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Abstract

This paper presents a methodology for integrating human expert knowledge into
machine learning (ML) workflows to improve both model interpretability and
the quality of explanations produced by explainable AI (XAI) techniques. We
strive to enhance standard ML and XAI pipelines without modifying underlying
algorithms, focusing instead on embedding domain knowledge at two stages: (1)
during model development through expert-guided data structuring and feature
engineering, and (2) during explanation generation via domain-aware synthetic
neighbourhoods. Visual analytics is used to support experts in transforming raw
data into semantically richer representations. We validate the methodology in
two case studies: predicting COVID-19 incidence and classifying vessel movement
patterns. The studies demonstrated improved alignment of models with expert
reasoning and better quality of synthetic neighbourhoods. We also explore using
large language models (LLMs) to assist experts in developing domain-compliant
data generators. Our findings highlight both the benefits and limitations of
existing XAI methods and point to a research direction for addressing these gaps.

Keywords: Knowledge-Guided Explainable AI (XAI), Visual Analytics, Trustworthy
Al



1 Introduction

Explainable AI (XAI) systems often produce explanations that, while technically
accurate, fail to align with domain experts’ understanding and reasoning processes
[23, 1]. This misalignment occurs because conventional machine learning (ML) and
XATI approaches lack systematic mechanisms for incorporating domain expertise, rely-
ing instead solely on data-driven methods that often fail to capture meaningful domain
concepts and relationships [35].

We hypothesize that systematic integration of domain knowledge can make ML
models more understandable to humans by ensuring that both model behaviour and
explanations align with expert mental models [38, 18]. However, achieving this integra-
tion remains a critical challenge. While there exist some approaches to incorporating
knowledge, e.g., physics-informed neural networks [30] or domain-constrained archi-
tectures [28], they require customized algorithms and substantial manual engineering,
limiting their applicability in general-purpose ML pipelines.

This paper addresses the following research question: How can domain expert
knowledge be incorporated into both ML models and their explanations without
modifying existing, widely used ML and XAI algorithms?

We tackle this question by addressing two technical challenges. First, standard
ML pipelines rely on statistical feature extraction from raw data and do not reflect
how experts conceptualize data structures. For instance, time series data are typi-
cally processed as sequences of points, whereas experts often interpret them through
higher-level episodes or patterns. We argue that the standard ML workflow Raw
Data — Automated Feature Extraction — Model Training should be enhanced
with expert-guided data structuring: Raw Data — Expert Knowledge Integration
— Structured Representations =+ Model Training.

Second, many XAI methods work by creating synthetic neighbours around
a data point to understand how the model behaves in that local area [14, 2].
However, these synthetic examples often violate domain-specific constraints, result-
ing in implausible or misleading explanations. We propose to modify the cur-
rent XAl approach Query Instance — Random Synthetic Neighbours — Model
Predictions — Explanations by embedding domain knowledge into neigh-
bourhood generation: Query Instance — Domain-Aware Synthetic Neighbours
— Model Predictions — Realistic Explanations. The resulting explanations
are expected to be logically consistent with expert knowledge.

In summary, our proposed framework (outlined in Section 3 following the review of
related work in Section 2) incorporates domain knowledge at two stages: (1) through
visual analytics-supported data structuring and feature engineering during model
development (Section 3.1), and (2) through domain-constrained neighbourhood gen-
eration during explanation (Section 3.2). This approach enables domain experts to
meaningfully shape the model and its interpretability, while remaining compatible
with standard, widely used ML and XAI tools.

We validate the framework through two case studies (Section 4): COVID-19 inci-
dence prediction (Section 4.1) and vessel movement pattern recognition (Section 4.2).
Results are evaluated and discussed in Section 6.



Additionally, we explore the use of large language models (LLMs) as collabora-
tive agents in this process (Section 5). Our experiments show that LLMs can acquire
domain knowledge through interactive prompting and apply it to generate realis-
tic, constraint-respecting synthetic data. In Section 6.2.2, we discuss the potential
for extending this capability to enhance explanations generated by algorithmic XAI
methods. Section 7 concludes the paper and outlines directions for future research.

2 Related Work

We review related work in three interconnected areas: incorporating expert knowledge
into ML models, integrating prior knowledge in explanations, and interactive ML as
a foundation for human-AI collaboration.

2.1 Incorporating Expert Knowledge in ML Development

Informed machine learning [35, 16] aims to integrate prior knowledge into model train-
ing through formalized structures such as logic rules or physical equations. Knowledge
graphs (KGs) have emerged as a powerful approach to embed structured domain
knowledge into machine learning workflows. By representing entities, relations, and
domain constraints, KGs can improve model interpretability and support tasks such
as feature extraction, concept inference, and information retrieval, making them par-
ticularly relevant in explainable AT systems [31]. However, most KG-based approaches
assume that such a graph is already available. In many practical domains, this is not
the case. Creating a KG from scratch requires the elicitation of expert knowledge, fol-
lowed by formalization into machine-interpretable structures. This process typically
demands significant effort from skilled knowledge engineers [17]. As past experiences
with development of expert systems [7] have shown, this bottleneck often limits the
deployment of knowledge-intensive Al systems in practice.

Instead of requiring formal knowledge engineering beforehand, we propose a
human-in-the-loop workflow in which domain experts directly shape and test their
knowledge through feature engineering. We support this process with interactive visual
analytics tools that help experts formulate meaningful features, inspect their impact on
model behaviour, and iteratively refine their representations. In this way, we lower the
barrier to incorporating expert knowledge into the machine learning pipeline without
requiring formal ontology design or structured knowledge encoding.

Visual analytics offers a range of tools for knowledge-driven data structuring.
Existing VA systems have demonstrated the value of expert interaction in model
development workflows, for instance, via interactive feature selection, hyperparame-
ter tuning, or comparative model assessment [36, 10, 24, 42]. However, most focus
on supporting user feedback rather than capturing tacit domain expertise for down-
stream explainability. Earlier work on conceptual model development through VA
[11, 43] shares our goal of knowledge externalization but lacks direct connections to
ML contexts.

Our work builds on these foundations by enabling experts to encode domain
semantics through data representations and by evaluating model behaviour iteratively,



thereby preparing a basis for human-aligned explanations without altering the learning
process itself.

2.2 Incorporating Domain Knowledge into XAI Methods

A wide range of local explainable AI (XAI) techniques have been developed. Widely
used are feature attribution methods, such as LIME [32] and SHAP [25], which quantify
the contribution of each feature to a specific prediction. However, feature attribution
scores are limited in their ability to convey semantic structure or domain-relevant
logic. A list of feature weights does not tell the user how features interact or why a
prediction was made.

In contrast, explanation methods based on rules or decision trees, such as ANCHOR
[33] and LORE [13], offer richer semantics through IF-THEN statements that express
local decision logic. These structures better align with how humans conceptualize
categories. ANCHOR produces high-precision rules focused on sufficiency conditions,
but often omits broader feature context, making its explanations potentially brittle.
LORE learns a local surrogate decision tree that captures both primary and alternative
outcomes by generating a synthetic neighbourhood through controlled perturbation.

Although widely used for their model-agnostic nature, such post-hoc methods
often overlook domain-specific feature relationships, resulting in implausible or mis-
leading explanations. We address this by constraining the perturbation process using
domain-aware instance generators, thereby improving plausibility without modifying
the XAI method itself. We build on LORE due to its extensible architecture, which sup-
ports externally defined neighbourhood generation, which is an essential capability for
integrating domain knowledge into explanation.

Domain knowledge could, in principle, also be integrated into the rule extraction
process of ANCHOR by enforcing such constraints during the growth of explanation rules.
However, this would likely require a substantial re-implementation of the algorithm,
along with optimizations to its rule induction mechanism. Similarly to LORE, LIME
could also benefit from a custom neighbourhood generation process that integrates
domain knowledge. However, implementing such functionality would require extending
or re-engineering the library, as its current design does not natively support this level
of customization.

In addition to improving the generation of explanations, we also focus on how
they are presented and validated by users. Visual analytics (VA) supports this by
enabling interactive exploration of explanation structures and helping users relate
model behaviour to domain knowledge. For example, systems like RuleMatrix [27] and
explAlner [39] allow users to inspect and manipulate explanation rules, while others
facilitate exploration of instance clusters, latent spaces [15], and model errors [§]. VA
enhances cognitive alignment by contextualizing explanations and supporting iterative
refinement, making it a natural complement to rule-based explanation methods.

2.3 Interactive Machine Learning and Human-AI Alignment

Our methodology aligns with principles of explanatory interactive machine learning
(IML), where human input is integrated iteratively not only during training but also



Table 1: Comparison of related approaches to our framework

Approach Focus Limitations Addressed by
Our Work

Informed ML [35] Formal knowledge integration Requires structured prior knowl-
edge

VA for ML [36, 10] Interactive model refinement Limited support for knowledge
encoding

XAI methods (e.g., LIME, Instance-level explanations Synthetic data may violate

SHAP, ANCHOR) domain constraints

LORE [13] Rule-based local modeling Lacks expert-driven neighbor-
hood control

Explanatory IML [41, 6] Iterative explanation refine- Our work applies this in model-

ment agnostic, VA-driven settings

during explanation refinement. Teso and Kersting [41] formalize this approach, show-
ing how explanatory feedback can guide models toward more interpretable behaviour.
Bhattacharya et al. [6] extend this line of work by combining multifaceted explana-
tions and data transformations within interactive VA environments closely matching
our dual-loop interaction pattern.

Moreover, Schramowski et al. [37] demonstrate that expert feedback on explana-
tions can steer models away from spurious correlations, reinforcing the importance of
incorporating domain knowledge during both training and explanation. These studies
empirically validate the broader intuition behind our approach: explanation is not just
a post-hoc step but part of an iterative human-Al dialogue. Our framework applies
the principles of explanatory IML while preserving the modularity of standard ML
and XAT pipelines.

Table 1 summarizes the related work and highlights the specific limitations our
approach addresses.

3 Methods

Figure 1 illustrates the proposed pipeline for integration of human expert knowledge
in ML and XAI: (1) during the ML process, domain knowledge is used to prepare
appropriate training data and refine the model; (2) in the explanation phase, this
knowledge is further leveraged to ensure explanations align with user perspectives.

3.1 Incorporating human knowledge in models

As stated earlier, we propose a human-in-the-loop workflow where domain experts
incorporate their knowledge into ML through feature engineering, supported by inter-
active interfaces and visual representations. While feature engineering is a standard
part of ML workflows [9], our contribution lies in offering UI components and visu-
alization techniques that enable experts to (a) apply and manage domain-informed
data transformations, (b) assess the representational adequacy of engineered features
for the modelling task, and (c¢) explore and compare model outputs across iterations
to identify and address performance issues. The framework is organized around a set
of modular operations:
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Fig. 1: Integrating human expertise into the ML pipeline. Knowledge is embedded
through data structuring and realistic neighbourhood generation, supporting model
interpretability and explanation plausibility.

Step 1: Data abstraction — defining analytical units

Raw data often consist of elementary observations tied to individual objects, times-
tamps, or locations. The first step is to define higher-level units of analysis suitable
for the modelling task, e.g., grouping time points into intervals, spatial points into
regions, or individuals into groups. The framework provides interactive interfaces to
configure such aggregations and view their effects on the data distribution (see, for
example, [4, 5]).

Step 2: Context encoding

Many predictive tasks depend not only on the internal properties of a unit but also
on the context in which the unit occurs. Experts can define context windows, e.g.,
preceding time intervals, neighbouring regions, or connected nodes of a network, and
derive features that summarise relevant surrounding conditions. Our tools support
this through parametrised transformations and visual representations allowing users
to inspect the relevance and informativeness of contextual features (e.g., [29]).

Step 3: Synoptic feature construction

To capture the internal structure or dynamics of a unit, the system provides functions
for computing statistical summaries, trends, variation measures, or custom aggregates.
For example, experts can summarise speed variations over a time interval or density
distributions within a region. Visualisations help users to verify whether the derived
features align with domain-relevant behaviour patterns (e.g., [3]).

Step 4: Iterative model refinement

After model training, experts can compare predictions across model versions using
side-by-side views and performance overlays. This feedback loop allows users to detect
where features are insufficient or misleading, and return to previous steps to refine
transformations or add new features.

This iterative process allows domain knowledge to shape the model indirectly
through improved data representation. Rather than encoding knowledge explicitly in
rules or ontologies, experts interactively refine how data are structured, contextualised,



and summarised to better capture relevant behaviour patterns. Our framework sup-
ports this process through interfaces drsigned for expert-guided data transformation
and responsive visual feedback. Many of these tools have been introduced in our prior
work. Some papers are cited above, but a comprehensive overview is beyond the scope
of this paper. Instead, we focus on two case studies where temporal abstraction was
used to craft meaningful features for interpretable model development.

3.2 Incorporating human knowledge in explanations

In our work, we focus on generating local explanations telling how a model obtains a
specific prediction for a given instance. We build on the rule-based explanation method
LORE (LOcal Rule-based Explanation) [13], which approximates the model’s decision
boundary in the local neighbourhood of the instance via a transparent surrogate model.
The explanation takes the form of logical rules:

(1) a factual rule, which identifies the key factors leading to the prediction, and

(2) a set of counterfactual rules describing minimal changes in feature values that

would alter the prediction.
Both rule types are represented as logical conjunctions in the antecedent with a pre-
dicted class as the consequent. Counterfactual rules are particularly aligned with
human reasoning styles, as they provide contrastive examples encouraging the users to
explore alternative scenarios that could arise by adjusting input features. Presentation
of counterfactual rules is widely recognised in human-centred XAI research [26, 34].
Explanations are more effective when they reference concepts familiar to the user.

By relying on features engineered through expert-driven abstraction and contextual-
isation (see Section 3.1), we expect that our explanations align closely with domain
knowledge and thus can be well understood by users.

Neighbourhood generation in LORE

To derive local rules, LORE generates a synthetic neighbourhood around the instance of
interest. These synthetic instances are created by perturbing feature values and then
querying the black-box model to obtain predictions. The resulting labelled instances
serve as training data for a transparent surrogate model (e.g., a decision tree), which
learns to approximate the black-box model’s local decision boundary.

Neighbourhood generation in LORE uses a genetic algorithm with the following
steps:

(1) Initialization: A seed population is formed by replicating the input instance z.

(2) Mutation and Crossover: At each generation, feature values are randomly
modified (mutation) or recombined from pairs of instances (crossover).

(3) Selection: Individuals with the highest fitness are selected for the next generation.
Fitness is computed based on (a) feature similarity (closeness to « in input space)
and (b) target similarity (closeness in predicted class).

(4) Dual Objective Optimization: Two sub-populations are evolved separately:

e Instances similar to z with the same predicted class.

® Instances similar to x with a different class.
These sub-populations are merged to form the local training dataset for the
surrogate model.



Incorporating human knowledge via constraints

To ensure that generated explanations are meaningful to domain experts, we extend
LORE with domain knowledge through neighbourhood constraints, guiding the syn-
thetic data generation process:

e Hard Constraints: Following the data abstraction and contextualization
steps, the synthetic instances need to adhere to the same structural properties.
Hard constraints represent these properties. Any synthetic instance violating
these constraints (e.g., temporal orderings) is discarded.

¢ Soft Constraints: These constraints serve as guidance for the generation pro-
cess, providing weights and priorities for the features. For example, if a feature
is considered more important by the expert, it will be more likely to be altered
in the synthetic instances.

This constraint-driven extension allows the generated neighbourhood to better align
with the expert’s mental model and domain expectations.

Alternative neighbourhood generators

To assess the effect of constraint-driven generation, we compare against two alternative
generators:
¢ Random Generator: A baseline implemented in the LORE Python library that
perturbs features independently within their value ranges until the neighbourhood
reaches the desired size.
¢ kKNN Generator: A new baseline introduced by us, which selects the k near-
est neighbours from the original training set based on feature distance. This
method does not generate synthetic data but instead reuses existing instances. It
is applicable only when suitable labelled data (e.g., the model training data) are
available.

4 Case studies

To evaluate the practical utility and generalizability of our proposed methodology, we
conducted two case studies in distinct domains: (1) prediction of COVID-19 incidence
level changes using temporal context features derived from prior disease trends and
mobility data, and (2) classification of vessel movement patterns based on trajectory
features. The case studies serve three primary purposes: (1) to demonstrate how expert
knowledge can be integrated into the ML pipeline through visual analytics-supported
data preparation and synthetic neighbourhood generation, (2) to assess the impact of
knowledge-informed instance generation on explanation quality, and (3) to reveal pos-
sible limitations of our approach. Importantly, we conduct these investigations without
modifying the core ML or XAI algorithms, thereby revealing how much improvement
can be achieved within existing frameworks by embedding domain knowledge at the
data and representation levels.

For both case studies, we employed Random Forest as our classification method
due to its robust performance characteristics and practical advantages. This ensemble
technique combines multiple decision trees to deliver high accuracy while efficiently



capturing complex non-linear relationships and feature interactions. However, our
framework is general and can be applied with any ML method.

4.1 Case study 1 - COVID-19 and population mobility in
Spanish provinces

This case study uses data collected in Spain during the COVID-19 pandemic to pre-
dict upcoming COVID-19 incidence levels based on trends in disease and population
mobility in preceding weeks. The dataset includes daily counts of COVID-19 cases and
intra-provincial mobility across 52 provinces over 64 weeks, derived from open sources

[19, 20, 21, 22].

4.1.1 Incorporating domain knowledge in model development

Step 1: Data abstraction — defining analytical units

Raw daily time series were smoothed with a 7-day moving average to reduce noise and
weekly cyclicity. The smoothed data were segmented into weekly episodes, which were
categorized into four ordinal levels for COVID-19 severity (cl to c4) and mobility (m1
to m4). Consecutive episodes with the same level were grouped into events defined as
coherent intervals of high or low incidence or mobility (Fig. 2).

Step 2: Context encoding

Each COVID-19 event was assigned a temporal context defined by the COVID-19
and mobility levels over the six preceding weeks. This window length was chosen
based on epidemiological reasoning: the effects of mobility changes on disease incidence
typically manifest with a delay of about three weeks, corresponding to the incubation
period and reporting lag. An additional three weeks were included to capture trends
and make directional changes in incidence or mobility more detectable. The resulting
context encodes short-term temporal dynamics relevant for predicting the severity of
upcoming COVID-19 events (Fig. 3).

Step 3: Synoptic feature construction

The context window was converted into 12 categorical features (6 weeks x 2 variables),
describing the sequence of COVID-19 and mobility levels. An additional continuous
feature, “days since pandemic onset”, was added to account for broader temporal
effects.

Step 4: Iterative model refinement

A random forest classifier was trained to predict the level (c1-c4) of each COVID-19
event from its context. Visual analytics was used to inspect model predictions, identify
temporal or regional misclassifications, and guide refinement. Through human-in-the-
loop iteration, we introduced targeted improvements:
¢ Temporal and spatial decomposition (e.g., isolating early pandemic phases,
separating island provinces)
® Filtering outliers and non-representative periods
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Fig. 2: Visualisation of weekly episodes derived from time series of COVID-19
incidence and population mobility in provinces of Spain. The horizontal dimension
represents time, the rows correspond to the provinces, and the cells represent the
episodes coloured by the levels of disease incidence (left, from green for low to red for
high) and mobility (right, from red for very low to blue for normal).
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Fig. 3: Visual representation of temporal contexts of four selected examples of pan-
demic events from different classes by disease incidence. The columns of the matrices
correspond to the weeks from -6 to -1 preceding the events. Each row corresponds to
one level of either COVID-19 (top 4 rows) or mobility (lower 4 rows). The filled cells
signify which levels of COVID-19 and mobility were attained before the events started.
The colours of the filled rectangles reflect the classes (levels) of the represented events.

® Model comparison via visualization of misclassification patterns across time
and provinces (Fig. 4)
This process allowed domain experts to iteratively inject knowledge into both data
representation and model structure, improving both interpretability and performance
beyond what could be achieved with raw data and automatic learning alone.

4.1.2 Incorporating domain knowledge into neighbourhood
generation

During the data preparation phase, we identified internal constraints and relationships
within our data that could not be captured by traditional neighbourhood generators.
These included time-related patterns and the prevalence of gradual rather than abrupt
changes over time. We developed a customized neighbourhood generator designed to
account for these dependencies and constraints. Each event record comprises three
sections: (1) attribute describing temporal positioning, (2) epidemic severity classes
for COVID-19, and (3) mobility intensity classes. While the legacy neighbourhood
generator used in LORE randomly selects feature values to perturb within a prede-
fined radius, we want to restrict this perturbation based on the internal properties of
our data, ensuring that feature values for COVID-19 and mobility remain consistent
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Fig. 4: Comparison of different versions of the pandemic level model by visual inspec-
tion of the distributions of model errors over time (horizontal dimension) and provinces
(vertical dimension). The events are represented by horizontal bars with model errors
encoded by the colours. Shades of blue and red signify, respectively, under and over-
estimation of the pandemic event level; the darkness is proportional to the difference
between the predicted and actual levels.

with domain-specific constraints. For example, abrupt transitions from a low epi-
demic level to the maximum level are avoided, as are inconsistencies like abrupt level
drops in sequences of high-incidence epidemic classes. Within the LORE pipeline, this
neighbourhood generation step is where domain-specific rules can be incorporated.

We defined a set of soft constraints to guide the perturbation process, ensuring
that generated data remain realistic and domain-consistent. Our approach is based
on the observation that COVID-19 and mobility levels from previous weeks strongly
influence subsequent levels. For instance, a high epidemic level is more likely to persist
or transition to another high level in the following week. To capture these depen-
dencies, we modelled transitions using probability distributions derived from training
data. These transitions are encoded in a transition matrix that governs how feature
values change over time. Specifically, we define a 5 x 5 matrix A, where each element
a; ; represents the probability of transitioning from state s; to state s;. Figure 5 illus-
trates examples of these matrices for COVID-19 and mobility features, highlighting
differences in transition patterns. Bipartite graphs further visualize weighted transition
probabilities, offering an intuitive representation of these relationships. We exclude
class 0 (missing or undefined values) to ensure valid record generation.

To estimate the transition probabilities, we trained a Bayesian network on the real-
world data. This network models dependencies between consecutive weeks as a directed
graph, where each state influences the next (e.g., P(week™ = s; | week™ ™' = s.), with
I and k representing COVID-19 or mobility levels). Conditional probabilities were
averaged across weeks to obtain stable transition probabilities for each level pair. The
resulting transition matrices serve as the basis for perturbations, preserving domain
knowledge and generating consistent neighbourhoods.

11
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Fig. 5: On the left: The COVID-19 and Mobility transition matrices used as
constraints to generate neighbourhoods. On the right: Bipartite graphs with the prob-
abilities for COVID-19 (Left) and Mobility (Right) state transitions. The thickness of
each arc is proportional to the probability of the transition.

This approach is computationally efficient: since transitions rely on precomputed
probabilities stored in index-based data structures, perturbation lookup operates in
constant time, regardless of the number of generated instances. This ensures that
the method integrates seamlessly with the legacy algorithm without increasing its
computational complexity. The quality of the generated neighbourhoods is evaluated
in Section 6.

4.2 Case Study 2 - Vessel movement pattern recognition

This case study addresses the classification of short vessel trajectory segments into
six types of movement behaviour: 1 - straight movement, 2 - curved movement, 3 -
trawling, 4 - port-connected (entering or exiting a port), 5 - near port (manoeuvring
near a port), and 6 - anchored. The dataset comprises trajectories of 71 fishing vessels
operating north-west of France between October 1, 2015, and March 31, 2016, sourced
from an openly available repository'. The six movement types are illustrated in Fig. 6.

4.2.1 Incorporating domain knowledge in model development

Step 1: Data abstraction — defining analytical units

The raw vessel trajectories were segmented into overlapping 3-hour episodes with
a 1-hour shift between consecutive segments. This window length balances tempo-
ral context and segment resolution: three hours is typically sufficient to capture
operational patterns such as trawling or anchoring. Overlaps ensure that impor-
tant patterns are not lost at segment boundaries, enabling better continuity and
behavioural interpretation. Each episode becomes a single data instance for subsequent
classification.

Thttps://zenodo.org/records/1167595
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Fig. 6: Visually supported preparation of data for recognition of vessel movement
patterns.

Upper row, from left to right: 1) UMAP projection of episodes based on the gener-
ated features; 2) complete original trajectories; 3) episodes of straight movement; 4)
episodes of curved movement.

Lower row, from left to right: 5) trawling; 6) port-connected; 7) near port; 8) anchored.

Step 2: Context encoding

The key contextual factor in this domain is proximity to port, as it strongly influences
vessel behaviour. To incorporate this context, the minimum and maximum distance
from the nearest port were computed for each episode using an external dataset
of port coordinates. These two features — LoglOMinDistPort (log-transformed) and
MaxDistPort — capture whether the vessel is performing port-related manoeuvres or
operating farther offshore.

Step 3: Synoptic feature construction

We generated 7 synoptic features characterising the vessel movement during the life-
time of each episode. They summarize speed distribution, movement direction, and
trajectory complexity:
® SpeedMinimum, SpeedQ1, SpeedMedian, SpeedQ3: Statistics of speed smoothed
over a 5-minute window, representing the distribution from minimum to upper
quartile.
® LogiOCurvature: Logarithm of the curvature of the vessel’s distance-from-start
time series, computed as the ratio between the sum of absolute consecutive

13



changes and the amplitude of values. A value close to 1 indicates straight-line
movement; higher values indicate loops or turns.
® DistStartTrendAngle: Angle of the fitted linear trend to the distance-from-
start time series, capturing the directional tendency of movement away from the
starting point.
® LoglODistStartTrendDevAmplitude: Logarithm of the amplitude of deviations
from the fitted trend line, quantifying local path tortuosity or zigzagging.
Logarithmic transformations were applied to features with skewed distributions
(namely curvature, deviation amplitude, and minimum port distance) to improve
separability and model performance.

LoglOCurvature and LoglODistStartTrendDevAmplitude jointly describe the
shape complexity of a movement episode: the former reflects global movement geom-
etry, while the latter captures local irregularities. Together, they support fine-grained
discrimination between behaviours such as steady outward navigation, trawling, and
in-place manoeuvring.

Feature effectiveness was evaluated using dimensionality reduction (UMAP; see
Fig. 6, top left), which revealed distinct clusters of movement patterns. These clus-
ters were examined through interactive map-based visualization, and representative
episodes were labelled by domain experts.

Step 4: Iterative model refinement

The process of feature design and evaluation was iterative: a k-nearest neighbours
(kNN) classifier was used as a rapid probe to assess the discriminative power of evolving
feature sets. When results were inconclusive, new features were designed or refined
to enhance behavioural distinction. After achieving good results with kNN, a random
forest classifier was trained using 5-fold cross-validation with a fixed random seed (0)
to ensure reproducibility. The final model achieved 98% accuracy, confirming that the
constructed synoptic and contextual features were sufficient to accurately distinguish
movement patterns without additional post-hoc tuning.

The process of defining movement episodes and feature engineering in this case
study is described in more detail in our earlier publication [3].

4.2.2 Incorporating domain knowledge into neighbourhood
generation

Following the feature engineering described in the previous section, we define two sets
of constraints to guide the neighbourhood generation process:
¢ Hard Constraints: the speed features should be consistent with the internal
dependencies. We discard or correct those instances that do not satisfy these
internal consistencies.
e Soft Constraints: We introduce a preferential selection of features to be
perturbed based on their importance for each target class.

DT-based generator

This generator designs a mechanism to select the features to be perturbed based on a
set of domain-specific relationships among the feature values. Since these relationships

14



are too complex to be expressed through a set of precise statements by the expert,
we introduce a method based on decision trees (DT) by leveraging the knowledge
embedded in the training data. For each class ¢, we construct a DT to distinguish
instances of this class from all others. The training is performed on a modified version
of the training dataset, where instances belonging to class ¢ are labelled as positive
examples (1), while all others as negative examples (0). The resulting tree serves as a
representation of the relationships that discriminate class ¢ from the rest.

Instance: Class 1 Class 2 Class 3

Relevant Features

Fig. 7: Example of a forest of decision trees (DT) used to define the probability of
perturbation of relevant features for an instance. Given an input instance x, classified
as ‘Class 17 (Left), the corresponding decision tree provides the features that contribute
to its classification. These features, highlighted in red, are then used to perturb x.

Given the forest of DTs, when an instance x is processed, it is first classified by
the black box model. The predicted class determines the appropriate binary DT in
the forest, which is then used to classify x and retrieve the decision rules along its
classification path. Figure 7 provides a schematic representation of this process. The
features involved in the decision path are prioritized for perturbation to generate the
neighbourhood. In the toy example shown in Fig. 7, the three attributes used by the
tree are given a higher probability of being perturbed. This selective perturbation
process is used to incorporate the soft constraints into the perturbation process.
The set of hard constraints ensures the correct relationships between the values of
the speed features, namely: SpeedMinimum < SpeedQl1 < SpeedMedian < SpeedQ3.
Features not selected by the binary DT's can still be perturbed with a lower probability.
The computational cost of this selective perturbation process remains comparable to
the baseline random generator, with a slight one-time overhead due to training the
forest of DT's. The process involves a single classification by a DT, followed by selective
perturbation of the identified features.

Genetic optimization of DT-based generator

We improved our DT-based generator using a genetic optimization process to improve
performance. While retaining the fitness functions from LORE, we introduced custom
mutation and crossover operators. During the genetic optimization, the operation
of mutation and crossover are limited by the same set of hard constraints and
soft constraints as the DT-based generator. The genetic optimization improves the
generation of opposite classes and the quality of the generated neighbourhoods.
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5 LLM-supported generation of synthetic
neighbours

Domain experts may struggle to incorporate their specialised knowledge into synthetic
data generation without support from skilled data engineers. We have investigated how
large language models (LLMs) can bridge this gap by enabling non-technical domain
experts to collaboratively create, refine, and validate synthetic data generation meth-
ods. Through this approach, LLMs serve as intelligent intermediaries that translate
domain expertise into actionable data generation processes, making synthetic data
creation easier and more efficient for experts.

5.1 COVID-19 and mobility: An experiment with ChatGPT

We conducted an experiment with using GPT-4 Turbo (ChatGPT-40) for generat-
ing synthetic neighbourhoods in a COVID-19 and mobility prediction task. Here we
provide a brief summary. A more detailed description is available in Appendix A.

Through an iterative dialogue with the LLM, we specified requirements for the
generator, emphasizing the need for both randomness and domain consistency. The
LLM produced Python code that integrated key domain knowledge in the form of
transition probabilities between COVID-19 and mobility levels. After assessing the
first result, the LLM was further requested to increase the diversity of the generated
instances to ensure predictions to cover all target classes.

The final Python code was tested using 15 real input instances. For each, 100 syn-
thetic neighbours were generated. These were evaluated using the predictive model
and visualised using UM AP, which produced a 2D projection of the instances accord-
ing to their similarity. Visualisations revealed that synthetic neighbours clustered
around their original instances while also exhibiting sufficient diversity to yield var-
ied model predictions. This confirmed the generator’s ability to produce plausible and
informative data variations.

The experiment was judged successful, showing the potential of LLMs to act as
interactive coding assistants for building data generators guided by expert knowledge.
However, some challenges were revealed. Translating informal domain insights into
precise prompts often required reformulation. The generated code needed validation
and debugging. These tasks demand coding skills, which domain experts may lack.
Visual analytics proved helpful for evaluating neighbourhood quality, but further tools
are needed to assess the realism of feature combinations more systematically.

5.2 Vessel activities: An experiment with Google Gemini

For the vessel movement case study, we conducted an experiment using Google Gemini
version 2.5 Flash. Using a textual prompt describing domain-specific constraints and
feature characteristics, the LLM generated a Python implementation with methods
to produce class-targeted, constraint-compliant synthetic neighbours. The genera-
tor integrates expert knowledge into the perturbation process through the following
mechanisms:
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® Feature-constrained perturbation: Feature values are perturbed within

reasonable ranges while preserving known structural relationships:

— Speed statistics (SpeedMinimum, SpeedQ1, SpeedMedian, SpeedQ3) must
maintain ascending order and remain within the empirical upper bound (22.0
knots).

— Curvature-related features such as Log10Curvature, DistStartTrendAngle,
and LoglODistStartTrendDevAmplitude are constrained to lie within his-
torically observed ranges.

— A domain rule is enforced: high speed cannot co-occur with high curvature.

— Speed- and distance-related features are kept within valid, non-negative
domains, while Log10MinDistPort is kept above a known minimum of —3.05.

e (Class-tendency-guided generation: The generator strives to produce syn-

thetic instances biased toward each of the six behaviour classes. For example,
instances simulating ” anchored” behaviour are generated with very low speed and
high curvature. This mechanism supports counterfactual exploration and class
separation analysis.

® Balanced neighbourhood construction: For a given input instance, the gen-

erator produces a user-specified number of synthetic neighbours. It balances the
output across all six class tendencies, ensuring that the resulting neighbourhood
exhibits class diversity.

A more detailed description, including evaluation of generated synthetic instances
by means of visual analytics techniques, is available in Appendix B.

This experiment again illustrates that LLMs can translate high-level expert instruc-
tions into executable, constraint-aware code for synthetic data generation. Similar
to the COVID-19 case study, the generated neighbourhood supports downstream
tasks such as explanation generation and model testing. Both experiments demon-
strate the high potential of LLMs in supporting human-in-the-loop model testing and
explanation by enabling domain-aware synthetic data generation.

6 Evaluation and Discussion

The evaluation of our proposed methodology is structured into two parts. First, we
compare the properties of synthetic neighborhoods generated by standard domain-
agnostic methods with those produced by our domain-informed approaches. The
comparison is guided by three key criteria: realism, locality, and diversity. Our pri-
mary research question in this part is whether the incorporation of domain knowledge
leads to the generation of higher-quality synthetic data.

In the second part of the evaluation, we assess the explanatory rules generated
using synthetic neighbourhoods created by different methods. Our initial hypothesis
was that higher-quality synthetic data would enable the derivation of more accurate,
meaningful, and trustworthy explanations. However, as we discuss later, this hypothe-
sis was not confirmed. The observed limitations point to more fundamental deficiencies
in current algorithmic XAI techniques that derive explanations purely from data.
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6.1 Evaluation of synthetic neighbourhoods

To evaluate the impact of the proposed methodology, we conducted comparative
assessments of the outcomes of different generators for the two use cases. The goal
was to compare each generator’s performance in terms of alignment with the expert’s
ground truth. As a reference, we used the respective training data of both domains
based on the intuition that if the generated neighbourhoods aligned with expert knowl-
edge, they should also align with the training data distribution. Consequently, the
derived explanation rules would be consistent with both.

We apply two methods of comparison. (1) Analytical comparison, where we
used a combination of measures to assess the locality, compactness, and plausibility
of the produced instances.

(2) Visualization-based qualitative comparison of features, comparing for
each neighbourhood generator the marginal distribution of features of the synthetic
instances with the training data. This comparison has the goal to assess how much the
generated instances are consistent with the domain knowledge and how each generator
is able to diversify the feature values.

Analytical comparison

Neighbourhood generators are designed to produce a set of points as perturbation of a
given instance x, with two primary objectives: (i) ensuring that the generated points
exhibit realistic values, i.e., that they are likely to belong to the original training
distribution; and (ii) maintaining proximity between the generated instances and z.

To quantitatively assess the compactness criterion, we use the measure as defined
in [13], that we named instance distance, computed as the average distance of all
generated instances from the original instance x. Formally:

D(z,N) = ﬁ Z d(z, z;),

zZ;EN

where d(z,z;) is the distance between the original instance x and each generated
instance z; in the neighbourhood N. In our implementation, we use the Euclidean
distance for this measure, although the choice of distance metric is configurable.

To evaluate the realism of the generated neighbourhoods, we use the Energy
Distance [40] and Maximum Mean Discrepancy (MMD) [12], which are commonly
employed to compare distributions. The Energy Distance is a statistical metric that
quantifies the discrepancy between two probability distributions, while MMD measures
the distance between the means of two distributions in a reproducing kernel Hilbert
space. Both metrics provide insight into how well the generated neighbourhoods
resemble the training data distribution.

We compared the neighbourhoods produced by each generator to the training data
distribution. For each instance x, we generated a neighbourhood N of size n = 2000
using each generator. This process was repeated multiple times, and for each repeti-
tion and each generator, we computed the aforementioned metrics. In all cases, the
tests consistently rejected the null hypothesis that the distributions of the generated
neighbourhoods and the training data are the same (p-value < 0.001).

18



Generator Instance distance Energy MMD Time (s)

Random 119.1400 £+ 12.0031 111.8990 4+ 13.7530  0.0178 +0.0014  0.0358 + 0.0042
Baseline 9.6637 £ 4.8497 5.0910 £ 0.0000 N/A 0.0024 £ 0.0001
Custom 2.2196 £ 0.2118 13.5748 £ 0.0430 0.0399 £ 0.0004  6.5345 + 0.1702
Genetic 6.0275 £ 4.0885 12.9352 £ 0.1566 0.0575 £ 0.0009  13.4913 + 0.2668
Custom genetic 1.2714 £ 0.9461 15.0236 £ 0.6921 0.0587 £ 0.0053  52.7897 £ 0.7902
LLM 11.9267 £+ 1.5013 8.1266 £ 0.0198 0.0083 £ 0.0002 0.0500 £ 0.0021

Table 2: Vessel movements: Comparison of neighborhood methods across Instance dis-
tance, Energy, MMD, and Time (mean + standard deviation)

Table 2 summarizes the results of the analytical comparison for the Vessel case
study. Among the evaluated generators, the Custom and Custom Genetic generators
achieved the lowest instance distance, indicating that they are able to produce com-
pact neighbourhoods that are close to the original instance. The LLM generator also
performed well, producing a compact neighbourhood and the lowest divergence across
the Energy and MMD measures, indicating that it successfully captured the training
data distribution. The Genetic, Custom Genetic, and Custom generators have compa-
rable distributions. The Random generator, as expected, produced the largest instance
distance, indicating that it generated data that is very spread out. The Baseline gen-
erator, which simply extracts instances from the training data, achieved the lowest
Energy distance and it does not produce MMD), as the two distributions are identical.
In summary, the Custom and LLM generators yielded the best results, demonstrat-
ing their efficacy in capturing internal data characteristics. This also demonstrates
that the constraints defined by the LLM were effective in producing a generator that
match the requirements of the domain. From a computational perspective, the LLM
generator was the most efficient. The Custom generator, while slightly slower, is the
generator that best balances performance and output quality. The Custom Genetic
generator, while producing the most compact neighbourhoods, was significantly slower
due to the genetic optimization process.

Generator Instance distance Energy MMD Time

Random 6.2837 £+ 0.1386 0.3761 +£0.0375  0.0052 + 0.0003 0.3078 4+ 0.0400
Baseline 6.2837 4+ 0.1386 0.0000 =+ 0.0000 N/A 0.0002 4 0.0000
Custom 6.5898 £+ 0.0760 1.7483 +0.0187  0.0203 4 0.0003  0.0482 + 0.0039
Genetic 6.7421 4+ 0.0567 3.2248 +0.0500  0.0336 £+ 0.0005  20.2679 + 0.3779

Custom Genetic
GPT

5.8902 £ 0.0929
6.4904 £ 0.0657

4.3411 4 0.0647
2.0216 £ 0.0204

0.0391 £ 0.0004
0.0253 £ 0.0004

41.5833 £ 1.0018
0.4225 £ 0.0440

Table 3: COVID-19 and Mobility. Comparison of generator variants across Instance
distance, Energy, MMD, and Time (mean + standard deviation)

Table 3 summarizes the results of the analytical comparison for the COVID-19
and mobility case study. Since the majority of the features of this dataset are categor-
ical, potential perturbations are limited. This generates a similar performance across
all generators, in particular for the Instance distance measure. Given the limited vari-
ability of the feature space there is no a clear winning generator. For this reason, the
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analytical comparison provides only a partial view of the performance of the genera-
tors. In the next section, we complement this analysis with a qualitative comparison
of the feature distributions of the generated neighbourhoods.

Visualization-based qualitative comparison of feature distributions

To better understand the quality of the generated neighbourhoods, we conducted a
qualitative comparison of the feature distributions of the synthetic instances produced
by each generator. We implemented a visual-based dashboard that provides a com-
prehensive overview of the generated neighbourhoods. For each feature and for each
generator, we display a row of histograms with the marginal distribution of the fea-
ture values. This allows us to visually assess how well the generators are capable of
capturing the internal structure of the domain. All the distributions are directly com-
pared with the training data distribution, which serves as a reference for the expected
feature values.

The visualization starts from an instance xz. For example the charts in
Figure 8 show the distributions of the features for a specific instance of the
Trawling class from the Vessel dataset. The instance has the following fea-
ture values: SpeedMinimum=0.91, Speed@Q1=2.37, SpeedMedian=2.49, Speed3=2.78,
Log10DistanceStartShape Curvature=0.39, DistanceStartTrendAngle=-0.01, LogDist-
Start TrendDevAmplitude=0.70, MaxDistPort=27.55, LogMinDistPort=1.30.

The columns on the right show the distribution of the training data. However,
the generators aim to produce local instances. Thus, it is important to consider the
distribution of the Baseline generator, which contains elements of the original training
data restricted to the local neighbourhood of the instance x.

We observe that the Random generator produces a distribution very different from
the training data, as it samples randomly from the entire feature space. In contrast, all
other generators produce instances that remain closer to the training data distribution.
Starting from the distribution of classes in each neighbourhood, we can observe that
the Random generator produces instances across all possible classes. The Custom,
Genetic, and Custom Genetic generators focus on a limited number of classes near x.
The LLM generator produces a broader distribution of classes, designed to diversify
the neighbourhoods.

The speed-related features (SpeedMinimum, Speed@Q1, SpeedMedian, and Speed@3)
show that customized generators reproduce internal relationships and constraints effec-
tively. The Custom, Genetic, and Custom Genetic generators generate narrow value
ranges, whereas the LLM generator produces distributions closer to the training data.

Similarly, for shape-based features (Logl0DistanceStartShapeCurvature, Dis-
tanceStartTrendAngle, and LogDistStartTrendDevAmplitude), the LLM generator
mimics the local distribution of the Baseline data effectively. For port proximity fea-
tures (MazDistPort and LogMinDistPort), the Custom, Custom Genetic, and Genetic
generators focus on the local neighbourhood of z, while the LLM generator explores
a wider feature space.

Figure 9 shows the dashboard for the COVID-19 and mobility case study. The
instance x used to generate the neighbourhoods has the following feature values:
weekb_covid=c3, weekd_covid=c3, week4_covid=c3, week3_covid=c3, week2_covid=c2,

20



neighborhood_type

baseline custom custom_genetic genetic IIm random train

m,l...,...,,,,..
° 8

- I
« -

) I

et cass” " predictea ciass prediced cass TV predetoa cass T C 7 predited ciass T prederoa cass T C 7 predited cass
SpeedMinimum
baseline custom custom_genetic genetic IIm random train
20m
1500
1000
s,
o - sl I .
02 4 ¢ 6 o Rl ol 0 2 4 6 b doiztaters 0 2 4 66 do 2 dadods 0 2 4 6 b do iz datels 0 2 4 6 6 t0 2 dadel 0 2 4 6 b doliz i tem 6810 12 14 o0
‘SpeedMinimum Specdinimum ‘SpeedMinimum Speedinimum SpecdMinimum Spoedinimum SpecdMinimum
SpeedQ1
baseline custom custom_genetic genetic lIm random train
1500
1000
s,

o P e e o =
D246 61121116122 02 46 6101021416122 0246611216122 0246 610102 4l6m22 02 4661012151522 02 4 6 81012141618 202
SpeedQ1 SpeedQl SpeedQr SpeedQ1 SpeedQ1 SpeedQ1

SpeedMedian
baseline custom custom_genetic genetic lIm random

B I I

B - a—
02 46 bilzlalotezma 03 46 b 1012 leds iz Glilotbza 03 46 b it lefotazz 02 & 6 hiziifoiemz 02 4 6 61012 lede a2z 02 4 6 b 101200 202
SpecaMedian edian pecdModian Spedbedian Specdiedian
SpeedQ3
baseline custom custom_genetic genetic lIm random train
1000

o el el = N e e e Bl s e A e e
D246 610121016122 0246 6100214161822 02 46 6 01214161322 02 4 6 6101214161022 02 4 6 6 012110182022 02 46 5101214161822 02 4 6 b 10121416 18 2022
SpeedQ3 SpeedQs SpeedQ3 SpeedQs SpeedQ3 SpeedQs

| | | o mm hn_all.
1Q:

pee
Log10Curvature
baseline custom custom_genetic genetic IIm random train
3000
2000
1000
o - - R I,
00" 04 08 12 16 20 24 00 o4 Gs 12 16 20 24 b 12 16 20 24 00 04 08 12 16 20 24 00 04 08 12 16 20 24 00 04 08 12 15 20 24 00 04 08 12 16 20 24
Logiocurvature Logiocurvature Log1ocurvature
DistStartTrendAngle
baseline custom custom_genetic genetic im random train
2000
L0
) [ ] _ | | - I
Toxs oos | ais | o3 ‘oz oo | o5 | o3 ob 005 | ol | o3 o5 o5 | ol | o3 ok 00 | ol | ok oz 005  ois | o3 03

o ox
DistStartTrendAngle

Log10DistStartTrendDevAmplitude
baseline custom custom_genetic genetic lIm random

s00-

o — —
S0 20 -0 00 10 20 -30 20 -0 00 S50 20 -0 o0 | 10 20 30 20 -10 S0 20 -0 00 ' 10 20 -30 20 -10 00 10 20

MaxDistPort
baseline custom custom_genetic genetic lIm random train
200
1500
100

. 1 1 1

o . e -
40 80 120 160 200 200 200 0 40 60 120 160 20 240 20 0 40 80 120 160 200 200 20 0 40 60 120 160 200 200 20 0 4 60 120 160 200 240 20 0 40 80 120 160 200 200 20 0 4 8 120 160 200 240 260
MaxDistPort MaxDistPort MaxDistPort Distport

MaxDistPort MaxDistort MaxOistPort
Log10MinDistPort

baseline custom custom_genetic genetic lIm random train
1500
1000

w0
| | = N | |

N — J—
T35 <15 05 05 15 25 35-25 -1s -05 05 15 28 -35-25 <15 -05 05 15 25 -35-25 <15 -05 05 15 28 35-25 -15 -05 05 15 25 35-25 -15 -05 05 15 25 3525 - 05
LoglominDistPort LoglominDistPort L L LogiominDisteort

15 28

Fig. 8: A visual dashboard for the comparison and exploration of neighbourhoods
generated around an instance z for the vessels dataset.
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Fig. 9: A visual dashboard for the comparison and exploration of neighbourhoods
generated around an instance z for the COVID dataset.



week6_mobility=c4, week5_mobility=c3, weekj_mobility=c4, week3_mobility=c4,
week2_mobility=c3, weekl_mobility=c4, week_passed=63. The Random generator
produces instances with feature values uniformly distributed across the entire feature
space, resulting in a set of data distributions that do not align with the training data.
In contrast, the Custom and GPT generators produce instances that are very close
to each other, reflecting the constraints imposed by the domain knowledge. They are
characterize by a narrow range of feature values. The two generators based on genetic
optimization (Genetic and Custom Genetic) produce instances whose feature values
are even more narrowly distributed. Given the size of the neighborhoods, the Baseline
generator is limited in the number of instances available in the training data, thus
producing a smaller number of instances.

In summary, the analytical comparison confirms that the domain-informed genera-
tors outperform standard methods in terms of locality and compactness. The measures
of instance distance, Energy, and MMD indicate that the domain-informed generators
produce neighbourhoods that are closer to the original instance and more aligned with
the training data distribution. The qualitative comparison through visualizations fur-
ther supports these findings, showing that the domain-informed generators produce
instances that are more realistic and diverse, while also preserving the internal struc-
ture of the domain. The customized generators and those based on LLMs balance
performance and output quality.

6.2 Evaluation of the rules

To assess the effectiveness of different synthetic neighbourhood generators for pro-
ducing interpretable explanations, we extracted factual and counterfactual rules using
several methods and displayed them side-by-side for expert evaluation. The rules
were presented in a textual format to allow for direct comparison of their structure,
complexity, and interpretability.

Figure 10 shows example rule sets for a specific instance from the vessel movement
dataset (previously shown in Figure 8). The rule sets, each generated using a different
method, reveal several insights:

® The Baseline Training generator, which samples from the training dataset, often
produces verbose rules with many predicates. This is likely due to the inclusion
of non-local instances in large neighbourhoods, causing the local surrogate to
resemble the global model and weakening its local explanatory power.

® The Custom generator yields more concise rules by restricting perturbations
based on expert-defined constraints. The surrogate model, influenced by a forest
of decision trees, favours features that are semantically meaningful and better
aligned with domain knowledge.

® The Genetic Custom generator behaves similarly to the Custom generator but
introduces more diverse counterfactuals. The use of genetic optimization allows
the search to explore a broader portion of the feature space while maintaining
constraints.

® The Genetic generator, though unconstrained, occasionally produces compact
rules resembling those from the Custom generator, but lacks domain grounding.
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Log10MinDistPort > 0.02
Log10DistStartTrendDevAmplitude
=-1.00

THEN

classN =3

Counterrules
IF
Log10Curvature <= 0.86
Log10MinDistPort <= 0.02
THEN
classN=5

IF

Log10Curvature > 0.86
THEN

classN =86

IF
Log10Curvature <= 0.86
Log10Curvature > 0.86
THEN
classN =6

DistStartTrendAngle <= 0.15 SpeedMedian <=
DistStartTrendAngle > 0.14 6.14

Fig. 10: Comparison of factual and counterfactual rules extracted from different gen-
erators for the Vessels model. The class labels correspond to: 1 - Straight, 2 - Curved,
3 - Trawling, 4 - Port-Connected, 5 - Near Port, 6 - Anchored.

Figure 11 shows the rules extracted for the COVID-19 case study. As in the vessel
example, the Custom and GPT generators produce the most concise and semantically
focused rules. This conciseness results directly from the domain constraints embedded
in the instance generation process. In contrast, the generic generators tend to yield
rules with longer predicate lists and limited interpretability.

6.2.1 Limitations of Current Rule-Based XAI Methods

Despite these observations, our study ultimately reveals a fundamental limitation:
the overall quality of the extracted rules across all generators is often inadequate for
interpretability. For example, a rule such as: “if week2_covid # ¢3 and week6_covid # c4
then class_label = ¢37 fails to offer an exhaustive explanation of the model’s behaviour
involving all the relevant features. The logical link between the premises and conclusion
may not be aligned with human reasoning about temporal dynamics or causality in
epidemiological data.

This issue likely stems from how rule-based XAI methods like LORE operate. These
methods assume independence among features and aim to identify minimal discrimi-
native predicates to separate classes locally. As a result, they prioritise compactness
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Explanations

random custom genetic custom_genetic  gpt baseline
Rule Rule Rule Rule Rule Rule

IF IF IF IF IF IF
Week2_Covid 1= Week2_Covid != Days_passed > Week2_Covid != c4 Week2_Covid != Week2_Covid !=
c3 c3 412.65 Days_passed > c3 c3
Week2_Covid I= Days_passed > Week2_Covid != 430.50 Week5_Covid != Days_passed >
ct 416.50 c3 Week2_Covid != c3 c4 395.50
Week2_Covid = Week1_Mobility = Week2_Covid != Week1_Mobility = m4 Week1_Mobility = Week2_Covid !=
c2 m4 c4 Week3_Mobility = m2 m4 cl
Days_passed > Week6_Mobility 1= Week1_Mobility = Week6_Mobility = m1 Week6_Mobility 1= Week3_Covid =
440.43 m1 m4 THEN m1 c3
Week3_Covid != Week3_Covid != Week6_Mobility = Class_label = c2 Days_passed > Week3_Mobility !=
c4 c2 m4 423.50 m3
Week5_Covid 1= Week6_Mobility = Weeké4_Covid |= Week3_Covid I= THEN

c4 m2 [ Counterrules c2 Class_label = c2
Week3_Mobility 1= Week2_Covid 1= Week6_Covid != IF Week3_Mobility =

m1 c4 c4 Week2_Covid != c4 m3

Week5_Mobility 1= Week3_Mobility != Week5_Covid != Days_passed > Week2_Covid != Counterrules
m1 m3 cl 437.50 c4 IF
Week5_Mobility = THEN THEN Week2_Covid != c3 Week6_Mobility != Week2_Covid !=
m3 Class_label = c2 Class_label = c2 Week1_Mobility != m4 m2 c3

THEN Week3_Mobility = m4 Week6_Covid |= Days_passed >
Class_label = c2 THEN c4 395.50

Counterrules Counterrules Class_label = c3 THEN Week2_Covid =
IF IF Class_label = c2 c1
Counterrules Week2_Covid != Days_passed > Week3_Covid !=

Fig. 11: Comparison between factual and counterfactual rules extracted from different
generators for the COVID-19 model. The labels cl-c4 represent the scale from the
lowest to the highest level of COVID-19 incidence.

over semantic coherence and are unable to leverage the complex interdependencies
embedded in synthetic instances created by domain-informed generators.

Tree # Leaves Max Depth Leaf Depth Diameter # Features Used
Random 153 17 9.09 £+ 2.99 34 9
Baseline 59 14 8.25 +2.72 19 9
Custom 3 2 1.67 £0.47 3 2
Genetic 39 11 6.79 £+ 2.29 15 9
Custom Genetic 6 4 3.00 £ 1.00 5 4
LLM 5 3 2.40 £ 0.49 5 3

Table 4: Comparison of decision tree statistics across the geneators for the vessel move-
ment dataset. Leaf depth is reported as mean =+ standard deviation.

As a further investigation, we computed the statistics of the decision trees used
to extract the rules. Table 4 summarizes some of the key structural characteristics of
the decision trees generated by each method when generating the explanations for the
vessel movement dataset presented in Figure 10. We can observe that the Baseline
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and Random generators produce more complex trees, with a larger depth and diam-
eter. The Genetic generator also produces a tree with a complex structure. The two
customized models (Custom and LLM ) produce more compact tree. This is reflected
also in the complexity of the rules extracted for explanations. The Custom_Genetic
generator combines the benefits of the Custom generator and the optimization of the
Genetic generator.

Tree #Leaves Max Depth Leaf Depth Diameter #Features Used
Random 136 15 8.54 +2.63 28 9
Baseline 60 13 8.20 £ 2.76 18 9
Custom 2 1 1.00 £ 0.00 2 1
Genetic 36 12 6.97 £ 2.80 16 8
Custom Genetic 3 2 1.67 £ 0.47 3 2
GPT 5 3 2.40 £ 0.49 5 3

Table 5: Comparison of decision tree statistics across the generators for the COVID-
19 and mobility dataset. Leaf depth is reported as mean + standard deviation.

Table 5 presents the statistics of the decision trees used to extract the rules for
the COVID-19 case study presented in Figure 11. In this case, we observe a similar
pattern as in the previous case study. The Baseline and Random generators produce
more complex trees, while the customized generators yield trees with a more compact
structure. On one side, the compactness of the surrogate models is beneficial for inter-
pretability, as it leads to simpler rules that may be easier to perceive. On the other
side, the use of a small number of features may limit the ability of the surrogate model
to capture the complexity of the domain relationships.

We conclude that current instance-based explanation methods are limited by their
purely data-driven nature. While they may be effective for binary decisions in domains
with low feature complexity (e.g., credit approval), they fall short when applied to
temporally structured or semantically rich domains such as the ones studied here.

Rather than viewing this as a shortcoming of our approach, we frame it as an
important finding: embedding domain knowledge into synthetic data genera-
tion is a necessary but insufficient condition for producing human-aligned
explanations. The gap lies in the explanation algorithms themselves, which must
evolve to reflect domain structure and inter-feature relationships more explicitly.

6.2.2 Toward LLM-Enhanced Explanation Generation

Given the limitations of current rule-based XAI methods, we see promising oppor-
tunities for incorporating LLMs into the explanation process. Our experiments
demonstrated that LLMs are capable of acquiring and operationalising domain knowl-
edge through iterative interactions with human experts. This capability suggests that
LLMs could serve not only as tools for generating synthetic data but also as intel-
ligent agents for producing or refining explanations that are aligned with expert
understanding.
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A promising direction is the integration of LLMs with outputs from algorithmic
XAI methods such as LORE or SHAP. Rather than replacing these methods, LLMs
could interpret, validate, and enrich the explanations by combining model outputs
with previously learned domain knowledge. For example, an LLM could take a rule
or feature attribution generated by an XAI algorithm and augment it with additional
context, constraints, or causal relationships derived from earlier conversations with a
domain expert. This hybrid reasoning process could transform low-level, data-driven
outputs into more coherent and cognitively aligned justifications.

In this way, LLMs offer the potential to bridge the gap between statistical patterns
identified by models and the structured, semantically meaningful knowledge used by
human decision-makers.

In light of our findings, we return to the central question posed in the introduc-
tion: how can domain knowledge be incorporated into both model development and
explanation generation without modifying existing ML or XAI algorithms? Our work
demonstrates that while knowledge-aware data preparation and neighbourhood gen-
eration significantly improve the realism and interpretability of inputs, current XAI
methods often fall short in extracting meaningful, human-aligned explanations. This
gap suggests that LLMs, given their ability to absorb and reuse domain knowledge
acquired through expert interaction, may serve as the critical missing layer.

7 Conclusion and Future Work

In this work, we proposed a methodology for integrating human knowledge into
machine learning (ML) workflows to enhance both model interpretability and perfor-
mance. By incorporating expert insight through visual analytics and domain-driven
data transformations, we enabled more semantically meaningful representations that
align with expert reasoning. Our dual approach targets two critical stages: the con-
struction of interpretable models through thoughtful data preparation and feature
engineering, and the generation of explanation-supporting synthetic neighborhoods
that adhere to domain constraints.

We validated our approach in two real-world case studies - predicting COVID-19
dynamics and identifying vessel movement patterns, demonstrating its applicability
to different types of data. Through these case studies, we showed that domain-aware
neighbourhood generation yields synthetic instances that better reflect the structure of
the real data and expert expectations. Using quantitative and qualitative evaluation,
we confirmed that knowledge-guided instance generation produces neighbourhoods
with improved locality, realism, and diversity.

However, our findings also reveal a critical limitation of current algorithmic expla-
nation techniques such as LORE. Despite improvements in neighbourhood quality,
the generated explanations often remain logically unconvincing or inconsistent with
human reasoning. This exposes a gap between domain-aware data generation and
purely data-driven explanation methods. We argue that existing XAI frameworks lack
the capacity to represent feature interdependencies or temporal semantics required for
meaningful explanations in complex domains.
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This limitation points to a new research direction: the integration of large language
models (LLMs) not only in data generation but also in explanation generation. Our
experiments show that LLMs can understand and operationalise domain constraints;
thus, they could be further leveraged to refine or augment explanations produced by
standard XAI methods. By enabling semantically rich, context-aware justifications,
LLMs may help bridge the gap between model logic and human mental models.

In future work, we aim to extend this methodology in several directions. First, scal-
ing the approach to higher-dimensional feature spaces while preserving interpretability
is essential for broader applicability. Second, exploring generative modelling tech-
niques, such as GANs or reinforcement learning, could further enhance the diversity
and fidelity of synthetic neighbourhoods. Third, longitudinal user studies could provide
deeper insights into how domain experts interact with and benefit from knowledge-
driven explanations. Finally, hybrid systems integrating LLMs into the explanation
pipeline open possibilities for rule synthesis, feature relevance analysis, and interactive
refinement of models.

By addressing these directions, we aim to further strengthen the integration of
human knowledge into Al systems, advancing not only their accuracy and robustness
but also their transparency and alignment with human understanding.
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Appendix A Using an LLM (ChatGPT) for
synthetic neighbourhood generation
in the COVID-19 and mobility case
study

We performed this experiment using ChatGPT-4 Turbo (model GPT-40) and focus-
ing on COVID-19 and mobility applications. We aimed to explore a scenario where
a domain expert communicates with an LLM, transferring relevant domain-specific
knowledge. The LLM creates and refines the code of a neighbourhood generator,
demonstrates examples of its outcomes, and incorporates expert feedback iteratively.
This experiment sought to answer the following questions: How realistic is this
scenario? What challenges must be addressed to make it effective?

A.1 Prompting the LLM

Initial prompt (omitting the data examples)

We developed a machine learning model to predict future levels of pandemic incidence
(COVID-19) based on historical disease and mobility data. The dataset used for mod-
elling covered daily counts of new COVID-19 cases and trips within 52 geographic
regions, normalized by population size. The data were aggregated into weekly inter-
vals spanning 64 weeks from February 2020 to May 2021, excluding the first six weeks
due to significant differences in pandemic patterns during the initial outbreak phase.

The aggregated data were discretized into four levels for disease incidence and four
levels for mobility, where lower levels of mobility indicated more severe restrictions,
whereas higher levels of disease incidence indicated higher disease spread. For each
prediction, we used a temporal context consisting of disease levels from weeks -6 to
-2 and mobility levels from weeks -6 to -1 relative to the target event, along with a
temporal variable representing the number of days since the pandemic began.

The modelling task focused on capturing the interdependencies between disease
incidence and mobility levels. Increases in disease incidence typically led to reduced
mobility through restrictions, which subsequently contributed to a delayed decline
in disease levels. Conversely, relaxed mobility restrictions often resulted in increased
disease incidence after a delay of one to three weeks.

To test the model’s robustness and explore its behavior under varying conditions,
we want to generate synthetic data instances in the neighbourhood of a given real
data instance. These synthetic instances should be created by perturbing the original
feature values while adhering to observed transition probabilities for both disease and
mobility levels. The generated data should reflect realistic temporal dynamics and
interdependencies.

The goal of the synthetic data generation is to investigate how variations in input
features influenced the model’s predictions for the next level of pandemic incidence. By
generating a sufficiently diverse neighbourhood, we aim to ensure that the model pro-
duces predictions across all possible levels of pandemic incidence, thereby enhancing
the interpretability and reliability of the predictions.
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Refinement

After assessing the first result, the LLM was given the following request: “You need
to introduce some randomness in the generation, but keep consistency between the
values of the features according to the transition frequencies. The neighbourhood should
be sufficiently diverse to obtain at least 15 instances of each class after applying the
model”.

Domain Knowledge Involved in the Synthetic Neighbourhood Generator

Below is the LLM-generated description of the domain knowledge incorporated in the
neighbourhood generator. It demonstrates the degree of the LLM’s “understanding”
of the domain.

The synthetic neighbourhood generator incorporated the following domain knowl-

edge to ensure the generation of realistic and meaningful data instances:

® Temporal Dynamics: The relationships between time-dependent variables,
such as COVID-19 levels and mobility levels, follow observable transition proba-
bilities. These transitions reflect real-world temporal changes, e.g., how mobility
levels shift over weeks or how COVID-19 levels evolve. Transition frequencies for
each variable were constructed based on historical data, capturing the likelihood
of transitions between specific states.

e Feature Interdependencies: Temporal features such as ”Weeks_passed” and
"Days_passed” are interrelated, with consistent calculations ensuring the gen-
erated instances remain plausible (e.g., ”Days_passed” = ”Weeks_passed” X
7).

¢ Realism in Variations: Variations in feature values (e.g., changes in past-week
COVID-19 and mobility levels) must align with the underlying transition frequen-
cies. This ensures that generated synthetic instances resemble realistic scenarios
rather than random deviations.

® Diversity and Coverage: Generating synthetic neighbours involves balancing
proximity to the original instance with sufficient diversity to explore less com-
mon but plausible scenarios, thereby enriching the dataset and improving class
coverage.

® Categorical-to-Numerical Mapping: To facilitate downstream processing,
categorical values for COVID-19 and mobility levels are systematically mapped
to numerical representations while maintaining interpretability.

This domain knowledge was iteratively incorporated into the code, ensuring the

synthetic neighbours adhered to realistic transitions, captured temporal and spatial
patterns, and reflected meaningful diversity.

A.2 Assessment of the Results

A Python script was developed to take multiple input instances from a specified file
and generate a given number of synthetic neighbours for each instance. The results are
stored in two output files: one containing categorical feature values and the other with
their corresponding numeric representations. Below, we detail the process of testing
the code and evaluating its performance.
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Fig. A1: Original and synthetic instances obtained with the help of ChatGPT for the
COVID-19 and mobility case study are represented as points on a map. The points
are placed according to instance similarity. The colours correspond to the predicted
classes. The square symbols represent the synthetic instances. Larger circles represent
the 15 original instances for which the synthetic neighbours were generated. These
instances are additionally marked by black hollow circles.

Using a dataset of real data, 15 input instances were randomly selected, each
representing a unique combination of conditions. For each instance, 100 synthetic
neighbours were generated. Both original and synthetic instances, represented numer-
ically, were processed through a predictive model that assigned class labels reflecting
different COVID-19 levels. To evaluate the effectiveness of the synthetic neighbour-
hood generator, we created a visualization in the form of a 2D map, where points are
positioned based on their similarity in the high-dimensional feature space. To derive
the 2D positions, we applied the UMAP algorithm, which preserves both local and
global data structures.

The resulting visualization is shown in Fig. Al. Larger circles represent the orig-
inal instances, while smaller rectangles correspond to the synthetic neighbours. The
symbols are colour-coded according to their predicted classes, allowing for an over-
all assessment of class distributions. Original instances are further marked with black
hollow circles for better identification.

For more detailed analysis, filters can be applied to the set of the displayed
instances to focus on different subsets. Fig. A2 shows the neighbours of the original
instances grouped by classes c1, c2, c3, and c4, consisting of 2, 3, 5, and 5 origi-
nal instances, respectively. Similarly, Fig. A3 illustrates the distributions of synthetic

34



neighbours for four selected original instances from different classes. These visualiza-
tions enable domain experts to assess both the alignment of synthetic neighbours with
their respective original instances and the diversity of their predicted classes.

The visualizations reveal that the synthetic neighbours generally cluster around
their respective original instances, as expected. However, scattered neighbours are also
present, contributing to the desired diversity. Importantly, the generator produces
instances diverse enough to be classified into different categories by the model. While
obtaining model predictions is not a part of the synthetic neighbourhood generation
code, this post-generation step effectively demonstrates the utility of the synthetic
data for testing and model evaluation.

A.3 Conclusion

This experiment demonstrated the feasibility of using an LLM to generate syn-
thetic neighbourhoods that balance randomness with domain-consistent variations.
The approach can potentially be adapted to other domains with temporal or sequential
data. However, several challenges were identified:

e Complexity in Translating Domain Knowledge: LLMs require clear,
well-thought-out inputs to effectively encode complex domain rules. Informal
descriptions may need reformulation by experts for accurate implementation.

® Validation and Debugging: The LLM-generated code can occasionally deviate
from the intended logic or contain errors, requiring careful validation and iterative
refinements. These tasks require coding expertise, which domain experts may not
possess. Hence, there is a need for tools that bridge this skill gap.

® Visualization as a Feedback Tool: Visualization was instrumental in assess-
ing the distribution and diversity of synthetic instances. However, additional
visualizations are needed to evaluate the realism of the generated feature value
combinations.

Overall, while using LLMs for synthetic data generation shows significant promise,
achieving seamless collaboration with domain experts will require advances in visual-
ization, validation, and communication tools.
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Fig. A2: Distributions of synthetic instances generated for the original instances
with the actual classes c1 (2 instances), c2 (3 instances), c3 (5 instances), and c4 (5
instances).

Fig. A3: Distributions of synthetic instances generated for 4 selected original
instances.
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Appendix B Using an LLM (Google Gemini) for
synthetic neighbourhood generation
in the vessel movement case study

For the vessel movement case study, we made an experiment with Google Gemini
version 2.5 Flash.

B.1 Prompting the LLM

The following prompt was submitted to the LLM: I need to create a Python program
for generation of synthetic data instances in the neighbourhood of a given instance.
The purpose is to generate local explanations of predictions produced by a model that
recognises patterns of vessel movements based on 9 features. Input data for the model
consist of values of numeric attributes characterizing segments of vessel trajectories.
The model utilizes nine features describing vessel speed characteristics, trajectory
shape, and proximity to ports. Logarithmic transformation was applied to features
with highly skewed value distributions in the training data.

e Speed statistics: SpeedMinimum, SpeedQl, SpeedMedian, SpeedQ3. These
features represent the speed distribution, from minimum observed speed to
quartile-based spread.

e LogiOCurvature: The logarithm of the curvature of the time series of the vessel’s
distance from the starting point. The curvature is computed as the ratio between
the sum of absolute consecutive changes in the time series and the amplitude of
values. A value close to 1 indicates nearly straight movement, while higher values
indicate the presence of turns.

e DistStartTrendAngle: The angle of the linear trend fitted to the time series of
the vessel’s distance from its starting point. A higher angle indicates a stronger
trend of moving away, while a lower angle suggests slower movement or a return
toward the starting position.

e LogiODistStartTrendDevAmplitude: The logarithm of the amplitude of devia-
tions from the trend line of the distance to the starting point. It quantifies path
tortuosity, reflecting how much the vessel’s movement deviates from a straight-line
trend. Higher values indicate more erratic or zigzagging movement.

e Port proximity: MaxDistPort, LoglOMinDistPort. These features represent
the maximum and (log-transformed) minimum distance from the nearest port,
which are useful for recognizing anchoring and port manoeuvring.

LoglOCurvature and LoglODistStartTrendDevAmplitude jointly describe the
shape complexity of a trajectory segment. Log10Curvature captures global movement
characteristics, while path tortuosity reflects local zigzagging. Together, they help
distinguish between steady outward movement, looping, and in-place manoeuvring.

The features are used to classify movement behaviours in trajectory segments
(episodes) to one of the six classes: 1) straight movement; 2) curved movement; 3)
trawling; 4) port-connected (entering or exiting a port); 5) near port (manoeuvring in
port vicinity); 6) anchored. Each data instance describes one episode by the 9 features
listed above.
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The Python program needs, for a given instance with a true or predicted class
label, perturb the feature values and thereby create a specified number of synthetic
instances that are likely to be classified as belonging to each of the 6 classes, including
the class of the given instance. It is desirable to keep balance between the numbers
of instances of each class, although it is not known in advance how the model will
classify them. It is desirable to achieve the class variety by making small changes of
the feature values.

The synthetic instances must be realistic, i.e., satisfying certain constraints:

® Numeric relationships between the speed values: SpeedMinimum < SpeedQ1 <
SpeedMedian < SpeedQ3

® Realistic SpeedQ3: should be not much higher that the maximum occurring in
the training data, which is 22.

e High speed cannot be achieved during curvy movements.

e The range of DistStartTrendAngle in the training data was [—0.24,0.36]; the

values in synthetic data should not be far beyond.

e The same applies to Logl0Curvature [0,2.25] and

LoglODistStartTrendDevAmplitude [—2.8,1.8].

® The smallest value of Log10MinDistPort was —3.05.

Here are some examples of instances of different classes: ...

Input instances for the Python program look like these but do not include the field
“Class” with string values.

B.2 LLM’s response

I will create a Python program that generates synthetic data instances based on a
given vessel movement instance. This program will perturb the feature values of the
input instance, aiming to create new instances that are likely to represent different
vessel behaviors, while adhering to realistic constraints.

The program will account for:

® Nine key features: SpeedMinimum, SpeedQl, SpeedMedian, SpeedQ3,
LoglOCurvature, DistStartTrendAngle, LoglODistStartTrendDevAmplitude,
MaxDistPort, and LoglOMinDistPort.

® Realistic constraints: Including relationships between speed quartiles, maxi-
mum speed limits, the interplay between speed and curvature, and specific ranges
for angular and curvature-related features, as well as port proximity.

e Targeted perturbations: Although we don’t have the actual classification
model, the program will apply perturbations strategically to generate instances
that align with the characteristics of each of the six movement classes (straight,
curved, trawling, port-connected, near port, anchored). This approach increases
the likelihood of creating diverse synthetic data that could be classified into
different categories by a real model.

The output will be a list of dictionaries, where each dictionary represents a

synthetic data instance with its 9 feature values.

Here is the Python program: ...

The code was sufficiently good right from the beginning; only very minor changes

in data input and output were further requested.
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B.3 Result

The LLM described the resulting program as follows: The provided Python program
is designed for the generation of synthetic data instances, primarily to facilitate local
explanations of predictions made by a vessel movement pattern recognition model.
This model operates on nine numerical features characterizing segments of vessel
trajectories. The synthetic data generation process ensures that the newly created
instances are both diverse and realistic, adhering to specific physical and contextual
constraints.

The nine features utilized by the model and, consequently, by this generator
are: SpeedMinimum, SpeedQl, SpeedMedian, SpeedQ3 (describing speed distribu-
tion); LoglOCurvature (logarithm of trajectory curvature); DistStartTrendAngle
(angle of distance trend from start); Log10DistStartTrendDevAmplitude (logarithm
of deviation amplitude from trend); MaxDistPort, and LoglOMinDistPort (maxi-
mum and log-transformed minimum distance from the nearest port). Features like
LoglOCurvature and LogilODistStartTrendDevAmplitude are critical for captur-
ing trajectory shape complexity, distinguishing between global movement and local
tortuosity.

The core of the synthetic data generation lies within the SyntheticDataGenerator
class. For a given input instance, the program generates a specified number of synthetic
neighbors. This process involves perturbing the feature values of the original instance
using a controllable perturbation_scale. A key aspect is the strategic application of
these perturbations to create instances that tend towards one of six predefined vessel
movement classes: straight movement, curved movement, trawling, port-connected,
near port, and anchored. This class-tendency-driven perturbation aims to achieve a
balanced variety of synthetic instances across all classes, even without direct access to
the classification model.

Crucially, the program enforces a comprehensive set of realistic constraints to
ensure the generated data remains plausible:

e Speed Quartile Ordering: SpeedMinimum < SpeedQl1 < SpeedMedian <

SpeedQ3 is strictly maintained.

e Maximum Speed: SpeedQ3 is capped at 22.0, reflecting observed training data
limits.

e Speed-Curvature Interaction: High speeds are made incompatible with high
curvature values; if both occur, speed is reduced or curvature adjusted.

o Feature Ranges: DistStartTrendAngle, LoglOCurvature, and
LoglODistStartTrendDevAmplitude are clamped within their empirically
derived training data ranges (e.g., LoglOCurvature between 0.0 and 2.25).

e Port Proximity Minimum: LoglOMinDistPort is constrained to be no less
than —3.05.

e Non-negativity: All speed values and MaxDistPort are ensured to be non-
negative.

These constraints are applied after initial perturbations to correct any unrealistic
values, thus enhancing the fidelity of the synthetic dataset.

The workflow integrates seamlessly with CSV file operations. The
generate_and _save_synthetic_data_from csv function facilitates batch processing:
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Fig. B4: Representation of instances on a parallel coordinates plot with parallel coor-
dinate axes representing the features. Left: Real instances. Right: Synthetic neighbours
of the real instances.

it reads original, labeled instances from an input CSV file, systematically generates
N synthetic neighbors for each original instance (where N is configurable), and then
compiles all generated instances into a single dataset. This consolidated synthetic
dataset, devoid of class labels, is then written to a new output CSV file, ready for
subsequent analysis or use in model interpretability frameworks. This entire process
provides a robust method for expanding datasets with realistic variations, particularly
valuable for exploring model behavior in the vicinity of specific data points.

B.4 Evaluation of the program performance

To evaluate the performance of the LLM-generated synthetic data generator, we
selected 120 example instances from the training data, i.e., 20 instances per class across
the six behaviour categories. For each original instance, the generator produced 100
synthetic neighbours, resulting in a total of 12,000 synthetic instances. These were
passed through the trained pattern classification model to obtain predicted class labels.
The resulting distribution of predicted classes was as follows: class 1 — 712 instances,
class 2 — 1434, class 3 — 1776, class 4 — 2016, class 5 — 3756, and class 6 — 2306.

The labelled synthetic instances were analysed using visual analytics tools. Unlike
the COVID-19 case study, where feature values were categorical, this case involved
numerical features, necessitating different visualization techniques. Specifically, we
used parallel coordinates plots (PCPs), where each axis represents a feature and each
line corresponds to a data instance, connecting its values across all features.

Figure B4 shows the comparison between the original and synthetic data. The
left panel presents the 120 real instances, while the right panel displays the 12,000
synthetic neighbours generated by the LLM-based program. While the plots reveal the
overall feature space coverage, the high density of overplotted lines makes it difficult
to distinguish patterns among individual classes.

To better explore class-specific characteristics, we applied interactive filtering to
isolate and visualize subsets of synthetic instances by their predicted classes. Figure
B5 shows the distributions of feature values for each predicted class separately. This
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Fig. B5: Screenshots of the PCP display show the distributions of the feature values
separately for each class: 1) red - straight movement; 2) blue - curved movement; 3)
green - trawling; 4) purple - port-connected; 5) orange - near port; 6) yellow - anchored.

view allowed us to compare and assess whether the synthetic instances reflect the
expected behaviour patterns of each class.

The visualizations confirm two important qualities of the generated synthetic
neighbourhoods. First, the synthetic instances remain close to their original sources in
the feature space, demonstrating good locality. Second, they exhibit sufficient diver-
sity: feature values vary across meaningful ranges while respecting domain constraints.
This suggests that the generator successfully balances locality and variation.

Overall, the experiment demonstrates that the LLM-generated code can produce
high-quality, domain-consistent synthetic data. The resulting neighbourhoods support
model interpretation and evaluation by providing diverse yet plausible variations of
real instances.
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