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Abstract: For the first time detailed interactions between optical and 
acoustic modes in a silicon slot waveguide are presented. A new computer 
code has been developed by using a full-vectorial formulation to study the 
acoustic modes in optical waveguides. The results have shown that the 
acoustic modes in an optical slot waveguide are not purely longitudinal or 
transverse but fully hybrid in nature. The model allows the effects of 
Stimulated Brillouin Scattering and the associated frequency shift due to 
the interaction of these hybrid acoustic modes with the fully hybrid optical 
mode also to be presented. 

©2014 Optical Society of America 

OCIS codes: (000.4430) Numerical approximation and analysis; (290.5900) Scattering, 
stimulated Brillouin; (230.7370) Waveguides; (190.0190) Nonlinear optics; (190.2640) 
Stimulated scattering, modulation, etc.; (130.0130) Integrated optics; (130.2790) Guided 
waves. 
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1. Introduction 

The field of silicon photonics allows both the exploitation of standard Complementary Metal-
Oxide-Semiconductor (CMOS) fabrication techniques and integration of photonics with 
microelectronics allowing the development of a range of novel devices. Stimulated Brillouin 
Scattering (SBS) in optical waveguides is an important, but often undesirable nonlinear effect 
which arises from the coherent interactions between the optical and acoustic modes and 
limits power scaling in many photonic devices. However the effect can be exploited in strain 
or temperature sensing [1] and by controlling the SBS bandwidth [2] ‘slow waves’ can be 
generated to achieve tuneable pulse delays. Alternatively, waveguides can be designed to 
suppress SBS, for example for the transmission of high laser powers. 

The slot waveguide [3, 4] is a unique structure in which light is guided in a low-index 
region due to the continuity of the normal component of the Electric Flux Density (D) at the 
dielectric interfaces, which opens up new opportunities for sensor design [5, 6] where the 
slots can be filled with an active or functional material to create devices such as high-speed 
modulators [7], amplifiers [8] or nonlinear devices [5] by accessing higher field readily 
accessible in the slot region. The high index contrast also makes the optical modes are hybrid 
in nature, requiring a full-vectorial numerical method to characterize such structures. Guiding 
acoustic modes would also be possible if at least one of the velocities (the shear or 
longitudinal velocities) of the cladding exceeds that of the core. The particle displacement 
can be either longitudinal or transverse creating longitudinal, torsional, bending or flexural 
modes. Guided Acoustic Wave Brillouin Scattering (GAWBS), first studied in 1985 [9], 
where radial modes can be beneficial or detrimental [10] (as with SBS) but flexural and 
torsional acoustic modes have been exploited in the development of all-fiber acousto-optic 
tuneable filters [11]. Thus it is necessary to consider all the modes to characterize fully 
acousto-optic interactions. 

Simple scalar formulations [12, 13] are often used to study longitudinal modes, or radial 
flexural modes [14] but are usually inadequate due to the complexity of the acoustic modes 
in such optical waveguides. A rigorous full-vectorial analysis method provides a more 
accurate characterization of such acoustic wave propagation and thus a simulation using the 
versatile Finite Element Method (FEM) has been developed to allow, for the first time, an 
analysis of acoustic modes and their interactions with the optical modes in slot optical 
waveguides. 

2. Theory 

The propagation of the acoustic wave generated due to an intense light beam passing through 
a slot waveguide linking to the periodic distortion of the waveguide along the axial and 
transverse directions-creates a periodic moving density grating, due to both material 
deformation and associated elasto-optic effects. This moving Bragg grating reflects the light 
which, as the acoustic wave is also travelling, is subject to ‘down shifting’ through the 
Doppler effect. Above the threshold pump power, which is much smaller than the Raman 
threshold power and in the mW range, the process becomes stimulated and the acoustic and 
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Stokes waves grow through mutual reinforcement. Modal solutions of acoustic modes in 
modern optical waveguides, which can be of arbitrary shape, with boundary conditions at 
both the material interfaces and also at the boundary, can make an analytical approach 
unsuitable. As a result, numerical approaches are preferred, particularly for optical 
waveguides of sub-acoustic wavelength dimensions. The FEM has been exploited previously 
to analyze vectorial acoustic modes but here this has been extended to general tensor and 
complex valued material parameters (to consider material loss if necessary), and for the first 
time interactions in silicon photonic structures are reported. 

The propagation of an acoustic wave along the z direction may be associated with 
molecular displacement and for a time harmonic wave, the displacement vectors, Ui, can be 
written in the following form [15]: 

 ( , , ) exp{ ( )}x y z a au u ju j t k zω= −iU u  (1) 

where the angular acoustic frequency, ωa, reveals the time dependence; the propagation 
constant, ka identifies the axial dependence of the acoustic wave and ux, uy and uz are the 
particle displacement vectors along the x, y and z directions respectively. The deformation in 
an acoustically vibrating body can be described through the strain field, S, which relates to 
the partial derivative of particle displacements and is given by: 

 = ∇S u  (2) 
The elastic restoring forces can be defined in terms of the stress field, T and the inertial 

and elastic restoring forces in a freely vibrating medium are related through Newton’s 
equation of motion, as shown below: 

 
2

2
.

t
ρ ∂∇ =

∂
u

T  (3) 

where ρ is the density of the material. Hooke’s Law states that the strain and stress are 
linearly proportional to each other and thus: 

 ; , , , , ,ij ijkl klT c S i j k l x y z= =  (4) 

where the microscopic spring constants, cijkl, are termed the elastic stiffness constants. The 
constitutive relation given by the compliance and stiffness tensors can be denoted in matrix 
form by: 

 [ ] [ ][ ]T c S=  (5) 

in which cijkl is a fourth order tensor and the stiffness constant tensor [c] is 9x9 but as it obeys 
the symmetry condition, it can be represented by using two suffix notations, thus reducing to 
a 6x6 matrix. In the simplest case of an isotropic, homogeneous and bulk material, this can 
be represented by two terms only of the Lamé constants relating the shear and longitudinal 
velocities. Thus in this work, the waveguide cross-section region, Ω, is sub-divided into an 
assemblage of triangular elements where the material displacement and spatial derivatives 
within each element can be defined in terms of the nodal values of these triangles. 

Classically, in the FEM [15, 16] for a solid structure, the displacement field, u, can be 
written using the interpolation shape function, [N], and of the vector of the nodal values of 
the displacement field u where: 
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By representing [S] in terms of the spatial variations of the displacement vectors, u, as 
shown by Eq. (2), and relating the stress and strain via Eq. (5), the time harmonic acoustic 
wave problem can be reduced to a general eigenvalue equation: 

 2([ ] [ ])aA B Fω− =U  (7) 

where [A] is the stiffness matrix, related to strain energy and [B] is the mass matrix related to 
the kinetic energy. In this case, if necessary, the full [c] matrix or its reduced form can be 
used. These matrices are generated for a given acoustic propagation constant, ka. The column 
vectors, F, contain the nodal values of the applied forces, which in this case are taken to be 
equal to zero. Solving this generalized eigenvalue equation of the system yields the 
eigenvalue as ωa

2, where ωa is the angular acoustic frequency and the eigenvector U, the 
displacement vector. 

The FEM approach is used to analyze the light guidance and this is based on the vector-
H-Field formulation, to provide one of the most accurate and numerically efficient 
approaches to obtaining the modal field profiles and propagation constants of the 
fundamental and higher-order quasi-TE and quasi-TM modes. The full-vectorial formulation 
is based on the minimization of the full H-field energy functional [17], 

 
( ) ( ) ( ) ( )* *1
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*
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ˆ
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ω
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− ∇× ⋅ ∇× + ∇ ⋅ ∇ ⋅ =
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H H H H

H H

 

 
 (8) 

where H is the full-vectorial magnetic field, * denotes a complex conjugate and transpose, 
ωo

2 is the eigenvalue where ωo is the optical angular frequency of the wave, p is a weighting 
factor for the penalty term and ε̂  and μ̂ are the permittivity and permeability, respectively 

and these material parameters can be arbitrarily tensor. 
The two-dimensional cross-section of the waveguide is discretized by using many first 

order triangular elements and all three components of the magnetic fields required for the 
optical model and the displacement vectors for the acoustic model may be represented by 
piece-wise polynomials within the elements. The same mesh discretization is used for both 
the models, so that their interactions can be accurately calculated by integrating the 
functional over each element. 

3. Results 

The unique feature of a slot waveguide (SW) is that light is guided in a low index region, 
which may also be air. However, to create a functional device, the slot region can also be 
filled with nonlinear or active materials but with the condition that this material should have 
a lower refractive index. 
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Sound will also be guided in this slot region when filled with silica (SiO2), as it has a 
higher acoustic index than the surrounding silicon (Si) layer, creating sound-light interactions 
in the slot waveguide. Frequently a low-index SiO2 buffer layer is used to isolate the optical 
mode from the high index Si substrate, but this will not isolate acoustic wave. To achieve 
both optical and acoustic modes isolation, a low index (both optical and acoustic) silica 
nitride (Si3N4) layer is envisaged. A typical air-clad SiO2-filled slot waveguide structure of 
width, Ws = 150 nm and height, H = 220 nm (with a Si core width W = 300 nm on either side 
and Si3N4 buffer layer at the bottom of the slot to prevent the leakage of the slot mode to the 
bottom of the layer, where B = 1 μm) is considered to study these various acoustic modes, as 
shown as an inset in Fig. 1. The longitudinal acoustic velocities in SiO2, Si and Si3N4 are 
taken as 5736, 8433 and 11611 m/s and those of the acoustic shear velocities are assumed to 
be 3625, 5845 and 5956 m/s, respectively. 

 

Fig. 1. Variation of the phase velocity of the Uy acoustic mode with the frequency for a 
vertical slot waveguide. 

The variation of the acoustic wave velocity with the operating frequency for the 
fundamental Uy mode is also shown in Fig. 1. A notation similar as used for the optical 
modes is used here where a mode is identified by its dominant displacement vector, where 
for this Uy mode, its displacement in y-direction (Uy) is a maximum. As the operating 
frequency is reduced, the acoustic wave velocity asymptotically approaches its modal cutoff 
towards a velocity which is related to the slab acoustic mode of a 220 nm thick Si layer. 
Similarly as the frequency is increased, the mode asymptotically reaches a value for a very 
well confined mode in the SiO2 slot region. For this range, the acoustic velocity, which is 
equal to the ratio ωa/ka, also reduces monotonically from 4838 m/s to 3456 m/s as the 
frequency increases from 6 GHz to 24 GHz. 
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Fig. 2. The displacement vector plots of the Uy mode in a slot waveguide with (a) Uy (b) Ux 
and (c) Uz displacement vector profiles at ka = 20 μm−1. 

The full-vectorial eigenvector profile of this Uy mode is shown in Fig. 2 for a propagation 
constant, ka, equal to 20 μm−1, with the positions of the Si waveguides and the slot region 
shown by red solid and dashed lines respectively. For this mode, the Uy displacement vector 
is shown in Fig. 2(a), normalized to unity. The Uy profile is symmetric along the horizontal 
direction with its peak value located inside the slot region but not symmetric in the vertical 
direction, as the material properties of the upper and lower sides were different. The non-
dominant Ux profile of this Uy mode is shown in Fig. 2(b) where this vector is anti-symmetric 
with a higher order spatial variation in the lateral direction, in a way similar to the non-
dominant field of a Si waveguide [18]. Its maximum magnitude is about 20% of the 
maximum value of the dominant Uy displacement vector, which lies along the upper interface 
where acoustic index contrast was higher. Figure 2(c) shows another non-dominant Uz (x,y) 
vector profile with a higher order spatial variation, but this time in the vertical direction 
which is also highly non-symmetrical but with a symmetric profile along the horizontal 
direction. Its highest value is about 50% of that of the dominant Uy displacement vector and 
is located at the upper slot interface where material contrast was higher. For this Uy mode, as 
the Uy displacement vector was dominant, it also contains other displacement vectors 
including a longitudinal Uz component. Figure 1 has shown that as the operating frequency 
(or ka) reduced as the Uy mode approached its cutoff and when the propagation constant 
increases, the displacement vectors had smaller spatial spread. The full-mode-width of the Uy 
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vector along the horizontal direction (where the field decays to 1/e of its maximum) is 180 
nm and 132 nm respectively for propagation constants ka = 20 and 40 μm−1, respectively. 
Figure 2 clearly demonstrates their symmetry along the vertical axis, as the structure had the 
one-fold symmetry, but not in the vertical direction. 

To study the effect of this non-symmetry, the variations of the dominant displacement 
vector Uy of the Uy mode along the vertical direction is shown in Fig. 3, for two different ka 
values. The Uy profile is not symmetric but tilted and instead of the full-mode-width, only 
half-mode-widths along both lower and upper directions are calculated (separately) to be 133 
nm and 20 nm respectively for ka = 20 μm−1 where its peak value is closer to the upper 
interface where the material index difference was greater. A small negative peak can also be 
observed in the upper cladding layer, where similar negative peaks for all acoustic waveguide 
are seen when they have a strong index contrast, a feature missing for an acoustic waveguide 
with a small acoustic index contrast. For a higher propagation constant ka = 40 μm−1, shown 
in the figure by a red dashed line, the mode profile is narrower and the negative peak is 
sharper with a higher secondary peak value. When ka is increased to 40 μm−1, these half-
mode-widths in the lower and upper directions reduce to 94 nm and 10 nm, respectively, 
these being much smaller values than are seen for ka = 20 μm−1. 

 

Fig. 3. Variations of displacement vector Uy of the Uy mode along the y-axis for ka = 20.0 
μm−1 and ka = 40.0 μm−1. 

As the propagation constant increases, the non-dominant displacement vector profiles 
also shrink but their magnitudes increase, signifying that as propagation constant (or the 
frequency) increases, the modes are more confined but also more hybrid in nature. The 
maximum value of the longitudinal displacement vector, Uz, is comparable to the maximum 
Uy value, and being large for this Uy mode, it is not purely transverse mode but a highly 
hybrid creating a complex interaction with the optical modes. When the slot width was 
reduced, the Uy mode approaches its cutoff value at a lower acoustic frequency but with a 
slightly higher acoustic velocity. By contrast, when the slot height is increased, its cutoff 
value is reached at a lower acoustic frequency, but approaches the same acoustic velocity. 

Optical solutions of the Si slot waveguides were obtained by using a full-vectorial H-field 
formulation [17] allowing the interactions of the acoustic and optical modes to be studied. 
The variation of the effective index (neff) for a quasi-TE mode with the slot width, Ws, is 
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shown in Fig. 4. Although both quasi-TE and quasi-TM modes can exist for this structure, 
only the quasi-TE mode will have a sufficiently high power density in the slot region due to 
the enhancement of Dx in the slot region and thus this mode is considered. It can be observed 
that as the Ws reduces, the value of neff increases. This slot mode can also be described as the 
even supermode of the coupled Si waveguides, where neff increases as the separation between 
the guides (similar to Ws) reduces. However, as the constituent Si waveguides are rather 
narrow, they cannot support a mode on their own, so an odd supermode for this structure 
does not exist. The variation of the effective mode area (Aeff) is also shown in this figure by a 
dashed line. The optical slot-mode only exists when Ws is not wide – the slot confines light 
better in the low index region. 

 

Fig. 4. Variations of the effective index, neff, and effective area, Aeff, with the slot width, Ws. 

Periodic material displacement arising from the acoustic mode introduces density 
variations which generate a Bragg Grating giving rise to changes in the refractive indices. 
Additionally, these periodic stress variations also introduce refractive index variations (which 
are anisotropic) due to the elasto-optic effects and the optical intensity variation will also 
create an acoustic wave via electro-striction effects. For the Uy mode, its Uy profile was very 
similar in shape to the modal field profile of the fundamental quasi-TE optical mode, so their 
overlap is expected to be significant. Due to the time dependent optical density variation, the 
optical and sound waves interact with each other and can exchange energy if the phase 
matching condition is satisfied. Subsequently, the SBS frequency shift, fB, can be calculated 
using this phase matching condition: 

 2 /B eff a of n V λ=  (9) 

where neff is the effective index of the optical mode, Va is the acoustic velocity, λo is optical 
wavelength and 

 02ak β=  (10) 

where ka is the acoustic wavenumber and βo is the optical propagation constant. For a given 
structure, the propagation constant of the interacting optical mode, in this case the quasi-TE 
mode, i.e. βo is calculated. Subsequently, using Eq. (10), the matched propagation constant, 
ka, of the acoustic mode can be obtained, following which the phase velocity (Va) of the 
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interacting acoustic mode (in this case Uy mode) may be calculated for this ka value. Finally 
the SBS frequency shift, fB is determined by using Eq. (9). 

Figure 5 shows the SBS frequency shift that is predicted for the fundamental optical 
mode, for different waveguide slot widths (Ws), operating at λ = 1.55 μm, through the 
interaction of the Uy mode. For this structure, as the slot width is reduced, its optical effective 
index increases, in turn increasing both the optical propagation constant (βo) and the phase 
matched acoustic propagation constant (ka). The resultant acoustic modal velocity (Va) was 
then calculated for this acoustic propagation constant (ka), as was the SBS frequency shift 
(fB), which increases as the slot width is reduced. 

 

Fig. 5. Variations of the SBS frequency shift and modal overlap with the slot width, Ws. 

A dimensionless acousto-optic modal overlap parameter is adopted in this work, as is 
often used in the literature [19], rather than the acousto-optic effective area [2]. The overlap 
between the dominant Hy field of the quasi-TE mode with the dominant displacement vector 
Uy of the transverse acoustic mode was also calculated and shown in Fig. 5. The overlap with 
the Uy vector increases almost linearly as the slot-width is reduced, as for this structure both 
the optical and acoustic modes become more confined in the narrow slot region. As this 
mode was fully hybrid, there may also be considerable overlap with the longitudinal 
displacement vector Uz and the Hy field of the quasi-TE mode. The Uz profiles were non-
symmetric with positive and negative peaks along the vertical direction, but since these peaks 
were not equal, there was a reasonable overlap of this displacement vector with the optical 
field. This parameter was calculated for different slot waveguide dimensions where this value 
increases progressively as the slot width is reduced and reaches its maximum value of 0.18, 
when Ws = 110 nm, and then rapidly reduces. The overlap of the optical field with the Ux 
vector was very small as this profile was anti-symmetric along the horizontal direction. As 
the slot height was increased its effective index increased, which in turn increases the SBS 
frequency shift. However, the overlap between the optical and acoustic waves reduces as the 
slot height increases. For this slot-waveguide as the Si core width, W rises, the effective 
index of the optical mode increases, which also increases the phase matched acoustic 
propagation constant (ka) and the SBS frequency shift. In this case, the acousto-optical 
overlap integral also reduces as the waveguide width W is increased but only modestly. 
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4. Conclusion 

For the first time, a simulation of the interaction of optical and acoustic modes employing 
full-vectorial approaches for both the optical and acoustic models was presented where 
identical mesh discretization has been used for both models and the interactions were 
calculated rigorously without interpolating the field variables. This offers a significant 
advance on work reported previously in which these important optical-acoustic interactions 
were studied, but often the vector natures of the modes were ignored and only approximate 
scalar formulations used. For sub-wavelength optical and acoustic waveguides, both the 
optical and acoustic modes are fully hybrid in nature and the work has shown that this 
requires rigorous full-vectorial approaches to determine the complex acousto-optical 
interactions. The acoustic wave not only changes refractive index to form moving gratings, 
but also the periodic stress variation will change the refractive index, due to elasto-optic 
effects which are fully anisotropic in nature. In this work, the SBS gain has not been shown. 
This not only depends on the SBS frequency shift and the acousto-optic modal overlap, 
which have been shown in Fig. 5, but also on the electro-striction tensors and acoustic modal 
loss values. For high optical power delivery, the SBS threshold power can be increased by 
reducing the acousto-optical modal overlap, but on the other hand for efficient distributed 
sensors this threshold power can be reduced, which depends on the SBS gain and optical loss 
coefficient. The versatile finite element approach developed here has thus demonstrated its 
effectiveness to study such interactions between fully vectorial acoustic and optical modes in 
practical waveguides and devices. 
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