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ABSTRACT

The objectives of this project were to develop a
knowledge-based system coupled to a mathematical model
for interpretation of laboratory data in an Intensive
Care Unit; and to assess the benefits of such a coupling.
A prototypical approach was taken to achieve these

objectives,.

In this thesis, basic physiology of body fluids and
electrolyte 1is presented and several clinically oriented
knowledge-based systems are reviewed. The two versions of
the developed prototype are described, the problems
associated with coupling symbolic programs to numerical
programs are emphasised and a description of the
methodology adopted 1is presented, as are simulation
results of clinical cases. A critical discussion of the
knowledge representation and reasoning methodology is
given, and contributions to systems science and medical

informatics are highlighted.
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CHAPTER 1

Artiijcjal Intelligence

(Adrienne Rich, 1961)

1.0 INTRODUCTION

Since World War II, computer scientists have tried to
develop techniques that would allow computers to act more
like humans, that is intelligently. The entire research

effort, including decision making systems, robotic



devices, and various approaches to computer speech and

vision, 1s usually called Artificial Intelligence (Al).

A branch of Al research is concerned with developing
programs that use symbolic knowledge to simulate the
behaviour of human experts. These systems are commonly

known as expert systems or knowledge-based systems

The first period of Al research was dominated by a
naive Dbelief that a few laws of reasoning coupled with
powerful computers would produce expert performance. As
experience accrued, the severely limited power of
general-purpose problem-solving strategies ultimately led
to the view that they were too weak to solve most complex
problems (Newell, 1969; Newell and Simon, 1963). In
reaction to perceived limitations in the overly general
strategies, many researchers began to work on narrowly

defined application problems.

By the mid-1970s several expert systems had begun to
emerge. A few researchers who recognised the central role
of knowledge 1in these systems then initiated efforts to
develop comprehensive knowledge representation theories
and associated general-purpose systems (Bobrow and
Winograd, 1977; Minsky, 1975; Szolovits, Hawkinson and
Martin, 1977). Within a few years it became apparent that
these efforts had limited success for reasons similar to
those that doomed the first general-purpose problem-

solvers. "Knowledge" as a target of study is too broad



and diverse; efforts to solve knowledge-base problems in
general were premature. On the other hand, several
different approaches to knowledge representation proved
sufficient for the expert systems that employed them. The
lesson learned from these experiences was referred to in
what Professor Edward Feigenbaum of Stanford University,

in an invited paper, stated:

"The performance level of an expert system is primarily a
Sunction of the size and the quality of a knowledge base

i7 possesses.

Feigenbaum, 1977

In short, an expert's knowledge provides the key to
expert performance, while knowledge representation and

inference schemes provide the mechanism for its use.

Experts perform well because they have a large
amount of compiled, domain-specific knowledge stored in
long-term memory. Compiled knowledge takes two forms:
first principles and general theories on one hand, and
heuristics and domain theories on the other. The amount
of knowledge an expert requires 1is such that it is nearly

impossible to gain it all from experience.

Experts acquire knowledge of the first principles
and general theories that are regarded as basic to their
profession. Then they begin to practice their profession.

In the process, experience 1s gained and knowledge 1is



recompiled. Experts move from a descriptive view of their
profession to a procedural view. Practising experts
hardly ever explain their recommendations in terms of
first principles or general theories. If they encounter
unusual or complex problems, however, they will return to

first principles to develop an appropriate strategy.

A knowledge-based system should therefore, possess
similar knowledge of heuristics and first principles in
order to simulate the decision making process of an

expert.

1.1 PHYSIOLOGICAL MODELS

Models are always used, consciously or not, by
experts. Clinicians have a conceptual model of their
domain of expertise which they use for decision-making,
prediction and explanation. This model is formed
gradually in the process of knowledge acquisition and
accumulating experience. Quite often, such models are
incomplete due to lack of full wunderstanding of the

mechanisms of action of the domain.

Various attempts have been made to code this kind of
conceptual model by using techniques like decision trees,
flow charts, mathematical simulations and more recently
causal networks. All these techniques have strengths and

weaknesses



Decision trees simulate the decision-making process
by creating paths that correspond to the expected
observations Dbefore a decision (diagnosis) is reached.
Alternative paths are tried to establish a decision. The
decision-making process is pattern matching. This
technigue is very efficient if the represented domain is

well-defined and the level of uncertainty is low.

Mathematical simulation has been in use for a number
of vyears to develop models to study various aspects of
represented domain. Mathematical modelling of
physiological systems has received substantial interest
in the recent years (Guyton, Coleman, and Granger, 1972;
Carson, Cobelli and Finkelstein, 1983; Finkelstein and

Carson, 1985; Cramp, 1975).

Knowledge 1is represented and encapsulated by means
of mathematical relations. Both first ©principles and
emprical knowledge are represented. Parameters of such

models are adjusted (fitted to data) to achieve realistic

simulations. Such models are a rich source of knowledge;
the represented knowledge, however, is implicit by
nature.

With the introduction of Al techniques, it became
possible to represent knowledge symbolically. In the
early vyears only associational knowledge was represented
symbolically (Shortliffe, 1976; Pople, 1977; Weiss,

Kulikowski, Amarel and Safir, 1978). There was then a



move towards the representation of causal reasoning by
using causal networks and qualitative simulation (Patil,
1981; Kuipers, 1984). Knowledge represented in this way
is explicit and therefore readily accessible for
explanation, prediction and fe) forth. Physiological
systems, however, cannot be completely represented in
this way Dbecause of the uncertainties involved in

understanding the mechanics.

Generally speaking, there is no perfect method for
representing physiological systems. The methods described
have their strengths and weaknesses. Natural selection
dictates that the systems combining different techniques
of knowledge representation and utilising their strengths

will survive and evolve.

1.2 SCOPE OF THE PROJECT

The objective of the present research programme was
to develop a prototype knowledge-based system coupled to
a mathematical simulation to be wused in a clinical
setting. For the research group involved, it was an
experiment to assess the problems (both technical and

conceptual) of such coupling.

Coupling essentially numerical algorithms with
components of symbolic computing has attracted a certain
amount of attention (Kowalik, 1986; Kowalik, Chaifan,
Marcus and Skillman, 1986). This attention, however, is

not from a uniform point of view. The "conventional”



programmer, on one hand considers symbolic computing as a
vehicle for building "intelligent" front-ends to their
well developed algorithms, and hence make them more
usable and accessible. The "symbolic" programmer on the
other hand, wish to wuse well-developed algorithms and
simulations to solve aspects of the problem at hand. In
the latter case, the 1level of coupling varies according
to the requirements and objectives. One could have a
"shallow" coupling where the simulation and the knowledge
base view each other as "black boxes" with parameters
being passed from one to the other. A "deep" coupling on
the other hand, requires more interaction between the two
sources. Symbolic and numeric representations are based
on a similar conceptual understanding of the domain; the
challenge is how to combine the two in such a way so as
to reduce the size of the knowledge base and at the same
time enhance the gquality of the knowledge represented.
This implies that the two knowledge sources must be
complementary to each other at every level, ie.
representation and computation. This 1is by no means a
trivial ©problem and is still the subject of much

research

A "deep" coupling may not always be desirable as
the implementation of these systems 1is still some way
away. It must be pointed out, that this is not a "black
and white" situation, where a system is either "deeply"
or "shallowly" coupled to a numerical simulation or

algorithm; there are all shades in between.



The system described here is essentially coupled in

a "shallow" manner, for reasons which will be described

in chapters 4 and 6.

The domain of interest is fluid and electrolyte
disorders in the Intensive Care Unit environment. This is
an area where laboratory and clinical (bedside) data are
used extensively to assess the patient's condition and
subsequent fluid therapy. Application of computer aided
decision making in this environment is highly desirable
as a vast number of variables are measured routinely
several times a day. This complicates the task of

decision making for clinicians.

On the surface this seemed to be an ideal
environment, both because of complexity of decision
making and because of the fact that several mathematical
models were available in this domain (Dickinson, Ingram
and Ahmed, 1987; Ikeda, Marumo, Shirtataka and Sato,

1979; Flood,Carson and Cramp, 1986).

The model used was Macpee (Dickinson, Ingram and
Ahmed, 1987) which is a model of circulatory and fluid
electrolyte metabolism. Macpee is able to simulate

physiological and pathophysiological disturbances over

time. Hence time can Dbe represented in an abstract
manner, in the knowledge based system. Because of the
constraints which will be described, time is only

represented at the therapeutic level.



The prototype system provides a diagnosis and
suggests treatment regimens for patients with fluid and
electrolyte disorders using the data input to the system.
Subsequent Jjustification of the therapeutic measures are
carried out by passing the instructions to MACPEE and

simulating for an appropriate period of time.

The model therefore, does not play any role 1in
diagnosis or treatment generation; it 1is used as a tool
to Jjustify the suggestions of the treatment module.
Facilities are provided to enable the user to simulate

alternative therapeutic measures.

1.3 SCOPE OF THE THESIS

This thesis 1is centred upon the developed prototype
for interpretation of the laboratory data. The
development phases and the coupling technique are

described

Chapter 2 describes the physiology and the

pathophysiology behind the represented knowledge-base.

Chapter 3 reviews a seilection of the clinically-
oriented knowledge-based systems. The systems reviewed
incorporate within them some kind of physiological model
of the underlying mechanism. Problems associated with
each system are discussed and their strength and novelty
highlighted. 1In addition, the work of colleagues at the

Royal Free Hospital, on the development of MODEL, a tool
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for rapid development of physiological models from

conceptual description, 1is reviewed.

Chapter 4 describes the structure and the
development phases of two versions of the prototype in

detail.

In Chapter 5 the reasoning mechanisms of the two
versions are 1illustrated by means of four examples and

the responses are compared and contrasted.

In Chapter 6 a critical discussion of the two
versions developed 1is given, together with suggestions
for improvements and suggestion for future work that
would allow complete integration of numerical simulation

techniques with a knowledge-based system.

Chapter 7, highlights the contributions made both to

systems science and medical informatics.

Appendix | contains some examples of the output

windows,

Appendix 2 gives a listing of the developed program

in LPA-Prolog.
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CHAPTER 2

2.0 BODY FLUID AND RELATED DISORDERS

The constancy of the fluid surrounding the body cells 1is
an essential requirement for their proper function.
Three major variables must be accurately controlled:
volume, concentration (total osmolality), and PH

(hydrogen ion concentration).

The majority of patients admitted to an intensive
care unit suffer from abnormalities of salt and water
balance and circulation and since the control of all
three is closely interrelated such disturbances may
constitute a threat to 1life and therefore need urgent
correction. In this chapter the pathophysiological

mechanisms of some of these disorders are described.

2.1 BODY WATER

2.1.1 Volume

The distribution of body water 1is Dbest related to
the "lean Dbody mass" (LBM) . This 1is the total body mass
exclusive of fat, since fat takes no immediate part in
exchange of water. The contribution of fat to the body
weight wvaries widely between different individuals, while
the LBM is quite closely and constantly related to
height. Fat can of course release much water when
metabolized, as 1in the familiar example of the camel's

hump, but this is a slow process and therefore not



relevant to acute «clinical situations. Fat usually

comprises some 10-20 per cent of the total body weight.

The lean body mass 1is composed of about 30% solids
and 70% water. The water 1is in two major compartments,
the 1intracellular fluid (50% LBM) and the extracellular
fluid (20% LBM). The extracellular fluid (ECF) 1is again
divided into two compartments, the plasma (5% LBM) and
the intercellular fluid (15% LBM ), (see fig.2.1). The
intercellular fluid bathes the cells and supports them,
and can also further be considered as comprising several
compartments. These are considered in more detail in the

section on the extracellular fluid.

The plasma compartment 1is the only one in direct
communication with the environment, through the gut,
lungs, kidney etc., and most of the reflex mechanisms
controlling homeostasis operate through it. It is also
the only one which can be readily and repeatedly sampled,
and it is therefore on the basis of changes in the
composition of the blood plasma that deductions are made
as to the state of the Dbody fluids. While such
deductions are wusually valid, and of the greatest wvalue
in patient care, there are occasions when they seem to
mislead, as when a high serum potassium is associated,
apparently anomalously, with a low intracellular
concentration of the ion. A knowledge of such apparent
anomalies 1s essential in the handling of individual

patients.



Plasma 5%

(3 kg)

Figure 2.1-

13

Intercellular 15% Intracellular 50%

(9 kg)

Composition of body fluid

weight).

(30kg)

(of 60 kg fat-free



14

2.1.2 Concentration

The movement of water across the plasma membrane of
a cell 1is governed by the relative osmotic pressure of
the 1intracellular and extracellular fluids. Cells are
hyperosmolar relative to the plasma and therefore they
will tend continually to take up water which they must
then actively excrete. Osmolality is therefore the
appropriate unit of measurement of concentration in
relation to water equilibrium In contrast, in the
control of pH it 1is the equilibrium of the ionized
constituents of the fluids that must be maintained, and
therefore at neutral pH the sum of the anionic molecules
must balance that of the cationic molecules. The
electrolyte concentrations of the compartments differ
very markedly (table 2.1) and these differences are
actively maintained in a state of dynamic equilibrium.
While each ionized particle contributes to the osmotic
pressure, unionized substances such as glucose and urea
may also contribute substantially to the total osmolality
of the body fluids. Such substances can be of the
greatest importance 1in relation to the bulk flow of the
fluid into and out of the cells; they also contribute to
the osmolality of glomerular filtrate and so affect the

capacity of the kidney to produce a concentrated urine.

2.1.3 Water Balance

The normal (70kg) adult (60kg lean body mass) drinks
about 2000ml of water daily and obtains a further 500ml
from the oxidation of the food. Total Dbody water 1is

approximately 42000ml. Losses from body are due to



Major Constituents

Cations
Sodium
Potassium
Calcium
Magnesium

Anions
Bicarbonate
Chloride
Phosphate
Protein

Major Constituents

of Blood Plasma

mmol/litre

23-30

98-107

0.75-1.35
depends

of Intracellular Fluid

mmol/litre

15

on their isoelectric points

Partially ionised and act as

Cations
Sodium 10
Potassium 160
Magnesium 12
Anions
Bicarbonate 8
Chloride 2
Phosphate(organic| 45
Protein
buffer anions
Table 2.1- Table of major constituents

and intercellular fluid.

of blood plasma
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evaporation from the skin, lungs, sweat etc., faecal
losses and urinary excretion. The minimal urine volume
required to excrete the normal waste products is 500ml,
and at this volume the urine will Dbe at the maximum
osmolality of which the kidney 1is capable of sustaining.
The osmolar concentration of the urine excreted is
controlled by the antidiuretic hormone (ADH) which is
secreted by the posterior pituitary. Increasing the
concentration of sodium ion (Na+) in the blood perfusing
the internal carotid artery causes more hormone to be
secreted and consequently more water 1is reabsorbed by the
distal tubules. The result 1is a concentrated urine and

dilution of the plasma.

2.1.4 Syndromes in Disease

a) Dehydration

Loss of water in excess of intake results in
dehydration which is manifested as a generalized
diminution of the volume of all the body compartments in
proportion to their relative wvolumes. Infants have a
much smaller total volume of body water relative to
intake and output, and a higher proportion in the ECF.
They are therefore especially susceptible to rapid
dehydration. Dehydration can follow deficient intake or
loss of fluid by any one of a wvariety of routes. Intake
insufficient to replace inevitable loss 1is the most
obvious cause of dehydration and this can be aggravated
by concomitant insensible losses of water and salt in hot

climates. While losses of water relatively free of
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electrolytes may occur, more usually there are
accompanying electrolyte losses which depend on the
origin of the fluid lost. Damage to the skin results in
large losses of plasma-like fluid, rich in protein and
extracellular electrolytes. Large volumes of fluid are
secreted daily into the gastrointestinal tract and if
these are not reabsorbed rapid dehydration is inevitable.
Renal insufficiency can lead to excessive losses of
water. As renal failure advances, the capacity of the
kidney to concentrate diminishes, and the loss of a urine
of low osmolality may lead to dehydration. Defective ADH
production leads to the most profound diabetes insipidus,

with uncontrollable thirst and rapid dehydration.

b) Overhydration

This can result from inappropriate secretion of ADH
or ADH-like ©peptides. When an excess of water is
retained it is distributed throughout the body
compartments. Serum sodium may fall to very low levels
(less than the 120mmol/1l), Dbut it 1is the accompanying

cellular overhydration that 1is damaging, leading to coma,

convulsions and death. The capacity of the normal kidney
for excreting excess water 1is, however, so great that
overhydration from excessive drinking is almost
impossible, but if the kidney function is severely

damaged, overhydration is a &real possibility due to
failure of excretion. In the special instance of the
first 24-48 hours following surgery there 1is excess of
ADH production, with a fall in serum sodium. Misguided

attempts to correct this with saline solutions (often
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hypotonic to blood plasma) can lead to rapid

overhydration and pulmonary oedema.

2.2 INTRACELLULAR FLUID (ICF)

2.2.1 Control of ICF

The ICF 1is separated from the ECF by the cell’s
plasma membrane. This membrane contains phospholipids
and 1s therefore readily permeable to lipid-soluble ions
and molecules, such as Na+, K+ and urea. In addition,
active absorption of non-lipid, water-soluble substances
can occur by the process of pinocytosis or by absorption
of a lipid-soluble reaction product following
modification of the substance at the cell surface by
enzymes. Hyperosmolarity of the ICF relative to ECF

results in the continual uptake of fluid and ions Dby the

cells, some of which are +then actively excreted; e.g.
selective excretion of Na+ maintains the high
intracellular concentration of K+. Any damaging

influence on the <cell such as anoxaemia or changes in
hydrogen ion concentration (H+) will lead to a reduction
in its capacity to excrete Nat and water. In the special
instance of a fall in the intracellular pH there is a

marked tendency to lose K+ from the cells.

In all tissues the maintenance of the electrical
potential across the cell membrane, which reflects the
differential ionic concentrations on the two sides, is
essential to the proper functioning of the cell. In

addition to K+, the divalent ions Ca++ and Mg++ are of
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particular importance 1in maintaining this potential. In
contractile tissues a low concentration of Ca++ 1in the
ECF leads to tetany. A high 1level of serum K+ will
aggravate this effect while very low serum Kt levels may

be associated with muscular paralysis.

2.2.2 Changes in Disease

The wvolume, composition and pH of the ICF must alter
in any condition, local or general, which damages the
cells. Unfortunately we are seldom able to measure these
changes directly, even when they are established and
relatively constant. When rapid changes are occurring,
as when an illness is developing or regressing,
measurement 1is even more difficult and inferences have to
be made from accompanying changes in plasma. In
dehydration or overhydration, changes are distributed
throughout the body water, but when water loss or gain is
associated with sodium gain or 1loss, then it 1is mainly
the ECF which alters in volume. Large changes in the
ECEF wvolume (10-12 1litres or more) can be accommodated
with remarkably 1little adverse effect 1if the fluid 1is
isotonic, while an increase of only about 4% in the ICF
may lead to convulsions. If the osmolality of the ICF is
to remain reasonably constant then loss of water by the
cells must be followed by loss of potassium which will be
excreted in the urine. Similarly rehydration of the
cells must be accompanied by adequate potassium

replacement if a low serum potassium is to be avoided.
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There 1is no direct hormonal feedback control of the
body potassium. The balance between cellular and
intercellular fluids is maintained by the cells retaining
this ion and actively transferring sodium to the outside.
Any change in the intracellular equilibrium is corrected
by retention or loss. The wuptake of potassium Dby the
cells 1s markedly accelerated by the uptake of glucose
under the influence of insulin. In uncontrolled diabetes
mellitus intercellular (H+) rises due to starvation,
potassium is lost from the cells and excreted in the
urine. When treatment with insulin and rehydration 1is
started, the rapid uptake of potassium from the plasma

can lead to a dangerous hypokalaemia

It has recently been found that, in severe traumatic
lesions, insulin is not secreted. A diabetic type of
condition can thus arise with loss of sodium, potassium

and water 1in the urine.

A proper balance of Ca++ and Mg++ 1is essential for
the maintenance of intracellular equilibrium not only
because of their immediate effect on membrane potential
but also because of their effects on membrane

permeability and their properties as co-enzymes.

2.3 EXTRACELLULAR FLUID (ECF)

2.3.1 Distribution

The extracellular fluid includes all fluids that are

not inside cells and it is therefore a very inhomogenous
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compartment. The two main sections are the plasma water

(5% LBM) and the interstitial water (10-12 per cent LBM).

oe

These two are in rapid equilibrium with each other, with
the cells, and with the environment. The plasma water is
mainly free water but in the interstitial compartment it
is bound in the dydrated gel of the connective tissue
mucoprotein that surrounds and supports the cells. If it
were not bound in this way the fluid would be subject to
gravitational forces and would accumulate 1in dependent
parts. Only when the gel 1is over-saturated does free
fluid appear. This 1is subject to gravity and may appear

as oedema.

The main difference between plasma and interstitial
fluids lie in the higher ©protein concentration and
therefore higher colloid osmotic pressure of the plasma.
As a result some minor differences 1in the electrolyte

concentrations between the two compartments are found.

2.3.2 Volume and Concentration

The volume of plasma 1is controlled Dby the dual
mechanisms of ADH from the pituitary and aldosterone from
the adrenal cortex. The volume of the interstitial fluid
is dependent on the transcapillary forces between it and
plasma. While Nat+ concentration controls the output of
ADH and regulates the excretion of water by the kidney,
aldosterone causes tubular reabsorption of Na+ from the
glomerular filtrate. While the ADH control is very

rapid, operating within minutes of changes in plasma
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concentration, the aldosterone system is much slower,

operating only within hours of plasma volume changes.

2.3.3 Disorders of ECF

Changes in either the cells or the environment are
usually reflected in changes in the ECF which, as
mentioned earlier, can be readily sampled. Disorders of
the ECF can arise in various ways: (1) disturbances of
hormonal control related to ADH secretion, or aldosterone
production as 1in Addison's disease. Such changes lead to
failure of homeostatic mechanisms and disorder arises
rapidly; (1) defects of absorption or excretion
mechanisms (kidney, lungs, intestine) . These can Dbe
followed by limited compensation, but the capacity of the
body to rectify ECF disorders from these causes 1is very
small; (1ii) excessive gains or losses from the «cells
(e.g. 1in diabetic ketoacidosis); and (iv) excessive gains
or losses to the outside (e.qg. following Dburns or

diarrhoea).

2.4 SERUM SODIUM

High levels of serum sodium (hypernatraemia) are
associated only with gross water dehydration and
concentration of the plasma. The symptoms are those of
gross dehydration. Excessive retention of sodium is more
often associated with water retention, and finally the
rise 1in the wvolume of ECF is c¢linically manifested as
peripheral oedema. About 10-12 litres of excess ECF must
accumulate in a 70kg man before pitting oedema can be

detected. Such peripheral oedema is relatively harmless
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to the patient, but if pulmonary oedema appears it can be

rapidly fatal.

Low levels of serum sodium (hyponatraemia) are
relatively common. Excessive sodium loss leads to a
compensatory loss of ECF and to a much lesser extent of
cellular water. If the plasma volume falls sufficiently
the Dblood pressure can not be maintained, glomerular
filtration rate falls and serum creatinine and urea
associated with prostration and lassitude in the patient,
has come to be known as the 'low sodium syndrome'. It 1is
found not only in Addison's disease but also (along with
potassium deficiency) following prolonged excessive

administration of diuretic drugs.

Oversecretion of ADH causes water retention in
excess of sodium and very low serum sodium levels.
Deficient secretion of ADH leads to excess water loss and
to hypernatraemia if thirst 1is not satisfied. Excess
aldosterone secretion leads to sodium and water retention
and potassium 1loss. This occurs in association with
hypertension, renal failure, hypoalbuminaemia with a low
plasma volume, or following trauma such as surgery or

burns

Absorption and excretion control disorders are
really confined to the kidney. Absorption of sodium from
the gut 1s seldom impaired and excessive intake induces
nausea and vomitng. In renal failure the capacity of the

kidney to retain or excrete sodium is often reduced, and
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therefore excess intake leads to oedema whereas

insufficient intake gives rise to a low sodium syndrome.

Excess loss o0of sodium to the outside occurs in
diarrhoea, from severe burns, and during heavy sweating.
The serum concentration may be raised or lowered
depending on the amount of water lost relative to sodium.
Excessive gains wusually result from overtransfusion of
saline solution, particularly if renal function is
impared. Many infused solutions are hypotonic, and if
given 1in excess are therefore wusually associated with
hyponatraemia. This condition 1is most easily detected

clinically by daily weighing of the patient.

Excess loss of sodium can occur into the cells when
the sodium pump is not operating; this may happen in
anoxaemia, acidaemia, or intracellular glucose deficit.
This, with the accompanying loss of potassium from ICF to
ECF and rise 1in serum potassium, 1s sometimes called the

"sick-cell syndrome".

From the considerations above, it will be clear that
the level of sodium does not reflect the total body
content. High levels may be associated with a gross
deficit of ECF and vice versa. Estimation of Dboth
concentration and volume of distribution are necessary to

assess the situation and correct it properly.
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2.5 OEDEMA

Oedema means the presence of excess interstitial
fluid 1in the tissue. Any factor that increases the
interstitial fluid pressure high enough can cause excess

interstitial fluid volume and therefore cause oedema.

Oedema usually 1is not detectable in tissues until
the interstitial fluid wvolume has risen to about 30%
above normal. In serious cases of oedematous, the

interstitial fluid wvolume can increase to several hundred

per cent above normal

2.5.1 CAUSES OF OEDEMA

1. Abnormal Capillary Dynamics

Several different abnormalities in these dynamics
can increase the tissue pressure and in turn cause
extracellular fluid oedema. The different causes of

extracellular fluid oedema are:

a. Increased capillary pressure, which causes
excess filtration of fluid through the

capillaries

b. Decreased plasma protein, which causes reduced
plasma colloid osmotic pressure and hence

failure to retain fluid in capillaries.
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c. Lymphatic obstruction, which causes protein to
accumulate in the tissue spaces and therefore

causes osmosis of fluid out of the capillaries.

d. Increased capillary permeability, which allows
leakage of excess fluid and protein into the

tissue spaces.

2. Fluid Retention By Kidney

When the kidney fails to excrete adequate quantities
of urine, and the person continues to drink normal
amounts of water and ingest normal amounts of
electrolytes, the total amount of extracellular fluid in
the body increases progressively. This fluid is absorbed

from the gut into the blood and elevates the capillary

pressure. This in turn causes most of the fluid to pass
into the interstitial fluid spaces, raising the
interstitial fluid pressure. Therefore, simple retention

of fluid by the kidneys can result in extensive oedema.

3. Heart Failure

Heart failure 1is one of the most common causes of
oedema. When the heart is unable to pump blood out of
the veins with ease, blood dams up in the wvenous system.
The capillary pressure rises, and serious "cardiac
oedema" occurs. In addition, the kidneys often function

poorly 1in heart failure resulting in even more oedema.
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2.6 SUMMARY
In this chapter a brief account of the physiology

and pathophysiology of the body fluid and electrolyte

metabolism was given. The disorders and conditions
described are those represented in the developed
prototype. The above discussion of disorders therefore

constitutes the conceptual understanding behind the
knowledge represented 1in the ©prototype which will be

described in chapter 4.
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CHAPTER 3

(Jose' Ortega y Gasset)

3.0 REVIEW OF EXTANT SYSTEMS

In this chapter work carried out by other researchers is
reviewed. There are obviously a large number of systems
that could be reviewed, however, the emphasis here is on
the clinically oriented computer systems which include
within them some kind of model of the underlying
mechanism. Clinically oriented computer systems are
reviewed because of the wuncertainties involved in
medicine, and therefore the method used in attempting to
deal with uncertanties can be enlightining. The reviewed
systems are selected because of the methodology rather

than the domain they represent.

3.1 ABEL
This is the work of Ramesh Patil (1981), carried out

at the Computer Science Laboratory at MIT under the
supervision of Peter Szolovits and William B. Schwartz.
ABEL stands for Acid Base ELectrolyte. This was
pioneering work on the causal representation of
physiological and pathophysiological knowledge. Because
of its impact on the later work, it is reviewed in some

detail, with particular emphasis on the methodology of
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knowledge representation and the concept of a Patient

Specific Model.

3.1.1 INTRODUCTION

The developers had three main objectives.

1. To develop a representation of causal medical
knowledge

2. To develop a case-specific "understanding" of
illness. This understanding should be capable
of describing subtle interactions between

diseased and normal physiological mechanisms,

and therapeutic interventions.

3. To develop a set of reasoning procedures to
combine the aggregated phenomenological
knowledge of disease associations with the
detailed pathophysiological knowledge of
disease processes. The phenomenological
knowledge is necessary for efficient diagnostic
exploration; the pathophysiological knowledge

for proper understanding of a difficult case.

ABEL consists of four major components:

1. The patient specific model (PSM),

2. The Global Decision Making component,
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2. The diagnostic component,

3. The therapy component.
Figure 3.1, demonstrates the relation Dbetween these
components

The PSM describes the physician's understanding of
the state of the patient at any point during diagnosis
and management; 1t 1s intended to be the central data

structure with which other components of the system may

reason.

The global decision making component is the top
level program which has the responsibility of calling the
other programs with specific tasks. It also modifies the
patient specific model to reflect the revised state of
the patient; calls wupon the diagnostic and therapeutic
programs. Note that at every step the global decision

maker can evaluate each of the possible sets of actions

and choose the most desirable one.



Figure 3.1-

Schematic diagram of the overall structure of ABEL.

31
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3.1.2 KNOWLEDGE REPRESENTATION

A hierarchial multi-level representation scheme is
developed to describe medical knowledge. The lowest level
of this description consists of pathophysiological
knowledge about disease, which 1is aggregated into higher
level concepts and relations, gradually shifting the
context of the description from physiological to
syndromic knowledge. The aggregate syndromic knowledge
provides a concise global perspective and helps in the
efficient exploration of the diagnostic alternatives. The
physiological knowledge provides the capabilities of
handling complex clinical situations arising in patients
with multiple disturbances, evaluating the physiological
validity of the diagnostic possibilities being explored,
and organising a number of fragmented facts into a

coherent causal description.

3.1.2.1 Anatomical Knowledge

This includes:

a) part-of hierarchy for organ systems;

b) connected-to relations that provides material

flow information;

c) contained-in and position relations which
provide anatomical relations between anatomical

sites.
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This knowledge 1is not currently used.

3.1.2.2 Aetiological Knowledge

Disease categories are primarily organised around
the organ systems; eg. renal disease. Regardless of the
cause of say renal failure, all the diseases causing

renal failure share common symptoms.

In a manner similar to the anatomical
categorisation, the diseases with common aetiology share

symptoms common to the disease mechanism.

3.1.2.3 Physiological Knowledge

The knowledge necessary to deal with fluid,
electrolyte and acid-base disorders is represented. The
physiological knowledge about fluids and electrolytes in
the program deals with: fluid compartments of the Dbody
and the distribution of body fluids in these
compartments; the composition of fluid in each
compartment; the space of distribution of solutes,
exchange of fluid and electrolytes between compartments,
and the homeostatic mechanisms for regulating the

quantity and composition of the body fluids.

3.1.2.4 Disease Knowledge
A disease 1s defined in terms of its anatomical
involvement, its temporal characteristics, its

aetiological characterisation and its pathophysiology. As
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each of the anatomical, aetiological and physiological
knowledge 1is hierarchically organised, the locus of a
disease along each of the disease definitions can then be
derived from these 1loci. The basic medical knowledge
about anatomy, aetiology etc. provide a framework for

describing and organising the disease hierarchy.

3.1.2.5 Causal Link

There 1s a need to know how a cause relates to an

effect, as well as other contextual information
influencing the causal relation. To capture this
information, the description of a causal link has

associated with it a multivariate relation Dbetween
attributes of the cause and the effect, the context, and

the assumptions which constrain the causal relation.

3.1.2.6 Multi-Level Causal Description

The clinicians do often consider a difficult case at
several levels of detail. In order to be effective, the
program must be able to describe the problem briefly vyet
still be able to take low level details into
consideration. The program’s medical and case-specific
knowledge 1is represented at five levels of detail,
ranging from pathophysiological to phenomenological

levels of knowledge.

Each level of description <can Dbe viewed as a
semantic net describing a network of relations between

diseases and findings. Each node represents a normal or
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abnormal state of a physiological parameter and each link
represents some relation (causal, associational, etc.)

between different states.

A state 1is represented as a node in the causal
network. Associated with each node is a set of attributes
describing its temporal characteristics, severity or
value etc. A node 1is called primitive 1if it does not
contain internal structure and composite if it can be
defined in terms of a causal network of states at the
next more detailed level of description. One of the nodes
at that more detailed level 1is designated as the focus
node and the causal network 1is called the elaboration

structure of the composite node.

Because of the fixed number of levels in the multi-
level description, the program's ability to aggregate
causal description is limited. To overcome this the
notion of a compiled 1link which represents a causal
pathway is introduced. The compiled 1link allows the
selective exploration of commonly occurring causal paths
more deeply than others without degrading the quality of
deduction. This also provides the ability to activate
nodes which are not 1immediate neighbours of the node

under consideration.

The presence or absence of a causal relation between
a pair of states can change their diagnostic and

prognostic interpretations. The system has the capability
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of hypothesising the presence or absence of a causal
relation. This is the primary reason why links are
considered objects in their own right rather than simply

an ordered pair of states.

3.1.3 PATIENT SPECIFIC MODEL (PSM)

A PSM is a multi-level causal model, each level of
which attempts to give an account of the program's
understanding of the patient's case. Each PSM contains
all the diseases and findings that have been observed or
concluded 1in a given patient along with hypothesised
diseases, findings and their interrelationships, which
together form a coherent explanation. Within each P3M,
the known and the hypothesised diseases, findings and
their interrelationships are mutually complementary,
while the alternate explanations which are mutually

exclusive are competing to explain a patient's illness.

The PSMs are 1implemented using a Patient Specific
Data structure (PSD). The PSDs are organised in a tree.
The PSD in the &root position of the tree contains
observed findings and structure common to all the PSMs.
Differing interpretations of the observed findings are
described by <creating inferior PSDs each containing
incremental changes (additions as well as deletions) to
their superior PSD. Each PSD in the tree inherits from
its superior all the structure present in them except

that which is explicitly deleted. The 1list of PSMs at any
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given instant of diagnosis 1is called causal hypothesis

list (CH-1list).

All the new information received is always added to

the root PSD, the PSD common to every PSM.

The PSMs are created and augmented using structure

building operations:

Initial formulation to create the 1initial set of PSMs

from the presenting complaints and lab results.

Aggregation to summarize the description at a given level

of detail to the next more aggregate level.

Elaboration to disaggregate the description at a given

level to the next more detailed level.

Projection to hypothesise associated findings and

diseases suggested by states in the PS3SM.

Constituent summation and decomposition to evaluate the
combined effects of multiple aetiologies and to evaluate
the unaccounted components of partially accounted

findings

Each of the mechanisms, aggregation, elaboration and
projection are wused in the initial formulation of the

PSM. Focal aggregation and elaboration create mappings
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between nodes across different levels, and causal
aggregation and elaboration create mappings between

causal links across different levels.

The knowledge representation formalism and
operations described above are considered to be
sufficient for dealing with effects with multiple causes
and feedback loops common in the physiological regulation
of the body's wvital functions. The mechanism developed
is intended for symbolic description for reasoning with
and explaining the abnormalities in physiological
regulation in a patient, not for predicting the behaviour
of physiological parameters over time using dynamic

simulation techniques.

3.1.4 DIAGNOSTIC CLOSURE (DC)

The diagnostic closure provides the program with an
ability to evaluate the consistency of a finding before
it decides to accept it. If the incoming information is
true, a major re-analysis of the understanding will have
to be undertaken. Therefore, the program has an
opportunity to suspend the global diagnostic processing
and revert to local processing to validate the finding or

to justify ignoring it.

Diagnostic planning generally begins with the global
task of discriminating between the alternate explanations
provided by the set of PSMs. This task 1is decomposed into

smaller tasks using the following diagnostic strategies:
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confirm, differentiate, rule-out, group-and-differentiate

and explore.

The diagnostic algorithm for the ABEL is:

1. Presenting Complaints: The serum analysis and
the 1initial complaints are analysed. A small
set of initial PSMs 1is created and added to the

list of causal hypotheses (the CH-1list).

2. Rank Ordering Hypotheses: All PSMs in the CH-
list are scored for quality of explanation they
provide for the patient's illness. The leading
one or two of these PSMs are selected as

possible explanations.

3. Computing Diagnostic Closure (DC): DCs for the
selected PSMs are computed and disease

hypotheses in each DC are scored.

4, Termination: If the DCs for all PSMs are null
or if some PSM provides a complete and coherent
account for the patient's illness then the

current phase of diagnosis is complete.

5. Diagnostic Information Gathering: Based on the
number of DCs, a top level confirm or
differentiate goal is formulated. Using

diagnostic strategies, this goal 1is decomposed
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into simpler sub-problems until individual

questions are formulated.

6. Restructuring the PSM: If (5) results in new
finding, this finding is incorporated into each
of the PSMs by extending the structure of the
PSMs to take the observed finding into account.

This process 1is repeated starting at (2).

3.1.4.1 Scoring the PSM

The score of a PSM measures the degree of
incompleteness of the PSM as an explanation of the
patient's illness. It is computed by summing the
severities of partially and fully unaccounted states in
the PSM. The Patil suggests that this algorithm could be

improved by:

a) taking into consideration the need of a finding

to be accounted for by an acceptable diagnosis;

b) by taking into account the degree of

explainability of a PSM.

3.1.4.2 Scoring a Disease Hypothesis

First, they are grouped according to the number of
unaccounted findings that can be accounted for by each
hypothesis Second, among those hypotheses that can be

accounted for the same number of findings, the diseases
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are rank-ordered by a score computed from three factors,

which are:

1. match; the number of causes and findings in the
PSM that are consistent with the disease

hypotheses,

2. mismatch; the number of causes and findings in
the PSM that are inconsistent with the disease

hypotheses, and

3. unknown; the number of unobserved findings
predicted Dby the Thypothesis which are not

inconsistent with the PSM.

A disease hypothesis is eliminated from immediate
consideration (for one cycle of diagnostic inquiry) 1if
the difference o0of match and mismatch is below an
arbitrary threshold. The match combined with the unknown
corresponds to the maximum possible score attainable by a
given disease hypothesis. If this score goes Dbelow a
threshold, the hypothesis cannot be confirmed even if all
the remaining unknown findings are resolved in favour of

the hypothesis.

This criterion is purely structural. The author
believes that incorporation of probabilities as a
secondary scoring criterion would substantially improve

the quality of the scoring mechanism.
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To sum up, a diagnostic closure 1is created Dby
projecting appropriate states in the PSM or hypothesised
diseases forward to identify their predicted consequences

and backwards to identify their possible causes.

The information gathering process of each diagnostic
cycle 1is followed by the revision of the structure of
each PSM, making it consistent with the newly available

information,

3.1.5 LIMITATIONS

The inherent size and complexity of the domain has
forced the developers to limit the scope of the research
to Jjust a few issues. Even within this 1limited scope

there are some major problems.

The representation of the relation between states 1is
inadequate; all interactions are described using a single
type of 1link, i.e. causal. This 1is unnatural when there
is no known causal explanation. Furthermore, there is a
need to group states which Jointly have significant
diagnostic and prognostic implications even if the states
are not causally or statistically related. For instance,
associational 1links and grouping 1links are needed to

capture these cases.
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The program also fails to ascertain the overall
state of the patient's health, e.g. vital signs,

stability etc.
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3.2 USE OF Al AND MATHEMATICAL RELATIONS Al/MM

This 1is the work of Kunz (1984) , on integrating
simple mathematics and Artificial Intelligence techniques
to develop and analyse a physiological model of the renal

system

The program analyses physiological Dbehaviour and
explains its analysis. It considers relevant data,
identifies whether the data are abnormal and predicts

possible effects of any abnormalities.

3.2.1 INTRODUCTION
The physiological model is Dbased on anatomical
knowledge, the Dbehaviour of the physiological system and

the mechanisms of action of the system.

Knowledge of physical laws is represented
mathematically and included in the knowledge-base. The
knowledge-base also includes knowledge of anatomy,

physiological functions, and measurable parameters of
physiological function. The knowledge-base also includes
inference rules which are based on a definition of the

causal relation between events.

The program uses this knowledge (with the exception
of the mathematical knowledge) to make 1inferences about
normal physiological behaviour and the causes and effects

of abnormal physiological behaviour. Mathematical
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relations are applied if found appropriate and the
relation is evaluated either qualitatively or

quantitatively as appropriate.

Al/MM makes inferences from knowledge of structure
and function. It wutilises definitions of causality and

heuristic and mathematical descriptions of function.

To define a physiological model, a vocabulary 1is
used that describes processes, substances, parameters,
mechanisms of action, underlying bases for describing

mechanisms as well as anatomy (structure).

Causality 1is represented explicitly by rules in
terms of events. The "bases" for these causal relations
are their underlying principle and are used to provide
explanation of their |use. The Dbases include widely
accepted empirical observations and laws of ©physics.
There are, therefore, two kinds of causal relations
described as "Type-1" and "Type-2" respectively. Type-1
bases for causal relations may have qualitative or
quantitative forms; whereas Type-2 can only have

quantitative form.

Causal relations may be propagated through an
anatomical network to cause a series of resultant

physiological events.
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There is a hierarchy of |Dbases, mechanisms and
processes. This hierarchy provides a strong focus of
attention of heuristics for analysing a physiological
model to describe and predict Dbehaviour. Problems are
looked at in terms of this Thierarchy. The problem
solution then 1is to match the abstract patterns of
mechanisms with the data for each case. This hierarchy
also assists in the process of knowledge acquisition

about a problem.

Al/MM, therefore, wuses both symbolic knowledge and
mathematical knowledge. Mathematical knowledge 1is used to
clarify ambiguities  when no well-defined symbolic
knowledge 1is available and to impose constraints on the
behaviour of the overall system. These constraints are
based on the laws of physics. In addition, certain
parameters can be estimated using this kind of knowledge

where a direct measurement 1is not possible.

Al/MM performs the following functions by request:

1. Report the value of a parameter (both

qualitative and quantitative);

2. Identify methods for measuring the quantitative
value of a parameter or a related set of
parameters. These are either stored or inferred

from principles of physiology;
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3. Obtain a qualitative or gquantitative wvalue for

a parameter;

4, Interprete the significance of a parameter with
a specified wvalue. Predict the effects of an

abnormality and therapeutic goals;

5. Print the definition of a concept.

M1 /MM reasons about physiological behaviour,
identifies abnormality, identifies possible therapies and

predicts the potential outcome of therapy.

3.2.2 KNOWLEDGE REPRESENTATION

A knowledge representation system (MRS) Genesereth
et al. (1980), 1is able to retrieve facts from knowledge
and databases, interpret rules, and store data and

conclusions in the database.

The knowledge-base includes three kinds of

physiological knowledge:

a) Principles of physiology,

b) Facts and relations, including facts about
real objects, parameters, physiological
processes, anatomical relations and

physiological mechanisms of action,
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c) Rules for inferring conclusions about the

patient state.

Al/MM represents knowledge of facts of anatomy and
physiology as "concepts". Concepts are very similar to
frames in the way knowledge 1is represented. A concept 1is
defined by its name, type, relation with other concepts
or entities, parameters etc. There are 125 concepts

represented, each having between 5 to 65 features.

Concepts represent two kinds of physical objects:
anatomical and physiological substances. Additional
concepts specify features of each parameter. Furthermore,
concepts define physiological ©processes, or the rules
that can change parameter wvalues. Concepts also describe

mechanisms and bases.

Al/MM has rules that define relations between
parameters and physiological concepts. These rules can be
used to infer relations and values not explicitly

represented in the knowledge-base.

3.2.3 META KNOWLEDGE

Al/MM has two forms of meta knowledge:

a) Twenty five rules which identify that some
relations have single values, for instance, a
parameter has a single qualitative state or a

process has a single mechanism, and
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b) Seventy five rules to specify the number of
possible instances of a given relation that 1is

invariant,

Al/MM uses this knowledge to improve the efficiency of
its search. This 1is the knowledge that 1is not described
explicitly in physiology, but it is implicit in the

descriptions of anatomy and physiology.

3.2.4 REASONING

A causal analysis of the effects of some change can
be instantiated by the user. The user can, therefore, ask
the system to interprete the effect of some perturbation.
Al/MM reasons forward from observed cause to hypothesised
effect. The system then searches for further effects of
the newly hypothesised cause. Propagation continues until
no further effects are found or if a feedback loop 1is
recognised. An event, therefore, can be the cause of an

effect and so forth.

The system provides a top-level summary of causes

and effects at the highest appropriate anatomical level.

A causal relation 1is plausible if it is known to be
logically possible and if an anatomical 1link exists. The
causal relations used are identified to be of Type-1 or
Type-2 bases, and the knowledge-base 1is used to check for

abnormalities of parameters related to the relevant type.
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The effects of the causal propagation must be consistent

with the laws of physics and physiology.

To interprete the effects of an abnormal event, the
system searches for primary effects. If any 1is found, a
record is made into the patient-specific database.
Secondary effects are then found. The propagation stops
when there are no more effects or when a negative

feedback loop is detected.

Al/MM reasons at various levels of detail but it
displays the top-level reasoning. Other levels may be

displayed if explanation is asked for.

3.2.5 CONCLUSIONS

Al/MM 1is an interesting example of using empirical
knowledge in conjunction with well understood principles
of physiology and anatomy to construct a model. The
empirical knowledge is of two forms: mathematical laws of
physics and causal heuristics. The former imposes
constraints so that the behaviour of the system 1is
consistent with laws of physics; or in other words with
common sense as well as the more sophisticated 1laws of
physics that are not explicitly represented. Causal
heuristics are used to cope with uncertainties due to

lack of a full understanding of the renal system.
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Al/MM is a hybrid model of the renal system which 1is
able to choose an appropriate qualitative or quantitative

analytical technique for a particular problem.

Its problem-solving process involves explicit rule-
based reasoning, where rules perform a search to find a
path through which physiological function can propagate
through an anatomical network. In contrast ABEL, uses
relatively complicated operators to aggregate nodes in a
causal network. This is due to the lack of explicit
representation of anatomy and its relation to physiology

in ABEL.

Al/MM is developed such that clinical problems can
be analysed much in the same manner as a traditional
mathematical model, that is, given a cause what will be
the effect(s). The challenge, however, is to wuse this
kind of augmented knowledge representation to do the
reverse, 1.e. given a set of data (effects) what are the

potential causes (differential diagnosis).
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3.3 LONG’S WORK ON USE OF A PHYSIOLOGICAL MODEL

One of the most impressive works that is currently
being developed 1is carried out as a joint effort by the
MIT Computer Science Laboratory and Tufts New-England
Medical Centre 1in Cambridge and Boston MA. The team is
headed by Dr William Long, and although they have been
very conservative in publishing their work (three papers
in six years, Long et al., 1982; Long et al., 1984; Long

et al., 1986) what exists is of a high calibre.

Their work 1is basically built upon the experience
of ABEL but restricted to a smaller and more manageable
area of cardiovascular disorders and specifically those
of heart failure. It 1is important to note that this work

is experimental and still under development.

3.3.1 SYSTEM OVERVIEW

The approach makes wuse of a causal physiological
model for relating clinical and laboratory data to the
mechanisms responsible for the patient's disorder and
provides methods to aid the user in reasoning from that
model about diagnostic and therapeutic questions. The
model and methods are accessible, abling one to use the
program as a reasoning blackboard (or more recently
reasoning network) to examine the implications of

hypotheses and possible therapies.
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The work has been directed toward the diagnosis and
management of heart failure, where a thorough
understanding of the haemodynamic and physiological
relations may provide many clues needed to give a proper

interpretation of patient data.

The approach uses a partially constrained
physiological model to represent the state of the
patient. The user has access to this model through
procedures to enter data, to allow diagnostic and
therapeutic reasoning, and obtain an explanation of the

patient state.

The ultimate goal is to develop a program where the
user can enter what is known about a given patient,
review the implications in terms of what must or must not
be true of the physiological state, consider the
implications of hypotheses accounting for that state,
look for strategies for gathering appropriate clarifying
data, and consider possible therapies. This may Dbe
characterized as a reasoning blackboard for thinking
about a patient with cardiovascular disease. The intent
is to develop a program to assist physicians to reason
about the diagnosis and management of patients with

severe or complex heart disease of any aetiology.

The model represents information about the nature of
aetiologies, causal relationships, therapies and

measurements
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The program 1s organized into five modules; the
physiological model (the central data repository), an
input module, a diagnostic module, a therapy module, and

an explanation module (figure 3.3).

The input module receives the data about the patient
and sets the qualitative parameters 1in the physiological
model. The other modules operate from the physiological
model to assess the completeness of the diagnosis and
plan ways of improving it; to search for possible
therapeutic measures and to anticipate their possible

effects, and to explain the model to the user.

The physiological model 1is central to the program
structure. It is a network of nodes representing
qualitative values of physiological parameters. For
example there are nodes representing angina and another
representing high heart rate. All nodes initially have
the wvalue unknown, reflecting the initial state of
knowledge about the patient. As the input module acquires
and assesses data, some nodes are assigned a truth value,
either when the ©program decides there 1is sufficient
evidence to Jjustify this or when the user decides the
value 1s appropriate. The nodes are connected by a
network representing the minimal logical constraints that
must exist among them. Logical relations are
automatically maintained by a Truth Maintenance System

(TMS) (for a detailed account of TMS refer to McAllester,
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Program organisation.
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1980) by propagating the implications of each assertion.
When an assertion 1is not consistent with the current
state of the model, the inconsistencies are presented so
that the user can withdraw any that are not appropriate
resulting in the reconfiguration of the logical
implications. Conclusions based on less dependable
reasoning are encoded as heuristics under the user's

control.

Each node represents a range of wvalues with a
potential qualitative impact on patient management. This
design 1in effect factorises the reasoning task into two
components: (1) interpreting patient data to determine
the truth or falsity of various nodes, and (2)
determining what diseases and therapies are consistent
with the known nodes. Quantitative information is also
used to guide the program in gathering input, making
diagnoses, and recommending therapy. The nodes represent
physiological parameters, primary causes, and therapies.
A disease 1is thus represented by a chain of abnormal
nodes implied by wvarious observations about the patient.
This kind of representation can handle multiple diseases
and multiple presentations of a disease as additions and
variations to these chains of nodes. The intent 1s to
distinguish disease states that would change the therapy
needs. In addition to the 1links with possible causes and
effects, nodes include 1links to the possible therapy
nodes hence focusing diagnosis and therapy, and a list of

possible measurements that might provide evidence for
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the truth of the node. Both the therapy nodes and
measurements have risks, benefits and requirements that

translate into costs to aid in selection.

The diagnostic module attempts to relate clinical
signs and symptoms (pulmonary oedema, fatigue, poor renal
function, angina, etc.) to both their original cause and
possible aggravating factors. The therapeutic module uses
these causal chains to identify therapies that may break
the chains. Since therapies may have multiple effects or
a given effect may have multiple implications in the
overall system, the therapies may have effects that will
aggravate the patient state. The program analyses the
potential effects to assist the physician in anticipating

both the expected and the unexpected outcomes.

Long et al. (1986), report the result of development
of an algorithm based on the signal flow analysis for
predicting effects and implementation for handling
multiple effects, changes over time, non-linear
relationships and providing explanations. When applied to
the physiological model of the cardiovascular system,
this methodology predicts drug effects consistent with

the medical literature.

3.3.2 PREDICTING CHANGES
The approach chosen is different to either
quantitative or qualitative (e.qg. Kuipers, 1986)

simulation. In the gquantitative simulation there 1is a
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need to know the current value of each parameter, many of
which are not readily measurable. In the case of the
qualitative simulation on the other hand, in the
cardiovascular domain there is a tendency for explosion
of possible model states when adding opposing influences

of unknown magnitude.

The approach adopted by Long et al. is to assume the
system will reach a stable state after a perturbation.
The question then becomes how that stable state 1is
changed from the state Dbefore therapy. Signal flow
analysis 1s used in the domain of circuit analysis to
predict «circuit gain. In a similar way, after making
simplifying assumptions and modifications to the signal
flow analysis machinery, one is able to apply this
approach to reasoning about a physiological model. The

assumptions are as follows:

1. The system goes from steady state to steady
state. It 1is assumed that for the time period
of concern, parts with shorter time constants
have reached a stable state and parts with

longer time constants have no effect.

2. The system can be modelled as being piece-wise
linear
Given these simplifications, the network of

physiological parameters i1is linear and the techniques of
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signal flow analysis become applicable. A new formulation
of Mason'’s General Gain formula (Mason, 1956) 1is derived
that computes the gain incrementally from parameter to
parameter, correcting for feedback each time a new
feedback path is encountered (the derivation and
implementation of this formula are to be discussed in a
forthcoming paper). Essentially, the computation involves
computing for each path from the changed parameters to
other parameters the gain for each 1link. The gain 1is the
inherent gain of the 1link adjusted for any new feedback
loops encountered by the path at that point and the
change in a parameter 1is the sum of the path gains going

through the parameter.

The relationships on the 1links between parameters
are formulae determining the 1link strength from the
parameter states that influence it. If the relationship
is linear, this is Jjust the strength of the 1link. The
link strengths in the current model can be zero
(decoupled) or positive or negative with wvalue either
0.5, 1.0 or 1.5 (the algorithm can support any values).
The parameter wvalues are scaled such that these 1link
strengths can be presented as weak, moderate or strong
relationships. These values have proved to be sufficient
to represent the experimental knowledge of the relations.
They are also sufficient to account for the behaviour of

the system discussed below.
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3.3.3 APPLYING CHANGE ANALYSIS TO THE MODEL

The signal flow analysis algorithm is implemented in
stages. All feedback loops are computed upon loading the
model; this allows the path generation to determine the
loops encountered by the path at each new parameter. The
gain along a path is the product of the gains across the
links and the total gain at any parameter is then the sum
of path gains to the parameter. Multiple changes to the
system are handled by summing the changes. The loops and
parameters are both represented as bit vectors to
increase the efficiency of the many membership comparison

operations.

As parameter changes are determined by summing the
changes along the various pathways, the contribution of
pathways can be compared. To explain a parameter change,
the program examines the contributing pathways and
highlights the pathway making the largest contribution

and those making some threshold as much.

Since the changes caused by therapies are not small,
a pliece-wise linear approximation must be considered. The
program determines which link gains will alter first from
the changes and the current parameter values. These are
then changed to the next region and changes are
recomputed. Hence the total response can be computed.
This is not a guaranteed method to make appropriate

changes as the transient Dbehaviour may be different from
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the stable state, but in a highly damped system such as

the cardiovascular system the assumption is reasonable.

Another problem is that different parts of the
cardiovascular system take different times to stabilise.
The program assumes the pathways with long time constants
have no effect on short-term solutions and changes are
determined separately for the different time periods.
Thus, the algorithm for determining the changes following
large dosages of drugs over a long period of time:
starts with the shortest time constants in the system,
then determines the changes for a small dosage. The
parameter values affecting non-linear gains are then
changed and recomputed as necessary to determine the
immediate changes for the appropriate size dosage. Move
to the next time period with the projected parameter
values and compute the changes including links that have
effects within that time period. Continue until the

desired predictions are determined.

3.3.4 APPLICATION OF THE MODEL TO THERAPY

To validate the approach, the predictions of the
model 1in the normal state were compared with information
in the literature on the effects of the major classes of
drugs used for the treatment of patients with heart
failure and coronary heart disease. The drugs are
represented Dby adding each node as a model parameter
affecting those parameters directly affected by the drug.

Some drugs affect a single parameter, others affect a
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number of parameters. The changes predicted are
represented in direction and relative amount. The
predictions are normalised so that the largest change for
each drug 1s represented as three arrows and smaller
changes as lesser number of arrows. The model predictions

were mostly consistent with the literature.

3.3.5 CONCLUSIONS

The M.I.T./Tufts group have clearly recognised the
need for a detailed and explicit —representation of
knowledge. This knowledge as previously mentioned, is
represented 1in a causal network in effect producing a
model of the domain. This model is by no means exhaustive
and 1is Dbeing actively wupdated to cater for the new
requirements. However, the beauty of the system lies 1in
the fact that this physiological model 1is wused for all
aspects of reasoning, from diagnosis to therapy planning
and explanation. This very much resembles the way a
clinician reasons when the data 1s considered in the
context of the physiological domain (i.e. conceptual
model) and following interpretion appropriate measures
are taken. The clinician anticipates some change and 1is
concerned not with the absolute change of the relevant
parameters but rather with the relative change. Such a
conceptual model helps to explain the observed data

(before or after intervention).

One other important aspect of this program is that

it 1is capable of non-monotonic reasoning, since the
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program puts every new piece of information into context

and re-computes its effects.

For the purpose of efficiency, an algorithm was
developed that simplifies reasoning to some extent. Such

simplifications are needed to produce systems with

acceptable response time (currently a few seconds on a
Symbolics 3640). Although the system has not been
evaluated with reference to real data yet, 1t has shown

good agreement with the medical literature.

Although the system 1s an experimental one, the
developers have shown a very balanced approach to using
qualitative and quantitative knowledge. This will be

further discussed in chapter 6.
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3.4 A SEMI-QUANTITATIVE SIMULATION FOR REPRESENTATION

OF DYNAMIC CAUSAL KNOWLEDGE

The work of Widman is another example of combining
quantitative and qualitative techniques and employs
simulation to overcome some of the problems of each of
these techniques. The approach is g symbolic extension
of the system dynamic method which manipulates symbolic
descriptions of dynamic systems to predict semi-
quantitatively their future states. The work 1is nicely
described in a paper presented at MEDINFO 86 (Widman
1986) . The following is a summary  of the paper

describing the work.

3.4.1 CONCEPTUAL ISSUES

3.4.1.1 Qualitative Issues

The basic assumption is that the causal network
contains implicit functional-structural information for
which the program must be able to make reasonable self-

consistent default assumptions.

In this program, all gquantities are defined relative

to their own "normal”" value. Hence, they can be mapped
on to qualitative adjectives such as "high", "very low"
etc. Unlike in qualiitative methods where the set of
permitted values is closed under the arithmetic

operations, the set of allowed wvalues here is not bounded
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by the method. Thus "large" plus "large" 1is not equal to

"large", but two times "large".

The adjectives, when defined, are mapped by the

program on to the real numbers in the interval
(-1,..,0,..,+#1 ), where 0 1is normal, -1 is 100% below and
+1 1s 100% above normal. To deal with the problem of
ranges, the program uses the mean value for each

adjective

3.4.1.2 Numerical Issues

In order to deal with the problems arising from
error due to truncation and any increase in the size of
the time interval due to the polynomial approximation
used to perform numerical integration, some of the work
of Guyton et al. (1984) is Dbeing used. Specifically

these are:

a) segmentation of the model; with iteration to
steady-state using time intervals proportional
to the time constants of the segments, so that
short-time constant loops are brought to
steady state and the longer iteration time

intervals are used for the long-term loops.

b) automatic shifting of the time frame based on
the degree of oscillation in each integrated

variable (adaptive integration).
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3.4.1.3 Modelling Issues
The explicit information 1s interpreted and the
model instantiated. The variable types which the program

knows about are defined (see below).

3.4.2

SYSTEM OVERVIEW

3.4.2.1 Definitions of the Causal Network

(a) Material versus Information.

All network wvariables are either "material" or

"informational™. "Material" variables are
conserved quantities; "informational" wvariables
pertain to regulatory mechanisms or to

quantities which need not be conserved.

(b) Network Building Blocks

All network variables are either "material" or
"informational". "Material" variables are
conserved quantities, such as mass, momentum
or energy. "Informational" variables pertain

to regulatory mechanisms.

(c) Properties of Relationships or Linkages

Relationships or linkages between variables
represent processes. The only required
properties are the direction of 1linkage and
arithmetic sign. Additionally, temporal

relationships, linear gquantitative relations
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and special parameters for specific wvariable

types may be specified.

3.4.2.2 Specification of Initial Conditions

The initial wvalues of all wvariables in the network
must be available for the simulation to proceed.
Currently, if the values are not known, they are
considered to be normal. A Dbetter approach however, 1is
to make logical inference of the available data and the
known causal relationships to form "coherent hypotheses"
as proposed by Patil (1981), each of which includes all
known values and postulates a self-consistant set of
values for all other wvariables in the network. This

method is currently being implemented.

3.4.2.3 Formulation of Equations
The network specification 1is translated into
difference equations automatically using the definitions

of the variable types.

The Euler difference equation approximation is

used.

3.4.3 IMPLEMENTATION

The program 1is currently written in MACLISP and has been
translated into VAX COMMON LISP. The program requires 5
to 10 minutes to run 20 iterations of a 34 wvariable

network on a PDP-10.
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3.4.4 RESULTS

To test the accuracy of knowledge representation
techniques, an application area 1in a medical domain was
chosen. The domain is that of cardiovascular syterns.
This 1is sufficiently rich in levels of detail and there
is also vast experience with the plausible perturbations

of the domain.

A network consisting of symbolic representations was

built along the lines of well-tested numerical models of

the cardiovascular system. These programs obtain their
results by numerical integration of differential
equations, as 1s performed in this method. However,
their models are not symbolic. The current causal

network has extra detail only at variables whose patterns
of behaviour depend strongly on relative quantities. It
is at these wvariables that gqualitative methods face the
combinatorial problem and the ©problem of generating
behaviour which does not actually occur. One of the
strengths of this method 1is that extra information can

guide the simulation.

The performance of the current causal network was
tested on sixteen classic disorders, each of which is
known to be accounted for entirely by the disturbance of
one or at most Jjust a few 1initial wvalues. The same
network was used for all simulations. Simulation of all

of the examples yielded acceptable results by the
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criterion of semi-quantitative agreement with the medical

literature.

3.4.5 CONCLUSIONS

This work 1is a good example of a balanced approach
in combining qualitative description with a quantitative
simulation to model a domain. Both qualitative and

quantitative simulations alone have their shortcomings.

A symbolic representation 1is desirable because of
its explicit and detailed representation, however, after
a period of simulation from a steady state to another
there 1is no information about the intermediate stages.
Moreover, representation of a complex system such as
cardiovascular system in a purely qualitative fashion may
give rise to unrealistic predictions because of the large
number of feedback loops present, where adding opposing
influences of unknown magnitude is a problem. In other
words, direction of change is not sufficient and some

information regarding the magnitude is needed.

The system therefore, starts by symbolic
representation of the domain, using generic functional
"building blocks™ or variable classes, and predefined
default wvalues (where there is no information available);
translation of the model into a system of first order
difference equations and integration of the equations.
The output can be translated back to symbolic form by

feature extraction, but this is not yet implemented.
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3.5 MODEL
This 1s an experimental work that 1is being carried
out at the Royal Free Hospital School of Medicine. The

objective 1is to develop a software package that permits

development of a model of any domain (that can Dbe
represented adequately by compartments) from the
conceptual description. This description is transformed

into symbolic equations and a general-purpose algorithm
written in Pascal is used for the numerical simulation of

the symbolic equations.

MODEL is not a decision-making tool or a knowledge-
based system, rather it 1is a tool for development of
physiological models (qualitative and quantitative). It
is reviewed because of its novelty and its potential for
development of a knowledge-base from the conceptual
description of the domain. As mentioned in Chapter 1,
clinicians have a conceptual model of their domain of
expertise. Hence, the knowledge acquisition process can
be speeded if a tool is available to translate a
conceptual model into a computer model (be it

qualitative, gquantitative or a mixed approach)

The work 1s described in a recent paper (Leaning and
Nicolosi, 1986). As mentioned above, MODEL has the
capability of manipulating conceptual descriptions and

symbolic mathematical equations to perform conventional
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simulation. Such representation is defined as

a 'knowledge-based model' by the authors. In MODEL:

facilities are provided for the user to build a
conceptual or linguistic description of a
compartmental system in a physiological domain.
This description consists of the anatomical
site, type, amount of substance and flux (the

exchange of substance between compartments);

a set of symbolic differential eguations 1is
generated automatically from the conceptual
description which forms a gualitative

constraint network;

a modified version of the QSIM algorithm
(Kuipers, 1985) is used to perform a
gualitative simulation of the constraint
network;

numerical simulation can be carried out using
the symbolic differential equations, provided
the user supplies the appropriate initial

numerical values.

3.5.1 A MULTILEVEL SCHEMA

Based on the previous experience of one o0f the

authors

framework

in modelling methodology (Leaning, 1980), a

for knowledge-based modelling was devised.
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This methodology starts with the problem perception and

model specification to arrive at the model formulation

and consequently at identification and parameter
estimation. This process leads to a fully guantitated
model. A backward step may be taken at any point to

modify any of the steps.

Model formulation consists of conceptual description
and hence derivation of differential equations and the
relevant simulation. Conceptualization identifies the
key elements of the system and their interaction, both
structural and functional. A natural form of
representation is associated with each step of modelling

and its related information with a distinct level.

3.5.1.1 Realisation of the Scheme

The built-in control is based upon the idea that the
user builds a model at the conceptual 1level and then
proceeds to symbolic and numerical levels, providing

necessary further information when required.

MODEL 1is written in LPA PROLOG with the simulation
engine written in Pascal. It runs on an IBM AT running
MS-DOS. User-interaction is through a menu-driven system

with associated nested windows.

3.5.1.2 Specification and Control
Model specification consists of the description of

the system to be modelled and the level of detail and
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accuracy required. The purpose of the model 1is also
stated. Therefore a quantitative or qualitative
simulation will be produced based on the purpose for
which the model is Dbeing developed. In this way the
program controls the depth and detail of the

representation.

3.5.2 THE CONCEPTUAL LEVEL

The components and structure of the compartmental
system are defined at this level, with details of
physiological sites and substances. The model need not
be physiologically complete before exploring the symbolic

or numerical levels.

3.5.2.1 Internal Representation

The conceptual description 1s represented as a set

of Prolog predicates. There are seven Dbasic forms:
compartment; flux; loss; 1input; modulator; measurement;
order. An index is generated internally and is

associated with each of the above forms indicating the
relevant compartments. For a detailed description of the

forms see Leaning and Nicolosi (1986).

3.5.3 THE SYMBOLIC LEVEL

At this level the compartmental system is
symbolically represented in mathematical terms.
Differential equations are thus represented symbolically

from the conceptual description. Qualitative or
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quantitative simulation 1is then carried out depending on

the purpose of the model.

The differential equations for the compartments are
represented as Prolog predicates using an index number to

identify the wvarious compartments.

3.5.3.1 The Qualitative Constraint Network

The qgualitative constraint network is based on the
QSIM algorithm (Kuipers, 1985) . OSIM simulation 1is
represented as a sequence of gqualitative states. Oof
course, there 1s no information available between the
time intervals. Fach wvariable 1is treated as a function
mapped from a finite ordered set or "quantity space".
The entries in the quantity space are known as land-mark
values. Direction of change of a function must be given;
two states are distinct 1if their qualitative wvalues or

direction of change or both are different.

The generated states are checked for consistency by

re—-expressing the model in a constraint network.

MODEL automatically generates the constraint network

and its initial state from the conceptual description.

A problem associated with qualitative simulation 1is
that of "branching". That 1is, the algorithm may arrive

at unrealistic possible states as well as the realistic
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one (s); additional information can be inserted to avoid

such branching.

MODEL is capable of simulation with incomplete

knowledge.

3.5.4 NUMERICAL LEVEL
The symbolic differential equations are interpreted

and the essential initial wvalues and parameters asked

for. A general purpose simulation program written in
Pascal, (Leaning, 19806), is then used to perform
simulations. The results are displayed in graphical form

for the compartments that have Dbeen defined at the

conceptual level (as a measurement term).

3.5.5 CONCLUSIONS

This work is the result of the experience and the
awareness of the developers of the problems associated
with numerical simulation both at a conceptual level and
at the implementation level. The objective therefore was
to devise a scheme by which some of the problems in

development of simulations could be overcome.

MODEL is one of the rare (1f not unigque)
environments where one can develop a model from
conceptual description and run qualitative and
quantitative simulation. This provides the facility to

develop alternative models and hence an optimised model

could be achieved wvery quickly.
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Currently, the simulations are displayed graphically
and no attempt is made to assess the results in a
qualitative manner; but research is being carried out to

examine different methods of assessment.

Another way of enhancing the system could be by
looking at ways to achieve some interaction between the
qualitative and gquantitative simulations. As the MODEL
stands, the simulations are quite independent of each

other

In all, the approach 1is a very exciting one that
could change the realm of modelling not forgetting its
potential as a tool to develop a knowledge-base from a

conceptual description of the domain.
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3.6 KARDIO

KARDIO (Bratko et al., 19806) is a system that
interprets ECG signals for cases of cardiac arrhythmias;
it is also capable of performing the reverse procedure of
predicting possible ECG signals for cases of

arrhythmias.

The system 1is based on a qualitative model capable
of simulating various cardiac disorders either singly or
in conjunction with others. This system is particularly

interesting because:

1. it highlights the capability of qualitative

models to deal with multiple disorders, and

2. a practical approach 1is taken to produce an

efficient system without losing much detailed

knowledge.

Knowledge in KARDIO is represented symbolically and
reasoning 1is carried out from first principles, thus
yielding a qualitative model. The model is then
simulated to arrive at wvarious diagnostic and predictive
states which could be used for the two purposes. But for
the purpose of efficiency inductive learning programs

were used to compress this knowledge-base.

FEach of the above constituents are discussed below.
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3.6.1 THE QUALITATIVE ("DEEP”) MODEL

This is a qualitative model of the electrical
activity of the heart which 1s represented as causal
relationships between objects and events 1in the heart.
The model 1is analogous to an electrical network but the
signals are represented qualitatively by symbolic

description.

The model consists of:

1. Nodes, which are comprise; impulse generators,

conduction pathways, impulse summators and ECG

generators; all of which are represented
symbolically.

2. A dictionary of simple arrhythmias related to
heart disorders. These are defined in terms of

functional states.

3. "Legality" constraints. These are states that
are rejected by the model corresponding to the

following criteria:

a. Logically 1impossible states
b. physiologically impossible states
c. medically uninteresting states.

In this way the search space is considerably

reduced.
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4, "Local" rule sets. Specifying the behaviour of
the individual components of the heart in the

presence of abnormalities.

5. "Global" rules. These are rules defining the
causal relations between wvarious components of
the model and ECG features, thus reflecting
the structure of the network. There are 35
global rules in the model represented in PROLOG
clauses. A detailed description of the model

can be found in Mozetic et al., (1984) .

3.6.2 THE QUALITATIVE SIMULATION ALGORITHM
In order to insert additional control during the
execution of the program, an algorithm is used instead of

the PROLOG interpretion mechanism.

The simulation algorithm allows theorem proving and

theorem generation.

A simulation run consists of:

1. Instantiation of the model by a given
arrhythmia
2. Checking the functional state against the

legality constraints.
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3. Execution of the model by triggering rules

until no more rules are fired.

4, Collection of the proved assertions about ECG
signals followed by an ECG description

corresponding to the given arrhythmia.

The most natural way of implementing the above
algorithm is to wuse the depth-first search strategy.
Although this 1is efficient for prediction type queries,
diagnostic type gqueries run into trouble, since the model
is running backwards, and branching becomes a major

problem

Various methods were tried to compensate for this
inefficiency by first rewriting the model and introducing
more constraints to limit the branching. This, however,
increased the size o0of the model considerably and also
affected 1its transparency which 1is of great importance
for the explanation of its behaviour. Another

alternative was to generate ECGs for all possible

arrhythmia cases and store these as associations. This
is also inefficient because, for each disjunctive
solution the simulator has to backtrack to some

previously wused rule in the model and restore its
previous state; also, the resulting ECG descriptions
have the form of disjunctions of ECG patterns, which can
be more complex than necessary and can be simplified

later. But, the simplification procedure 1is again a
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complex operation. The simplification can be carried out
when a disjunction is generated and before it is further

expanded; this 1is a more economical simplification.

Because of the two factors mentioned above, another

implementation was sought that could handle alternative

execution paths in a breadth-first manner. The result
was an algorithm that would generate parallel
alternatives and simplify disjunctions. The
simplification rules, however, are local, i.e. model
dependent, therefore the "breadth-first" simulation 1is

not general and the simplification rules need to Dbe

modified if there is a change in the model.

Bratko reports that this specialized simplification
proved to be quite powerful compared to the depth-first
simulation. The depth-first simulation generated 72 ECG
descriptions for the combined arrhythmia atrial
fibrillation and ventricular ectopic beats as opposed to

only 4 generated by the above algorithm.

Using the Dbreadth-first simulation algorithm, the
knowledge-base was generated automatically by executing
all mathematically possible combinations of simple
arrhythmias. A large number of the combined arrhythmias
were eliminated by the legality constraints over the
state of the heart. In this way the knowledge-base (i.e.
the arrhythmia-ECG base) 1is complete in the sense that

all possible physiological and mathematical cases are
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present. The diagnosis process 1is now the simple task of
finding (retrieving) the arrhythmia(s] that correspond to

an ECG description.

The knowledge-base generated, despite being
complete, suffered from one main drawback- its size.
There were 8314 PROLOG clauses occupying 5.1 Mbytes of
memory. In order to achieve a more compact knowledge-
base, inductive learning algorithms were used. However,
the knowledge-base was far too big for these algorithms
to learn from examples. Therefore a sub-set of the
knowledge-base was derived which was complete in its own
right, and the cases discarded would be regenerated by

adding a few additional rules.

The learning sub-set was substantially smaller the
original one comprising 586 combined arrhythmias and
2405 ECGs compared to 2419 arrhythmias and 140966 ECGs.

This subset only takes up 400 kbytes of storage.

The performance of the system using the inductive
algorithms corresponds very well to the definitions in
the medical 1literature, although in some cases much more
detailed specification is generated, which may not be

necessary for a medical user.

3.6.3 CONCLUSIONS

The novelty of this work without doubt 1lies in the

representation of knowledge and the subsequent use of it
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to provide an efficient diagnostic system, The
developers are consistent and careful throughout the
development of wvarious stages, firstly to represent a
qualitative model that is sufficiently rich in its
physiological representation knowledge; and secondly to
generate all the mathematically possible and
physiolagically allowable cases automatically; and
finally to compress the required knowledge-base without

losing detail or any possible cases.

KARDIO was evaluated with a select population, and
it could handle 75% of the arrhythmia cases correctly.
In an actual test on 36 random cases 1t could handle 34
cases (94%). The cases where 1t failed were due to some
incompleteness of the deep model, such as incapability to

handle an artificial pacemaker.

The deep model can be used for other purposes such

as providing an explanation.
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3.7 SUMMARY
When studying the evolution of expert systems in

medicine, an interesting shift of emphasis is observed.

In the early vyears, systems were developed based on
purely associational knowledge (eg. Shortliffe, 1976),

where signs and symptoms were related to the underlying

disorder (s). The knowledge used for this kind of
representation was based on both well understood
mechanisms and purely heuristic knowledge. However, they
were Dboth represented heuristically. This to a great

extent degraded the ability of the system to reason
"intelligently" as the reasoning mechanism was
essentially that of pattern matching; as well as not
being able to produce an acceptable explanation of its

behaviour.

Then, there was the emergence of systems whose
knowledge were based upon the principles of causality
(e.g. Patil, 1981). Experience of such systems showed
relating physiology and medical decision making to be a
far too complex and ill-understood domain that could be

represented in that manner adequately and efficiently.

Recently, we have witnessed the emergence of
systems which combine both qualitative and guantitative
techniques, as well as using additional techniques. Some
of these systems have been reviewed above. What Thas

become apparent is that clinicians use different
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knowledge at different levels of detail at different

times. For a knowledge-based system to be able to perform

as well as an expert, these knowledge sources must be
available to it. Having various knowledge sources
available and using them appropriately are, of course,

two different problems.

The objective of this review using specific examples
is show the complexity of some of the medical domains and
the way that different workers have approached the
problem. There 1is no simple solution to the problems
involved, but it  is the view of the author, that
combining and utilising these wvarious knowledge sources

appropriately is the way forward

In the next chapter, the aims, objectives and
requirements of the work carried out as well as a

detailed description of the developed prototype will be

presented
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CHAPTER 4

(Francis Bacon)

4.0 SYSTEM DEVELOPMENT

Having reviewed some of the earlier relevant work in the
previous chapter, in this chapter the requirements,
choice of model, various difficulties encountered, and a
detailed description of the structure of the two versions
of the developed prototype will be described. A more
detailed discussion of the methodology and associated

problems will be discussed in the next chapter.
A brief description of the first version of the
developed prototype (MK I), can be found in Shamsolmaali

et al., (1988), and Shamsolmaali et al., (1987).

4.1 INTRODUCTION

Clinicians use different levels of knowledge at
different times according to the complexity of the
problem at hand and its nature. The performance of a
knowledge-based system should, at 1least in theory, be
enhanced if it has access to additional sources of
knowledge. The objective of the exercise described here,
was to explore the extent to which a mathematical model

could enhance the performance of a knowledge-based system

in a clinical environment.
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4.2 REQUIREMENTS

The requirements are based on the original proposal
to the DHSS for the funding of this work. A prototype was
required that could investigate the possibility of
utilizing a mathematical model in a clinical setting, and
to explore the advantages of such a system. It was
considered that the prototype should Dbe capable of
offering "opinions" to the user about the assessment of
the current state of the patient and to suggest
appropriate treatment justifying it using the model. It
was proposed that an "off-the-shelf" model would be used,
rather than a "tailor—-made" one, as considerable work had
already Dbeing carried out within the group on the

modelling of the relevant domain (Flood, Carson and

Cramp, 1985) .

4.3 CHOICE OF THE MODEL

As mentioned above, some work had been carried out
in the group on the modelling of fluid and electrolyte
metabolism. However, after close examination of the
implemented model, it was concluded that further work was
required to enhance its usability and, more importantly,
to wvalidate the model. It was considered important to
utilise an established and validated model (if possible)

to meet these requirements.

There were two other models available to the group

HUMAN (Guyton et al., 1984) and Macpee (Dickinson et al.,
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1987). Macpee was chosen because it 1is well-established
(developed about 1972) and although it had never been
formally wvalidated it had, however, been 1in wuse for a
number of years as an educational tool and undergone
constant updating. More importantly, as far as the
implementation of the prototype was concerned, the
developers of Macpee were based in London enjoying a good
working relationship with our group. This proved to be of

great importance in the following months.

4.4 DESIGN DIFFICULTIES

One of the major drawbacks of Macpee (and indeed
many other models) is that it is parameter driven rather
than data driven. This 1limits the process of tuning the
model to a particular patient as data cannot be input to
the model. The model simulates a cause-effect cycle for a
"normal" person. The notion of "normality" is defined as
a 29 year old male of 70 kg weight and 175 cm height. An
assumption 1is made that human's circulatory and fluid
metabolism behaves similarly under influence of disorders
and in health regardless of individual characteristics of
patients. It 1s dimportant to note that as far as this
project was concerned, after a simulation, a qualitative
change of parameters from what is being perceived as the
"steady state" before the simulation, is considered
rather than a quantitative number to number

correspondence of model parameters with that of the

patient.
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4.5 SYSTEM STRUCTURE

The basic structure of the prototype is shown in
figure 4.1. The system consists of six components which
are described below.
4.5.1 Overall Structure

The prototype consists of a user interface, patient

database, patient record file, diagnostic module,
treatment module, and the dynamic mathematical model
Macpee.

Mathematical models can be incorporated within a
knowledge-based system 1in a number of ways. They can
constitute an external model with parameter exchange; can
be semi-integrated with part of the model used as part
of the knowledge-base; or can be fully integrated with
the entire model constituting a part or the whole of the
knowledge-base (Nicolosi, 19806) . If it 1is to be fully
integrated, the model should simulate the pathophysiology
of the relevant domain in an adeguate manner, and

furthermore, it should be able to simulate the state of a

patient closely.

The model wused 1in this project, Macpee, cannot be
tuned directly to a specific patient since it does not
accept laboratory data as input. Therefore, it 1is used as
an external module with interaction between model and
knowledge-base being reduced to parameter exchange as
described Dbelow. Some design features of such a system

are outlined in Cramp et al. (1985).
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PATIENT
RECORD
PILE CLINICAL
USER
Figure .1- Schematic diagram of the overall structure of

the prototype.



91

4.5.2 User Interface

Special attention had to be given to the user
interface, as one of the objectives of the project was to
develop a prototype that would be used in a clinical
setting where it would be further wvalidated. There is
limit to what can be achieved with a standard keyboard

and monitor.

A menu-driven system has been developed in order to
ease the interaction of the «c¢clinical wuser with the
system. The user can choose to enter new data, display
existing data, perform a diagnosis and receive therapy
recommendations based on the existing data, update a
patient's file, access the mathematical model or exit the
system. A sub-menu is displayed in the case of new data
consisting of wvarious routinely measured variables with
the relevant wunits, so that the wuser may choose the
appropriate variable and enters the value for it. In this

way typing mistakes are minimised.

4.5.3 Patient Specific Database

The patient specific database is comprised of
clinical (bedside) and laboratory data. Current data
input to the system by the clinical user 1is stored and
those contained in the record file for the specific
patient are retrieved. The wvariables included are 1listed

in Table 4.1.



Table 4.1-  Variables i the Patient Specific Database

Laboratory data: Plasma Concentration of-
Sodium
Potassium
Albumin
Creatinine
Urea
Urine Concentration of-

Sodium
Albumin
Potassium

Plasma Osmolality
Urine Osmolality
Haemoglobin

Clinical Data: Blood Pressure
Central Venous Pressure (CVP)
Pulmonary Capillary Wedge Pressure
Temperature Difference (Core- Periphery)
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Data are entered into the system via the menu-driven
mechanism and stored as facts in the patient file. 1In
order to differentiate between data input at different
times, an 1indexing method has been developed. The data

have the following PROLOG form:

data (Patient-Name, Index, Item, Value).

The predicate data is used to store the facts about a
particular patient. This predicate has four arguments.
The wvariable Patient-Name 1s assigned to the name of the
patient (or it could be assigned to the ©patient's
hospital number) . The variable Index 1is set to | when
there is no previous record on the patient, and is
incremented by ! on each subsequent interaction. The most

recent data are used for ©processing.

4.5.4 Patient Record File

Once the name of the patient is entered, the program
searches for a file by that name with an extension of
".LOG". If one exists, it is loaded and any new data
input will be saved in this file, with the index
incremented by one. If there is no file by the name of
patient, one 1is created. At the end of the consultation
session the program asks the user whether the new data
are required to be saved and acts appropriately. In order
to eliminate a case problem with regard to the file name

(i.e. lower, upper, or mixed), the typed name is changed
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to upper case (using ASCII codes for inversion) Dbefore

the program attempts to search its record file.

4.5.5 Diagnostic Module

Before any diagnostic action is taken, the numerical
data are classifies by comparison with a set of reference
ranges. This classification categorises the data into one
of five regions namely, low, moderately 1low, normal,
moderately high, and high. The classified data are stored
in the RAM memory and displayed, so that the user can

follow the steps that are being taken by the program.

When the wuser has finished inputing data to the
system, the most recently classified data (i.e. the ones
with the highest Index) are collected as a 1list, called
the characteristic-1ist. The characteristic-1ist has the

following PROLOG format:

characteristic-list(Patient—-Name, [[plasma-Na, low],
[plasma-K, normal],
[urea,highll]).
The disorders are represented by their name and the
possible associated pattern of signs and symptoms having

the following PROLOG format:

disease-state (water-overload, [[plasma-Na, low],
[plasma—-Na,low—normall,
[plasma—K, normall,

[plasma-urea, low],
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[creatinine, low],

[albumin, low—-normal],

This represents the possible combination of signs and
symptoms that are not inconsistent with the disorder

water-overload.

To produce a diagnosis, the characteristic-list 1is
checked against the disease-states. The disease-state(s
whose pattern of signs and symptoms do not contradict
the pattern of signs and symptoms of the patient are
displayed as differential diagnoses. There are 15
disease-states defined in the knowledge-base, all of
which are water and salt related disorders. The disease-

states represented are listed in Table 4.2.

Not all the signs associated with a particular
disease-state need be present for it to be a member of
the differential diagnoses 1list. In fact, the reasoning
mechanism is that of elimination of disease-states which
suffer from a conflict with the characteristic-list. This
reasoning mechanism has the advantage of considering all

the disease-states without any bias or weighting.

One disadvantage, however, is the fact that the
program searches Dblindly through its knowledge-base to
come up with potential disorders. This blind search can

be compensated for at the representation 1level of the
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Table 4.2- Disease States Defined by the System

Water overload

Water overload with renal failure

Syndrome of inappropriate antidiuretic hormone release (SIADH)
Congestive cardiac failure

Nephrotic Syndrome

Loss of sodium with water replacement

Loss of sodium with water replacement on a diuretic
Normal plasma sodium with overload

Post-operative normal plasma sodium with water overload
Over-transfusion of blood

Normal plasma sodium with dehydration

Diuretic induced dehydration

Hypernatraemia due to hypotonic fluid loss
Hypernatraemia due to sodium overload

Addison’s disease
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disease-states without altering the search mechanism.
This 1s done by inserting constraints on the possible
combination of signs and symptoms of a particular
disorder, so that an unacceptable diagnosis can Dbe

avoided. This is an implicit representation of knowledge.

This method of refinement of the knowledge-base
appears to be sufficient for conditions arising from a

single disorder.

The program is, however, unable to cope with
conditions arising from multiple disorders being present.
The reason for this failure becomes apparent when a
close inspection of the knowledge representation is made.
Each disease-state 1is an entity in its own right without
any links or relations with other disease—states. There
are no other rules to describe a link or a relation at
the reasoning level either. This means conditions arising
from a conjunction of disorders ©present can only Dbe

represented explicitly as appropriate disease-states.

This problem will be discussed further in the next
chapter.

Once a diagnosis is established, it is used to
change the parameters of the model, using appropriate

rules, so that Macpee is tuned to the diagnosed disorder.
The diagnostic module, therefore, acts as the front-end
to Macpee as well as assessing the condition of the

patient.
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4.5.6 Treatment Module

The treatment regimen produced is not based on the
outcome of the diagnostic module, contrary to the
implication of figure 4.1. The 1link between diagnostic
and treatment modules is 1left out deliberately, so that
the performance of the two modules can be checked against
each other as well as reducing the dependency of the
overall performance of the prototype on the diagnostic

module.

In contrast to the diagnostic module, the knowledge
is represented as a set of rules. These rules associate
the abnormal data with the appropriate therapeutic
measures. The abnormal data are grouped together in the
context of the underlying (sub) system. Hence, the
treatment module considers various subsystems separately

and provides strategies to correct the abnormality.

The sub-systems considered are the cardiovascular
and renal systems together with the dietary state and
drugs already being taken by the patient. At the end of
the inspection of the sub-systems, the program advises on
the amount of appropriate intravenous fluid to be given

to the patient.

The cardiovascular data (parameters) checked are:
diastolic pressure, central venous pressure (CVP) and

pulmonary capillary wedge pressure(PCWP); 1inotropes and
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colloid are prescribed accordingly. The renal data
checked are: urea, creatinine, their ratio, together with
urine sodium and urine output.

Some typical rules are:

IF Diastolic Pressure 1s Low

and CVP is Low

and Plasma Na in the range 145-150
THEN Prescribe

Half Dextrose 5% + Half Colloid (volume)

IF Urine Output > 40 ml/h
and ©patient NOT on diuretics
and Urinary Na > 20

and Creatinine elevated

THEN Renal Impairment

The first rule uses the cardiovascular data and the
value of the plasma-Na to suggest the appropriate fluids.
The rule also suggests, implicitly, that there 1is a
negative fluid balance. The amount of fluid to be given
is decided by other rules based on the state of the fluid

balance and the weight of the patient.

The second rule is more interesting; first it
excludes the possibility of diuretics to be the cause of

the large wurine excretion and then checks the wvalue of
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creatinine and urinary-Na to establish a conclusion. This

is added to the data record of the patient.

The recommendations of the treatment module are
passed to the model using appropriate rules (discussed in

the next section).

4.5.7 Macpee

The dynamic mathematical model incorporated in the
prototype 1is Macpee, one of the Mac series of interactive
digital computer simulation programs designed to assist
students to learn about the physiology of major body

systems in health and disease.

The output of the model is normally in the form of a
graph of Dblood pressure and the pulse rate plotted
against time. At the end of each run, normally 24 hours

but this can be changed, wvariables wvalues are printed

out.

The model will perform as many simulated hours or
days (maximum 10 days at a simulation cycle) as 1is
directed, and can then be stopped to allow the operator
to make changes (within physiological constraints) in any
of the large number of wvariables. In addition, any

parenteral fluid normally available in hospital practice

may be administered or discontinued (eg. 5% dextrose,
saline, potassium chloride solution, blood, packed

cells). Similarly oral intake of fluids <can be either
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restricted or augmented to any specified extent Dby

simulated instructions to nurses.

The adoption of Macpee as the dynamic mathematical
model in the prototype design was a compromise. On one
hand it 1is a rich physiological analogue which has been
widely wused in an educational context. As such it could
be incorporated immediately thus circumventing the
development cycle of a specially tailored model. On the
other hand its prime application domain being the
educational context lead to some difficulties 1in the
clinical setting for which the knowledge-based system was
being developed. For example, the normal setting of
Macpee, corresponding to a vyoung 70 kg healthy male,
requires adjustment if used in a «clinical setting.
Furthermore, Macpee cannot accept laboratory and clinical
data directly as input and hence cannot provide a
simulation of a specific patient. The approach adopted
was to aggregate the infinite spectrum of possible
patient conditions into 15 diagnostic states. The patient
data are used to diagnose the patient and the diagnostic
state then defines the values to which the parameters of
Macpee need to be adjusted. It is thus assumed that the
model behaviour 1is representative of the diagnostic class
to which the patient has been assigned; and hence the
recommendation made by the treatment module can be tried

out on the model to justify this therapeutic action.
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The communication between the knowledge-base and the
model is achieved by means of a text file. Hence, as the
program goes through its line of reasoning, the diagnosis
and management strategies are translated into
instructions that Macpee can wunderstand, and stored in

the appropriate file.

Macpee had to be altered in so that it would read
instructions from the file rather than the keyboard.
Currently, when the control of the program 1is passed to
Macpee, it will 1look for the instruction file first and
execute all the commands. If the last instruction in the
file is not to return the control back to the knowledge-
base, the control 1is passed to the keyboard so that the
user may experiment with Macpee. Once Macpee 1is aborted,

the control is returned to the knowledge-base.

Example of some of the rules to change the

parameters of Macpee are given below:

IF cardiovascular performance is diminished

and oedema 1s present

THEN reduce the cardiovascular contractility

IF patient has history of heart failure
and reduce cardiovasular contractility
THEN change the cardiovascular contractility

to 50%
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IF change the cardiovascular contractility 50%
THEN OPEN the interface file
WRITE instruction

CLOSE interface file.

In order to keep the rule base small, change-
parameter is defined as a predicate with two arguments:
the name of the parameter and its new value. Therefore,
the last rule above 1s a rule with its arguments being
assigned to cardiovascular-contractility and the wvalue
50% A dictionary 1s formed of the name of changeable

O e

parameters and their corresponding factor number that

Macpee recognises.

There was an 1mplementation problem with fluid
infusion in Macpee that was rectified. A combination of

fluids could not be administered rather the last fluid

listed would be simulated.

4.5.8 Implementation

The prototype was developed on an IBM PC with 640K
RAM, running PC DOS. Macpee 1is written in FORTRAN 77,
whilst the other modules, including the user interface,

were developed in LPA-PROLOG version 1.4.
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Due to the heavy requirements of Macpee and Prolog
on RAM, and also the limitation of MS-DOS (maximum of

640K), both programs do not fit in the memory at the same

time. This meant the RAM must be cleared Dbefore being
able to load Macpee, which is time consuming and
cumbersome

4.6 DIAGNOSTIC MODULE REVISITED (MK II)

As mentioned previously, the diagnostic module
cannot handle the presence of multiple disorders. The
majority of the patients admitted to an intensive care
unit either suffer from a number of disorders or develop
secondary conditions. A knowledge-based system should,
therefore, be able to cope with these patients 1if it 1is

to be used in that environment.

The diagnostic module needed major reconstruction so
that it could consider a patient in a more clinical
manner. The physiological system was broken down to its
sub-systems and rules developed to assess the condition
of the patient within the context of each sub-system.

This is very similar to the approach taken by the

treatment module.

The output of the system is an assessment of wvarious
sub-systems, rather than a definite diagnosis. More
clinical data 1s required by the system to cope with
various categories of patients routinely admitted to an

intensive care unit.
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The program obtains a history of the patient by

asking questions with regard to the history of heart
failure, acute heart disorders and drugs that are
currently being taken. The parameters of Macpee are

instructed to be altered to correspond to these effects.
In this way it is cosidered that the model simulates the

condition of the patient more closely.

An example of the new rules is given below:

IF patient is NOT on diuretics

and Diastolic pressure < 90

and Urine output < 41

and Urine-Na < 10

and Temp-difference (core & periphery) High

THEN Fluid-overload Functional.

The above rule has established that fluid overload is due
to a functional failure rather than an excessive
cosumption or over administration of fluids. This 1is a
typical assessment of the state of the patient which is
reported to the user and used to change the parameters of
the model. The rule to change parameters of Macpee 1is

identical to the example given in section 4.5.4.

The focus of attention in this wversion of the
diagnostic module 1is on the key factors (variables) that

are associated with each disorder. Each disorder has a
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particular effect on each subsystem which is
characteristic of it. The problem-solution then was to
identify these effects in isolation. The intention was

to identify disorders rather than classify them.

The treatment module was subsequently modified and
expanded to generate treatment recommendations based on
the assessment of the diagnostic module. Therefore, the
original configuration of the prototype (figure 4.1.) was
realised, and the link Dbetween the diagnostic and

treatment modules was established.

4.7 EVALUATION

One of the requirements of the DHSS was that the
prototype should undergo formal evaluation. The process
of evaluation should formally highlight the weak points
of the prototype as well as its strong points. A formal
evaluation would also allow the methodology and approach

adopted by the group to be assessed.

4.7.1 Introduction

Systems are continually Dbeing evaluated, whether
consciously or not. Designing and implementing knowledge-
based systems involves constant evaluation of the

progress by considering gquestions such as:

* Is the knowledge representation scheme
adequate or does 1t need to Dbe extended or

modified?
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* Is the system coming up with right answers and

for the right reasons?

* Is the embedded knowledge consistent with the

expert?
* Is 1t easy for wusers to interact with the
system?
* What facilities and capabilities do users
need?
Feedback from wusers, expert collaborators, and the
system builders suggests improvements that may be

incorporated into later versions. Evaluations pervade the
system-building process and are crucial for improving
system design and performance. FEach time a rule in the
knowledge-base is changed, added, or deleted, everytime
the code of reasoning program is modified or extended or
the knowledge representation scheme 1is refined, action

has been taken in response to an informal evaluation.

One reason for the present difficulty in evaluating
knowledge-based systems is that human experts are seldom
evaluated objectively. Evaluations are very easily
misinterpreted, and it 1is therefore extremely important

to carry out evaluating at appropriate stages in the
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system's development, to clarify exactly what 1is Dbeing

evaluated, and to interpret the results correctly.

Domain experts involved in the construction of the
knowledge-based systems are concerned primarily with the
embedded domain knowledge and how it 1is wused by the
program. Thus the experts repeatedly perform both static
and dynamic evaluations. In static evaluation they
compare the performance of the knowledge-based system
with their own conceptual model, looking for consistency
and completeness. In dynamic evaluation they compare the
system's line of reasoning and its conclusions in a
specific case, with their own. Thus, the knowledge
acquisition process 1s intimately linked with ongoing
evaluation by the domain experts. Furthermore, the
ongoing evaluation helps them structure and understand

better both their domain and their own expertise.

The wultimate criterion of success 1is whether a
knowledge-based system is actually used for expert
consultation by individuals other than the system's
developers. Only a few expert systems have reached this
stage. A key ingredient of success is 1involving eventual
users 1in evaluation of the system as it 1is being built.
Without a clear understanding of the wultimate user's
needs and requirements, system builders may fail to
provide crucial capabilities and, consequently, the

system may have limited utility. Involving end users 1in
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the development process can generate user interest in the

system as a potential tool for their own use.

There is a clear need for formalism in the process
of evaluation. In designing an evaluation, one must be
aware of 1ts purpose: who is it for, exactly what is
being evaluated and what one hopes to gain from the

experiment.

4.7.2 Problems in the Evaluation of Medical Diagnosis

Systems

Medical diagnosis, by its nature, suffers from
uncertainties at different levels. These could be due to
lack of a full understanding of the clinical domain as
well as an inability on the part of clinicians to explain
their processes of reasoning. Medical diagnosis systems
cannot escape from these uncertainties and should
therefore, be evaluated with these constraints in mind.

Chanderasekaran (1983) provides some guidelines:

a) Success/Failure- When evaluating performance
of complex systems, especially at a
development stage, simple "success" vs.
"failure" evaluations based on the final

answer may be insufficient because they do not
take into account the possibility of very
acceptable intermediate performance. As

pointed out by Yu et al. (1979), "A complex



reasoning program must be judged by the
accuracy of its intermediate conclusion as

well as its final decision".

"Correct" answers may be unknown- Often there
are no "correct" answers, since expert

clinicians may disagree among themselves.

Small sample size problem- Performance of the
system in "rare" diseases cannot often Dbe
reliably evaluated due to the generally small

sample size of the available cases.

Matching distribution of c¢linical practice-
Without some knowledge about the distribution
of types of cases that a system will need to
confront, the results of evaluation cannot be
suitably interpreted. For instance, suppose
the system 1is very efficient 1in solving most
of the "common" occurrences of diseases 1in an
area of clinical medicine, and relatively poor
in solving rare or "difficult" cases. If the
difficult cases were to be chosen because they
are "interesting" as test cases, the
statistical evaluation of the system might not
represent its performance in a real <clinical
setting. A solution to this situation 1is to
require that cases be selected as

representative of the target clinical setting.
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4.7.3 Evaluation of the Prototype

The system under development has been informally
evaluated from the start of the project. A semi-formal
evaluation took place when the system was installed at
West Middlesex University Hospital, London. This provided
an opportunaty to assess user requirements and whether
the limited knowledge represented in the system was

adequate to deal with real life problems.

The initial feedback was the inadequacy of the
database in handling and retrieving data from the patient
files. There was no built-in facility to differentiate
between data input at different times. To cope with this

problem an indexing method was devised, which has been

described previously.

A more fundamental and serious shortcoming of the
system was the performance of the diagnostic module.

Although it was capable of diagnosing well-defined

disorders, 1t was unable to identify multiple disorders.
This resulted in the review of the knowledge
representation schema, which has also been described
above,

A formal evaluation of the prototype is being
planned. The focus of attention will be on the

performance of the diagnostic module, treatment module



and the usability of the prototype (i.e. convenient

interaction).

Three kinds of data will be put to the system,
historical, hypothetical, and data available on the

existing patients at the intensive care unit.

The knowledge-based system under development has two
major distinct components; the knowledge-base itself and
the mathematical model. It should be emphasised that
although both components will be evaluated as a complete

system, only the knowledge-base will be modified by the

group.

4.8 SUMMARY

In this chapter, a detailed description of the two
versions of the developed prototype was presented.

Problems encountered with the first wversion (MK I) and

hence, the motives for the development of the second
version (MK II) were introduced. The necessity for
evaluation as an ongoing, integral part of the

development process was highlighted. In the next chapter,
some clinical cases are put to the two versions of the
prototype and their responses are compared and

contrasted



CHAPTER 5

(Alexis de Tocqueville)

5.0 SIMULATIONS OF THE KNOWLEDGE-BASE

The two versions of the prototype which have different
methods of knowledge representation- 1list of expected
patterns (MK I) and rule-based (MK II)- were described in
detail in the previous chapter. This chapter demonstrates
how the two versions respond to four clinical cases,

three of which illustrate single disorders and the fourth

multiple disorders.

The objective is to demonstrate the reasoning
mechanism of the two versions as well as highlighting the

capability of the second version to diagnose and treat

cases with multiple disorders.

5.1 PROBLEM 1

Plasma Na 123 mmol/1l
Plasma Urea 9 mmol/1
Creatinine 80 umol/1
Urine Na 50 mmol/1

Diastolic Pressure 70 mmHg
CvP 5 cm-H,0

Urine Output 35 ml/h



Table 5.1 Reference

Classification of Data.

Plasma Na

Plasma K

Plasma Urea
Haemoglobin
Creatinine
Albumin

Urine Osmolality
Urine Na

Urine Albumin
Diastolic Pressure
Temp. Difference
CVP

PCWP

Urine Output
Urine K

Ranges Used by
LOW NORMAL NORMAL
130 135 145
3.0 3.49 4.51
3 3 6
13 13 18
60 60 120
20 35 50
250 250 400
10 10 20
0 0 0.01
60 70 90
0 0 !

3 3 8

6 6 12
40 40 200
60 60 80

System for
HIGH

150 mmol/I
5.0 mmol/I
15 mmol /1
18 g/dl

160 umol/1
50 g/i

400 mmol/kg
20 mmol/1
0.01 g/1

90 mmHg

1

8 cm”™O

12 mmHg

200 ml/h

80 mmol/24h
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5.1.1 Response of MK I
The system classifies the above data into
appropriate qualitative categories (the reference ranges
used are shown in table 5.1.) and produces the following
correct diagnosis:
Addison's Disease

The treatment module checks the cardiovascular data and

prompts
No Cardiovascular Abnormalities Detected
Administer The Following:
Colloid 500 ml
NacCl 2000 ml
COMMENTS:

The prototype recognises the pattern and
matches it to one of the represented disease-
states. The treatment module acts independently
of the established diagnosis and provides an

acceptable strategy.

5.1.2 Respose of MK II
The system starts by asking questions regarding the
history of cardiac problems and any drugs being
administered. It establishes that there is no history of
Myocardial Infarction and adds this information to its
data Dbase. Cardiovascular and renal data are then
considered and the prototype prompts:
The high wurea/creatinine ratio together
with high urine sodium excretion suggests

renal damage or Addison’s disease.



The treatment module prescribes the following:
Colloid 500 ml

NaCl 2000 ml

COMMENTS:

The system indicates some causes of

renal sodium conservation and

appropriate treatment. The diagnosis

on a mechanistic explanation of the

data.

5.2 PROBLEM 2

Plasma Na 137 mmol/I
Plasma Urea 3 mmol/T
Creatinine 75 umol/1
Urine Na 45 mmol/T
Diastolic Pressure 75 mmHg

CVP 9 cm—-H20
PCWP 30 mmHg

5.2.1 Response of MK I

impaired

suggests

based

abnormal

In this example, the prototype finds two states that

do not contradict the above data and hence produces the

following differential diagnosis:

Normal Plasma-Na with Overload

Overtransfusion of Blood

The treatment module responds in the following manner:

Fluid overload, could be with or without

Congestive Cardiac Failure

(CCF) .

Treatment is to induce fluid deficit and



COMMENTS:

consider inotropes and/or veno-vaso
dilating drugs if CCF is present.
Administer:

Dextrose 5% 1000 ml

The two diagnoses are quite similar, that is,
the patient has fluid overload. The treatment
module confirms the diagnosis but cannot
establish the cause. The suggested treatment is
to restrict fluid intake and to administer
appropriate drugs if heart failure is
considered to be a real possibility by the

user.

5.2.2 Response of MK II

The

system asks questions regarding the history of

any previous heart problems. A search through its rules

results in the following assessment:

COMMENTS:

Fluid overload actual. Overtransfusion or
overinfusion. Oedema may be present.
Treatment:

Fluid restriction and adminster:

Dextrose/Saline 1500 ml

Because the prototype asks questions regarding
the history of the cardiovascular state, it 1is
able to give a more definite diagnosis and
provide clues to the cause of abnormality. It

also suggests that the presence of oedema is a



strong possibility. The prescribed treatment is
to restrict fluid intake and maintain the level

of plasma sodium.

5.3 PROBLEM 3

Plasma Na 170 mmol/I
Plasma Urea 8 mmol/T
Creatinine 130 umol/1
Urine Na 5 mmol/1
Diastolic Pressure 75 mmHg

CVvPp 1 cm-H20

5.3.1 Response of MK I
Only one disease-state is found not to be
contradictory to the data. The diagnosis 1is:
Hypernatraemia due to hypotonic fluid loss
The treatment module response 1is:
Administer colloid to raise CVP.
Is there evidence of negative fluid
balance? ==> Yes
Administer:
Dextrose 3500 ml
COMMENTS:
Because of lack of interaction Dbetween the
diagnostic and treatment modules, the system
asks a question the answer to which should be

clear from the established diagnosis.
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5.3.2 Response of MK II

The diagnosis produced by the system is:

COMMENTS:

Fluid deficit actual.

Hypernatraemia and therefore water loss.

Treatment
Raise CVP by giving Dextrose 5%
Stop when fluid causes CVP to rise
above normal.

Dextrose 3500 ml.

The diagnosis 1s identical to the diagnosis of

MK I, however, the system does not need to ask

complementary questions because of the
communication between the diagnostic and
treatment modules. The treatment 1s slightly

different but essentially the same approach 1is

taken.

5.4 PROBLEM 4

Plasma Na 120 mmol/I
Plasma Urea 35 mmol/T
Creatinine 500 umol/1
Urine Na 30 mmol/T
CVP 10 cm—"0
Urine Output 100 ml/h
Albumin 20 g/i

Urine Albumin 8 g/d
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5.4.1 Response of MK I
The matched disease-state 1is:
Water overload with renal failure
Treatment is:
Fluid overload with or without CCF.
Restrict water intake to 20 ml/hr.
COMMENTS
The prototype correctly diagnoses two of the
abnormalities present Dbut fails to recognise
low levels of plasma Albumin. The recommended
treatment 1s adequate for the treatment of
water overload but it fails to recommend any

strategies to treat the renal failure.

5.4.2 Response of MK II
The prototype checks the history of Myocardial
Infarction and 1looks for nephrotic syndrome. The output
is:
The patient is nephrotic.
Fluid overload actual.
Impaired renal function; moderate-severe
renal failure.
This patient has hyponatraemia with fluid
overload, renal failure and the nephrotic

syndrome

Treatment 1is:
Fluid restriction.

Renal failure regime.

20 ml/hr water.
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If oedema present 20ml/hr colloid + wurine
output until sodium becomes normal.
Colloid/NacCl 1000 ml
Dextrose 5% 500 ml
COMMENTS:
This version manages to detect all the
abnormalities present and provides a summary at
the end of the assessment. The treatment 1s to
take action to correct all the detected

abnormalities.

5.5 CONCLUSIONS

A number of cases were presented to both versions of
the prototype. It 1is clear that MK II is a more clinically
orientated version with adequate communication between its
modules. MK II considers the data in different contexts.
This ensures that all posssibilities for interpretation of

the data are considered.

The last example highlights the inability of the
first version to interpret all the abnormal data and the
recommended treatment 1is also limited. MK II breaks the
problem into its sub-components and 1is therefore able to
give a correct assessment that explains all the abnormal

data as well as recommending appropriate measures to

correct them.

The two versions of the prototype will be discussed

in more detail in the next chapter.
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CHAPTER 6

(Friedrich Nietzsche)

6.0 DISCUSSION

In the previous chapter, the prototype under development
was described in some detail. In this chapter the
methodology undertaken, its strengths and weaknesses will

be fully discussed.

6.1 INTRODUCTION

As mentioned previously, clinicians wuse various
kinds of knowledge to diagnose and manage a patient
depending on the complexity of the problem and the level
of its development. A clinician confronts cases ranging
from straightforward disorders which can be diagnosed
quickly and efficiently using heuristic knowledge, to the
more complicated in which s/he has to go back to first

principles in order to understand the process.

A knowledge-based system ‘should ideally contain
knowledge similar to that which a clinician utilises in
the process of clinical decision making. The knowledge
available to a clinician comprises the principles of
physiology and anatomy, some understanding of the
pathophysiology of the specialised domain and the

experience gained while applying this knowledge.
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6.2 KNOWLEDGE REPRESENTATION

The developed prototype incorporates two knowledge
sources, the knowledge-base and the mathematical model,
Macpee. These knowledge sources are qgquite independent of
each other, furthermore, knowledge 1is represented in a
different manner in each case. They are discussed

separately Dbelow.

6.2.1 Knowledge Base

The knowledge—-base is comprised of symbolic
representation of diseases and relevant management
strategies. The knowledge 1is essentially associational;

describing various patterns of signs and symptoms

(manifestations) in relation to the underlying disorder.

The knowledge-base comprises rules describing
various abnormalities and treatment strategies. These
rules represent the pathophysiology of fluid and
electrolyte metabolism heuristically. There are no rules
defining the mechanism of action, the structure and the
function of the components. Because of this shortcoming,
it can only handle cases that are represented by their
manifestations. It 1is wunable to reason in terms of
physiology or pathophysiology, and hence, incapable of
handling disease-states that are not represented
explicitly in the knowledge-base. Fluid-electrolyte is a
complex domain with a large number of interactions
between the subcomponents. A number of disorders can be

present at the same time resulting in the "non-classic"
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manifestations difficult to diagnose. Kuipers (1984),
gives an interesting example of a patient suffering from
nephrotic syndrome who 1is on a self-imposed low sodium
diet. An important diagnostic finding 1is oedemna, the
swelling of ankles and wrists. However, this patient had
no sign of oedema because of low salt intake. This would
probably baffle a system whose knowledge 1is based purely
on the association of manifestations with a disorder.
This highlights the importance of the need for a more
substantial knowledge-base to be present so that the

underlying mechanism can be understood.

In this work an attempt has been made to tackle the
problem of multiple disorders being present by
concentrating on the key factors that are essential for
the recognition of the presence of a disorder. A formal
evaluation of the system in a clinical environment will

allow further comments to be made on its effectiveness.

Clinical decision making is a difficult process to
explain. Clinicians acquire through experience the
ability to compile a long causal chain into an
association (Kuipers, 1984). However, for a system to be
acceptable, it should Dbe able to explain the 1line of
reasoning followed 1in an appropriate manner. The kind of
explanation that can be generated using the knowledge-
base described above 1is wvery shallow and unacceptable.
Clinical wusers will not accept the decision of a system

that 1is only able to produce explanations based on rules
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that 1is only able to produce explanations based on rules
that are triggered, especially if the rules represent the
association between signs and symptoms with the

underlying disorders.

A more acceptable explanation would be based on
first principles (eg. Patil, 1981; Long, 1986). Recently,
there has Dbeen enormous interest in "user modelling"
explanation, where systems produce explanation based on
the requirements of the user. For a review of wvarious

methods of explanation see Nicolosi (1988).

6.2.2 Model

The model implicitly represents the functional
behaviour of fluid-electrolyte and the circulation. This
representation 1is based on physical laws as well as
physiological laws. Difference equations are wused to
represent relations and 1links between components. These
links can be thought of as implicit causal links,
simulating a cause-effect cycle. Models of this kind
incorporate within them  the results of experiments
carried out on dogs and other animals to estimate the
unknown parameter values in the equations. This is a kind
of knowledge that is very wvaluable for an acceptable
simulation but very difficult to represent explicitly.
The mechanism of action of the domain, is then fairly
well represented as far as realistic simulations are
concerned. The main disadvantage of this kind of

representation is their lack of transparency.
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The model 1is gquite capable of simulating multiple
disorders. Various parameters can be changed to simulate
a number of disorders in conjunction with each other. The
model, however, does not take laboratory or clinical data
as 1input and hence, it 1is difficult to fit a patient’s
data to the model. A mechanism had to be deviced by means
of which the patient’s data could be fitted to the model
so that the model would simulate the condition of the
patient. The knowledge-base was developed with  this
difficulty in mind, hence it acts as the front-end to the
model, assessing the patient's condition and changing the

appropriate parameters of Macpee to this effect.

6.2.3 The Combined System

The prototype therefore, incorporates two knowledge
sources. One is based on heuristic knowledge (knowledge-
base), the other on first ©principles and empirical
knowledge (Macpee). The combination should be sufficient
to meet the requirements of a clinical decision making

system.

However, as the knowledge represented in the model
is neither transparent nor explicit, it can only be used
in a limited manner that is through simulations. Hence,
the model 1is used as an external module with interaction
being reduced to passing parameter values and receiving

simulations
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The model 1is used to justify the recommended therapy
regimen of the treatment module. As such, it 1s quite
capable of simulating wvarious plans and displaying the
results in graphical and numerical form. Prompts are also
displayed about how the patient is feeling when 1life

threatening states are reached.

The two knowledge sources are developed from similar
types of conceptual understanding of the mechanisms of
action of the fluid-electrolyte and circulatory system.
However, the groups developed them separately and without
interaction with each other, This is an additional
problem on top of the difficulties of implementation.
There are areas 1in the domain of fluid-electrolyte and
circulatory metabolism that are not fully understood and

hence there is no uniform view about these problem areas.

6.3 REASONING

6.3.1 MK I

The first working prototype had two different
reasoning mechanisms. The diagnostic module reasoning
was a process of elimination of possible contenders for
differential diagnosis. The disease-states represented
were all potential cause of the manifestations unless
there was at least one manifestation that was contrary to
this hypothesis. This process meant that even though
there was no evidence to support the presence of the

remaining disorders in the differential diagnosis 1list,
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there were no evidence to deny it either. The reasoning
mechanism was therefore that of elimination rather than
establishment of a diagnosis as the most 1likely cause of

disorders

This reasoning mechanism has the benefit of
considering all the disease-states as a potential cause
of the disorder without any bias or weighting. Hence, no
disease-state would be rejected Dbecause of its uncommon

occurrence.

There were a few disadvantages. Because disease-
states were represented explicitly by their associational
pattern of expected symptoms, a large number of disease-
states had to be represented for it to be effective. The
number would run towards infinity if multiple conditions
were to be present. For example hyponatraemia and
cardiac failure were represented by their expected
patterns and 1if a patient was suffering from both
conditions, a disease-state would have to be defined with
the expected pattern. Another problem was the fact that
the system would include disease-states within its
differential diagnoses that were totally unrealistic but
there would be no evidence to reject such a hypothesis.
This problem was rectified by introducing additional

constraints at the level of knowledge representation.

The treatment module performed much more efficiently

and 1its recommendations were dgquite acceptable. It uses
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various rules to assess the state of wvarious sub-systems
of the fluid-electrolyte and circulatory domain in order
to propose appropriate suggestions. The sub-systems
include the cardiovascular system and renal system.
Various fluid therapy plans are generated using the above

information together with the fluid balance state.

The interface between the knowledge-base and Macpee
underwent two development phases. First the coding of
Macpee was altered so that instructions could be given by
default through a file rather than the keyboard. The
second phase was to construct rules that would translate
the output of the knowledge-base into instructions
readable by Macpee and store them in appropriate order on

to a file.

The output of the diagnostic module is used to tune
Macpee to the state of the patient. Hence, the overall
performance of the prototype is dependent on the
diagnosis being correct. In order to reduce this
dependency on the diagnostic module, the treatment module
reasons qguite independently of the diagnosis. In this
way the performance of the two modules can be checked

against each other.

6.3.2 MK II
An informal evaluation of the prototype indicated
that the diagnostic module was capable of Thandling

patients with single disorders subject to modification of
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the constraints of the knowledge representation method.
However, patients that are admitted routinely for
intensive care usually suffer from more complicated
conditions arising from a number of disorders. It was
therefore decided to review the diagnostic module and as

a result it was reconstructed.

The new diagnostic module uses rules to assess
various relevant sub-systems. The assessments take the
form of reports to the user on the condition of the sub-
systems as well as translating the reports into
instructions to change appropriate parameters of Macpee.
In this version therefore, instead of a definite
diagnosis, assessments are produced which results in a
greater number of parameters of Macpee to be changed. It
is considered that this approach will enable the model to

track patient progress more closely.

This approach closely resembles the approach of the
treatment module. Efforts were made to integrate the two
modules. The final prototype produces treatment
recommendations based on the assessment of the diagnostic

module.

One of the problems that computer systems in
medicine are faced with is the evolution of patients over
time. That is, the patient's condition will change (for
better or worse) either Dbecause of intervention Dby

clinicians or as the result of the physiological system
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correcting itself and compensating for deranged effects,

or both.

The physiological model, Macpee, 1s a rich source of

knowledge about the physiology and pathophysiology of the

fluid-electrolyte and circulatory systems. As such, it
is capable of tracking a patient over time. Macpee can
also be used to justify recommended therapies. Time 1is

therefore represented in an abstract manner at the

therapeutic level.

The output of Macpee 1s numerical and graphical in
form. It must be noted that to Jjustify a recommended
therapy, a change in the right direction of appropriate
parameters from the abnormal state 1is considered to be
sufficient and necessary, rather than a number to number
correspondence. That 1is, the patient 1is not expected to
have the same quantitative parameter values, having gone
through the recommended therapy, but rather the same

shift in direction from the abnormal state.

6.4 LIMITATIONS

The prototype suffers from various limitations. Some
are the 1inevitable reflection of wuncertainties in the
medical domain whilst others are the result of

implementation and conceptual limitations.

Patient data are classified into wvarious ranges

before used for ©processing. The classification is
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carried out by comparing the data with a set of reference
ranges. This creates a problem when data fall close to
the threshold of adjoining ranges. The reference ranges

are based on the expected values for "typical" patients.

In reality, a patient may have a large rise in a
particular parameter but still fall into the "normal"
range. This factor undermines to some extent the

effectiveness of the diagnostic module.

The prototype's reasoning process 1s 1in effect an
"open loop". That 1is, it makes diagnosis, recommends
appropriate therapy regimes and simulates these on the
model, but no assessment 1is made from the result of the

simulation to modify the therapeutic measures if needed.

The two knowledge sources were developed
independently, although the knowledge-base was developed

so that it would compensate for some of the deficiencies

of Macpee. However, the physiological and
pathophysiological knowledge represented have been
developed by different groups at different times. There

may be some conflict as a result.

It is of utmost importance for a system in a high
risk environment 1like the intensive care unit to provide
explanation of 1its decision to the wuser for it to be
acceptable. Although the model is used to Jjustify
recommended action, this justification cannot —replace

explanation. The protype has no explanation facilities.
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Because of the implicit and heuristic method of knowledge
representation, the system as it stands can only be made
to generate explanation at a shallow level. For
instance, a particular action 1s recommended because a

particular pattern of manifestation is present.

6.5 RECOMMENDATIONS FOR FUTURE WORK
Further development can be carried out to overcome

some of the deficiencies of the system mentioned above.

For instance, in tackling the problem of ranges,
one piece of data should not be considered in isolation
but the overall trend over an appropriate time scale must

be considered.

The reasoning loop could be closed by a qualitative
assessment of the key parameters after simulation, SO

that new actions can be recommended.

The other limitations are more fundamental and

require major reconstruction.

A coherent knowledge-base should be developed based
on explicit representation of the cause-effect cycle,

where this is known, and empirical knowledge, to clarify

the ambiguities of uncertain areas. Kunz (1984), Widman
(19806) and Long (1986), are three examples of this
approach. This coherent knowledge-base, could then be

used to generate diagnosis, therapy, prediction and most



134

importantly explanation. Because of the explicit

representation of the knowledge, the system would be able

to produce an acceptable explanation to Jjustify its

reasoning mechanism.
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(Albert Einstein)

CHAPTER 7

CONCLUSIONS

The objectives of the project were to study the
feasibility of coupling a dynamic mathematical model to a
knowledge-based system, and to assess the benefits of
such coupling. A prototypical approach was taken to
achieve the objectives. A prototype was developed and is
to be used in the Intensive Care Unit at the Royal Free
Hospital, London, to diagnose, treat and predict the
state of patients suffering from fluid-electrolyte and

circulatory disorders.

The work discussed in this thesis has made a number
of contributions both to systems science and clinical

medicine.

The contributions made from the systems science

perspective are:

* Through the development of the prototype, it has
been shown that coupling of a dynamic
mathematical model to a knowledge-based system

can be achieved.
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This case study has highlighted the benefits of

such coupling, and equally revealed the
limitations. Time was represented at the
therapeutic level, enabling the system to

predict future state of the patient. It was not
possible, due to the limitations of the model,

to represent time at the diagnostic level.

The limitations provided clues as how better to
proceed with coupling. Furthermore, the
limitations provided guidelines as how to
proceed with the process of a complete
integration of a mathematical model with a

knowledge-based system.

From a clinical perspective the contributions of this

work are:

A prototype was developed which encapsulated
expert knowledge within it 1in an accessible
manner, to assist nurses as well as clinicians
in the management of patients in a Intensive

Care Unit.

* A dynamic mathematical model was coupled to a
knowledge-based system and thus a temporal
element was introduced at the therapeutic level
of the developed prototype. This allows the

system to track the patient over time and
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predict changes with regard to the therapeutic

measures.

The key parameters used to diagnose and manage
patients were identified by studying the data

processing mechanism of the clinicians.

As a result of the knowledge acquisition and
elicitation processes, the clinical decision

making process became more structured.

It became apparent that clinicians use
various types of knowledge at wvarious levels of
detail at different times according to the
complexity of the problem at hand. A knowledge-
based system should have similar knowledge
represented within it, taking quantitative and
qualitative forms, representing causal and
heuristic 1links. Such a knowledge-base 1is rich
enough to be a source for reasoning and

explanation.
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APPENDIX 1

In this appendix some examples of the menu
facilities and window outputs of the prototype are
presented. The windows shown in pages 145-152, show the

logical sequence of a typical interaction.
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APPENDIX 2

In this appendix, the 1listing of the developed
prototype in LPA-PROLOG is presented. This 1listing 1is

subject to Crown Copyright.
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