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Abstract—Secure and trustworthy computation offloading is
essential in vehicular edge computing to ensure reliability
and efficiency. Existing algorithms often emphasize efficiency
over security, leaving systems exposed to malicious providers.
This paper presents the Reputation-Enhanced Vehicle Selection
(REVS) framework, which combines social trust-based initializa-
tion, direction alignment, and a weighted trust score based on
provider reputation and stay time. To enhance provider selection
reliability, REVS employs a lightweight consortium blockchain
for decentralized and distributed reputation management, with
a smart contract deployed at the edge RSU to automate the
selection process. Simulations show that REVS improves task
success rates by up to 40.85%, avoids 40.70% more malicious
providers, and reduces latency by 20%, outperforming fixed-
reputation and random selection methods that ignore trust.

Index Terms—Vehicular networks, computation offloading,
provider selection, blockchain, social trust, reputation, security

I. INTRODUCTION

In vehicular networks, offloading computational tasks to
edge servers or nearby vehicles is essential for low-latency,
energy-efficient, and reliable applications by alleviating net-
work congestion [1]–[4]. However, malicious providers can
disrupt performance and complicate the selection of reliable
offloading providers [5]–[7]. Many existing algorithms pri-
oritize efficiency over security [3], while current centralized
architectures introduce vulnerabilities such as single points of
failure and limited traceability [8]. Centralized nodes become
impractical for managing large-scale vehicle networks as in-
telligent transportation systems rapidly evolve, often causing
latency, blocking, and reduced quality of service (QoS) [9].

Although cryptographic methods protect data confidential-
ity, they are insufficient for assessing the trustworthiness
of authorized nodes [5]. Trust management remains under-
prioritized in vehicular computation offloading (VCOff) [3]
despite its importance in autonomous and cooperative systems
[10]. In VCOff, trust represents the road side unit (RSU)’s
current expectation of a provider’s behavior, whereas repu-
tation represents its cumulative reliability. Trust is updated
after each task, acts as feedback, and contributes to reputation
scores. Reputation in VCOff can be effectively managed using
blockchain, which mitigates the risks of centralized systems
and ensures tamper-resistant records, significantly enhancing
the reliability and security of provider selection [8], [11], [12].

Blockchain has shown strong potential for enhancing trust
and security of VCOff [13]. Blockchain offers a decentralized,
tamper-resistant, and transparent infrastructure [9]. Recent
work demonstrates blockchain’s effectiveness in enabling se-
cure offloading through distributed access control, automated
trust verification, and smart contract-based behavior tracking
[14]. However, gaps remain in securing provider selection.
For example, Wang et al. [6] focus on incentivizing resource
sharing but do not evaluate provider trustworthiness. [15]
improves offloading decisions but overlooks secure provider
selection while [16] introduces a social-score-based system,
yet lacks concrete selection criteria definitions. These methods
overlook critical factors like expected connection duration,
which is essential for effective offloading in high-mobility
vehicular networks. Table I summarizes key VCOff challenges
and how blockchain addresses them through decentralization,
transparency, and secure trust management.

To address these gaps, this paper proposes the Reputation-
Enhanced Vehicle Selection (REVS) algorithm—a lightweight
consortium blockchain-based framework for secure, efficient
provider selection using trust scoring and mobility awareness.
Blockchain in REVS replaces a single point of failure with
distributed accountability and automated trust enforcement via
smart contracts. Inspired by the Three-Valued Subjective Logic
(3VSL) framework [5], which extends Jøsang’s model [17]
by integrating subjective and objective opinions and social
trust (ST) levels of vehicle owners or drivers. Subjective logic
offers a promising approach to trust management by evaluating
reputation through “opinions” formed from individual expe-
riences (subjective) and aggregated neighbor feedback using
metrics (objective) [5], [18]. REVS incorporates: (i) ST–based
reputation initialization from a trusted authority (TA), (ii)
a weighted trust score combining reputation and connection
duration, (iii) and smart contracts at RSUs equipped with
Vehicular Edge Computing (VEC) for automated selection and
reputation updates. Unlike fixed-reputation models [19], REVS
initializes reputation and adapts to provider behavior using
social trust inputs. It also improves fairness and scalability
over fully vehicle-controlled models [18], [19] by delegates the
decision process to edge smart contracts, enhancing fairness
and scalability [20], which lays the foundation for more
advanced trust and reputation modeling in future work.



Our main contributions are as follows:
1) We propose REVS, a trust-based provider selection algo-

rithm automated by the smart contract.
2) We leverage ST levels–driven reputation initialization and

consortium blockchain for reputation management.
3) We evaluate REVS under varying malicious node ratios

and weight configurations, achieving up to a 40.85%
improvement in success rates and a 20% reduction in
latency over baseline approaches.

TABLE I: Blockchain Solutions to VCOff Challenges

VCOff Challenge Blockchain-Based Solution
Centralized reputation
management

Distributed ledger maintained by RSUs
ensures decentralization

Single point of failure Consortium blockchain minimizes dependence
on central entities

Biased or unreliable
provider evaluation

Immutable logs and SC-based provider
selection ensure fair validation

Lack of transparency
and traceability

Transparent, verifiable transactions allow
traceable reputation updates

Unreliable behavior
tracking

Tamper-proof and persistent provider history
supports accountability

The rest of this paper is organized as follows: Section II
introduces the system model. Section III explains the proposed
blockchain-based solution REVS. Section IV presents the
simulation setup and results, and Section V concludes it.

II. SYSTEM MODEL AND INITIALIZATION

A. System Overview and Network Entities

As illustrated in Fig.1, a typical VEC network is deployed
along a two-way road and comprises three layers as follows:
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Fig. 1: Overview of the VCOff system applying REVS,
showing task submission, provider selection based on trust
score, and reputation update. The blockchain immutably stores
reputation data and offloading outcomes.

1) Vehicular Edge Layer: This layer includes N vehicles
operating as either offloading vehicle providers (V pro j) or
requesters (V reqi), based on their available computational
resources. Here, N = NV reqi ∪ NV pro j where i, j < N. V reqi
is task vehicles with computation-intensive tasks seek nearby
providers for offloading, while V pro j is service vehicles with
idle resources capable of performing offloaded tasks. Vehicles
must deposit digital coins, either as a service fee from V reqi or

as collateral to qualify as V pro j. We assume NV pro j > NV reqi

to ensure sufficient resources.
2) Stationary Edge Layer: This layer includes a single

RSU denoted as RSU1, equipped with VEC servers to handle
large volumes of data and manage reputations in a distributed
manner. The VEC servers act as managers and collectors,
overseeing the blockchain and all VCOff processes, triggering
SC to allocate providers, and updating reputations. It connects
to the Cloud layer via high-speed backbone networks [18].
Key components include:

• Consortium Vehicular Blockchain: Stores VCoff trans-
actions and reputation updates securely and immutably,
serving as a distributed ledger, to maintain trustworthi-
ness. Unlike public blockchains, this lightweight, per-
missioned blockchain is maintained by pre-selected au-
thorized RSUs [18], reducing computational overhead
while ensuring trusted control over reputation manage-
ment. Leveraging blockchain’s decentralization, RSUs
can collaboratively manage reputation without relying on
a central authority [9].

• Smart Contract (SC): Automates secure and fair
provider selection by ranking Vpro j candidates based
on weighted trust scores, calculated from reputation
and estimated stay times. Leveraging blockchain-enabled
SCs ensures transparent, tamper-resistant offloading de-
cisions—ideal for mobile task offloading systems [14].

3) Cloud Layer: It consists of the TA, typically a govern-
ment agency. The TA manages the registration and credentials
of all network entities. Each vehicle registers using a verified
identity (e.g., driver’s license), and receives a digital wallet,
and blockchain account. To preserve privacy, each real identity
is mapped to a pseudonymous ID used throughout the network.

B. System Initialization

The consortium blockchain uses Elliptic Curve Digital Sig-
nature Algorithm (ECDSA) to generate key pairs and secure
identity verification and digital signatures during vehicle reg-
istration and transaction validation [5], [18]. Given V pro j’s
essential role in the success of VCOff, we assume RSU1 and
V reqi act as honest participants, allowing the focus to remain
on analyzing and securing the behavior of V pro j. Malicious
actions from providers—such as delaying tasks or returning
incorrect results—can severely disrupt the network and lead to
VCOff failures [4]–[6]. To prevent flooding by fake requests,
a deposit mechanism is used to discourage dishonest behavior
from requesters [21]. Although RSUs may be susceptible to
compromise, large-scale or long-duration attacks on multiple
RSUs are considered highly unlikely due to their distributed
deployment, limited attacker resources, and periodic audits by
network operators [9]. Therefore, the consortium blockchain,
maintained by a majority of semi-trusted RSUs, ensures con-
sistent, tamper-resistant reputation management. Additionally,
blockchain prevents malicious behavior from compromising
majority of nodes [4], thus reducing risks associated with
compromised RSU. This setup mitigates the risk of centralized



failure and enables secure, distributed trust evaluation without
relying on a single point of control.

1) Reputation Initialization: To initialize the reputation of
new participant vehicles, we adopt the ST–based evidence
space model [5]. ST scores are assigned by the TA and derived
from the verifiable records of the vehicle’s owner or driver
(e.g., driving history, violation reports, or financial dispute)
based on credible sources such as government agencies (e.g.,
police departments or the Department of Motor Vehicles). This
approach addresses the cold-start problem in trust management
[5], where new vehicles lack historical interaction data, making
it difficult to assign an initial reputation value. Each vehicle is
categorized into one of three ST levels: high, intermediate, and
low. Each level corresponds to a set of Dirichlet distribution
parameters (α,β ,γ), representing counts of positive, negative,
and uncertain behaviors, respectively [5]. These parameters
determine the starting values of belief bi, j, distrust di, j, and
uncertainty ui, j, as follows:
• High Social Trust (ST high): Assigned to entities deemed

reliable, typically unlikely to exhibit dishonest behavior.
ST high

i, j ←{αi, j = 3,βi, j = 2,γi, j = 1}
• Intermediate Social Trust (ST interm): Assigned to enti-

ties with no strong positive or negative behavioral history,
indicating a neutral or average level of trustworthiness.
ST interm

i, j ←{αi, j = 2,βi, j = 2,γi, j = 2}
• Low Social Trust (ST low): Assigned to individuals con-

sidered more likely to behave dishonestly, resulting in a
cautious reputation initialization with higher uncertainty.
ST low

i, j ←{αi, j = 1,βi, j = 2,γi, j = 3}.
When a new vehicle joins the network, its initial trust opinion
wi, j = [bi, j,di, j,ui, j] derived from Dirichlet parameters:
bi, j =

αi, j
T , di, j =

βi, j
T , ui, j =

γi, j
T , T = αi, j +βi, j + γi, j

The initial reputation score is then calculated as:
Ri, j = bi, j + γ ·ui, j
where γ is a predefined constant that controls the influence of
uncertainty on the Ri, j value.

2) V2V Computation Offloading Initialization: When a
V reqi exceeds its computational capacity, it offloads tasks to
a selected provider SV pro in V2V mode (Fig.1) involving:
• Upon entering the RSU range, authorized vehicles share

encrypted beacon messages (e.g., resource status, trajec-
tory). This data supports provider eligibility checks and
trust score calculation (Algorithm 1).

• Vehicles with idle resources place a deposit to become
V pro j candidates. Simultaneously, V reqi sends task of-
floading requests Reqt , includes: [Task IDt, Type t t, Input
size St, completion Deadline maxT t , CPU cycles Ct, CPU
Frequency F t , Service Price SPt ] where maxT t = Ct

Ft
.

• REVS is triggered by the SC to select the SV pro with
the highest calculated trust score (see Section III).

III. THE PROPOSED BLOCKCHAIN-BASED SECURE
COMPUTATION OFFLOADING SOLUTION

Upon receiving Reqt , REVS (Algorithm 1) sorts and iden-
tifies the most suitable provider (SV pro) based on:

1) Direction Alignment: Ensures potential V pro j moves in
the same direction as the V reqi to maintain connectivity.

2) Trust Score: A weighted sum of reputation and estimated
stay time, the time a provider remains within V2V range,
computed using relative speed and distance (Algorithm 1,
lines 11–18). Weights w1 and w2 reflect their importance.

To optimize provider selection, the selection processes in-
corporate a mobility-aware trust mechanism that balances
reputation with expected connection duration. By aligning
directions and estimating stay time, providers are less likely
to move out of range, enabling selected vehicles to remain
within RSU range or V2V range long enough to complete the
task successfully.

Algorithm 1 REVS Algorithm

1: Function SELECTCANDIDATESV pro j(V pro j, V reqi)
2: CandidatesV pro j ← Empty_Array
3: TrustScores ← Initialize_Array_of_Size(V pro j)
4: for each vehicle in V pro j do
5: if vehicle.direction == V reqi.direction and Ri, j ≥

R_threshold then
6: ADD vehicle to CandidatesV pro j
7: end if
8: end for
9: SORT CandidatesV pro j BY reputation (Descending)

10: for each V pro j in CandidatesV pro j do
11: Function CALCULATESTAYTIME(V reqi, V pro j)
12: distanceSquared ← (V pro j.x−V reqi.x)2 +(V pro j.y−

V reqi.y)2

13: remainingDistance←
√

V reqi.radius2−distanceSquared

14: ▷ Calculate remaining distance within V reqi’s radius as
per (6) in [22].

15: relativeSpeed← |V reqi.speed−V pro j.speed|
16: V 2V _stayTime← remainingDistance/relativeSpeed
17: Return V 2V _stayTime
18: End Function
19: V pro j.V 2V _stayTime ← CALCULATESTAY-

TIME(V reqi, V pro j)
20: TrustScores[V pro j] ← ω1V pro j.reputation +

ω2V pro j.V 2V _stayTime
21: end for
22: (maxTrustScore, index)←MAX(TrustScores)

▷ Select provider with the highest trust score.
23: SV pro← CandidatesV pro j[index]
24: Return SV pro
25: End Function

After selecting SV pro, RSU initiates mutual authentication
by sending a signed reply message with vehicle certificates.
The V2V VCOff scenario proceeds in two main phases:

1) Data Transmission and Task Computation: Once V reqi
receives the selected provider’s response, it transmits
the necessary computation data to SV pro. The following
parameters determine the success of V2V VCOff [22]:



• Transmission Time: is defined as transTime =
St

SVtransRate
, where SVtransRate is SV pro’s transmission rate.

• Execution Time: is defined as exeTime = Ct
SVcompCap

,
where SVcompCap is SV pro’s computation capacity.

• Total VCOff Latency: is given by VCOffLatency =
transTime+ exeTime.

• Success Criterion: If the total offloading latency satis-
fies VCOffLatency≤maxTt , the offloading is marked
as successful; otherwise, it is unsuccessful.

2) Result Feedback and Transactions Settlement: Upon
receiving the result, V reqi provides a subjective rating
for SV pro. The RSU then updates the SV pro’s reputation
score on the blockchain. If the offloading is successfully
completed, SV pro is rewarded with reputation credit,
claims the service charge and redeems its deposit. Oth-
erwise, the deposit is forfeited, and its reputation is
penalized, reducing future selection chances.

After each interaction, the provider’s reputation is updated
based on task outcome and integrated with existing belief,
distrust, and uncertainty values to support future decisions.

IV. SIMULATION SETUP AND NUMERICAL RESULTS

We evaluated REVS using MATLAB simulations. For each
run, vehicle reputations were reset and V pro j attributes are
randomly generated to test various initialization scenarios
(Table II). A single V reqi acted as the genesis node, assigned
with high reputation and fixed direction within RSU1’s cov-
erage. Cryptographic keys were generated using MATLAB’s
secp256k1 function for secure identification [23].

Task Reqt is randomly generated, specifying data size, CPU
cycles, and CPU frequency fixed at 5 GHz, representing the
lower bound of the [5–10 GHz] range for high-performance
processors in smart vehicles [24]. Blockchain is implemented
based on a MATLAB Blockchain Example in [25]. Smart
Contract is implemented as structured functions following
Algorithm 1. Key simulation variables are summarized in
Table III, align with previous study [5], [18], [24].

To analyze VCOff outcomes across reputation categories,
initial reputations were grouped into Low, Intermediate, and
High ST based on ST levels. Threshold set at intermediate
value (>= 0.5), excluding the ST low providers.

Key findings (Table IV) include:
• Variable Computation (100 runs): A few ST high and

ST interm failures occurred due to inadequate computation
resources, highlighting resource availability’s critical role.

• Fixed Computation (10 GHz, 100 runs): Improved suc-
cess significantly, with only one ST interm latency failure,
demonstrating reliability of fixed resources.

• Extended Fixed Computation (1,000 runs): Maintain
high success, confirmed reputation stability and provider
reliability under sustained resource conditions.

A. REVS Algorithm Evaluation

1) Simulation Parameter Setup: V pro j’s number is in-
creased to range from 6 to 20 and initialized with fixed

TABLE II: Vehicle Provider Attributes (Summary)

Attribute Description
SocialTrustLevel High (40%), Int. (50%), Low (10%)
Reputation Based on ST level (e.g., 0.6)
Speed / Direction ±Vreqi , aligned or not
Computation / Bandwidth 5–10 GHz / 86 Mbps (high-speed)
Radius 250 m (comm. range)

TABLE III: Simulation Variables and Parameters

Parameter Description / Value Parameter Description / Value
i Requester vehicle num-

ber
j Provider vehicle number

Ri, j Reputation based social
trust

Rthreshold Ri, j cutoff (≥ 0.4,0.5)

w1 Reputation weight
[0–1.0]

w2 Stay time weight [0–1.0]

St Task size (50–500 KB) Ct CPU cycles (0.2–3.2
GHz)

Ft CPU freq. (5 GHz) SPt Random service price
r Comm. range (250 m) γ Uncertainty weight (0.5)

computation (10 GHz), motivated by earlier simulation in-
sights (see Table IV). An additional attribute,isMalicious,
which is a malicious behavior indicator, is introduced. The
percentage of malicious V pro j varied across five levels: {10%,
20%, 30%, 40%, 50%}. Malicious behaviors included delaying
result feedback and were modeled with reduced capabilities
in terms of Computation Capacity and Transmission Rate. In
contrast, honest vehicles were assumed to possess adequate
resources for efficient offloading task execution. Performance
was analyzed across seven scenarios (Table V) and reputation
threshold set to (> 0.40) to evaluate all candidates.

2) Reputation Initialization Configurations: Reputation ini-
tialization involved multiple scenarios for ST levels distribu-
tion (Table V.) in two configurations: Proposed Dynamic
ST-based Reputation, initialized across three ST levels (Sec-
tion II-B1) with maximum of probabilistic malicious assign-
ment (ST high: 10%, ST interm: 30%, ST low: 60%), and Fixed
Reputation, uniformly initialized at 0.6 [19] (equivalent to
ST interm) with random malicious assignment.

Performance was evaluated through:
• Average Success Rate: Percentage of successful offload-

ing transactions within (maxTt ).
• Average Latency: Task completion and response time.
• Selected Malicious Providers: Percentage of malicious

providers chosen, reflecting resilience.
• Malicious Avoidance Rate (MAR): Effectiveness in

avoiding malicious selections.
3) Comparison of the Various Configurations: Fig. 2(a),

2(b), 2(c), and 2(d) demonstrate the effectiveness of the
proposed ST-based reputation in consistently achieving higher

TABLE IV: Reputation and Offloading Status
Simulation Setup Social Trust Level Success Failure
Variable Computation Capacities (100 runs) High 30 11

Intermediate 16 3
Low 0 40

Fixed Computation Capacity 10 GHz (100 runs) High 44 0
Intermediate 29 1
Low 0 26

Fixed Computation Capacity 10 GHz (1000 runs) High 398 11
Intermediate 300 8
Low 0 283



TABLE V: Scenarios and ST Distributions (%)

Scenario Description ST Levels (High/Int./Low)
1 Skewed High 40 / 50 / 10
2 Uniform 33 / 33 / 33
3 Skewed Low 30 / 30 / 40
4 Balanced 30 / 40 / 30
5 Random 34.24 / 33.16 / 32.60
6 Random Selection 40 / 50 / 10
7 Random Selection 30 / 40 / 30

success rates, lower latency, better MAR, and higher relia-
bility. Proposed Configurations achieved high success rates
averaging 96% at lower malicious percentages, with Scenario
1 dropping to 84.1% at higher malicious levels. Latency was
lowest in Scenario 3 (204.26 ms) and highest in Scenario
1 (209.53 ms). Malicious selection remained under 10%,
and MAR averaged 96.5%, exceeding success rates due to
offloading failures from unavailable Vpro j moving differently
thanVreqi . Fixed configurations saw static initialization hinder
adaptability, with success rates average dropping to 66.5%,
latency between 256.96–259.22 ms, and malicious selection
exceeding 50%, lowering MAR to 46%. Random selection
in Scenarios 6 and 7 performed worst, with low success rates,
high latency, and increased malicious interactions, emphasiz-
ing the importance of reputation-based systems like REVS for
efficiency, security, and adaptability.

These results prove the 40.85% improvement in success
rates, 40.70% in malicious avoidance rates (MAR) and a 20%
latency reduction over fixed-reputation and random selection
methods, not considering trust.

B. Discussion

The results highlight the superiority of REVS algorithm un-
der varying malicious ratios, outperforming other approaches.

1) Scenario 1 Performance: Scenario 1, with a skewed
ST high distribution, showed reduced reliability at 40–50%
malicious nodes. REVS favors ST high providers due to their
initial trust scores, but when some become malicious, over-
reliance on this group leads to system instability. With only
10% ST low vehicles available as fallback options, the sys-
tem lacked diversity, pushing more malicious nodes into the
ST interm and ST high categories, increasing the risk of poor
selections and failure, raising the malicious count in ST high

to 7% at 50% malicious percentages, compared to about 4%
in other scenarios with 50% malicious percentages, further
undermining system reliability.

2) Performance Across Other Scenarios: Scenario 3, with
a larger ST low group, performed best by absorbing most mali-
cious assignments and minimizing selection chances through
REVS, maintaining high success and MAR at 40–50%. Sce-
nario 5, with a random ST distribution, also performed well,
slightly outperforming the uniform distribution in Scenario
2 due to different specific values (Table V). Scenario 4,
while performing the lowest among these, still outperformed
Scenario 1 due to a more balanced ST distribution, reducing
the risks associated with over-reliance on compromised ST high

nodes. Overall, Scenarios 2–5 kept malicious ST high nodes be-
low 4% and maintained MAR above 90%, which underscores
the value of balanced or skewed ST low distributions.

These findings emphasize the critical role of proper ST-
level distributions and adaptive trust mechanisms in enhancing
VCOff reliability. Scenario 1’s skew toward ST high created a
single point of failure, as malicious in ST high group dispropor-
tionately impacted performance at 40–50% malicious ratios. In
contrast, distributing ST levels more evenly and using ST interm

and ST low as fallback options helped mitigate risk. Ensuring
malicious ST high remains below 4% is key to maintaining
success rates and MAR above 90%.

3) Geographic Constraints and Provider Selection: Geo-
graphic factors like provider location and direction alignment
sometimes required selecting ST interm or ST low providers, even
when ST high options were available, resulting in minor failures
under favorable conditions. For instance, isolating failures
caused solely by malicious SV pro in Scenario 3 improved the
success rate to 93.11% at 50% malicious nodes, compared to
overall 90.5%, highlighting REVS’s adaptability to geographic
constraints and its ability to limit malicious impact.
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Fig. 2: Performance comparison of the proposed dynamic
ST-based reputation and fixed reputation initialization across
multiple scenarios (Table V) in different evaluation metrics.

C. Refined Weighted Trust Score Analysis
We analyzed the impact of varying reputation and stay-

time weights (w1,w2) on REVS performance under Scenario 1
(Fig. 3). Prioritizing reputation (w1 = 0.7,w2 = 0.3) provided
consistently superior performance, achieving high success
rates (above 84.1% at 50% malicious nodes), low latency (220
ms at 50%), minimal malicious provider selection (0.131 at
50%), and high malicious avoidance rates (MAR of 86.9% at
50% and above 90% at 40%). In contrast, prioritizing stay time
(w1 = 0.3,w2 = 0.7) decreases the success rate to 73.5% with
increasing latency up to (240 ms at 50%), due to increased
selection of unreliable providers, highlighting their vulner-
ability in high-malicious scenarios. Balanced configurations



(w1 = w2 = 0.5) provided moderate performance, while rely-
ing solely on reputation (w1 = 1.0) reduced adaptability and
overall performance (79.2% success rate at 50% malicious).
Overall, the w1 = 0.7,w2 = 0.3 setting emerged as optimal,
confirming the robustness and effectiveness of prioritizing
reputation for secure, stable, and efficient provider selection
in REVS. The proposed REVS proves more adaptable and
effective than fixed configurations across all metrics.

10 15 20 25 30 35 40 45 50

Malicious Percentage (%)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
cc

es
s 

R
at

e

Dynamic - Scenario 1 (w1 = 0.7,w2 = 0.3)

Dynamic - Scenario 1 (w1 = 0.3,w2 = 0.7)

Dynamic - Scenario 1 (w1 = 0.5,w2 = 0.5)

Dynamic - Scenario 1 (w1 = 1,w2 = 0)

Fixed - Scenario 1 (w1 = 0.7,w2 = 0.3)

Fixed - Scenario 1 (w1 = 0.3,w2 = 0.7)

Fixed - Scenario 1 (w1 = 0.5,w2 = 0.5)

Fixed - Scenario 1 (w1 = 1,w2 = 0)

(a) Success Rate

10 15 20 25 30 35 40 45 50

Malicious Percentage (%)

200

220

240

260

280

300

320

340

A
v
g
 L

at
en

cy

Dynamic - Scenario 1 (w1 = 0.7,w2 = 0.3)

Dynamic - Scenario 1 (w1 = 0.3,w2 = 0.7)

Dynamic - Scenario 1 (w1 = 0.5,w2 = 0.5)

Dynamic - Scenario 1 (w1 = 1,w2 = 0)

Fixed - Scenario 1 (w1 = 0.7,w2 = 0.3)

Fixed - Scenario 1 (w1 = 0.3,w2 = 0.7)

Fixed - Scenario 1 (w1 = 0.5,w2 = 0.5)

Fixed - Scenario 1 (w1 = 1,w2 = 0)

(b) Average Latency

10 15 20 25 30 35 40 45 50

Malicious Percentage (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
g
 S

el
ec

te
d
 M

al
ic

io
u
s 

P
ro

v
id

er
s

Dynamic - Scenario 1 (w1 = 0.7,w2 = 0.3)

Dynamic - Scenario 1 (w1 = 0.3,w2 = 0.7)

Dynamic - Scenario 1 (w1 = 0.5,w2 = 0.5)

Dynamic - Scenario 1 (w1 = 1,w2 = 0)

Fixed - Scenario 1 (w1 = 0.7,w2 = 0.3)

Fixed - Scenario 1 (w1 = 0.3,w2 = 0.7)

Fixed - Scenario 1 (w1 = 0.5,w2 = 0.5)

Fixed - Scenario 1 (w1 = 1,w2 = 0)

(c) Selected Malicious Providers

10 15 20 25 30 35 40 45 50

Malicious Percentage (%)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

R

Dynamic - Scenario 1 (w1 = 0.7,w2 = 0.3)

Dynamic - Scenario 1 (w1 = 0.3,w2 = 0.7)

Dynamic - Scenario 1 (w1 = 0.5,w2 = 0.5)

Dynamic - Scenario 1 (w1 = 1,w2 = 0)

Fixed - Scenario 1 (w1 = 0.7,w2 = 0.3)

Fixed - Scenario 1 (w1 = 0.3,w2 = 0.7)

Fixed - Scenario 1 (w1 = 0.5,w2 = 0.5)

Fixed - Scenario 1 (w1 = 1,w2 = 0)

(d) Malicious Avoidance Rate

Fig. 3: Impact of weights configurations (w1,w2) on the
performance of proposed Dynamic and Fixed Reputation Ini-
tialization under Scenario 1 in different evaluation metrics.

V. CONCLUSION

This paper has introduced Reputation-Enhanced Vehicular
Selection (REVS) algorithm, a blockchain-based framework
for secure and efficient computation offloading in vehicular
networks. REVS achieved high success rates, and effective
malicious provider avoidance, demonstrating superior perfor-
mance and overall reliability. Although this study focuses on
REVS, additional enhancements remain an area of interest. In
addition to REVS, we aim to develop a comprehensive trust
management model by integrating Reputation, Uncertainty,
and Subjective Logic. Future work will focus on refining rep-
utation updating processes by maintaining consistent vehicles
across simulations to capture reputation evolution. Planned
enhancements include reputation-based incentives, penalties
for malicious providers, and AI-driven adaptability. These
advancements aim to ensure secure vehicular computation
offloading (VCOff) in high-mobility environments.
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