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Abstract

Bug localization (BL) is known as one of the major steps in the program repair pro-
cess, which generally seeks to find a set of commands causing a program to crash
or fail. At the present time, locating bugs and their sources quickly seems to be
impossible as the complexity of modern software development and scaling is soar-
ing. Accordingly, there is a huge demand for BL techniques with minimal human
intervention. A graph representing source code typically encodes valuable informa-
tion about both the syntactic and semantic structures of programs. Many software
bugs are associated with these structures, making graphs particularly suitable for
bug localization (BL). Therefore, the key contributions of this work involve label-
ing graph nodes, classifying these nodes, and addressing imbalanced classifications
within the graph data structure to effectively locate bugs in code. A graph-based
bug classifier is initially introduced in the method proposed in this paper. For this
purpose, the program source codes are mapped to a graph representation. Since
the graph nodes do not have labels, the Gumtree algorithm is then exploited to
label them by comparing the buggy graphs and the corresponding bug-free ones.
Afterward, a trained, supervised node classifier, developed based on a graph neural
network (GNN)), is applied to classify the nodes into buggy or bug-free ones. Given
the imbalance in the data, accuracy, precision, recall, and F1-score metrics are used
for evaluation. Experimental results on identical datasets show that the proposed
method outperforms other related approaches. The proposed approach effectively
localizes a broader spectrum of bug types, such as undefined properties, functional
bugs, variable naming errors, and variable misuse issues.

Keywords Bug Localization - Deep Learning - Convolutional Neural Networks -
Node Classification
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1 Introduction

Debuggers consume abundant resources in software development projects. Faults
and inefficiencies in debugging techniques also incur billions of dollars in costs for
the global economy each year. A software bug is thus an error, defect, or malfunction
in a computer program that leads to incorrect, and sometimes, catastrophic results.
Bugs can further increase software maintenance expenses. In this line, the program
repair process involves loads of operations that can vary depending on the methods
and tools applied. In this line, the main debugging operations include bug detection
(BD), bug localization (BL), and bug fixing (BF). The BD task accordingly detects
whether the input program is buggy. During BL, there are also attempts to find the
parts of the program where the bug has occurred. In the BF operation, the corre-
sponding patches or fixes are often generated (Yousofvand et al. 2024). As follows,
BL is a vital part of the software debugging process. Obviously, incorrect BL can
disrupt the entire location-validation chain, and demands much effort and time to
develop a software program. In other words, the bug life cycle in testing is moder-
ated through accurate and efficient BL. As BL is a manual, time-consuming and very
expensive task, it often relies on the experience and intuition of software developers
to identify and prioritize likely buggy code. This has led to heightened interest in
expanding techniques that can help automate partial or complete BL. Automated BL
techniques accordingly aid developers modify and reduce search spaces for bug fixes.
Therefore, developers need to lay much focus on fewer entities. In this vein, PMD
Pmd - an extensible cross-language static code analyzer n.d.), FindBugs Hovemeyer
and Pugh (2004), and TAJS Jensen et al. (2009) have been of widespread use in
software debugging as supplementary tools for locating bugs. Even with the success
of these techniques, programmers need further improvement. For example, spectral
approaches are less efficient in locating multiple bugs than single ones DiGiuseppe
and Jones (2011). As another example, information retrieval (IR) methods are sig-
nificantly less effective when bug reports contain misleading descriptions Wang et
al. (2015). For this purpose, much effort has been put into improving BL approaches.
From this perspective, a graph-based bug classifier is designed in this paper to use a
sample of actual buggy codes as inputs. Of note, actual buggy codes and the corre-
sponding fixed ones are employed since the quality of input influences that of outputs
in many classification algorithms.

In computer science, graphs are typically applied to model an assortment of real-
world phenomena, such as social networks, semantic structures, and geographical or
physical models. Such data structures are also employed to model program source
codes. Over the past years, graph-based code representations have been further
developed (Dinella et al. 2020; Allamanis et al. 2018), which contain rich informa-
tion about the semantic and syntactic structures of programs. As is known, many soft-
ware bugs are related to the semantic and syntactic structures of program commands.
Therefore, the input program source code is often mapped to a graph representation
for automated BL, and trains a classifier to locate bugs. To perform the classification
task, a graph neural network (GNN) is usually implemented (Wu et al. 2020), which
helps establish a simple way to predict tasks at the edge, node, and graph levels. It
is thus respected as a valuable deep learning (DL) technique. Of note, GNNs are
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neural models proposed to summarize and gather information from graph structures,
and capture graph dependencies by transmitting messages between collections of
objects, such as edges and nodes) (Zhou et al. 2020). Depending on the required type
of graphs or data, some GNNs have been further developed,including graph atten-
tion networks (GANs) Velickovic et al. (2018) and graph convolutional networks
(GCNs). Thanks to the high performance and simplicity of GCNs, they have been
thus far employed as the most popular ones to deal with various problems. GCNs
have been also very successful in graph topics, such as node ranking, graph classi-
fication, and node classification (Yousofvand et al. 2024). For this reason, the GCN
model is tapped in the classification step in this paper.

A small training set and an imbalanced dataset are, however, the main challenges
in this field. To note, a small training dataset is not sufficient to train a reliable clas-
sifier. For example, only 53 bugs had been used for mining in Li and Ernst (2012).
To tackle the first challenge, thousands of actual buggy codes and the corresponding
bug-free ones are recruited.

In this line, Zhong and Su (2015) had confirmed that bugs could constitute just a
tiny part of the program source code, and most lines seemed bug-free. Besides, the
training set exhibits a significant class imbalance, where only a small fraction of
nodes is labeled as buggy. To handle this challenge, the over-sampling technique is
applied to generate more nodes based on minor class data. In this paper, the buggy
node refers to a minor class.

As mentioned earlier, the GCN model and the node classification task are pro-
posed in this paper for automated BL purposes. While similar approaches have been
successfully applied to statically-typed languages like C#, implementing them in
JavaScript poses unique challenges due to the language’s dynamic nature and run-
time behavior. These differences necessitate more advanced parsing and modeling
techniques to accurately represent JavaScript code as a graph structure. In this paper,
much focus is laid on JavaScript code, which has been the most popular language on
GitHub in the last eight years State of the octoverse (2021). In the proposed method,
a graph is thus extracted for each input code, using an abstract syntax tree (AST). The
primary contributions accordingly include labeling the training data using the Gum-
tree algorithm, applying DL for node classification, and handling the issue of imbal-
anced data in the code graph. Although existing methods are often implemented, the
proposed combination occurs for the first time, and it is the initial effort in which such
methods are recruited to cope with the problem of BL. In addition, the results show
that the given combination outperforms the previous BL methods for JavaScript code
in terms of accuracy. An AST differentiation algorithm (namely, a Gumtree algo-
rithm) Falleri et al. (2014) is also exploited to label the graph nodes by comparing
the nodes of the buggy graphs with those of the corrected ones. Additionally, various
node classification configurations are tested to identify the most effective one.

The remainder of the paper is structured as follows. Section 2 reviews the current
state of the art in this field. The required background, such as bugs in JavaScript
programs, ASTs, GCNs, and imbalanced datasets are further described in Sect. 3.
Section 4 provides a detailed description of the proposed method. Section 5 presents
various evaluation metrics and experimental results. Finally, Sect. 6 offers conclu-
sions and discusses future work.
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2 Related works

BL techniques have been extensively studied in recent years and are generally cat-
egorized into four main categories: spectrum-based, information retrieval (IR)-based,
machine learning (ML)-based, model-based and large language model (LLM)-based
methods. Each of these paradigms addresses the localization challenge from a dif-
ferent perspective, leveraging distinct types of information such as execution traces,
textual similarities, statistical patterns, or formal models. To provide a structured
understanding of the field, Table 1 presents a categorized list of representative stud-
ies within each approach, while Table 2 offers a comprehensive comparison of these
methods with respect to their core mechanisms, data requirements, and bug detection
capabilities. These tables also highlight the distinguishing features and advantages of
our proposed method, which integrates elements of both ML and model-based strate-
gies to achieve broader bug coverage and enhanced localization precision.

Table 1 Overview of BL technique categories

Category Description Key references Remarks

Spectrum-based Utilize dynamic (Agarwal and Agrawal 2014;  Effective in many
information from test ~ Wong et al. 2010; Korel 1988;  contexts but heavily
executions to identify =~ Agrawal et al. 1991; Renieris  reliant on test cases.
suspicious program and Reiss 2003; Wong et al. Recent improve-
elements based on cov- 2012; Gazzolaetal. 2017; Le  ments include neural
erage data and pass/fail Goues 2013; Jones and Harrold networks and test
outcomes 2005, Abreu et al. 2007; Chen  minimization

et al. 2002; Wong and Qi 2019;
Hao et al. 2012)

IR-based Treat BL as a docu- (Rao and Kak 2011; Wanfet al. Employs methods like
ment retrieval task, 2014; Lukins et al. 2012; Kim LSA, LDA, SVM,
using bug reports as et al. 2013; Aakanshi et al. and deep learning.
queries and computing 2018, Saha et al. 2013, Sisman Incorporates external
similarity with source  and Kak 2012, Wong et al. sources such as ver-
code 2014, Lam et al. 2017, Xu et sion history and stack

al. 2025) traces

ML-based Leverage labeled (Ascari et al. 2009; Naish et al. Commonly uses
datasets (e.g., coverage 2011; Lee et al. 1999; Briand ~ BPNNs, SVMs,
data, execution out- et al. 2007) RBFs, and decision
comes) to train models trees. Depends on
that predict buggy high-quality feature
locations engineering

Model-based Compare observed (Mayer and Stumptner 2007; Includes logic- and
program behavior with Baah et al. 2010; Mateis et dependency-based
a correct reference al. 2000; Wotawa et al. 2002;  modeling, and recent

model to locate dis- Kumari et al. 2019; Zhong and  deep graph-based
crepancies indicating ~ Mei 2020; Mayer et al. 2002;  models. Often limited
bugs Mayer and Stumptner 2008; by domain-specific
Xiao et al. 2019; Vinyals et al.  assumptions
2015; Yousofvand et al. 2023)

LLM-based Use pre-trained (Binta Hossain et al. 2024; Includes Codex, Co-
language models to Do Viet and Markov 2023; deBERT, and CodeTS5.
detect or fix bugs with  Campos 2024) Promising results but
minimal supervision high inference cost
or data and black-box nature

are current limitations
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Table 2 Comparative analysis

Feature/approach Spectrum-based IR-based ML-based Model-based LLM- Pro-
based posed
method
Requires test v X v v X X
executions
Utilizes bug reports X v X X/Partial X X
Employs machine X v v v (some) v v
learning
Uses graph X X X v X/Partial
representations (cus-
tom
code
graphs)
Bug types Limited Textual Data-de- Domain- Partial v
supported pendent  specific (wide:
syntax,
seman-
tic,
multi-
fix)
Handles complex/ X X Partial Partial X/Partial

multi-fix bugs

Our proposed approach is situated at the intersection of ML-, model-, and graph-
based techniques, and diverges from traditional BL methods in several keyways:

1. Wider bug coverage: The method can detect a broad spectrum of bug types,
including misuse of operators or identifiers, undefined property access, incorrect
use of const/let/var, export statement omissions, variable misnaming or misuse,
and more.

2. Graph-centric representation: Rather than relying on raw source code or tex-
tual similarity, the system utilizes a graph-based representation that encodes
semantic and structural relationships in code.

3. No dependency on test executions or bug reports: Unlike spectrum-based and
IR-based approaches, our technique does not require dynamic execution data or
external reports.

4. Multi-fix capabilities: The proposed model effectively handles complex bugs
that require modifications in multiple code locations, an aspect often overlooked
in earlier studies.

5. Interpretable and lightweight: In contrast to black-box LLMs, our model oper-
ates on explicitly defined graph representations with transparent decision bound-
aries, facilitating easier debugging and model improvement.

Thus, our method provides a complementary and, in many cases, superior alternative

to traditional bug localization pipelines, particularly in scenarios involving structur-
ally complex or semantically rich bug patterns.
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3 Preliminaries

In this section, the required background is introduced. The following concepts,
namely, the bugs in JavaScript programs, ASTs, GCNs, imbalanced datasets, and the
Gumtree algorithm are further explained.

3.1 BuginJavaScript program

JavaScript is a web programming language that is extensively applied in client-side
web applications. Despite the incredible popularity of JavaScript, inherent features,
such as runtime evaluation and dynamic typing, make it one of the most vulnerable
languages. Two examples of JavaScript bugs are shown in Fig. 1, each one with a
different type of bug, namely undefined property and functional bug. An undefined
property accordingly occurs when a script attempts to access a property of an object
that does not exist, and a functional bug represents an error that violates the program
specification and yet conforms to the coding rules. In Fig. 1(a) the attribute "value"
refers to a tag and the attribute innerHTML refers to the contents between beginning
and end of a tag. Using "value" attribute here is wrong and the correct attribute is
innerHTML. Using "value", no error is throwed. However, the result will be wrong.
In Fig. 1(b) the attribute "floor" should be replaced by "round". The round() function
will round a number with a decimal value less than 0.5 down to the nearest lower
integer, and round a number with a decimal value of 0.5 or more up to the nearest
higher integer. It’s a functional bug.

3.2 Graph convolutional network

A graph is a visual depiction of a group of related objects, consisting of a set of ver-
tices (nodes) and edges connecting them. It is denoted as G=(V, E), where V= {v;
li=1... N} represents the nodes, and ECV xV represents the edges between them.

$(document). ready (function () {
$. getJSON ("romaji-hiragana. json", function (json) {

document. getElementByld("romaji"). innerHTML = json;

W3
hA

(a) value should be innerHTML (Undefined property)

ctx. moveTo (0, y +.5);

let x = Math.round(layer. mousex):>

let frameNum = layer. timeframelnCoords (x, chart. offsetWidth) + 1;

layer. frameNum = frameNum;

x = Math.round((chart. offsetWidth - frameNum * layer. frameWidth + ((layer. frameWidth) / 2)) + layer. scrolIX);

(b) floor should be round (Functional bug)

Fig. 1 JavaScript buggy code snippets
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The adjacency matrix of the graph is A€ RNV*¥ while the node feature matrix is

X e RN*P with N nodes each having D-dimensional feature vectors. M(i) denotes
the set of neighbors for node i.

Graph Convolutional Networks (GCNs) are designed for semi-supervised learning
on graphs by combining node features with structural information. A graph convolu-

tion layer is represented as H = f (5_1 AX W) , where W is the trainable parameter
matrix. Graph convolution involves four steps:

1. Applying a linear transformation to the feature matrix X by multiplying it by W
(XW), where the same W is shared across all nodes.

2. Propagating node information to its neighbors using AY, where Y=XW, and the
propagation to adjacentnodes is givenby (AY'), =, Ay Y; =Y + 3 priiy Y-

3. Normalizing the propagated information with D! to maintain a consistent fea-
ture scale.
4. Applying a non-linear activation function f.

By stacking multiple graph convolution layers, GCNs capture multi-scale sub-
structure features. The GCN propagation rule is H+t1) = o(LHOWW®), where
HO = (n, ... K"
H®© = X. as the initial feature matrix. The activation function, such as lf){eLIlJ,li)s
denoted by o (*). The learned weight matrix in the I-th layer is W € RP ( xDb .
The graph Laplacian, used for aggregation, is defined as L=A £ D~1/2AD~1/2,
where A = A 4 Iy and I is the identity matrix.

€ RV*P' i the node representation in the 1-th layer, with

3.3 AST

An AST is a model that characterizes the syntax structure of the source code. It is a
finite, labeled, directed tree, where the internal nodes are labeled by operators, and
the leaf nodes represent the operands of the node operators. Thus, the leaves have
nullary operators, i.e., variables or constants. It is also similar to the parsing tree,
except that it retains the important syntactic structure of the source code while elimi-
nating non-terminals that are not necessary to represent (Meyers 2001). As we know,
Parse tree (or concrete syntax tree) is a tree that represents the syntactic structure of
a string according to some formal grammar. A program that produces such trees is
called a parser.
To extract an AST from a parse tree, the following steps need to be taken:

e Separators and priority markers, such as parentheses, should be removed.
e If parents have only one child, they should be replaced with their child.
e The remaining non-terminals are replaced with operators that are their children.

Figure 2 displays the parse tree for a JavaScript statement {2+""} +20; and its corre-
sponding AST. As can be seen, non-terminal nodes (Body, Expression, BinaryExpres-
sion, ...) that are not essential are removed, and the non-terminals are then replaced
with operators that are their children (For example, +replaces BinaryExpression.).

@ Springer
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Program Parse tree AST
BlockStatement
Body Program
ExpressionStatement BlockStatement
Expression ExpressionStatement
BinaryExpression +
+ 2
Left wn
Literal
ExpressionStatement 2 ExpressionStatement
= Right
Expression gh +
UnaryExpression IGiel 20
W
&
argument

Literal
20

Fig. 2 Parse tree and corresponding abstract syntax tree for a JavaScript statement({2+""} +20;)
3.4 Imbalanced dataset

As a critical issue, an imbalanced dataset challenges the accuracy of the models man-
aged in classification algorithms. The term imbalanced dataset is generally recruited
to refer to a dataset in which the number of instances in different classes greatly var-
ies. The class with fewer data is thus called the minority class, and with more data is
named the majority one. In standard classification tasks, class distribution is further
considered balanced, and these algorithms do not perform well in imbalanced data-
sets. The reason is that the common classification algorithms tend to be the majority
class, which might increase errors in identifying minority instances (Sun et al. 2009).
This is one of the big challenges for imbalanced data classification, which has so
far attracted the attention of many experts and researchers in data analysis (Yang
and Wu 2006). Numerous methods are also used to deal with the problem of imbal-
anced datasets in ML, including the data-level approach, in which the distribution of
imbalanced class is balanced by re-sampling the data. Under- and over-sampling are
also two methods to re-sample imbalanced datasets. In this line, over-sampling seeks
to create more samples from the minority class to bring the classes closer together.
Under-sampling, however, attempts to sample the majority class. In fact, all the
examples in the majority class in this method are not used to bring the ratio of classes
closer to each other.

3.5 Gumtree algorithm
In software evolution, a sequence of editing actions, called an editing script, is often
applied to the source code (viz., original) to create a new version (namely, modi-

fied). The Gumtree algorithm Falleri et al. (2014) refers to a technique for generating
editing scripts with regard to the differences in ASTs. The given technique further
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produces four types of editing, that is, insert, delete, move, and update. The Gumtree
algorithm Falleri et al. (2014) is an AST differentiation algorithm that works in two
steps, namely, creating maps, and inferring an editing script.

To compute the mapping between two ASTs, the Gumtree algorithm consists of
two successive phases. First, a greedy top-down algorithm is applied to find the iso-
morphic subtrees of the decreasing height. A mapping is further created between
the nodes of these isomorphic subtrees, called anchor mappings. Then, a bottom-up
algorithm is utilized in which two nodes are matched if their children (namely, the
children of the nodes, and their children, etc.) have many common anchors. Once two
nodes match, an optimal algorithm is finally applied to search for additional map-
pings among their children.

The output of the first step is imported into the algorithm in Chawathe et al.
(1996), and the actual editing script is calculated. In this step, a sequence of editing
operations is provided that transforms one tree into another. Besides, the four edit
operations on the trees are insert, delete, update, and move. An unmapped node in
the modified tree is thus considered an insert, and an unmapped node in the original
tree is a delete. A pair of mapped nodes with different values is also called an update,
and a pair of mapped nodes whose parents are not mapped to each other is a move.

4 Proposed method

A node classification task Kipf and Welling (2017) is performed in this paper for clas-
sifying the graph nodes as buggy and bug-free ones. An overview of the proposed
method is illustrated in Fig. 3. First, each source code in the database is mapped to
a graph representation based on the AST. Afterward, all graph nodes are labeled as
buggy or bug-free ones, using the Gumtree algorithm. Next, the training is done. To
deal with imbalanced data, over-sampling is finally utilized. The steps in the pro-
posed method are as follows:

e Label all graph nodes in the dataset by the buggy source graph and the corre-
sponding bug-free one, using Algorithm 1.

e Implement Algorithm 2 to balance the dataset generated in the previous step.

e Apply the node classification algorithm on the balanced dataset created in the
former step.

In the following, the details of converting the source code into graphs, node label-
ing using the Gumtree algorithm, and the training and testing steps in the proposed
method, are described.

In this paper, a graph-based approach is adopted to create the symbolic represen-
tations of the codes. ASTs are further combined with additional edges to provide
data-flow and control-flow information Dinella et al. (2020). During this mapping,
different types of edges are used to model syntactic relationships between various
tokens. In this step, the Hoppity code shared on GitHub (https://github.com/Al-nst
ein/hoppity) is utilized. A mapped example of a source code is shown in Fig. 4. As
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Corpus of labeled graph

Corpus of labeled code

Graph Label

Labeling nodes with

*.js Graph Extraction
Gumtree algorithm

,

GraphSmote Imbalanced

Dataset

Buggy graphs with
lOversampIing labeled nodes

Training Dataset Training Dataset Testing Dataset

+— P
(Balanced) Majority class nodes (Imbalanced) — -
v
Training using GCN <
v
Node classifier

v

Results

Fig. 3 An overview of the proposed approach

can be seen, the syntax nodes are labeled with non-terminals using the programming
language grammar while the syntax tokens are labeled with the string they represent
(Dinella et al. (2020); Allamanis et al. 2018).

Upon mapping the code to a graph representation, the graph nodes are labeled by
the Gumtree algorithm Falleri et al. (2014). For each sample in this paper, there are
two labels, buggy and bug-free. Figure 5 depicts the Gumtree algorithm architecture
used for this purpose. As shown, two input files, buggy *js and the corresponding
bug-free *js, are mapped to two graphs, with ASTs and a parser. Then, these two
graphs are given to an abstract mapping module to calculate a set of mappings as
the output. Eventually, the output (namely, a set of mappings) is given to an action
module that helps compute the actual editing script. For the problem here, the actions
include inserting, deleting, and updating. To generate the final output, an abstract
output module further computes the output from the input files, graphs, mappings,
and edit script. In this paper, the generated editing script and the final output of the
Gumtree algorithm are used for labeling the graph nodes. If an edit script is gener-
ated, containing one or more actions, for a node in the graph, that node is labeled as
buggy, and a bug-free label is considered for the rest of the nodes.
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function Sub (x, y)

{
}

return x - y;

FuncDecl

Name_BindId Params

Body_FuncBody
Expr_Stmt

Op Right_ldex

Name Bindld

o)

Left_Idexp

(] non-terminal —» AST-edge
() terminal |.--» Succ-link

O value Value-link

Fig.4 An example of a program code and its corresponding graph

ZEE

o
F_buggy
- T — = — Insert
F_buggy.js Parser i % (Acti
D - =4 —» et el
Update
A F_fixed
Y/ _fixe
[os ] === =
F_fixed.js Cg =
S F
(ou put\
@

Fig.5 The architecture of the Gumtree algorithm Falleri et al. (2014)

Algorithm 1 shows the pseudo-code of the labeling algorithm. The input of this
algorithm is the graph G1, G2. G1 is buggy and G2 is bug-free. Their nodes are
labeled as buggy or bug-free. In line 1, the difference between two graphs G1, G2
is calculated using the Gumtree algorithm and results in a script file. This script file
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includes all the operations on the nodes, such as inserting, deleting, updating, etc. In
line 2 to 8, labels are generated for each node. In line 3, it is checked whether insert
delete or update operations have been created for each node in the editing script pro-
duced in the previous step. If it includes this operation, it will be labeled as buggy,
otherwise it will be labeled as bug-free.

Algorithm 1 Labeling algorithm

Input: A source graph G1=(V,E) and a destination graph G2(Gl1 is buggy and G2 is bug-free)

Output: source graph G1 which its nodes have buggy or bug-free labels

1. text file f1= an editing script generated by the Gumtree algorithm that calculates the difference in
AST between G1 and G2.

2. foreach nodev in G1.V do

3 if fl contain {“’insert’’} or {*’delete’’} or { “’update’’} action for node v then

4. v.label =""buggy”;

5. else

6 v.label=""bug-free”;

7 end if

8. end for

9. return Gl;

After labeling the graph nodes, the supervised node classification task is per-
formed. Graph nodes accordingly encode three different types in a code, including
non-terminal (N), terminal (T), and value (V) nodes. Syntactic features are further
considered to be important for extracting useful information from the codes written
in the programming language. Indeed, various types of syntactic nodes and their rela-
tionships are the most efficient features for predicting the buggy nodes of the graph.
The feature, x5 € R", as the value of a node in a set of syntactic variables (namely,
a limited set of non-terminals), is thus encoded to collect more syntactic information
from the AST for each node in the graph. All features are syntactic ones, node types,
and node labels.

Deciding whether a node is buggy or bug-free is a binary classification prob-
lem. As mentioned earlier, bugs make up only a small part of the program source
code, and the bulk of lines in the buggy source code are bug-free. Accordingly, an
imbalanced training set arises. For this problem, GraphSmote Zhao et al. (2021)
is used to balance the training set. This is a novel framework that extends prior
over-sampling algorithms to act on graph data. It further generates natural nodes
and their related information. The main purpose of this framework is to practice
interpolation in an embedding space obtained by a feature extractor based on a
GNN to generate synthetic minority nodes. GraphSMOTE also exploits an edge
generator to predict connections for synthetic nodes. First, the features of all nodes
are extracted using a GNN. Afterwards, oversampling is performed considering a
node from the minority (buggy) category and its nearest neighboring node from
the same category. In the next step, the representation of a new node is extracted
from these two nodes. Then, edges are generated for the new node by a trained
edge generator. All the equations related to feature extraction,synthetic node gen-
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eration and edge generation are given in Zhao et al. (2021). Algorithm 2 shows the
pseudo-code of the over-sampling algorithm. First, the representation of the nodes
is obtained using the feature extractor in line 2. Then, over-sampling in the embed-
ding space is performed from line 3 to line 7 to balance the node categories. In line
3, the oversampling rate is determined. This variable is calculated through the ratio
of major category samples to the number of minor category samples. In line 4, the
minor category is set to “buggy”. In line 7, new artificial nodes are created using the
extracted features and variable oversampling rate. Finally, the edges are predicted
for the new instances generated in line 8.

Algorithm 2 Oversampling algorithm

Input: An imbalanced dataset of graphs DG={G1,G2,...,Gn}

Output: A balanced dataset of graphs DG2

1. foreach graph G in DG do

2. Input G to feature extractor;

3 Oversampling-scale=||majority category||/|lminority categoryll;
4 minority category= {“buggy”};

5 foreach category c in the minority category do

6. foreach i in size(c).oversampling-scale do
7
8

// “size(c)” denotes the number of nodes belonging to category c in the training graph
Generate a new sample (buggy node) v’ in category c; //synthetic buggy node generation step

9. Generate A’ using an edge generator; //edge generation step, A’ is the set of edges for the generated buggy node v’
10. end for;

11. end for;

12. DG2.add(G);

13. end for;

14. return DG2;

Algorithm 3 illustrates the pseudo-code of the node classification task. The input
of this algorithm is a large number of graphs. In line 1, all graphs are stored in a
large graph Bg. In line 2, the features of the nodes are placed in features. In line 3,
the labels of the nodes are placed in labels. In line 4, the nodes in the train set are
specified. In line 5 models are made based on GCN. In line 6, the Adam optimizer is
applied. In line 7 to 11, there is the prediction operation of nodes. The node classifier
can be further trained on the new training set. The forward model is in the following
form:

H® = softmax (/T (Relu (EXW(O)>) W(l)) (1)

where W (9 stands for the weight matrix of the input-to-hidden layers, and W (1)
denotes the weight matrix of the hidden-to-output ones.
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Algorithm 3 Training of node classification

Input: buggy graphs: list [DGLGraph] which each graph composed of N nodes v = (v1, v2,..., vn);
Output =labeled nodes: (y'1, y"2,...,y"n)

1. DGLGraph Bg = dgl.batch ([gl, g2....,gn]);

2. features = Bg. features; // the node features.

3. labels = Bg.label; // the ground truth node category.

4. train_mask = Bg.train_mask; // A Boolean tensor indicating whether the node is in the training set.

5. model = GCN (features, 32, 2);
6. optimizer = Adam();
foreach epoch in range(0 , max-epoch) do

7.
8. pred=model.forward (Bg, features);
9 loss= cross_entropy(pred, labels[train-mask]);

10. optimizer.zero-grad();
11. loss.backward();
12. end for

Y
// To build a 2-layer GCN we can simply stack 2 GraphConv modules

Class GCN(in_feats, h_feat ,num_classes){
//'in_feats : input feature size
/I 'h_feats : output feature size
/mum_classes : the number of node classes

convl = GraphConv (in_feats, h_feats);
conv2 = GraphConv(h_feats, num_classes);

forward(g, in_feat):
//'h : node representation matrix
//'g : a graph
h=convl (g, in_feat);
h =relu(h);
h=conv2 (g, h);
return softmax(h);

5 Experimental results

The Hoppity dataset was used for the experiments here (Dinella et al. 2020; https:
//github.com/Al-nstein/hoppity n.d). It contained numerous samples collected from
small changes in JavaScript programs on GitHub. Of note, various types of changes
existed in GitHub commits, such as refactorings, feature additions, bug fixes, etc. In
this dataset, only bug fixes were selected in accordance with the number of changes
Dinella et al. (2020). For a commit, JavaScript files were also considered before and
after the changes.

In total, 27,184 pairs of buggy JavaScript files and their corresponding bug-
free ones were recruited. The total number of nodes was 6,072,325, of which 60%
(3,643,395) of the cases were applied for training, 20% of them were utilized for vali-
dation, and the rest (namely, 20%) were recruited for testing purposes. In the training
set, there were 234,191 buggy nodes, and 3,409,204 bug-free ones. The maximum
number of nodes in each graph was set as 800.
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Fig.6 The distribution of the training set

Unlike the usual node classification problems, there was more than one graph
with a different number of nodes, so the imbalanced rate (im..q1;0) in each graph was
different. The value of this variable was further calculated by dividing the number
of majority class nodes (Vy,q;j0r) by that of the minority ones (Nyinor), as follows:

Nai

. _ jor

TMratio — = — (2)
I Vminor

Figure 6 exhibits the distribution of the training set before and after over-sampling.
Several configurations with varying numbers of layers were experimented with,

leading to the selection of the following hyperparameters that provided the best accu-

racy for this task. As shown in Fig. 7, the final model architecture consists of two

Input Graph convolution Graph convolution
layer(32 channels) layer (32 channels)

Label
softmax
—Rell —> @ Buggy
‘Bug-free
32 node features 32 node features

LI T T T T T T 1 CICTTT1TT1T 71711

Fig. 7 The configuration of the proposed model
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Table 3 Confusion matrix Predicted class
Actual class Buggy Bug-free
Buggy TP FN
Bug-free FP TN

graph convolutional layers, each with 32 hidden units. Each layer computes updated
node representations by aggregating information from neighboring nodes. A rectified
linear unit (ReLU) activation function is applied after the first graph convolutional
layer, followed by the second graph convolutional layer.

The model was trained for 30 epochs using binary cross-entropy as the loss func-
tion and optimized with the Adam optimizer. To mitigate overfitting, the dataset was
randomly split into training, validation, and test sets.

The experiments were conducted on a machine equipped with an Intel Core
17-7500U 3.50 GHz CPU, 12 GB RAM, and an Nvidia 920MX GPU. The implemen-
tation utilized Python 3.6.5, PyTorch 1.7.0, and the Deep Graph Library (DGL) 0.6.1
Wanf et al. (2020).

Unlike common node classification tasks that operate on a single large graph, our
approach considers multiple graphs with up to 800 nodes each.

The performance of the given model was further measured by some metrics,
including Confusion Matrix (CM) and, accuracy, precision, recall or F1 scores. The
CM was thus a suitable measure for assessing the success and efficiency of classifica-
tion systems. Table 3 shows the main body of CM.

In the case of working with imbalanced datasets, the classification evaluation cri-
terion must also be changed, and ordinary criteria, such as accuracy alone, cannot be
used. To evaluate the proposed method, other evaluation criteria were utilized. The
formula for accuracy and other metrics is outlined in the following:

_ TP+TN
accuracy = TPITNFFPTFN
Recall = 7575
Precision = TI};%

F1l=—(-2

JERES S —
Recall Precision

Figure 8 also illustrates the evaluation results of the model based on the CM on the
test data. In this line, the true positive rate (TPR) was 0.81, the true negative rate
(TNR) was 0.91, and the false positive rate (FPR) and the false negative rate (FNR)
were 0.09 and 0.19, respectively. The values of these criteria revealed that the evalu-
ation results of the approach here were promising.

Table 4 depicts the results for other metrics. Accordingly, the accuracy of the pro-
posed method was 0.901, and the recall, precision, and F1 scores were 0.813, 0.577,
and 0.675, respectively. Once again, these results confirmed the appropriateness of
the proposed method.

To select the optimal architecture for our task, we experimented with several con-
figurations varying in the number of graph convolutional layers, hidden units per
layer, and activation functions. Table 5 summarizes the performance metrics—accu-
racy, precision, recall, and F1 score—of these configurations.
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Fig. 8 Results on true/false predictions
Table 4 Overall performance on Accuracy Precision Recall Fl
a holdout set 0.901 0.577 0.813 0.675

As shown, the model with two graph convolutional layers, each having 32 hidden
units and using ReLU activation, achieved the best overall results, with an accu-
racy of 0.901, precision of 0.577, recall of 0.813, and F1 score of 0.675. While the
configuration with two layers and 64 hidden units achieved a slightly higher recall
(0.820), other metrics were lower, confirming that our selected model strikes the best
balance among all criteria.

This analysis justifies the choice of the final model architecture presented in this
study.

Another metric for evaluating imbalanced datasets was the receiver operating
characteristic (ROC) curve, which could help express the TPR against FPR.

The overall accuracy of the test could be higher if the ROC curve was closer to
the upper left corner. Of note, the numerical value of the area under the ROC curve
(AUQ) is clearly a number between 0 and 1, indicating the detection power of a test.
If this number is close to one, it means that the data is generally above the bisector

Table 5 Performance comparison of different model configurations

Layers Hidden units Activation Accuracy Precision Recall F1 score
1 32 ReLU 0.880 0.540 0.770 0.640
1 64 ReLU 0.885 0.550 0.775 0.645
1 32 Tanh 0.875 0.535 0.765 0.635
2 32 ReLU 0.901 0.577 0.813 0.675
2 64 ReLU 0.895 0.560 0.820 0.660
2 32 Tanh 0.890 0.555 0.790 0.660
3 32 ReLU 0.890 0.555 0.790 0.660
3 64 ReLU 0.888 0.550 0.785 0.655
3 32 Tanh 0.885 0.545 0.780 0.650
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and the true positive rate is high. AUC numbers close to 0.5 show the same equality
of correct positive rate and false positive rate, and numbers less than 0.5 indicate
higher false positive rate compared to correct positive rate. Figure 9 shows the results
of our approach for these two metrics.

To investigate the effect of the model depth on classification performance, the
number of different layers in the model here was considered. Figure 10 displays the
results of this experiment and confirms the superiority of the chosen model. The
results further established that using two convolution graph layers could bring more
accurate results in the mentioned database.

The proposed method was further compared with other BL techniques for JavaS-
cript code, including Hoppity Dinella et al. (2020) Yousofvand et.al (2023) and TAJS
Jensen et al. (2009). The results of comparing the proposed method with Hoppity and
Yousofvand et.al (2023) are listed in Table 5. As seen, the accuracy of the proposed
approach was higher than others. The Hoppity method performed bug fixing in addi-
tion to bug localization. Its bug localization operation includes prediction the loca-
tion of node insertion, update location, and deletion location. Actually, it looks like a
S5-classes classification problem. However, in our work and Yousofvand et.al (2023),
it is only important to determine the location of the bug. So, it is a two-class classifi-
cation problem (each node that has the label delete, insert, and update is considered as
buggy). Table 3 depicts the localization accuracy of all buggy and bug-free samples.
In Table 6, the detection accuracy of buggy samples is calculated by considering two
classes for the Hoppity method on the dataset mentioned in Sect. 5. Based on these

Receiver operating characteristic
10 1 >

o o
(<)) (= 4]

(=]
=

True Positive Rate

0.2 1

= ROC curve (area = 0.81)

T

00 02 04 06 08 10
False Positive Rate

Fig.9 Receiver operating characteristic (ROC) metric and area under the ROC curve (AUC)
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Fig. 10 The effect of model depth on classification performance

Table 6 Comparison proposed

. . Method Dataset No. Max.  Acc

method with Hoppity Graphs Graph (%)
Size

Hoppity ~ Hoppity 27,184 800 62.7

Dinella et  OneDiff https://github.com/
al. (2020)  Al-nstein/hoppity ( n.d.)

You- Hoppity 27,184 800 75.8
sofvand OneDiff https://github.com/

et.al Al-nstein/hoppity ( n.d.)

(2023)

Proposed  Hoppity 27,184 800 90.1

method OneDiff https://github.com/
Al-nstein/hoppity ( n.d.)

settings, the accuracy of Hoppity method is 62.7% the accuracy of Yousofvand et.al
(2023) is 75.8%, and the accuracy of our work is 90.1%.

In total, 30 buggy codes were randomly selected from the test set to compare the
proposed method with TAJS Jensen et al. (2009), because it was impossible to auto-
matically compare the entire test set with the said method. Also, TAJS static analyzer
only accepts JavaScript projects that use ES5. TAJS further claims to be very good at
detecting undefined property bugs, but it detected only two bugs of undefined prop-
erty type, as shown in Table 7. TAJS also fails to detect functional bugs and refac-
torings. Moreover, it ignores internal library analysis and generates many unrelated
false warnings due to unsuccessful BL.

In addition to TAJS and Hoppity, we compared our method with several advanced
LLMs, including ChatGPT, CodeT5, and LLaMA 2, to assess their bug detection
capabilities. While ChatGPT demonstrated impressive accuracy in identifying syn-
tax-level issues such as typos and missing brackets—consistent with prior findings
Mohajr et al. (2024) —its performance dropped significantly on deeper logical bugs
and refactoring tasks. Similarly, CodeT5 and LLaMA 2 achieved partial success in
detecting certain cases (see Table 7), but neither provided consistent results across
bug types. By contrast, our proposed method consistently outperformed these mod-
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Table 7 Comparison proposed method with TAJS and Hoppity by 30 random testing points

File (GitHub Link) Bug type TAJS Hoppity ChatGPT CodeT5 LLaMA Proposed
2 method

index.js (Link) undefined x x x x x x
property

router.js (Link) undefined x x x X x x
property

convert.js (Link) undefined x x x x v v
property

index.js (Link) undefined x x v x x v
property

articles.server.route.  undefined v v v x v v

js (Link) property

QuizQuestion.js functional bug * x v v x x

(Link)

ListAlbums.js (Link) undefined v x x x x v
property

crosshairs.js (Link)  functional bug * x v x x

order.js (Link) functional bug  * x x x x v

splash.js (Link) functional bug x x x x x

Advisors.js (Link) functional bug x x x x v

index.js (Link) functional bug  * x x v v

Container.js (Link)  functional bug * x v v v v

question.js (Link) functional bug > x X X x x

z.js (Link) functional bug  * x * x x v

count.js (Link) functional bug > x X X x x

display.js (Link) functional bug v x X x v

blink.js (Link) functional bug  * v x x v v

getETHFromFaucet.  refactoring x x v x v v

is (Link)

point.js (Link) refactoring x x X X x x

mana.js (Link) refactoring x x v x x v

stream_muting.js refactoring x x v v v x

(Link)

index.js (Link) refactoring x x v v x x

gather.js (Link) refactoring x x x x v v

before_router_match. refactoring x x v x x v

js (Link)

Form.js (Link) refactoring x x v v x v

ROT13.js (Link) refactoring x x v * v v

index.js (Link) refactoring x v v v v x

CaseDetailsFileTab.  refactoring x x v x x x

js (Link)

help.js (Link) refactoring x x v * v x

els, particularly in functional bug detection and refactoring, owing to its graph-based
reasoning over program structure.

For completeness, we report the experimental setup of the LLM-based baselines.
For ChatGPT, we used the public May 2024 release (based on GPT-4) via the OpenAl
interface. The uniform prompt was: “Does the following code contain any bugs?”,
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with raw code snippets directly provided without additional context. For CodeT5 and
LLaMA 2, we employed HuggingFace implementations (CodeT5-base and LLaMA-
2-7B) with default generation settings (beam search, temperature=0.7). These set-
tings were chosen to ensure fair and reproducible comparisons across all models.

To further validate our method, we additionally examined the quality of node gen-
eration for all 30 selected buggy code samples. The purpose of this analysis was not
to measure localization accuracy, but to evaluate whether the proposed approach can
correctly construct meaningful graph nodes that represent buggy and non-buggy code
regions.

As shown in Table 8, the proposed method successfully generated correct graph
nodes in 27 out of 30 cases. Only three functional bugs (splash.js, question.js, and
count.js) were not properly captured during the node generation phase. These fail-
ures can be attributed to the following challenges: (1) functional bugs often involve
complex runtime dependencies that are not explicitly encoded in the source-level
abstract syntax tree; (2) in such cases, Gumtree’s tree-differencing may fail to detect
meaningful structural changes between buggy and fixed versions; and (3) the graph
abstraction may lack sufficient semantic information to fully represent deeper con-
trol-flow or data-flow anomalies.

Overall, the high success rate (90%) in node labeling demonstrates that our pro-
posed approach is capable of producing reliable graph structures for downstream bug
localization tasks. The small number of failure cases highlights interesting directions
for future work, such as incorporating semantic-aware differencing algorithms or
integrating dynamic analysis signals into the graph representation.

We extend our evaluation to include bugs written in Python using the BugsInPy
dataset Zhou et al. (2019). This complements the previous analysis that was solely
focused on JavaScript-based bugs (from the Hoppity dataset), enabling a broader
understanding of performance across languages.

Table 9 presents a comparison between our proposed method and several base-
line fault localization techniques—namely MBFL (Metallaxis), SBFL variants (PS,
DStar, Ochiai, Tarantula), and ST (Slicing Technique)—across 13 Python projects
with a total of 135 real-world bugs.

The results demonstrate that our method achieves the highest total number of
successfully localized bugs (59), slightly outperforming all other approaches. In
particular:

Our approach consistently outperforms SBFL techniques such as DStar and Taran-
tula in large projects like youtube-dl and keras.

Compared to MBFL (Metallaxis), our method localizes more bugs in projects such
as luigi, pandas, and fastapi, indicating better adaptability to varied project structures
and codebases.

The ST method, while showing strong performance in specific cases (e.g., the-
fuck), fails to generalize across smaller or more modular projects like sanic or httpie.

Overall, this additional evaluation confirms that the proposed method maintains its
effectiveness across programming languages and different bug datasets, highlighting
its potential for wider adoption in real-world debugging scenarios.
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Table 8 Evaluation of generated  Fjje Bug type Proposed

graph nodes for selected buggy method (Node

codes Generation)
index.js (Link) undefined property v
router.js (Link) undefined property v
convert.js (Link) undefined property v
index.js (Link) undefined property v
articles.server.route.js undefined property v
(Link)
QuizQuestion.js (Link) functional bug v
ListAlbums.js (Link) undefined property v
crosshairs.js (Link) functional bug v
order.js (Link) functional bug v
splash.js (Link) functional bug x
Advisors.js (Link) functional bug v
index.js (Link) functional bug v
Container.js (Link) functional bug v
question.js (Link) functional bug x
z.js (Link) functional bug v
count.js (Link) functional bug x
display.js (Link) functional bug v
blink.js (Link) functional bug v
getETHFromFaucet.js refactoring v
(Link)
point.js (Link) refactoring v
mana.js (Link) refactoring v
stream_muting.js (Link) refactoring v
index.js (Link) refactoring v
gather.js (Link) refactoring v
before router match.js refactoring v
(Link)
Form.js (Link) refactoring v
ROT13.js (Link) refactoring v
index.js (Link) refactoring v
CaseDetailsFileTab.js refactoring v
(Link)
help.js (Link) refactoring v

5.1 Failure analysis and the impact of unnatural code on model accuracy

To further evaluate the limitations of the proposed model and understand its behavior
in complex scenarios, we conducted a failure analysis focusing on misclassified code
samples. Specifically, we examined two main types of errors:

False Positives (FP): Non-buggy nodes that the model incorrectly identified as
buggy.

False Negatives (FN): Buggy nodes that the model failed to detect, classifying
them as bug-free.

Table 10 presents representative examples of both error types, providing insights
into their characteristics and possible underlying causes.
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Table 9 Performance comparison of BL techniques on BugsInPy

Project Bugs MBFL SBFL ST  Proposed method
(Metallaxis) PS  DStar  Ochiai Tarantula
Black 13 5 2 4 4 4 1 4
cookiecutter 4 0 0 2 2 2 0 2
Fastapi 13 3 1 5 5 5 1 6
Httpie 4 0 1 1 1 1 0 1
Keras 18 6 0 6 7 7 0 5
Luigi 13 7 1 5 5 5 2 6
Pandas 18 2 2 3 3 3 0 5
Sanic 3 0 0 1 1 1 0 0
spaCy 6 1 1 3 3 3 0 3
Thefuck 16 7 0 15 15 15 1 14
tornado 4 1 0 2 2 2 0 1
Tqdm 7 1 0 4 4 2 4
youtube-dl 16 7 1 6 6 6 1 8
Total 135 40 9 57 58 58 8 59
Table 10 Representative examples of model misclassification cases
Error Type Example Description Probable Cause
function civicaseCaseDetailsFileTabController($scope, = This node involves a High similarity to
BulkActions) { minor, non-functional | buggy code patterns in
False $scope.ts = CRM.ts(‘civicase'); change. It was the training data.
Positive $scope.bulkAllowed = BulkActions.areAvailable(); incorrectly flagged as
$scope.bulkAllowed = BulkActions.isAllowed(); buggy by the model.
}
<main> This node contains a The graph structure
<section> subtle semantic error lacked sufficient
False <p>{this.props.quiz_question.instruction_texts}</p>  which was not semantic cues to reveal
Negative <p>{this.props.quiz_question.instruction_text}</p> detected. the logic flaw.
</section>
</main>

Our analysis reveals that “unnatural” or rarely occurring code patterns—those
that significantly deviate in structure or style from more typical samples—are more
prone to misclassification. These edge cases are underrepresented in the training data
and often exhibit unusual graph structures, making them difficult for the model to
generalize.

This reinforces the importance of training with diverse and semantically rich code
samples to enhance the model’s ability to detect bugs in less conventional or rarely
encountered scenarios.

6 Threats to validity

We acknowledge several threats to the validity of this study and describe the mitiga-
tion strategies employed to address them:

e Internal Validity: Model performance may be affected by hyperparameter choic-
es, model architecture, and training procedures. To mitigate this, we followed
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established practices such as tuning on a held-out validation set, applying early
stopping based on validation loss, and performing grid search over key hyper-
parameters (e.g., learning rate, hidden size, and number of layers). These steps
helped reduce overfitting and ensured robust model selection.

e Construct Validity: The labeling of buggy and fixed nodes depends on the Gumtree
differencing tool, which may introduce noise. To reduce this risk, we manually
inspected a sample of labeled data and filtered out ambiguous diffs. Only changes
with clear and consistent structural mappings were retained, minimizing the ef-
fect of mislabeling.

e External Validity: While the dataset covers a wide range of real-world JavaScript
and Python bugs, it may not fully capture the entire space of bugs in practice. Fur-
thermore, the dataset exhibits class imbalance, which could lead to biased learn-
ing. To mitigate this, we applied GraphSMOTE, a graph-based oversampling
technique designed to generate synthetic samples for underrepresented classes
while preserving the topological structure of code graphs. This approach helped
the model learn from rare bug patterns and improved its generalization capability.

Despite these precautions, additional evaluations on more diverse datasets and lan-
guages (e.g., Java) are planned for future work to further improve generalizability.

7 Conclusion and future works

In this paper, we proposed a novel approach for bug localization (BL) in source
code by combining graph-based representations with deep learning techniques. Our
method leverages the expressive power of graph structures to capture both syntac-
tic and semantic aspects of program code, which are essential for identifying bugs.
Graph Neural Networks (GNNs) were employed to analyze these representations
effectively.

The proposed method demonstrated strong performance compared to existing
techniques and showed promising capabilities in identifying multiple bugs within
a single program. Although the experimental evaluation was conducted on JavaS-
cript programs, the approach is inherently language-agnostic and can be adapted to
other programming languages, given appropriate parsing and graph construction
mechanisms.

To address the class imbalance, present in the dataset, we applied oversampling
strategies. However, the high memory overhead introduced by oversampling presents
a limitation. Future work can explore more efficient solutions, such as dynamic sam-
pling or cost-sensitive learning.

Furthermore, we envision extending this work by incorporating gray-box mod-
els that combine interpretable white-box classifiers with black-box predictors. This
hybrid architecture could leverage automatically generated labels from the black-box
component to enhance the white-box model’s performance, thereby improving both
accuracy and interpretability.
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