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A B S T R A C T

The rapid rise of transformer-based large language models (LLMs) has introduced new opportunities for auto
mation and decision support in radiology, particularly in applications such as report generation, protocol opti
mization, and structured interpretation. Despite their impressive performance in producing contextually 
coherent text, conventional LLMs remain limited by their inability to interact autonomously with external sys
tems, retrieve data, or execute code, restricting their role in real-world clinical and research workflows. To 
address these limitations, agentic systems have emerged as a new paradigm. By embedding LLMs within 
frameworks that enable reasoning, planning, and action, agentic systems extend LLM capabilities to dynamic 
interaction with users, tools, and data sources. This review provides a comprehensive overview of the founda
tions, architectures, and operational mechanisms of agentic systems, focusing on their applications in medical 
imaging and radiology. It summarizes key developments in the literature, including recent multi-agent frame
works for automated radiomics pipelines, and discusses the potential benefits of these systems in enhancing the 
reproducibility, interpretability, and accessibility of AI-driven workflows. The review critically examines current 
regulatory considerations, ethical implications, and sustainability challenges to highlight essential gaps that must 
be addressed for the safe and responsible clinical integration of these systems.

1. Introduction

The introduction of transformer architecture and the attention 
mechanism sparked the rapid development of highly accurate and effi
cient models that can predict the next word in a sequence based on the 
preceding input [1]. These models are known as large language models 
(LLMs) and represent a highly active area of research. In medical 

domains such as radiology, LLMs are being explored for tasks including 
automated report drafting, protocol streamlining, and support for 
structured interpretation [2,3]. Preliminary studies suggest that these 
systems could improve the efficiency and consistency of medical 
decision-making in various settings [4–10].

Although LLMs can generate structured, contextually relevant text, 
based on user input, they cannot interact autonomously with their 

Abbreviations: AI, Artificial intelligence; AIaMD, Artificial intelligence as a medical device; API, Application programming interface; EU, European Union; LLM, 
Large language model; RAG, Retrieval‑augmented generation.
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environment. They cannot retrieve or process external data, execute 
code, or communicate directly with external systems and pipelines. 
These limitations constrain their applicability as fully integrated tools in 
real-world research and clinical practice.

A rapidly emerging field of research focuses on the development and 
deployment of AI-based agentic systems. These systems aim to overcome 
the inherent limitations of LLMs by enabling them to interact with their 
environment. In such architectures, LLMs serve as the central reasoning 
engine, and their behavior is shaped by prompting frameworks such as 
ReAct, chain of thought and tree of thoughts [11–13]. These prompting 
strategies define how the system plans, reasons, and acts.

Agentic systems typically engage with users through natural lan
guage, relying on the LLM to generate completions, outputs that may 
include reasoning steps, planning directives, executable code snippets, 
or commands for calling external functions and applications program
ming interfaces (APIs) [14]. Completions can be understood as the 
LLM’s proposed next actions, whether textual explanations or in
structions for interacting with external tools. In this way, agentic sys
tems extend the capabilities of LLMs beyond text generation, allowing 
them to dynamically operate within their environment. The excellent, 
constantly evolving performance of commercial and open source LLMs 
underpins the promising capabilities of agentic system. The potential of 
such systems has recently been illustrated in a publication that pre
sented a multi-agent framework for fully automated, end-to-end devel
opment of radiomics pipelines and machine learning models for medical 
imaging [15]. These systems offer a promising avenue for producing 
reproducible, interpretable, and trustworthy AI models, while also 
serving as powerful development and evaluation tools for scientific 
personnel with minimal or no programming expertise.

The purpose of this article was to provide a comprehensive overview 
of the fundamentals of agentic systems in the context of medical imaging 
and radiology. We examine how these systems are structured, how they 
operate, and how they may serve as practical tools to support routine 
clinical tasks. In addition, we review the current state of the literature, 
identify existing regulatory frameworks where applicable, and highlight 
the gaps that should be addressed to ensure the safe and responsible 
integration of such technologies into clinical practice.

2. LLMs: basic principles of the backbone of agentic systems

LLMs are transformer‑based neural networks that learn to generate 
and interpret human language by optimizing billions of parameters on 
heterogeneous text corpora in a self‑supervised fashion. Their devel
opment follows evidence that simply scaling model size and data volume 
yields systematic, power‑law improvements in loss and downstream 
accuracy, an observation codified in early "scaling law" studies and later 
refined into compute‑optimal training prescriptions [16,17]. Technical 
terms underlying these mechanisms are summarized in Table 1.

During pretraining, each model is presented with sequences of to
kens and learns to predict the next token. This process gradually builds 
internal representations that capture syntax, semantics, and domain 
knowledge. The transformer architecture enables this by replacing 
recurrence with multi‑head self‑attention, which evaluates pairwise 
dependencies across the entire sequence in parallel. This mechanism 
efficiently links distant but clinically related phrases, for example, 
associating an initial mention of "ground‑glass opacities" with a 
concluding assessment of "viral pneumonia" in a radiology report, mir
roring expert radiologists’ integrative reading strategies [1].

Tokenization bridges raw text and model input. Subword tokenizers 
such as WordPiece, SentencePiece, or domain‑specific variants split rare 
biomedical expressions like "hepatosplenomegaly" into morphologically 
meaningful units, reducing out‑of‑vocabulary errors and preserving 
semantic content. BioBERT’s success in biomedical natural language 
processing illustrates how domain‑tuned vocabularies materially 
improve representation quality [18]. Self‑attention’s quadratic memory 
footprint ties model performance to the length of the context window. 

Mainstream deployments range from 4 k to 32 k tokens, with research 
prototypes, using sparse, dilated, or state‑space attention, pushing well 
beyond 100 k and even to the billion‑token scale. While such advances 
permit ingestion of entire longitudinal imaging records, they also 
impose very high compute and memory costs in routine deployment 
[19].

Retrieval‑augmented generation (RAG) and dense passage retrieval 
mitigate fixed‑window limits by allowing the model to dynamically 
fetch external documents and weave them into the prompt, thereby 
extending its effective knowledge base without expanding the core 
network. These hybrid systems have proven especially useful for 
surfacing prior reports or guidelines during automated impression 
generation [20].

Because the raw objective instils only statistical correlations, addi
tional alignment steps are required to approximate clinical reasoning 
and professional tone. Reinforcement learning from human feedback, 
instruction tuning, and rule‑based "constitutional AI" frameworks train 
the model to follow radiology‑specific instructions, refuse unsafe re
quests, and prioritize concise, clinically usable output [21].

Medical‑domain LLMs now integrate these advances. Med‑PaLM 
demonstrates that a general‑purpose model aligned with expert prompts 
can match clinician‑level question-answering performance [22], while 
Radiology‑GPT achieves domain‑specific improvements through in
struction tuning on curated report corpora [23]. Parallel progress in 
vision‑language foundation models shows that cross‑modal pre‑training 
can further ground language understanding in imaging features, setting 
the stage for holistic reporting assistants that incorporate images, prior 
text, and laboratory data in a single dialogue [24].

Despite these gains, LLM outputs remain probabilistic extrapolations 
from training distributions. They excel at structured report drafting, 
error checking, and rapid literature retrieval, but can misinterpret rare 
presentations or novel imaging artifacts. In safety‑critical settings such 

Table 1 
Technical terms related to large language models and agentic systems.

Term Explanation

Large language 
models

A large language model is an advanced AI architecture trained 
using deep learning methodologies on extensive corpora of 
textual data, enabling the recognition, generation, translation, 
and summarization of natural language.

Agentic systems AI agents are systems that employ AI techniques to pursue 
defined objectives and execute tasks on behalf of users. They 
exhibit capabilities such as reasoning, planning, and acting, 
while operating with a degree of autonomy that allows them 
to make decisions, learn from experience, and adapt to 
changing contexts. They can operate as single agents or as a 
combination of multiple individual agents (multi-agent 
systems).

Transformers A deep learning architecture that processes input sequences in 
parallel and uses attention to model long-range dependencies, 
enabling efficient handling of complex language and imaging 
tasks.

Attention 
mechanism

A method within neural networks that dynamically assigns 
importance weights to different input elements, allowing the 
model to focus on the most relevant information for the 
prediction.

Tokenization The process of splitting text or data into smaller units (tokens), 
such as words, subwords, or characters, which are then 
converted into numerical representations for model input.

Context window The maximum number of tokens a model can process at once, 
defining how much prior information or context can be 
considered in generating outputs.

Prompt 
engineering

The practice of designing, refining, and structuring inputs 
(prompts) to optimize model responses for specific tasks or 
domains.

System prompt A persistent instruction or configuration that establishes the 
model’s role, constraints, and style of interaction throughout a 
session.

AI indicates artificial intelligence.

E. Tzanis et al.                                                                                                                                                                                                                                  Diagnostic and Interventional Imaging xxx (xxxx) xxx 

2 



as radiology, expert oversight, rigorous validation, and transparent 
uncertainty quantification remain indispensable complements to 
LLM‑enabled workflow acceleration [25].

3. Prompt engineering

Prompt engineering refers to the systematic adaptation of text inputs 
to LLMs to optimize their performance for specific tasks. It involves the 
strategic design and refinement of instructions to guide LLMs toward 
generating accurate, contextually appropriate responses. These tech
niques range from simple query formulation to sophisticated approaches 
involving output constraints and parameter adaptation.

Several prompting techniques have been developed, progressing 
from simple to increasingly complex approaches (Fig. 1). Zero-shot 
prompting requires no prior examples within the prompt itself, relying 
entirely on the model’s pre-trained knowledge to understand and 
execute tasks. In radiology, this approach proves effective for straight
forward classification tasks where the model’s existing medical knowl
edge suffices.

Few-shot prompting adds complexity by providing a small number of 
examples of the desired input-output format within the prompt, 
leveraging the LLM’s capacity for in-context learning [16]. This 
approach improves task-specific accuracy, particularly when examples 

illustrate the expected answer pattern and output format. 
Chain-of-thought prompting further enhances the prompt with struc
tured reasoning guidance, explicitly directing models through 
step-by-step reasoning processes and encouraging intermediate 
reasoning steps before final conclusions [12]. This technique proves 
particularly valuable for complex diagnostic reasoning requiring 
multi-step analysis. Studies in radiology have demonstrated that struc
tured reasoning approaches can improve diagnostic accuracy (i.e., the 
correctness of diagnostic conclusions compared with expert reference 
standards) from 56.5 % to 60.6 % in complex cases by encouraging 
systematic information organization before diagnosis formulation [26].

Guided generation represents an advanced technique that, instead of 
engineering the prompt, constrains the model’s token generation pro
cess according to predefined structures, vocabularies, or grammars [27]. 
Unlike traditional prompting that relies on instructions alone, guided 
generation implements hard constraints during the decoding process, 
ensuring outputs conform to specific formats or standards. This is ach
ieved through several mechanisms: constrained decoding that restricts 
the model’s vocabulary to predefined token sets during generation, 
grammar-based constraints that enforce syntactic structures (such as 
valid JSON schemas), and template-based generation that forces outputs 
to follow specific organizational patterns.

In radiology, guided generation can enforce that diagnostic outputs 
use standardized classification systems, for instance, restricting 
mammography assessments to valid BI-RADS categories rather than 
allowing free-text descriptions that might deviate from established 
standards [12,16,26–28]. Similarly, it can ensure structured reports are 
generated in machine-readable formats such as JSON with predefined 
fields (e.g., {"findings": "…", "impression": "…", "recommendations": 
"…"}), facilitating integration with electronic health record systems. The 
technique can also constrain vocabulary to established medical termi
nologies like SNOMED CT codes, ensuring consistent and interoperable 
clinical documentation while preventing the generation of non-standard 
or ambiguous terminology.

For knowledge-intensive domains like medicine, where LLMs may 
lack access to specialized or institutional knowledge, RAG provides 
essential capabilities by connecting models to external databases, liter
ature, or institutional guidelines. While not a prompting technique but 
rather an architectural pattern, where a model is connected to an 
external knowledge base from which additional context can be derived, 
RAG proves especially valuable in radiology due to the field’s reliance 
on constantly evolving medical knowledge and the need for factually 
grounded information. Research has demonstrated that RAG-enhanced 
models achieve superior diagnostic accuracy, 100 % compared to 93 
% for baseline models in trauma radiology applications [27,28]. RAG 
enables smaller LLMs to compete with larger models that cannot be 
deployed on-site while allowing incorporation of sensitive institutional 
data without public disclosure.

These techniques demonstrate particular value in radiology appli
cations, where chain-of-though prompting enhances complex diagnostic 
reasoning, guided generation ensures compliance with clinical stan
dards, and RAG systems provide access to current literature and insti
tutional protocols.

4. Fundamentals of agentic systems

Agents are systems designed to perform complex tasks while inter
acting with users through natural language. At their core, these systems 
consist of two main components: the brain, which is typically an LLM 
responsible for reasoning and communication, and the body, which re
fers to the set of tools the agent can use to interact with its environment. 
These tools may include functions (e.g., in Python or other languages), 
APIs, or any callable resource that allows the agent to execute specific 
actions in response to a user’s request.

A key element in the behavior and effectiveness of such systems lies 
in the prompting framework, the set of structured instructions that guide 

Fig. 1. Simplified prompt assembly with retrieval augmentation and guided 
decoding. The user query is normalized and possibly expanded by a query 
preprocessor, which produces the retrieval query for the retriever that searches 
a knowledge store and returns context. The final model prompt is composed 
from the normalized query, an instruction template, and instruction strategies 
such as zero shot, few shot, or chain of thought (CoT), together with the 
retrieved context. The language model generates the answer under optional 
decoding constraints defined by an output schema or a controlled vocabulary.
RAG indicates retrieval‑augmented generation.
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how the agent reasons, plans, and acts [11–13]. These frameworks shape 
the agent’s overall cognitive workflow, including how it decomposes 
problems, decides which actions to take, and when to stop. One widely 
used technique is the ReAct framework, short for Reason and Act [11]. 
In this setup, agents solve problems iteratively through a cycle of three 
steps as follows: (i), Think: the agent interprets the user’s request and 
formulates a plan; (ii), Act: it executes a specific action, such as calling a 
function or retrieving data; and (iii), Observe: it analyzes the outcome of 
the action to determine if the task is complete. If the goal is not yet 
achieved, the agent uses the new information to revise its plan and 
re-enters the think-act-observe loop. This iterative process continues 
until the agent reaches a satisfactory solution or final answer, which is 
then returned to the user.

The most important component of agentic systems is the system 
prompt. This is a block of text provided to the LLM at initialization, 
containing persistent instructions that define how the agent should 
operate. It serves as a blueprint for the agent’s behavior, specifying the 
prompting technique to be used, the expected format of interaction with 
the user, and the overall strategy for task execution. In addition to 
guiding behavior and reasoning, the system prompt includes de
scriptions of the available tools and any task-specific agents. These de
scriptions provide the LLM with the necessary context to determine 
which tool or specialized agent to invoke and how to use it in response to 
user queries. By embedding this information into the system prompt, the 
LLM "knows" what resources it has at its disposal and can generate 
completions accordingly, whether those completions are reasoning 

steps, code snippets, or commands for interacting with the environment. 
The workflow of a typical agentic system is presented in Fig. 2.

Agentic systems fall into two main categories based on how they 
interact with tools, which are tool-calling agents and code agents 
(Fig. 3). The most common approach is the tool-calling agent, where 
interaction with tools is managed through structured JSON definitions. 
Each tool is described by its name, a brief description, and a schema 
defining its input parameters and types. In contrast, code agents interact 
with tools by generating and executing Python code snippets. Each 
approach has distinct advantages and trade-offs. Tool-calling agents are 
typically more reliable and safer, as the structure of the tool calls is 
controlled, reducing the risk of hallucinations or unexpected behavior. 
However, they are less flexible, limited to a fixed set of predefined ac
tions, and cannot easily perform dynamic transformations or synthesize 
new logic. Code agents, on the other hand, provide high expressiveness 
and emergent reasoning capabilities, enabling more sophisticated be
haviors without needing to predefine every possible action. The trade- 
off is that they require a secure execution environment and are more 
prone to errors, including syntax mistakes or unsafe code [29].

Another component of agentic systems is their memory, which plays 
an important role in maintaining context throughout interactions with 
the user. The most commonly used form is short-term memory, also 
referred to as working memory. During a session, the user’s queries and 
the agent’s internal reasoning and actions are stored as logs. This allows 
the LLM to maintain awareness of the conversation history, understand 
what has already occurred, and generate contextually appropriate next 

Fig. 2. Graphical description of a typical agentic workflow (created with biorender.com).
LLM indicates large language model.
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steps based on prior information. In contrast, long-term memory refers 
to the agent’s ability to retain and access information across different 
sessions. This involves storing relevant data, insights, or strategies from 
previous interactions, enabling the agent to learn from past experiences. 
By integrating long-term memory, agentic systems can be guided by 
previous successes and failures, improving their ability to solve tasks 
more efficiently over time. Users can grant access to such memory 
stores, allowing agents to adapt and evolve through accumulated 
knowledge.

A variety of frameworks have become available to support the 
development of such systems, each offering different capabilities for 
managing tools, memory, and interaction strategies. An overview of 
some of the most widely used frameworks is presented in Table 2. Such 
systems can aid a wide variety of tasks ranging from diagnosis (the most 
common in published literature) to protocol planning and report 
correction, structuring, and improvement. While these non-diagnostic 
tasks are equally important and can be aided by agentic systems, the 
examples provided in this manuscript are based on diagnostic tasks, 
which may be more complex but are also commonly encountered in the 
majority of published papers.

5. Privacy issues related to the use of agentic systems

The integration of LLMs and subsequently agentic systems into 
radiology introduces substantial privacy and cybersecurity risks, driven 
by the models’ interaction with sensitive patient data [34–36]. A major 
concern is the potential for data leakage during both training and 
inference. Due to their scale and training methodologies, LLMs can 
inadvertently memorize and regurgitate sensitive patient information, 
even when such information was not explicitly intended to be retained. 
This phenomenon, also known as unintended memorization, has been 
observed in LLM deployments where inadequately filtered training data 
resulted in models generating outputs that inadvertently expose sensi
tive or confidential content [37]. This poses a considerable threat in 

medical contexts, where maintaining strict confidentiality is not only an 
ethical imperative but also a legal requirement under regulations such as 
the Health Insurance Portability and Accountability Act in the USA and 
the General Data Protection Regulation in Europe [38]. Therefore, 
anonymizing medical data before training is a widely recommended 
mitigation strategy; however, achieving effective anonymization re
mains a substantial technical hurdle. Traditional de-identification 
techniques, such as removing direct identifiers (e.g., names, social se
curity numbers), often fall short in safeguarding against 
re-identification, especially when LLMs are able to use indirect or 

Fig. 3. Schematic representing the function of the two main types of agents, tool calling and code agents (created with biorender.com).
LLM indicates large language model.

Table 2 
Frameworks for building agentic systems.

Framework Characteristics GitHub repository

Smolagents 
[29]

A lightweight framework for building 
agentic workflows. Emphasizes 
simplicity, sandboxed execution, and 
ease of use.

https://github.com/h 
uggingface/smolag 
ents

LangGraph 
[30]

Enables stateful, long-running agents 
with strong memory support and complex 
workflow orchestration. Ideal for multi- 
agent structures with debugging support.

https://github.com/ 
langchain-ai/lan 
ggraph

CrewAI [31] A performant framework for building 
autonomous agents with GUIs 
(CrewAI‑Studio), RAG workflows, and 
GitHub integrations.

https://github.com/c 
rewAIInc/crewAI

Agno [32] A toolkit for multi-agent systems 
featuring layered levels of agency (from 
tool-using agents to full agentic 
workflows), shared memory, reasoning, 
and observability.

https://github.co 
m/agno-agi/agno

AutoGen 
[33]

Event-driven framework for building 
flexible multi-agent workflows. Supports 
conversational agents, tool integration, 
asynchronous messaging, and modular 
components.

https://github.com/ 
microsoft/autogen
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quasi-identifiers within the data [39]. Furthermore, in complex datasets 
like those in radiology, metadata embedded in image files in DICOM 
data format may inadvertently reveal patient-specific details, compli
cating the anonymization process [38].

Beyond training, there are also risks at the time of inference that 
demand careful attention. When LLMs are used in clinical decision 
support or diagnostic settings, they may generate responses that reflect 
patterns learned from sensitive training data. If such data included 
protected health information, a malicious actor could exploit the model 
through adversarial prompting, potentially extracting details such as 
patient age, diagnoses, medical history, or other confidential attributes 
[34]. Therefore, there is a need for robust model auditing, differential 
privacy techniques, and real-time monitoring to ensure outputs remain 
compliant with privacy standards.

From a cybersecurity standpoint, integrating LLMs into radiology 
workflows also demands defenses against model poisoning, prompt in
jection, and backdoor attacks [34]. Model poisoning occurs when ad
versaries introduce manipulated data during training, aiming to corrupt 
the model’s behavior or introduce vulnerabilities. Prompt injection at
tacks manipulate user inputs in ways that elicit unintended, misleading, 
or harmful outputs from the model. Backdoor attacks embed hidden 
triggers during training, causing the model to behave maliciously when 
specific inputs are received, and often without detection in normal op
erations. These threats, particularly in high-stakes medical contexts, 
pose significant risks to patient safety, data integrity, and system 
trustworthiness.

All these risks are further amplified in multi-agent systems, where 
multiple AI agents collaborate and share information across networks 
[40,41]. The collaborative nature of these systems expands the attack 
surface, and raises questions about data governance, access control, and 
accountability. Ensuring secure information exchange between agents 
and enforcing strict access control, encryption, and identity verification 
protocols are essential to maintaining system integrity and patient 
confidentiality. To responsibly integrate LLMs and LLM-powered 

multi-agent systems into radiology, organizations must proactively 
address both privacy and cybersecurity challenges. Risks with the use of 
LLMs and multi-agentic systems are summarised in Fig. 4.

6. Clinical applications of multi-agent systems in radiology

While promising, AI agents are still not typically available in medical 
devices approved for clinical use. AI as a medical device (AIaMD) has, 
also for regulatory reasons, generally been focused on narrow, specific 
tasks, with more deterministic outputs, such as region of interest (e.g., 
lesion) detection and segmentation, with or without corresponding es
timates for a diagnosis of interest (e.g., clinically significant prostate 
cancer) [42]. Furthermore, given the multimodal nature of data used by 
AI Agents, one can also expect imaging examinations to become more 
often part of the AIaMD’s input data rather than the focus of the Agent. 
In other words, fully leveraging agentic LLMs will probably require 
integration of patient data from multiple sources to perform the action of 
interest, as the results of imaging examinations represent only one 
component (albeit essential in many cases) in the diagnostic and patient 
management process that takes place in healthcare [43].

Nevertheless, agentic AIaMDs can be expected to be introduced in 
medical imaging in more limited roles at first, either improving upon 
performance of non-agentic AIs present in current medical devices or 
only marginally expanding the scope of such systems. In this setting, one 
can classify clinical applications of agentic LLMs in closed and open- 
ended tasks [44]. The first presents a limited number of outputs avail
able to the model, representing a much simpler task to be performed 
compared to open-ended questions. However, while good results are 
present in this setting, for example when experimenting LLM use in 
multiple-choice questions for certification examinations, this has little 
potential for translation into the clinical setting [45,46]. Open-ended 
tasks for LLMs are more clearly related to the radiology workflow, 
including summarization of information, extraction and restructuring of 
data, mainly in text form, and interactive answering of medical 

Fig. 4. Risks associated with the use of large language models (LLMs) are amplified in multi-agentic systems. Cybersecurity considerations and privacy risks related 
to LLMs are presented in this figure (created with biorender.com).
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questions [44,47]. AI has shown good promise in research for these 
applications, with potential end users both within medical imaging 
professionals, such as AIaMDs providing reporting assistance, and pa
tients, for example, for assistance in interpretation of the radiological 
report [48–50]. It should be noted that some of these models are being 
integrated in medical devices, even if not always available in the Eu
ropean Union (EU) [51]. Finally, true AI Agents with access to multi
modal patient information could be leveraged to optimize and automate 
exam scheduling, including follow-up to known pathologies, and pro
vide benefits at a larger scale rather than simply improving efficiency 
and accuracy of human reporting [52,53].

At this time, many research efforts are aimed at building the neces
sary infrastructure to perform pre-clinical and clinical validation of 
agentic AI systems [44]. When thoroughly tested, such models still 
present open questions in terms of consistency and accuracy, which may 
also explain the relatively lower availability of medical devices within 
the EU, where more stringent regulations have been historically present 
compared to the other major markets. Interestingly, AI Agents have also 
been proposed to improve the design process for radiomics and AI 
medical imaging systems, and may actively contribute to accelerate 
their translation from the scientific to clinical setting [15].

7. Applications of multi-agent systems in radiology research

In radiology research, agentic systems can automate processes that 
traditionally required advanced coding or data analysis skills. Agent- 
based systems have emerged over the past years that can handle 
three-dimensional medical imaging data. VoxelPrompt is one of the first 
agentic systems that combine language with vision models to perform 
segmentation and lesion characterisation of multiple types of images 
[54]. The system has been primarily tested on neuroimaging applica
tions where it was able to segment and classify hundreds of lesions, 
performing a series of tasks including but not limited to assessment of 
potential lesion contrast enhancement and diffusion restriction, assess
ment of brain infarct territories, and temporal follow-up of lesion size 
across multiple hospital visits.

Since then, a variety of multi-agent systems have been developed to 
facilitate imaging research that can handle the whole process of image 
analysis, including image preprocessing, segmentation, quantitative 
radiomic data extraction, and model building. mAIstro represents a 
prototype of these systems, which can enable researchers to automate 
data analysis and machine learning model building by writing Python 
code with established libraries and interacting with the user using nat
ural language [15]. The system can be used with API calls to a series of 
state-of-the-art LLMs and assists the user in selecting the appropriate 
methods for the designated research question, and allows automated 
radiomic analysis, traditional and deep learning model building, 
multi-organ segmentation, and exploratory data analysis. NVIDIA, in 
collaboration with King’s College London, has also incorporated agentic 
systems into the MONAI framework based on Llama 3 to assist users in 
research related to radiology and surgery, including features for auto
mated radiology report generation [55,56].

While these applications demonstrate the versatility of agentic sys
tems in radiology research, large-scale studies are still required to 
determine whether such systems can genuinely improve diagnostic ac
curacy, workflow efficiency, and patient outcomes. Unlike the clinical 
use of agentic systems, the use of such systems for research purposes 
does not require regulatory approval as a medical device, rendering 
their commercial rollout. For the United States Food & Drug Adminis
tration, these can be labelled "For Research Use Only. Not for use in 
diagnostic procedures" [57]. In Europe, if an AI tool is used exclusively 
for scientific investigation and not intended for obtaining marketing 
authorization, it is governed by Article 82. Such studies require ethics 
approval and adherence to relevant national regulations, but 
CE-marking is not necessary for this type of research use [58].

8. Governance of agentic AI

According to Gartner, nearly a third of enterprise applications will 
incorporate agentic AI by 2028, compared to less than 1 % in 2024 [59]. 
Agentic AI’s relative autonomy and advanced capabilities in handling 
complex tasks set it apart from simpler AI tools [60]. While these fea
tures make agentic AI an invaluable partner to human actors for the 
completion of complex tasks in healthcare and other fields, they also 
introduce new ethical and governance concerns around autonomy, 
transparency, explainability, bias, and accountability, redefining para
digms of human-AI interaction and exemplifying the need for new 
human oversight approaches.

A fundamental governance question relates to the accountability of 
when agentic AI errs or inadvertently causes harm [61]. Humans can be 
held accountable for decisions they take when these may directly impact 
others. However, automated decisions are not self-justifiable [62]. AI 
software applications and hardware systems, although they need to 
follow principles of responsible AI [63], they do not have the same moral 
responsibility as human actors do [64]. This creates an accountability 
gap for agentic AI, which carries a sense of autonomy in part of its 
decision-making processes, particularly for complex tasks. In clinical 
contexts, this accountability gap raises practical liability questions: if an 
agentic system misinterprets an image or generates an unsafe recom
mendation, responsibility could fall on the hospital, the developer or 
provider of the agentic system, or the end user. Current legislation, 
including the EU AI Act, does not yet provide specific guidance for such 
scenarios, underscoring the need for clear contractual and regulatory 
frameworks that delineate liability among stakeholders. As such, clear 
and attributable sources of human answerability should be attached to 
processes, tasks, and decisions when enabled by an agentic AI system 
[65].

Agentic AI may also be prone to cyber-attacks and data breaches 
[60]. Data privacy and security safeguarding (such as encryption, secure 
coding practices, anomaly detection, and continuous monitoring) are 
crucial governance measures when using agentic AI systems. There is 
little work currently in this field for agentic AI, but it will become more 
relevant in the next couple of years as these systems develop.

While agentic AI is not featured or directly discussed in the most 
recent updates of the EU AI Act, there is a lot mentioned within it about 
autonomy and human oversight (particularly in recital 27 and article 
14) [66,67]. More specifically, according to the guidelines of the AI 
HLEG9, "human agency and oversight means that AI systems are 
developed and used as a tool that serves people, respects human dignity 
and personal autonomy, and that is functioning in a way that can be 
appropriately controlled and overseen by humans". Furthermore, 
"high-risk AI systems (where agentic AI may be classified under) shall be 
designed and developed in such a way, including with appropriate 
human-machine interface tools, that they can be effectively overseen by 
natural persons during the period in which they are in use" [68].

AI agents can make decisions about complex tasks by autonomously 
analysing multimodal data. This requires more transparency on how 
intermediate decision steps are decided and care to ensure bias from 
multimodal data does not accumulate in the final product. Strategies to 
improve transparency of AI agents include direct interpretability (like 
decision trees or similar tools) or post-hoc interpretability (also known 
as explainability) [69]. Important to note that there is currently no 
consensus on what constitutes a good explanation to address the opaque 
nature of AI agent decision-making [69]. Finally, preliminary work 
currently takes place to understand and remove bias. Bias is deeply 
rooted in LLMs and therefore inherent in AI agents; tools such as bias 
detectors are important developments in the right direction for fairer 
agentic AI, but have to be properly evaluated in real-world data [70].

As agentic AI advances, more benefits and risks will become 
apparent; its governance will have to evolve in parallel, and robust 
regulatory frameworks will need to be appended to current legislation to 
ensure it delivers safe, transparent, fair results, keeping humans in the 
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loop and with clear accountability pipelines.

9. Sustainability of agentic systems

Integration of LLMs and agentic AI systems into various sectors, 
including specialized fields like medicine, demands a thorough exami
nation of their sustainability across environmental, economic, and social 
dimensions [71]. Significant energy demand, carbon emissions (direct 
consequence of energy consumption), and water consumption of LLMs 
pose a considerable environmental challenge [72–76], though con
trasting perspectives exist [77]. This challenge is amplified by agentic 
systems, which may perform numerous, iterative tasks autonomously. 
While training foundational models is energy-intensive, it is the infer
ence stage (i.e., the actual use of the model) that constitutes the domi
nant and ongoing environmental cost [78]. The cumulative emissions 
from inference can exceed those from training by roughly a factor of 
1000 [78,79]. One study estimated that the top 20 carbon-emitting AI 
systems could generate up to 102.6 million tonnes of CO₂ equivalent 
annually [78], surpassing the yearly emissions of over 100 countries in 
2023 [80]. Projections indicate a 30–40 % annual increase in energy 
demand for AI services over the next decade [81], directly translating 
into increased carbon emissions. Furthermore, the data centers sup
porting these models have a substantial water footprint due to their 
cooling requirements [73]. Mitigation strategies include adopting 
energy-efficient architectures, such as smaller, fine-tuned models, and 
quantization (i.e., reducing the bit-width of weights), which reduces 
model size and computational load [82,83]. Transitioning data centers 
to renewable energy sources is critical [72–74,78,84,85]. Additionally, 
prompt engineering that encourages shorter responses can cut energy 
use by 25–60 % [86].

The development and operation of LLMs involve substantial eco
nomic costs. Training a model can run into millions of dollars, and API 
usage remains expensive [87,88]. Despite these expenses, LLMs can 
enhance efficiency and reduce costs in sectors like healthcare by 
streamlining data extraction and administrative tasks [89,90]. A 
cost-effective strategy is query concatenation, which can reduce costs 
significantly, by up to 17-fold for 50 simultaneous tasks, by grouping 
multiple queries into a single request [87]. For agentic systems, which 
can operate autonomously, the potential for runaway operational costs 
from inefficient task loops is a critical risk. The Jevons paradox also 
serves as a warning: increased efficiency might lead to higher overall 
consumption rather than savings [73]. Importantly, many economic 
mitigation strategies, such as fine-tuning existing models for specific 
tasks or careful model selection based on complexity, offer the dual 
benefit of reducing environmental impact [82,88].

Socially, the increasing autonomy of LLMs and agentic systems raises 
concerns regarding ethical design, bias, and accountability [77,91,92]. 
These models can inherit and perpetuate the societal biases present in 
their training data [93–95]. In medicine, the potential for LLMs to 
comply with harmful or inappropriate requests poses significant risks 
[96], while the autonomy of agents introduces complex questions of 
accountability when they cause harm or make critical errors. Other 
concerns include job displacement and the erosion of critical thinking 
skills [88,90]. Ensuring equitable access to these powerful technologies 
is also a crucial social challenge [88,97–99]. Multi-agent systems 
introduce further complexity, as LLM agents often struggle to achieve 
sustainable cooperation without specific interventions and may fail to 
analyze the long-term consequences of their actions [100]. To address 
these issues, robust governance, transparent accountability, and clear 
ethical oversight are essential [89,96,99,101]. Bias mitigation through 
careful data curation and safety fine-tuning is vital, as is emphasizing 
human-AI collaboration to ensure human oversight in critical applica
tions [89,96]. Ultimately, harnessing the power of agentic systems 
responsibly requires an integrated approach where environmental, 
economic, and social sustainability considerations are treated not as 
separate challenges but as interconnected components of a single, 

sustainable framework.

10. Conclusion

It has become evident that agentic systems hold considerable 
promise for reshaping radiology by executing complex tasks, which 
range from image interpretation and workflow orchestration to research 
data analysis. As our review has outlined, their successful deployment 
will depend on careful navigation of risks such as the protection of 
sensitive patient information and security vulnerabilities, as well as the 
environmental sustainability of such increasingly resource-intensive 
models. Another challenge is the establishment of sustainable eco
nomic models, since the costs of training, fine-tuning, and utilizing 
LLMs, the core reasoning engines of agentic systems, can be substantial. 
Employing smaller, domain-specific LLMs as reasoning backbones may 
help reduce these costs, but large-scale studies are still needed to clarify 
the long-term cost-benefit balance. Alignment with evolving regulatory 
frameworks is also critical to ensure safety, transparency, and 
accountability. Furthermore, successful adoption will depend on human 
factors, particularly radiologists’ trust, appropriate training, and seam
less workflow integration, without which even advanced systems risk 
remaining proof-of-concept. When responsibly designed and imple
mented, agentic systems could augment radiologists in clinical practice 
by improving efficiency, consistency, and decision support, while also 
accelerating scientific discovery in radiology research through auto
mated data curation, analysis, and hypothesis generation. Ultimately, 
their impact will be determined by a balance between innovation and 
close supervision, leveraging the strengths of distributed intelligence 
while safeguarding the core values of patient-centered, ethical, and 
sustainable radiological care.
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