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The aim of this paper is to investigate the performance of machine learning algorithms along with tra-
ditional GARCH and GARCH-MIDAS models in forecasting volatility of dry bulk shipping freight
rates, known as one of the most volatile asset classes. In doing so, we introduce a new market
tightness index, capturing physical constraints in shipping markets as an explanatory variable. The
results suggest that significant incremental information can be extracted by Machine Learning algo-
rithms from additional volatility predictors with minimal noise fitting, if regularization is applied.
However, traditional GARCH models perform better in capturing the long-term persistence of the
volatility. Therefore, a novel hybrid ensemble stacking algorithm that combines GARCH models
and tree-based algorithms is proposed. This hybrid model, which utilizes exogenous predictors and
the GARCH-MIDAS specification with the marked tightness index, produces accurate and robust
out-of-sample volatility forecasts over a range of time horizons, from one day to one month.

Keywords: Volatility forecasting: Machine learning; CatBoost; Random forest; GARCH-MIDAS;

Forecast combination: Freight rate; Shipping

1. Introduction

International shipping is the primary means of global trans-
portation connecting production and consumption areas for
raw materials and manufactured goods around the world,
contributing to about 80% of the volume of international
trade (UNCTAD 2023).7 Shipping is also a complex indus-
try as it encompasses four interconnected markets, namely the
freight, sale and purchase, shipbuilding, and demolition mar-
kets. These interrelated markets define the supply and demand
characteristics of the shipping freight market and create a
highly cyclical and unpredictable environment where partici-
pants aim to balance risk and reward. The high sensitivity of

*Corresponding author. Email: morten.risstad @ntnu.no

+ The importance of international shipping has increased in recent
years due to stronger economic ties between nations and significant
growth in international trade. In addition, outsourcing production and
manufacturing as well as discovery and production of raw materials
in different parts of the world have contributed to the increase in
ocean transportation. According to Clarksons’ Shipping Intelligence
Network (2024), it is estimated that, in 2023, 12 332 million tonnes
of cargo were transported by various ship types, including dry bulk
carriers, tankers, container ships, and gas carriers.

shipping freight market to seasonal trade in commodities, port
and canal congestion, macroeconomic shocks, oil and fuel
prices, political events, weather and climate conditions and
other factors moving the supply-demand equilibrium, results
in a distinct and highly volatile freight market.

Given the high level of volatility in shipping freight mar-
kets and the importance of understanding their nature and
behavior to market participants, several studies are devoted to
modeling volatility of freight rates and asset prices. Almost
all of these studies use different extensions of GARCH
models to investigate dynamics of freight rate volatility.
Kavussanos (1997) assess the efficiency of freight futures
and forward freight agreements in hedging dry bulk freight
rate risk (Kavussanos and Nomikos 2000, Kavussanos and
Visvikis 2004), and explore the effect of market condi-
tions and macroeconomic factors on freight rate volatility
(Alizadeh and Nomikos 2011, Xu et al. 2011, Drobetz et
al. 2012). Despite the importance of volatility forecasts and
their use in freight risk assessment and management, there
has been limited work on forecasting freight market volatility
and evaluating volatility forecasts. The only exceptions are
Abouarghoub et al. (2014), Gavriilidis et al. (2018), Argy-
ropoulos and Panopoulou (2018), and Liu et al. (2022), who
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utilize different forms of GARCH models to forecast volatil-
ity of shipping freight rates in tanker and dry bulk markets
and estimate the corresponding Value-at-Risk. However, they
fail to take into account the short- and long-term components
of volatility, and their volatility prediction relies on limited or
non-existent industry variables.

Many different types of GARCH models have also been
proposed and utilized for modeling and forecasting eco-
nomic and financial time series in other markets, including
stock prices (e.g. Franses and Van Dijk 1996, Hansen and
Lunde 2005, Anderson et al. 2006), foreign exchange (Boudt
et al. 2013), and commodity prices (e.g. Agnolucci 2009, Y.
Wang and Wu 2012, Bentes 2015, Herrera et al. 2018), to
mention a few. However, recent studies on modeling and
forecasting volatility recognize the effect of economic fac-
tors as well as short- and long-term components of volatility
rather than relying on simple autoregressive specifications.
For instance, Engle er al. (2013) propose a GARCH model
with mixed data sampling (GARCH-MIDAS) to allow for
the effect of macroeconomic variables with different fre-
quencies (e.g. inflation and industrial production) on short-
and long-run volatility of stock market. They report that the
GARCH-MIDAS model incorporating macroeconomic fac-
tors can outperform simple GARCH models for short-term
forecast of stock market volatility. L. Wang et al. (2020)
extend the GARCH-MIDAS framework to allow for asym-
metric and significant volatility effects due to extreme shocks
to short- and long-term volatility components. They report
that the asymmetry-threshold GARCH-MIDAS model can
outperform the standard existing model significantly, but
again the improvement is stronger in the case of short-term
asymmetry and extreme volatility effects than the long-term
effects. In the context of commodity price volatility forecasts,
Pan et al. (2017) propose a Regime-Switching GARCH-
MIDAS model for oil price volatility and report that the
model outperforms the single-regime model in forecasting oil
volatility.

With the development of more flexible and data intensive
statistical methods in recent years, supervised machine learn-
ing (ML) models have also emerged as promising tools for
volatility forecasting across different asset classes; see the
recent review by Gunnarsson et al. (2024). As discussed in
Christensen et al. (2023), machine learning techniques have
inherent capabilities to deal with high-dimensional predic-
tors with complex inter-dependencies. Given the large number
of factors that can affect volatility of asset prices as well
as differences in their frequencies, a natural approach is to
combine GARCH models with ML techniques for modeling
and predicting volatility. Therefore, the aim of this paper is
to use a novel hybrid ensemble approach to forecast volatil-
ity of shipping freight rates. To this end, we investigate the
performance of a variety of ML algorithms, GARCH, and
GARCH-MIDAS models in forecasting volatility of shipping
freight rates over short and medium horizons. We evaluate
the forecasting accuracy gains by means of two statistical
approaches: the Superior Predictive Ability (SPA) test of
Hansen (2005) and the Model Confidence Set (MCS) method
of Hansen et al. (2011). The SPA test focuses on the predic-
tive ability of a predefined benchmark model with respect to
several alternatives. It is widely applied to assess if specific

assumptions for the multivariate structure, such as constant
correlations, or the dynamics of individual volatility, such as
short memory, are valid. With the MCS method, we identify
from the initial set of competing models those which dis-
play equal predictive ability and outperform the others at a
given confidence level. Both tests are executed using sev-
eral symmetric and asymmetric loss functions, robust to the
choice of the volatility proxy (Laurent et al. 2011, Boudt et
al. 2013, Patton 2011).

This paper contributes to the literature in several ways.
First, we conduct an extensive forecasting comparison
between a variety of machine learning algorithms and econo-
metric models of the ARCH family in forecasting volatility of
spot freight rates over different horizons. We provide evidence
of when and why some of these methods improve the accuracy
of forecasting volatility. Second, we investigate the impact of
several macroeconomic factors and market variables with dif-
ferent frequencies as predictors of dry bulk freight volatility.
Third, we propose a novel market tightness index, capturing
physical constraints in shipping markets, and use this index
as a determinant of freight market volatility. Finally, we fore-
cast the volatility of spot freight rates for dry bulk carriers
of different sizes, used for physical trading, as well as of
the underlying forward freight agreement contracts. We then
compare the accuracy of volatility forecasts and the effects
of exogenous factors on volatility, across vessel sizes and
forecasts horizons.

The rest of this paper is structured as follows. Section 2
provides a review of the literature review on shipping volatil-
ity modeling and forecasting. In section 3 we provide details
regarding the models we include. Section 4 describes the
data collection and processing, offering insights about the
frequency conversion and model validation approaches used.
Section 5 presents the results of the extensive out-of-sample
forecasting exercise. Finally, section 6 concludes.

2. Literature review

There is a large body of literature on modeling and forecast-
ing shipping freight rates and asset prices. The first study
on modeling volatility of shipping freight rates is Kavus-
sanos (1997), where a GARCH model is applied to cap-
ture the volatility dynamics of spot and time-charter rates
in the dry bulk shipping market. Early studies on mod-
eling shipping market volatility concentrated on applica-
tions to various shipping assets and cross-sector comparisons
(Kavussanos 1996, 1997). Later work on shipping market
volatility concentrated on model specification and the effects
of exogenous variables on behavior of volatility. Alizadeh
and Nomikos (2011) investigate the relationship between
the dynamics of the term structure and volatility of ship-
ping freight rates. They argue, that due to the differences in
elasticities of shipping supply curve and the shape/slope of
forward curve—explained as the difference between short-
and long-term freight rates—volatility of freight rate tends
to increase when the market in backwardation and decrease
when the market is in contango. Xu et al. (2011) conducted an
investigation into the relationship between the time-varying
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volatility of dry bulk freight rates and the changes in the
supply of the fleet. They report that a change in fleet size pos-
itively affects the volatility of freight rates for larger vessels
more than for smaller ones. Drobetz et al. (2012) investigate
volatility dynamics in the dry bulk and tanker freight mar-
kets using different GARCH-X and EGARCH-X models and
macroeconomic factors. They report that macroeconomic fac-
tors exhibit some explanatory power on freight rate volatility
and such effects are more observed in the tanker market than
in the dry bulk one. Xu et al. (2022) investigate the effects of
COVID-19 on the Baltic Dry Index (BDI) volatility using a
GARCH-MIDAS approach incorporating freight rates, Brent
crude oil prices, container idle rates, port congestion levels,
and global port calls as exogenous variables. They report that
the increase in COVID-19 infection numbers impacted the
BDI volatility regardless of the influence of other factors.

Another set of studies utilizes bivariate-GARCH mod-
els to estimate the volatility of spot and futures/forward
freight rates and determine time-varying hedge ratios. For
instance, Kavussanos and Nomikos (2000) and Kavussanos
and Visvikis (2004) provide evidence that the time-varying
hedge ratio determined by a bivariate GARCH-X model is
more appropriate than the constant hedge ratio in terms of
hedging performance when using Forward Freight Agree-
ments (FFAs) for hedging dry-bulk shipping freight rates.
Alizadeh et al. (2015) extend the Bivariate GARCH model
to a Bivariate Markov Regime-Switching GARCH model to
estimate the volatility of spot and forward tanker freight rates
and assess the effectiveness of hedging tanker freight rates
using forward freight agreements under different market con-
ditions. More recently, Alizadeh and Sun (2023) propose a
Conditional VaR model for the determination of hedge ratio
for hedging dry bulk freight rates using FFAs and compare
their performance with conventional GARCH and Regime
Switching GARCH models.

More recent studies focus on forecasting freight rate volatil-
ity and VaR estimation using variety of GARCH models.
For example, Abouarghoub et al. (2014) propose a regime-
switching GARCH model for forecasting the volatility of
tanker freight rates and the estimation of daily VaR. They
report that the two-state MRS-GARCH performs better than
the single regime model when subjected to the back-testing
exercise. Angelidis and Skiadopoulos (2008) utilize several
different specifications of GARCH models to estimate dry
bulk and tanker freight rate volatilities and compare their per-
formance against non-parametric methods in Value-at-Risk
estimation using a back-testing approach. They find that the
simplest non-parametric methods should be used to measure
freight rate risk. Gavriilidis et al. (2018) examine whether
inclusion of oil price shocks of different origins as exoge-
nous variables in GARCH-X models improves the accuracy
of their volatility forecasts for monthly spot and time-charter
tanker earnings. They introduce exogenous variables based
on three distinct oil price shocks—oil supply shock, aggre-
gate demand shock, and precautionary oil-specific demand
shock—distinguished through a VAR model, and integrate
these variables in a GARCH-X specification. Their results
suggest that aggregate oil demand shocks can improve the
accuracy of freight rate volatility forecasts. Argyropoulos

and Panopoulou (2018) compare the performance of differ-
ent models including non-parametric historical simulation,
GARCH, and combination forecasts in the estimation of daily
VaR for tanker and dry bulk freight rates. However, they only
compare one day ahead forecasts and VaR estimates and do
not consider the effect of any market variables.

In a recent study, Liu et al. (2022) propose a support-
vector regression GARCH (AR-SVR-GARCH) and asym-
metric SVR-GJR GARCH models, which combine traditional
time series analysis and modern machine learning methods to
predict the volatility of the dry (BDI) and tanker (BDTTI) ship-
ping indices as well as of a shipping stock index (DJGS). They
investigate the performance of these models in forecasting
volatility of shipping freight rates using MSE and QLIKE sta-
tistical criteria and model confidence tests. While they report
that both symmetric and asymmetric models of dry and tanker
freight index volatilities are less affected by long-term trends,
the volatility of the shipping stock index seems to be more
affected by long-term trends. In addition, they report that the
SVR-GARCH and the SVR-GJR models perform better in
forecasting volatilities during periods of financial crisis and
the recent turbulent shipping markets.

Overall, the review of the past studies suggests that volatil-
ity of shipping freight rates is time-varying, and the dynamics
of the volatility can be explained by some macroeconomic
and exogenous factors as well as market conditions. How-
ever, there is no proper investigation into the performance of
ML and GARCH-MIDAS models in forecasting short- and
long- run freight rate volatility. Moreover, the majority of cur-
rent studies focus on the application of one or two machine
learning algorithms. In contrast, this paper presents a thor-
ough analysis of the out-of-sample performance of various
tree-based algorithms (Random Forest, XGBoost, and Cat-
Boost). Among the class of traditional econometrics models,
we include the GARCH-MIDAS which, thanks to a compo-
nent approach to volatility, is able to include macroeconomic
and industry variables at lower frequency in the prediction of
the long-run volatility.

3. Methodology

In this section, we explain the different approaches used
in this paper to produce forecasts of freight rate volatility
and evaluate their performance. Among supervised machine
learning algorithms, both tree-based models and recurrent
neural networks are capable of learning complex, non-linear
time-series dynamics. It is well known that tree-based meth-
ods lend themselves to economic interpretation and are easier
to apply in real-world applications. Hence, we focus on a
representative set of tree-based ensemble models, more pre-
cisely the Random Forest, the XGBoost, and the CatBoost.
These algorithms have been shown to perform well in rel-
atively small samples and handle data disaggregation well.
We don’t include LightGBM among these due to the small
sample size. Recurrent neural networks and deep learning
models, such as LSTM, require a much higher number of
data points to accurately distinguish signal from noise. We
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have only 1473 observations. Furthermore, deep neural net-
works offer limited interpretability due to their black-box
nature and require careful hyperparameter tuning and train-
ing to provide reliable results. Finally, in the case of mixed
frequency data, as in our sample, the temporal disaggrega-
tion approaches may cause significant noise and thus prevent
the algorithm from correcting learning data patterns. On the
other hand, tree-based ensemble methods have been shown
to have good performance on disaggregated data in feature
engineering forecasting. Furthermore, they allow quite direct
interpretations and comparison with the GARCH models.
The freight rate log return r, at time 7 is modeled as

ry= W+ €, € =0 (D
and our aim is to forecast its daily conditional volatility,
defined as

o = Varlr, | Fio1] = E[(r;, — ) | Fi—1] 2

where F,_; represents the sigma algebra of all the information
available at time ¢t — 1 and z; is an i.i.d. shock with distribution
D. Since volatility itself is latent thus unobservable, we must
choose a proxy for it. Andersen and Bollerslev (1998) showed
that the demeaned squared daily returns are an unbiased esti-
mator of the volatility, albeit quite noisy. A significantly more
accurate measure of volatility is the realized variance (RV)
calculated from intra-day prices, however data on freight rates
is available only at daily frequency; thus, in this study we use
the demeaned squared daily returns as a target variable when
training the machine learning algorithms and as true ex-post
volatility in the forecasting comparison.

3.1. The GARCH model and its extensions

Since the seminal work of Engle (1982), an extensive body
of literature on modeling the temporal dependencies in finan-
cial market volatility using the discrete GARCH model has
emerged. Given the parsimonious nature of the GARCH
model, the intricate structure of the underlying data renders
it inadequate in certain aspects. After its inception, a large
number of extensions of the basic specification have been
developed. These extensions include the GJR-GARCH model
of Glosten et al. (1993) and the EGARCH Nelson (1991),
the component GARCH model of Engle and Lee (1999) and
many more specifications (see Franq and Zakoian 2019 for
an extensive overview). These models have been extensively
used in the investigation of the dynamics of dry bulk mar-
ket volatility, as discussed in section 2. In this framework, the
conditional variance is expressed as a deterministic function
of past returns. The GARCH(p, ¢) model is defined as:

q p
0,2 =og + Zaiet{l + Zﬁjoil, 3)
i=1 j=1

with constraints 8; > 0 and Y .-} P9 (q; + B;) < 1 to ensure
respectively positiveness and stationarity of the conditional
variance. To ensure our results are robust against a broader
suite of recent GARCH-type models, we include several of

the more popular ones in the forecasting comparison. Table 1
summarizes the GARCH-specifications utilized in this paper.
We test the GJR and EGARCH specifications to allow for
asymmetric responses of the volatility to positive and nega-
tive shocks. We include the FIGARCH model to allow for
fractional integration in the volatility decay rate. All these
extensions are still based on past returns only as conditional
information. Recently, however, several studies recognized
the relationship between volatility and the macroeconomic
factors. In particular, Engle et al. (2013) propose a GARCH
model which utilizes exogenous mixed data sampling known
as GARCH-MIDAS to incorporate the effect of macroeco-
nomic factors on the dynamics of volatility including short-
and long-term components. In the GARCH-MIDAS model,
a short-run variance GARCH component fluctuates around
a time-varying long-term component that is a function of
macroeconomic or financial explanatory variables. By allow-
ing for a mixed-frequency setting, this approach bridges the
gap between daily stock returns and low-frequency (e.g.
monthly, quarterly) explanatory variables. In the GARCH-
MIDAS specification, the volatility is specified as

of =1 x gt &~ DO,1) )

where t; and g, are respectively the long-term and short-term
volatility components. The short-run component adheres to
a straightforward mean-reverting GARCH(1,1) process, and
fluctuates around the time-varying long-run volatility. The
long-run volatility component captures via a MIDAS filter
the impact of the exogenous features X;; available at lower
frequencies:

K;

Tr=¢exXp|m + 9j Z SkJ(w)X,_kJ
k=1

Viel (5

where m represents a constant term, and 6 j(w) is the MIDAS
weight function (Engle et al. 2013). We test the Beta and
Exponential Almon lag functions (5). In this specification,
we test as predictor of the long-run volatility the Market
Tightness Index, which we introduce in section 4.

3.2. The random forest

The Random Forest (RF) has become a prominent and widely-
used machine learning algorithm. Random forests’ basic
philosophy is based on combining three concepts: (i) classifi-
cation or regression decisions trees, (ii) bootstrap aggregation
or bagging and (iii) random subspaces. As a significant imple-
mentation of the bagging framework, the Random Forest gen-
erates a large number of de-correlated trees and then combines
them to create an ensemble prediction, and thus, improving
overall accuracy by reducing the variance by averaging the
noisy and unbiased trees. Its structure follows a divide-and-
conquer approach used to capture nonlinearity in the data and
perform pattern recognition. The algorithm’s name suggests
a collection of diverse trees, like a forest, varying in shape
and size. For a given data set, a continuous outcome variable
and a set of features and a number of trees, the outline of the
algorithm is as follows: (i) generate a bootstrapped dataset
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Table 1. The univariate volatility models applied this paper, with corresponding formulas and parameters.

Model Specification Parameters
GARCH(1,1) crt2 =ao+ (xla[{l + 510,2,1 ap, @1, P1
EGARCH(1,1) In(of) = a0 +a1 |5= | +yi5= + piln (o)) o, a1, 1, V1
GIJR-GARCH(1,1) of = a0+ (@1 + yiNi-1)a;_; + piof | o, a1, B1, Vi
FIGARCH(1,d,1) of =aoll = DI + {1 = [1 = DI ') = L))}, a0, B.d

GARCH(1,1)-MIDAS =g x7

=[—a—p)+ a2 4 g ]

K; .
X [exp(m + 0 Zk’:] Sk,,'(w)Xz_kx,‘)] , VjeJ

a, B,m,0;,

from the initial dataset, (ii) use the bootstrap sample to grow a
tree. At each node, perform the following steps: (a) randomly
select d features without replacement. (b) Segment the node
by choosing the feature that provides the best split according
to the objective function. (iii) Repeat steps 1 and 2 for each
tree under consideration. Each tree in this approach is identi-
cally distributed, so the expected value of averaging N trees
is the same as any single tree, implying that the bias of the
bagged trees is the same as that of the individual bootstrap
trees and variance reduction is targeted for forecasting accu-
racy. For construction, the predictive ability of RFs increases
as the inter-tree correlation decreases. Thus, a large number of
predictors can provide increased generalization capacity, by
having each tree randomly select a number m splitting candi-
dates from p variables, such that m < p to minimize the trees’
correlation. It is critical for the overall performance of ran-
dom forests to find the optimal of m and the optimal number
of trees via hyperparameter selection. A detailed discussion
about hyperparameter and feature selection can be found in
section 4.

3.3. XGBoost

The combination of decision trees and gradient boosting
methods has the advantages of good training effect and not
easily over-fitting. Gradient boosting is a generalization of
tree boosting designed to address various issues with reg-
ular boosting, namely speed, interpretability, and, in some
cases, robustness against overlapping class distributions. The
XGBoost, developed by Chen and Guestrin (2016), is an
ensemble model which consists of an efficient implemen-
tation of decision trees, in order to produce a combined
model whose predictive performance is better than individ-
ual techniques used alone. Differently from bagging, however,
boosting does not carry out bootstrap sampling, but trees are
grown in a sequential basis entailing that the current generated
tree exploits information from the previously generated tree.
Hence, trees are no longer grown independently but sequen-
tially dependent on construction. The additive aspect of the
algorithm embodies the core principle of boosting, which
iteratively adds trees to reduce the loss incrementally. This
involves parameterizing each tree and adjusting these param-
eters to minimize the residual loss. The output of each newly
added tree is then combined with the outputs of previously
added trees to improve the model’s overall performance.
This process continues, adding a predefined number of trees

until training stops, either when the loss reaches an adequate
threshold or when validation loss converges (Brownlee 2017).
A tree ensemble model utilizes K additive functions to fore-
cast the result, where T denotes the number of leaves in each
tree. Each function f; represents an independent tree structure
g and leaf weights w. Regression trees assign a continuous
score to each leaf, represented by w; for the ith leaf. Further,
the decision rules specified by ¢ in the trees determine the leaf
to which any example x is assigned. The final prediction is
derived by summing the scores of the relevant leaves, denoted
by w. Consequently, the mathematical formulation of the addi-
tive model begins by introducing the regularized objective to
be minimized as in (6):

L(p) = Z [ (}A]iyyi) + Z Q (), where
i k

1
Q) =yT+ Exnwnz (©6)

where [ represents the loss function and 2 denotes the reg-
ularization term, which penalizes model complexity. One of
the key advantages of gradient boosting is its flexibility to
accommodate various differentiable loss functions within a
single boosting framework. Given that squared residuals are
both the default loss function and well-suited for numerical
values, we use the mean squared error (MSE) as the loss
function. Incorporating the MSE loss function results in a sim-
plified expression, which encompasses both a quadratic and
first-order residual term:

n

£y =3 (-

2 t
(" nm)) 0@ @
i= i=1
In the XGBoost, several parameters need to be tuned to max-
imize the power of model performance and to prevent overft-
ting problems, including the number of trees, the number of
tree splits, the learning rate, the number of iterations, the
maximum depth. A detailed discussion about hyperparameter
tuning and feature selection can be found in section 4.

3.4. CatBoost

The categorical boosting algorithm, CatBoost was introduced
by Gulin et al. (2018). The algorithm derives the first part of
its name from categorical features. Unlike traditional gradi-
ent boosting that converts these features to numbers before
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training, CatBoost processes them during training. Another
appealing attribute is its efficient strategy to mitigate overfit-
ting while using the entire dataset for training. Specifically,
the algorithm performs a random permutation of the dataset.
For each example in the dataset, the average label value
is derived from preceding examples in the permutation that
share the identical category value. This often results in better
predictive performance than XGBoost and other gradient-
boosted tree algorithms (Gulin et al. 2018). The permutation
is dented by o = (0y,...,0,). To compute the transformed
value for each example, the algorithm relies on:

ZJP:_II [xaj,k = x(fl,,k] Y(r/ + o-P
ZJCII [0k = Xo,4] +

®)

where [x4,x = X4, ] is an indicator function that equals 1 if
the category values Xoyk and X,k match, and O otherwise. The
prior value is expressed by P with a corresponding parameter
a > 0, which determines the weight of the prior. Employing
a prior is a standard method to minimize noise from low-
frequency categories. In a regression framework, the prior is
typically calculated as the average label value in the dataset.
CatBoost introduces an innovative approach for calculating
leaf values, enabling multiple permutations without the risk of
overfitting. CatBoost leverages oblivious trees as its base pre-
dictors, utilizing a consistent splitting criterion at each level
to maintain tree balance and minimize overfitting: all features
are transformed into a binary format to optimize prediction
accuracy. This binary encoding method allows for efficient
calculation of leaf indices, resulting in quicker and more pre-
cise model predictions. Furthermore, the entire computation
process can be executed in parallel, achieving up to a threefold
increase in speed, making the model exceptionally efficient
(Gulin et al. 2018). The tree structure in CatBoost is chosen
through a greedy method. Features and their corresponding
splits are sequentially selected for substitution in each leaf.
The selection of candidates is derived from the initial split
calculations and the conversion of categorical features into
numerical features. The tree depth and other structural rules
are determined by the initial parameters. The approach for
choosing a feature-split pair for a leaf involves several steps.
Initially, a list of potential candidates (feature-split pairs) is
created to be considered for assignment to a leaf. Subse-
quently, penalty functions are calculated for each candidate,
assuming they have all been allocated to the leaf. Then, the
split with the least penalty is chosen. Finally, this selected
value is allocated to the leaf. This process is repeated for all
subsequent leaves, ensuring that the number of leaves corre-
sponds to the tree’s depth. While the literature on CatBoost
primarily highlights its ability to handle categorical features,
we rely on this method for its use of oblivious trees. This
enables us to evaluate the forecasting performance of a boost-
ing model with a lower risk of overfitting compared to models
using more complex tree structures.

4. Data description and processing

This paper uses a sample of spot freight rates for the four main
dry bulk shipping segments: Capesize, Panamax, Supramax,

and Handysize vessels from the Baltic Exchange, along with
industry variables such as fleet size, sales, age, seaborne trade
in commodities, and fuel prices from Clarksons’ Shipping
Intelligence Network(SIN){ All freight rates are expressed in
USD/day and reflect the average daily hire rates of the corre-
sponding vessel size on that day. The sample consists of daily
data and spans from 1 of November 2017 to 28 of September
2023, for a total of 1473 observations. It is worth noting that
due to the nature of the market, reliable and consistent pub-
lished data on dry bulk freight rates are only available on a
daily frequency. The industry variables cover the same period
and are measured at a monthly frequency.

The Baltic Exchange average trip-charter freight rate for
different size dry bulk carriers is constructed in a composite
manner, aiming to represent the trading activities of each ves-
sel type in major routes globally and to capture the observed
trade flows in the markets. The weighted averages of trip-
charter rates are labeled based on the typical vessel type and
size (see table Al in Appendix 1 for the composition of aver-
age trip-charter rates for each vessel type). These average
trip-charter rates reflect the spot market level for each vessel
type on any day and used for settlements of forward freight
agreements and freight options traded for maturities from one
month to several years. The average Trip-Charter rates are
also used by market participants to benchmark their opera-
tional efficiency as well as negotiations and physical shipping
contracts on a floating freight rates basis. For instance, a com-
modity trader can hire a vessel from a shipowner for one year
at the Baltic Capesize Average STC plus 5%. Thus, infor-
mation about the level and behavior of volatility dynamics
of these freight rates is of utmost importance for shipown-
ers, operators, and traders alike. Figure 1 presents average
trip-charter rates for different size dry bulk carriers over the
sample period. It can be seen that shipping freight rates can
fluctuate significantly over short periods. The noticeable drop
in freight rates for all vessel sizes is during the early stages of
COVID-19 pandemic (2020) and a sharp recovery after eas-
ing of the lock down measures around the world (2021) when
the economy went through a V shape recovery. There is also
a sharp increase due to the war in Ukraine in the first half
of 2022, and easing of the freight market possibly due to the
higher inflation rates combined with mild economic recession
around the world. However, there are also significant shorter
term movements across all vessel sizes due to other random
shocks.

Descriptive statistics of the log-return of freight series for
different vessel types are reported in table 2. The annual-
ized average daily returns are positive and increase with
vessel size, indicating a general increase in freight rates

T Freight rates are defined as average trip-charter rates for each
vessel type defined by the Baltic Exchange. Capesize, Panamax,
Supramax, and handysize vessels are defined as a 180 000dwt,
82000dwt, 58 000dwt, and 38 000dwt bulk carrier, respectively. The
average trip-charter rates, displayed in figure 1, are: Average 5TC
for Capesize, Average 5TC for Panamax, Average 10TC for Supra-
max, and average 7TC for Handysize ships, respectively. See the
Baltic Exchange website https://www.balticexchange.com/en/data-
services/market-informationO/indices.html for further details on
average trip-charter rates.

1 The list of industry variables as proxies for supply and demand for
the dry bulk shipping sector is listed in table 3.
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Figure 1. Baltic exchange average trip-charter rates.

Table 2. Descriptive statistics for daily log returns of Baltic Exchange average trip-charter rates.

Std. Excess JB JB
Series T Min Max Mean Dev. Skew. Kurt. Statistic p-value
HA7TC 1472 —7.75% 6.52% 3.32% 20.7% —0.1158 5.3234 316.20 < 0.0001
SA10TC 1472 —9.56% 10.41% 4.24% 29.0% 0.1719 7.7143 1295.87 < 0.0001
PASTC 1472 —14.81% 24.05% 2.74% 48.0% 0.6944 7.8298 1464.81 < 0.0001
CASTC 1472 —36.03% 44.67% 9.26% 119.7% 0.6780 8.4326 1818.41 < 0.0001
Level series Log return series
ADF Test PP Test ADF Test PP Test

Statistic p-value Statistic p-value Statistic p-value Statistic p-value
HA7TC —1.7511 0.7279 —0.9574 0.9496 —8.2519 < 0.0001 —9.2789 < 0.0001
SA10TC —1.8591 0.6756 — 1.3446 0.8765 —10.6433 < 0.0001 —9.9621 < 0.0001
PASTC —2.3043 0.4316 —2.2216 0.4777 —14.4219 < 0.0001 —13.0910 < 0.0001
CASTC —4.1756 0.0049 —3.3112 0.0644 —13.0530 < 0.0001 —19.5221 < 0.0001

Note: Sample period is from 1 of November 2017 to 28 of September 2023.
Summary statistics include the minimum, maximum, mean, standard deviation (Std.Dev.), skewness, excess kurtosis, Jarque-Bera (JB)
statistic, and the associated p-value. The ADF and PP tests are the Augmented Dickey—Fuller and the Phillips—Perron Unit root tests,

respectively.

over the sample period. Similarly, annualized standard devi-
ations indicate significant unconditional volatility which is
directly related to vessel sizes. The high level of stan-
dard deviation for Capesize freight rates (119.7%) is a clear
evidence of the highly volatile nature of this sector. The
coefficients of skewness and kurtosis reveal that the return
series are skewed with a high degree of excess kurtosis,

and the results of the Jarque-Bera test statistics strongly
indicate that the returns are not normally distributed. Further-
more, the results of the Augmented Dickey-Fuller and Philips
and Perron unit root tests, reported in the lower panel of
table 2, suggest that freight rate series across all vessel sizes
are non-stationary in levels, but stationary in first-order log
differences.
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Table 3. List of industry and macro variables as exogenous predictors.

No Series Supply/demand Frequency Mean St Dev
1 Handysize fleet size (dwt) S Monthly 109.41 4.74
2 Supramax fleet size (dwt) S Monthly 212.65 11.58
3 Panamax fleet size (dwt) S Monthly 225.34 15.87
4 Capesize fleet size (dwt) S Monthly 358.19 21.48
5 Handysize orderbook (dwt) S Monthly 8.74 2.07
6 Supramax orderbook (dwt) S Monthly 17.97 3.29
7 Panamax orderbook (dwt) S Monthly 22.45 3.33
8 Capesize orderbook (dwt) S Monthly 36.36 11.74
9 Handysize demolition (dwt) S Monthly 0.051 0.048
10 Supramax demolition (dwt) S Monthly 0.079 0.081
11 Panamax demolition (dwt) S Monthly 0.076 0.104
12 Capesize demolition (dwt) S Monthly 0.410 0.472
13 Handysize Average Speed (knots) S Daily 11.16 0.16
14 Supramax Average Speed (knots) S Daily 11.33 10.7
15 Panamax Average Speed (knots) S Daily 11.31 0.16
16 Capesize Average Speed (knots) S Daily 11.16 0.24
17 Fuel oil price (USD/mt) Singapore HSFO 380cst S Weekly 416.13 102.27
18 Handysize Bulker Sales (1000 dwt) S Monthly 499.03 257.12
19 Suoramax Bulker Sales (1000 dwt) S Monthly 1104.19 477.20
20 Panamax Bulker Sales (1000 dwt) S Monthly 4011.62 503.88
21 Capesize Sales (1000 dwt) S Monthly 1119.67 818.43
22 Handysize Bulkcarrier Fleet - Average Age S Monthly 11.66 0.86
23 Supramax Bulkcarrier Fleet - Average Age S Monthly 10.10 0.98
24 Panamax Bulkcarrier Fleet - Average Age S Monthly 10.28 0.85
25 Capesize Bulkcarrier Fleet - Average Age S Monthly 8.88 0.67
26 World Steel Production (1000) D Monthly 153.89 8.99
27 Global Seaborne Iron Ore Trade Indicator (Volume Index) D Monthly 115.5 8.5
28 Global Seaborne Coal Trade Indicator (Volume Index) D Monthly 104.3 7.5
29 Global Seaborne Grain Trade Indicator (Volume Index) D Monthly 126.95 12.6
30 Global Seaborne Minor Bulk Trade Indicator (Volume Index) D Monthly 118.8 54
31 Global Seaborne Dry Bulk Trade Indicator (Volume Index) D Monthly 112.32 5.39
32 Global Seaborne Iron Ore Trade Indicator (% Yr/Yr) D Monthly 0.65 5.82
33 Global Seaborne Iron Ore Trade Indicator (% Yr/Yr 3mma) D Monthly 0.7 3.74
34 Global Seaborne Coal Trade Indicator (% Yr/Yr) D Monthly 1.52 9.08
35 Global Seaborne Coal Trade Indicator (% Yr/Yr 3mma) D Monthly 1.67 771

36 Global Seaborne Grain Trade Indicator (% Y1/Yr) D Monthly 1.87 8.58
37 Global Seaborne Grain Trade Indicator (% Yr/Yr 3mma) D Monthly 1.98 6.69
38 Global Seaborne Minor Bulk Trade Indicator (% Yr/Yr) D Monthly 1.54 5.67
39 Global Seaborne Minor Bulk Trade Indicator (% Yr/Yr 3mma) D Monthly 1.52 4.63
40 Global Seaborne Dry Bulk Trade Indicator (% Yr/Yr) D Monthly 1.10 3.79
41 Global Seaborne Dry Bulk Trade Indicator (% Yr/Yr 3mma) D Monthly 1.17 2.85
42 OC Production - Total Industry Excl. Construction SADJ D Monthly 103.75 3.84
43 OC Production - Total Industry Excl. Construction VOLA D Monthly 0.72 5.68

Note: Sample period is from 1 of November 2017 to 28 of September 2023.
S denotes supply-specific, while D represents demand-specific variables. The variables are measured in different frequencies and some are
transformed to first-order log differences. All variables are stationary according to the ADF test at significance level of & = 5%.

We split the data into a training, validation, and test set. The
last year (250 days) of data is the test set, reserved for out-of-
sample evaluation. We split the remaining dataset in a training
set of 90% of the dataset, a validation set of 10%. We conduct
a robustness check, where the training set is modified to 80%
and with a validation set fixed at 20%. The results are broadly
in line with our reported findings.

Following the findings of previous studies on the effect
of macroeconomic and industry variables on the volatility of
freight rates (Xu et al. 2011, Drobetz et al. 2012), we col-
lected several variables which relate to either the demand or
the supply side of the shipping freight market. A full list of
the explanatory variables, collected from Clarksons’ Shipping
Intelligence Network (SIN), as well as their acronyms and fre-
quencies, is presented in table 3. The first set of variables is

considered to affect the supply-side of shipping services and
includes fleet size, sales volume, and vessel age in different
sectors as well as fuel oil prices. For example, the fleet size
for different types of vessels (in dwt), represents the fleet’s
overall capacity to transport cargo at any point in time, while
sales volume indicates the willingness to invest in ships, and
age of fleet can be considered as a proxy for fleet productivity
and increase in supply due to recent new-building deliveries.
Additionally, the age of a vessel can impact its operational
efficiency; an ageing fleet suggests reduced efficiency, which
could have a negative impact on supply.

On the demand side, the variable set includes seaborne
trade volume in major bulk commodities such as iron ore,
coal, grain, as well as minor bulk commodities (e.g. bauxite
and alumina, phosphate rock, fertilizers, cement, rice, etc.),
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Table 4. Descriptive statistics of market tightness index.

Series N Min Max Mean Std. dev Skew. Kurt. JB Stat JB p-val
MTP 70 43.7937 176.2696 105.6996 25.2234 0.3028 1.3395 49569 0.0544
Change in MTP 69 —0.3140 0.3910 0.0051 0.1257 0.2539 1.1800 3.6774 0.0890

Note: Summary statistics for Market Tightness Index including count (N), minimum, maximum, mean, median, standard deviation (Std.
Dev.), skewness, excess kurtosis, Jarque-Bera (JB) statistic, and associated p-value.

and the industrial production - excluding construction - of the
OECD zone. Although there might be a certain degree of cor-
relation between these demand side variables, they may have
effects on the volatility of freight rates in different shipping
sectors. For instance, iron ore is mainly carried by Cape-
size vessels, while grain is mainly carried by Panamax and
Supramax vessels, and minor bulk commodities are mainly
transported by Handysize vessels. Furthermore, we consider
the year-on-year change and the three-month moving averages
of year-on-year changes. These transformations are selected
to provide a more granular view of major bulk commodities as
they directly measure the volume of cargo transported within
the dry bulk sector, capturing demand dynamics. Finally, the
OECD industrial production level reflects the current demand
for raw materials, while its volatility is an indicator of eco-
nomic uncertainty, both of which are key proxies for the
demand for dry bulk shipping.

It is well documented that the shipping freight market is
cyclical (Stopford 2009, Alizadeh and Nomikos 2009) and
the behavior of volatility can depend on the phases of the
shipping cycle, reflecting supply and demand conditions. To
incorporate such information in our models, we introduce a
Market Tightness Index (MTP) which summarizes the supply
and demand balance in the dry bulk market at time #:

Total Seaborne Trade['000 tonnes]
MTP t= . 11- . . USD
Fleet Size[dwt million]/Fuel Oil Price [ ]

tonne

€))

The descriptive statistics of the level and logarithmic changes
in the market tightness index are presented in table 4. The
market tightness index is constructed in such a way that a high
level of the index indicates a tight market condition as the
demand for dry bulk cargo transportation is greater than the
supply and any changes in demand can have a great impact
on the freight level. Similarly, a low level index is an indica-
tion of low demand and excess supply, that is when changes
in demand can be absorbed by excess supply, which result
in low freight volatility. The index is tested as an exogenous
predictor in the machine learning models and in the GARCH-
MIDAS model as a driver of the long-run volatility com-
ponent. In developing our model specifications, we examine
an extended set of variables and we experiment with vari-
ous transformations of these variables to derive potentially
more representative drivers to train our models, specifically
we include: (i) simple log transformations of the candidate
predictors, (ii) quarter-over-quarter change (first difference)
and the quarter-over-quarter percentage change (relative dif-
ference) for every predictor. We also include lagged values
of the predictors up to five lags. This process leads to a set of
almost 210 predictors as potential candidates for our modeling

procedures. Our decision to explore various transformations
and lags of all predictors is motivated by the lack of con-
clusive evidence in current literature on the number of lags
to include and whether using levels or first differences is
preferable in predicting freight rates volatility.

4.1. Temporal disaggregation

Several of the exogenous features that we test as predictors
are available at low-frequencies, typically at monthly open-
ing and closing values. In contrast, the target variable is at
higher frequency, with daily observations. In the GARCH-
MIDAS model, the MIDAS filter allows the use of lower
frequency indicators in the long-run volatility component
equation, but in all the machine learning algorithms this
frequency mismatch can cause severe bias. This is a fre-
quent challenge for researchers and several effective methods
have been proposed in the literature to address it (Sax and
Steiner 2013). It is well known that listwise deletion, where
all entries with missing values are removed before the anal-
ysis, is easy to implement but has significant disadvantages:
missing information can introduce bias and loss of preci-
sion (Little and Rubin 2019). More sophisticated techniques
involve imputation—the statistical process of replacing miss-
ing values (Moritz and Bartz-Beielstein 2017). For example,
forward filling is a simple and popular approach that lever-
ages the temporal structure by using the most recent available
observation to replace missing values (Che et al. 2018, Lip-
ton et al. 2016). In a time series context however, interpolation
methods which use information from previous and future data
points have been shown to be more effective in handling fre-
quency mismatch (Junninen et al. 2004). As outlined in Sax
and Steiner (2013), the goal of temporal disaggregation is to
derive an unknown high-frequency series x that aligns with
the sums, averages, or specific values (first or last) of a known
low-frequency series x;. The process involves modeling the
differences between the observed low-frequency series and
a higher-frequency series which is used as a proxy in the
disaggregation process (Sax and Steiner 2013). Disaggrega-
tion methods differ in how they identify the high-frequency
proxy and the mapping via the distribution matrix (Sax and
Steiner 2013). In this paper, we utilize the Denton-Cholette
transformation approach, first converting the log differences
of all monthly frequent exogenous features, including the
market tightness index, as outlined in table 3. We employ
a constant value of one as the initial indicator, facilitating
temporal disaggregation without the need of high-frequency
indicator series. In this way, we effectively perform an inter-
polation that adheres to the temporal additivity constraint (Sax
and Steiner 2013). All the frequency-transformed Denton-
Cholette variables and the exogenous variables available at
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daily frequency are included in the first calibration step of
the machine learning models with exogenous features. This
results in a diverse set of potential exogenous features to be
included in the models. Variable importance and selection
during model calibration is discussed in the next subsection.
Each exogenous variable is aligned with the date entries of
the target volatility proxy in the dataset to create the main
input dataframe. Feature date entries that do not match the
date entries of the target variable are removed from the input
dataframe.

4.2. Model development and validation

Model selection is a crucial step in the machine learning
and econometrics modeling. The objective of this process
is to select the most suitable model from a range of candi-
dates, using an appropriate error measure. For all the machine
learning models introduced in Section 3, we consider two
configurations: (i) a pure time series configuration, where
the input dataframe consisting solely in lagged values of the
volatility proxy, and (ii) a configuration with exogenous pre-
dictors where, in addition to all exogenous variables, includ-
ing the Market Tightness Index, are tested. The choice of these
two configurations enables us to discuss the role of exoge-
nous predictors in freight rate volatility forecasting and draw
conclusions robust to model specification.

Development of recent data analysis techniques such as
flexible Machine Learning approaches not only allows han-
dling of large amount of data but also exploration of complex
and nonlinear relation among the variables which could be
used to produce better forecasts. Such complexities cannot
be utilized in traditional econometric and time series models,
where economic relationships are established and examined
through statistical tests. Therefore, while a shortcoming of
the ML approach is that economic relationships between
variables cannot be established and tested, the advantage of
handling a large data set and allowing for complex non-
linear interrelation can enhance prediction and forecasting
performance of ML models.

Shipping is a complex industry where four main physi-
cal markets, namely the freight, second-hand, new-build, and
demolition markets, constantly interact, while several vari-
ables within each market, including ship values, fleet size,
orderbook, and shipping freight rates, among others, evolve
at different speeds and rates. In addition, changes in interna-
tional seaborne trade as well as decisions and actions by par-
ticipants and agents in different shipping sub-markets directly
and indirectly affect each segment of the industry.{ Such deci-
sions affect the supply and demand for shipping services and
consequently impact shipping freight rates in the short- and
long-run, and the level and dynamics of volatility of shipping
freight rates. Therefore, investigating the behavior and volatil-
ity of freight rates in isolation may not be optimal. Using a
broad range of industry variables in conjunction with flexible

T These decisions include ordering new ships, investing in second-
hand ships, scrapping old and inefficient ships, operating or deacti-
vating vessels (layup) depending on market conditions on the supply
side, and hiring ships for transportation or not, and which route or
commodity to trade on the demand side.

machine learning techniques can provide models with the con-
text and richness of data required to capture the multifaceted
nature of volatility of shipping freight, which could improve
the accuracy and reliability of forecasts.

In machine learning applications, K-fold cross-validation
is commonly recognized as the standard validation method
(Schnaubelt 2019b). However validation strategies that main-
tain the temporal order of observations between the train-
ing and the validation set are more effective in time series
dataset which may exhibit long-range dependence (Bergmeir
et al. 2018). These are known as forward-validation meth-
ods. We use the growing-window validation technique of
Schnaubelt (2019a) with K = 5 folds with a 90/10 training-
to-validation set split to ensure proper model evaluation for
future selection and hyperparameter tuning. For the machine
learning models incorporating exogenous features, feature
selection and hyperparameter tuning are conducted in two
steps. First, we identify a subset of relevant features from
the high-dimensional dataset based on specific evaluation cri-
teria to reduce computational complexity and enhance the
generalization ability of the models (Chen and Chen 2015).
At this stage, we include all the exogenous variables, their
transformations and lagged values and the lagged values of
the volatility proxy as features, up to a predefined maximum
number of lags (set to five for all models). We trim the initial
large set of features using the feature importance scores on a
the basic leaner specification which includes all features at our
disposal (Wujek et al. 2016). The importance scores threshold
is optimized by means of a specialized wrapper scheme which
ensures that a feature subset selection algorithm acts as a
wrapper around the induction algorithm (our simple learner),
using the induction algorithm to evaluate different subsets of
features. The subset with the highest evaluation is selected
for the final model (Kohavi and John 1997). We use the list
of feature importances from the initial model as candidate
thresholds. This list is used to filter subsets of features whose
importance is greater than or equal to the current threshold.
These selected features are used to train a new model with
a simple structure. Finally, we employ a forward selection
approach which starts with an empty set of features and iter-
atively adds one feature at a time to the induction algorithm
until all features are included. A valid subset of features must
contain at least two features, and the iteration list of feature
importance includes only one value of zero to keep the list
as concise as possible. To evaluate the performance of a can-
didate threshold, we use a five-fold forward-validation. The
performance of each candidate threshold is assessed based on
the Mean Squared Error (MSE) in the validation set for each
fold. We compute a weighted average of these MSE values
with weights corresponding to the fold numbers, such that
the fold containing the most training data receives the highest
weight. The features which correspond to the best-performing
threshold are then used in the subsequent hyperparameter tun-
ing process. Figure 2 illustrates the feature selection process
described above.

In the tuning process, we use a straightforward grid search
strategy for all models, creating a grid of possible hyper-
parameter values from all combinations of predefined sets
(Wujek et al. 2016). Appendix 2 contains the hyperparame-
ter ranges considered for the machine learning models. The
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Figure 2. Feature importance and selection threshold.

Table 5. Final hyperparameters for CatBoost.

Parameter Value
Iterations? 200
Max depth? 6
Learning rate® 0.1
L2 regularization strengthd 1
Random strength® 1

4Number of trees.

YMaximum depth of each tree.

Step size shrinkage.

dStrength of L2 norm regularization (log-
scale).

¢Randomness when choosing splits.

grid is iterated through by using the optimal set of fea-
tures identified during the feature selection process, using the
forward-validation scheme across five folds. The hyperparam-
eter combination with the minimum weighted average MSE
across the five folds is selected as the best set of hyperpa-
rameters, the same decision rule as for the feature selection.
The pure time series machine learning configurations are
inherently less computationally complex, as they use only
the target value at time ¢ and potentially its lags up to a
maximum of five as features. We determine the optimal lag
structure (feature selection) and hyperparameters using the
same forward-validation scheme across five folds described
above. Final hyperparameters for CatBoost, Random Forest,
and XGBoost are reported in tables 5, 6, and 7, respectively.

Model selection for the set of GARCH models is conducted
using the Bayesian Information Criterion (BIC). All models
are estimated by Maximum Likelihood methods, assuming
either Gaussian or a Student-t error distribution in the first
step. For each GARCH specification, the selection algorithm
identifies the model with the lowest BIC among those which
have successfully passed all post estimation diagnostic tests
at 5% level of significance.

5. The forecasting exercise

Volatility forecasting is particularly challenging when only
daily data is available as volatility itself is latent and thus
unobservable even ex-post. In general, to compare model

Table 6. Final hyperparameters for random for-

est.
Parameter Range
Estimators?® 50
Max depthP 5
Min samples split® 2
Min samples leafd 1
Max features® ‘log2’

Number of trees.

“None’ means max depth not constrained.
“Minimum number of samples required to split
an internal node.

dMinimum number of samples required to be at
a leaf node.

®The number of features to consider when look-
ing for the best split. ‘log2’ is the base-2 loga-
rithm of the total number of features.

Table 7. Final hyperparameters for XGBoost.

Parameter Range
Estimators? 200
Learning rate® 0.01
Max depth® 10
Subsampled 0.8

2The number of boosting rounds/trees.

bStep size shrinkage.

“Maximum depth of each tree.

dFraction of rows sampled for each boosting round

Table 8. Loss functions.

Loss function Formula Type

MSE; 7! Zthl (o0 — &,)2 Symmetric

MSE, T-! Zthl (o2 - 61'2)2 Symmetric

QLIKE 7! Zthl log (61'2) + yl-zéfz Asymmetric
2

R?’LOG Ty, [log (6,2&,_2)] Asymmetric

Notes: 6; denotes the predicted volatility for day t, o, the conditional
variance proxy, T the out-of-sample length.

based forecasts with ex-post realizations, the researcher must
choose a statistical loss function and a proxy for the true
unobservable conditional variance. When only noisy proxy
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Table 9. SPA test results for the Baltic Handysize Average 7 Trip-charter rates (HA7TC).

MSE; MSE, QLIKE RZLOG
Benchmark PL pc pu DL pc pU PL pc pu PL pc PU
1-day-ahead
GARCH 0.30 0.33 0.35 0.10 0.11 0.14 0.11 0.11 0.12 0.20 0.25 0.30
EGARCH 0.10 0.10 0.11 0.13 0.15 0.18 0.02 0.03 0.03 0.20 0.25 0.25
GJR-GARCH 0.15 0.15 0.15 0.30 0.33 0.33 0.11 0.12 0.13 0.13 0.15 0.16
FIGARCH 0.12 0.12 0.16 0.15 0.18 0.22 0.20 0.23 0.25 0.11 0.11 0.14
GARCH-MIDAS 0.01 0.05 0.05 0.04 0.05 0.06 0.04 0.06 0.11 0.03 0.04 0.05
RF, 0.06 0.10 0.13 0.11 0.11 0.11 0.12 0.12 0.20 0.30 0.33 0.40
RF, 0.01 0.02 0.03 0.01 0.02 0.05 0.04 0.06 0.06 0.04 0.04 0.06
XG, 0.02 0.02 0.00 0.01 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.05
XG, 0.05 0.06 0.08 0.01 0.02 0.03 0.04 0.04 0.06 0.04 0.05 0.05
CAT, 0.20 0.22 0.25 0.23 0.30 0.33 0.12 0.11 0.17 0.32 0.45 0.50
CAT, 0.11 0.11 0.18 0.04 0.05 0.05 0.01 0.02 0.02 0.01 0.02 0.03
SAp 0.18 0.25 0.28 0.19 0.30 0.30 0.18 0.28 0.30 0.30 0.33 0.35
SA, 0.35 0.35 0.37 0.19 0.23 0.26 0.18 0.27 0.30 0.42 0.56 0.63
5-days-ahead
GARCH 0.43 0.65 0.69 0.46 0.77 0.77 0.27 0.27 0.27 0.63 0.84 0.89
EGARCH 0.60 0.89 0.91 0.53 0.84 0.85 0.19 0.33 0.33 1.00 1.00 1.00
GJR-GARCH 0.53 0.76 0.78 0.68 0.90 0.90 0.23 0.30 0.30 0.73 0.90 0.92
FIGARCH 0.10 0.12 0.12 0.11 0.11 0.11 0.23 0.25 0.25 0.24 0.27 0.33
GARCH-MIDAS 0.16 0.16 0.16 0.17 0.17 0.17 0.23 0.23 0.23 0.47 0.48 0.48
RF, 0.08 0.08 0.08 0.13 0.14 0.14 0.11 0.12 0.12 0.78 0.84 0.85
RF, 0.33 0.55 0.65 0.32 0.72 0.72 0.21 0.42 0.42 0.69 0.77 0.81
XG, 0.22 0.40 0.44 0.25 0.48 0.48 0.19 0.31 0.31 0.34 0.40 0.42
XG, 0.05 0.06 0.06 0.09 0.09 0.09 0.26 0.33 0.33 0.01 0.01 0.01
CAT, 0.27 0.61 0.63 0.44 0.84 0.86 0.15 0.30 0.30 0.70 0.78 0.80
CAT, 0.16 0.22 0.24 1.00 1.00 1.00 0.19 0.27 0.27 0.16 0.17 0.18
SAp 1.00 1.00 1.00 0.82 0.98 0.99 0.27 0.59 0.67 0.88 0.98 0.98
SA, 0.32 0.41 0.53 0.33 0.71 0.71 1.00 1.00 1.00 0.06 0.06 0.07
25-days-ahead

GARCH 0.12 0.12 0.14 0.11 0.14 0.15 0.11 0.11 0.14 0.00 0.05 0.09
EGARCH 0.00 0.03 0.04 0.02 0.03 0.03 0.10 0.12 0.15 0.02 0.02 0.02
GJR-GARCH 0.12 0.15 0.16 0.15 0.18 0.19 0.12 0.12 0.14 0.06 0.08 0.08
FIGARCH 0.61 0.74 0.74 0.37 0.60 0.60 0.67 0.84 0.84 0.50 0.53 0.56
GARCH-MIDAS 0.42 0.42 0.42 0.45 0.45 0.45 0.23 0.23 0.26 0.83 0.85 0.85
RF, 0.02 0.03 0.03 0.01 0.01 0.02 0.03 0.03 0.03 0.01 0.01 0.03
RF, 0.61 0.87 0.89 0.31 0.62 0.64 0.45 0.50 0.54 0.36 0.43 0.48
XGp 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.02
XG, 0.00 0.00 0.00 0.04 0.05 0.05 0.03 0.03 0.03 0.00 0.00 0.00
CAT, 0.15 0.15 0.20 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01
CAT, 0.19 0.20 0.30 0.30 0.33 0.33 0.20 0.22 0.24 0.31 0.46 0.47
SA, 0.15 0.22 0.23 0.11 0.15 0.15 0.11 0.13 0.13 0.40 0.40 0.50
SA, 0.55 0.55 0.60 0.20 0.29 0.30 0.40 0.50 0.55 0.33 0.33 0.35

Note: RF - Random Forest; XG - XGBoost; CAT - CatBoost. Machine learning models denoted with subscript p represent pure time series
models, while models denoted with subscript e incorporate exogenous variables as features. In each row, the benchmark model is assessed
against the remaining set of models, where pc represents the consistent p-value, while p; and py denote the lower and upper bounds,
respectively. Bold consistent p-values indicate non-rejection of the null hypothesis at the 10% significance level.

are available such as daily data as in our case, as pointed out
byAndersen et al. (2003) and Laurent et al. (2012), the use
of a proxy might lead to a different ordering of competing
models which would be obtained if the true volatility were
observed. In our forecasting exercise, we follow Bauwens
and Otranto (2016) and use several loss functions that are
robust to noisy proxies. We define these in table 8. The
MSE is a symmetric, quadratic loss function that is sensi-
tive to outliers. Its use is advantageous if large errors should
weight more heavily when assessing model performance.
Unlike the symmetric MSE, the Quasi-Likelihood (QLIKE)
loss function penalizes under-predictions more heavily than
over-predictions. This makes QLIKE particularly useful in

contexts where under-prediction is costly, i.e in risk manage-
ment, as it favors positively biased forecasts. We evaluate the
forecasting performance of the candidate models by means
of two statistical approaches: the Superior Predictive Abil-
ity (SPA) test of Hansen (2005) and the Model Confidence
Set (MCS) method of Hansen et al. (2011). The SPA test
focuses on the predictive ability of a predefined benchmark
model with respect to several alternatives: we employ it to
assess if specific assumptions, such as the use of pure time
series algorithms can be rejected, at the different horizons. As
benchmarks, we choose the most parsimonious models taking
into account the different assumptions in terms of exogenous
predictors. This is aligned with industry practices where in
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Table 10. SPA test results for the Baltic Supramax average 10 trip-charter rates (SA10TC).

MSE; MSE, QLIKE R’LOG

Benchmark PL pc PU pL pc PU PL pc pU pL pc PU
1-day-ahead
GARCH 0.25 0.30 0.33 0.15 0.18 0.18 0.10 0.11 0.14 0.25 0.33 0.40
EGARCH 0.15 0.15 0.16 0.35 0.43 0.43 0.02 0.03 0.03 0.24 0.28 0.29
GJR-GARCH 0.12 0.15 0.15 0.34 0.37 0.37 0.10 0.11 0.11 0.28 0.48 0.48
FIGARCH 0.24 0.27 0.27 0.24 0.31 0.31 0.16 0.19 0.23 0.13 0.15 0.15
GARCH-MIDAS 0.08 0.08 0.08 0.09 0.09 0.09 0.04 0.06 0.11 0.03 0.05 0.08
RF, 0.06 0.10 0.13 0.11 0.11 0.11 0.10 0.15 0.18 0.30 0.52 0.50
RF, 0.01 0.03 0.06 0.03 0.03 0.05 0.08 0.08 0.09 0.04 0.04 0.06
XG, 0.02 0.02 0.02 0.0 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.05
XG, 0.07 0.07 0.07 0.02 0.02 0.05 0.06 0.07 0.08 0.06 0.07 0.07
CAT, 0.36 0.56 0.56 0.29 0.30 0.30 0.10 0.11 0.11 0.31 0.49 0.50
CAT, 0.11 0.11 0.18 0.04 0.05 0.05 0.01 0.02 0.02 0.02 0.03 0.03
SA, 0.18 0.21 0.28 0.19 0.25 0.30 0.11 0.21 0.21 0.31 0.33 0.33
SA, 0.35 0.35 0.37 0.19 0.23 0.26 0.18 0.27 0.30 0.42 0.56 0.63
5-days-ahead
GARCH 0.43 0.65 0.69 0.46 0.77 0.77 0.27 0.27 0.27 0.63 0.84 0.89
EGARCH 0.60 0.89 0.91 0.53 0.84 0.85 0.19 0.33 0.33 1.00 1.00 1.00
GJR-GARCH 0.53 0.76 0.78 0.68 0.90 0.90 0.23 0.30 0.30 0.73 0.90 0.92
FIGARCH 0.10 0.12 0.12 0.11 0.11 0.11 0.23 0.25 0.25 0.24 0.27 0.33
GARCH-MIDAS 0.16 0.16 0.16 0.17 0.17 0.17 0.23 0.23 0.23 0.47 0.48 0.48
RF, 0.08 0.08 0.08 0.13 0.14 0.14 0.11 0.12 0.12 0.78 0.84 0.85
RF, 0.33 0.55 0.65 0.32 0.72 0.72 0.21 0.42 0.42 0.69 0.77 0.81
XG, 0.22 0.40 0.44 0.25 0.48 0.48 0.19 0.31 0.31 0.34 0.40 0.42
XG, 0.05 0.06 0.06 0.09 0.09 0.09 0.26 0.33 0.33 0.01 0.01 0.01
CAT, 0.27 0.61 0.63 0.44 0.84 0.86 0.15 0.30 0.30 0.70 0.78 0.80
CAT, 0.16 0.22 0.24 1.00 1.00 1.00 0.19 0.27 0.27 0.16 0.17 0.18
SA, 1.00 1.00 1.00 0.82 0.98 0.99 0.27 0.59 0.67 0.88 0.98 0.98
SA. 0.32 0.41 0.53 0.33 0.71 0.71 1.00 1.00 1.00 0.06 0.06 0.07
25-days-ahead

GARCH 0.11 0.12 0.12 0.10 0.12 0.15 0.11 0.11 0.12 0.05 0.05 0.06
EGARCH 0.00 0.01 0.03 0.00 0.02 0.03 0.12 0.14 0.16 0.02 0.03 0.03
GJR-GARCH 0.14 0.16 0.17 0.11 0.12 0.15 0.11 0.12 0.15 0.06 0.08 0.08
FIGARCH 0.50 0.52 0.55 0.45 0.48 0.50 0.51 0.57 0.64 0.55 0.60 0.62
GARCH-MIDAS 0.50 0.55 0.65 0.38 0.42 0.45 0.30 0.33 0.33 0.71 0.71 0.74
RF, 0.00 0.01 0.03 0.01 0.02 0.05 0.02 0.04 0.05 0.01 0.01 0.03
RF, 0.61 0.87 0.89 0.31 0.62 0.64 0.45 0.50 0.54 0.36 0.43 0.48
XGp 0.00 0.01 0.01 0.00 0.01 0.02 0.01 0.02 0.04 0.01 0.01 0.05
XG, 0.00 0.01 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.00 0.02 0.04
CAT, 0.18 0.25 0.30 0.05 0.05 0.05 0.04 0.06 0.07 0.00 0.02 0.03
CAT, 0.12 0.12 0.15 0.10 0.12 0.15 0.20 0.25 0.30 0.30 0.33 0.37
SA, 0.10 0.12 0.16 0.11 0.12 0.14 0.10 0.15 0.18 0.37 0.40 0.44
SA. 0.67 0.70 0.71 0.30 0.33 0.38 0.42 0.50 0.58 0.51 0.65 0.60

Note: RF - Random Forest; XG - XGBoost; CAT - CatBoost. Machine learning models denoted with subscript p represent pure time series
models, while models denoted with subscript e incorporate exogenous variables as features. In each row, the benchmark model is assessed
against the remaining set of models, where pc represents the consistent p-value, while p;, and py denote the lower and upper bounds,
respectively. Bold consistent p-values indicate non-rejection of the null hypothesis at the 10% significance level.

general very few predictors are used in freight rates forecast-
ing. With the MCS method, we identify from the initial set
of competing models those which display equal predictive
ability and outperform the others at a given confidence level,
offering guidance on the alternative models to use in practical
forecasting industry applications.

The forecasting ability of the set of proposed models is
evaluated over a series of 250 out-of-sample predictions.We
compare the one-day, five-days and 25-days ahead volatility
forecasts. Forecasts are constructed using a fixed rolling win-
dow scheme: the estimation period is rolled forward by adding
one new daily observation and dropping the most distant
observation. parameters are re-calibrated each day to obtain

tomorrow’s volatility forecasts and the sample size used for
the estimation is fixed. Thus for each window, the input to the
models includes the current set of training data plus the num-
ber of observations corresponding to the forecast step. This
scheme satisfies the assumptions required by the MCS method
of Hansen et al. (2011) and the SPA test of Hansen (2005)
and allows a unified treatment of nested and unnested models,
thus allowing us to compare machine learning and economet-
ric models. For each statistical loss function, we evaluate the
significance of the differences by means of the SPA test and
the MCS methodology.

In the ‘horse race’, we consider several different mod-
els. We include: (i) all the GARCH models introduced in
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Table 11. SPA test results for the Baltic Panamax average 5 trip-charter rates (PASTC).

MSE; MSE, QLIKE R2LOG
Benchmark PL pc pu PL pc pu PL pc pu DL pc PU
1-day-ahead
GARCH 0.33 0.54 0.57 0.10 0.11 0.15 0.15 0.14 0.16 0.25 0.31 0.33
EGARCH 0.14 0.16 0.16 0.33 0.42 0.46 0.03 0.03 0.04 0.27 0.30 0.30
GJR-GARCH 0.11 0.12 0.14 0.27 0.33 0.35 0.11 0.12 0.12 0.30 0.41 0.43
FIGARCH 0.22 0.28 0.29 0.20 0.26 0.30 0.15 0.15 0.18 0.15 0.17 0.20
GARCH-MIDAS 0.03 0.03 0.08 0.01 0.04 0.04 0.04 0.06 0.11 0.03 0.03 0.04
RF, 0.06 0.11 0.14 0.12 0.10 0.12 0.11 0.12 0.16 0.28 0.40 0.44
RF, 0.02 0.02 0.04 0.03 0.05 0.05 0.01 0.01 0.03 0.04 0.04 0.04
XGy 0.02 0.02 0.02 0.0 0.03 0.02 0.02 0.03 0.02 0.04 0.04 0.05
XG, 0.06 0.06 0.08 0.03 0.04 0.05 0.06 0.07 0.08 0.02 0.04 0.07
CAT, 0.18 0.25 0.26 0.27 0.27 0.30 0.10 0.11 0.12 0.30 0.33 0.36
CAT, 0.10 0.15 0.15 0.03 0.04 0.08 0.01 0.01 0.03 0.02 0.03 0.05
SAp 0.18 0.22 0.28 0.12 0.15 0.22 0.11 0.15 0.21 0.26 0.28 0.30
SA, 0.30 0.30 0.33 0.18 0.20 0.26 0.15 0.20 0.28 0.40 0.50 0.60
5-days-ahead
GARCH 0.45 0.50 0.61 0.40 0.45 0.51 0.12 0.14 0.17 0.35 0.36 0.36
EGARCH 0.50 0.52 0.62 0.50 0.56 0.63 0.11 0.14 0.15 0.23 0.25 0.25
GJR-GARCH 0.43 0.50 0.56 0.35 0.35 0.40 0.33 0.33 0.35 0.34 0.35 0.35
FIGARCH 0.11 0.14 0.15 0.10 0.12 0.15 0.22 0.28 0.30 0.16 0.16 0.18
GARCH-MIDAS 0.16 0.18 0.18 0.10 0.11 0.15 0.12 0.13 0.15 0.30 0.33 0.33
RF, 0.08 0.08 0.09 0.11 0.11 0.14 0.10 0.11 0.12 0.12 0.38 0.44 0.53
RF, 0.33 0.33 0.38 0.28 0.37 0.40 0.21 0.25 0.33 0.12 0.15 0.18
XG, 0.00 0.0.1 0.04 0.05 0.04 0.05 0.10 0.12 0.12 0.04 0.04 0.02
XG, 0.05 0.06 0.05 0.08 0.09 0.09 0.30 0.30 0.32 0.01 0.01 0.02
CAT, 0.27 0.61 0.63 0.44 0.84 0.86 0.15 0.30 0.30 0.70 0.78 0.80
CAT, 0.16 0.22 0.24 0.50 0.67 0.68 0.23 0.33 0.27 0.21 0.27 0.33
SAp 1.00 1.00 1.00 0.82 0.98 0.99 0.27 0.59 0.67 0.88 0.98 0.98
SA, 0.32 0.41 0.53 0.33 0.71 0.71 0.50 0.56 0.03 0.05 0.06 0.07
25-days-ahead
GARCH 0.13 0.12 0.12 0.12 0.15 0.15 0.11 0.12 0.12 0.02 0.03 0.06
EGARCH 0.01 0.03 0.06 0.02 0.03 0.04 0.09 0.10 0.15 0.02 0.02 0.03
GJR-GARCH 0.12 0.12 0.12 0.15 0.15 0.18 0.10 0.15 0.16 0.04 0.02 0.03
FIGARCH 0.61 0.74 0.74 0.37 0.60 0.60 0.67 0.84 0.84 0.50 0.53 0.56
GARCH-MIDAS 0.42 0.42 0.42 0.45 0.45 0.45 0.23 0.23 0.26 0.83 0.85 0.85
RF, 0.02 0.03 0.03 0.01 0.01 0.02 0.03 0.03 0.03 0.01 0.01 0.03
RF, 0.61 0.87 0.89 0.31 0.62 0.64 0.45 0.50 0.54 0.36 0.43 0.48
XGp 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.02
XG, 0.00 0.00 0.00 0.04 0.05 0.05 0.03 0.03 0.03 0.00 0.00 0.00
CAT, 0.14 0.17 0.17 0.03 0.03 0.04 0.01 0.01 0.02 0.01 0.01 0.01
CAT, 0.29 0.29 0.29 0.23 0.23 0.23 0.25 0.26 0.26 0.25 0.42 0.42
SA, 0.22 0.25 0.33 0.12 0.15 0.18 0.19 0.20 0.35 0.30 0.33 0.40
SA, 0.60 0.65 0.67 0.25 0.30 0.33 0.25 0.55 0.60 0.41 0.52 0.63

Note: RF - Random Forest; XG - XGBoost; CAT - CatBoost. Machine learning models denoted with subscript p represent pure time series
models, while models denoted with subscript e incorporate exogenous variables as features. In each row, the benchmark model is assessed
against the remaining set of models, where pc represents the consistent p-value, while p; and py denote the lower and upper bounds,
respectively. Bold consistent p-values indicate non-rejection of the null hypothesis at the 10% significance level.

Section 3 with Gaussian and t-distributed errors, (ii) the
GARCH MIDAS models which uses the market tightness
index as a macroeconomic volatility driver with Normal and
t-distributed errors, (iii) and the machine learning models with
exogenous features, (iv) the machine learning models with
time series lags only. We also investigate whether combin-
ing the strengths of these models could be beneficial in term
of forecasting accuracy. It is well known that combinations of
forecasts from econometric models can achieve greater pre-
dictive accuracy (Timmermann 2013). Several combination
strategies have been discussed in the literature, see X. Wang
et al. (2023) for a review. In the machine learning litera-
ture, there is a growing consensus that ensembles (stacking)

of learners (meta-learner) outperform methods that simply
choose the best learner in term of predictive accuracy, due
to their ability of capturing complex non-linear relationships
between inputs and outputs (Reddy er al. 2022). Stacking
involves using the predictions from base models as inputs for
a meta-model (Aras 2021), and identifying the algorithm for
learning at the meta-level (DZeroski and Zenko 2004).

In this article, we explore hybrid forecast combinations of
GARCH models and tree-based learners. We tested the OLS
regression, the LSTM and other learning algorithms, but these
yield poor performance and low accuracy at the meta-level,
due to the small size of the training set. To address this, we
implement an equally weighted voting scheme that does not
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involve additional learning at the meta-level (DZeroski and
Zenko 2004). We consider several configurations of stacked
models but present results in section 5 for the two best com-
binations. The first is the weighted average of all pure time
series machine learning models included in the MCS at 75%
level of significance for a given forecasting horizon and the
best performing GARCH model at that horizon, the second is
the weighted average of all machine learning algorithms with
exogenous features included in the MCS at 75% level for a
given forecasting horizon and the best performing GARCH
model at that horizon. Thus the set of models included in
the hybrid ensemble changes across the forecasting horizons.
Results on the performance of other combinations and stack-
ing strategies are available upon request from the authors. In
the ‘horse race’ we include 110 models in total.

5.1. Assessing the benchmark: the SPA test

In this section, we study the forecasting performance of a pre-
specified benchmark model with respect to alternative models
using the SPA test. The SPA test (Hansen 2005) directly
compares a benchmark model to various alternative models
according to a pre-specified loss function. The test enables
us to shed light on the models characteristics which can be
rejected. For a given loss function, it is based on the loss dif-
ferential between the benchmark model, indexed by 0, and an
alternative model k = 1, . .., m. The null hypothesis of the test
is that the benchmark model is as good as any of the competi-
tors in terms of expected loss. Every model is successively
set as the benchmark and evaluated against the remaining
set of models. Results for the different series are reported in
tables 9 through 12 where p;, pc and py are, respectively,
the consistent p-values and their lower and upper bounds.
Consistent p-values are obtained by block bootstrap with
10000 replications and a block length of /T, as suggested
by Hansen (2005). Boldface entries indicate non-rejection of
the null at the 10% significance level.

Across series, the results suggest that at the 1-day-ahead
horizon, specifications including exogenous variables are
rejected (GARCH-MIDAS, XGBoost and RF), while pure
time series ones cannot be rejected, suggesting that at a short
horizon the role of exogenous variables is not prominent. All
the pure time series GARCH models are included for all the
loss functions. Among the ML algorithms, the XGBoost is
rejected across series. The stacked averages cannot be rejected
for any series. At the 5 days ahead horizon, we reject again the
XGBoost. For the GARCH models, the GARCH-MIDAS can
no longer be rejected for the MSE loss functions. The CAT-
Boost and the RF with exogenous variables are not rejected
according to the MSE loss functions, while all ML specifica-
tions that don’t include exogenous variables are rejected. All
loss functions do not reject the stacked averages for any series.
When considering the 25 days ahead horizon, the machine
learning algorithms with no exogenous predictors and the
stacked average with no exogenous predictors are all rejected.
The RF, the CATBoost, the stacked average with exogenous
predictors and the GARCH-MIDAS are included for all series
for all loss functions, suggesting that the use of exogenous
variables is very significant at longer horizon, regardless of

the model structure used. GARCH models generally demon-
strate more robust accuracy than their ML counterparts, with
the GARCH-MIDAS specification being a particularly strong
benchmark at the 25 days horizon. It is intriguing to note that
the only model not rejected across all loss functions at any
horizon is the stacked average with exogenous predictors.

5.2. The model confidence set

The Model Confidence Set identifies a set of models with
equivalent predictive ability that outperform all the other com-
peting models at a given confidence level. The objective of
the MCS procedure of Hansen et al. (2011) is to identify the
optimal subset of models, M*, from an initial set of com-
peting models, M, at a predefined confidence level. M* C
MO will encompass the models M € M° that demonstrate
the strongest relative forecasting performance according to a
specific loss function. This method does not require prespec-
ifying a preferred benchmark model; in fact, it is a statistical
test of equivalence with respect to a particular loss function.
The trimming is achieved via a sequence of equal predictive
ability (EPA) tests. Hence, if the null hypothesis is rejected,
the model with the poorest performance is removed from
M. This sequential testing procedure continues until the null
hypothesis of equal predictive ability is accepted at the given
significance level and the Superior Set Models (MCS) M* is
obtained. For a large number of competing models, we follow
Hansen et al. (2011) and obtain the quantiles of the asymptotic
distribution of the test statistic by block bootstrap with 10 000
replications and a block length of +/7. The results are illus-
trated in table 13, showing the inclusion rates of each model
in the MCS at respectively 90% and 75% confidence levels at
the various horizons.

The most striking result is the inclusion of the Stacked
Average combination in the MCS of the four loss functions
at all horizons, supporting the hypothesis that combinations
of GARCH models and tree-based learners with exogenous
variables improve forecasting accuracy at several horizons.
This suggests that the weighting (voting) process helps miti-
gate the individual weaknesses and combine the strengths of
different models. In line with our previous findings, machine
learning models with exogenous features consistently exhibit
good performance at medium and long horizon but do not
outperform consistently the GARCH-MIDAS. This suggests
that the market tightness index significantly enhances long-
term forecast accuracy for these segments. For the BCI,
the high inclusion rates for multiple models across various
horizons indicate that a combination is more sensible. Over-
all, the MCS results suggest that machine learning models
with exogenous features excel in long-term forecasting, but
GARCH models are in general better at capturing the depen-
dence structure of the volatility. Overall, our results suggest
that a hybrid forecast combination enhances the predictive
accuracy at all forecasting horizons.

5.3. Robustness

In this section, we investigate the sensitivity of the mod-
els’ forecasting performance with respect to the choice of
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Table 12. SPA test results for the Baltic Capeszie average 5 trip-charter rates (CASTC).

MSE; MSE, QLIKE RZLOG
Benchmark PL pc pu DL pc pU PL pc pu PL pc PU
1-day-ahead
GARCH 0.30 0.38 0.47 0.10 0.11 0.14 0.13 0.14 0.15 0.28 0.30 0.31
EGARCH 0.15 0.15 0.16 0.35 043 0.43 0.02 0.03 0.03 0.24 0.28 0.29
GJR-GARCH 0.12 0.15 0.15 0.34 0.37 0.37 0.10 0.11 0.11 0.28 0.48 0.48
FIGARCH 0.24 0.27 0.27 0.24 0.31 0.31 0.16 0.19 0.23 0.13 0.15 0.15
GARCH-MIDAS 0.08 0.08 0.08 0.09 0.09 0.09 0.04 0.06 0.11 0.03 0.05 0.08
RF, 0.06 0.10 0.13 0.11 0.11 0.11 0.10 0.15 0.18 0.30 0.52 0.50
RF, 0.01 0.03 0.06 0.03 0.03 0.05 0.08 0.08 0.09 0.04 0.04 0.06
XG, 0.02 0.02 0.02 0.0 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.05
XG, 0.07 0.07 0.07 0.02 0.02 0.05 0.06 0.07 0.08 0.06 0.07 0.07
CAT, 0.36 0.56 0.56 0.29 0.30 0.30 0.10 0.11 0.11 0.31 0.49 0.50
CAT, 0.11 0.11 0.18 0.04 0.05 0.05 0.01 0.02 0.02 0.02 0.03 0.03
SAp 0.18 0.21 0.28 0.19 0.25 0.30 0.11 0.21 0.21 0.31 0.33 0.33
SA, 0.35 0.35 0.37 0.19 0.23 0.26 0.18 0.27 0.30 0.42 0.56 0.63
5-days-ahead
GARCH 0.43 0.65 0.69 0.46 0.77 0.77 0.27 0.27 0.27 0.63 0.84 0.89
EGARCH 0.60 0.89 0.91 0.53 0.84 0.85 0.19 0.33 0.33 1.00 1.00 1.00
GJR-GARCH 0.53 0.76 0.78 0.68 0.90 0.90 0.23 0.30 0.30 0.73 0.90 0.92
FIGARCH 0.10 0.12 0.12 0.11 0.11 0.11 0.23 0.25 0.25 0.24 0.27 0.33
GARCH-MIDAS 0.16 0.16 0.16 0.17 0.17 0.17 0.23 0.23 0.23 0.47 0.48 0.48
RF, 0.08 0.08 0.08 0.13 0.14 0.14 0.11 0.12 0.12 0.78 0.84 0.85
RF, 0.33 0.55 0.65 0.32 0.72 0.72 0.21 0.42 0.42 0.69 0.77 0.81
XG, 0.22 0.40 0.44 0.25 0.48 0.48 0.19 0.31 0.31 0.34 0.40 0.42
XG, 0.05 0.06 0.06 0.09 0.09 0.09 0.26 0.33 0.33 0.01 0.01 0.01
CAT, 0.27 0.61 0.63 0.44 0.84 0.86 0.15 0.30 0.30 0.70 0.78 0.80
CAT, 0.16 0.22 0.24 1.00 1.00 1.00 0.19 0.27 0.27 0.16 0.17 0.18
SAp 1.00 1.00 1.00 0.82 0.98 0.99 0.27 0.59 0.67 0.88 0.98 0.98
SA, 0.32 0.41 0.53 0.33 0.71 0.71 1.00 1.00 1.00 0.06 0.06 0.07
25-days-ahead

GARCH 0.13 0.12 0.12 0.12 0.15 0.15 0.11 0.12 0.12 0.02 0.03 0.06
EGARCH 0.01 0.03 0.06 0.02 0.03 0.04 0.09 0.10 0.15 0.02 0.02 0.03
GJR-GARCH 0.12 0.12 0.12 0.15 0.15 0.18 0.10 0.15 0.16 0.04 0.02 0.03
FIGARCH 0.61 0.74 0.74 0.37 0.60 0.60 0.67 0.84 0.84 0.50 0.53 0.56
GARCH-MIDAS 0.42 0.42 0.42 0.45 0.45 0.45 0.23 0.23 0.26 0.83 0.85 0.85
RF, 0.02 0.03 0.03 0.01 0.01 0.02 0.03 0.03 0.03 0.01 0.01 0.03
RF, 0.61 0.87 0.89 0.31 0.62 0.64 0.45 0.50 0.54 0.36 0.43 0.48
XGp 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.02
XG, 0.00 0.00 0.00 0.04 0.05 0.05 0.03 0.03 0.03 0.00 0.00 0.00
CAT, 0.14 0.17 0.17 0.03 0.03 0.04 0.01 0.01 0.02 0.01 0.01 0.01
CAT, 0.29 0.29 0.29 0.23 0.23 0.23 0.25 0.26 0.26 0.25 0.42 0.42
SA, 0.15 0.19 0.23 0.11 0.11 0.15 0.11 0.11 0.14 0.41 0.47 0.54
SA, 0.64 0.84 0.88 0.24 0.49 0.59 0.26 0.56 0.66 0.49 0.62 0.73

Note: RF - Random Forest; XG - XGBoost; CAT - CatBoost. Machine learning models denoted with subscript p represent pure time series
models, while models denoted with subscript e incorporate exogenous variables as features. In each row, the benchmark model is assessed
against the remaining set of models, where pc represents the consistent p-value, while p; and py denote the lower and upper bounds,
respectively. Bold consistent p-values indicate non-rejection of the null hypothesis at the 10% significance level.

the forecasting sample. The time span of our sample covers
the period from 2017 to 2023 and several different volatility
dynamics. Hansen et al. (2003) point out that the SPA test and
MCS approach are specific to the set of candidate models and
the sample period. Here, we investigate the sensitivity of the
models’ forecasting performance with respect to the forecast
evaluation sample based on two sub-samples which are homo-
geneous in their volatility dynamics. The choice of periods
reflects the dynamics of freight rates and shipping markets.
The first sub-sample, from the beginning of our sample till
July 2019, corresponds to a relatively calm period for the mar-
ket as opposed to later periods. Our second sub-sample, from
January 2020 to 2023, arguably represents the most turbulent

period in shipping market history. This period encompasses
several global events marked by unprecedented market uncer-
tainty, including the pandemic and its aftermath, as well as the
war in Ukraine. The volatility dynamics are very different in
these two periods.

As expected, there are differences from the full sample
results, but our findings support the forecasting benefit of
combinations. The results are illustrated in tables 14 and 15. In
a period of relatively calm markets, the combination method
does not over-perform the GARCH-MIDAS model accord-
ing to all loss functions. These periods are characterized
by relatively small and slow-moving changes in volatility,
as well as few changes in the macroeconomic drivers that
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Table 13. Percentage inclusion in the MCS at the 90% and 75% level.

Series HA7TC SA10TC PASTC CASTC
Forecast step 1 5 25 1 5 25 1 5 25 1 5 25
Confidence level: 90%
Model
GARCH 80 83 18 75 84 33 33 33 17 58 58 50
EGARCH 20 18 10 25 15 15 20 20 15 10 10
GJR-GARCH 55 53 45 37 40 10 33 33 20 89 88 33
FIGARCH 41 33 30 50 44 30 50 43 33 95 73 28
GARCH-MIDAS 10 33 58 17 34 48 15 33 58 5 33 83
RF, 35 17 5 50 1 0 22 17 10 80 80 5
RF, 20 30 67 23 33 52 17 22 58 15 33 45
XG, 0 0 0 5 8 0 0 0 0 9 10 1
XG, 5 3 7 3 13 15 1 7 0 1 3 10
CAT, 33 33 0 20 18 10 0 34 30 22 18 10
CAT, 45 53 58 5 37 53 14 34 63 12 18 65
SA, 80 80 60 50 83 35 78 65 43 65 70 33
SA, 15 50 85 18 83 85 20 83 85 15 68 90
Confidence level: 75%
Model
GARCH 89 83 67 85 83 52 78 21 67 78 53 10
EGARCH 10 13 3 5 5 0 3 3 2 5 0
GJR-GARCH 81 83 67 85 80 67 85 83 67 78 55 58
FIGARCH 33 33 78 33 50 83 50 83 83 55 81 82
GARCH-MIDAS 10 33 87 5 33 84 2 3 78 11 37 83
RF, 47 30 20 68 33 16 43 30 15 55 42 17
RF, 17 37 40 13 20 37 18 25 39 15 25 36
XG, 0 0 0 0 0 0 0 0 0 1 3 0
XG, 33 17 100 33 0 33 97 29 0 55 55 0
CAT, 67 17 15 43 16 0 47 23 10 72 33 10
CAT, 57 63 77 33 34 83 29 47 83 28 60 76
SA, 83 50 33 83 50 16 65 23 17 58 33 10
SA, 33 50 88 28 50 88 30 67 83 33 67 98

Note: RF - Random Forest; XG - XGBoost; CAT - CatBoost. Machine learning models denoted with subscript p represent pure time series
models, while models denoted with subscript e incorporate exogenous variables as features. The percentages represent the inclusion rate of

each model in the MCS across the loss functions.

impact the volatility dynamics. However, in periods of high
turbulence, using the forecasting combination improves per-
formance more than in the full sample.

6. Conclusion

Accurate volatility forecasts are key inputs in risk manage-
ment processes in any market. The shipping freight market
is and extremely volatile sector of the economy and accu-
rate predictions are crucial for risk management capabilities
of shipping market participants. Empirical evidence suggests
that freight rates volatility may be driven by certain industry
and macroeconomic variables.

The current literature has extensively investigated the use
GARCH models to predict the volatility dynamics of freight
rates. Machine learning algorithms have been successfully
applied to forecast volatility in other asset classes. GARCH
models can include only few additional covariates in volatil-
ity prediction, thus it is sensible to investigate whether
ML approaches with their inherent capabilities to deal with
high-dimensional predictors with complex inter-dependencies
can improve prediction accuracy. In this paper, we conduct

an extensive forecasting comparison of GARCH-type mod-
els including the GARCH-MIDAS, and tree-based machine
learning methods ( Random Forest, XGBoost and CatBoost)
to investigate the benefits of different approaches at differ-
ent forecasting horizons. In our comprehensive analysis of
the out-of-sample performance, we also test hybrid horizon-
varying forecast combinations to investigate whether com-
bining the strengths of ML and GARCH models could be
beneficial in terms of forecasting accuracy. We use an equally
weighted voting scheme to obtain the Stacked Average com-
bination, combining the best models in the Model Confidence
Set at 75% level for each horizon.

We consider and examine the effect of several exogenous
variables which reflect the supply and the demand-side of the
freight market as predictors of volatility. Moreover, we define
a custom index, the Market Tightness Index, that proxies
market conditions through sector-specific supply and demand
macroeconomic features including seaborne trade, fleet size,
and fuel oil prices. For the machine learning algorithms, we
incorporate low-frequency exogenous features by Denton-
Cholette transformation—an approach that, to our knowledge,
has not previously been applied in forecasting freight market
volatility.
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Table 14. Nov. 2017-Jul. 2019: Percentage inclusion in the MCS at the 90% and 75% level.

Series HA7TC SA10TC PA5STC CA5TC
Forecast step 1 5 25 1 5 25 1 5 25 1 5 25
Confidence level: 90%

Model

GARCH 80 83 18 75 84 33 33 33 17 58 58 50
EGARCH 20 18 10 25 15 15 20 20 15 10 10
GJR-GARCH 55 53 45 37 40 10 33 33 20 89 88 33
FIGARCH 41 33 30 50 44 30 50 43 33 95 73 28
GARCH-MIDAS 10 33 58 17 34 48 15 33 58 5 33 83
RF, 35 17 5 50 1 0 22 17 10 80 80 5
RF, 20 30 67 23 33 52 17 22 58 15 33 45
XG, 0 0 0 5 8 0 0 0 0 9 10 1
XG, 5 3 7 3 13 15 1 7 0 1 3 10
CAT), 33 33 0 20 18 10 0 34 30 22 18 10
CAT, 45 53 58 5 37 53 14 34 63 12 18 65
SA, 80 80 60 50 83 35 78 65 43 65 70 33
SA, 15 50 85 18 83 85 20 83 85 15 68 90
Confidence level: 75%

Model

GARCH 89 83 67 85 83 52 78 21 67 78 53 10
EGARCH 10 13 3 5 5 0 3 3 2 5 0
GJR-GARCH 81 83 67 85 80 67 85 83 67 78 55 58
FIGARCH 33 33 78 33 50 83 50 83 83 55 81 82
GARCH-MIDAS 87 90 87 90 65 84 2 3 78 65 80 83
RF, 47 30 20 68 33 16 43 30 15 55 42 17
RF, 17 37 40 13 20 37 18 25 39 15 25 36
XG, 0 0 0 0 0 0 0 0 0 1 3 0
XG, 33 17 100 33 0 0 15 29 0 55 55 0
CAT), 67 17 0 43 16 0 47 23 10 72 33 10
CAT, 57 63 77 33 34 83 29 47 83 28 60 50
SA, 83 50 65 83 50 55 65 23 17 58 33 10
SA, 33 50 88 50 50 88 55 67 83 33 67 98

Note: Results on the relatively calm sub-sample. RF - Random Forest; XG - XGBoost; CAT - CatBoost. Machine learning models denoted
with subscript p represent pure time series models, while models denoted with subscript ¢ incorporate exogenous variables as features. The
percentages represent the inclusion rate of each model in the MCS across the loss functions.

The forecasting ability of the set of proposed models is
evaluated over a series of 250 out-of-sample predictions for
volatility over 1-day, 5-days and 25-days ahead, based on
a fixed rolling window scheme. This scheme satisfies the
assumptions required by the MCS method of Hansen et
al. (2011) and the SPA test of Hansen (2005), which allows
a unified treatment of nested and unnested models, and is
appropriate for comparing the performance of machine learn-
ing and econometric models. Volatility forecasts are evaluated
by means of the SPA test and the MCS methodology using
symmetric and asymmetric loss functions, robust to the choice
of the volatility proxy.

The results indicate that machine learning models with
exogenous features consistently perform well at medium and
long horizons but do not outperform consistently at these hori-
zons the GARCH-MIDAS in predicting volatility of freight
rates. The most striking result is the inclusion of the Stacked
Average combination in the MCS of all the loss functions
at all horizons, supporting the hypothesis that combinations
of GARCH models and tree-based learners (CATboost and
RF) with exogenous variables improve forecasting accuracy
at several horizons. This suggests that the weighting (voting)
process helps mitigate individual weaknesses and combine

the strengths of different models. The findings could be
attributed to the slower reaction of the shipping freight mar-
ket to macro factors (exogenous variables) in the short-term,
overset by their significant impact over longer periods. The
Stacked Average combination jointly exploits the tree-based
algorithm’s ability to extract substantial incremental informa-
tion about future volatility from predictors and the GARCH
model ability to capture, in a parsimonious and effective way,
the time dependence of the volatility.

The reported results have important implications for risk
modeling and assessment in dry bulk shipping, as well as
risk management practices of agents, including shipowners,
charterers, and traders. For instance, more accurate forecast
of freight rate volatility can help shipowners and charterers
better assess their risk exposure and Value-at-Risk estimates,
enhance their operational portfolios, improve budget plan-
ning, and manage costs. In addition, accurate assessment of
freight rate volatility is necessary for pricing freight deriva-
tives and related risk management instruments. Finally, a
better and more accurate forecast of freight rate volatility
can improve the estimation of hedge ratios and the imple-
mentation of hedging strategies to manage freight rate risk
efficiently and effectively.



A hybrid combination approach to forecast freight rates volatility 19
Table 15. Jan. 2020 to Sep. 2023: Percentage inclusion in the MCS at the 90% and 75% level.

Series HA7TC SA10TC PASTC CASTC
Forecast step 1 5 25 1 5 25 1 5 25 1 5 25
Confidence level: 90%
Model
GARCH 80 83 18 75 84 33 33 33 17 58 58 50
EGARCH 20 18 10 25 15 15 20 20 15 10 10
GJR-GARCH 55 53 45 37 40 10 33 33 20 89 88 33
FIGARCH 41 33 30 50 44 30 50 43 33 95 73 28
GARCH-MIDAS 10 33 58 17 34 48 15 33 58 5 33 83
RF, 35 17 5 50 1 0 22 17 10 80 80 5
RF, 20 30 67 23 33 52 17 22 58 15 33 45
XG, 0 0 0 5 8 0 0 0 0 9 10 1
XG, 5 3 7 3 13 15 1 7 0 1 3 10
CAT, 33 33 0 20 18 10 0 34 30 22 18 10
CAT, 45 53 58 5 37 53 14 34 63 12 18 65
SA, 80 80 60 50 83 35 78 65 43 65 70 33
SA, 15 50 85 18 83 85 20 83 85 15 68 90
Confidence level: 75%
Model
GARCH 67 56 67 49 83 52 78 21 67 65 53 33
EGARCH 0 13 3 5 15 17 3 3 2 5 0
GJR-GARCH 81 83 67 85 76 67 85 83 67 78 33 33
FIGARCH 33 33 33 33 50 50 50 50 33 55 50 33
GARCH-MIDAS 10 33 87 5 33 84 2 3 78 11 37 83
RF, 47 30 20 35 33 16 43 30 15 55 42 26
RF, 17 37 40 13 20 37 18 25 39 15 25 33
XGy 0 0 0 33 0 16 0 0 0 1 3 0
XG, 33 17 100 33 0 33 97 29 0 55 55 0
CAT, 67 17 15 43 16 0 47 23 10 72 33 10
CAT, 57 63 32 33 34 83 29 47 33 28 60 21
SA, 88 76 98 86 50 67 65 23 75 58 63 78
SA, 76 75 88 78 75 88 76 67 83 59 67 98

Note: The tables refer to high volatility periods. RF - Random Forest; XG - XGBoost; CAT - CatBoost. Machine learning models denoted
with subscript p represent pure time series models, while models denoted with subscript ¢ incorporate exogenous variables as features. The
percentages represent the inclusion rate of each model in the MCS across the loss functions.

It is worth noting that our findings may significantly change
if intra-day data on freight rates were to become avail-
able. The availability of high-frequency data would allow
researchers to explore the forecasting performances of real-
ized volatility and deep learning models, such as LSTM,
which cannot be used with daily frequency data only.
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Table Al. The composition of the different Baltic Exchange Average Trip-Charter rates are expressed by the routes and corresponding

weights.
Series Routes Number Description Routes (weights)
Handysize HS1 38 Skaw-Passero trip to Rio de Janeiro-Recalada 12.5%
Average 7 Trip Charter HS2 38 Skaw-Passero trip to Boston-Galveston 12.5%
(HA7TC) HS3_38 Rio de Janeiro-Recalada trip to Skaw-Passero 12.5%
HS4_38 US Gulf trip via US Gulf or north coast South America to Skaw-Passero 12.5%
HS5_38 South East Asia trip to Singapore-Japan 20%
HS6_38 North China-South Korea-Japan trip to North China-South Korea-Japan 20%
HS7_38 North China-South Korea-Japan trip to southeast Asia 10%
Supramax S1B_58 Canakkale trip via Med or Bl Sea to China-South Korea 5%
Average 10 Trip Charter S1C_58 US Gulf trip to China-south Japan 5%
(SA10TC) S2_58 North China one Australian or Pacific round voyage 20%
S3_58 North China trip to West Africa 15%
S4A_58 US Gulf trip to Skaw-Passero 7.5%
S4B_58 Skaw-Passero trip to US Gulf 10%
S5_58 West Africa trip via east coast South America to north China 5%
S8_58 South China trip via Indonesia to east coast India 15%
S9_58 West Africa trip via east coast South America to Skaw-Passero 7.5%
S10_58 South China trip via Indonesia to south China 10%
Panamax P1A_82 Skaw-Gib transatlantic round voyage 25%,
Average 5 Trip Charter P2A_82 Skaw-Gib trip HK-S Korea incl Taiwan 10%
(PASTC) P3A_82 HK-S Korea incl Taiwan 1 Pacific round voyage 25%
P4_82 HK-S Korea incl Taiwan trip to Skaw-Gib 10%
P6_82 Dely Spore round voyage via Atlantic 30%
Capesize C8_14 Gibraltar/Hamburg transatlantic round voyage 25%
Average 5 Trip Charter Co_14 Continent/Mediterranean trip China-Japan 12.5%
(CASTC) C10_14 China-Japan transpacific round voyage 25%
Cl14 China-Brazil round voyage 25%
Cl6 Revised backhaul 12.5%

All weighted averages are scaled by a segment-specific factor to obtain the average TC freight rates (Baltic Exchange 2023).

Note: Detail of routes and vessel details can be found on Baltic Exchange website: https://www.balticexchange.com/en/data-services/market-
informationO/indices.html. The numerical value following an abbreviation (if labeled) denotes the typical tons deadweight (dwt) capacity (in
’000s) of the ship type.
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Appendix 2. Hyperparameter tuning range Table A4. Range of hyperparameters considered for
XGBoost.
Table A2. Range of hyperparameters considered for Cat- Parameter Range
Boost.
o0 Estimators® 10, 20, 50, 100, 200, 500
Parameter Range Learning rateP 0.001, 0.01, 0.1, 0.2
Max depth® 3,5,7,10
Iterations® 50, 100, 150, 200 Subsampled 0.8,0.9, 1.0
Max depth? 4,6, 10
Learning rate® 0.001, 0.01, 0.05, 0.1 4The number of boosting rounds/trees.
L2 regularization strengthd 1,5,9 bStep size shrinkage.
Random strength® 1,5 “Maximum depth of each tree.

dFraction of rows sampled for each boosting round.
Number of trees.

YMaximum depth of each tree.

€Step size shrinkage.

dStrength of L2 norm regularization (log-scale).
®Randomness when choosing splits.

Table A3. Range of hyperparameters considered for
Random Forest.

Parameter Range
Estimators? 10, 20, 50, 100, 200, 500
Max depth? ‘None’, 3, 5, 10
Min samples split® 2,3,5,7,10

Min samples leafd 1,2,3,4

Max features® ‘sqrt’, ‘log2’, 1, 3,5,7

4Number of trees.

b“None’ means max depth not constrained.
“Minimum number of samples required to split an
internal node.

dMinimum number of samples required to be at a leaf
node.

¢The number of features to consider when looking for
the best split.
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