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ABSTRACT

Molecular surfaces provide a suitable way to analyze and to study
the evolution and interaction of molecules. The analysis is often
concerned with visual identification of binding sites of ligands to
a host macromolecule. We present a novel technique that is based
on implicit representation, which extracts all potential binding sites
and allows an advanced 3D visualization of these sites in the con-
text of the molecule. We utilize implicit function sampling strategy
to obtain potential cavity samples and graph algorithms to extract
arbitrary cavity components defined by simple graphs. Moreover,
we propose how to interactively visualize these graphs in the con-
text of the molecular surface. We also introduce a system of linked
views depicting various graph parameters that are used to perform
a more elaborative study on created graphs.

Index Terms: J.3 [Computer Applications]: Life and Medi-
cal Sciences—Biology and Genetics; I.3.4 [Computer Graphics]:
Computational Geometry and Object Modeling—Boundary repre-
sentations, Curve, surface, solid, and object representations

1 INTRODUCTION

The research field of computational molecular biology is conduct-
ing discoveries about molecular machinery of life on the high-
est magnification level. Molecular interactions are often studied
through analysis of molecular dynamics (MD) simulation based on
classical mechanics and Newtons laws of motion. The simulations
result in large datasets, called trajectories and containing the se-
quence of molecular structures as they vary along the simulation
time. Comparison of these reveal their transformations over time.

The exploratory process is often concerned with visual identifi-
cation of binding sites of ligands to a host macromolecule. For this
purpose, molecular visualization conveys the molecular structure
so that the binding sites can be located through the process of vi-
sual analysis. For easier perception of a potential binding site such
as a pocket, cavity, or a tunnel, depth-enhancing illumination mod-
els are utilized. Such an approach, however, still requires a much
trained eye of the domain analyst.

Complementary to these approaches, several non-visual analytic
methods have been developed that allocate possible binding sites
by means of analysis of the geometrical structure of the molecular
model [2, 34]. The structure can be for example analyzed through
stochastic seeding strategies, where the seed-point positioning can
determine available area for binding. Other methods, like Voronoi
diagram partitioning or discretization into a volumetric regular grid,
makes segmentation techniques possible to be facilitated. The latter
techniques are unfortunately often limited in identification of inter-
nal tunnels and pockets, while shallow binding sites on the surface
might remain undetected.
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Most of all visual and geometrical methods, however, are con-
cerned with analysis of a static geometry, instead of a more
physically-plausible dynamical picture such as the one provided by
MD trajectories. With such an approach, a binding site that is valid
only during a limited time interval is very difficult to identify and
the entire approach is highly dependent on analysts intuition when
selecting a particular frame.

The approach presented in this paper aims at a novel combina-
tion of both visual and stochastic analysis. Moreover, the entire
temporal sequence is analyzed instead of a single frame. To iden-
tify binding sites, a stochastic seeding process is first applied on an
implicit representation of the molecular structure. Mutual visibil-
ity of seeding points (samples) is utilized to cluster the seed-points
belonging to a potential binding site. The site is represented by a
sparse skeleton that is extracted with existing graph algorithms. The
evolution of potential binding sites can be visually analyzed over
the entire temporal sequence by integrating the extracted skeleton
with contextual surface representation of the molecule. Moreover,
graph analysis allows us to quantitatively characterize the binding
site topology and size extends.

An important contribution is that we do not consider only posi-
tion of atoms solely, like for instance in many Voronoi diagram ap-
proaches [19, 26, 35], but instead we put emphasis on the molecular
surface itself. Additionally, thanks to implicit representation we are
not bound to any fixed structure, as for instance in grid based dis-
cretization [14, 27, 34], but we are able to evaluate cavity distance
parameters at any point in space with respect to the molecular iso-
surface. Finally, the cavities are explored by means of graphs rep-
resenting the potential cavity sites, which can be visually explored
via linked views depicting various graph parameters (Fig. 1).

Figure 1: An application screenshot. Left: Two 3D views represent
different visualization of proteinase 3 at time step 40, where a clipping
plane is applied in both of them. Right: Two scatterplots depicting
distinct graph measures are used to select arbitrary graphs that are
then linked with the contextual 3D view(s).



2 RELATED WORK

We relate our work to two areas. Firstly, we introduce techniques
of implicit molecular representation. Secondly, we describe cavity
extraction techniques.

2.1 Implicit Representation of Molecules
Implicit surfaces provide a suitable way to easily model complex
dynamically changing geometric objects. In the area of molecular
visualization, they find their stable place, mainly because of their
ability to model smooth bond transitions between individual atoms.
The set of techniques, known today as implicit modeling, was used
for the first time by Blinn [1]. He introduced the implicit function,
describing the electron density function of atoms, by summing the
contribution from each atom as follows:

f (p) = T −∑
i

bie−aid2
i , (1)

where di represents the distance from p to the center of atom i, bi
represents the ”blobbiness”, ai describes the atom radius and T de-
fines the electron density threshold. Later on several different rep-
resentations of implicit surfaces, built up from skeleton points, were
introduced [22, 36]. The general formula for these representations
is defined as:

f (p) = T −∑
i

mi fi(p), (2)

where mi is a weighting factor and fi is a decreasing density dis-
tribution function defined as: fi = hi ◦ di, where hi (e.g., ear2

in
Eq. 1) is a kernel function and di represents the distance to atom
i. Comparative analysis of application of different kernel functions
was introduced in [31]. The efficient GPU implementation of ker-
nel evaluation in the rendering pipeline was introduced by Kolb
and Cuntz [12]. Similar approaches were later introduced for fast
molecular visualization [5, 14]. Although the approaches based on
summation of atom contributions are fast to compute, they do not
fully take into account the solvent (represented usually by sphere
of radius R), which can reveal the possible binding sites on the
molecule. Nevertheless, they are being still well-used and preferred
techniques in molecular visualization.

Pasko et al. [24] generalized the representation of implicit sur-
faces, by combination of the different forms of implicit models, and
denoted it as function representation. The inequality (3) describes
an implicit solid (object):

f (p)≥ 0, (3)

where p = (x1,x2,x3) ∈ E3. Function f is called an implicit sur-
face function (implicit function), which classifies the space into two
half-spaces f (p) > 0 and f (p) < 0. This classification applies to
Eqs. 1 and 2 as well. Besides summation, complex objects can be
created from individual components via Constructive Solid Geom-
etry (CSG) operations. The basic set-theoretic operations can be
defined using the min and max operators:

f1 ∪ f2 = max( f1, f2)
f1 ∩ f2 = min( f1, f2)

(4)

Analytical expressions that approximate these operators were pro-
posed by Ricci [29].

In the literature, there are several types of molecular surface rep-
resentations, where one of the basic one is when the protein atoms
are depicted as spheres, where the radius corresponds to the van der
Waals force (vdW surface) [16]. When denoting atom centers as
ci and their van der Waals radii as ri, the van der Waals implicit
function fulfilling Eq. 3 is defined as: f (p) =

∪
i(ri − di). Solvent

accessible surface (SAS) is then obtained by the extension of this
surface by a solvent radius R: f (p) =

∪
i((ri +R)−di).

The most widely used representation, with respect to cavity ex-
ploration, is denoted as solvent excluded surface (SES) [30]. The
recent GPU implementation of SES representation visualization
was proposed by Lindow et al. [19] and Krone et al. [13]. Al-
though the rendering performance is high, their models can be used
for rendering purposes solely. Moreover, in our work, we delimit
ourselves to representations that define the molecule as an implicit
surface, which is a prerequisite for our cavity detection technique.

The modeling and visualization of the SES representation by
means of functional representation was introduced by Parulek and
Viola [23]. The authors represent the molecular surface via com-
bination of basic CSG operators, Eq. 4, to create a distance based
implicit function. We take this representation as a basis for the
function sampling procedure. However, its O(n3) complexity dur-
ing the function evaluation step causes non-competitive rendering
performance for bigger proteins; i.e., below 10 FPS. Therefore, to
get the interactive rendering performance we utilized a simplified
surface representation, which on one hand provides a fast render-
ing performance, but on the other hand only approximates the SES.
The more detailed description is in Section 3.3.

In order to visualize implicit molecular models, one can convert
them to a mesh representation prior to rendering them as a set of
patch primitives [20]. The major drawback is when we deal with
complex molecular models, one would need to generate millions
of triangles to obtain a fully detailed iso-surface. Therefore, in
recent years, several techniques have been introduced that exploit
direct visualization methods, represented by ray-casting methods.
One subclass of implicit surfaces are represented by distance based
functions. Effective visualization of such objects was proposed by
Hart [8]. Since, essentially, the distance measure for an implicit
function can be approximated by the first Newton iteration of the
function:

fdist(p)≈
f (p)

|∇F(p)|
; (5)

we also adopted Hart’s technique for rendering.
The recent studies address ray-casting of general implicit sur-

faces on GPU using interval arithmetics [10] and via so-called
adaptive marching point method [32]. However, these methods are
aimed at globally defined functions, which is not often the case
of molecules, where the function is usually evaluated based on the
neighboring atoms solely; i.e.; only taking into account those atoms
that lie in the close vicinity of the evaluated point. Naturally, when
using for instance Eq. 1, the kernel function has an infinite domain
of influence. In such a case all the molecule atoms should be con-
sidered.

2.2 Protein Cavity Analysis
Due to the valuable information provided by empty spaces formed
by protein surfaces, analysis of cavities and tunnels have been stud-
ied widely. In 1983, Connolly [3] proposed an analytical descrip-
tion of the SES representation, which was utilized by Voss and
Gerstein in their web-based cavity analysis tool [35]. They apply
two distinct probes to determine the solvent volume where potential
cavities and channels may reside.

Although our approach is more suited for cavity exploration than
tunnels, we refer briefly to tunnel exploration methods as well.
Such methods can be initiated by specification of a starting point in
an empty space of the protein interior while trying to reach the exte-
rior through a tunnel-like cavity. Then the space is filled with geo-
metric structures and provide information on the exit pathway to as-
sess the properties of the cavities. One such method is HOLE [33],
where the user provides the initial location and orientation of a pore
in the structure and the algorithm extracts the associated tunnel.
Coleman and Sharp [2] improve the method in a way that the ini-
tialization step is automatized and the algorithm is able to find ar-
bitrarily shaped tunnels. In CAVER [27] and MOLE [26], Petrek et



al. use Voronoi diagrams to discover molecular channels and pores.
Recently Lindow et al. [18] presented a technique that allows to ex-
tract significants paths from the molecules. In their approach the
authors utilize Voronoi diagram of spheres. Additionally, the edges
of Voronoi diagrams lying outside the domain of the molecule were
removed by a set of random rays generated at Voronoi vertices. This
method resembles our technique; nevertheless we do not employ
Voronoi vertices, but rather implicit function sampling that empha-
sizes the molecular surface. Their final visualization was achieved
by means of placing light sources on the extracted paths.

An iterative and heuristic algorithm is used in PoreWalker [25] to
determine channels using pore features. Our method, with respect
to tunnel extraction techniques, can be thought of as combination
of stochastic methods (function sampling) and Voronoi diagrams
(graph analysis).

Another set of approaches aim at extraction and analysis of
molecular pockets and cavities. In 1998, Liang et al. [17] intro-
duced a program CAST that uses computational geometry methods
and alpha shape theory to extract cavities. In McVol [34] Till and
Ullmann describe a Monte Carlo algorithm to sample the protein
surface in a 3D grid. Essentially, this approach is similar to ours,
where the main difference being that the authors use a 3D regular
grid and does not allow for interactive visual analysis. Recently,
Raunest et al. [28] introduced a grid-based approach that also con-
siders molecular dynamics to identify internal cavities and tunnels.
In 2011, Krone et al. [14] introduce a method to track the cavity
evolution over time. A user selects a cavity that is then tracked for
each frame. The authors voxelize the implicit function into a 3D
volume grid, which is subsequently segmented by means of the 3D
flood fill method. In our work, we employ monte carlo function
sampling strategy to utilize directly the molecular surface informa-
tion to extract potential cavities. We do not track cavities over time,
but rather form a large set of potential cavities for every time step
independently, where a user is provided by linked views that allow
her to explore the space of cavities with respect to 3D molecular
visualization.

3 METHOD OVERVIEW

We assume that a molecule is represented by an implicit function
f (p). One can use a kernel based approach (Eq. 2), or the one pro-
posed in [23]. The required function properties include: a) the im-
plicit function is positive inside the molecule and negative outside,
b) it is possible to estimate the minimum distance from a sample
point. The second requirement can be achieved by application of
Newton’s formula, Eq. 5. It is important to mention that in this
paper, we do not focus on describing the best possible implicit rep-
resentation, but rather we aim at the method to extract all possible
cavities and the corresponding visualization. Nevertheless, differ-
ent choices of the function forms yield to different results naturally.

Our method computes an independent set of graphs, Gt = {Gt
1 ∪

. . .∪Gt
m}, representing possible cavities of MD simulation in time

step t. In order to construct grapha Gt , we firstly populate the defini-
tion space of the molecule, defined by the bounded box of time step
t, by random samples. The implicit function is evaluated at every
sample position, where all the samples that lie inside the molecule
or farther away from the surface than the user defined threshold are
discarded. Secondly, the samples are then filtered to delimit them
only to those that might possibly lie inside the cavity. This is per-
formed by tracing a ray from every sample following the gradient
of the function obtained at the sample point. When the ray hits the
surface, the sample is labeled as potential cavity sample and its po-
sition is updated accordingly. Thirdly, the mutual visibility test be-
tween pairs of cavity samples is performed. This yields to 3D graph
formation, where each mutually visible pair defines an edge in the
graph. Afterwards, we perform independent component analysis of
the graph, which results in an independent set of graph components

Gt . We also perform the minimum spanning tree algorithm to every
independent graph component to obtain its central skeleton.

We visualize the graph components using basic geometrical el-
ements, where we employ spheres for nodes and line segments for
edges. The molecular visualization is performed with respect to the
selected graph components. Additionally, we introduce a new im-
plicit clipping plane for molecules. Here, we utilize the fact that
the function evaluation is done during the scene ray-casting, which
allows us to clip-away atoms used for function evaluation, which
lie in front of the clipping plane. The user is provided with linked
views allowing her to select individual graphs according to various
graph properties.

3.1 Cavity Sample Points

In the first stage, we sample the implicit functions by a set of ran-
dom points, S = {p1, . . . ,pn}, which densely cover the function do-
main (Fig. 2a). For simplicity, the domain is represented by the
protein bounding box. We perform the sampling for every time
step of MD simulation, where the position of sampling points re-
main almost the same for all the time steps, i.e.; we slightly adjust
the position with respect to the molecule bounding box in a par-
ticular time step. The number of points (samples) that are seeded
to the scene depends primarily on the size of the molecule, where
for instance for Proteinase 3, used in our use case containing 3346
atoms, we used 30K of sample points. Essentially, the sampling
process evaluates the implicit function f at every sample position,
which can be done in parallel, at each time step independently; i.e.,
we obtain a set of function values F t = { f (p1), . . . , f (pn)} for time

(a)

(c) (d)

(b)

(e) (f)

Figure 2: The pipeline for detection of cavity samples. a) A set of
random samples is seeded in the space delimited by the molecule
bounding box. b) The samples, p that lie inside the molecule, f (p)≥ 0
are excluded. c) An illustration of the extended iso-surface by dis-
tance D. The samples that lie farther away than D are also excluded.
d) Detection of cavity samples is performed by means of shooting the
ray along the gradient direction evaluated at all the samples. Those
samples that hit the iso-surface (red color) are labeled as potential
cavity samples. e) The new sample position is computed, which is
defined as the middle point between two points obtained by ray iso-
surface intersection. f) The resulting graph components after the ap-
plication of connected component and minimum spanning tree anal-
ysis.



step t. The sampling is performed in the precomputation for all MD
trajectories.

With respect to the property of implicit functions that classifies
points between internal and external ones, we can easily filter out
samples S0 ⊆ S that lie inside the protein, S0 = {p| f (p) ≤ 0p ∈ S
(Fig. 2b). After discarding samples that lie inside the molecule, still
many samples might remain. Therefore, we filter out even more
samples, by removing all the samples that lie farther away from the
surface. We introduce parameter D representing the maximum al-
lowed distance from the samples to the molecular surface. In our
work, after discussion with biologists, we set this value to 2R; i.e.;
all the samples that lie within a solvent diameter range. More for-
mally, we define the set as

S1 = {p| f (p)≤−2R∧p ∈ (S−S0)}, (6)

where an exemplified scenario is illustrated in Figure 2c. Here we
generate a set containing sample points lying in a close vicinity to
the surface. Please note that the number of samples in S1 depends
on the surface complexity predominantly.

As a next step, we perform a cavity based analysis, which classi-
fies the samples into potential cavity samples. By normalization of
the function gradient N(p) = ∇ f (p)/|∇ f (p)|, we obtain a normal
direction to the molecular surface. Here for every sample a ray is
cast along the normal direction, beginning at the sample, and when
the ray hits the surface, the sample is classified as a potential cavity
sample; i.e;

Cav(p)≡ [∃tp > 0| f (p+ tpN(p)) = 0]. (7)

To evaluate the predicate Cav, we use the same method that is em-
ployed in the actual 3D ray-casting (see Section 3.3). Here, for all
the samples that fulfil Cav(p) ≡ 1 (Fig. 2d), we compute two sur-
face projections, pA and pB, along the normal, which are defined as
follows:

pA = p− fdist(p)N(p) (8)
pB = p+ tpN(p), (9)

where fdist(p) is by Eq. 5. These two points are used to adjust the
sample position to lie in the middle of the line segment defined now
by pA and pB, p = (pA + pB)/2 (Fig. 2e). We denote the newly
constructed set of samples as S2. Moreover, we specify a radius for
the sample as follows:

rp = min(
|pA +pB|

2
, | fdist(p)|), (10)

where fdist(p) computes the estimated minimum distance to the
surface in the new sample position. The radius rp gives us an esti-
mation about the cavity span at the sample position. Note that using
this approach we obtain samples forming both internal cavities of
the molecule and also the external surface pockets.

The ray-casting method used to evaluate cavity samples can be
performed in a more robust way, like for instance producing multi-
ple rays in random directions. Nevertheless, casting just a single ray
is a very fast method and, when taking into account the large num-
ber of employed seeds, also it helps to filter out many samples in
S1. Set S2 now contains a set of samples lying in the middle of two
different parts of the molecular iso-surface separated by an empty
space (Fig. 3). In the previous steps, all the samples are evaluated in
parallel using CUDA, where for instance evaluating and segment-
ing of 30K samples for 100 time steps takes around one minute.

3.2 Cavity Graphs
Here our goal is to form a graph that defines relations between the
cavity samples. First, we perform visibility tests between all pairs

Figure 3: Visualization of cavity samples for a water channel (Aqua-
porin) (left). In order to see also the interior samples, we applied an
implicit clipping plane (right), introduced later in Section 3.3.1. The
radii of spheres is determined by Eq. 10.

of sample points in S2. This enables us to generate an undirected
graph G, where nodes being the sample points in S2. An edge be-
tween two samples is added to the graph only if there is no visible
surface between these two samples. Formally, there is no edge be-
tween two samples, p and q, only if the function has at least one
root, on the line segment connecting both samples. We encode this
property into the predicate Root(p,q)≡ 1:

Root(p,q)≡ [∃t| f (p+ t(q−p))≥ 0]. (11)

In order to compute the predicate, we utilize the bisection method,
also called binary search method. The line segment, defined within
the interval [p,q], is recursively halved and the midpoint is tested
against the positive function value. By denoting the midpoint
Hp,q = p+q

2 of line segment [p,q], the bisection method is defined
by

Root(p,q)≡


True i f |p,q|< Lmin,
False i f |p,q|> Lmax
f (Hp,q)< 0∧
∧Root(p,Hp,q)∧Root(Hp,q,q) otherwise

(12)
where Lmax defines the maximum allowed distance between two
samples and Lmin represents the minimum length of the tested in-
terval. The function is initialized with Root(pi,p j). The illustration
of the algorithm is depicted in Figure 4a. Note that parameter Lmin
represent the precision when searching for possible surface inter-
sections. In all our demonstrations, we specify L = 0.1R; i.e., 10%
of solvent radius. On the other side parameter Lmax represents the
maximum edge length that might be added to the graph. The ac-
tual values of this parameter may vary according to what are we
after. For instance, when the goal is to detect tunnels this values
should be higher. While for smaller pockets on the outer molecu-
lar iso-surface, this value should not be very high in order not to
merge two or more distinct regions. Thus Lmax can be thought of as
a minimum distance separating two mutually visible components.

After performing all the tests, we add an edge (pi,p j) to graph
G only if Root(pi,p j) ≡ 1, where we also specify the edge weight
as |pip j|. An example of such a graph is shown in Figure 5. After
all the tested edges were added, the connected component analy-
sis (CCA) is performed, which leads to the set of m independent
subgraphs G = {G1 ∪ . . .∪Gm}.



Figure 4: A demonstration of the visibility test. The bisection method
recursively halves the interval, evaluating the red point, the blue point
and, finally the yellow one, which lies in the object. The Root predi-
cate therefore equals False.

To support more interactivity, which was requested by our bio-
logical partners, when creating the set of independent graphs, we
introduce filtering of ”weak” nodes of input graph G. Here, before
applying CCA, we discard nodes, for which the number of incident
edges is less than Degmin. This parameter allows us to eliminate
weak connections between larger groups that are subjects of cavity
leaking. The actual value of this parameter is difficult to determine,
since there is no real default number of incident edges per a cavity
node. Therefore we introduce it as a free parameter (realized by a
slider), which can be interactively adjusted for each time step sep-
arately. The interactive feedback of our system is preserved, since
the initial graph G has been already formed. Naturally, when hav-
ing the initial graph very large (order of thousands of nodes), the
response time might be in order of seconds. For instance, the gen-
eration of graphs takes around 30 seconds for 100 time steps.

Sequentially, we apply minimum spanning tree algorithm [15] to
each component Gi to build its central skeleton (Fig. 2f). A span-
ning tree is an undirected graph whose edges are structured as a
tree while the minimum spanning tree (MST) is the least of them
with respect to the total sum of edge weights, represented by the
distances. The MST algorithm enables us to reduce the majority of
edges for each graph component, keeping just the essential ones.

Figure 5: An example of the constructed graph for potassium chan-
nel (KCSA, left) with the implicit clipping plane applied (right). For
illustration purposes, we specified considerably high value for Lmax,
Lmax = 10R, which causes a lot of graph edges being added to the
graph. The generated graph contains 29686 of edges and 2276 of
nodes.

3.3 Visualization

The rendering of implicit surfaces representing molecules by a sin-
gle distance based function was introduced by Parulek and Vi-
ola [23]. We improved the proposed pipeline in order to get more
interactive rendering performance. The implicit surface is visual-
ized through the ray-casting method performed in parallel on GPU
(CUDA). In the paper, for each ray, the entry and exit points were
computed by means of intersection of the ray with the bounding
box of the bounded molecule. This, however, led to a lot of empty
spaces needed to be traversed by the ray. Therefore, instead, we uti-
lize geometry shader to quickly splat billboards representing atoms
as spheres (ci,ri), where ci represents the atom center and ri its
radius. These are extended by solvent diameter 2R; i.e; spheres de-
fined by (ci,ri +2R) are rendered. The method describing the fast
sphere rendering is presented by Lampe et al. [4]. Nevertheless,
instead of rendering the spheres we store minimum and maximum
depth values for each fragment performed in one rendering pass.
This is done using OpenGL blending by specification of the blend-
ing function to max while writing (depth,−depth) to the rendering
target. For more details, we refer to a paper by Falk at al. [5], where
the authors already utilized a similar approach to render a set of par-
ticles defined by a kernel function.

Afterwards, by means of both computed depth values (tmin, tmax),
the first hit ray traversal is performed. A generated ray, starting at
tmin, is processed in a step-wise fashion until the tmax is reached or
we hit the iso-surface. The ray-casting procedure increments the ray
parameter t by − fdist , since the function has negative values out-
side, i.e. ti+1 = ti − fdist . The intersection point of the iso-surface
with the ray we denote as ps. Finally, we perform the shading com-
putation and enhance the depth perception by means of screen space
ambient occlusion [21].

3.3.1 Implicit Clipping Plane

To allow interactive molecule exploration, we include a clipping
plane, which we refer to as implicit clipping plane (ICP). ICP clips
the atoms the implicit surface function is built from. Here we utilize
the fact that the implicit function is constructed on the fly during
the ray-casting. ICP neglects those atoms ci that lie farther away
from the clipping plane than ri (Fig. 6a); i.e; d(ICP,ci) ≥ −ri. We
denote the implicit surface function, implementing this constrain,
by fICP(p).

Additionally, when the implicit clipping plane is activated, the
shading is evaluated according to the distance of the plane to the
intersection point, d(CP,ps), acquired during the ray-casting. Es-
sentially, the color is computed as an interpolation of the distance
within the interval d(CIP,ps) ∈ [−R,2R], where all computed in-
tersection points beyond 2R from the plane are shaded by the same
color. We employ the color brewer scheme [7] spanning from white
to blue tones (Fig. 6b). Users can either link the plane normal with
the viewing direction, or adjust the plane orientation interactively.

3.3.2 Graph Components

The graph components are visualized using basic geometrical prim-
itives (spheres and line segments), where each independent compo-
nent has its own color. The radii of spheres are defined by Eq. 10.
The spheres represent the nodes of each graph Gk, where its edges,
after applying the minimum spanning tree algorithm, are visualized
using basic line segments connecting the nodes. Our system allows
to select and visualize a group of graphs per different time steps
separately.

To enhance the graph components in the context of the molecule,
we color the iso-surface via the minimum distance of ps to the se-
lected graph components; i.e.; their edges (Fig. 7). This distance
is specified by the user as Dg, which can be arbitrarily adjusted
according to the user requirements (Fig. 7 left). The formal specifi-
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Figure 6: Implicit clipping plane. a) The implicit function evaluates the
molecular surface (green). It takes into account only atoms that inter-
sect the plane or lie in the half-space defined by the plane (arrows).
b) Protein Pr3 is colored according to the distance to the plane, where
within range [−R,2R] the final color is interpolated as it is sketched
by the blue rectangles in (a).

cation is defined as follows:

d(ps,Gi)

Dg
≤ 1 (13)

where d(ps,Gk) represents the distance of iso-surface intersection
point ps to graph Gi, while fulfilling d(ps,Gk) ≤ Dg. Moreover,
when any of the graph components is shown, we discard the shad-
ing model for all iso-surface points ps that are beyond Dg; i.e.,
d(ps,Gk) > Dg (Fig. 7 right). In our demonstration we specify
Dg = 3R.

Additionally, in order to preserve the primary iso-surface of
function f (p), when the implicit clipping plane is applied, both
functions must fulfil fICP(ps) = 0 = f (ps). This property is
checked during evaluation of Eq. 13, which defines whether the
(clipped) iso-surface represents the iso-surface of f (p) as well. If
this is not the case, the shading of those iso-surface points is done
as in Figure 8.

Figure 7: Visualization of graph components. Left: The iso-surface
point (the black circle), obtained during ray-casting, is evaluated
against the distance to the graph component (the dashed line). This
can be regarded as a distance field (shades of pink) defined by the
skeleton (black). Right: An example of graph component visualiza-
tion in the context of the molecule. When graph component is shown,
the Phong shading model is applied only to points that lie within Dg
distance from the graph. The graph component is displayed using
line segments (edges) and spheres (nodes).

Figure 8: Translation of the implicit clipping plane through the cavity,
from the viewer towards the center of the molecule (left to right). In
order to improve perception of the clipped iso-surface inside the cav-
ity, we color the clipped parts, within distance Dg where fICP(ps) ̸=
fICP(ps), by a monotone red color.

4 ANALYSIS OF PROTEINASE 3
Proteinase 3 is an enzyme involved in inflammation. It belongs to
the family of serine proteases, cleaving proteins via the hydrolysis
of specific peptide bonds. In a number of chronic inflammatory dis-
eases such as the Wegener granulomatosis and vasculitis, Proteinase
3 becomes too active and has a deleterious effect. It is thus a drug
target. Designing drugs for Proteinase 3 implies to understand how
its protein targets bind to it, so that the drug candidates developed
are able to compete with the protein targets and bind stronger than
these [6].

The quest for new drugs to prevent the pathological dysfunction
of a given enzyme often relies on knowledge of the three dimen-
sional structure of the enzyme involved, and in particular of the
cavities on its surface. The efficacy of the drug candidates is in-
deed dependent on a strong interaction with the enzyme and this
is achieved by binding into a cavity. Proteins, like all molecules,
are dynamic and the structural changes they undergo impact their
function. This is also valid for the dynamics of cavities.

Here, we apply our approach to the analysis of trajectories ob-
tained from molecular dynamics simulations of Proteinase 3 (Pr3)
bound to a short protein. We visually analyze the structure of the
protein to determine the cavities, which are likely to be the potential
binding sites. We classified them to distinct categories according to
the visual analysis. Our analysis involves an initial processing step
followed by an interactive analysis phase.

The analysis starts with importing the PDB and DCD files for
Pr3. The Protein Data Bank PDB file format stores the protein in-
formation (e.g., atom types, residual sequences) and DCD file for-
mat, a standard format used in Visual Molecular Dynamics (VMD)
tool [9], stores the atom trajectories.

As the first step, the implicit function sampling is performed.
This is done using CUDA, where all samples per a time step are
evaluated by f (p) in parallel as was introduced in Section 3.1. Once
the procedure is finished, the graph analysis is performed (Sec. 3.2).
It is possible to regulate the graph generation step through the use
of parameters. The number of graph components obtained for every
time step can become very high, if Degmin is set too low. For in-
stance, setting the Degmin parameter (Sec. 3.2) to 2 solely discards
single nodes, thus resulting in a high number of components. On
the other hand, high values of Lmax can produce too many graph
edges, which leads to less number of graph components with many
nodes. Therefore the user has the possibility to adjust freely these
two parameter to increase/decrease the size and the number of com-
ponents. The impact of changing parameters Degmin and Lmax is
showcased in Figure 9.

4.1 Analysis setup
Integrating all the resulting graph components into the visualiza-
tion can easily produce results that are hard to interpret. To over-
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Figure 9: An example of the effect of increasing parameters Degmin
and Lmax to connected components analysis of protein Pr3. From left
to right: Degmin = 4, Degmin = 7 and Degmin = 10. From top to bottom:
Lmax = 4R, Lmax = 7R and Lmax = 10R.

come this, we enable the visual investigation and selection of the
graph components to steer the focus of the analysis. In order to
interactively analyze the graph components, a number of measures
are computed consequently to the graph generation step. Here we
utilize a number of basic measures to quantify the properties of
components to be able to compare them. For each component, we
compute: the longest path between any two nodes (maxLength), the
average of the shortest paths between the nodes (avgP), and the av-
erage of the degree of all the nodes (degree). Note that the existing
literature [11] on graph analysis offers a wide range of measures,
which would make this analysis more elaborative. However, these
studies are beyond the scope of this paper and can be thought of as
a future extension.

At this stage, we introduce two accompanying scatterplots that
visualize the quantitative measures for the graph components over
time. In one (Fig. 1 top-right), we show a selected graph measure
(y-axis) over time (x-axis). The other (Fig. 1 bottom-right) depicts
two graph measures as opposed to each other for all the time steps.

The user can select (brush) desired components over time, where
in the accompanied 3D view the selected graphs are visualized. Ad-
ditionally, multiple instances of these plots can be utilized, where
each one visualizes one of three graph component measures. Dif-
ferent selections can be combined via the basic boolean operators.

4.2 Analysis phase

After the graph components are formed, we bring up two afore-
mentioned scatterplots, one depicting parameters maxLength and
degree against each other (A, Fig. 10) and the other showing pa-
rameter avgP over time (B, Fig. 11 containing plot A as well).

Plot A depicts values that represent the graph length, being
its maximum path length, with respect to the average degree of
all nodes in it. By interactively selecting different components
we identified three essential groups. The first one that has high

maxLength and low degree values, represents long and straight
components (with very few branching structures). The second one
with medium maxLength and low degree values, stands for more
compact components having bigger span on the protein surface.
The third one is represented by medium maxLength and high de-
gree values, which represent cavities that go much deeper into the
protein.

Plot B assists in understanding the temporal location of selected
components with respect to avgP values representing the extent of
the graphs. Plot B is linked with plot A in a way that we can observe
the distribution of selected components over time. Here we were
able to locate components of interest very quickly and, additionally
even track them over time (Fig. 11).

Figure 10: An example of scatterplot utilization. The plot (middle)
shows two graph computed parameters (maxLength and degree),
which by performing interactive selections in accordance with the 3D
linked visualization allowed us to identify three different graph com-
ponent groups (circles).

Figure 11: Illustration of temporal scatterplot utilization. A graph com-
ponent group of medium maxLength and medium degree values is
selected, which can be observed also on the temporal scatterplot vi-
sualizing avgP values of those elements in focus and context style.
A user can seek at any time of the MD simulation to see its selected
components in the context of the protein. We also depict the same
graph over three consecutive time steps (circles).



5 FUTURE WORK

There are several ways to focus our future goals on. One task that
was demanded by our biological collaborators was to track graph
components over time. Possible scenarios of graph developments
cover mainly splitting and merging of graph components between
sequential time steps. One way would be to apply graph clustering
algorithms that would automatically lead to the first results. Nev-
ertheless, this would require more deeper studies with respect to
graph algorithms.

Another challenge is represented by incorporating charges into
the existing concept. Electron potential charges are usually solved
on the discrete volumetric grid by means of solving PDE. Since
the implicit representation evaluates the function values anyway for
any point in space, both representations can be easily merged. The
obtained charges can be then mapped both to the graph component
and to the iso-surface of the molecule.

One way to analyze to evolution of graph components between
neighboring time steps, is to exploit directly the implicit represen-
tations, for both time steps, by building the third function that rep-
resents interpolation between both two, and evaluate inter-sample
visibility tests between sequential time steps.
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