantly faster simulation runs. Sun et al. [213] applied 995 
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ML methods to perform seismic fragility analysis of large-scale steel BRBs. A database of 9,000 996 

nonlinear time-history simulations was created to generate training and testing data. Input features 997 

included ground motion intensity measures, BRB design parameters and structural responses. 998 

Models were validated with 10-fold CV, achieving good generalization without severe overfitting. 999 

Uncertainty was quantified through fragility curves with confidence bounds, while peak values for 1000 

predictive metrics such as R2 (0.986) and RMSE (0.056) were also reported for XGBoost model. 1001 

The large synthetic dataset and CV approach reduced overfitting risk, though no real-world 1002 

external testing was performed. Tamimi et al. [214] combined FE modeling, ANN, and Monte 1003 

Carlo simulation to evaluate the seismic reliability of BRBs. Experimental tests (5 specimens) 1004 

validated the FE model, which was then used to generate simulation data. Sensitivity indices 1005 

revealed that gap size, friction coefficient, and steel core thickness were the most influential 1006 

parameters. A bias factor distribution (mean = 0.99, SD = 0.038) quantified prediction uncertainty. 1007 

Overfitting was mitigated by filtering non-influential variables before ANN training and using 1008 

Monte Carlo for robustness. Although k-fold CV was not performed, the study ensured 1009 

generalization by integrating ANN with reliability-based simulations. Anand et al. [215] developed 1010 

ML models to predict seismic engineering demand parameters (maximum inter story drift, residual 1011 

drift, and maximum and cumulative ductility) of BRBs. A database of 16,694 nonlinear time-1012 

history analyses records of BRB frames was generated from OpenSees models. Nine ML 1013 

algorithms were tested with hyperparameter tuning via 10-fold CV on the training set, followed 1014 

by evaluation on the test set. XGBoost emerged as the best-performing model, with peak R2 values 1015 

of 0.963 (maximum inter story drift), 0.928 (residual drift), 0.968 (maximum ductility), and 0.983 1016 

(cumulative ductility). Influential parameters identified by SHAP included spectral accelerations 1017 

at 1–5s, Arias intensity, and peak ground velocity. Overfitting was minimized through CV and the 1018 
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large dataset, but external real-world validation was not performed. Sagheer et al. [216] developed 1019 

a deep learning framework that combines ResNet for classifying BRB specimen types and LSTM 1020 

for predicting their cyclic hysteretic response. The study used experimental data from six 1021 

specimens (threaded, shaved, and notched core bars), expanded into thousands of training 1022 

sequences by resampling and segmentation. An 80/20 split was used for validation, supplemented 1023 

by dynamic hyperparameter tuning. ResNet classification reached up to 99–100% accuracy with 1024 

R2 ≈ 0.993, while LSTM achieved force prediction–index of agreement values ranging from 0.979 1025 

to 0.999, demonstrating very high fidelity. Overfitting was mitigated using dropout, pooling layers, 1026 

and sequence augmentation, though the study lacked external test data beyond the same 1027 

experimental campaign. The results showed that deep learning models provided accurate and 1028 

efficient alternatives to computationally expensive non-linear FE analyses simulations. 1029 

Mohammadi et al. [217] investigated ANN-based models to estimate seismic demands of BRBs 1030 

subjected to pulse-like ground motions. Using several hundred nonlinear dynamic analyses, the 1031 

study trained ANNs to predict maximum inter-storey and global drift ratios as key seismic demand 1032 

parameters. Validation relied on an 80/20 train–test split, with no k-fold CV. The best ANN models 1033 

achieved peak R2 values of 0.96 for maximum inter-storey drift ratio and 0.95 for global drift ratio 1034 

in training, with corresponding test values of 0.94 and 0.93. Although no uncertainty intervals 1035 

were provided, the performance metrics (R2, RMSE, MAE) indicated strong predictive accuracy. 1036 

Overfitting was reduced by optimizing ANN architecture and testing on separate holdout datasets, 1037 

but lack of external data remained a limitation. 1038 

For dampers, a recent study proposed a fast-forward approach to analyze seismic vulnerability 1039 

through FE analysis, structural design software, and ANN, with fluid viscous dampers in varied 1040 

locations of a building frame [119]. In another study, two crucial properties of a steel plate damper, 1041 
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stiffness and slenderness factor, were predicted using response surface methodology (RSM), ANN, 1042 

and evolutionary polynomial regression (EPR). The study considered elastic-inelastic-plastic 1043 

buckling modes and flexural, shear, and flexural–shear failure mechanism of concentrically braced 1044 

frames, with 33 geometric property entries. EPR showed the best performance, with R2 of 0.999 1045 

for slenderness and 1.000 for stiffness. Validation was conducted by splitting dataset into training 1046 

and validation sets with multiple error metrics, while uncertainty was expressed through 1047 

descriptive statistics and error values [120]. Onyelowe et al. [218] presented a hybrid framework 1048 

combining response surface methodology and ML models to predict the seismic performance of 1049 

steel plate dampers in concentrically braced frames. Input features included geometric and material 1050 

properties of dampers. The study used a train–test validation approach, where ANN outperformed 1051 

response surface methodology and other ML methods, achieving R2 values up to 0.99 with low 1052 

RMSE and MAE. Although uncertainty intervals were not explicitly reported, results highlighted 1053 

ANN’s superior predictive ability. Overfitting was addressed by benchmarking different methods, 1054 

though dataset size and lack of broad external testing limited generalization. Chen and Chien [219] 1055 

trained MLP and auto-regressive model with exogenous controllers for seismic response control 1056 

and validated their performance through both numerical simulations and shake-table experiments 1057 

on a single-degree-of-freedom specimen. Validation combined offline train/validation splits from 1058 

excitation data and real-time experimental closed-loop tests. The paper reports objective metrics 1059 

averaged across records (objective functions, RMSE) but does not report R2 for accuracy and 1060 

SD/CIs for uncertainty. Experimental validation was a strong mitigation against overfitting; auto-1061 

regressive model with exogenous controllers performed faster and with similar accuracy to MLP 1062 

in tests. Shao and Andrawes [220] trained ANNs to predict the maximum displacement of a single-1063 

degree-of-freedom reinforced concrete structure with super-elastic dampers using a large 1064 
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simulated dataset generated in OpenSees, consisting of approximately 109,000 samples derived 1065 

from 200 ground motions. The validation method was a hold-out split (70% training, 15% 1066 

validation, and 15% testing), and generalization was further tested on separate ground motions 1067 

whose parameter values differed from those in the training set. Reported uncertainty was given in 1068 

terms of RMSE and average error (best performance: RMSE ≈ 0.1012, average error ≈ 6.55% for 1069 

the 200-ground motion case). The most influential parameters were spectral acceleration and peak 1070 

ground acceleration. Hu et al. [220] built an explainable probabilistic buckling-stress predictor by 1071 

training ML models (ANN performing best: RMSE ≈ 0.0094, R2 ≈ 0.9952) on an FE-generated 1072 

database of ~32,400 cases. They validated FE against experiments, used Latin hypercube sampling 1073 

to propagate input uncertainties, and produced probability densities and global sensitivity analysis 1074 

indices which showed yield-stress and initial-imperfection to be the dominant uncertainty drivers. 1075 

Validation relied on held-out testing and distributional comparisons; ensembles (RF/XGBoost) 1076 

and the large database helped reduce overfitting risk. Bae et al. [122] investigated a double-coke 1077 

damper with multiple strips based on a modified radius-cut section. In this configuration, 1078 

increasing numbers of plastic hinges on a single strip increased the ductility of the entire damper, 1079 

producing a stable hysteresis diagram. Computations based on the proposed equation (for damage 1080 

index determination using parameters such as maximum strength and effective stiffness), 1081 

experimental results, and ML-derived predictions were found to be in close agreement. The fatigue 1082 

performance of the damper was assessed through a constant cyclic loading test on a specimen. The 1083 

analyses revealed a stable load–displacement hysteresis graph, a shear resistance exceeding the 1084 

theoretical value, and an increase in ductility or fractural strength. A low-cycle fatigue model was 1085 

developed using a linear regression algorithm based on ML to estimate the damage index. The 1086 

damage point was estimated based on the maximum strain and effective stiffness variation. The 1087 
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number of periodic failures was found to be in excellent agreement with the experimental results. 1088 

The model achieved over 0.90 accuracy and RMSE of 0.1 over 6 different specimens in predicting 1089 

damage points compared with test data. 1090 

3.3 Environmental and Economic Impact Analysis 1091 

Conventional LCA and lifecycle cost (LCC) analysis are the two primary approaches for 1092 

evaluating the environmental and economic feasibility of building construction. However, these 1093 

methods often rely on assumptions—such as a building lifespan of more than 50 years and the 1094 

exclusion of maintenance costs—that may result in inaccuracies in practical applications. ML 1095 

techniques offer a more reliable alternative by predicting effective lifespans and estimating costs 1096 

while accounting for variability in environmental factors (e.g., material manufacturing, 1097 

transportation, construction, operation and maintenance, demolition, and waste disposal) and 1098 

economic conditions (e.g., operational and maintenance costs). Ji and Yi [123] collected 1,812,700 1099 

records related to construction and demolition processes to analyze the lifespan of buildings using 1100 

modern prediction models, including linear regression, XGBoost, LGBoost, and DNN. For the 1101 

study area, the average lifespans of RC-structured and brick-structured buildings were found to be 1102 

22.8- and 29.3-y, respectively, significantly lower than the assumed span of 50-y. The DNN model 1103 

achieved the highest accuracy (R2 = 0.955). Onyelowe et al. [68] extensively explored the mix 1104 

design of fly ash-incorporated concrete using statistical analysis, linear regression, and AI to 1105 

predict the environmental impact. The database included 112 concrete samples, with three input 1106 

variables: fly ash-to-binder ratio, FA (sand)-to-binder ratio, and CA-to-binder ratio. ANN achieved 1107 

the best accuracy (R2 = 0.991), identifying the aggregate-binder ratio as the most influential 1108 

parameter. An increase in both the fly ash-to-binder ratio and the aggregate-to-binder ratio was 1109 

found to reduce the carbon footprint. Validation was conducted using a holdout split (90/22– 1110 
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training/validation); no k-fold or nested CV was reported. Uncertainty was presented via SDs of 1111 

inputs/outputs and residual diagnostics — the study reported residual SD bands and average error 1112 

percentages; explicit CIs were not provided. Koyamparambath et al. [204] processed 980 1113 

datapoints (784 for training) from environmental production declarations data to predict 1114 

environmental impacts for construction products with 7 vital information (e.g., name/description, 1115 

location, 3 classification levels, functional unit, and values of selected impacts category). The 1116 

study employed RF to predict environmental impacts such as photochemical ozone creation 1117 

potential (R2 = 0.70), abiotic depletion potential for fossil resources (R2 = 0.77), global warming 1118 

potential (R2 = 0.81), and acidification potential (R2 = 0.68). Sharif et al. [205] developed surrogate 1119 

models to predict energy consumption using ANN with 463 renovation scenarios (325 training and 1120 

138 testing datasets) generated from simulation-based multi-objective optimization. The models 1121 

achieved strong predictive accuracy with lower error rates (MSE from 0.016 to 0.124), confirming 1122 

their reliability in forecasting total energy consumption, LCC, and LCA. Another recent study 1123 

from Baehr et al. [206] predicted life cycle environmental impacts filtering 5251 datasets (60% for 1124 

training, 20% for validation, and 20% for testing) integrating ML methods (ANN, residual GPR, 1125 

and ANN-residual GPR). ANN-GPR hybrid models produced most accurate results (R2 = 0.95) 1126 

with input parameters (e.g., environmental production declarations’ attributes, product class, 1127 

functional unit/reference flow, embodied fossil/renewable energy, and recycled contents). 1128 

Askarinejad and Behnia [207] implemented ML algorithms (DT, polynomial regression, SVR, and 1129 

elastic-net) as early design tools using several high-rise buildings (varying heights up to 100 1130 

floors), four different types of construction materials (concrete, steel, hybrid and timber) and 1131 

concrete with varied strength (32 to 90 MPa). DT outperformed other models with an accuracy of 1132 
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0.99 (MAE of 13 and MSE of 452). In this study, validation was carried out via hold-out splits, 1133 

and uncertainty was not quantified beyond overfitting concerns. 1134 

3.4 Summary on Comparative Structural Analysis with AI models 1135 

AI techniques, such as ANN, GEP, XGBoost, GB, RF, BR, CNN, and emerging methods like 1136 

MEP, SVR, and LGBoost have demonstrated high efficiency and robustness in predicting concrete 1137 

mix design–driven mechanical properties, durability, structural seismic response, and fire-induced 1138 

effects. As shown in Table 1, NN and their optimized variants are among the most widely applied 1139 

models across these domains because they can capture highly complex nonlinear structural 1140 

behavior, predict strength and durability properties with high accuracy, and enable rapid post-1141 

earthquake assessments that improve structural safety [124]. They also learn directly from 1142 

experimental data, offer computational efficiency by generalizing new fire scenarios and structural 1143 

configurations with diverse training datasets [125], and, in their optimized versions, provide 1144 

quantifiable and transparent insights that improve the reliability of predictions [126]. In addition 1145 

to NNs, boosting methods are also widely adopted because of their ability to sequentially correct 1146 

errors from weaker models. These methods effectively capture complex relationships between 1147 

seismic parameters and structural response, efficiently handle data variability, reduce errors in 1148 

predicting damage states compared to standalone models, avoid bias to generate more stable and 1149 

generalizable predictions, and improve precision and recall in classification tasks [127]. For 1150 

durability-related studies, tree-based algorithms have been particularly effective. In the context of 1151 

seismic response, they can manage complex nonlinear interactions among structural parameters, 1152 

provide interpretable results through visualizations, and process large input datasets with relatively 1153 

low computational demand [128]. For durability analyses, they can capture interactions between 1154 

environmental conditions and material properties, identify the most critical factors contributing to 1155 
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concrete deterioration, and handle diverse datasets with limited sensitivity to outliers [129]. 1156 

However, they remain underutilized for evaluating the mechanical properties of structural 1157 

members. GA and its extensions (GP and GEP) have been more commonly applied to predicting 1158 

the strength properties of concrete. GA offers a simple yet robust encoding process, GP improves 1159 

interpretability through flexible expression trees, and GEP combines the strengths of both by 1160 

capturing complex nonlinear relationships while maintaining interpretable formulations that 1161 

closely align with experimental data [130]. Among the AI methods in Table 1, deep learning–1162 

based algorithms remain less explored across most areas of structural engineering, although they 1163 

show considerable promise in applications such as carbon footprint estimation and economic 1164 

assessment. SVM and its variants (e.g., SVR) have also demonstrated consistent robustness and 1165 

accuracy across different applications. Table 2 presents the comparative performance of these AI 1166 

techniques along with their field-specific advantages and limitations. On average, accuracy values 1167 

of about 0.80 were observed for NN, GA, tree-based and boosting algorithms, while optimized or 1168 

hybridized versions of AI algorithms achieved notably higher prediction accuracy, averaging 1169 

around 0.90.  1170 

As a continuation of Tables 1 and 2, Table 3 presents comparative metadata with an overview of 1171 

dataset size, features, validation methods, metrics, and external test indications for each AI 1172 

integrated field. From the reviewed studies, the most used feature sets included material 1173 

composition and mix proportions (cement, water, aggregates, admixtures, and age) for concrete 1174 

strength and durability, extended by geometric and loading parameters in fire-induced and 1175 

mechanical property analyses, while seismic response models predominantly relied on natural 1176 

periods and structural descriptors. In terms of validation methods, the dominant approaches were 1177 

holdout splits (typically training/testing of 70/30, 75/25, or 80/20) and 10-fold CV. The most 1178 
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frequently reported metrics were R2, RMSE, and MAE, with occasional use of MAPE, and 1179 

classification indices (basic introduction in Section 2.9.1). For external test indication, most studies 1180 

validated models only on internal datasets, with comparatively fewer works employing 1181 

independent experimental databases or literature-based test comparisons for external validation. 1182 

According to field-based data shown in Table 3, Table 4 further presents commonly used software 1183 

packages and libraries in the reviewed AI integrated fields. Across the reviewed studies, 1184 

MATLAB, Python, and Scikit-learn are found to be the most frequently used tools, often serving 1185 

as core environments for model development and data analysis. TensorFlow/Keras, XGBoost, and 1186 

SHAP are also common for deep learning, boosting, and explainability tasks, while specialized 1187 

tools like OpenSees, GeneXproTools, and EPR Toolkits appear in domain-specific applications. 1188 
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Table 1. Accuracy of prominently used AI-algorithms in structural engineering based on the 

coefficient of determination (R2). 
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Mix Design-Compressive Strength 0.92 0.89 0.96 0.97 0.95  [63,66-68,131] 

Tensile Strength 0.95    0.84-0.98 0.98 [56,74-76] 

Flexural Strength 0.98  0.81-0.98 0.99   [71,72,132,133] 

Uniaxial-Triaxial Compression   0.99  0.92-0.97  [17,47,134] 

Self-healing Ability   0.94 0.9-0.97 0.96  [20,79-81] 
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Moisture Exposure 0.95      [82] 

Corrosion of Concrete   0.98    [83] 

Chloride Resistance 0.85   0.94* 0.96 0.89 [26,84,135,136] 

Depth of Wear 0.99  0.97-0.99 0.99   [50,137-139] 

Frost Durability/Resistance 0.96   0.95 0.96 0.98 [19,85,140,141,142] 

Impermeability 0.93*   0.95 0.97-0.99* 0.97 [86,143,144] 

Carbonation Penetration 0.98-0.99*  0.88  0.98  [87,145-147] 
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Thermal Spalling of FRP-based 

Concrete 
1.00 0.91  0.90 0.90-0.97  [29,51,89,90] 

Fire-induced Spalling of Reinforced 

Concrete Member 
0.99 0.86 0.94  0.96  [21,52,148-150] 

Buckling & Thermal Spalling of 

Composite Member 
0.97-0.99  0.82  0.91-0.99  [91,93,97,151,152] 

Buckling & Progressive Collapse of 

Steel Frame 
1.00 0.96 0.90   0.99 [58,60,153,154] 

Concrete-Steel Bond Strength    0.95 0.92-97  [98,155,156] 
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s Shear Resistance of RC Member 0.89  0.89 0.95  0.95* [99,157-159] 

Capacity of Masonry and RC Wall 0.95-0.99   0.8-0.94 0.97  [37,100,160-164] 

Safety Criteria of Retaining Wall 0.97    0.99 1.00 [101,165,166] 

Compression on Composite Column 0.80-0.99    0.98-0.99*  [103,104,167-169] 

Shear Capacity of Composite Beam 0.93-0.99  0.95    [105,170] 

Shear Capacity of Composite Slab 0.89    0.96-0.99 0.96 [172-175] 

Buckling of Steel Beam 0.93-0.99  0.97   0.99 [106-108,176] 

Buckling of Steel Column 0.93*-0.99      [41,177,178] 

Behavior of Column-Beam Joint 0.99 1.00  0.87 0.91  [36,62,179,180] 
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Load-Deflection Response of RC 

Frame 
0.87-0.99 0.92  0.8-0.97 0.98 0.98 [111-113,181,182] 

Deformation-based Fragility of 

Steel Frame 
0.96-0.98   0.99 0.96-0.99 0.96-0.98* [116,118,178,183-185] 

Nonlinear Hysteretic Behavior of 

Retrofitting Systems 
0.94-0.95   0.96 0.99  [27,120,186,187] 

Section 3.3 Analysis 0.97 0.96     [68,123] 

*Optimized or hybridized versions of an AI method. 

Note: Peak accuracy values are considered screening R2 values between 0.80 to 1.00 from Section 3. Optimized/hybrid models offering such 
peak accuracies are also added in this table. 
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Table 2. Summary of different AI methods across operations comparing performances, advantages, and limitations. 
S

e
c
ti

o
n

s 

Reviewed AI 

Techniques 

Performance based on the coefficient of 

determination (R2) 
Advantages Limitations 

2.2 NN: ANN, 

RNN, KNN 

Accuracy > 0.80 across all study fields • Models highly complex nonlinear structural behavior 

• Learns directly from experimental data. 

• Computationally efficient in predicting new fire scenarios and 

structural configurations using diverse datasets 

• Optimized ANN provides quantifiable and transparent insights, 

improving reliability 

• Struggles to generalize across 

varied conditions, particularly 

for concrete durability and 

seismic response 

2.3 DL: DNN, 

CNN 

Accuracy > 0.85 for mix design, fire-induced effects, 

beam–column joints, seismic response of RC frames, 

and lifecycle analysis 

• Captures complex nonlinear relationships, enabling accurate prediction 

of fire-induced effects, seismic response, and beam–column joint 

behavior 

• Supports life-cycle analysis by identifying hidden patterns in RC frame 

performance and durability. 

• Sensitive to noise and 

computationally intensive, 

limiting practical deployment in 

structural assessment 

2.5 GA: GP, GEP, 

MEP 

R2 = 0.81–0.99 (concrete strength), 0.97–0.992 

(durability), 0.823–0.94 (fire-induced effects), 0.89–

0.97 (shear resistance and buckling of RC members) 

• Widely used for predicting strength properties of concrete. 

• GA offers a simple yet robust encoding process 

• GP improves GA with interpretable, flexible expression trees 

• GEP combines GA and GP, capturing nonlinear relationships with 

interpretable formulas closely matching experimental data 

• Less commonly applied to 

seismic response and concrete 

durability 

2.7 Tree-based 

Algorithms 

R2 > 0.90 for concrete strength; > 0.94 for durability; 

0.87–0.99 for seismic response 

• Manages intricate non-linear interactions, provides transparent 

visualization, and processes wide input data influencing seismic 

performance. 

• Handles large and diverse input datasets for seismic performance, 

identifies key factors influencing concrete durability while remaining 

robust to outliers 

• Underexplored for evaluating 

the mechanical properties of 

structural members 

Boosting 

Methods 

Accuracy > 0.91 across most domains • Sequentially corrects errors from weaker models.  

• Captures complex relationships between seismic parameters and 

structural response. 

• Handles variability efficiently while reducing errors in damage 

prediction  

• Avoids bias, improving generalization and stability 

• Enhances precision and recall in classification tasks 

• High computational cost and 

sensitivity to input features, 

particularly for predicting 

mechanical, fire-induced, and 

durability-related concrete 

responses 

2.8 SVM, SVR Specifically, better results in determining concrete 

tensile strength: R2 = 0.98 (concrete tensile strength), 

0.89–0.98 (durability), 0.95–0.96 (RC shear 

resistance), 0.99 (steel beam buckling), 0.98 (RC 

seismic response), 0.96–0.98 (steel seismic response) 

• Demonstrates high accuracy and robustness across multiple areas • Limited application to concrete 

properties, fire effects, and 

lifecycle analysis due to 

challenges in handling complex 

nonlinearities and 

interpretability issues 
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Table 3. Comparative metadata (field-based tasks, data size, features, validation methods, metrics, external test validation) 

across reviewed AI integrated fields 

Fields Tasks 

Data

set 

Size 

Features Validation Methods Metrics 
External Test 

Indication 
References 
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Mix Design-

Compressive 

Strength 

432 
6 (cement, FA, CA, water, superplasticizer, 

SF) 
NS MAE, RMSE, R2 No external dataset 

Nafees et al. 

[66] 

Tensile 

Strength 
NS 

8–9 (cement, slag, fly ash, water, 

superplasticizer, CA, FA, age) 

Hyperparameter tuning (random 

search), no explicit CV 
RMSE, R2 No external dataset 

Nguyen et al. 

[56] 

Flexural 

Strength 
200 

~5–7 (beam width, depth, reinforcement ratio, 

FRP parameters) 
Holdout (train/validation split) R2, MAE No external dataset 

Khan et al. 

[46] 

Uniaxial-

Triaxial 

Compression 

1298 

6 (crushing strength, height–width ratio, shape, 

Pearson correlation coefficient, stress ratio, 

loading frequency) 

Data cleaning/averaging, no 

explicit CV 
R2 (0.75–0.915) 

No external dataset 

(literature-based) 

Son & Yang 

[47] 

Self-healing 

Ability 
797 

22 (e.g., bacteria type, healing environment, 

cement type, crack width, healing time) 
10-fold CV + grid search R2 (0.956), RMSE No external dataset 

Huang et al.  

[79] 
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Moisture 

Exposure 
429 

8–10 inputs (Geometric, mechanical, and 

environmental)  

Train/test split (regression), 

Stratified 10-fold CV 

(classification) 

R2, MSE, RMSE, 

MAE; classification 

metrics 

Yes – held-out test set 

(no independent external 

dataset) 

Baghaei and 

Hadigheh 

[82] 

Corrosion of 

Concrete 
256 Chemical: time, pH; Biological: time 50/50 split (train/test) MSE, R2 

No external dataset 

(internal only) 

Sabour et al. 

[83] 

Chloride 

Resistance 

30+/

study 

Water/cement, thickness, aggregate fraction, 

temperature/humidity ratios, exposure time 

ratio 

Train/validation; scikit-learn DT 

defaults; k-fold mentioned 

Accuracy %, RMSE, 

errors 

Yes – compared with 

external test results from 

literature 

XuanRui et 

al. [84] 

Depth of 

Wear 
216 

Cement, fly ash, water, aggregates, plasticizer, 

age/time, curing/test 

Train/validation split + external 

validation framework 
R2, MAE, RMSE 

Yes – external validation 

criteria applied 

Khan et al. 

[50] 

Frost 

Durability/Re

sistance 

94 

10 inputs (cement, water, sand, natural and 

recycled CA, fly ash, recycled CA replacement 

ratio, water absorption, RCA treatment 

method, air-entraining type) 

75/25 train/test split R2, RMSE, MAE No (train/test only) 

Esmaeili & 

Sarkhani 

[141] 

Impermeabilit

y 
417 

≈10 (water, water–cement ratio, cement, 

aggregates, rubber size, cycles) 
347 train / 70 test split R2, RMSE, MAE 

No independent dataset 

(literature split only) 

Huang et al. 

[86] 

Carbonation 

Penetration 
532 

6 inputs (cement, FA, water–binder ratio, 

CO₂%, relative humidity, exposure time) 
70/15/15 split + 10-fold CV MAE, RMSE, R2 

Yes – held-out test set 

and CV folds 
Kazemi [87] 
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Thermal 

Spalling of 

FRP-based 

Concrete 

531 

17 inputs (e.g., mix proportions, moisture, 

specimen size, temperature, heating rate, 

fibers, silica fume) 

K-fold CV + supplementary test 
Accuracy, F1, 

precision/recall 

Yes – 36 experimental 

tests + expanded dataset 
Liu et al. [89] 

Fire-induced 

Spalling of 

Reinforced 

Concrete 

Member 

100+ 

Concrete material and mix proportions, 

geometric and configuration/size features, and 

those relating to applied loading, intensity, 

heating rate, and exposure duration 

Database validation vs test series 

(not k-fold) 

Comparisons with 

experimental 

outcomes 

Yes – multiple 

independent fire test 

campaigns 

Naser & 

Seitllari [21] 

Buckling & 

Thermal 

Spalling of 

Composite 

Member 

15,2

00 

7 inputs (cross-sectional dimensions, 

thicknesses of concrete cover for steel section 

and rebars, steel area ratio, effective length, 

concrete grade, steel grade, and heating time) 

80/20 train-test split 
R2, MAE, SD vs. 

analytical eqns 

15,200 specimens 

(synthetic FD model) 
Li et al. [93] 

Buckling & 

Progressive 

Collapse of 

Steel Frame 

NS 

Thermal/mechanical variables (fire 

temperature, maximum steel temperature, load 

Ratio, critical temperature based on the 

Eurocode) 

80/20 train-test split 
Accuracy, classifier 

comparison 

Monte Carlo + random 

sampling (case study 

2×2 building) 

Fu [60] 

Concrete-

Steel Bond 

Strength 

316 

7 inputs (compressive strength under elevated 

temperature, testing age, surface temperature at 

failure, thermal saturation ratio Δ, length–

diameter ratio, cover–diameter ratio, total 

volume of fiber if used) 

Train-test split (no explicit k-

fold) 

MAE, RMSE, R2, 

CoV 
316 experimental tests 

Al Hamd & 

Warren [98] 
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Shear 

Resistance of 

RC Member 

466 
Geometrical and mechanical variables 

(beam/stirrup properties) 

Train/validation within dataset, 

sensitivity analysis 

Error metrics vs. 

codes 

Validated against 

experimental database 

Gandomi et 

al. [99] 

Capacity of 

Masonry and 

RC Wall 

NS 
Masonry & FRM mechanical/geometrical 

variables 

Trained on lab results (no CV 

specified) 

Accuracy/precision 

qualitatively 

Yes – calibrated vs lab 

tests 

Cascardi et al. 

[100] 

Safety 

Criteria of 

Retaining 

Wall 

NS 
Cohesion, angle of shearing resistance, angle 

of wall friction, and unit weight 
10-fold CV 

Reliability index 

(first-order second 

moment method) 

Compared to reference 

reliability values 

Mishra et al. 

[101] 

Compression 

on Composite 

Column 

NS Geometrical and material properties 
ANN training/validation (no CV 

info in snippet) 

Comparative 

performance (R2, 

RMSE likely) 

Yes – experimental DB 
Lemonis et al. 

[104] 

Shear 

Capacity of 

Composite 

Beam 

NS 

6+ geometrical/interaction vars (e.g., opening 

diameter, web opening spacing, tee-section 

height, concrete topping thickness, interaction 

degree, number of shear studs above web 

opening) 

Comparative training, reliability 

analysis 

Performance 

metrics, safety 

factors (1.25–1.26) 

FE-based, compared 

with literature 

Ferreira et al. 

[105] 

Shear 

Capacity of 

Composite 

Slab 

273 

≈8–10 (e.g., slab depth, slab side length, 

flexural reinforcement ratio, FRP 

type/properties, concrete compressive strength, 

loading type) 

10-fold CV R2, RMSE, MAE 

External: dataset 

compiled from multiple 

independent experiments 

Shen and 

Liang [172] 
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Buckling of 

Steel Beam 
9744 

≈10 geometric features (e.g., height, web 

thickness, opening height/width/radius) 

Holdout (train/validation/test 

splits) 

R2, RMSE, MAE, 

SD/Variation, a20-

index 

No external experiments 

(FE model vs ANN) 

Shamass et al. 

[177] 

Buckling of 

Steel Column 

10,7

64 

Multiple geometric & material grades (e.g., 

web thickness, web-post width, opening 

height, steel grade) 

10-fold CV and 

train/validation/test splits 

R2, RMSE, MAE, 

SD, CoV 

FE model vs Euro-Code 

3 (no experimental set) 

Rabi et al. 

[108] 

Behavior of 

Column-

Beam Joint 

387 

11 (cross-section dimensions (top/bottom 

flange widths & thicknesses, max/min section 

heights, web thickness), elastic modulus, 

column height and corrosion time for corroded 

cases) 

Holdout (train/validation/test) R2, RMSE 
No external experiments 

(analytical dataset) 

Nguyen et al. 

[179] 

S
e
c
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o
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Load-

Deflection 

Response of 

RC Frame 

300 

First three natural periods (T1-T3) and 

combinations thereof; natural periods derived 

from generated frames 

Holdout (varying train/test sizes) MAPE, NRMSE, R2 
Synthetic (OpenSees) – 

no external experiments 

Gharehbaghi 

et al. [111] 

Deformation-

based 

Fragility of 

Steel Frame 

56,4

79 

First three natural periods and other structural 

descriptors; inputs chosen to build 

Probabilistic Seismic Demand Models 

(PSDMs) 

Holdout 70/30 R2, RMSE, MAPE 

Large synthetic dataset 

built from extensive 

nonlinear analyses (616 

frames × 240 motions) 

Nguyen et al. 

[118] 

Nonlinear 

Hysteretic 

Behavior of 

Retrofitting 

Systems 

33 

4 geometric properties of damper (e.g., plate 

thickness, plate dimensions, and the number of 

plates used.) 

Holdout (train/val splits) R2, RMSE No external validation 
Onyelowe et 

al. [120] 

Section 3.3 Life Cycle 

Carbon Assessment 
NS 

Encoded text/categorical environmental 

production declaration features 
Holdout (80/20) R2 

20% environmental 

production declaration as 

external holdout 

Koyamparam

bath et al. 

[204] 

Note: NS refers to not specified value in a certain study. Similar studies in certain fields may include such values which are not significant for this table. 

 1191 

Table 4. Software packages and libraries commonly used in the reviewed studies 

AI Integrated Reviewed Study Fields Software Packages / Libraries Mentioned 

Section 3.1.1 | Concrete Strength Properties 
MATLAB [66, 46], Python [66, 46, 47], sci-kit learn [56, 47, 79], XGBoost [56], SHAP for explainability [46], ML ensemble methods [47], 

DNN frameworks (TensorFlow/Keras/Pytorch) [79], Grid Search Algorithm (GSA) [79] 

Section 3.1.2 | Durability of Concrete 
MATLAB [82], Python [82], sci-kit learn [50,84], SHAP for explainability [50], Bayesian Optimisation [82], custom C++ for GP/MEP [83], 

decision tree defaults [84], custom SVR with metaheuristic implementations [86,141], Alyuda NeuroIntelligence [87], hybrid ANN [87] 

Section 3.1.2 | Fire–Induced Effect MATLAB [93], Python [60,89], sci-kit learn [89, 98], XGBoost [89], TensorFlow [60, 98], Keras [60] 

Section 3.2.1 | Mechanical Properties of 

Sections 
MATLAB [172, 177], Python, sci-kit learn [108], GeneXproTools [108] 

Section 3.2.2 | Seismic Response Scikit-learn [118], FE Modeling [111], OpenSees [111], EPR Toolkits [120] 

Section 3.3    | Life Cycle Carbon Assessment Python (Selenium, SQLite) [204] 

1192 
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4 Challenges and Future Directions in AI methods 1193 

Building on the future opportunities for industrial integration of AI, the prediction accuracy of AI 1194 

models at the laboratory scale can be observed from the previous section and the demonstrations 1195 

in Tables 1 and 2. Extensive research has applied AI methods to evaluate the properties of concrete 1196 

specimens as well as RC, composite, and steel structural members and frames. However, only 1197 

limited studies have addressed areas such as self-healing ability and concrete–steel bonding under 1198 

severe fire conditions. Similarly, seismic response analysis of steel frames with bracings, shear 1199 

capacity of RC members, and failure modes of column–beam connections have received 1200 

comparatively less attention than other AI applications. Fire-induced effects on BRBs, column–1201 

beam connections, and LCA also remain underexplored. Nevertheless, significant potential exists 1202 

for optimized and hybridized variants of widely used algorithms, such as NN and GA-based, tree-1203 

based models, and boosting techniques. Sections 4.1, 4.2, and 4.3 discuss the industrial 1204 

applications of AI, the limitations observed in laboratory scale studies, and future 1205 

recommendations for AI integration in structural engineering. 1206 

4.1 Industrial Implications, Barriers to Adoption and Potential for Implementations 1207 

 For construction projects that rely on accurately evaluating environmental factors (e.g., seismic 1208 

events), risks, and costs, AI offers significant practical advantages [197]. ML is increasingly 1209 

applied in big data analytics for risk detection and assessment, and ML models are also used in 1210 

robotics and automation. For instance, aerial drones and robotic vehicles are frequently deployed 1211 

on survey sites to generate 3D models of building structures. AI algorithms further support on-site 1212 

problem identification and provide strategic solutions that enhance efficiency. In construction 1213 

automation, AI is also applied to improve workers safety through smart wearable technologies that 1214 

monitor movement, activities, and posture, helping to prevent collisions between workers and 1215 



65 

 

heavy equipment [198]. Despite these benefits, several barriers hinder AI adoption in the 1216 

construction industry. These include the fragmented nature of the industry, challenging 1217 

environmental conditions on-site, and non-standardized building designs, all of which complicate 1218 

data collection, integration, and standardization [199]. Additional constraints include limited 1219 

technical skills, inappropriate business processes, and insufficient knowledge, making AI adoption 1220 

time-consuming, costly, and prone to errors [200,201]. Moreover, many large firms continue to 1221 

rely on traditional processes rather than automation, and subcontractors often follow the same 1222 

outdated practices [203]. On a positive side, the construction industry has been investing heavily 1223 

in AI, with an estimated USD 8 billion allocated in the five years leading up to 2019 [202]. This 1224 

investment paves the way for AI-enabled technologies such as digital twins and 3D printing, which 1225 

can significantly reduce repetitive and labor-intensive tasks. Looking ahead, future AI integration 1226 

should also target innovative fields such as fire-induced effects, seismic impact analysis, and LCA. 1227 

This study has reviewed AI-based findings in these areas using laboratory scale experimental and 1228 

numerical databases; the associated limitations and prospects are discussed in the following 1229 

sections. 1230 

4.2 Limitations in AI applications in structural engineering 1231 

Limited access to diverse and representative datasets, high costs of data collection, and data 1232 

scarcity due to legal restrictions often result in inadequate data availability. Missing data, model 1233 

bias, data drift, and errors further affect the reliability of AI predictions. These challenges, arising 1234 

from limited datasets, difficulties in maintaining data quality, and research gaps, can be 1235 

summarized as follows: 1236 

1. In studies on the mix design of sustainable concrete, only limited scale experimental 1237 

datasets have been used in recent research. The generalization performance of AI models 1238 
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for sustainable concrete preparation can only be suggested from these limited studies, and 1239 

future work should involve extensive tests on various SCMs used in concrete. 1240 

Additionally, some studies have reported missing information (e.g., inappropriate or 1241 

incomplete input variables) from experimental data which lessens the prediction accuracy 1242 

and reliability. 1243 

2. For predicting the strength and durability of concrete materials, variations are observed in 1244 

the optimal algorithms, such as XGBoost, GEP, BR, ANN, GB, MEP, SVM, and RF. The 1245 

selection of a specific AI method is often subjective and depends on researcher’s expertise. 1246 

In some cases, even the most preferred methods fail to outperform the existing design 1247 

codes. Apart from reliance of quality datasets, another issue is the time-consuming process 1248 

of parameter tuning. 1249 

3. AI-based predictions generally require large volumes of experimental data to ensure 1250 

accuracy and precision. However, data availability for specific problems is often limited 1251 

owing to laboratory constraints (e.g., fire testing facilities for fire resistance analysis). In 1252 

such cases, AI models may suffer from numerical complexities, including overfitting 1253 

training data without comparable practical test data for validation.  1254 

4. Notably, most reviewed studies compiled their datasets from prior works conducted in 1255 

different regions. However, these prior studies often differ significantly in environmental 1256 

conditions, material characteristics, and experimental setups, which may limit the 1257 

reliability and generalizability of AI models.  1258 

A few studies have incorporated random sampling and SHAP analysis, which are important 1259 

for selecting appropriate data and providing detailed explanations of model accuracy. Some 1260 

researchers have also resorted to using synthetic data to train and validate ML models due to 1261 
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the lack of real-world data. However, this approach can yield unrealistic results. Emerging 1262 

structural concepts, such as carbon-neutral and easy-to-dismantle beam–column joints, offer 1263 

promising solutions to reduce the carbon footprint across the structural lifecycle. Yet, no AI 1264 

methods have been developed to evaluate their fatigue performance, load-carrying capacity, or 1265 

associated carbon footprint. 1266 

4.3 Recommendations for Future Research in Structural Engineering 1267 

This section addresses the previously discussed limitations related to data availability and quality, 1268 

while also providing insights into potential solutions and highlighting new research opportunities: 1269 

1. Extensive research has been conducted on AI-based sustainable concrete mix design using 1270 

SCMs, byproducts, and waste materials. However, further studies are needed to assess the 1271 

applicability of single AI-based mix design approaches across different concrete types. 1272 

The use of locally available experimental data is recommended to obtain more accurate 1273 

predictions for optimum mix proportions of concrete materials. ML approaches combined 1274 

with heuristic methods, such as PSO, can further enhance prediction accuracy in mix 1275 

design. 1276 

2. The inertia in selecting AI techniques for similar problems can be reduced through 1277 

collaboration among researchers to identify the most suitable methods for specific, 1278 

concrete-related challenges. Issues related to parameter tuning can be addressed by 1279 

incorporating optimization algorithms such as GA, which can streamline the tuning 1280 

process. 1281 

3. To address numerical complexities caused by limited real-world data, AI models should 1282 

be regularly updated, supported by open-access databases that facilitate information 1283 

sharing. More diverse data points and comprehensive experimental datasets are required 1284 
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to capture a wide range of scenarios. Training models with homogeneous data obtained 1285 

under specific environmental and material conditions can improve prediction accuracy. 1286 

Additionally, random sampling can be employed to refine results after training. Raw 1287 

experimental data should be prioritized over synthetic data to ensure practical relevance. 1288 

Normalization of input variables into uniform ranges can also minimize dataset bias and 1289 

enhance model performance. 1290 

4. Existing models for fiber-reinforced concrete elements should be extended to account for 1291 

the confinement effects of different fiber-reinforced polymer configurations. For instance, 1292 

incorporating input variables such as the placement and orientation of polymer wrappings 1293 

could improve the evaluation of structural integrity and failure potential under fire 1294 

exposure. 1295 

In this study, adaptive explainable AI methods (e.g., SHAP and local explainable model-agnostic 1296 

explanations), are not discussed broadly due to limited existing research. Future studies should 1297 

explore more of these techniques. Some studies have used a single AI technique for multiple test 1298 

specimens with different criteria. Further studies can compare different AI methods to identify the 1299 

simplest and most accurate models for a specific problem. At present, most construction projects 1300 

utilize structural steel components, and future studies should focus on AI-based analysis of the 1301 

LCA and LCC of steel structures. Additionally, a promising innovative research direction can be 1302 

represented with AI-based predictions for evaluating the self-healing property, post-fire conditions 1303 

and fire-induced effects of concrete structures, and seismic response analyses of steel building 1304 

frames. Easy-to-dismantle beam-column multiple connections are crucial for reducing 1305 

construction time and labor costs, as they can minimize the requirement of bolts and rivets at 1306 

working sites. These prefabricated joints also contribute to lower carbon emissions in the lifecycle 1307 
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of structures. AI-based research can be suggested for such connections. Moreover, experimental, 1308 

theoretical, numerical, and prediction-based analysis must be conducted, and the results should be 1309 

compared to determine effective and efficient designs. Moreover, different AI methods can be 1310 

used to determine the fire effects, shear capacity, and failure modes of steel beam-column 1311 

connections and BRBs. 1312 

5 Conclusions 1313 

AI has demonstrated exceptional accuracy in structural engineering research, producing 1314 

predictions that are comparable to, and in many cases superior to, experimental tests, numerical 1315 

simulations, and design codes. In recent years (2020-2024), ANN, boosting methods, tree-based 1316 

algorithms and SVM models have been widely adopted for their strong predictive capabilities, 1317 

while MEP, SVR, BR, LGBoost, and deep learning models have also proven robust and reliable 1318 

for capturing complex structural behavior. For instance, NN and boosting methods in particular 1319 

exhibit high predictive accuracy (R2 > 0.80 and R2 > 0.90, respectively) across diverse applications, 1320 

making them the most widely applied approaches. Deep learning methods are particularly effective 1321 

in mix design, strength prediction, fire-induced effects, beam–column joints, seismic response of 1322 

RC frames, and LCA, achieving accuracy levels above 0.85. Meanwhile, GA, SVM, SVR, and 1323 

tree-based models have shown strong performance in specialized tasks, including concrete 1324 

durability, fire resistance, shear behavior, and seismic buckling, with reported accuracy ranging 1325 

from 0.80 to 0.99. Based on studies published between 2020 and 2024, the main findings can be 1326 

summarized as follows: 1327 

1. Concrete mix design and strength prediction: Tree-based algorithms are prominent, 1328 

with XGBoost, ANN, GEP, GB, BR, ensemble DT, and stacking methods achieving R2 1329 

values between 0.91 and 0.99. Key influencing parameters include curing age, cement 1330 
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content, recycled aggregate replacement ratio, SCM-to-binder ratio, aggregate-to-binder 1331 

ratio, and specimen dimensions. Integration of AI is highly significant for accurately 1332 

predicting mixing parameters that influence the strength properties of concrete. 1333 

2.  Durability prediction: ANN demonstrates strong accuracy (R2 = 0.85–0.99) for most 1334 

durability aspects. Specific properties such as corrosion resistance, chloride permeability, 1335 

depth of wear, frost resistance, impermeability, and carbonation depth are best predicted 1336 

by MEP, XGBoost, BR, SVR, and optimized ANN models. Governing parameters include 1337 

exposure duration, aggregate fractions, cement–SCM ratios, water–binder ratios, FA, 1338 

protective layer thickness, and environmental conditions. According to these findings, AI 1339 

prediction provides reliable insights into concretes durability while highlighting the 1340 

critical role of mix parameters for long-term performance. 1341 

3. Fire-induced effects: Neural networks and boosting algorithms accurately predict 1342 

spalling in RC, composite, and steel structures (R2 = 0.90–1.00), as well as concrete–steel 1343 

bond strength (accuracy of 0.97). Critical parameters include member geometry, applied 1344 

load and load ratios, thermal properties, fire insulation depth, and reinforcement area.  1345 

These findings show that AI-based approaches have the capacity to effectively capture the 1346 

critical factors that influence fire-induced spalling, providing a strong framework for 1347 

predictive assessment and design. 1348 

4. Structural behavior and failure modes: In determining mechanical properties of steel 1349 

structural beam-column joints, only a few studies have implemented CNN. Apart from 1350 

this, different algorithms show peak accuracy across different fields such as GEP, SVR 1351 

and tree algorithms for shear resistance of RC members, ANN and RF for shear strength 1352 

of masonry and RC walls, SVM and boosting methods for safety criteria of retaining walls, 1353 
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optimized ANN and boosting methods for ultimate load capacity of composite beams and 1354 

columns, and ANN-SVR for buckling failure modes of steel beam-column. Across these 1355 

applications, the most influential parameters include strength properties, section 1356 

geometry, and member aspect ratios. 1357 

5. Seismic response: These have been accurately predicted using classification-based, 1358 

hybrid, and optimized ANN variants for RC frames (with accuracy above 0.87), and 1359 

hybridized boosting methods for steel frames (with accuracy above 0.96). Key factors 1360 

include axial load, concrete strength, reinforcement dimensions, building characteristics, 1361 

applied loads, and site conditions. AI integration in seismic response analysis is 1362 

particularly significant, as it supports the development of innovative designs incorporating 1363 

BRBs, viscoelastic dampers, beam–column joints, and advanced retrofitting technologies. 1364 

6. LCA and economic analysis: LCA of carbon emissions and lifecycle cost analysis for 1365 

optimized building construction solutions can be further enhanced using high-performing 1366 

AI methods such as ANN (accuracy above 0.97) and DNN (accuracy above 0.96). By 1367 

integrating AI into LCA, it becomes possible to identify complex interdependencies 1368 

among materials, energy use, and costs, enabling more precise and strategic sustainability 1369 

decisions in construction. 1370 

With continued advancements, AI-based predictions have a strong potential to be integrated into 1371 

updated structural design codes, provided results are rigorously validated through experimental 1372 

and real-world applications. 1373 
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