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ABSTRACT

The objectives of this project were to develop a 

knowledge-based system coupled to a mathematical model 

for interpretation of laboratory data in an Intensive 

Care Unit; and to assess the benefits of such a coupling. 

A prototypical approach was taken to achieve these 

objectives.

In this thesis, basic physiology of body fluids and 

electrolyte is presented and several clinically oriented 

knowledge-based systems are reviewed. The two versions of 

the developed prototype are described, the problems 

associated with coupling symbolic programs to numerical 

programs are emphasised and a description of the 

methodology adopted is presented, as are simulation 

results of clinical cases. A critical discussion of the 

knowledge representation and reasoning methodology is 

given, and contributions to systems science and medical 

informatics are highlighted.
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CHAPTER 1

Artificial Intelligence

 
 

 

 

 
 
 

 

 

 
 

 
 

 

 
 

 
 

 
 

(Adrienne Rich, 1961)

1.0 INTRODUCTION

Since World War II, computer scientists have 

develop techniques that would allow computers to 

like humans, that is intelligently. The entire 

effort, including decision making systems, 

tried to 

act more 

research 

robotic
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devices, and various approaches to computer speech and 

vision, is usually called Artificial Intelligence (Al).

A branch of Al research is concerned with developing 

programs that use symbolic knowledge to simulate the 

behaviour of human experts. These systems are commonly 

known as expert systems or knowledge-based systems.

The first period of Al research was dominated by a 

naive belief that a few laws of reasoning coupled with 

powerful computers would produce expert performance. As 

experience accrued, the severely limited power of 

general-purpose problem-solving strategies ultimately led 

to the view that they were too weak to solve most complex 

problems (Newell, 1969; Newell and Simon, 1963). In 

reaction to perceived limitations in the overly general 

strategies, many researchers began to work on narrowly 

defined application problems.

By the mid-1970s several expert systems had begun to 

emerge. A few researchers who recognised the central role 

of knowledge in these systems then initiated efforts to 

develop comprehensive knowledge representation theories 

and associated general-purpose systems (Bobrow and 

Winograd, 1977; Minsky, 1975; Szolovits, Hawkinson and 

Martin, 1977). Within a few years it became apparent that 

these efforts had limited success for reasons similar to 

those that doomed the first general-purpose problem-

solvers. "Knowledge" as a target of study is too broad 
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and diverse; efforts to solve knowledge-base problems in 

general were premature. On the other hand, several 

different approaches to knowledge representation proved 

sufficient for the expert systems that employed them. The 

lesson learned from these experiences was referred to in 

what Professor Edward Feigenbaum of Stanford University, 

in an invited paper, stated:

"The performance level of an expert system is primarily a 

function of the size and the quality of a knowledge base 

it possesses. "

Feigenbaum, 1977

In short, an expert's knowledge provides the key to 

expert performance, while knowledge representation and 

inference schemes provide the mechanism for its use.

Experts perform well because they have a large 

amount of compiled, domain-specific knowledge stored in 

long-term memory. Compiled knowledge takes two forms: 

first principles and general theories on one hand, and 

heuristics and domain theories on the other. The amount 

of knowledge an expert requires is such that it is nearly 

impossible to gain it all from experience.

Experts acquire knowledge of the first principles 

and general theories that are regarded as basic to their 

profession. Then they begin to practice their profession. 

In the process, experience is gained and knowledge is 
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recompiled. Experts move from a descriptive view of their 

profession to a procedural view. Practising experts 

hardly ever explain their recommendations in terms of 

first principles or general theories. If they encounter 

unusual or complex problems, however, they will return to 

first principles to develop an appropriate strategy.

A knowledge-based system should therefore, possess 

similar knowledge of heuristics and first principles in 

order to simulate the decision making process of an 

expert.

1.1 PHYSIOLOGICAL MODELS

Models are always used, consciously or not, by 

experts. Clinicians have a conceptual model of their 

domain of expertise which they use for decision-making, 

prediction and explanation. This model is formed 

gradually in the process of knowledge acquisition and 

accumulating experience. Quite often, such models are 

incomplete due to lack of full understanding of the 

mechanisms of action of the domain.

Various attempts have been made to code this kind of 

conceptual model by using techniques like decision trees, 

flow charts, mathematical simulations and more recently 

causal networks. All these techniques have strengths and 

weaknesses.
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Decision trees simulate the decision-making process 

by creating paths that correspond to the expected 

observations before a decision (diagnosis) is reached. 

Alternative paths are tried to establish a decision. The 

decision-making process is pattern matching. This 

technigue is very efficient if the represented domain is 

well-defined and the level of uncertainty is low.

Mathematical simulation has been in use for a number 

of years to develop models to study various aspects of 

represented domain. Mathematical modelling of 

physiological systems has received substantial interest 

in the recent years (Guyton, Coleman, and Granger, 1972; 

Carson, Cobelli and Finkelstein, 1983; Finkelstein and 

Carson, 1985; Cramp, 1975).

Knowledge is represented and encapsulated by means 

of mathematical relations. Both first principles and 

emprical knowledge are represented. Parameters of such 

models are adjusted (fitted to data) to achieve realistic 

simulations. Such models are a rich source of knowledge; 

the represented knowledge, however, is implicit by 

nature.

With the introduction of Al techniques, it became 

possible to represent knowledge symbolically. In the 

early years only associational knowledge was represented 

symbolically (Shortliffe, 1976; Pople, 1977; Weiss,

Kulikowski, Amarel and Safir, 1978). There was then a 
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move towards the representation of causal reasoning by 

using causal networks and qualitative simulation (Patil, 

1981; Kuipers, 1984). Knowledge represented in this way 

is explicit and therefore readily accessible for 

explanation, prediction and so forth. Physiological 

systems, however, cannot be completely represented in 

this way because of the uncertainties involved in 

understanding the mechanics.

Generally speaking, there is no perfect method for 

representing physiological systems. The methods described 

have their strengths and weaknesses. Natural selection 

dictates that the systems combining different techniques 

of knowledge representation and utilising their strengths 

will survive and evolve.

1.2 SCOPE OF THE PROJECT

The objective of the present research programme was 

to develop a prototype knowledge-based system coupled to 

a mathematical simulation to be used in a clinical 

setting. For the research group involved, it was an 

experiment to assess the problems (both technical and 

conceptual) of such coupling.

Coupling essentially numerical algorithms with 

components of symbolic computing has attracted a certain 

amount of attention (Kowalik, 1986; Kowalik, Chaifan, 

Marcus and Skillman, 1986). This attention, however, is 

not from a uniform point of view. The "conventional” 
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programmer, on one hand considers symbolic computing as a 

vehicle for building "intelligent" front-ends to their 

well developed algorithms, and hence make them more 

usable and accessible. The "symbolic" programmer on the 

other hand, wish to use well-developed algorithms and 

simulations to solve aspects of the problem at hand. In 

the latter case, the level of coupling varies according 

to the requirements and objectives. One could have a 

"shallow" coupling where the simulation and the knowledge 

base view each other as "black boxes" with parameters 

being passed from one to the other. A "deep" coupling on 

the other hand, requires more interaction between the two 

sources. Symbolic and numeric representations are based 

on a similar conceptual understanding of the domain; the 

challenge is how to combine the two in such a way so as 

to reduce the size of the knowledge base and at the same 

time enhance the quality of the knowledge represented. 

This implies that the two knowledge sources must be 

complementary to each other at every level, ie. 

representation and computation. This is by no means a 

trivial problem and is still the subject of much 

research.

A "deep" coupling may not always be desirable as 

the implementation of these systems is still some way 

away. It must be pointed out, that this is not a "black 

and white" situation, where a system is either "deeply" 

or "shallowly" coupled to a numerical simulation or 

algorithm; there are all shades in between.
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The system described here is essentially coupled in 

a "shallow" manner, for reasons which will be described 

in chapters 4 and 6.

The domain of interest is fluid and electrolyte 

disorders in the Intensive Care Unit environment. This is 

an area where laboratory and clinical (bedside) data are 

used extensively to assess the patient's condition and 

subsequent fluid therapy. Application of computer aided 

decision making in this environment is highly desirable 

as a vast number of variables are measured routinely 

several times a day. This complicates the task of 

decision making for clinicians.

On the surface this seemed to be an ideal 

environment, both because of complexity of decision 

making and because of the fact that several mathematical 

models were available in this domain (Dickinson, Ingram 

and Ahmed, 1987; Ikeda, Marumo, Shirtataka and Sato, 

1979; Flood,Carson and Cramp, 1986).

The model used was Macpee (Dickinson, Ingram and 

Ahmed, 1987) which is a model of circulatory and fluid 

electrolyte metabolism. Macpee is able to simulate 

physiological and pathophysiological disturbances over

time. Hence time can be represented in an abstract

manner, in the knowledge based system. Because of the

constraints which will be described, time is only

represented at the therapeutic level.
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The prototype system provides a diagnosis and 

suggests treatment regimens for patients with fluid and 

electrolyte disorders using the data input to the system. 

Subsequent justification of the therapeutic measures are 

carried out by passing the instructions to MACPEE and 

simulating for an appropriate period of time.

The model therefore, does not play any role in 

diagnosis or treatment generation; it is used as a tool 

to justify the suggestions of the treatment module. 

Facilities are provided to enable the user to simulate 

alternative therapeutic measures.

1.3 SCOPE OF THE THESIS

This thesis is centred upon the developed prototype 

for interpretation of the laboratory data. The 

development phases and the coupling technique are 

described.

Chapter 2 describes the physiology and the 

pathophysiology behind the represented knowledge-base.

Chapter 3 reviews a seilection of the clinically- 

oriented knowledge-based systems. The systems reviewed 

incorporate within them some kind of physiological model 

of the underlying mechanism. Problems associated with 

each system are discussed and their strength and novelty 

highlighted. In addition, the work of colleagues at the

Royal Free Hospital, on the development of MODEL, a tool 
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for rapid development of physiological models from 

conceptual description, is reviewed.

Chapter 4 describes the structure and the 

development phases of two versions of the prototype in 

detail.

In Chapter 5 the reasoning mechanisms of the two 

versions are illustrated by means of four examples and 

the responses are compared and contrasted.

In Chapter 6 a critical discussion of the two 

versions developed is given, together with suggestions 

for improvements and suggestion for future work that 

would allow complete integration of numerical simulation 

techniques with a knowledge-based system.

Chapter 7, highlights the contributions made both to 

systems science and medical informatics.

Appendix 1 contains some examples of the output 

windows.

Appendix 2 gives a listing of the developed program 

in LPA-Prolog.



11

CHAPTER 2

2.0 BODY FLUID AND RELATED DISORDERS

The constancy of the fluid surrounding the body cells is 

an essential requirement for their proper function. 

Three major variables must be accurately controlled: 

volume, concentration (total osmolality), and pH 

(hydrogen ion concentration).

The majority of patients admitted to an intensive

care unit suffer from abnormalities of salt and water

balance and circulation and since the control of all

three is closely interrelated such disturbances may

constitute a threat to life and therefore need urgent

correction. In this chapter the pathophysiological

mechanisms of some of these disorders are described.

2.1 BODY WATER

2.1.1 Volume

The distribution of body water is best related to

the "lean body mass" (LBM) . This is the total body mass

exclusive of fat, since fat takes no immediate part in 

exchange of water. The contribution of fat to the body

weight varies widely between different individuals, while

the LBM is quite closely and constantly related to

height. Fat can of course release much water when

metabolized, as in the familiar example of the camel's

hump, but this is a slow process and therefore not
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relevant to acute clinical situations. Fat usually 

comprises some 10-20 per cent of the total body weight.

The lean body mass is composed of about 30% solids 

and 70% water. The water is in two major compartments, 

the intracellular fluid (50% LBM) and the extracellular 

fluid (20% LBM). The extracellular fluid (ECF) is again 

divided into two compartments, the plasma (5% LBM) and 

the intercellular fluid (15% LBM ), (see fig.2.1). The 

intercellular fluid bathes the cells and supports them, 

and can also further be considered as comprising several 

compartments. These are considered in more detail in the 

section on the extracellular fluid.

The plasma compartment is the only one in direct 

communication with the environment, through the gut, 

lungs, kidney etc., and most of the reflex mechanisms 

controlling homeostasis operate through it. It is also 

the only one which can be readily and repeatedly sampled, 

and it is therefore on the basis of changes in the 

composition of the blood plasma that deductions are made 

as to the state of the body fluids. While such 

deductions are usually valid, and of the greatest value 

in patient care, there are occasions when they seem to 

mislead, as when a high serum potassium is associated, 

apparently anomalously, with a low intracellular 

concentration of the ion. A knowledge of such apparent 

anomalies is essential in the handling of individual

patients.
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Plasma 5% Intercellular 15% Intracellular 50%

(3 kg) (9 kg) (30kg)

Figure 2.1- Composition of body fluid (of 60 kg fat-free

weight).
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2.1.2 Concentration

The movement of water across the plasma membrane of

a cell is governed by the relative osmotic pressure of

the intracellular and extracellular fluids. Cells are

hyperosmolar relative to the plasma and therefore they

will tend continually to take up water which they must

then actively excrete. Osmolality is therefore the

appropriate unit of measurement of concentration in

relation to water equilibrium. In contrast, in the

control of pH it is the equilibrium of the ionized

constituents of the fluids that must be maintained, and

therefore at neutral pH the sum of the anionic molecules

must balance that of the cationic molecules. The

electrolyte concentrations of the compartments differ

very markedly (table 2.1) and these differences are

actively maintained in a state of dynamic equilibrium. 

While each ionized particle contributes to the osmotic 

pressure, unionized substances such as glucose and urea 

may also contribute substantially to the total osmolality 

of the body fluids. Such substances can be of the 

greatest importance in relation to the bulk flow of the 

fluid into and out of the cells; they also contribute to 

the osmolality of glomerular filtrate and so affect the 

capacity of the kidney to produce a concentrated urine.

2.1.3 Water Balance

The normal (70kg) adult (60kg lean body mass) drinks 

about 2000ml of water daily and obtains a further 500ml 

from the oxidation of the food. Total body water is

approximately 42000ml. Losses from body are due to
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Major Constituents of Blood

Cations
Sodium
Potassium
Calcium
Magnesium

Anions
Bicarbonate
Chloride
Phosphate
Protein depends

Plasma 
mmol/litre

135-142
3.5-4.5
2.4-2.6
0.7-0.9

23-30
98-107
0.75-1.35

on their isoelectric points

Major Constituents of Intracellular Fluid 
mmol/litre

Cations
Sodium
Potassium
Magnesium

Anions
Bicarbonate
Chloride
Phosphate(organic)
Protein

10
160
12

8
2
45

Partially ionised and act as 
buffer anions

Table 2.1- Table of major constituents of blood plasma 
and intercellular fluid.
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evaporation from the skin, lungs, sweat etc., faecal

losses and urinary excretion. The minimal urine volume 

required to excrete the normal waste products is 500ml, 

and at this volume the urine will be at the maximum 

osmolality of which the kidney is capable of sustaining. 

The osmolar concentration of the urine excreted is 

controlled by the antidiuretic hormone (ADH) which is 

secreted by the posterior pituitary. Increasing the 

concentration of sodium ion (Na+) in the blood perfusing 

the internal carotid artery causes more hormone to be 

secreted and consequently more water is reabsorbed by the 

distal tubules. The result is a concentrated urine and 

dilution of the plasma.

2.1.4 Syndromes in Disease

a) Dehydration

Loss of water in excess of intake results in 

dehydration which is manifested as a generalized 

diminution of the volume of all the body compartments in 

proportion to their relative volumes. Infants have a 

much smaller total volume of body water relative to 

intake and output, and a higher proportion in the ECF.

They are therefore especially susceptible to rapid 

dehydration. Dehydration can follow deficient intake or 

loss of fluid by any one of a variety of routes. Intake 

insufficient to replace inevitable loss is the most 

obvious cause of dehydration and this can be aggravated 

by concomitant insensible losses of water and salt in hot 

climates. While losses of water relatively free of 
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electrolytes may occur, more usually there are 

accompanying electrolyte losses which depend on the 

origin of the fluid lost. Damage to the skin results in 

large losses of plasma-like fluid, rich in protein and 

extracellular electrolytes. Large volumes of fluid are 

secreted daily into the gastrointestinal tract and if 

these are not reabsorbed rapid dehydration is inevitable. 

Renal insufficiency can lead to excessive losses of 

water. As renal failure advances, the capacity of the 

kidney to concentrate diminishes, and the loss of a urine 

of low osmolality may lead to dehydration. Defective ADH 

production leads to the most profound diabetes insipidus, 

with uncontrollable thirst and rapid dehydration.

b) Overhydration

This can result from inappropriate secretion of ADH 

or ADH-like peptides. When an excess of water is 

retained it is distributed throughout the body 

compartments. Serum sodium may fall to very low levels 

(less than the 120mmol/l), but it is the accompanying 

cellular overhydration that is damaging, leading to coma, 

convulsions and death. The capacity of the normal kidney 

for excreting excess water is, however, so great that 

overhydration from excessive drinking is almost 

impossible, but if the kidney function is severely 

damaged, overhydration is a real possibility due to 

failure of excretion. In the special instance of the 

first 24-48 hours following surgery there is excess of 

ADH production, with a fall in serum sodium. Misguided 

attempts to correct this with saline solutions (often
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hypotonic to blood plasma) can lead to rapid 

overhydration and pulmonary oedema.

2.2 INTRACELLULAR FLUID (ICF)

2.2.1 Control of ICF

The ICF is separated from the ECF by the cell’s 

plasma membrane. This membrane contains phospholipids 

and is therefore readily permeable to lipid-soluble ions 

and molecules, such as Na+, K+ and urea. In addition, 

active absorption of non-lipid, water-soluble substances 

can occur by the process of pinocytosis or by absorption 

of a lipid-soluble reaction product following 

modification of the substance at the cell surface by 

enzymes. Hyperosmolarity of the ICF relative to ECF 

results in the continual uptake of fluid and ions by the 

cells, some of which are then actively excreted; e.g. 

selective excretion of Na+ maintains the high 

intracellular concentration of K+. Any damaging

influence on the cell such as anoxaemia or changes in 

hydrogen ion concentration (H+) will lead to a reduction 

in its capacity to excrete Na+ and water. In the special 

instance of a fall in the intracellular pH there is a 

marked tendency to lose K+ from the cells.

In all tissues the maintenance of the electrical 

potential across the cell membrane, which reflects the 

differential ionic concentrations on the two sides, is 

essential to the proper functioning of the cell. In 

addition to K+, the divalent ions Ca+ + and Mg++ are of
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particular importance in maintaining this potential. In 

contractile tissues a low concentration of Ca++ in the 

ECF leads to tetany. A high level of serum K+ will 

aggravate this effect while very low serum K+ levels may 

be associated with muscular paralysis.

2.2.2 Changes in Disease

The volume, composition and pH of the ICF must alter 

in any condition, local or general, which damages the 

cells. Unfortunately we are seldom able to measure these 

changes directly, even when they are established and 

relatively constant. When rapid changes are occurring, 

as when an illness is developing or regressing, 

measurement is even more difficult and inferences have to 

be made from accompanying changes in plasma. In 

dehydration or overhydration, changes are distributed 

throughout the body water, but when water loss or gain is 

associated with sodium gain or loss, then it is mainly 

the ECF which alters in volume. Large changes in the 

ECF volume (10-12 litres or more) can be accommodated 

with remarkably little adverse effect if the fluid is 

isotonic, while an increase of only about 4% in the ICF 

may lead to convulsions. If the osmolality of the ICF is 

to remain reasonably constant then loss of water by the 

cells must be followed by loss of potassium which will be 

excreted in the urine. Similarly rehydration of the 

cells must be accompanied by adequate potassium 

replacement if a low serum potassium is to be avoided.
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There is no direct hormonal feedback control of the 

body potassium. The balance between cellular and 

intercellular fluids is maintained by the cells retaining 

this ion and actively transferring sodium to the outside.

Any change in the intracellular equilibrium is corrected 

by retention or loss. The uptake of potassium by the 

cells is markedly accelerated by the uptake of glucose 

under the influence of insulin. In uncontrolled diabetes 

mellitus intercellular (H+) rises due to starvation, 

potassium is lost from the cells and excreted in the 

urine. When treatment with insulin and rehydration is 

started, the rapid uptake of potassium from the plasma 

can lead to a dangerous hypokalaemia.

It has recently been found that, in severe traumatic 

lesions, insulin is not secreted. A diabetic type of 

condition can thus arise with loss of sodium, potassium 

and water in the urine.

A proper balance of Ca++ and Mg++ is essential for 

the maintenance of intracellular equilibrium not only 

because of their immediate effect on membrane potential 

but also because of their effects on membrane 

permeability and their properties as co-enzymes.

2.3 EXTRACELLULAR FLUID (ECF)

2.3.1 Distribution

The extracellular fluid includes all fluids that are 

not inside cells and it is therefore a very inhomogenous 
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compartment. The two main sections are the plasma water 

(5% LBM) and the interstitial water (10-12 per cent LBM). 

These two are in rapid equilibrium with each other, with 

the cells, and with the environment. The plasma water is 

mainly free water but in the interstitial compartment it 

is bound in the dydrated gel of the connective tissue 

mucoprotein that surrounds and supports the cells. If it 

were not bound in this way the fluid would be subject to 

gravitational forces and would accumulate in dependent 

parts. Only when the gel is over-saturated does free 

fluid appear. This is subject to gravity and may appear 

as oedema.

The main difference between plasma and interstitial 

fluids lie in the higher protein concentration and 

therefore higher colloid osmotic pressure of the plasma. 

As a result some minor differences in the electrolyte 

concentrations between the two compartments are found.

2.3.2 Volume and Concentration

The volume of plasma is controlled by the dual 

mechanisms of ADH from the pituitary and aldosterone from 

the adrenal cortex. The volume of the interstitial fluid 

is dependent on the transcapillary forces between it and 

plasma. While Na+ concentration controls the output of 

ADH and regulates the excretion of water by the kidney, 

aldosterone causes tubular reabsorption of Na+ from the 

glomerular filtrate. While the ADH control is very 

rapid, operating within minutes of changes in plasma 
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concentration, the aldosterone system is much slower, 

operating only within hours of plasma volume changes.

2.3.3 Disorders of ECF

Changes in either the cells or the environment are 

usually reflected in changes in the ECF which, as 

mentioned earlier, can be readily sampled. Disorders of 

the ECF can arise in various ways: (i) disturbances of 

hormonal control related to ADH secretion, or aldosterone 

production as in Addison's disease. Such changes lead to 

failure of homeostatic mechanisms and disorder arises 

rapidly; (ii) defects of absorption or excretion 

mechanisms (kidney, lungs, intestine). These can be 

followed by limited compensation, but the capacity of the 

body to rectify ECF disorders from these causes is very 

small; (iii) excessive gains or losses from the cells 

(e.g. in diabetic ketoacidosis); and (iv) excessive gains 

or losses to the outside (e.g. following burns or 

diarrhoea).

2.4 SERUM SODIUM

High levels of serum sodium (hypernatraemia) are 

associated only with gross water dehydration and 

concentration of the plasma. The symptoms are those of 

gross dehydration. Excessive retention of sodium is more 

often associated with water retention, and finally the 

rise in the volume of ECF is clinically manifested as 

peripheral oedema. About 10-12 litres of excess ECF must 

accumulate in a 70kg man before pitting oedema can be 

detected. Such peripheral oedema is relatively harmless 
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to the patient, but if pulmonary oedema appears it can be 

rapidly fatal.

Low levels of serum sodium (hyponatraemia) are 

relatively common. Excessive sodium loss leads to a 

compensatory loss of ECF and to a much lesser extent of 

cellular water. If the plasma volume falls sufficiently 

the blood pressure can not be maintained, glomerular 

filtration rate falls and serum creatinine and urea 

associated with prostration and lassitude in the patient, 

has come to be known as the 'low sodium syndrome'. It is 

found not only in Addison's disease but also (along with 

potassium deficiency) following prolonged excessive 

administration of diuretic drugs.

Oversecretion of ADH causes water retention in 

excess of sodium and very low serum sodium levels. 

Deficient secretion of ADH leads to excess water loss and 

to hypernatraemia if thirst is not satisfied. Excess 

aldosterone secretion leads to sodium and water retention 

and potassium loss. This occurs in association with 

hypertension, renal failure, hypoalbuminaemia with a low 

plasma volume, or following trauma such as surgery or 

burns.

Absorption and excretion control disorders are 

really confined to the kidney. Absorption of sodium from 

the gut is seldom impaired and excessive intake induces 

nausea and vomitng. In renal failure the capacity of the 

kidney to retain or excrete sodium is often reduced, and
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therefore excess intake leads to oedema whereas 

insufficient intake gives rise to a low sodium syndrome.

Excess loss of sodium to the outside occurs in 

diarrhoea, from severe burns, and during heavy sweating. 

The serum concentration may be raised or lowered 

depending on the amount of water lost relative to sodium. 

Excessive gains usually result from overtransfusion of 

saline solution, particularly if renal function is 

impared. Many infused solutions are hypotonic, and if 

given in excess are therefore usually associated with 

hyponatraemia. This condition is most easily detected 

clinically by daily weighing of the patient.

Excess loss of sodium can occur into the cells when 

the sodium pump is not operating; this may happen in 

anoxaemia, acidaemia, or intracellular glucose deficit. 

This, with the accompanying loss of potassium from ICF to 

ECF and rise in serum potassium, is sometimes called the 

"sick-cell syndrome".

From the considerations above, it will be clear that 

the level of sodium does not reflect the total body 

content. High levels may be associated with a gross 

deficit of ECF and vice versa. Estimation of both 

concentration and volume of distribution are necessary to 

assess the situation and correct it properly.
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2.5 OEDEMA

Oedema means the presence of excess interstitial 

fluid in the tissue. Any factor that increases the 

interstitial fluid pressure high enough can cause excess 

interstitial fluid volume and therefore cause oedema.

Oedema usually is not detectable in tissues until 

the interstitial fluid volume has risen to about 30% 

above normal. In serious cases of oedematous, the 

interstitial fluid volume can increase to several hundred 

per cent above normal.

2.5.1 CAUSES OF OEDEMA

1. Abnormal Capillary Dynamics

Several different abnormalities in these dynamics 

can increase the tissue pressure and in turn cause 

extracellular fluid oedema. The different causes of 

extracellular fluid oedema are:

a. Increased capillary pressure, which causes

excess filtration of fluid through the

capillaries.

b. Decreased plasma protein, which causes reduced

plasma colloid osmotic pressure and hence

failure to retain fluid in capillaries.
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c. Lymphatic obstruction, which causes protein to 

accumulate in the tissue spaces and therefore 

causes osmosis of fluid out of the capillaries.

d. Increased capillary permeability, which allows 

leakage of excess fluid and protein into the 

tissue spaces.

2. Fluid Retention By Kidney

When the kidney fails to excrete adequate quantities 

of urine, and the person continues to drink normal 

amounts of water and ingest normal amounts of 

electrolytes, the total amount of extracellular fluid in 

the body increases progressively. This fluid is absorbed 

from the gut into the blood and elevates the capillary 

pressure. This in turn causes most of the fluid to pass 

into the interstitial fluid spaces, raising the 

interstitial fluid pressure. Therefore, simple retention 

of fluid by the kidneys can result in extensive oedema.

3. Heart Failure

Heart failure is one of the most common causes of 

oedema. When the heart is unable to pump blood out of 

the veins with ease, blood dams up in the venous system. 

The capillary pressure rises, and serious "cardiac 

oedema" occurs. In addition, the kidneys often function 

poorly in heart failure resulting in even more oedema.
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2.6 SUMMARY

In this chapter a brief account of the physiology

and pathophysiology of the body fluid and electrolyte

metabolism was given. The disorders and conditions

described are those represented in the developed

prototype. The above discussion of disorders therefore

constitutes the conceptual understanding behind the 

knowledge represented in the prototype which will be 

described in chapter 4.
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CHAPTER 3

(Jose' Ortega y Gasset)

3.0 REVIEW OF EXTANT SYSTEMS

In this chapter work carried out by other researchers is 

reviewed. There are obviously a large number of systems 

that could be reviewed, however, the emphasis here is on 

the clinically oriented computer systems which include 

within them some kind of model of the underlying 

mechanism. Clinically oriented computer systems are 

reviewed because of the uncertainties involved in 

medicine, and therefore the method used in attempting to 

deal with uncertanties can be enlightining. The reviewed 

systems are selected because of the methodology rather 

than the domain they represent.

3.1 ABEL

This is the work of Ramesh Patil (1981), carried out 

at the Computer Science Laboratory at MIT under the 

supervision of Peter Szolovits and William B. Schwartz. 

ABEL stands for Acid Base ELectrolyte. This was 

pioneering work on the causal representation of 

physiological and pathophysiological knowledge. Because 

of its impact on the later work, it is reviewed in some 

detail, with particular emphasis on the methodology of
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knowledge representation and the concept of a

Specific Model.

Patient

3.1.1 INTRODUCTION

The developers had three main objectives.

1. To develop a representation of causal medical 

knowledge.

2. To develop a case-specific "understanding" of 

illness. This understanding should be capable 

of describing subtle interactions between 

diseased and normal physiological mechanisms, 

and therapeutic interventions.

3. To develop a set of reasoning procedures to

combine the aggregated phenomenological

knowledge of disease associations with the

detailed pathophysiological knowledge of 

disease processes. The phenomenological 

knowledge is necessary for efficient diagnostic 

exploration; the pathophysiological knowledge 

for proper understanding of a difficult case.

ABEL consists of four major components:

1. The patient specific model (PSM),

2. The Global Decision Making component,
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2. The diagnostic component,

3. The therapy component.

Figure 3.1, demonstrates the relation between these 

components.

The PSM describes the physician's understanding of 

the state of the patient at any point during diagnosis 

and management; it is intended to be the central data 

structure with which other components of the system may 

reason.

The global decision making component is the top 

level program which has the responsibility of calling the 

other programs with specific tasks. It also modifies the 

patient specific model to reflect the revised state of 

the patient; calls upon the diagnostic and therapeutic 

programs. Note that at every step the global decision 

maker can evaluate each of the possible sets of actions 

and choose the most desirable one.
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Figure 3.1- Schematic diagram of the overall structure of ABEL.
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3.1.2 KNOWLEDGE REPRESENTATION

A hierarchial multi-level representation scheme is 

developed to describe medical knowledge. The lowest level 

of this description consists of pathophysiological 

knowledge about disease, which is aggregated into higher 

level concepts and relations, gradually shifting the 

context of the description from physiological to 

syndromic knowledge. The aggregate syndromic knowledge 

provides a concise global perspective and helps in the 

efficient exploration of the diagnostic alternatives. The 

physiological knowledge provides the capabilities of 

handling complex clinical situations arising in patients 

with multiple disturbances, evaluating the physiological 

validity of the diagnostic possibilities being explored, 

and organising a number of fragmented facts into a 

coherent causal description.

3.1.2.1 Anatomical Knowledge

This includes:

a) part-of hierarchy for organ systems;

b) connected-to relations that provides material 

flow information;

c) contained-in and position relations which 

provide anatomical relations between anatomical

sites.
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This knowledge is not currently used.

3.1.2.2 Aetiological Knowledge

Disease categories are primarily organised around 

the organ systems; eg. renal disease. Regardless of the 

cause of say renal failure, all the diseases causing 

renal failure share common symptoms.

In a manner similar to the anatomical 

categorisation, the diseases with common aetiology share 

symptoms common to the disease mechanism.

3.1.2.3 Physiological Knowledge

The knowledge necessary to deal with fluid, 

electrolyte and acid-base disorders is represented. The 

physiological knowledge about fluids and electrolytes in 

the program deals with: fluid compartments of the body 

and the distribution of body fluids in these 

compartments; the composition of fluid in each 

compartment; the space of distribution of solutes, 

exchange of fluid and electrolytes between compartments, 

and the homeostatic mechanisms for regulating the 

quantity and composition of the body fluids.

3.1.2.4 Disease Knowledge

A disease is defined in terms of its anatomical

involvement, its temporal characteristics, its 

aetiological characterisation and its pathophysiology. As
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each of the anatomical, aetiological and physiological

knowledge is hierarchically organised, the locus of a

disease along each of the disease definitions can then be

derived from these loci. The basic medical knowledge

about anatomy, aetiology etc. provide a framework for

describing and organising the disease hierarchy.

3.1.2.5 Causal Link

There is a need to know how a cause relates to an

effect, as well as other contextual information

influencing the causal relation. To capture this

information, the description of a causal link has

associated with it a multivariate relation between

attributes of the cause and the effect, the context, and

the assumptions which constrain the causal relation.

3.1.2.6 Multi-Level Causal Description

The clinicians do often consider a difficult case at

several levels of detail. In order to be effective, the

program must be able to describe the problem briefly yet

still be able to take low level details into

consideration. The program’s medical and case-specific

knowledge is represented at five levels of detail,

ranging from pathophysiological to phenomenological

levels of knowledge.

Each level of description can be viewed as a

semantic net describing a network of relations between

diseases and findings. Each node represents a normal or 
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abnormal state of a physiological parameter and each link 

represents some relation (causal, associational, etc.) 

between different states.

A state is represented as a node in the causal 

network. Associated with each node is a set of attributes 

describing its temporal characteristics, severity or 

value etc. A node is called primitive if it does not 

contain internal structure and composite if it can be 

defined in terms of a causal network of states at the 

next more detailed level of description. One of the nodes 

at that more detailed level is designated as the focus 

node and the causal network is called the elaboration 

structure of the composite node.

Because of the fixed number of levels in the multi-

level description, the program's ability to aggregate

causal description is limited. To overcome this the

notion of a compiled link which represents a causal

pathway is introduced. The compiled link allows the

selective exploration of commonly occurring causal paths

more deeply than others without degrading the quality of

deduction. This also provides the ability to activate

nodes which are not immediate neighbours of the node

under consideration.

The presence or absence of a causal relation between 

a pair of states can change their diagnostic and 

prognostic interpretations. The system has the capability 
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of hypothesising the presence or absence of a causal 

relation. This is the primary reason why links are 

considered objects in their own right rather than simply 

an ordered pair of states.

3.1.3 PATIENT SPECIFIC MODEL (PSM)

A PSM is a multi-level causal model, each level of 

which attempts to give an account of the program's 

understanding of the patient's case. Each PSM contains 

all the diseases and findings that have been observed or 

concluded in a given patient along with hypothesised 

diseases, findings and their interrelationships, which 

together form a coherent explanation. Within each PSM, 

the known and the hypothesised diseases, findings and 

their interrelationships are mutually complementary, 

while the alternate explanations which are mutually 

exclusive are competing to explain a patient's illness.

The PSMs are implemented using a Patient Specific 

Data structure (PSD). The PSDs are organised in a tree. 

The PSD in the root position of the tree contains 

observed findings and structure common to all the PSMs. 

Differing interpretations of the observed findings are 

described by creating inferior PSDs each containing 

incremental changes (additions as well as deletions) to 

their superior PSD. Each PSD in the tree inherits from 

its superior all the structure present in them except 

that which is explicitly deleted. The list of PSMs at any 
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given instant of diagnosis is called causal hypothesis 

list (CH-list).

All the new information received is always added to 

the root PSD, the PSD common to every PSM.

The PSMs are created and augmented using structure 

building operations:

Initial formulation to create the initial set of PSMs 

from the presenting complaints and lab results.

Aggregation to summarize the description at a given level 

of detail to the next more aggregate level.

Elaboration to disaggregate the description at a given 

level to the next more detailed level.

Projection to hypothesise associated findings and 

diseases suggested by states in the PSM.

Constituent summation and decomposition to evaluate the 

combined effects of multiple aetiologies and to evaluate 

the unaccounted components of partially accounted 

findings.

Each of the mechanisms, aggregation, elaboration and 

projection are used in the initial formulation of the 

PSM. Focal aggregation and elaboration create mappings 
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between nodes across different levels, and causal 

aggregation and elaboration create mappings between 

causal links across different levels.

The knowledge representation formalism and 

operations described above are considered to be 

sufficient for dealing with effects with multiple causes 

and feedback loops common in the physiological regulation 

of the body's vital functions. The mechanism developed 

is intended for symbolic description for reasoning with 

and explaining the abnormalities in physiological 

regulation in a patient, not for predicting the behaviour 

of physiological parameters over time using dynamic 

simulation techniques.

3.1.4 DIAGNOSTIC CLOSURE (DC)

The diagnostic closure provides the program with an 

ability to evaluate the consistency of a finding before 

it decides to accept it. If the incoming information is 

true, a major re-analysis of the understanding will have 

to be undertaken. Therefore, the program has an 

opportunity to suspend the global diagnostic processing 

and revert to local processing to validate the finding or 

to justify ignoring it.

Diagnostic planning generally begins with the global 

task of discriminating between the alternate explanations 

provided by the set of PSMs. This task is decomposed into 

smaller tasks using the following diagnostic strategies: 
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confirm, differentiate, rule-out, group-and-differentiate

and explore.

The diagnostic algorithm for the ABEL is:

1. Presenting Complaints: The serum analysis and 

the initial complaints are analysed. A small 

set of initial PSMs is created and added to the 

list of causal hypotheses (the CH-list).

2. Rank Ordering Hypotheses: All PSMs in the CH- 

list are scored for quality of explanation they 

provide for the patient's illness. The leading 

one or two of these PSMs are selected as 

possible explanations.

3. Computing Diagnostic Closure (DC): DCs for the 

selected PSMs are computed and disease 

hypotheses in each DC are scored.

4. Termination: If the DCs for all PSMs are null 

or if some PSM provides a complete and coherent 

account for the patient's illness then the 

current phase of diagnosis is complete.

5. Diagnostic Information Gathering: Based on the 

number of DCs, a top level confirm or 

differentiate goal is formulated. Using 

diagnostic strategies, this goal is decomposed 
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into simpler sub-problems until individual 

questions are formulated.

6. Restructuring the PSM: If (5) results in new 

finding, this finding is incorporated into each 

of the PSMs by extending the structure of the 

PSMs to take the observed finding into account. 

This process is repeated starting at (2).

3.1.4.1 Scoring the PSM

The score of a PSM measures the degree of

incompleteness of the PSM as an explanation of the

patient's illness. It is computed by summing the

severities of partially and fully unaccounted states in

the PSM. The Patil suggests that this algorithm could be

improved by:

a) taking into consideration the need of a finding

to be accounted for by an acceptable diagnosis;

b) by taking into account the degree of

explainability of a PSM.

3.1.4.2 Scoring a Disease Hypothesis

First, they are grouped according to the number of

unaccounted findings that can be accounted for by each

hypothesis Second, among those hypotheses that can be 

accounted for the same number of findings, the diseases 
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are rank-ordered by a score computed from three factors, 

which are:

1 . match; the number of causes and findings in the 

PSM that are consistent with the disease 

hypotheses,

2. mismatch; the number of causes and findings in 

the PSM that are inconsistent with the disease 

hypotheses, and

3. unknown; the number of unobserved findings 

predicted by the hypothesis which are not 

inconsistent with the PSM.

A disease hypothesis is eliminated from immediate 

consideration (for one cycle of diagnostic inquiry) if 

the difference of match and mismatch is below an 

arbitrary threshold. The match combined with the unknown 

corresponds to the maximum possible score attainable by a 

given disease hypothesis. If this score goes below a 

threshold, the hypothesis cannot be confirmed even if all 

the remaining unknown findings are resolved in favour of 

the hypothesis.

This criterion is purely structural. The author 

believes that incorporation of probabilities as a 

secondary scoring criterion would substantially improve 

the quality of the scoring mechanism.
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To sum up, a diagnostic closure is created by 

projecting appropriate states in the PSM or hypothesised 

diseases forward to identify their predicted consequences 

and backwards to identify their possible causes.

The information gathering process of each diagnostic 

cycle is followed by the revision of the structure of 

each PSM, making it consistent with the newly available 

information.

3.1.5 LIMITATIONS

The inherent size and complexity of the domain has 

forced the developers to limit the scope of the research 

to just a few issues. Even within this limited scope 

there are some major problems.

The representation of the relation between states is 

inadequate; all interactions are described using a single 

type of link, i.e. causal. This is unnatural when there 

is no known causal explanation. Furthermore, there is a 

need to group states which jointly have significant 

diagnostic and prognostic implications even if the states 

are not causally or statistically related. For instance, 

associational links and grouping links are needed to 

capture these cases.
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The program also fails to ascertain the overall 

state of the patient's health, e.g. vital signs, 

stability etc.
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3.2 USE OF Al AND MATHEMATICAL RELATIONS Al/MM

This is the work of Kunz (1984) , on integrating 

simple mathematics and Artificial Intelligence techniques 

to develop and analyse a physiological model of the renal 

system.

The program analyses physiological behaviour and 

explains its analysis. It considers relevant data, 

identifies whether the data are abnormal and predicts 

possible effects of any abnormalities.

3.2.1 INTRODUCTION

The physiological model is based on anatomical 

knowledge, the behaviour of the physiological system and 

the mechanisms of action of the system.

Knowledge of physical laws is represented

mathematically and included in the knowledge-base. The

knowledge-base also includes knowledge of anatomy,

physiological functions, and measurable parameters of

physiological function. The knowledge-base also includes

inference rules which are based on a definition of the 

causal relation between events.

The program uses this knowledge (with the exception 

of the mathematical knowledge) to make inferences about 

normal physiological behaviour and the causes and effects 

of abnormal physiological behaviour. Mathematical
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relations are applied if found appropriate and the

relation is evaluated either qualitatively or

quantitatively as appropriate.

Al/MM makes inferences from knowledge of structure 

and function. It utilises definitions of causality and 

heuristic and mathematical descriptions of function.

To define a physiological model, a vocabulary is 

used that describes processes, substances, parameters, 

mechanisms of action, underlying bases for describing 

mechanisms as well as anatomy (structure).

Causality is represented explicitly by rules in 

terms of events. The "bases" for these causal relations 

are their underlying principle and are used to provide 

explanation of their use. The bases include widely 

accepted empirical observations and laws of physics. 

There are, therefore, two kinds of causal relations 

described as "Type-1" and "Type-2" respectively. Type-1 

bases for causal relations may have qualitative or 

quantitative forms; whereas Type-2 can only have 

quantitative form.

Causal relations may be propagated through an 

anatomical network to cause a series of resultant 

physiological events.
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There is a hierarchy of bases, mechanisms and 

processes. This hierarchy provides a strong focus of 

attention of heuristics for analysing a physiological 

model to describe and predict behaviour. Problems are 

looked at in terms of this hierarchy. The problem 

solution then is to match the abstract patterns of 

mechanisms with the data for each case. This hierarchy 

also assists in the process of knowledge acquisition 

about a problem.

Al/MM, therefore, uses both symbolic knowledge and 

mathematical knowledge. Mathematical knowledge is used to 

clarify ambiguities when no well-defined symbolic 

knowledge is available and to impose constraints on the 

behaviour of the overall system. These constraints are 

based on the laws of physics. In addition, certain 

parameters can be estimated using this kind of knowledge 

where a direct measurement is not possible.

Al/MM performs the following functions by request:

1 . Report the value of a parameter (both

qualitative and quantitative);

2. Identify methods for measuring the quantitative 

value of a parameter or a related set of 

parameters. These are either stored or inferred 

from principles of physiology;
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3. Obtain a qualitative or quantitative value for 

a parameter;

4. Interprete the significance of a parameter with 

a specified value. Predict the effects of an 

abnormality and therapeutic goals;

5. Print the definition of a concept.

Ml/MM reasons about physiological behaviour, 

identifies abnormality, identifies possible therapies and 

predicts the potential outcome of therapy.

3.2.2 KNOWLEDGE REPRESENTATION

A knowledge representation system (MRS) Genesereth 

et al. (1980), is able to retrieve facts from knowledge 

and databases, interpret rules, and store data and 

conclusions in the database.

The knowledge-base includes three kinds of 

physiological knowledge:

a) Principles of physiology,

b) Facts and relations, including facts about

real objects, parameters, physiological 

processes, anatomical relations and

physiological mechanisms of action,
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c) Rules for inferring conclusions about the 

patient state.

Al/MM represents knowledge of facts of anatomy and 

physiology as "concepts". Concepts are very similar to 

frames in the way knowledge is represented. A concept is 

defined by its name, type, relation with other concepts 

or entities, parameters etc. There are 125 concepts 

represented, each having between 5 to 65 features.

Concepts represent two kinds of physical objects: 

anatomical and physiological substances. Additional 

concepts specify features of each parameter. Furthermore, 

concepts define physiological processes, or the rules 

that can change parameter values. Concepts also describe 

mechanisms and bases.

Al/MM has rules that define relations between 

parameters and physiological concepts. These rules can be 

used to infer relations and values not explicitly 

represented in the knowledge-base.

3.2.3 META KNOWLEDGE

Al/MM has two forms of meta knowledge:

a) Twenty five rules which identify that some 

relations have single values, for instance, a 

parameter has a single qualitative state or a 

process has a single mechanism, and
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b) Seventy five rules to specify the number of 

possible instances of a given relation that is 

invariant.

Al/MM uses this knowledge to improve the efficiency of 

its search. This is the knowledge that is not described 

explicitly in physiology, but it is implicit in the 

descriptions of anatomy and physiology.

3.2.4 REASONING

A causal analysis of the effects of some change can 

be instantiated by the user. The user can, therefore, ask 

the system to interprete the effect of some perturbation. 

Al/MM reasons forward from observed cause to hypothesised 

effect. The system then searches for further effects of 

the newly hypothesised cause. Propagation continues until 

no further effects are found or if a feedback loop is 

recognised. An event, therefore, can be the cause of an 

effect and so forth.

The system provides a top-level summary of causes 

and effects at the highest appropriate anatomical level.

A causal relation is plausible if it is known to be 

logically possible and if an anatomical link exists. The 

causal relations used are identified to be of Type-1 or 

Type-2 bases, and the knowledge-base is used to check for 

abnormalities of parameters related to the relevant type.
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The effects of the causal propagation must be consistent 

with the laws of physics and physiology.

To interprete the effects of an abnormal event, the 

system searches for primary effects. If any is found, a 

record is made into the patient-specific database. 

Secondary effects are then found. The propagation stops 

when there are no more effects or when a negative 

feedback loop is detected.

Al/MM reasons at various levels of detail but it 

displays the top-level reasoning. Other levels may be 

displayed if explanation is asked for.

3.2.5 CONCLUSIONS

Al/MM is an interesting example of using empirical 

knowledge in conjunction with well understood principles 

of physiology and anatomy to construct a model. The 

empirical knowledge is of two forms: mathematical laws of 

physics and causal heuristics. The former imposes 

constraints so that the behaviour of the system is 

consistent with laws of physics; or in other words with 

common sense as well as the more sophisticated laws of 

physics that are not explicitly represented. Causal 

heuristics are used to cope with uncertainties due to 

lack of a full understanding of the renal system.
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Al/MM is a hybrid model of the renal system which is 

able to choose an appropriate qualitative or quantitative 

analytical technique for a particular problem.

Its problem-solving process involves explicit rule-

based reasoning, where rules perform a search to find a 

path through which physiological function can propagate 

through an anatomical network. In contrast ABEL, uses 

relatively complicated operators to aggregate nodes in a

causal network. This is due to the lack of explicit

representation of anatomy and its relation to physiology

in ABEL.

Al/MM is developed such that clinical problems can

be analysed much in the same manner as a traditional 

mathematical model, that is, given a cause what will be 

the effect(s). The challenge, however, is to use this 

kind of augmented knowledge representation to do the 

reverse, i.e. given a set of data (effects) what are the 

potential causes (differential diagnosis).
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3.3 LONG’S WORK ON USE OF A PHYSIOLOGICAL MODEL

One of the most impressive works that is currently 

being developed is carried out as a joint effort by the 

MIT Computer Science Laboratory and Tufts New-England 

Medical Centre in Cambridge and Boston MA. The team is 

headed by Dr William Long, and although they have been 

very conservative in publishing their work (three papers 

in six years, Long et al. , 1982; Long et al., 1984; Long 

et al., 1986) what exists is of a high calibre.

Their work is basically built upon the experience 

of ABEL but restricted to a smaller and more manageable 

area of cardiovascular disorders and specifically those 

of heart failure. It is important to note that this work 

is experimental and still under development.

3.3.1 SYSTEM OVERVIEW

The approach makes use of a causal physiological 

model for relating clinical and laboratory data to the 

mechanisms responsible for the patient's disorder and 

provides methods to aid the user in reasoning from that 

model about diagnostic and therapeutic questions. The 

model and methods are accessible, abling one to use the 

program as a reasoning blackboard (or more recently 

reasoning network) to examine the implications of 

hypotheses and possible therapies.
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The work has been directed toward the diagnosis and 

management of heart failure, where a thorough 

understanding of the haemodynamic and physiological 

relations may provide many clues needed to give a proper 

interpretation of patient data.

The approach uses a partially constrained 

physiological model to represent the state of the 

patient. The user has access to this model through 

procedures to enter data, to allow diagnostic and 

therapeutic reasoning, and obtain an explanation of the 

patient state.

The ultimate goal is to develop a program where the 

user can enter what is known about a given patient, 

review the implications in terms of what must or must not 

be true of the physiological state, consider the 

implications of hypotheses accounting for that state, 

look for strategies for gathering appropriate clarifying 

data, and consider possible therapies. This may be 

characterized as a reasoning blackboard for thinking 

about a patient with cardiovascular disease. The intent 

is to develop a program to assist physicians to reason 

about the diagnosis and management of patients with 

severe or complex heart disease of any aetiology.

The model represents information about the nature of 

aetiologies, causal relationships, therapies and 

measurements.
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The program is organized into five modules; the 

physiological model (the central data repository), an 

input module, a diagnostic module, a therapy module, and

an explanation module (figure 3.3).

The input module receives the data about the patient 

and sets the qualitative parameters in the physiological 

model. The other modules operate from the physiological 

model to assess the completeness of the diagnosis and 

plan ways of improving it; to search for possible 

therapeutic measures and to anticipate their possible 

effects, and to explain the model to the user.

The physiological model is central to the program

structure. It is a network of nodes representing

qualitative values of

example there are nodes

representing high heart

physiological parameters. For 

representing angina and another 

rate. All nodes initially have

the value unknown, reflecting the initial state of 

knowledge about the patient. As the input module acquires 

and assesses data, some nodes are assigned a truth value, 

either when the program decides there is sufficient 

evidence to justify this or when the user decides the 

value is appropriate. The nodes are connected by a 

network representing the minimal logical constraints that 

must exist among them. Logical relations are 

automatically maintained by a Truth Maintenance System 

(TMS) (for a detailed account of TMS refer to McAllester,
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Figure 3.3- Program organisation.
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1980) by propagating the implications of each assertion. 

When an assertion is not consistent with the current 

state of the model, the inconsistencies are presented so 

that the user can withdraw any that are not appropriate 

resulting in the reconfiguration of the logical 

implications. Conclusions based on less dependable 

reasoning are encoded as heuristics under the user's

control.

Each node represents a range of values with a

potential qualitative impact on patient management. This

design in effect factorises the reasoning task into two

components: (1 ) interpreting patient data to determine

the truth or falsity of various nodes, and (2)

determining what diseases and therapies are consistent

with the known nodes. Quantitative information is also 

used to guide the program in gathering input, making 

diagnoses, and recommending therapy. The nodes represent 

physiological parameters, primary causes, and therapies. 

A disease is thus represented by a chain of abnormal 

nodes implied by various observations about the patient. 

This kind of representation can handle multiple diseases 

and multiple presentations of a disease as additions and 

variations to these chains of nodes. The intent is to 

distinguish disease states that would change the therapy 

needs. In addition to the links with possible causes and 

effects, nodes include links to the possible therapy 

nodes hence focusing diagnosis and therapy, and a list of 

possible measurements that might provide evidence for 
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the truth of the node. Both the therapy nodes and 

measurements have risks, benefits and requirements that 

translate into costs to aid in selection.

The diagnostic module attempts to relate clinical 

signs and symptoms (pulmonary oedema, fatigue, poor renal 

function, angina, etc.) to both their original cause and 

possible aggravating factors. The therapeutic module uses 

these causal chains to identify therapies that may break 

the chains. Since therapies may have multiple effects or 

a given effect may have multiple implications in the 

overall system, the therapies may have effects that will 

aggravate the patient state. The program analyses the 

potential effects to assist the physician in anticipating 

both the expected and the unexpected outcomes.

Long et al. (1986), report the result of development 

of an algorithm based on the signal flow analysis for 

predicting effects and implementation for handling 

multiple effects, changes over time, non-linear 

relationships and providing explanations. When applied to 

the physiological model of the cardiovascular system, 

this methodology predicts drug effects consistent with 

the medical literature.

3.3.2 PREDICTING CHANGES

The approach chosen is different to either 

quantitative or qualitative (e.g. Kuipers, 1986) 

simulation. In the quantitative simulation there is a 
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need to know the current value of each parameter, many of 

which are not readily measurable. In the case of the 

qualitative simulation on the other hand, in the 

cardiovascular domain there is a tendency for explosion 

of possible model states when adding opposing influences 

of unknown magnitude.

The approach adopted by Long et al. is to assume the 

system will reach a stable state after a perturbation. 

The question then becomes how that stable state is 

changed from the state before therapy. Signal flow 

analysis is used in the domain of circuit analysis to 

predict circuit gain. In a similar way, after making 

simplifying assumptions and modifications to the signal 

flow analysis machinery, one is able to apply this 

approach to reasoning about a physiological model. The 

assumptions are as follows:

1 . The system goes from steady state to steady 

state. It is assumed that for the time period 

of concern, parts with shorter time constants 

have reached a stable state and parts with 

longer time constants have no effect.

2. The system can be modelled as being piece-wise 

linear.

Given these simplifications, the network of 

physiological parameters is linear and the techniques of 
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signal flow analysis become applicable. A new formulation 

of Mason’s General Gain formula (Mason, 1956) is derived 

that computes the gain incrementally from parameter to 

parameter, correcting for feedback each time a new 

feedback path is encountered (the derivation and 

implementation of this formula are to be discussed in a 

forthcoming paper). Essentially, the computation involves 

computing for each path from the changed parameters to 

other parameters the gain for each link. The gain is the 

inherent gain of the link adjusted for any new feedback 

loops encountered by the path at that point and the 

change in a parameter is the sum of the path gains going 

through the parameter.

The relationships on the links between parameters 

are formulae determining the link strength from the 

parameter states that influence it. If the relationship 

is linear, this is just the strength of the link. The 

link strengths in the current model can be zero 

(decoupled) or positive or negative with value either 

0.5, 1.0 or 1.5 (the algorithm can support any values). 

The parameter values are scaled such that these link 

strengths can be presented as weak, moderate or strong 

relationships. These values have proved to be sufficient 

to represent the experimental knowledge of the relations. 

They are also sufficient to account for the behaviour of 

the system discussed below.
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3.3.3 APPLYING CHANGE ANALYSIS TO THE MODEL

The signal flow analysis algorithm is implemented in 

stages. All feedback loops are computed upon loading the 

model; this allows the path generation to determine the 

loops encountered by the path at each new parameter. The 

gain along a path is the product of the gains across the 

links and the total gain at any parameter is then the sum 

of path gains to the parameter. Multiple changes to the 

system are handled by summing the changes. The loops and 

parameters are both represented as bit vectors to 

increase the efficiency of the many membership comparison 

operations.

As parameter changes are determined by summing the 

changes along the various pathways, the contribution of 

pathways can be compared. To explain a parameter change, 

the program examines the contributing pathways and 

highlights the pathway making the largest contribution 

and those making some threshold as much.

Since the changes caused by therapies are not small, 

a piece-wise linear approximation must be considered. The 

program determines which link gains will alter first from 

the changes and the current parameter values. These are 

then changed to the next region and changes are 

recomputed. Hence the total response can be computed. 

This is not a guaranteed method to make appropriate 

changes as the transient behaviour may be different from 
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the stable state, but in a highly damped system such as 

the cardiovascular system the assumption is reasonable.

Another problem is that different parts of the 

cardiovascular system take different times to stabilise. 

The program assumes the pathways with long time constants 

have no effect on short-term solutions and changes are 

determined separately for the different time periods. 

Thus, the algorithm for determining the changes following 

large dosages of drugs over a long period of time: 

starts with the shortest time constants in the system, 

then determines the changes for a small dosage. The 

parameter values affecting non-linear gains are then 

changed and recomputed as necessary to determine the 

immediate changes for the appropriate size dosage. Move 

to the next time period with the projected parameter 

values and compute the changes including links that have 

effects within that time period. Continue until the 

desired predictions are determined.

3.3.4 APPLICATION OF THE MODEL TO THERAPY

To validate the approach, the predictions of the 

model in the normal state were compared with information 

in the literature on the effects of the major classes of 

drugs used for the treatment of patients with heart 

failure and coronary heart disease. The drugs are 

represented by adding each node as a model parameter 

affecting those parameters directly affected by the drug. 

Some drugs affect a single parameter, others affect a 
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number of parameters. The changes predicted are 

represented in direction and relative amount. The 

predictions are normalised so that the largest change for 

each drug is represented as three arrows and smaller 

changes as lesser number of arrows. The model predictions 

were mostly consistent with the literature.

3.3.5 CONCLUSIONS

The M.I.T./Tufts group have clearly recognised the 

need for a detailed and explicit representation of 

knowledge. This knowledge as previously mentioned, is 

represented in a causal network in effect producing a 

model of the domain. This model is by no means exhaustive 

and is being actively updated to cater for the new 

requirements. However, the beauty of the system lies in 

the fact that this physiological model is used for all 

aspects of reasoning, from diagnosis to therapy planning 

and explanation. This very much resembles the way a 

clinician reasons when the data is considered in the 

context of the physiological domain (i.e. conceptual 

model) and following interpretion appropriate measures 

are taken. The clinician anticipates some change and is 

concerned not with the absolute change of the relevant 

parameters but rather with the relative change. Such a 

conceptual model helps to explain the observed data 

(before or after intervention).

One other important aspect of this program is that 

it is capable of non-monotonic reasoning, since the 



63

program puts every new piece of information into context 

and re-computes its effects.

For the purpose of efficiency, an algorithm was 

developed that simplifies reasoning to some extent. Such 

simplifications are needed to produce systems with 

acceptable response time (currently a few seconds on a 

Symbolics 3640). Although the system has not been 

evaluated with reference to real data yet, it has shown 

good agreement with the medical literature.

Although the system is an experimental one, the 

developers have shown a very balanced approach to using 

qualitative and quantitative knowledge. This will be 

further discussed in chapter 6.
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3.4 A SEMI-QUANTITATIVE SIMULATION FOR REPRESENTATION

OF DYNAMIC CAUSAL KNOWLEDGE

The work of Widman is another example of combining

quantitative and qualitative techniques and employs

simulation to overcome some of the problems of each of

these techniques. The approach is a symbolic extension

of the system dynamic method which manipulates symbolic

descriptions of dynamic systems to predict semi-

quant i tat ively their future states. The work is nicely

described in a paper presented at MEDINFO 86 (Widman

1986). The following is a summary of the paper

describing the work.

3.4.1 CONCEPTUAL ISSUES

3.4.1.1 Qualitative Issues

The basic assumption is that the causal network 

contains implicit functional-structural information for 

which the program must be able to make reasonable self- 

consistent default assumptions.

In this program, all quantities are defined relative 

to their own "normal" value. Hence, they can be mapped 

on to qualitative adjectives such as "high", "very low" 

etc. Unlike in qualiitative methods where the set of 

permitted values is closed under the arithmetic 

operations, the set of allowed values here is not bounded 
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by the method. Thus "large" plus "large" is not equal to 

"large", but two times "large".

The adjectives, when defined, are mapped by the 

program on to the real numbers in the interval 

(-1,..,0,..,+1 ), where 0 is normal, -1 is 100% below and 

+ 1 is 100% above normal. To deal with the problem of 

ranges, the program uses the mean value for each 

adjective.

3.4.1.2 Numerical Issues

In order to deal with the problems arising from 

error due to truncation and any increase in the size of 

the time interval due to the polynomial approximation 

used to perform numerical integration, some of the work 

of Guyton et al. (1984) is being used. Specifically 

these are:

a) segmentation of the model; with iteration to 

steady-state using time intervals proportional 

to the time constants of the segments, so that 

short-time constant loops are brought to 

steady state and the longer iteration time 

intervals are used for the long-term loops.

b) automatic shifting of the time frame based on 

the degree of oscillation in each integrated 

variable (adaptive integration).



66

3.4.1.3 Modelling Issues

The explicit information is interpreted and the 

model instantiated. The variable types which the program 

knows about are defined (see below).

3.4.2 SYSTEM OVERVIEW

3.4.2.1 Definitions of the Causal Network

(a) Material versus Information.

All network variables are either "material" or 

"informational". "Material" variables are

conserved quantities; "informational" variables 

pertain to regulatory mechanisms or to 

quantities which need not be conserved.

(b) Network Building Blocks

All network variables are either "material" or 

"informational". "Material" variables are 

conserved quantities, such as mass, momentum 

or energy. "Informational" variables pertain 

to regulatory mechanisms.

(c) Properties of Relationships or Linkages

Relationships or linkages between variables

represent processes. The only required

properties are the direction of linkage and

arithmetic sign. Additionally, temporal

relationships, linear quantitative relations
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and special parameters for specific variable 

types may be specified.

3.4.2.2 Specification of Initial Conditions

The initial values of all variables in the network 

must be available for the simulation to proceed. 

Currently, if the values are not known, they are 

considered to be normal. A better approach however, is 

to make logical inference of the available data and the 

known causal relationships to form "coherent hypotheses" 

as proposed by Patil (1981), each of which includes all 

known values and postulates a self-consistant set of 

values for all other variables in the network. This 

method is currently being implemented.

3.4.2.3 Formulation of Equations

The network specification is translated into 

difference equations automatically using the definitions 

of the variable types.

The Euler difference equation approximation is 

used.

3.4.3 IMPLEMENTATION

The program is currently written in MACLISP and has been 

translated into VAX COMMON LISP. The program requires 5 

to 10 minutes to run 20 iterations of a 34 variable 

network on a PDP-10.
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3.4.4 RESULTS

To test the accuracy of knowledge representation 

techniques, an application area in a medical domain was 

chosen. The domain is that of cardiovascular syterns. 

This is sufficiently rich in levels of detail and there 

is also vast experience with the plausible perturbations 

of the domain.

A network consisting of symbolic representations was 

built along the lines of well-tested numerical models of 

the cardiovascular system. These programs obtain their 

results by numerical integration of differential 

equations, as is performed in this method. However, 

their models are not symbolic. The current causal 

network has extra detail only at variables whose patterns 

of behaviour depend strongly on relative quantities. It 

is at these variables that qualitative methods face the 

combinatorial problem and the problem of generating 

behaviour which does not actually occur. One of the 

strengths of this method is that extra information can 

guide the simulation.

The performance of the current causal network was

tested on sixteen classic disorders, each of which is 

known to be accounted for entirely by the disturbance of 

one or at most just a few initial values. The same 

network was used for all simulations. Simulation of all 

of the examples yielded acceptable results by the 
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criterion of semi-quantitative agreement with the medical 

literature.

3.4.5 CONCLUSIONS

This work is a good example of a balanced approach 

in combining qualitative description with a quantitative 

simulation to model a domain. Both qualitative and 

quantitative simulations alone have their shortcomings.

A symbolic representation is desirable because of 

its explicit and detailed representation, however, after 

a period of simulation from a steady state to another 

there is no information about the intermediate stages. 

Moreover, representation of a complex system such as 

cardiovascular system in a purely qualitative fashion may 

give rise to unrealistic predictions because of the large 

number of feedback loops present, where adding opposing

influences of unknown magnitude is a problem. In other

words, direction of change is not sufficient and some

information regarding the magnitude is needed.

The system therefore, starts by symbolic

representation of the domain, using generic functional

"building blocks" or variable classes, and predefined

default values (where there is no information available);

translation of the model into a system of first order

difference equations and integration of the equations.

The output can be translated back to symbolic form by 

feature extraction, but this is not yet implemented.
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3.5 MODEL

This is an experimental work that is being carried 

out at the Royal Free Hospital School of Medicine. The 

objective is to develop a software package that permits

development of a model of any domain (that can be

represented adequately by compartments) from the

conceptual description. This description is transformed

into symbolic equations and a general-purpose algorithm 

written in Pascal is used for the numerical simulation of 

the symbolic equations.

MODEL is not a decision-making tool or a knowledge-

based system, rather it is a tool for development of 

physiological models (qualitative and quantitative). It 

is reviewed because of its novelty and its potential for 

development of a knowledge-base from the conceptual 

description of the domain. As mentioned in Chapter 1, 

clinicians have a conceptual model of their domain of 

expertise. Hence, the knowledge acquisition process can

be speeded if a tool is available to translate a

conceptual model into a computer model (be it

qualitative, quantitative or a mixed approach).

The work is described in a recent paper (Leaning and

Nicolosi, 1986). As mentioned above, MODEL has the 

capability of manipulating conceptual descriptions and 

symbolic mathematical equations to perform conventional 
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numerical simulation. Such representation is defined as 

a 'knowledge-based model' by the authors. In MODEL:

a) facilities are provided for the user to build a 

conceptual or linguistic description of a 

compartmental system in a physiological domain. 

This description consists of the anatomical 

site, type, amount of substance and flux (the 

exchange of substance between compartments);

b) a set of symbolic differential eguations is 

generated automatically from the conceptual 

description which forms a gualitative 

constraint network;

c) a modified version of the QSIM algorithm

(Kuipers, 1985) is used to perform a

gualitative simulation of the constraint

network;

d) numerical simulation can be carried out using 

the symbolic differential equations, provided 

the user supplies the appropriate initial 

numerical values.

3.5.1 A MULTILEVEL SCHEMA

Based on the previous experience of one of the 

authors in modelling methodology (Leaning, 1980), a 

framework for knowledge-based modelling was devised.
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This methodology starts with the problem perception and

model specification to arrive at the model formulation

and consequently at identification and parameter

estimation. This process leads to a fully quantitated

model. A backward step may be taken at any point to

modify any of the steps.

Model formulation consists of conceptual description 

and hence derivation of differential equations and the 

relevant simulation. Conceptualization identifies the 

key elements of the system and their interaction, both 

structural and functional. A natural form of 

representation is associated with each step of modelling 

and its related information with a distinct level.

3.5.1.1 Realisation of the Scheme

The built-in control is based upon the idea that the 

user builds a model at the conceptual level and then 

proceeds to symbolic and numerical levels, providing 

necessary further information when required.

MODEL is written in LPA PROLOG with the simulation 

engine written in Pascal. It runs on an IBM AT running 

MS-DOS. User-interaction is through a menu-driven system 

with associated nested windows.

3.5.1.2 Specification and Control

Model specification consists of the description of 

the system to be modelled and the level of detail and
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accuracy required. The purpose of the model is also 

stated. Therefore a quantitative or qualitative

simulation will be produced based on the purpose for 

which the model is being developed. In this way the 

program controls the depth and detail of the 

representation.

3.5.2 THE CONCEPTUAL LEVEL

The components and structure of the compartmental

system are defined at this level, with details of

physiological sites and substances. The model need not

be physiologically complete before exploring the symbolic 

or numerical levels.

3.5.2.1 Internal Representation

The conceptual description is represented as a set 

of Prolog predicates. There are seven basic forms: 

compartment; flux; loss; input; modulator; measurement; 

order. An index is generated internally and is

associated with each of the above forms indicating the 

relevant compartments. For a detailed description of the 

forms see Leaning and Nicolosi (1986).

3.5.3 THE SYMBOLIC LEVEL

At this level the compartmental system is 

symbolically represented in mathematical terms. 

Differential equations are thus represented symbolically 

from the conceptual description. Qualitative or 
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quantitative simulation is then carried out depending on 

the purpose of the model.

The differential equations for the compartments are 

represented as Prolog predicates using an index number to 

identify the various compartments.

3.5.3.1 The Qualitative Constraint Network

The qualitative constraint network is based on the 

QSIM algorithm (Kuipers, 1985). QSIM simulation is 

represented as a sequence of qualitative states. Of 

course, there is no information available between the 

time intervals. Each variable is treated as a function 

mapped from a finite ordered set or "quantity space". 

The entries in the quantity space are known as land-mark 

values. Direction of change of a function must be given; 

two states are distinct if their qualitative values or 

direction of change or both are different.

The generated states are checked for consistency by 

re-expressing the model in a constraint network.

MODEL automatically generates the constraint network 

and its initial state from the conceptual description.

A problem associated with qualitative simulation is 

that of "branching". That is, the algorithm may arrive 

at unrealistic possible states as well as the realistic 
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one(s); additional information can be inserted to avoid 

such branching.

MODEL is capable of simulation with incomplete 

knowledge.

3.5.4 NUMERICAL LEVEL

The symbolic differential equations are interpreted 

and the essential initial values and parameters asked 

for. A general purpose simulation program written in 

Pascal, (Leaning, 1986), is then used to perform 

simulations. The results are displayed in graphical form

for the compartments that have been defined at the

conceptual level (as a measurement term).

3.5.5 CONCLUSIONS

This work is the result of the experience and the

awareness of the developers of the problems associated 

with numerical simulation both at a conceptual level and 

at the implementation level. The objective therefore was 

to devise a scheme by which some of the problems in 

development of simulations could be overcome.

could be achieved very quickly.

MODEL is one of the

environments where one can

conceptual description and

quantitative simulation. This

develop alternative models and

rare (if not unique) 

develop a model from

run qualitative and

provides the facility to 

hence an optimised model
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Currently, the simulations are displayed graphically 

and no attempt is made to assess the results in a 

qualitative manner; but research is being carried out to 

examine different methods of assessment.

Another way of enhancing the system could be by 

looking at ways to achieve some interaction between the 

qualitative and quantitative simulations. As the MODEL 

stands, the simulations are quite independent of each 

other.

In all, the approach is a very exciting one that 

could change the realm of modelling not forgetting its 

potential as a tool to develop a knowledge-base from a 

conceptual description of the domain.
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3.6 KARDIO

KARDIO (Bratko et al., 1986) is a system that 

interprets ECG signals for cases of cardiac arrhythmias; 

it is also capable of performing the reverse procedure of 

predicting possible ECG signals for cases of

arrhythmias.

The system is based on a qualitative model capable 

of simulating various cardiac disorders either singly or 

in conjunction with others. This system is particularly 

interesting because:

1 . it highlights the capability of qualitative

models to deal with multiple disorders, and

2. a practical approach is taken to produce an 

efficient system without losing much detailed 

knowledge.

Knowledge in KARDIO is represented symbolically and 

reasoning is carried out from first principles, thus 

yielding a qualitative model. The model is then

simulated to arrive at various diagnostic and predictive 

states which could be used for the two purposes. But for 

the purpose of efficiency inductive learning programs 

were used to compress this knowledge-base.

Each of the above constituents are discussed below.
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3.6.1 THE QUALITATIVE ("DEEP”) MODEL

This is a qualitative model of the electrical 

activity of the heart which is represented as causal 

relationships between objects and events in the heart. 

The model is analogous to an electrical network but the 

signals are represented qualitatively by symbolic 

description.

The model consists of:

1 . Nodes, which are comprise; impulse generators, 

conduction pathways, impulse summators and ECG 

generators; all of which are represented 

symbolically.

2. A dictionary of simple arrhythmias related to 

heart disorders. These are defined in terms of 

functional states.

3. "Legality" constraints. These are states that 

are rejected by the model corresponding to the 

following criteria:

a. Logically impossible states

b. physiologically impossible states

c. medically uninteresting states.

In this way the search space is considerably

reduced.
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4. "Local" rule sets. Specifying the behaviour of 

the individual components of the heart in the 

presence of abnormalities.

5. "Global" rules. These are rules defining the 

causal relations between various components of 

the model and ECG features, thus reflecting 

the structure of the network. There are 35 

global rules in the model represented in PROLOG 

clauses. A detailed description of the model 

can be found in Mozetic et al., (1984).

3.6.2 THE QUALITATIVE SIMULATION ALGORITHM

In order to insert additional control during the 

execution of the program, an algorithm is used instead of 

the PROLOG interpretion mechanism.

The simulation algorithm allows theorem proving and 

theorem generation.

A simulation run consists of:

1. Instantiation of the model by a given 

arrhythmia.

2. Checking the functional state against the

legality constraints.
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3. Execution of the model by triggering rules

until no more rules are fired.

4. Collection of the proved assertions about ECG 

signals followed by an ECG description

corresponding to the given arrhythmia.

The most natural way of implementing the above 

algorithm is to use the depth-first search strategy. 

Although this is efficient for prediction type queries,

diagnostic type queries run into trouble, since the model

majoris running

problem.

backwards, and branching becomes a

Various methods were tried to compensate for this

inefficiency by first rewriting the model and introducing 

more constraints to limit the branching. This, however, 

increased the size of the model considerably and also 

affected its transparency which is of great importance 

for the explanation of its behaviour. Another 

alternative was to generate ECGs for all possible 

arrhythmia cases and store these as associations. This 

is also inefficient because, for each disjunctive 

solution the simulator has to backtrack to some 

previously used rule in the model and restore its 

previous state; also, the resulting ECG descriptions 

have the form of disjunctions of ECG patterns, which can 

be more complex than necessary and can be simplified

later. But, the simplification procedure is again a 
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complex operation. The simplification can be carried out 

when a disjunction is generated and before it is further 

expanded; this is a more economical simplification.

Because of the two factors mentioned above, another 

implementation was sought that could handle alternative 

execution paths in a breadth-first manner. The result 

was an algorithm that would generate parallel 

alternatives and simplify disjunctions. The 

simplification rules, however, are local, i.e. model 

dependent, therefore the "breadth-first" simulation is 

not general and the simplification rules need to be 

modified if there is a change in the model.

Bratko reports that this specialized simplification 

proved to be quite powerful compared to the depth-first 

simulation. The depth-first simulation generated 72 ECG 

descriptions for the combined arrhythmia atrial 

fibrillation and ventricular ectopic beats as opposed to 

only 4 generated by the above algorithm.

Using the breadth-first simulation algorithm, the 

knowledge-base was generated automatically by executing 

all mathematically possible combinations of simple 

arrhythmias. A large number of the combined arrhythmias 

were eliminated by the legality constraints over the 

state of the heart. In this way the knowledge-base (i.e. 

the arrhythmia-ECG base) is complete in the sense that 

all possible physiological and mathematical cases are 
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present. The diagnosis process is now the simple task of 

finding (retrieving) the arrhythmia(s) that correspond to 

an ECG description.

The knowledge-base generated, despite being 

complete, suffered from one main drawback- its size. 

There were 8314 PROLOG clauses occupying 5.1 Mbytes of 

memory. In order to achieve a more compact knowledge-

base, inductive learning algorithms were used. However, 

the knowledge-base was far too big for these algorithms 

to learn from examples. Therefore a sub-set of the 

knowledge-base was derived which was complete in its own 

right, and the cases discarded would be regenerated by 

adding a few additional rules.

The learning sub-set was substantially smaller the 

original one comprising 586 combined arrhythmias and 

2405 ECGs compared to 2419 arrhythmias and 140966 ECGs. 

This subset only takes up 400 kbytes of storage.

The performance of the system using the inductive 

algorithms corresponds very well to the definitions in 

the medical literature, although in some cases much more 

detailed specification is generated, which may not be 

necessary for a medical user.

3.6.3 CONCLUSIONS

The novelty of this work without doubt lies in the 

representation of knowledge and the subsequent use of it
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to provide an efficient diagnostic system. The

developers are consistent and careful throughout the

development of various stages, firstly to represent a

qualitative model that is sufficiently rich in its 

physiological representation knowledge; and secondly to 

generate all the mathematically possible and 

physiolagically allowable cases automatically; and 

finally to compress the required knowledge-base without 

losing detail or any possible cases.

KARDIO was evaluated with a select population, and 

it could handle 75% of the arrhythmia cases correctly. 

In an actual test on 36 random cases it could handle 34 

cases (94%). The cases where it failed were due to some 

incompleteness of the deep model, such as incapability to 

handle an artificial pacemaker.

The deep model can be used for other purposes such 

as providing an explanation.
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3.7 SUMMARY

When studying the evolution of expert systems in 

medicine, an interesting shift of emphasis is observed.

In the early years, systems were developed based on 

purely associational knowledge (eg. Shortliffe, 1976), 

where signs and symptoms were related to the underlying 

disorder (s). The knowledge used for this kind of 

representation was based on both well understood 

mechanisms and purely heuristic knowledge. However, they

were both represented heuristically. This to a great

extent degraded the ability of the system to reason

"intelligently" as the reasoning mechanism was

essentially that of pattern matching; as well as not

being able to produce an acceptable explanation of its 

behaviour.

Then, there was the emergence of systems whose 

knowledge were based upon the principles of causality 

(e.g. Patil, 1981). Experience of such systems showed 

relating physiology and medical decision making to be a 

far too complex and ill-understood domain that could be 

represented in that manner adequately and efficiently.

Recently, we have witnessed the emergence of 

systems which combine both qualitative and quantitative 

techniques, as well as using additional techniques. Some 

of these systems have been reviewed above. What has 

become apparent is that clinicians use different 
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knowledge at different levels of detail at different 

times. For a knowledge-based system to be able to perform 

as well as an expert, these knowledge sources must be 

available to it. Having various knowledge sources 

available and using them appropriately are, of course, 

two different problems.

The objective of this review using specific examples

is show the complexity of some of the medical domains and

the way that different workers have approached the

problem. There is no simple solution to the problems

involved, but it is the view of the author, that

combining and utilising these various knowledge sources

appropriately is the way forward.

In the next chapter, the aims, objectives and 

requirements of the work carried out as well as a 

detailed description of the developed prototype will be 

presented.
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CHAPTER 4

 
 
 

(Francis Bacon)

4.0 SYSTEM DEVELOPMENT

Having reviewed some of the earlier relevant work in the 

previous chapter, in this chapter the requirements, 

choice of model, various difficulties encountered, and a 

detailed description of the structure of the two versions 

of the developed prototype will be described. A more 

detailed discussion of the methodology and associated 

problems will be discussed in the next chapter.

A brief description of the first version of the 

developed prototype (MK I), can be found in Shamsolmaali 

et al., (1988), and Shamsolmaali et al., (1987).

4.1 INTRODUCTION

Clinicians use different levels of knowledge at 

different times according to the complexity of the 

problem at hand and its nature. The performance of a 

knowledge-based system should, at least in theory, be 

enhanced if it has access to additional sources of 

knowledge. The objective of the exercise described here, 

was to explore the extent to which a mathematical model 

could enhance the performance of a knowledge-based system 

in a clinical environment.
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4.2 REQUIREMENTS

The requirements are based on the original proposal 

to the DHSS for the funding of this work. A prototype was 

required that could investigate the possibility of 

utilizing a mathematical model in a clinical setting, and 

to explore the advantages of such a system. It was 

considered that the prototype should be capable of 

offering "opinions" to the user about the assessment of 

the current state of the patient and to suggest 

appropriate treatment justifying it using the model. It 

was proposed that an "off-the-shelf" model would be used, 

rather than a "tailor-made" one, as considerable work had 

already being carried out within the group on the 

modelling of the relevant domain (Flood, Carson and 

Cramp, 1 985) .

4.3 CHOICE OF THE MODEL

As mentioned above, some work had been carried out 

in the group on the modelling of fluid and electrolyte 

metabolism. However, after close examination of the 

implemented model, it was concluded that further work was 

required to enhance its usability and, more importantly, 

to validate the model. It was considered important to 

utilise an established and validated model (if possible) 

to meet these requirements.

There were two other models available to the group 

HUMAN (Guyton et al., 1984) and Macpee (Dickinson et al.,
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1987). Macpee was chosen because it is well-established

(developed about 1972) and although it had never been

formally validated it had, however, been in use for a

number of years as an educational tool and undergone

constant updating. More importantly, as far as the 

implementation of the prototype was concerned, the 

developers of Macpee were based in London enjoying a good 

working relationship with our group. This proved to be of 

great importance in the following months.

4.4 DESIGN DIFFICULTIES

One of the major drawbacks of Macpee (and indeed 

many other models) is that it is parameter driven rather 

than data driven. This limits the process of tuning the 

model to a particular patient as data cannot be input to 

the model. The model simulates a cause-effect cycle for a 

’’normal" person. The notion of "normality" is defined as 

a 29 year old male of 70 kg weight and 175 cm height. An 

assumption is made that human's circulatory and fluid 

metabolism behaves similarly under influence of disorders 

and in health regardless of individual characteristics of 

patients. It is important to note that as far as this 

project was concerned, after a simulation, a qualitative 

change of parameters from what is being perceived as the 

"steady state" before the simulation, is considered 

rather than a quantitative number to number 

correspondence of model parameters with that of the 

patient.
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4.5 SYSTEM STRUCTURE

The basic structure of the prototype is shown in 

figure 4.1. The system consists of six components which 

are described below.

4.5.1 Overall Structure

The prototype consists of a user interface, patient 

database, patient record file, diagnostic module, 

treatment module, and the dynamic mathematical model 

Macpee.

Mathematical models can be incorporated within a 

knowledge-based system in a number of ways. They can 

constitute an external model with parameter exchange; can 

be semi-integrated with part of the model used as part 

of the knowledge-base; or can be fully integrated with 

the entire model constituting a part or the whole of the 

knowledge-base (Nicolosi, 1986). If it is to be fully 

integrated, the model should simulate the pathophysiology 

of the relevant domain in an adeguate manner, and 

furthermore, it should be able to simulate the state of a 

patient closely.

The model used in this project, Macpee, cannot be 

tuned directly to a specific patient since it does not 

accept laboratory data as input. Therefore, it is used as 

an external module with interaction between model and 

knowledge-base being reduced to parameter exchange as 

described below. Some design features of such a system 

are outlined in Cramp et al. (1985).
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Figure

PATIENT
RECORD
PILE CLINICAL

USER

.1- Schematic diagram of the overall structure of 
the prototype.



91

4.5.2 User Interface

Special attention had to be given to the user

interface, as one of the objectives of the project was to

develop a prototype that would be used in a clinical

setting where it would be further validated. There is

limit to what can be achieved with a standard keyboard

and monitor.

A menu-driven system has been developed in order to

ease the interaction of the clinical user with the 

system. The user can choose to enter new data, display 

existing data, perform a diagnosis and receive therapy 

recommendations based on the existing data, update a 

patient's file, access the mathematical model or exit the 

system. A sub-menu is displayed in the case of new data 

consisting of various routinely measured variables with 

the relevant units, so that the user may choose the 

appropriate variable and enters the value for it. In this 

way typing mistakes are minimised.

4.5.3 Patient Specific Database

The patient specific database is comprised of 

clinical (bedside) and laboratory data. Current data 

input to the system by the clinical user is stored and 

those contained in the record file for the specific 

patient are retrieved. The variables included are listed 

in Table 4.1.
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Table 4.1- Variables i the Patient Specific Database

Laboratory data: Plasma Concentration of-

Urine Concentration of-

Sodium 
Potassium 
Albumin 
Creatinine 
Urea

Sodium 
Albumin 
Potassium

Plasma Osmolality 
Urine Osmolality 
Haemoglobin

Clinical Data: Blood Pressure
Central Venous Pressure (CVP)
Pulmonary Capillary Wedge Pressure 
Temperature Difference (Core- Periphery)



93

Data are entered into the system via the menu-driven 

mechanism and stored as facts in the patient file. In 

order to differentiate between data input at different 

times, an indexing method has been developed. The data 

have the following PROLOG form:

data(Patient-Name,Index,Item,Value).

The predicate data is used to store the facts about a 

particular patient. This predicate has four arguments. 

The variable Patient-Name is assigned to the name of the 

patient (or it could be assigned to the patient's 

hospital number) . The variable Index is set to 1 when 

there is no previous record on the patient, and is 

incremented by 1 on each subsequent interaction. The most 

recent data are used for processing.

4.5.4 Patient Record File

Once the name of the patient is entered, the program 

searches for a file by that name with an extension of 

".LOG". If one exists, it is loaded and any new data 

input will be saved in this file, with the index 

incremented by one. If there is no file by the name of 

patient, one is created. At the end of the consultation 

session the program asks the user whether the new data 

are required to be saved and acts appropriately. In order 

to eliminate a case problem with regard to the file name 

(i.e. lower, upper, or mixed), the typed name is changed 
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to upper case (using ASCII codes for inversion) before 

the program attempts to search its record file.

4.5.5 Diagnostic Module

Before any diagnostic action is taken, the numerical 

data are classifies by comparison with a set of reference 

ranges. This classification categorises the data into one 

of five regions namely, low, moderately low, normal, 

moderately high, and high. The classified data are stored 

in the RAM memory and displayed, so that the user can 

follow the steps that are being taken by the program.

When the user has finished inputing data to the 

system, the most recently classified data (i.e. the ones 

with the highest Index) are collected as a list, called 

the characteristic-list. The characteristic-list has the 

following PROLOG format:

characteristic-list(Patient-Name,[[plasma-Na,low],

[plasma-K,normal], 

[urea,high]]).

The disorders are represented by their name and the 

possible associated pattern of signs and symptoms having 

the following PROLOG format:

disease-state(water-overload,[[plasma-Na,low],

[plasma-Na,low-normal], 

[plasma-K,normal], 

[plasma-urea,low],
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[creatinine,low],

[albumin,low-normal], 

....... ]]).

This represents the possible combination of signs and 

symptoms that are not inconsistent with the disorder 

water-overload.

To produce a diagnosis, the characteristic-list is 

checked against the disease-states. The disease-state(s) 

whose pattern of signs and symptoms do not contradict 

the pattern of signs and symptoms of the patient are 

displayed as differential diagnoses. There are 15 

disease-states defined in the knowledge-base, all of 

which are water and salt related disorders. The disease-

states represented are listed in Table 4.2.

Not all the signs associated with a particular 

disease-state need be present for it to be a member of 

the differential diagnoses list. In fact, the reasoning 

mechanism is that of elimination of disease-states which 

suffer from a conflict with the characteristic-list. This 

reasoning mechanism has the advantage of considering all 

the disease-states without any bias or weighting.

One disadvantage, however, is the fact that the 

program searches blindly through its knowledge-base to 

come up with potential disorders. This blind search can 

be compensated for at the representation level of the
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Table 4.2- Disease States Defined by the System

Water overload
Water overload with renal failure
Syndrome of inappropriate antidiuretic hormone release (SIADH) 
Congestive cardiac failure
Nephrotic Syndrome
Loss of sodium with water replacement
Loss of sodium with water replacement on a diuretic
Normal plasma sodium with overload
Post-operative normal plasma sodium with water overload 
Over-transfusion of blood
Normal plasma sodium with dehydration
Diuretic induced dehydration
Hypernatraemia due to hypotonic fluid loss
Hypernatraemia due to sodium overload
Addison’s disease
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disease-states without altering the search mechanism. 

This is done by inserting constraints on the possible 

combination of signs and symptoms of a particular 

disorder, so that an unacceptable diagnosis can be 

avoided. This is an implicit representation of knowledge.

This method of refinement of the knowledge-base 

appears to be sufficient for conditions arising from a 

single disorder.

The program is, however, unable to cope with 

conditions arising from multiple disorders being present. 

The reason for this failure becomes apparent when a 

close inspection of the knowledge representation is made. 

Each disease-state is an entity in its own right without 

any links or relations with other disease—states. There 

are no other rules to describe a link or a relation at 

the reasoning level either. This means conditions arising 

from a conjunction of disorders present can only be 

represented explicitly as appropriate disease-states. 

This problem will be discussed further in the next 

chapter.

Once a diagnosis is established, it is used to 

change the parameters of the model, using appropriate 

rules, so that Macpee is tuned to the diagnosed disorder. 

The diagnostic module, therefore, acts as the front-end 

to Macpee as well as assessing the condition of the 

patient.
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4.5.6 Treatment Module

The treatment regimen produced is not based on the 

outcome of the diagnostic module, contrary to the 

implication of figure 4.1. The link between diagnostic 

and treatment modules is left out deliberately, so that 

the performance of the two modules can be checked against 

each other as well as reducing the dependency of the 

overall performance of the prototype on the diagnostic 

module.

In contrast to the diagnostic module, the knowledge 

is represented as a set of rules. These rules associate 

the abnormal data with the appropriate therapeutic 

measures. The abnormal data are grouped together in the 

context of the underlying (sub)system. Hence, the 

treatment module considers various subsystems separately 

and provides strategies to correct the abnormality.

The sub-systems considered are the cardiovascular 

and renal systems together with the dietary state and 

drugs already being taken by the patient. At the end of 

the inspection of the sub-systems, the program advises on 

the amount of appropriate intravenous fluid to be given 

to the patient.

The cardiovascular data (parameters) checked are: 

diastolic pressure, central venous pressure(CVP) and 

pulmonary capillary wedge pressure(PCWP); inotropes and 
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colloid are prescribed accordingly. The renal data 

checked are: urea, creatinine, their ratio, together with 

urine sodium and urine output.

Some typical rules are:

IF Diastolic Pressure is Low

and CVP is Low

and Plasma Na in the range 145-150

THEN Prescribe:

Half Dextrose 5% + Half Colloid (volume)

The rule also suggests, implicitly, that there is a

IF Urine Output > 40 ml/h

and patient NOT on diuretics

and Urinary Na > 20

and Creatinine elevated

THEN Renal Impairment

The first rule uses the cardiovascular data and the

value of the plasma-Na to suggest the appropriate fluids.

negative fluid balance. The amount of fluid to be given

is decided by other rules based on the state of the fluid 

balance and the weight of the patient.

The second rule is more interesting; first it 

excludes the possibility of diuretics to be the cause of 

the large urine excretion and then checks the value of 
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creatinine and urinary-Na to establish a conclusion. This 

is added to the data record of the patient.

The recommendations of the treatment module are 

passed to the model using appropriate rules (discussed in 

the next section).

4.5.7 Macpee

The dynamic mathematical model incorporated in the 

prototype is Macpee, one of the Mac series of interactive 

digital computer simulation programs designed to assist 

students to learn about the physiology of major body 

systems in health and disease.

The output of the model is normally in the form of a 

graph of blood pressure and the pulse rate plotted 

against time. At the end of each run, normally 24 hours 

but this can be changed, variables values are printed 

out.

The model will perform as many simulated hours or 

days (maximum 10 days at a simulation cycle) as is 

directed, and can then be stopped to allow the operator 

to make changes (within physiological constraints) in any 

of the large number of variables. In addition, any 

parenteral fluid normally available in hospital practice 

may be administered or discontinued (eg. 5% dextrose, 

saline, potassium chloride solution, blood, packed 

cells). Similarly oral intake of fluids can be either 
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restricted or augmented to any specified extent by 

simulated instructions to nurses.

The adoption of Macpee as the dynamic mathematical 

model in the prototype design was a compromise. On one 

hand it is a rich physiological analogue which has been 

widely used in an educational context. As such it could 

be incorporated immediately thus circumventing the 

development cycle of a specially tailored model. On the 

other hand its prime application domain being the 

educational context lead to some difficulties in the 

clinical setting for which the knowledge-based system was 

being developed. For example, the normal setting of 

Macpee, corresponding to a young 70 kg healthy male, 

requires adjustment if used in a clinical setting. 

Furthermore, Macpee cannot accept laboratory and clinical 

data directly as input and hence cannot provide a 

simulation of a specific patient. The approach adopted 

was to aggregate the infinite spectrum of possible 

patient conditions into 15 diagnostic states. The patient 

data are used to diagnose the patient and the diagnostic 

state then defines the values to which the parameters of 

Macpee need to be adjusted. It is thus assumed that the 

model behaviour is representative of the diagnostic class 

to which the patient has been assigned; and hence the 

recommendation made by the treatment module can be tried 

out on the model to justify this therapeutic action.
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The communication between the knowledge-base and the 

model is achieved by means of a text file. Hence, as the 

program goes through its line of reasoning, the diagnosis 

and management strategies are translated into 

instructions that Macpee can understand, and stored in 

the appropriate file.

Macpee had to be altered in so that it would read 

instructions from the file rather than the keyboard. 

Currently, when the control of the program is passed to 

Macpee, it will look for the instruction file first and 

execute all the commands. If the last instruction in the 

file is not to return the control back to the knowledge-

base, the control is passed to the keyboard so that the 

user may experiment with Macpee. Once Macpee is aborted, 

the control is returned to the knowledge-base.

Example of some of the rules to change the 

parameters of Macpee are given below:

IF cardiovascular performance is diminished

and oedema is present

THEN reduce the cardiovascular contractility

IF patient has history of heart failure 

and reduce cardiovasular contractility

THEN change the cardiovascular contractility

to 50%



1 03

IF change the cardiovascular contractility 50%

THEN OPEN the interface file

WRITE instruction

CLOSE interface file.

In order to keep the rule base small, change-

parameter is defined as a predicate with two arguments: 

the name of the parameter and its new value. Therefore, 

the last rule above is a rule with its arguments being 

assigned to cardiovascular-contractility and the value 

50%. A dictionary is formed of the name of changeable 

parameters and their corresponding factor number that 

Macpee recognises.

There was an implementation problem with fluid 

infusion in Macpee that was rectified. A combination of 

fluids could not be administered rather the last fluid 

listed would be simulated.

4.5.8 Implementation

The prototype was developed on an IBM PC with 640K 

RAM, running PC DOS. Macpee is written in FORTRAN 77, 

whilst the other modules, including the user interface, 

were developed in LPA-PROLOG version 1.4.



1 04

Due to the heavy requirements of Macpee and Prolog 

on RAM, and also the limitation of MS-DOS (maximum of 

640K), both programs do not fit in the memory at the same 

time. This meant the RAM must be cleared before being 

able to load Macpee, which is time consuming and 

cumbersome.

4.6 DIAGNOSTIC MODULE REVISITED (MK II)

As mentioned previously, the diagnostic module 

cannot handle the presence of multiple disorders. The 

majority of the patients admitted to an intensive care 

unit either suffer from a number of disorders or develop 

secondary conditions. A knowledge-based system should, 

therefore, be able to cope with these patients if it is 

to be used in that environment.

The diagnostic module needed major reconstruction so 

that it could consider a patient in a more clinical 

manner. The physiological system was broken down to its 

sub-systems and rules developed to assess the condition 

of the patient within the context of each sub-system. 

This is very similar to the approach taken by the 

treatment module.

The output of the system is an assessment of various 

sub-systems, rather than a definite diagnosis. More 

clinical data is required by the system to cope with 

various categories of patients routinely admitted to an 

intensive care unit.
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The program obtains a history of the patient by 

asking questions with regard to the history of heart 

failure, acute heart disorders and drugs that are 

currently being taken. The parameters of Macpee are 

instructed to be altered to correspond to these effects. 

In this way it is cosidered that the model simulates the 

condition of the patient more closely.

An example of the new rules is given below:

IF patient is NOT on diuretics

and Diastolic pressure < 90

and Urine output < 41

and Urine-Na < 10

and Temp-difference (core & periphery) High

THEN Fluid-overload Functional.

The above rule has established that fluid overload is due 

to a functional failure rather than an excessive 

cosumption or over administration of fluids. This is a 

typical assessment of the state of the patient which is 

reported to the user and used to change the parameters of 

the model. The rule to change parameters of Macpee is 

identical to the example given in section 4.5.4.

The focus of attention in this version of the

diagnostic module is on the key factors (variables) that

are associated with each disorder. Each disorder has a 
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particular effect on each subsystem which is 

characteristic of it. The problem-solution then was to 

identify these effects in isolation. The intention was 

to identify disorders rather than classify them.

The treatment module was subsequently modified and 

expanded to generate treatment recommendations based on 

the assessment of the diagnostic module. Therefore, the 

original configuration of the prototype (figure 4.1.) was 

realised, and the link between the diagnostic and 

treatment modules was established.

4.7 EVALUATION

One of the requirements of the DHSS was that the 

prototype should undergo formal evaluation. The process 

of evaluation should formally highlight the weak points 

of the prototype as well as its strong points. A formal 

evaluation would also allow the methodology and approach 

adopted by the group to be assessed.

4.7.1 Introduction

Systems are continually being evaluated, whether 

consciously or not. Designing and implementing knowledge-

based systems involves constant evaluation of the 

progress by considering questions such as:

* Is the knowledge representation scheme 

adequate or does it need to be extended or 

modified?
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* Is the system coming up with right answers and 

for the right reasons?

* Is the embedded knowledge consistent with the 

expert?

* Is it easy for users to interact with the 

system?

* What facilities and capabilities do users 

need?

Feedback from users, expert collaborators, and the 

system builders suggests improvements that may be 

incorporated into later versions. Evaluations pervade the 

system-building process and are crucial for improving 

system design and performance. Each time a rule in the 

knowledge-base is changed, added, or deleted, everytime 

the code of reasoning program is modified or extended or 

the knowledge representation scheme is refined, action 

has been taken in response to an informal evaluation.

One reason for the present difficulty in evaluating 

knowledge-based systems is that human experts are seldom 

evaluated objectively. Evaluations are very easily 

misinterpreted, and it is therefore extremely important 

to carry out evaluating at appropriate stages in the 
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system's development, to clarify exactly what is being 

evaluated, and to interpret the results correctly.

Domain experts involved in the construction of the 

knowledge-based systems are concerned primarily with the 

embedded domain knowledge and how it is used by the 

program. Thus the experts repeatedly perform both static 

and dynamic evaluations. In static evaluation they 

compare the performance of the knowledge-based system 

with their own conceptual model, looking for consistency 

and completeness. In dynamic evaluation they compare the 

system's line of reasoning and its conclusions in a 

specific case, with their own. Thus, the knowledge 

acquisition process is intimately linked with ongoing 

evaluation by the domain experts. Furthermore, the 

ongoing evaluation helps them structure and understand 

better both their domain and their own expertise.

The ultimate criterion of success is whether a 

knowledge-based system is actually used for expert 

consultation by individuals other than the system's 

developers. Only a few expert systems have reached this 

stage. A key ingredient of success is involving eventual 

users in evaluation of the system as it is being built. 

Without a clear understanding of the ultimate user's 

needs and requirements, system builders may fail to 

provide crucial capabilities and, consequently, the 

system may have limited utility. Involving end users in 
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the development process can generate user interest in the 

system as a potential tool for their own use.

There is a clear need for formalism in the process 

of evaluation. In designing an evaluation, one must be 

aware of its purpose: who is it for, exactly what is 

being evaluated and what one hopes to gain from the 

experiment.

4.7.2 Problems in the Evaluation of Medical Diagnosis

Systems

Medical diagnosis, by its nature, suffers from 

uncertainties at different levels. These could be due to 

lack of a full understanding of the clinical domain as 

well as an inability on the part of clinicians to explain 

their processes of reasoning. Medical diagnosis systems 

cannot escape from these uncertainties and should 

therefore, be evaluated with these constraints in mind. 

Chanderasekaran (1983) provides some guidelines:

a) Success/Failure- When evaluating performance 

of complex systems, especially at a 

development stage, simple "success" vs. 

"failure" evaluations based on the final 

answer may be insufficient because they do not 

take into account the possibility of very 

acceptable intermediate performance. As 

pointed out by Yu et al. (1979), "A complex 
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reasoning program must be judged by the 

accuracy of its intermediate conclusion as 

well as its final decision".

b) "Correct" answers may be unknown- Often there 

are no "correct" answers, since expert 

clinicians may disagree among themselves.

c) Small sample size problem- Performance of the 

system in "rare" diseases cannot often be 

reliably evaluated due to the generally small 

sample size of the available cases.

d) Matching distribution of clinical practice- 

Without some knowledge about the distribution 

of types of cases that a system will need to 

confront, the results of evaluation cannot be 

suitably interpreted. For instance, suppose 

the system is very efficient in solving most 

of the "common" occurrences of diseases in an 

area of clinical medicine, and relatively poor 

in solving rare or "difficult" cases. If the 

difficult cases were to be chosen because they 

are "interesting" as test cases, the 

statistical evaluation of the system might not 

represent its performance in a real clinical 

setting. A solution to this situation is to 

require that cases be selected as 

representative of the target clinical setting.
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4.7.3 Evaluation of the Prototype

The system under development has been informally 

evaluated from the start of the project. A semi-formal 

evaluation took place when the system was installed at 

West Middlesex University Hospital, London. This provided 

an opportunaty to assess user requirements and whether 

the limited knowledge represented in the system was 

adequate to deal with real life problems.

The initial feedback was the inadequacy of the 

database in handling and retrieving data from the patient 

files. There was no built-in facility to differentiate 

between data input at different times. To cope with this 

problem an indexing method was devised, which has been 

described previously.

A more fundamental and serious shortcoming of the 

system was the performance of the diagnostic module. 

Although it was capable of diagnosing well-defined

disorders, it was unable to identify multiple disorders.

This resulted in the review of the knowledge

representation schema, which has also been described

above.

A formal evaluation of the prototype is being

planned. The focus of attention will be on the 

performance of the diagnostic module, treatment module 
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and the usability of the prototype (i.e. convenient 

interaction).

Three kinds of data will be put to the system, 

historical, hypothetical, and data available on the 

existing patients at the intensive care unit.

The knowledge-based system under development has two 

major distinct components; the knowledge-base itself and 

the mathematical model. It should be emphasised that 

although both components will be evaluated as a complete 

system, only the knowledge-base will be modified by the 

group.

4.8 SUMMARY

In this chapter, a detailed description of the two 

versions of the developed prototype was presented. 

Problems encountered with the first version (MK I) and

hence, the motives for the development of the second

version (MK II) were introduced. The necessity for

evaluation as an ongoing, integral part of the

development process was highlighted. In the next chapter,

some clinical cases are put to the two versions of the

prototype and their responses are compared and

contrasted.
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CHAPTER 5

 

(Alexis de Tocqueville)

5.0 SIMULATIONS OF THE KNOWLEDGE-BASE

The two versions of the prototype which have different 

methods of knowledge representation- list of expected 

patterns (MK I) and rule-based (MK II)- were described in 

detail in the previous chapter. This chapter demonstrates 

how the two versions respond to four clinical cases, 

three of which illustrate single disorders and the fourth 

multiple disorders.

The objective is to demonstrate the reasoning

mechanism of the two versions as well as highlighting the

capability of the second version to diagnose and treat

cases with multiple disorders.

5.1 PROBLEM 1

Plasma Na

Plasma Urea

Creatinine

Urine Na

123 mmol/I

9 mmol/I

80 umol/1

50 mmol/I

Diastolic Pressure 70 mmHg

CVP

Urine Output

5 cm-H20

35 ml/h
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Table 5.1 Reference Ranges____Used by System for
Classification of Data.

LOW NORMAL NORMAL HIGH

Plasma Na 130 135 145 150 mmol/I
Plasma K 3.0 3.49 4.51 5.0 mmol/I
Plasma Urea 3 3 6 15 mmol/1
Haemoglobin 13 13 18 18 g/dl
Creatinine 60 60 1 20 160 umol/1
Albumin 20 35 50 50 g/i
Urine Osmolality 250 250 400 400 mmol/kg
Urine Na 10 10 20 20 mmol/1
Urine Albumin 0 0 0.01 0.01 g/1
Diastolic Pressure 60 70 90 90 mmHg
Temp. Difference 0 0 1 1
CVP 3 3 8 8 cm^O
PCWP 6 6 1 2 1 2 mmHg
Urine Output 40 40 200 200 ml/h
Urine K 60 60 80 80 mmol/24h
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5.1.1 Response of MK I

The system classifies the above data into 

appropriate qualitative categories (the reference ranges 

used are shown in table 5.1.) and produces the following 

correct diagnosis:

Addison's Disease

The treatment module checks the cardiovascular data and 

prompts:

No Cardiovascular Abnormalities Detected

Administer The Following:

Colloid 500 ml

NaCl 2000 ml

COMMENTS:

The prototype recognises the pattern and 

matches it to one of the represented disease-

states. The treatment module acts independently 

of the established diagnosis and provides an 

acceptable strategy.

5.1.2 Respose of MK II

The system starts by asking questions regarding the 

history of cardiac problems and any drugs being 

administered. It establishes that there is no history of 

Myocardial Infarction and adds this information to its 

data base. Cardiovascular and renal data are then 

considered and the prototype prompts:

The high urea/creatinine ratio together 

with high urine sodium excretion suggests 

renal damage or Addison’s disease.
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The treatment module prescribes the following:

Colloid 500 ml

NaCl 2000 ml

COMMENTS:

The system indicates some causes of impaired 

renal sodium conservation and suggests 

appropriate treatment. The diagnosis is based 

on a mechanistic explanation of the abnormal 

data.

5.2 PROBLEM 2

Plasma Na 137 mmol/I

Plasma Urea 3 mmol/I

Creatinine 75 umol/1

Urine Na 45 mmol/I

Diastolic Pressure 75 mmHg

CVP 9 cm-H20

PCWP 30 mmHg

5.2.1 Response of MK I

In this example, the prototype finds two states that 

do not contradict the above data and hence produces the 

following differential diagnosis:

Normal Plasma-Na with Overload 

Overtransfusion of Blood

The treatment module responds in the following manner:

Fluid overload, could be with or without 

Congestive Cardiac Failure (CCF).

Treatment is to induce fluid deficit and
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consider inotropes and/or veno-vaso

dilating drugs if CCF is present.

Administer:

Dextrose 5% 1000 ml

COMMENTS:

The two diagnoses are quite similar, that is,

the patient has fluid overload. The treatment

module confirms the diagnosis but cannot 

establish the cause. The suggested treatment is 

to restrict fluid intake and to administer

user.

appropriate drugs if heart failure is

considered to be a real possibility by the

5.2.2 Response of MK II

The system asks questions regarding the history of 

any previous heart problems. A search through its rules 

results in the following assessment:

Fluid overload actual. Overtransfusion or 

overinfusion. Oedema may be present. 

Treatment:

Fluid restriction and adminster: 

Dextrose/Saline 1500 ml

COMMENTS:

Because the prototype asks questions regarding 

the history of the cardiovascular state, it is 

able to give a more definite diagnosis and 

provide clues to the cause of abnormality. It 

also suggests that the presence of oedema is a 
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strong possibility. The prescribed treatment is 

to restrict fluid intake and maintain the level 

of plasma sodium.

5.3 PROBLEM 3

Plasma Na 1 70 mmol/I

Plasma Urea 8 mmol/I

Creatinine 130 umol/1

Urine Na 5 mmol/1

Diastolic Pressure 75 mmHg

CVP 1 cm-H20

5.3.1 Response of MK I

Only one disease-state is found not to be 

contradictory to the data. The diagnosis is:

Hypernatraemia due to hypotonic fluid loss

The treatment module response is:

Administer colloid to raise CVP.

Is there evidence of negative fluid 

balance? ==> Yes

Administer:

Dextrose 3500 ml

COMMENTS:

Because of lack of interaction between the 

diagnostic and treatment modules, the system 

asks a question the answer to which should be 

clear from the established diagnosis.
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5.3.2 Response of MK II

The diagnosis produced by the system is:

Fluid deficit actual.

Hypernatraemia and therefore water loss.

Treatment:

Raise CVP by giving Dextrose 5%

Stop when fluid causes CVP to rise

above normal.

Dextrose 3500 ml.

COMMENTS:

The diagnosis is identical to the diagnosis of

MK I, however, the system does not need to ask

complementary questions because of the

communication between the diagnostic and

treatment modules. The treatment is slightly 

different but essentially the same approach is 

taken.

5.4 PROBLEM 4

Plasma Na 120 mmol/I

Plasma Urea 35 mmol/I

Creatinine 500 umol/1

Urine Na 30 mmol/I

CVP 10 cm-^O

Urine Output 100 ml/h

Albumin 20 g/i

Urine Albumin 8 g/d



120

5.4.1 Response of MK I

The matched disease-state is:

Water overload with renal failure

Treatment is:

Fluid overload with or without CCF. 

Restrict water intake to 20 ml/hr.

COMMENTS:

The prototype correctly diagnoses two of the 

abnormalities present but fails to recognise 

low levels of plasma Albumin. The recommended 

treatment is adequate for the treatment of 

water overload but it fails to recommend any 

strategies to treat the renal failure.

5.4.2 Response of MK II

The prototype checks the history of Myocardial 

Infarction and looks for nephrotic syndrome. The output 

is:

The patient is nephrotic.

Fluid overload actual.

Impaired renal function; moderate-severe 

renal failure.

This patient has hyponatraemia with fluid 

overload, renal failure and the nephrotic 

syndrome.

Treatment is:

Fluid restriction.

Renal failure regime.

20 ml/hr water.
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abnormalities.

If oedema present 20ml/hr colloid + urine 

output until sodium becomes normal.

Colloid/NaCl 1000 ml

Dextrose 5% 500 ml

COMMENTS:

This version manages to detect all the 

abnormalities present and provides a summary at 

the end of the assessment. The treatment is to 

take action to correct all the detected

5.5 CONCLUSIONS

A number of cases were presented to both versions of 

the prototype. It is clear that MK II is a more clinically 

orientated version with adequate communication between its 

modules. MK II considers the data in different contexts. 

This ensures that all posssibilities for interpretation of 

the data are considered.

The last example highlights the inability of the 

first version to interpret all the abnormal data and the 

recommended treatment is also limited. MK II breaks the 

problem into its sub-components and is therefore able to 

give a correct assessment that explains all the abnormal 

data as well as recommending appropriate measures to 

correct them.

The two versions of the prototype will be discussed 

in more detail in the next chapter.
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CHAPTER 6

 
 

(Friedrich Nietzsche)

6.0 DISCUSSION

In the previous chapter, the prototype under development 

was described in some detail. In this chapter the 

methodology undertaken, its strengths and weaknesses will 

be fully discussed.

6.1 INTRODUCTION

As mentioned previously, clinicians use various 

kinds of knowledge to diagnose and manage a patient 

depending on the complexity of the problem and the level 

of its development. A clinician confronts cases ranging 

from straightforward disorders which can be diagnosed 

quickly and efficiently using heuristic knowledge, to the 

more complicated in which s/he has to go back to first 

principles in order to understand the process.

A knowledge-based system should ideally contain 

knowledge similar to that which a clinician utilises in 

the process of clinical decision making. The knowledge 

available to a clinician comprises the principles of

physiology and anatomy, some understanding of the

pathophysiology of the specialised domain and the

experience gained while applying this knowledge.
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6.2 KNOWLEDGE REPRESENTATION

The developed prototype incorporates two knowledge 

sources, the knowledge-base and the mathematical model, 

Macpee. These knowledge sources are quite independent of 

each other, furthermore, knowledge is represented in a 

different manner in each case. They are discussed 

separately below.

6.2.1 Knowledge Base

The knowledge-base is comprised of symbolic 

representation of diseases and relevant management 

strategies. The knowledge is essentially associational; 

describing various patterns of signs and symptoms 

(manifestations) in relation to the underlying disorder.

The knowledge-base comprises rules describing 

various abnormalities and treatment strategies. These 

rules represent the pathophysiology of fluid and 

electrolyte metabolism heuristically. There are no rules 

defining the mechanism of action, the structure and the 

function of the components. Because of this shortcoming, 

it can only handle cases that are represented by their 

manifestations. It is unable to reason in terms of 

physiology or pathophysiology, and hence, incapable of 

handling disease-states that are not represented 

explicitly in the knowledge-base. Fluid-electrolyte is a 

complex domain with a large number of interactions 

between the subcomponents. A number of disorders can be 

present at the same time resulting in the "non-classic" 
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manifestations difficult to diagnose. Kuipers (1984), 

gives an interesting example of a patient suffering from 

nephrotic syndrome who is on a self-imposed low sodium 

diet. An important diagnostic finding is oedema, the 

swelling of ankles and wrists. However, this patient had 

no sign of oedema because of low salt intake. This would 

probably baffle a system whose knowledge is based purely 

on the association of manifestations with a disorder. 

This highlights the importance of the need for a more 

substantial knowledge-base to be present so that the 

underlying mechanism can be understood.

In this work an attempt has been made to tackle the 

problem of multiple disorders being present by 

concentrating on the key factors that are essential for 

the recognition of the presence of a disorder. A formal 

evaluation of the system in a clinical environment will 

allow further comments to be made on its effectiveness.

Clinical decision making is a difficult process to

explain. Clinicians acquire through experience the

ability to compile a long causal chain into an

association (Kuipers, 1984). However, for a system to be

acceptable, it should be able to explain the line of

reasoning followed in an appropriate manner. The kind of

explanation that can be generated using the knowledge-

base described above is very shallow and unacceptable.

Clinical users will not accept the decision of a system

that is only able to produce explanations based on rules 
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that is only able to produce explanations based on rules 

that are triggered, especially if the rules represent the 

association between signs and symptoms with the 

underlying disorders.

A more acceptable explanation would be based on 

first principles (eg. Patil, 1981; Long, 1986). Recently, 

there has been enormous interest in "user modelling" 

explanation, where systems produce explanation based on 

the requirements of the user. For a review of various 

methods of explanation see Nicolosi (1988).

6.2.2 Model

The model implicitly represents the functional 

behaviour of fluid-electrolyte and the circulation. This 

representation is based on physical laws as well as 

physiological laws. Difference equations are used to 

represent relations and links between components. These 

links can be thought of as implicit causal links, 

simulating a cause-effect cycle. Models of this kind 

incorporate within them the results of experiments 

carried out on dogs and other animals to estimate the 

unknown parameter values in the equations. This is a kind 

of knowledge that is very valuable for an acceptable 

simulation but very difficult to represent explicitly. 

The mechanism of action of the domain, is then fairly 

well represented as far as realistic simulations are 

concerned. The main disadvantage of this kind of 

representation is their lack of transparency.
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The model is quite capable of simulating multiple 

disorders. Various parameters can be changed to simulate 

a number of disorders in conjunction with each other. The 

model, however, does not take laboratory or clinical data 

as input and hence, it is difficult to fit a patient’s 

data to the model. A mechanism had to be deviced by means 

of which the patient’s data could be fitted to the model 

so that the model would simulate the condition of the 

patient. The knowledge-base was developed with this 

difficulty in mind, hence it acts as the front-end to the 

model, assessing the patient's condition and changing the 

appropriate parameters of Macpee to this effect.

6.2.3 The Combined System

The prototype therefore, incorporates two knowledge 

sources. One is based on heuristic knowledge (knowledge-

base), the other on first principles and empirical 

knowledge (Macpee). The combination should be sufficient 

to meet the requirements of a clinical decision making 

system.

However, as the knowledge represented in the model 

is neither transparent nor explicit, it can only be used 

in a limited manner that is through simulations. Hence, 

the model is used as an external module with interaction 

being reduced to passing parameter values and receiving 

simulations.
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The model is used to justify the recommended therapy 

regimen of the treatment module. As such, it is quite 

capable of simulating various plans and displaying the 

results in graphical and numerical form. Prompts are also 

displayed about how the patient is feeling when life 

threatening states are reached.

The two knowledge sources are 

types of conceptual understanding 

developed from similar

of the mechanisms of

action of the fluid-electrolyte and circulatory system.

However, the groups developed them separately and without

implementation.

interaction with each other. This is

problem on top of the difficulties of

There are areas in the domain of fluid-

circulatory metabolism that are not fully

electrolyte and

an additional

understood and

hence there is no uniform view about these problem areas.

6.3 REASONING

6.3.1 MK I

The first working prototype had two different 

reasoning mechanisms. The diagnostic module reasoning 

was a process of elimination of possible contenders for 

differential diagnosis. The disease-states represented 

were all potential cause of the manifestations unless 

there was at least one manifestation that was contrary to 

this hypothesis. This process meant that even though 

there was no evidence to support the presence of the 

remaining disorders in the differential diagnosis list, 
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there were no evidence to deny it either. The reasoning 

mechanism was therefore that of elimination rather than 

establishment of a diagnosis as the most likely cause of 

disorders.

This reasoning mechanism has the benefit of 

considering all the disease-states as a potential cause 

of the disorder without any bias or weighting. Hence, no 

disease-state would be rejected because of its uncommon 

occurrence.

There were a few disadvantages. Because disease-

states were represented explicitly by their associational 

pattern of expected symptoms, a large number of disease-

states had to be represented for it to be effective. The 

number would run towards infinity if multiple conditions 

were to be present. For example hyponatraemia and 

cardiac failure were represented by their expected 

patterns and if a patient was suffering from both 

conditions, a disease-state would have to be defined with 

the expected pattern. Another problem was the fact that 

the system would include disease-states within its 

differential diagnoses that were totally unrealistic but 

there would be no evidence to reject such a hypothesis. 

This problem was rectified by introducing additional 

constraints at the level of knowledge representation.

The treatment module performed much more efficiently 

and its recommendations were quite acceptable. It uses 
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various rules to assess the state of various sub-systems 

of the fluid-electrolyte and circulatory domain in order 

to propose appropriate suggestions. The sub-systems 

include the cardiovascular system and renal system. 

Various fluid therapy plans are generated using the above 

information together with the fluid balance state.

The interface between the knowledge-base and Macpee 

underwent two development phases. First the coding of 

Macpee was altered so that instructions could be given by 

default through a file rather than the keyboard. The 

second phase was to construct rules that would translate 

the output of the knowledge-base into instructions 

readable by Macpee and store them in appropriate order on 

to a file.

The output of the diagnostic module is used to tune 

Macpee to the state of the patient. Hence, the overall 

performance of the prototype is dependent on the 

diagnosis being correct. In order to reduce this 

dependency on the diagnostic module, the treatment module 

reasons quite independently of the diagnosis. In this 

way the performance of the two modules can be checked 

against each other.

6.3.2 MK II

An informal evaluation of the prototype indicated 

that the diagnostic module was capable of handling 

patients with single disorders subject to modification of 
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the constraints of the knowledge representation method. 

However, patients that are admitted routinely for 

intensive care usually suffer from more complicated 

conditions arising from a number of disorders. It was 

therefore decided to review the diagnostic module and as 

a result it was reconstructed.

The new diagnostic module uses rules to assess 

various relevant sub-systems. The assessments take the 

form of reports to the user on the condition of the sub-

systems as well as translating the reports into 

instructions to change appropriate parameters of Macpee. 

In this version therefore, instead of a definite 

diagnosis, assessments are produced which results in a 

greater number of parameters of Macpee to be changed. It 

is considered that this approach will enable the model to 

track patient progress more closely.

This approach closely resembles the approach of the 

treatment module. Efforts were made to integrate the two 

modules. The final prototype produces treatment 

recommendations based on the assessment of the diagnostic 

module.

One of the problems that computer systems in 

medicine are faced with is the evolution of patients over 

time. That is, the patient's condition will change (for 

better or worse) either because of intervention by 

clinicians or as the result of the physiological system 
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correcting itself and compensating for deranged effects, 

or both.

The physiological model, Macpee, is a rich source of 

knowledge about the physiology and pathophysiology of the 

fluid-electrolyte and circulatory systems. As such, it 

is capable of tracking a patient over time. Macpee can 

also be used to justify recommended therapies. Time is 

therefore represented in an abstract manner at the 

therapeutic level.

The output of Macpee is numerical and graphical in 

form. It must be noted that to justify a recommended 

therapy, a change in the right direction of appropriate 

parameters from the abnormal state is considered to be 

sufficient and necessary, rather than a number to number 

correspondence. That is, the patient is not expected to 

have the same quantitative parameter values, having gone 

through the recommended therapy, but rather the same 

shift in direction from the abnormal state.

6.4 LIMITATIONS

The prototype suffers from various limitations. Some 

are the inevitable reflection of uncertainties in the 

medical domain whilst others are the result of 

implementation and conceptual limitations.

Patient data are classified into various ranges 

before used for processing. The classification is 
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carried out by comparing the data with a set of reference 

ranges. This creates a problem when data fall close to 

the threshold of adjoining ranges. The reference ranges 

are based on the expected values for "typical" patients. 

In reality, a patient may have a large rise in a 

particular parameter but still fall into the "normal" 

range. This factor undermines to some extent the 

effectiveness of the diagnostic module.

The prototype's reasoning process is in effect an 

"open loop". That is, it makes diagnosis, recommends 

appropriate therapy regimes and simulates these on the 

model, but no assessment is made from the result of the 

simulation to modify the therapeutic measures if needed.

The two knowledge 

independently, although the 

so that it would compensate

sources were developed 

knowledge-base was developed 

for some of the deficiencies

of Macpee. However, the physiological and 

pathophysiological knowledge represented have been 

developed by different groups at different times. There 

may be some conflict as a result.

It is of utmost importance for a system in a high 

risk environment like the intensive care unit to provide 

explanation of its decision to the user for it to be 

acceptable. Although the model is used to justify 

recommended action, this justification cannot replace 

explanation. The protype has no explanation facilities.
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Because of the implicit and heuristic method of knowledge 

representation, the system as it stands can only be made 

to generate explanation at a shallow level. For 

instance, a particular action is recommended because a 

particular pattern of manifestation is present.

6.5 RECOMMENDATIONS FOR FUTURE WORK

Further development can be carried out to overcome 

some of the deficiencies of the system mentioned above.

For instance, in tackling the problem of ranges, 

one piece of data should not be considered in isolation 

but the overall trend over an appropriate time scale must 

be considered.

The reasoning loop could be closed by a qualitative 

assessment of the key parameters after simulation, so 

that new actions can be recommended.

The other limitations are more fundamental and 

require major reconstruction.

A coherent knowledge-base should be developed based 

on explicit representation of the cause-effect cycle, 

where this is known, and empirical knowledge, to clarify 

the ambiguities of uncertain areas. Kunz (1984), Widman 

(1986) and Long (1986), are three examples of this 

approach. This coherent knowledge-base, could then be 

used to generate diagnosis, therapy, prediction and most 
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importantly explanation. Because of the explicit 

representation of the knowledge, the system would be able 

to produce an acceptable explanation to justify its 

reasoning mechanism.
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CHAPTER 7

 
 

(Albert Einstein)

CONCLUSIONS

The objectives of the project were to study the 

feasibility of coupling a dynamic mathematical model to a 

knowledge-based system, and to assess the benefits of 

such coupling. A prototypical approach was taken to 

achieve the objectives. A prototype was developed and is 

to be used in the Intensive Care Unit at the Royal Free 

Hospital, London, to diagnose, treat and predict the 

state of patients suffering from fluid-electrolyte and 

circulatory disorders.

The work discussed in this thesis has made a number 

of contributions both to systems science and clinical 

medicine.

The contributions made from the systems science 

perspective are:

* Through the development of the prototype, it has 

been shown that coupling of a dynamic 

mathematical model to a knowledge-based system 

can be achieved.
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This case study has highlighted the benefits of 

such coupling, and equally revealed the 

limitations. Time was represented at the 

therapeutic level, enabling the system to 

predict future state of the patient. It was not 

possible, due to the limitations of the model, 

to represent time at the diagnostic level.

The limitations provided clues as how better to 

proceed with coupling. Furthermore, the 

limitations provided guidelines as how to 

proceed with the process of a complete 

integration of a mathematical model with a 

knowledge-based system.

From a clinical perspective the contributions of this

work are:

A prototype was developed which encapsulated 

expert knowledge within it in an accessible 

manner, to assist nurses as well as clinicians 

in the management of patients in a Intensive

Care Unit.

* A dynamic mathematical model was coupled to a

knowledge-based system and thus a temporal 

element was introduced at the therapeutic level 

of the developed prototype. This allows the

system to track the patient over time and 
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predict changes with regard to the therapeutic 

measures.

* The key parameters used to diagnose and manage 

patients were identified by studying the data 

processing mechanism of the clinicians.

* As a result of the knowledge acquisition and 

elicitation processes, the clinical decision 

making process became more structured.

* It became apparent that clinicians use 

various types of knowledge at various levels of 

detail at different times according to the 

complexity of the problem at hand. A knowledge-

based system should have similar knowledge 

represented within it, taking quantitative and 

qualitative forms, representing causal and 

heuristic links. Such a knowledge-base is rich 

enough to be a source for reasoning and 

explanation.
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APPENDIX 1

In this appendix some examples of the menu 

facilities and window outputs of the prototype are 

presented. The windows shown in pages 145-152, show the 

logical sequence of a typical interaction.



153

APPENDIX 2

In this appendix, the listing of the developed 

prototype in LPA-PROLOG is presented. This listing is 

subject to Crown Copyright.
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