IT City Research Online
UNIVEREIST%( ?;qLi)NDON

City, University of London Institutional Repository

Citation: Tzanis, E., Adams, L. C., Akinci D’Antonoli, T., Bressem, K. K., Cuocolo, R.,
Kocak, B., Malamateniou, C. & Klontzas, M. E. (2025). Agentic systems in radiology:
Principles, opportunities, privacy risks, regulation, and sustainability concerns. Diagnostic
and Interventional Imaging, doi: 10.1016/].diii.2025.10.002

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/36124/

Link to published version: https://doi.org/10.1016/j.diii.2025.10.002

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.



City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Diagnostic and Interventional Imaging xxx (Xxxx) XXX

Contents lists available at ScienceDirect

Diagnostic and Interventional Imaging

FI. SEVIER

journal homepage: www.elsevier.com/locate/diii

Review

Agentic systems in radiology: Principles, opportunities, privacy risks,
regulation, and sustainability concerns

Eleftherios Tzanis “®, Lisa C. Adams b Tugba Akinci D’Antonoli ““®, Keno K. Bressem P’C,
Renato Cuocolo’, Burak Kocak @, Christina Malamateniou " ®, Michail E. Klontzas *">

2 Artificial Intelligence and Translational Imaging (ATI) Lab, Department of Radiology, School of Medicine, University of Crete, 70013 Heraklion, Greece

Y Department of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine and Health, Klinikum Rechts der Isar, TUM University
Hospital, 81675 Munich, Germany

¢ Department of Diagnostic and Interventional Neuroradiology, University Hospital Basel, CH-4031 Basel, Switzerland

4 Department of Pediatric Radiology, University Children’s Hospital Basel, CH-4056 Basel, Switzerland

¢ Department of Cardiovascular Radiology and Nuclear Medicine, Technical University of Munich, School of Medicine and Health, German Heart Center, TUM University
Hospital, 80636 Munich, Germany

f Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy

8 Department of Radiology, Basaksehir Cam and Sakura City Hospital, 34480 Istanbul, Turkey

" CRRAG Research group, Division of Radiography, School of Health and Medical Sciences, City St George’s University of London, SW17 ORE London, UK

! Department of Medical Imaging, University Hospital of Heraklion, 71003 Heraklion, Crete, Greece

I Division of Radiology, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institute, SE-14152 Huddinge, Sweden

ARTICLE INFO ABSTRACT

Keywords: The rapid rise of transformer-based large language models (LLMs) has introduced new opportunities for auto-
Agent‘ mation and decision support in radiology, particularly in applications such as report generation, protocol opti-
Agentic systems mization, and structured interpretation. Despite their impressive performance in producing contextually
Artificial intelligence coherent text, conventional LLMs remain limited by their inability to interact autonomously with external sys-
Large language models . s . . .
Prompting tems, retrieve data, or execute code, restricting their role in real-world clinical and research workflows. To
Radiology address these limitations, agentic systems have emerged as a new paradigm. By embedding LLMs within
frameworks that enable reasoning, planning, and action, agentic systems extend LLM capabilities to dynamic
interaction with users, tools, and data sources. This review provides a comprehensive overview of the founda-
tions, architectures, and operational mechanisms of agentic systems, focusing on their applications in medical
imaging and radiology. It summarizes key developments in the literature, including recent multi-agent frame-
works for automated radiomics pipelines, and discusses the potential benefits of these systems in enhancing the
reproducibility, interpretability, and accessibility of Al-driven workflows. The review critically examines current
regulatory considerations, ethical implications, and sustainability challenges to highlight essential gaps that must
be addressed for the safe and responsible clinical integration of these systems.

1. Introduction domains such as radiology, LLMs are being explored for tasks including
automated report drafting, protocol streamlining, and support for

The introduction of transformer architecture and the attention structured interpretation [2,3]. Preliminary studies suggest that these

mechanism sparked the rapid development of highly accurate and effi-
cient models that can predict the next word in a sequence based on the
preceding input [1]. These models are known as large language models
(LLMs) and represent a highly active area of research. In medical

systems could improve the efficiency and consistency of medical
decision-making in various settings [4-10].

Although LLMs can generate structured, contextually relevant text,
based on user input, they cannot interact autonomously with their

Abbreviations: Al, Artificial intelligence; AIaMD, Artificial intelligence as a medical device; API, Application programming interface; EU, European Union; LLM,

Large language model; RAG, Retrieval-augmented generation.
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environment. They cannot retrieve or process external data, execute
code, or communicate directly with external systems and pipelines.
These limitations constrain their applicability as fully integrated tools in
real-world research and clinical practice.

A rapidly emerging field of research focuses on the development and
deployment of Al-based agentic systems. These systems aim to overcome
the inherent limitations of LLMs by enabling them to interact with their
environment. In such architectures, LLMs serve as the central reasoning
engine, and their behavior is shaped by prompting frameworks such as
ReAct, chain of thought and tree of thoughts [11-13]. These prompting
strategies define how the system plans, reasons, and acts.

Agentic systems typically engage with users through natural lan-
guage, relying on the LLM to generate completions, outputs that may
include reasoning steps, planning directives, executable code snippets,
or commands for calling external functions and applications program-
ming interfaces (APIs) [14]. Completions can be understood as the
LLM’s proposed next actions, whether textual explanations or in-
structions for interacting with external tools. In this way, agentic sys-
tems extend the capabilities of LLMs beyond text generation, allowing
them to dynamically operate within their environment. The excellent,
constantly evolving performance of commercial and open source LLMs
underpins the promising capabilities of agentic system. The potential of
such systems has recently been illustrated in a publication that pre-
sented a multi-agent framework for fully automated, end-to-end devel-
opment of radiomics pipelines and machine learning models for medical
imaging [15]. These systems offer a promising avenue for producing
reproducible, interpretable, and trustworthy AI models, while also
serving as powerful development and evaluation tools for scientific
personnel with minimal or no programming expertise.

The purpose of this article was to provide a comprehensive overview
of the fundamentals of agentic systems in the context of medical imaging
and radiology. We examine how these systems are structured, how they
operate, and how they may serve as practical tools to support routine
clinical tasks. In addition, we review the current state of the literature,
identify existing regulatory frameworks where applicable, and highlight
the gaps that should be addressed to ensure the safe and responsible
integration of such technologies into clinical practice.

2. LLMs: basic principles of the backbone of agentic systems

LLMs are transformer-based neural networks that learn to generate
and interpret human language by optimizing billions of parameters on
heterogeneous text corpora in a self-supervised fashion. Their devel-
opment follows evidence that simply scaling model size and data volume
yields systematic, power-law improvements in loss and downstream
accuracy, an observation codified in early "scaling law" studies and later
refined into compute-optimal training prescriptions [16,17]. Technical
terms underlying these mechanisms are summarized in Table 1.

During pretraining, each model is presented with sequences of to-
kens and learns to predict the next token. This process gradually builds
internal representations that capture syntax, semantics, and domain
knowledge. The transformer architecture enables this by replacing
recurrence with multi-head self-attention, which evaluates pairwise
dependencies across the entire sequence in parallel. This mechanism
efficiently links distant but clinically related phrases, for example,
associating an initial mention of "ground-glass opacities" with a
concluding assessment of "viral pneumonia" in a radiology report, mir-
roring expert radiologists’ integrative reading strategies [1].

Tokenization bridges raw text and model input. Subword tokenizers
such as WordPiece, SentencePiece, or domain-specific variants split rare
biomedical expressions like "hepatosplenomegaly" into morphologically
meaningful units, reducing out-of-vocabulary errors and preserving
semantic content. BioBERT’s success in biomedical natural language
processing illustrates how domain-tuned vocabularies materially
improve representation quality [18]. Self-attention’s quadratic memory
footprint ties model performance to the length of the context window.
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Table 1
Technical terms related to large language models and agentic systems.

Term Explanation

Large language
models

A large language model is an advanced Al architecture trained
using deep learning methodologies on extensive corpora of
textual data, enabling the recognition, generation, translation,
and summarization of natural language.

Al agents are systems that employ Al techniques to pursue
defined objectives and execute tasks on behalf of users. They
exhibit capabilities such as reasoning, planning, and acting,
while operating with a degree of autonomy that allows them
to make decisions, learn from experience, and adapt to
changing contexts. They can operate as single agents or as a
combination of multiple individual agents (multi-agent
systems).

A deep learning architecture that processes input sequences in
parallel and uses attention to model long-range dependencies,
enabling efficient handling of complex language and imaging
tasks.

A method within neural networks that dynamically assigns
importance weights to different input elements, allowing the
model to focus on the most relevant information for the
prediction.

The process of splitting text or data into smaller units (tokens),
such as words, subwords, or characters, which are then
converted into numerical representations for model input.
The maximum number of tokens a model can process at once,
defining how much prior information or context can be
considered in generating outputs.

The practice of designing, refining, and structuring inputs
(prompts) to optimize model responses for specific tasks or
domains.

A persistent instruction or configuration that establishes the
model’s role, constraints, and style of interaction throughout a
session.

Agentic systems

Transformers

Attention
mechanism

Tokenization

Context window

Prompt

engineering

System prompt

Al indicates artificial intelligence.

Mainstream deployments range from 4 k to 32 k tokens, with research
prototypes, using sparse, dilated, or state-space attention, pushing well
beyond 100 k and even to the billion-token scale. While such advances
permit ingestion of entire longitudinal imaging records, they also
impose very high compute and memory costs in routine deployment
[19].

Retrieval-augmented generation (RAG) and dense passage retrieval
mitigate fixed-window limits by allowing the model to dynamically
fetch external documents and weave them into the prompt, thereby
extending its effective knowledge base without expanding the core
network. These hybrid systems have proven especially useful for
surfacing prior reports or guidelines during automated impression
generation [20].

Because the raw objective instils only statistical correlations, addi-
tional alignment steps are required to approximate clinical reasoning
and professional tone. Reinforcement learning from human feedback,
instruction tuning, and rule-based "constitutional AI" frameworks train
the model to follow radiology-specific instructions, refuse unsafe re-
quests, and prioritize concise, clinically usable output [21].

Medical-domain LLMs now integrate these advances. Med-PaLM
demonstrates that a general-purpose model aligned with expert prompts
can match clinician-level question-answering performance [22], while
Radiology-GPT achieves domain-specific improvements through in-
struction tuning on curated report corpora [23]. Parallel progress in
vision-language foundation models shows that cross-modal pre-training
can further ground language understanding in imaging features, setting
the stage for holistic reporting assistants that incorporate images, prior
text, and laboratory data in a single dialogue [24].

Despite these gains, LLM outputs remain probabilistic extrapolations
from training distributions. They excel at structured report drafting,
error checking, and rapid literature retrieval, but can misinterpret rare
presentations or novel imaging artifacts. In safety-critical settings such
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as radiology, expert oversight, rigorous validation, and transparent
uncertainty quantification remain indispensable complements to
LLM-enabled workflow acceleration [25].

3. Prompt engineering

Prompt engineering refers to the systematic adaptation of text inputs
to LLMs to optimize their performance for specific tasks. It involves the
strategic design and refinement of instructions to guide LLMs toward
generating accurate, contextually appropriate responses. These tech-
niques range from simple query formulation to sophisticated approaches
involving output constraints and parameter adaptation.

Several prompting techniques have been developed, progressing
from simple to increasingly complex approaches (Fig. 1). Zero-shot
prompting requires no prior examples within the prompt itself, relying
entirely on the model’s pre-trained knowledge to understand and
execute tasks. In radiology, this approach proves effective for straight-
forward classification tasks where the model’s existing medical knowl-
edge suffices.

Few-shot prompting adds complexity by providing a small number of
examples of the desired input-output format within the prompt,
leveraging the LLM’s capacity for in-context learning [16]. This
approach improves task-specific accuracy, particularly when examples

User Query
\ 4
Query > Retriever RAG
preprocessor Database
\ 4
Retrieved
Context
) 4
Prompt Assembly

Prompting Techniques

Zero-Shot | Few-Shot CoT-
Prompting | Prompting | Prompting
Instruction Template

A

Large Language Model

Y

Putput Schema}—)l

Guided Generation ‘

v
| Model Output ‘

Fig. 1. Simplified prompt assembly with retrieval augmentation and guided
decoding. The user query is normalized and possibly expanded by a query
preprocessor, which produces the retrieval query for the retriever that searches
a knowledge store and returns context. The final model prompt is composed
from the normalized query, an instruction template, and instruction strategies
such as zero shot, few shot, or chain of thought (CoT), together with the
retrieved context. The language model generates the answer under optional
decoding constraints defined by an output schema or a controlled vocabulary.
RAG indicates retrieval-augmented generation.
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illustrate the expected answer pattern and output format.
Chain-of-thought prompting further enhances the prompt with struc-
tured reasoning guidance, explicitly directing models through
step-by-step reasoning processes and encouraging intermediate
reasoning steps before final conclusions [12]. This technique proves
particularly valuable for complex diagnostic reasoning requiring
multi-step analysis. Studies in radiology have demonstrated that struc-
tured reasoning approaches can improve diagnostic accuracy (i.e., the
correctness of diagnostic conclusions compared with expert reference
standards) from 56.5 % to 60.6 % in complex cases by encouraging
systematic information organization before diagnosis formulation [26].

Guided generation represents an advanced technique that, instead of
engineering the prompt, constrains the model’s token generation pro-
cess according to predefined structures, vocabularies, or grammars [27].
Unlike traditional prompting that relies on instructions alone, guided
generation implements hard constraints during the decoding process,
ensuring outputs conform to specific formats or standards. This is ach-
ieved through several mechanisms: constrained decoding that restricts
the model’s vocabulary to predefined token sets during generation,
grammar-based constraints that enforce syntactic structures (such as
valid JSON schemas), and template-based generation that forces outputs
to follow specific organizational patterns.

In radiology, guided generation can enforce that diagnostic outputs
use standardized classification systems, for instance, restricting
mammography assessments to valid BI-RADS categories rather than
allowing free-text descriptions that might deviate from established
standards [12,16,26-28]. Similarly, it can ensure structured reports are
generated in machine-readable formats such as JSON with predefined
fields (e.g., {'findings" "...", "impression™ "...", "recommendations":
"..."}), facilitating integration with electronic health record systems. The
technique can also constrain vocabulary to established medical termi-
nologies like SNOMED CT codes, ensuring consistent and interoperable
clinical documentation while preventing the generation of non-standard
or ambiguous terminology.

For knowledge-intensive domains like medicine, where LLMs may
lack access to specialized or institutional knowledge, RAG provides
essential capabilities by connecting models to external databases, liter-
ature, or institutional guidelines. While not a prompting technique but
rather an architectural pattern, where a model is connected to an
external knowledge base from which additional context can be derived,
RAG proves especially valuable in radiology due to the field’s reliance
on constantly evolving medical knowledge and the need for factually
grounded information. Research has demonstrated that RAG-enhanced
models achieve superior diagnostic accuracy, 100 % compared to 93
% for baseline models in trauma radiology applications [27,28]. RAG
enables smaller LLMs to compete with larger models that cannot be
deployed on-site while allowing incorporation of sensitive institutional
data without public disclosure.

These techniques demonstrate particular value in radiology appli-
cations, where chain-of-though prompting enhances complex diagnostic
reasoning, guided generation ensures compliance with clinical stan-
dards, and RAG systems provide access to current literature and insti-
tutional protocols.

4. Fundamentals of agentic systems

Agents are systems designed to perform complex tasks while inter-
acting with users through natural language. At their core, these systems
consist of two main components: the brain, which is typically an LLM
responsible for reasoning and communication, and the body, which re-
fers to the set of tools the agent can use to interact with its environment.
These tools may include functions (e.g., in Python or other languages),
APIs, or any callable resource that allows the agent to execute specific
actions in response to a user’s request.

A key element in the behavior and effectiveness of such systems lies
in the prompting framework, the set of structured instructions that guide
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how the agent reasons, plans, and acts [11-13]. These frameworks shape
the agent’s overall cognitive workflow, including how it decomposes
problems, decides which actions to take, and when to stop. One widely
used technique is the ReAct framework, short for Reason and Act [11].
In this setup, agents solve problems iteratively through a cycle of three
steps as follows: (i), Think: the agent interprets the user’s request and
formulates a plan; (ii), Act: it executes a specific action, such as calling a
function or retrieving data; and (iii), Observe: it analyzes the outcome of
the action to determine if the task is complete. If the goal is not yet
achieved, the agent uses the new information to revise its plan and
re-enters the think-act-observe loop. This iterative process continues
until the agent reaches a satisfactory solution or final answer, which is
then returned to the user.

The most important component of agentic systems is the system
prompt. This is a block of text provided to the LLM at initialization,
containing persistent instructions that define how the agent should
operate. It serves as a blueprint for the agent’s behavior, specifying the
prompting technique to be used, the expected format of interaction with
the user, and the overall strategy for task execution. In addition to
guiding behavior and reasoning, the system prompt includes de-
scriptions of the available tools and any task-specific agents. These de-
scriptions provide the LLM with the necessary context to determine
which tool or specialized agent to invoke and how to use it in response to
user queries. By embedding this information into the system prompt, the
LLM "knows" what resources it has at its disposal and can generate
completions accordingly, whether those completions are reasoning
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steps, code snippets, or commands for interacting with the environment.
The workflow of a typical agentic system is presented in Fig. 2.
Agentic systems fall into two main categories based on how they
interact with tools, which are tool-calling agents and code agents
(Fig. 3). The most common approach is the tool-calling agent, where
interaction with tools is managed through structured JSON definitions.
Each tool is described by its name, a brief description, and a schema
defining its input parameters and types. In contrast, code agents interact
with tools by generating and executing Python code snippets. Each
approach has distinct advantages and trade-offs. Tool-calling agents are
typically more reliable and safer, as the structure of the tool calls is
controlled, reducing the risk of hallucinations or unexpected behavior.
However, they are less flexible, limited to a fixed set of predefined ac-
tions, and cannot easily perform dynamic transformations or synthesize
new logic. Code agents, on the other hand, provide high expressiveness
and emergent reasoning capabilities, enabling more sophisticated be-
haviors without needing to predefine every possible action. The trade-
off is that they require a secure execution environment and are more
prone to errors, including syntax mistakes or unsafe code [29].
Another component of agentic systems is their memory, which plays
an important role in maintaining context throughout interactions with
the user. The most commonly used form is short-term memory, also
referred to as working memory. During a session, the user’s queries and
the agent’s internal reasoning and actions are stored as logs. This allows
the LLM to maintain awareness of the conversation history, understand
what has already occurred, and generate contextually appropriate next

(Workﬂow of an Agentic Session)

User query

"Diagnose the condition in the image
located in C://disease/... "

Agentic System

Toolkit

System Prompt: "You are a skilled
assistant capable of solving tasks with
executable code blocks. You'll receive a
task and should solve it to the best of
your ability. You have access to a set of
tools. Work through the problem in a
repeating sequence of “Thought:”,
“Code:", and “Observation:” steps. "

disease
classifier)

Final answer

T

LLM second output:
Thought: 'l should return the results.
Action: final_answer(results)

?

LLM second run

t Updated Memory: "
LLM first output:

Second Prompt = System Pompt + Task +

4—
Updated Memory

classify the disease.
Action:

disease_classifier(input_parameters)
Observation: Tool output

Thought: 'l should use Tool 2 to

Task: [User query]

Tool N

Memory: []

L

First Prompt = System Pompt + Task + Memory

v

LLM first run

LLM first output:

Thought: 'l should use Tool 2 to classify
the disease.

Action:
disease_classifier(input_parameters)

|

Tool Execution

Fig. 2. Graphical description of a typical agentic workflow (created with biorender.com).

LLM indicates large language model.
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Code Agent

"Diagnose the condition in the image
located in C://disease/... and prepare a

@ treatment plan "

User l
query ’
Al Agent
9 - 4 -LM
> 3 E
""""""" > Code
@ Writing
Code
Debugging @ \{ TooI‘
Feedback Execution
Loop Tt:iol 2 (e.g.
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w Tool 1 classifier) Tool N
rong ‘ ‘
Correct |
\/ Tools
J
@ Error
Checking

Fig. 3. Schematic representing the function of the two main types of agents, tool calling and code agents (created with biorender.com).

LLM indicates large language model.

steps based on prior information. In contrast, long-term memory refers
to the agent’s ability to retain and access information across different
sessions. This involves storing relevant data, insights, or strategies from
previous interactions, enabling the agent to learn from past experiences.
By integrating long-term memory, agentic systems can be guided by
previous successes and failures, improving their ability to solve tasks
more efficiently over time. Users can grant access to such memory
stores, allowing agents to adapt and evolve through accumulated
knowledge.

A variety of frameworks have become available to support the
development of such systems, each offering different capabilities for
managing tools, memory, and interaction strategies. An overview of
some of the most widely used frameworks is presented in Table 2. Such
systems can aid a wide variety of tasks ranging from diagnosis (the most
common in published literature) to protocol planning and report
correction, structuring, and improvement. While these non-diagnostic
tasks are equally important and can be aided by agentic systems, the
examples provided in this manuscript are based on diagnostic tasks,
which may be more complex but are also commonly encountered in the
majority of published papers.

5. Privacy issues related to the use of agentic systems

The integration of LLMs and subsequently agentic systems into
radiology introduces substantial privacy and cybersecurity risks, driven
by the models’ interaction with sensitive patient data [34-36]. A major
concern is the potential for data leakage during both training and
inference. Due to their scale and training methodologies, LLMs can
inadvertently memorize and regurgitate sensitive patient information,
even when such information was not explicitly intended to be retained.
This phenomenon, also known as unintended memorization, has been
observed in LLM deployments where inadequately filtered training data
resulted in models generating outputs that inadvertently expose sensi-
tive or confidential content [37]. This poses a considerable threat in

Table 2
Frameworks for building agentic systems.

Framework Characteristics GitHub repository
Smolagents A lightweight framework for building https://github.com/h
[29] agentic workflows. Emphasizes uggingface/smolag
simplicity, sandboxed execution, and ents

ease of use.
LangGraph Enables stateful, long-running agents https://github.com/
[30] with strong memory support and complex  langchain-ai/lan
workflow orchestration. Ideal for multi- ggraph
agent structures with debugging support.

CrewAl [31] A performant framework for building https://github.com/c
autonomous agents with GUIs rewAlInc/crewAl
(CrewAl-Studio), RAG workflows, and
GitHub integrations.

Agno [32] A toolkit for multi-agent systems https://github.co
featuring layered levels of agency (from m/agno-agi/agno
tool-using agents to full agentic
workflows), shared memory, reasoning,
and observability.

AutoGen Event-driven framework for building https://github.com/

[33] flexible multi-agent workflows. Supports
conversational agents, tool integration,
asynchronous messaging, and modular
components.

microsoft/autogen

medical contexts, where maintaining strict confidentiality is not only an
ethical imperative but also a legal requirement under regulations such as
the Health Insurance Portability and Accountability Act in the USA and
the General Data Protection Regulation in Europe [38]. Therefore,
anonymizing medical data before training is a widely recommended
mitigation strategy; however, achieving effective anonymization re-
mains a substantial technical hurdle. Traditional de-identification
techniques, such as removing direct identifiers (e.g., names, social se-
curity numbers), often fall short in safeguarding against
re-identification, especially when LLMs are able to use indirect or
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quasi-identifiers within the data [39]. Furthermore, in complex datasets
like those in radiology, metadata embedded in image files in DICOM
data format may inadvertently reveal patient-specific details, compli-
cating the anonymization process [38].

Beyond training, there are also risks at the time of inference that
demand careful attention. When LLMs are used in clinical decision
support or diagnostic settings, they may generate responses that reflect
patterns learned from sensitive training data. If such data included
protected health information, a malicious actor could exploit the model
through adversarial prompting, potentially extracting details such as
patient age, diagnoses, medical history, or other confidential attributes
[34]. Therefore, there is a need for robust model auditing, differential
privacy techniques, and real-time monitoring to ensure outputs remain
compliant with privacy standards.

From a cybersecurity standpoint, integrating LLMs into radiology
workflows also demands defenses against model poisoning, prompt in-
jection, and backdoor attacks [34]. Model poisoning occurs when ad-
versaries introduce manipulated data during training, aiming to corrupt
the model’s behavior or introduce vulnerabilities. Prompt injection at-
tacks manipulate user inputs in ways that elicit unintended, misleading,
or harmful outputs from the model. Backdoor attacks embed hidden
triggers during training, causing the model to behave maliciously when
specific inputs are received, and often without detection in normal op-
erations. These threats, particularly in high-stakes medical contexts,
pose significant risks to patient safety, data integrity, and system
trustworthiness.

All these risks are further amplified in multi-agent systems, where
multiple AI agents collaborate and share information across networks
[40,41]. The collaborative nature of these systems expands the attack
surface, and raises questions about data governance, access control, and
accountability. Ensuring secure information exchange between agents
and enforcing strict access control, encryption, and identity verification
protocols are essential to maintaining system integrity and patient
confidentiality. To responsibly integrate LLMs and LLM-powered

Multi-agentic
Systems
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multi-agent systems into radiology, organizations must proactively
address both privacy and cybersecurity challenges. Risks with the use of
LLMs and multi-agentic systems are summarised in Fig. 4.

6. Clinical applications of multi-agent systems in radiology

While promising, Al agents are still not typically available in medical
devices approved for clinical use. Al as a medical device (AlaMD) has,
also for regulatory reasons, generally been focused on narrow, specific
tasks, with more deterministic outputs, such as region of interest (e.g.,
lesion) detection and segmentation, with or without corresponding es-
timates for a diagnosis of interest (e.g., clinically significant prostate
cancer) [42]. Furthermore, given the multimodal nature of data used by
Al Agents, one can also expect imaging examinations to become more
often part of the AlaMD’s input data rather than the focus of the Agent.
In other words, fully leveraging agentic LLMs will probably require
integration of patient data from multiple sources to perform the action of
interest, as the results of imaging examinations represent only one
component (albeit essential in many cases) in the diagnostic and patient
management process that takes place in healthcare [43].

Nevertheless, agentic AlaMDs can be expected to be introduced in
medical imaging in more limited roles at first, either improving upon
performance of non-agentic Als present in current medical devices or
only marginally expanding the scope of such systems. In this setting, one
can classify clinical applications of agentic LLMs in closed and open-
ended tasks [44]. The first presents a limited number of outputs avail-
able to the model, representing a much simpler task to be performed
compared to open-ended questions. However, while good results are
present in this setting, for example when experimenting LLM use in
multiple-choice questions for certification examinations, this has little
potential for translation into the clinical setting [45,46]. Open-ended
tasks for LLMs are more clearly related to the radiology workflow,
including summarization of information, extraction and restructuring of
data, mainly in text form, and interactive answering of medical
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questions [44,47]. AI has shown good promise in research for these
applications, with potential end users both within medical imaging
professionals, such as AlaMDs providing reporting assistance, and pa-
tients, for example, for assistance in interpretation of the radiological
report [48-50]. It should be noted that some of these models are being
integrated in medical devices, even if not always available in the Eu-
ropean Union (EU) [51]. Finally, true Al Agents with access to multi-
modal patient information could be leveraged to optimize and automate
exam scheduling, including follow-up to known pathologies, and pro-
vide benefits at a larger scale rather than simply improving efficiency
and accuracy of human reporting [52,53].

At this time, many research efforts are aimed at building the neces-
sary infrastructure to perform pre-clinical and clinical validation of
agentic Al systems [44]. When thoroughly tested, such models still
present open questions in terms of consistency and accuracy, which may
also explain the relatively lower availability of medical devices within
the EU, where more stringent regulations have been historically present
compared to the other major markets. Interestingly, Al Agents have also
been proposed to improve the design process for radiomics and Al
medical imaging systems, and may actively contribute to accelerate
their translation from the scientific to clinical setting [15].

7. Applications of multi-agent systems in radiology research

In radiology research, agentic systems can automate processes that
traditionally required advanced coding or data analysis skills. Agent-
based systems have emerged over the past years that can handle
three-dimensional medical imaging data. VoxelPrompt is one of the first
agentic systems that combine language with vision models to perform
segmentation and lesion characterisation of multiple types of images
[54]. The system has been primarily tested on neuroimaging applica-
tions where it was able to segment and classify hundreds of lesions,
performing a series of tasks including but not limited to assessment of
potential lesion contrast enhancement and diffusion restriction, assess-
ment of brain infarct territories, and temporal follow-up of lesion size
across multiple hospital visits.

Since then, a variety of multi-agent systems have been developed to
facilitate imaging research that can handle the whole process of image
analysis, including image preprocessing, segmentation, quantitative
radiomic data extraction, and model building. mAlstro represents a
prototype of these systems, which can enable researchers to automate
data analysis and machine learning model building by writing Python
code with established libraries and interacting with the user using nat-
ural language [15]. The system can be used with API calls to a series of
state-of-the-art LLMs and assists the user in selecting the appropriate
methods for the designated research question, and allows automated
radiomic analysis, traditional and deep learning model building,
multi-organ segmentation, and exploratory data analysis. NVIDIA, in
collaboration with King’s College London, has also incorporated agentic
systems into the MONAI framework based on Llama 3 to assist users in
research related to radiology and surgery, including features for auto-
mated radiology report generation [55,56].

While these applications demonstrate the versatility of agentic sys-
tems in radiology research, large-scale studies are still required to
determine whether such systems can genuinely improve diagnostic ac-
curacy, workflow efficiency, and patient outcomes. Unlike the clinical
use of agentic systems, the use of such systems for research purposes
does not require regulatory approval as a medical device, rendering
their commercial rollout. For the United States Food & Drug Adminis-
tration, these can be labelled "For Research Use Only. Not for use in
diagnostic procedures" [57]. In Europe, if an Al tool is used exclusively
for scientific investigation and not intended for obtaining marketing
authorization, it is governed by Article 82. Such studies require ethics
approval and adherence to relevant national regulations, but
CE-marking is not necessary for this type of research use [58].
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8. Governance of agentic Al

According to Gartner, nearly a third of enterprise applications will
incorporate agentic Al by 2028, compared to less than 1 % in 2024 [59].
Agentic Al's relative autonomy and advanced capabilities in handling
complex tasks set it apart from simpler Al tools [60]. While these fea-
tures make agentic Al an invaluable partner to human actors for the
completion of complex tasks in healthcare and other fields, they also
introduce new ethical and governance concerns around autonomy,
transparency, explainability, bias, and accountability, redefining para-
digms of human-Al interaction and exemplifying the need for new
human oversight approaches.

A fundamental governance question relates to the accountability of
when agentic Al errs or inadvertently causes harm [61]. Humans can be
held accountable for decisions they take when these may directly impact
others. However, automated decisions are not self-justifiable [62]. AI
software applications and hardware systems, although they need to
follow principles of responsible AI [63], they do not have the same moral
responsibility as human actors do [64]. This creates an accountability
gap for agentic Al, which carries a sense of autonomy in part of its
decision-making processes, particularly for complex tasks. In clinical
contexts, this accountability gap raises practical liability questions: if an
agentic system misinterprets an image or generates an unsafe recom-
mendation, responsibility could fall on the hospital, the developer or
provider of the agentic system, or the end user. Current legislation,
including the EU AI Act, does not yet provide specific guidance for such
scenarios, underscoring the need for clear contractual and regulatory
frameworks that delineate liability among stakeholders. As such, clear
and attributable sources of human answerability should be attached to
processes, tasks, and decisions when enabled by an agentic Al system
[65].

Agentic Al may also be prone to cyber-attacks and data breaches
[60]. Data privacy and security safeguarding (such as encryption, secure
coding practices, anomaly detection, and continuous monitoring) are
crucial governance measures when using agentic Al systems. There is
little work currently in this field for agentic Al, but it will become more
relevant in the next couple of years as these systems develop.

While agentic Al is not featured or directly discussed in the most
recent updates of the EU Al Act, there is a lot mentioned within it about
autonomy and human oversight (particularly in recital 27 and article
14) [66,67]. More specifically, according to the guidelines of the AI
HLEGY9, "human agency and oversight means that Al systems are
developed and used as a tool that serves people, respects human dignity
and personal autonomy, and that is functioning in a way that can be
appropriately controlled and overseen by humans'. Furthermore,
"high-risk Al systems (where agentic Al may be classified under) shall be
designed and developed in such a way, including with appropriate
human-machine interface tools, that they can be effectively overseen by
natural persons during the period in which they are in use" [68].

Al agents can make decisions about complex tasks by autonomously
analysing multimodal data. This requires more transparency on how
intermediate decision steps are decided and care to ensure bias from
multimodal data does not accumulate in the final product. Strategies to
improve transparency of Al agents include direct interpretability (like
decision trees or similar tools) or post-hoc interpretability (also known
as explainability) [69]. Important to note that there is currently no
consensus on what constitutes a good explanation to address the opaque
nature of Al agent decision-making [69]. Finally, preliminary work
currently takes place to understand and remove bias. Bias is deeply
rooted in LLMs and therefore inherent in Al agents; tools such as bias
detectors are important developments in the right direction for fairer
agentic Al, but have to be properly evaluated in real-world data [70].

As agentic Al advances, more benefits and risks will become
apparent; its governance will have to evolve in parallel, and robust
regulatory frameworks will need to be appended to current legislation to
ensure it delivers safe, transparent, fair results, keeping humans in the
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loop and with clear accountability pipelines.
9. Sustainability of agentic systems

Integration of LLMs and agentic Al systems into various sectors,
including specialized fields like medicine, demands a thorough exami-
nation of their sustainability across environmental, economic, and social
dimensions [71]. Significant energy demand, carbon emissions (direct
consequence of energy consumption), and water consumption of LLMs
pose a considerable environmental challenge [72-76], though con-
trasting perspectives exist [77]. This challenge is amplified by agentic
systems, which may perform numerous, iterative tasks autonomously.
While training foundational models is energy-intensive, it is the infer-
ence stage (i.e., the actual use of the model) that constitutes the domi-
nant and ongoing environmental cost [78]. The cumulative emissions
from inference can exceed those from training by roughly a factor of
1000 [78,79]. One study estimated that the top 20 carbon-emitting Al
systems could generate up to 102.6 million tonnes of CO:z equivalent
annually [78], surpassing the yearly emissions of over 100 countries in
2023 [80]. Projections indicate a 30-40 % annual increase in energy
demand for Al services over the next decade [81], directly translating
into increased carbon emissions. Furthermore, the data centers sup-
porting these models have a substantial water footprint due to their
cooling requirements [73]. Mitigation strategies include adopting
energy-efficient architectures, such as smaller, fine-tuned models, and
quantization (ie., reducing the bit-width of weights), which reduces
model size and computational load [82,83]. Transitioning data centers
to renewable energy sources is critical [72-74,78,84,85]. Additionally,
prompt engineering that encourages shorter responses can cut energy
use by 25-60 % [86].

The development and operation of LLMs involve substantial eco-
nomic costs. Training a model can run into millions of dollars, and API
usage remains expensive [87,88]. Despite these expenses, LLMs can
enhance efficiency and reduce costs in sectors like healthcare by
streamlining data extraction and administrative tasks [89,90]. A
cost-effective strategy is query concatenation, which can reduce costs
significantly, by up to 17-fold for 50 simultaneous tasks, by grouping
multiple queries into a single request [87]. For agentic systems, which
can operate autonomously, the potential for runaway operational costs
from inefficient task loops is a critical risk. The Jevons paradox also
serves as a warning: increased efficiency might lead to higher overall
consumption rather than savings [73]. Importantly, many economic
mitigation strategies, such as fine-tuning existing models for specific
tasks or careful model selection based on complexity, offer the dual
benefit of reducing environmental impact [82,88].

Socially, the increasing autonomy of LLMs and agentic systems raises
concerns regarding ethical design, bias, and accountability [77,91,92].
These models can inherit and perpetuate the societal biases present in
their training data [93-95]. In medicine, the potential for LLMs to
comply with harmful or inappropriate requests poses significant risks
[96], while the autonomy of agents introduces complex questions of
accountability when they cause harm or make critical errors. Other
concerns include job displacement and the erosion of critical thinking
skills [88,90]. Ensuring equitable access to these powerful technologies
is also a crucial social challenge [88,97-99]. Multi-agent systems
introduce further complexity, as LLM agents often struggle to achieve
sustainable cooperation without specific interventions and may fail to
analyze the long-term consequences of their actions [100]. To address
these issues, robust governance, transparent accountability, and clear
ethical oversight are essential [89,96,99,101]. Bias mitigation through
careful data curation and safety fine-tuning is vital, as is emphasizing
human-AI collaboration to ensure human oversight in critical applica-
tions [89,96]. Ultimately, harnessing the power of agentic systems
responsibly requires an integrated approach where environmental,
economic, and social sustainability considerations are treated not as
separate challenges but as interconnected components of a single,
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sustainable framework.
10. Conclusion

It has become evident that agentic systems hold considerable
promise for reshaping radiology by executing complex tasks, which
range from image interpretation and workflow orchestration to research
data analysis. As our review has outlined, their successful deployment
will depend on careful navigation of risks such as the protection of
sensitive patient information and security vulnerabilities, as well as the
environmental sustainability of such increasingly resource-intensive
models. Another challenge is the establishment of sustainable eco-
nomic models, since the costs of training, fine-tuning, and utilizing
LLMs, the core reasoning engines of agentic systems, can be substantial.
Employing smaller, domain-specific LLMs as reasoning backbones may
help reduce these costs, but large-scale studies are still needed to clarify
the long-term cost-benefit balance. Alignment with evolving regulatory
frameworks is also critical to ensure safety, transparency, and
accountability. Furthermore, successful adoption will depend on human
factors, particularly radiologists’ trust, appropriate training, and seam-
less workflow integration, without which even advanced systems risk
remaining proof-of-concept. When responsibly designed and imple-
mented, agentic systems could augment radiologists in clinical practice
by improving efficiency, consistency, and decision support, while also
accelerating scientific discovery in radiology research through auto-
mated data curation, analysis, and hypothesis generation. Ultimately,
their impact will be determined by a balance between innovation and
close supervision, leveraging the strengths of distributed intelligence
while safeguarding the core values of patient-centered, ethical, and
sustainable radiological care.
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