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Abstract 

Given the difficulty in determining the parameters of the compressive strength prediction model of self-compacting 
concrete and the low prediction accuracy, this study focuses on the applicability of the relevance vector machine 
(RVM) model constructed using various optimization techniques in predicting the strength of self-compacting 
concrete. The principal component analysis (PCA) is first used to reduce the dimension of the influencing factors. 
Then, the particle swarm optimization algorithm (PSO) is introduced into the RVM to establish a PCA–PSO–RVM 
collaborative optimization model, which is compared with the traditional regression model through various statistical 
indicators and error analysis. The results show that the collaborative optimization model prediction based on PCA–
PSO–RVM performs outstandingly in all performance indicators. In the test set, the R2 of the collaborative optimization 
model is 0.978, MAE is 0.123, MSE is 0.021, and RMSE is 0.150. The evaluation of quantitative indicators verifies 
that the collaborative optimization model is feasible and advanced in predicting the strength of self-compacting 
concrete. This study also provides a reference for the research on durability, rheological properties, and other material 
predictions of self-compacting concrete.

Keywords  Machine learning, Relevance vector machine, Principal component analysis, Particle swarm optimization, 
Self-compacting concrete, Strength prediction

1  Introduction
In recent years, with the rapid development of the 
construction industry, concrete structures such as 
bridges, pile foundations, and high-rise buildings are 
constantly being used, and various projects have higher 
and higher requirements for the actual service life 
which is durability of concrete structures (Douglas, 

2019; Hooton & Bickley, 2014; Susilorini et  al., 2022). 
However, the durability of concrete and construction 
quality are inseparable, especially the quality of concrete 
vibrating, which plays a key role in eliminating the 
phenomenon of honeycomb pitting of concrete, ensuring 
the quality of concrete components, and improving 
its strength and durability (Banfill et  al., 2011; Koch 
et  al., 2019; Zhang et  al., 2021, 2024). At present, most 
of the concrete is manually pounded, as the concrete is 
not visible inside, the concrete pounding dense effect 
and quality control mainly depends on the experience 
of the construction personnel to judge, which leads to 
the uncertainty of the pounding quality and affects the 
durability of concrete (Tian et al., 2019). Self-compacting 
concrete (SCC) proposed by Japanese scholar Okamura 
in 1986 solves this problem well (Okamura & Ouchi, 
1998). SCC does not need manual vibration, which 
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avoids the original defects in concrete and can reduce 
the impact of construction quality on the durability 
of concrete structures. SCC relies on its own weight 
to pass through dense structural elements, fill the 
formwork, wrap reinforcement, and maintain stability 
and homogeneity, i.e., achieve full compaction and obtain 
optimal performance. By applying SCC in engineering, 
the construction period can be greatly shortened, labor 
costs, energy costs and equipment costs can be reduced, 
thereby improving economic efficiency.

Since the advent of SCC, it has been widely used in 
various engineering fields, such as construction and 
water conservancy. For example, it was used in railroads, 
high-rise buildings, dams, etc. (Zadeh et al., 2014; Zeng 
et  al., 2021). The physical and mechanical properties of 
SCC, like ordinary pounded concrete, are the first to 
attract people’s widespread attention. To obtain the best 
mix ratio for SCC strength, researchers have predicted 
SCC strength through rheological models, numerical 
methods, and experimental tests (Ding et  al., 2018; 
Domone, 2007; Li et  al., 2021) However, since SCC is 
composed of a mixture of multiple components, including 
high-cementitious materials and superplasticizers, each 
element has an impact on the mechanical properties of 
SCC. There is a strong coupling between the components, 
and the compressive strength and the components show 
a highly nonlinear mapping relationship (Siddique et al., 
2011). Therefore, the above methods are still insufficient 
in describing the relationship between these mixed 
components and the compressive strength value of SCC. 
Determining its compressive strength has become an 
engineering problem that needs to be solved urgently 
(Rajakarunakaran et al., 2022).

With the development of artificial intelligence, many 
machine learning methods have been applied in civil 
engineering-related fields. Machine learning methods 
such as artificial neural networks, random forests, and 
support vector machines have been widely used in civil 
engineering (Akande et  al., 2014; Asteris et  al., 2024; 
Huang et  al., 2019; Jahed et  al., 2021; Mai et  al., 2021; 
Skentou et  al., 2023) Many scholars have established 
prediction models for the compressive strength of SCC 
based on machine learning. Dutta et al. (2017) predicted 
the compressive strength of SCC using three models: 
extreme learning machine (ELM) and multiple adaptive 
regression splines (MARS). However, these neural 
network models have their own imperfections, such as 
overfitting, poor ability to represent nonlinearity, and 
weak hermeneutics. Asteris P G (Asteris & Kolovos, 
2019; Asteris et  al., 2016) further used artificial neural 
networks to predict the strength of SCC, verifying the 
reliability of machine learning methods in predicting the 
strength of SCC. Tran V Q (Tran et al., 2022) predicted 

the compressive strength of SCC using the extreme 
gradient boosting (XGBoost) algorithm, and the accuracy 
was improved, but XGBoost still has the disadvantages of 
too many parameters, difficult to adjust the parameters, 
and long training time. Traditional models such as linear 
regression, decision tree, and support vector machine 
(SVM) have limitations in predicting the strength of 
SCC. They are not good enough in dealing with complex 
nonlinear patterns and may have overfitting problems in 
feature selection. Therefore, it is urgent to establish an 
efficient and reasonable model to accurately predict the 
compressive strength of SCC.

The relevance vector machine (RVM) is a highly 
sparse machine learning method proposed by Tipping 
(2001) based on the support vector machine which 
is based on Bayesian statistical theory and makes the 
model sparser by reducing the correlation vectors of the 
model. Moreover, the RVM algorithm provides posterior 
probability and the selection of kernel function is not 
restricted by Mercer conditions, which can continue 
to improve the model prediction ability on the basis of 
support vector machine. Kernel functions are functions 
used to map input data into a high-dimensional feature 
space. Able to handle more complex nonlinear problems. 
However, when the input sample influences (i.e., the 
number of sample dimensions) are large and there are 
coupling relationships and information redundancy 
among them, the learning efficiency of the RVM 
model will be reduced and the computational cost 
will be increased. At the same time, the generalization 
performance of RVM is sensitive to parameter settings. 
In general, the method of manual parameter adjustment 
is used to search for parameters, which is costly and is 
greatly affected by human factors. Using dimensionality 
reduction and optimization methods, the problem of 
RVM in SCC prediction can be well-solved. Principal 
component analysis (PCA) is one of the most commonly 
used methods for data analysis (Mrówczyńska et  al., 
2020). It can reduce the dimension of data, use fewer 
data dimensions, and retain more information about 
the original data, thereby improving the calculation 
speed of the model. The particle swarm algorithm has 
good optimization capabilities. Using the particle swarm 
algorithm (PSO) to find the optimal hyperparameters of 
the RVM model can improve the learning efficiency and 
generalization ability of the RVM model (Wu & Li, 2022).

This study organically combines principal component 
analysis, particle swarm optimization (PSO), and RVM to 
establish a PCA–PSO–RVM collaborative optimization 
model, develops an efficient and accurate SCC strength 
prediction model, and conducts a detailed analysis 
of the specific experimental data of 99 samples in the 
published literature (Saha  et al., 2017). To verify the 
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superiority of the model, it is compared with 6 traditional 
regression models, including linear regression, multilayer 
perceptron regression (MLP), ridge regression, greedy 
algorithm (XGBoost) regression, random forest 
regression, and support vector machine regression (SVR). 
The collaborative optimization model not only improves 
the prediction accuracy and model generalization 
ability, but also promotes the intelligence of the SCC 
construction process, provides theoretical support 
and technical reference for the accurate prediction 
of concrete strength in engineering practice, and has 
important theoretical significance and engineering 
application value.

2 � Fundamental
2.1 � Principle of PCA
Principal component analysis (PCA) is one of the com-
monly used dimensionality reduction methods in data 
analysis (Yu et al., 2024), which uses orthogonal transfor-
mation to linearly transform multiple indicators with cer-
tain correlation in the original data and recombine them 
into a series of linearly uncorrelated variables. The infor-
mation of the original variables is retained as completely 
as possible through fewer indicators to achieve the pur-
pose of simplifying the data (Lee, 2021), the specific pro-
cess is shown in Fig. 1.

2.2 � Principle of PSO
The PSO algorithm is an evolutionary algorithm devel-
oped by J. Kennedy and R. C. Eberhar through their 
research on the foraging behavior of bird flocks (Ken-
nedy & Eberhart, 1995; Shami et al., 2022; Zoremsanga 
& Hussain, 2024). The algorithm is performed in an 
iterative recursive form, which has the advantages of 
high accuracy, fast convergence and less adjustment 
parameters required. It can be used to solve a large 
number of nonlinear, non-differentiable and multi-peak 
complex optimization problems (Gui et  al., 2022). In 
PSO, each potential solution to an optimization prob-
lem is a particle in the search space. All particles have 
a fitness value determined by the optimization func-
tion, and each particle has a velocity that determines 
the direction and distance of their “flying”, and then the 
particles follow the current optimal particle to search 
in the solution space, through the cooperation and 
competition in individuals to complete the search for 
optimal solutions in complex spaces, The PSO search 
process is shown in Fig. 2.

In finding the optimal value, the particle updates its 
velocity and position according to Eqs. (1) and (2) (Xing 
et al., 2022):

(1)vid = ωvid + c1r1(pid − xid)+ c2r2
(

pgd − xid
)

(2)xid = xid + vid

Fig. 1  Flow chart of PCA
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where c1 and c2 are learning factors, r1 and r2 are uniform 
random numbers in the range of [0,1].

2.3 � Principle of RVM
Relevance vector machine (RVM) transforms low-
dimensional spatial nonlinear problems into high-
dimensional spatial linear problems based on kernel 
function mapping. It has the following advantages: 
(1) few hyperparameters and high sparsity; (2) only 
the kernel parameters need to be set, which can save 
training time; and (3) the kernel function does not need 
to meet the Mercer condition, which greatly reduces 
the amount of calculation of the kernel function, the 
calculation process will be more efficient (Su et  al., 
2021; Wang et al., 2018).

First, given a training sample data set 
{xn, tn|n = 1, ..., 2,N } , xn is the input value, tn is the 
output target value. Assuming that tn is independently 
distributed, the tn function model is established as

where ωn −−− Weight vector for mathematical 
model,ω = [ω0, ω1, . . . ,ωn]

T ;
K (x, xn)−−− Kernel function of the model;
ω0 −−− Indicates deviation;

(3)tn =

N
∑

n=1

wnK (x, xn) + w0 + ξn

ξn −−− Represents the noise that follows the 
Gaussian distribution (0, σ 2) , this noise satisfies 
ξn ∼ N

(

0, σ 2
)

;
σ 2 −−− Represents variance;
Assuming that tn is distributed independently of each 

other, the likelihood function of the data set of training 
samples can be expressed as

where t = (t1, t2, . . . , tN )
T ; ω = [ω0, ω1, . . . ,ωn]

T ; 
� = [ϕ(x1), ϕ(x2), . . . ,ϕ(xN )]

T;
ϕ(xn) = [1,K (xn, x1),K (xn, x2), . . . ,K (xn, xN )]

T .
If the maximum likelihood approach is used directly to 

solve the problem, overfitting may occur in the process 
of using the RVM model. To avoid this phenomenon, 
the Bayesian perspective method is applied in the RVM 
model, and the size of each weight parameter ωn is set to 
zero mean, which constitutes a basic distribution about ω 
that satisfies the Gaussian prior probability:

where α −−− represents the hyperparameter vector 
α = (α0,α1, . . . ,αN )

Among them, there is a corresponding relationship 
between the hyperparameter vector α and the weight 

(4)
p(t|ω, σ 2) = (2πσ 2)−N/2 exp{−

1

2σ 2
� t − φω||2}

(5)p(ω|α) =
N
�
n=0

N (ωn|0,α
−1
n )

Fig. 2  Flow chart of PSO
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vector ωi , and it will also directly determine the prior 
distribution of the weight vector ωi . For each weight, 
the parameters in the above formula are independently 
distributed, which can greatly alleviate the complexity 
of the function distribution and realize the sparse 
characteristic of the RVM.

If the prior probability distribution of the RVM 
parameters is P(ω,α, σ 2|t) , the posterior probability 
distribution of the training samples is as follows:

Using Bayesian theory, the posterior distribution of the 
weight vector x can be expressed as follows:

From the above, the probability distribution obeys 
a multivariate Gaussian model, � = (σ−2φTφ + A)−1 
is variance, µ = σ−2�φT t is mean value, 
A = diag(α0,α1, . . . ,αN ) is diagonal matrix. Since 
P
(

α, σ 2|t
)

 cannot be calculated directly. Therefore, it 
is approximated by the Dirac Delta function, which is 
expressed as

After integrating ω in Eq. (7), the marginal distribution 
determined by the two parameters α and σ 2 can be 
obtained:

Then through maximum likelihood estimation and 
iterative calculation, the optimal solutions of parameters 
b and c are obtained:

where �ii is the element corresponding to the ith 
diagonal in the covariance matrix �.

With the training sample data already given, the initial 
values of the parameters α and σ 2 are first assumed, and 
then the hyperparameters α and σ 2 are iterated through 

(6)P(ω,α, σ 2|t) =
P(t|ω,α, σ 2)P(ω,α, σ 2)

P(t)

(7)

P(ω|t,α, σ 2) =
P(t|ω, σ 2)P(ω|α)

P(t|α, σ 2)

= (2π)−(N+1)/2|�|−1/2 exp{−
1

2
(ω − µ)T�−1(ω − µ)}

(8)P(α, σ 2|t) ≈ δ(αMP , σ
2
MP)

(9)P(t|α, σ 2) =

∫

P(t|ω,α)P(ω|α)dω

(10)α∗
n =

1− αn�nn

µ2
n

(11)
(σ 2)∗n =

� ||t − φµ||2

N −
N
∑

n=0

(1− αn�nn)

Eqs. (10) and (11). In the iterative process, most α tends 
to infinity, and the corresponding ω tends to zero by 
applying the formula µ = σ−2�φT . Thereby reducing 
the number of model basis functions, allowing the model 
to achieve a sparse effect, and the related parameters 
can converge faster to complete the training of the RVM 
model. The specific process is shown in Fig. 3.

In the process of using the RVM model algorithm, the 
selection of the kernel function will have an important 
impact on the training and prediction effects of the 
model. Compared with other kernel functions, the 
Gaussian kernel function has good processing ability for 
high-dimensional, low-dimensional, linear and nonlinear 
problems. Therefore, the Gaussian radial basis kernel 
function is selected as the kernel function of the RVM 
model in this research (Smola & Schölkopf, 2004). The 
Gaussian radial basis kernel function K (x, xi) can be 
expressed as

where σ 2 is the kernel function width.

2.4 � Principle of PCA–PSO–RVM
Based on the above principles, the principle of PCA–
PSO–RVM is shown in Fig. 4.

1.	 Normalization of the original data.
2.	 Using PCA to reduce the dimension of the 

influence features, a new data set was obtained after 
dimensionality reduction.

3.	 Initializing the PSO algorithm, using PSO to optimize 
the key parameters of the RVM model.

4.	 Train and predict the optimized model.
5.	 Compare the predicted value obtained by the 

optimal model with the actual value to analyze and 
verify the accuracy of the model. At the same time, 
the traditional machine learning model is used for 
comparative evaluation.

3 � Data Processing and Model Building
3.1 � Data Preprocessing and PCA Dimensionality Reduction 

to Determine Data Samples
Since the SCC itself has a lower water–cement ratio, 
higher sand rate, mixed with high-efficiency water 
reducing agents and high-cementitious materials, 
etc., in the composition of raw materials, ratio design 
methods are very different from ordinary concrete 
and general high-performance concrete, the original 
ordinary concrete work performance evaluation 
methods and principles are no longer applicable 
(Adhikary et  al., 2022; Sabet et  al., 2013). If all 

(12)K (x, xi) = exp[−||x − xi||/(2σ
2)]
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Fig. 3  Flow chart of RVM model training
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influencing factors are used as input, the workload of 
the model will be increased, and the generalization 
and learning efficiency of the model will be reduced; 
however, if too few influencing factors are selected, 
the prediction accuracy of the model will be reduced. 
The relationship between each factor and the strength 
of SCC is now investigated using principal component 
analysis, analyze the main factors, and obtain new 
variables through dimensionality reduction. Then use 
the PSO optimization algorithm to optimize the key 
parameters of RVM, and use RVM to build a prediction 
model. Select 99 sets of data in the literature (Saha  et 
al., 2017).

To reduce the impact of large magnitude differences 
between variables on correlation analysis, the 99 groups 
of data in Table 1 were standardized. The eigenvalues of 
the data were scaled between 0 and 1 to eliminate the 
magnitude differences between the eigenvalues, ensure 
the stability and effectiveness of the model training, 
and then perform a correlation analysis on eight indi-
cators to obtain the correlation coefficient among the 
variables. Fig. 5 shows the heat map of the correlation 
coefficient between variables. Before conducting prin-
cipal component analysis on the factors affecting the 
strength of SCC, Kaiser–Meyer–Olkin (KMO) test and 
Bartlett spherical test can be used to judge whether fac-
tor analysis is applicable among variables. If KMO ≥0.5, 
sig≤0.5, it means that the factors affecting the strength 
of SCC can be analyzed by principal components. First, 
the KMO test was performed on the data, and the 
result was 0.5, indicating that there was a correlation 
between the variables, which met the requirements of 

factor analysis. The data were then subjected to Bart-
lett’s sphericity test, and a significance p value of 0.000 
was obtained, which is less than the significance level 
of 0.05 and presents significance at the level. The above 
test results show that the original sample data are suit-
able for factor analysis and the principal component 
analysis method can be used to reduce the dimension.

As can be seen from Fig. 5, the correlation coefficient 
values between the eight factors affecting the strength 
of SCC are all between −1 and 1. There is a correlation 
between the factors and a high degree of correlation 
between some of the indicators. To further explore the 
specific influence values of each factor, the score diagram 
of the influencing factors was obtained according to the 
PCA principle (Fig. 6).

The contribution rate and cumulative contribution 
rate of each factor were calculated for the 99 groups of 8 
indicators after standardization (Table 2), and the visual 
graph is shown in Fig. 7. The contribution rate of the first 
principal component is 40%, the contribution rate of the 
second principal component is 20%, the contribution rate 
of the third principal component is 14%, and the con-
tribution rate of the fourth principal component is 11%. 
The cumulative contribution rate of the first four princi-
pal components reaches 85%, and the contribution rates 
of the remaining factors can be ignored. In this way, the 
original 8 individual indicators are converted into 4 new 
mutually independent comprehensive indicators, and 
these 4 new comprehensive indicators represent 85% of 
the information of the original 8 individual indicators.

To further analyze the correlation between the princi-
pal components and the original indicators, a heat map of 

Fig. 4  Principle of PCA–PSO–RVM
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Table 1  Self-compacting concrete strength data set

SI No Cement
(kg)

Ganister 
sand (kg)

Coarse 
aggregate(kg)

Fine 
aggregate(kg)

Poly 
propylene 
fiber (%)

Water (L) Superplasticizer
(L)

Viscosity-
modifying 
admixture (L)

Compressive 
strength 
(MPa)

1 276 961 808 150 0 204 8.5 0.42 31.64

2 276 961 808 155 0.25 204 9.2 0.42 31.87

3 276 961 808 160 0.5 204 9.9 0.43 31.14

4 276 961 808 165 0.75 204 10.5 0.44 32.28

5 276 961 808 170 1 204 11.2 0.45 32.87

6 276 961 808 175 1.2 204 11.9 0.45 32.2

7 412 913 781 138 0 193 13.75 0.48 52.9

8 412 913 781 145 0.25 193 14.5 0.48 53.43

9 412 913 781 152 0.5 193 14.7 0.48 54.05

10 412 913 781 159 0.75 193 15.25 0.48 54.26

11 412 913 781 166 1 193 16 0.48 53.52

12 412 913 781 173 1.2 193 17.2 0.48 31.64

13 276 961 808 150 0 204 8.5 0.42 31.7

14 276 961 808 155 0.35 204 9.2 0.42 31.77

15 276 961 808 160 0.7 204 9.9 0.43 31.82

16 276 961 808 165 1.05 204 10.5 0.44 32.26

17 276 961 808 170 1.4 204 11.2 0.45 31.71

18 276 961 808 175 1.75 204 11.9 0.45 52.9

19 412 913 781 138 0 193 13.75 0.46 52.28

20 412 913 781 145 0.35 193 14.5 0.48 52.54

21 412 913 781 152 0.7 193 14.7 0.48 52.98

22 412 913 781 159 1.05 193 15.25 0.46 53.87

23 412 913 781 166 1.4 193 16 0.48 52.94

24 412 913 781 173 1.75 193 17.2 0.48 29.87

25 276 969 774 150 0 204 8.5 0.42 30.58

26 276 969 774 170 1.4 204 11.2 0.45 31.69

27 276 969 774 170 1 204 11.2 0.45 28.24

28 276 978 735 150 0 204 8.5 0.42 29.16

29 276 978 735 170 1.4 204 11.2 0.45 30.12

30 276 978 735 170 1 204 11.2 0.45 49.68

31 412 934 744 138 0 193 13.75 0.46 50.64

32 412 934 744 166 1.4 193 16 0.48 51.82

33 412 934 744 166 1 193 16 0.48 47.06

34 412 944 707 138 0 193 13.75 0.46 48.52

35 412 944 707 166 1.4 193 16 0.48 49.26

36 412 944 707 166 1 193 16 0.48 67.58

37 430 1050 715 100 0 185 5 0.6 65.19

38 430 1050 700 100 0 185 5 0.6 64.18

39 430 1100 690 100 0 185 5 0.6 68.53

40 430 1050 715 110 1 185 6 0.7 66.25

41 430 1050 700 110 1 185 6.7 0.7 65.38

42 430 1100 690 115 1 185 7 0.75 68.12

43 430 1050 715 110 1.4 185 6.5 0.7 65.61

44 430 1050 700 110 1.4 185 7 0.7 64.75

45 430 1100 690 120 1.4 185 7.5 0.75 37

46 340 920 815 75 0 190 7 0.5 34.9

47 340 920 800 75 0 190 7 0.5 32.5

48 340 950 795 75 0 190 7 0.5 32.5
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Table 1  (continued)

SI No Cement
(kg)

Ganister 
sand (kg)

Coarse 
aggregate(kg)

Fine 
aggregate(kg)

Poly 
propylene 
fiber (%)

Water (L) Superplasticizer
(L)

Viscosity-
modifying 
admixture (L)

Compressive 
strength 
(MPa)

49 340 920 815 85 1 190 8 0.5 37.25

50 340 950 800 85 1 190 8 0.5 35.31

51 340 950 795 90 1 190 8 0.5 32.78

52 340 920 815 90 1.4 190 8 0.5 36.85

53 340 920 800 100 1.4 190 8.5 0.5 35.19

54 340 950 795 100 1.4 190 8.5 0.5 32.46

55 360 920 815 100 0 180 8 0.5 42

56 360 935 790 100 0 180 8 0.5 40.7

57 360 945 815 110 0 180 8 0.5 38.5

58 360 920 790 110 1 180 8.5 0.6 42.46

59 360 935 790 120 1 180 8.5 0.6 41.25

60 360 945 815 120 1 180 8.5 0.6 38.95

61 360 920 790 120 1.4 180 9 0.6 42.12

62 360 935 790 180 1.4 180 9 0.6 40.98

63 360 945 790 180 1.4 180 9 0.6 38.54

64 440 920 815 180 0 210 7 0.7 55

65 440 940 780 180 0 210 7 0.7 53.72

66 440 955 780 185 0 210 7 0.7 51.4

67 440 920 815 190 1 210 7.5 0.7 55.45

68 440 940 780 190 1 210 7.5 0.7 54.03

69 440 955 780 190 1 210 8 0.7 51.89

70 440 920 815 190 1.4 210 8 0.7 55.26

71 440 940 780 70 1.4 210 8.5 0.7 53.72

72 440 955 780 70 1.4 210 8.5 0.7 51.69

73 500 840 870 70 0 198 8.3 0.75 68

74 500 855 830 80 0 198 8.3 0.75 67

75 500 870 830 80 0 198 8.3 0.75 65.3

76 500 840 870 85 1 198 9 0.75 68.5

77 500 855 830 85 1 198 9 0.75 67.67

78 500 870 830 85 1 198 9 0.75 65.1

79 500 840 870 85 1.4 198 9 0.75 67.29

80 500 855 840 85 1.4 198 9 0.75 65

81 500 870 840 85 1.4 198 9 0.75 64.86

82 440 840 870 85 0 187 9 0.8 59

83 440 860 840 90 0 187 9 0.8 57.7

84 440 875 840 90 0 187 9 0.8 55.4

85 440 840 870 95 1 187 10 0.8 59.7

86 440 860 840 95 1 187 10 0.8 58.51

87 440 875 840 95 1 187 10 0.8 55.96

88 440 840 870 95 1.4 187 10 0.8 59.41

89 440 860 840 95 1.4 187 10 0.8 58.26

90 440 875 840 95 1.4 187 10 0.8 55.67

91 460 840 870 70 0 183 9.2 0.9 63

92 460 865 850 70 0 183 9.2 0.9 60.9

93 460 880 850 70 0 183 9.2 0.9 58.9

94 460 840 870 80 1 183 9.7 0.9 63.6

95 460 865 850 80 1 183 9.7 0.9 61.45

96 460 880 850 80 1 183 9.7 0.9 64.48
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the factor loading matrix of the principal components is 
drawn (Fig. 8), from which the importance of the hidden 
variables in each principal component can be analyzed. 
The depth of the color in Fig.  8 represents the impor-
tance of the original influencing factors in the principal 
components, and the lighter the color, the higher the 
importance.

Through the analysis of Table  2 and Fig.  8, the 
importance of hidden variables in each principal 
component can be obtained.

For example, the first principal component (PC1) has 
an eigenvalue of 3.23, accounting for 40% of the total 
variance, indicating that cement, coarse aggregate, and 
viscosity-modifying admixture are the key factors influ-
encing concrete strength. Cement (loading coefficient 
0.738), as the primary binding material, directly deter-
mines strength through its hydration reactions. Coarse 
aggregate (0.688) serves as the skeletal framework, with 

its strength and interfacial bonding significantly affecting 
load-bearing capacity. The viscosity-modifying admix-
ture (0.874) substantially enhances compactness and 
strength by optimizing workability and microstructure 
(e.g., reducing porosity and improving the interfacial 
transition zone). The synergistic effects of these three 
components make them the main drivers of strength var-
iation, reflecting the fundamental influence of material 
composition and processing technology on mechanical 
performance.

The second principal component (PC2) exhibits an 
eigenvalue of 1.60, accounting for 20% of the total vari-
ance, indicating its secondary importance relative to 
PC1. The corresponding eigenvector analysis reveals 
that the superplasticizer (loading coefficient 0.726) is 
the dominant influencing factor. This observation can be 
attributed to the superplasticizer’s remarkable ability to 
enhance cement particle dispersion through combined 

Table 1  (continued)

SI No Cement
(kg)

Ganister 
sand (kg)

Coarse 
aggregate(kg)

Fine 
aggregate(kg)

Poly 
propylene 
fiber (%)

Water (L) Superplasticizer
(L)

Viscosity-
modifying 
admixture (L)

Compressive 
strength 
(MPa)

97 460 840 870 80 1.4 183 9.7 0.9 63.27

98 460 865 850 80 1.4 183 9.7 0.9 61.29

99 460 880 850 80 1.4 183 9.7 0.9 64.13

Fig. 5  Heat map of correlation coefficient
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electrostatic repulsion and steric hindrance effects. At 
equivalent workability requirements, this mechanism 
enables significant water-to-cement ratio reduction, 

thereby substantially improving concrete compactness 
and long-term strength development. The 20% contribu-
tion rate demonstrates that while the strength-enhancing 
effect of superplasticizers is considerable, it remains sec-
ondary to the cementitious system (PC1, 40%). This find-
ing aligns with the fundamental principle in concrete 
materials science that “cementitious materials dominate 
while water reducers optimize” the overall performance.

The third principal component (PC3) demonstrates 
an eigenvalue of 1.16, contributing 14% of the total 
variance. The eigenvector analysis identifies polypro-
pylene fibers as the predominant influencing factor, 
with a correlation coefficient of 0.736. These fibers 
primarily function through a three-dimensional net-
work structure that effectively inhibits microcrack 
propagation. Their bridging effect can enhance flex-
ural strength by 15–25%, yet their overall contribution 

Fig. 6  Principal component analysis results

Table 2  Table of cumulative contribution of each component

Principal 
components

Feature root Contribution Cumulative 
contribution

1 3.23 0.40 0.40

2 1.60 0.20 0.60

3 1.16 0.14 0.74

4 0.89 0.11 0.85

5 0.77 0.10 0.95

6 0.28 0.04 0.98

7 0.10 0.01 0.99

8 0.04 0.01 1.00
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to compressive strength is constrained by three criti-
cal factors: first, the fiber reinforcement mechanism is 
dependent on matrix properties, representing a sec-
ondary strengthening effect. Second, the optimal dos-
age range is remarkably narrow (0.6–1.2kg/m3), with 
excessive amounts potentially inducing adverse effects. 
Finally, fibers predominantly modify mortar-phase 
performance while exhibiting limited influence on the 
interfacial transition zone of coarse aggregates. These 
inherent characteristics result in a contribution rate 

that is inherently lower than both the cementitious sys-
tem (PC1, 40%) and the superplasticizer system (PC2, 
20%), consistent with established principles in fiber-
reinforced concrete technology.

The fourth principal component (PC4) exhibits 
an eigenvalue of 0.89, accounting for 11% of the total 
variance. The corresponding eigenvector analysis 
identifies water content (correlation coefficient: 0.592) 
as the predominant influencing factor. The relatively 
lower ranking of water’s impact on concrete strength 

Fig. 7  Cumulative contribution of each component

Fig. 8  Heat map of the factor load matrix
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(fourth position) can be systematically explained 
through three key aspects: first, modern concrete 
mix design methodologies predominantly employ 
high-range water reducers (the primary indicator 
in PC2) for precise water–cement ratio control, 
which substantially diminishes the independent 
influence of water content. Second, water’s functional 
mechanism has been partially incorporated within the 
cementitious system (the dominant indicator in PC1) 
through hydration processes. Third, water’s influence 
on strength development demonstrates pronounced 
nonlinear characteristics, with its effects becoming 
significantly noticeable only when the water–cement 
ratio deviates from the optimal range. These analytical 

findings demonstrate excellent consistency with the 
fundamental principles of water–cement ratio theory in 
concrete materials science.

3.2 � Building a Prediction Model
In this study, four principal components after dimension 
reduction by principal component analysis are selected 
as input values, and the actual strength of SCC is used 
as output values. Among them, 70 groups were randomly 
selected as training group data, and the remaining 29 
groups were used as test group data. The PSO algorithm 
is used to find the optimal parameters of the RVM model, 
and the collaborative optimization model is used to pre-
dict the predicted value, which is compared with the 

Fig. 9  Self-compacting concrete strength prediction model based on PCA–PSO–RVM
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actual value to evaluate the accuracy of the model. The 
strength prediction model of SCC based on PCA–PSO–
RVM is shown in Fig. 9.

The specific steps of modeling the SCC strength 
prediction model based on PCA–PSO–RVM are as 
follows:

1.	 The data are standardized first, and then the principal 
component analysis method is used to reduce the 
dimensionality of the 8 influencing factors to 4, which 
can retain 85% of the information of the original data.

2.	 The PSO algorithm is used to optimize the 
parameters of the RVM model, and after finding 
the hyperparameters that meet the accuracy 
requirements, the hyperparameters of the RVM 
model are initialized.

3.	 The PCA–PSO–RVM prediction model is 
established, and the standardized data are divided 
into training set and test set, which are used for 
model training and model prediction effect detection 
respectively.

4.	 Model evaluation, through the evaluation and 
analysis of multiple indicators of the sample 
measured value and the corresponding predicted 
value, and compared with other traditional regression 
models, to verify the accuracy of the established 
RVM prediction model.

3.3 � Parameter Selection
The Gaussian kernel width has a great influence on the 
accuracy of the model. If the value is too small, it will 
easily lead to overfitting of the model, and the devia-
tion of the test set will be large. If the value is large, it 
will easily lead to underfitting of the model, and the 
accuracy of the model will be low. In this study, the 
PSO algorithm is utilized to optimize the Gaussian 
kernel width to determine the optimal kernel width 
and ensure the reliability of the model. The number of 
particles is set (usually 20), the maximum number of 
iterations Tmax is set to 100–200, the inertia weight w 
is usually initialized to 0.9, the learning factor is set to 
2.0, and the number of particles is set to 20. After opti-
mization by the PSO algorithm, the optimal Gaussian 
kernel width for the RVM (Relevance Vector Machine) 
is found to be 0.653. By observing the iteration curve, 
the process is stopped when the curve becomes stable. 
As shown in Fig. 10, the curve tends to stabilize at the 
52nd iteration, indicating that the particle swarm may 
have approached the optimal solution region. How-
ever, stopping too early (such as directly choosing 52 
iterations) may lead to incomplete convergence of the 
algorithm. By extending the iterations to 100 times, 
premature convergence can be avoided. If the num-
ber of iterations exceeds 100, it will increase the com-
putational time, and the performance improvement 
may be minimal. Therefore, in this paper, the number 

Fig. 10  Iteration curve graph
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of iterations is chosen to be 100, at which the model 
results are optimal.

4 � Prediction Result Analysis and Comparison 
with Other Models

4.1 � Analysis of Examples
In this study, the proposed PCA–PSO–RVM model is 
employed to analyze and predict engineering case stud-
ies. The model is trained and optimized using the training 
data set, and its predictive performance is subsequently 
evaluated using the test data set. The prediction results 
are shown in Fig.  11. The specific values ​​are shown in 
Appendix A. As can be seen from Fig. 11, the PCA–RVM 
model can accurately calculate the strength of SCC in the 
test data set, to obtain the degree of fitting between the 
predicted results and the measured results, a linear fit is 
performed between the predicted and measured values, 

as shown in Fig. 12. As can be seen in Fig. 11, the PCA–
PSO–RVM regression model can fit the actual situation 
accurately, and the difference between the model pre-
dicted and actual values is small.

4.2 � Evaluation Model
To verify the validity and superiority of the PCA–
PSO–RVM model in the strength prediction of SCC, 
the linear regression (LR), the multilayer perceptron 
regression (MLP), the ridge regression (RR), the XGBoost 
regression, random forest regressor (RF), and support 
vector machine regression (SVR) to compare the 
prediction results.

To quantify the quality of the computational model and 
evaluate the performance of the model more reasonably, 
this study uses the coefficient of determination (R2), 
mean absolute error (MAE), mean square error (MSE), 
and root mean square error (RMSE) as four indicators 
to evaluate the model. The a20 index is further used to 
conduct reliability analysis and control of the model 
performance. Among them, MAE measures the average 
difference between the predicted value and the actual 
value, reflecting the actual situation of the forecast 
error; MSE reflects a measure of the degree of difference 
between the estimator and the estimated value; RMSE 
reflects the accuracy of the forecast; R2 reflects the 
goodness of fit of the model. The larger the value, the 
closer the predicted value is to the actual value. a20 is 
the percentage of samples whose deviation between the 
predicted value and the actual value is within ±20%. The 
closer the value is to 1, the better the model performance. 
The calculation formulas of each indicator are shown Fig. 11  Comparison of test set prediction results

Fig. 12  Test set regression fit graph
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in formula. (18–22) (Apostolopoulou et  al., 2020; 
Armaghani and Asteris, 2021):

where yi is the actual value; ŷi is the predicted value; yi 
is the average of the actual values; m20 is the number of 
samples for which the ratio of “actual value” to “predicted 
value” is between 0.80 and 1.20; M is the total number of 
samples in the data set.

The prediction evaluation indicators of each model 
can be obtained as shown in Table 3. To represent the 
prediction results of each model more clearly, the plots 
of the models under each evaluation index are drawn 
(Figs. 13, 14).

It can be seen from Table 3, Figs. 13 and 14 that the 
coefficient of determination R2 of the PCA–PSO–RVM 
model is the closest to 1, which is 0.978, followed by 
SVR, which is 0.930; the MAE of the PCA–PSO–RVM 
model is closest to 0, followed by SVR. The MSE and 
RMSE of each model are the same as the distribu-
tion results of MAE, i.e., PCA–PSO–RVM is optimal 
among all models. Statistical studies on coefficient of 
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determination R2, MAE, MSE, and RMSE show that the 
PCA–PSO–RVM model has the best robustness and is 
more accurate than other models in all aspects.

4.3 � Performance Evaluation
Linear regression was used as the baseline model for the 
prediction of SCC strength. The linear regression model 
has a high error index. Although it can discover the linear 
trend between the strength of SCC and the influencing 
characteristics, it performs poorly in complex nonlinear 
relationships. In contrast, other models have a significant 
performance improvement. They show significant 
advantages in representing nonlinear relationships. 
However, these models often show a tendency to overfit 
when dealing with a small amount of training data 
or high-dimensional data, and there is still room for 
improvement.

The best model developed and proposed in this study 
performs well. However, to verify whether the model 
has overfitting problems, this study evaluates the model 
based on statistical indicators and physical meanings. 
First, by comparing the errors between the predicted 
values and the actual values in the test set, the difference 
between the two is small, indicating that the model has 
good generalization ability. In addition, the model is 
analyzed using quantitative evaluation indicators, and 
the results show that the model performs consistently in 
various statistical indicators, and there is no significant 
sign of increased verification error.

To further reduce the risk of overfitting, the a20 index 
is introduced into the model to analyze and control 
the model from the physical meaning. The specific 
prediction table is shown in Appendix A. From the data 

Table 3  Table of prediction accuracy of each model

Model RMSE MSE MAE R2

PCA–LR 0.626 0.391 0.544 0.418

PCA–MLP 0.349 0.122 0.263 0.833

PCA–RR 0.626 0.392 0.544 0.408

PCA–XGboost 0.368 0.135 0.300 0.802

PCA–RF 0.350 0.122 0.284 0.833

PCA–SVR 0.227 0.052 0.179 0.930

PCA–PSO–RVM 0.150 0.021 0.123 0.978

Fig. 13  R2 evaluation indicators for each model
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in the table, it can be seen that a20 of the collaborative 
optimization model is 1, indicating that the prediction 
effect of the model is good and the reliability is strong. 
These measures effectively prevent overfitting problems, 
improve the model’s predictive ability on unknown data, 
and ensure the robustness and reliability of the proposed 
model.

4.4 � Limitations and Future Research
The collaborative optimization model proposed in 
this study performs well in SCC strength prediction. 
However, it is difficult to interpret due to high quality 
and data dependence. It is difficult to intuitively 
understand which features have an important impact on 
the prediction, which limits its application in practical 
engineering. In the future, the generalization ability 
and training efficiency of the model can be improved 
using data enhancement technology. Develop a more 
interpretable and visualization-friendly model to enhance 
the acceptability of the model in practical engineering.

5 � Conclusion
In this study, based on the PCA–PSO–RVM model to 
predict the strength of SCC, the main conclusions are as 
follows:

1.	 This study addresses the issues of multi-parameter 
coupling effects and insufficient prediction accuracy 
of traditional empirical models in the compressive 
strength prediction of SCC by proposing a hybrid 
machine learning prediction model based on 
PCA, PSO, and RVM. The model employs PCA for 
feature extraction and dimensionality reduction of 
raw material parameters, effectively resolving the 
redundancy problem of high-dimensional data. 
It also utilizes the PSO algorithm to optimize the 
hyperparameters of the RVM model, significantly 
enhancing prediction performance. The results 
demonstrate that this approach offers a novel 
technical solution for the compressive strength 
prediction of SCC, with important theoretical and 
practical engineering implications.

2.	 Compared with traditional models, such as linear 
regression, MLP, ridge regression, XGBoost, random 
forest regressor, and SVR, the proposed PCA–PSO–
RVM model shows superiority in all evaluation 
indices. Specifically, the PCA–PSO–RVM model 
achieves 33.92%, 59.61%, and 31.28% reductions in 
RMSE, MSE, and MAE, respectively, while its R2 
improves by 5.16%, compared to the suboptimal 
SVR model. This result fully confirms the significant 
advantages of the PCA–PSO–RVM model in terms 
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of prediction accuracy, error dispersion, and model 
generalization ability.

3.	 The SCC strength prediction model based on 
PCA–PSO–RVM effectively solves the problem 
of insufficient prediction accuracy of traditional 
methods under the influence of multi-factor 
coupling, which is of great value to improve the 
quality, safety, economic benefits, and environmental 
protection of engineering. Future research can 
integrate multi-source data, enhance the model 
interpretability, expand the scope of engineering 
applications, and quantify the prediction uncertainty 
to improve the generalization ability, prediction 
accuracy, and engineering practicability of the 
model, and to provide a more powerful tool for the 
performance evaluation and optimal design of SCC.

Appendix A

No. Actual value Predictive 
value

P/A Deviation 
within 
±20%

71 1.362489553 1.3625 1.0000 Yes

72 0.326421665 0.3264 1.0001 Yes

73 −0.668728489 −0.6687 1.0000 Yes

74 0.911622454 0.9116 1.0000 Yes

75 1.208855045 1.2089 1.0000 Yes

76 0.314841175 0.3148 1.0001 Yes

77 −0.647883606 −0.6479 1.0000 Yes

78 −1.428408668 −1.4284 1.0000 Yes

79 0.899269931 0.8993 1.0000 Yes

80 0.158118536 0.1581 1.0001 Yes

81 0.257710755 0.2577 1.0000 Yes

82 −0.860192599 −0.8602 1.0000 Yes

83 1.45590551 1.4559 1.0000 Yes

84 1.282198152 1.2822 1.0000 Yes

85 1.052132406 1.0521 1.0000 Yes

86 0.444542669 0.4445 1.0001 Yes

87 −1.323412221 −1.3234 1.0000 Yes

88 −1.379770608 −1.3798 1.0000 Yes

89 −1.385174837 −1.3852 1.0000 Yes

90 −1.346573202 −1.3466 1.0000 Yes

91 0.622110191 0.6221 1.0000 Yes

92 0.251534493 0.2515 1.0001 Yes

93 0.413661361 0.4137 0.9999 Yes

94 −0.554467649 −0.5545 0.9999 Yes

95 0.203668466 0.2037 0.9998 Yes

96 1.458221608 1.4582 1.0000 Yes

No. Actual value Predictive 
value

P/A Deviation 
within 
±20%

97 −1.326500352 −1.3265 1.0000 Yes

98 0.433734211 0.4337 1.0001 Yes

99 −1.34039694 −1.3404 1.0000 Yes
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