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Abstract

predictions of self-compacting concrete.

Self-compacting concrete, Strength prediction

Given the difficulty in determining the parameters of the compressive strength prediction model of self-compacting
concrete and the low prediction accuracy, this study focuses on the applicability of the relevance vector machine
(RVM) model constructed using various optimization techniques in predicting the strength of self-compacting
concrete. The principal component analysis (PCA) is first used to reduce the dimension of the influencing factors.
Then, the particle swarm optimization algorithm (PSO) is introduced into the RVM to establish a PCA-PSO-RVM
collaborative optimization model, which is compared with the traditional regression model through various statistical
indicators and error analysis. The results show that the collaborative optimization model prediction based on PCA-
PSO-RVM performs outstandingly in all performance indicators. In the test set, the R? of the collaborative optimization
model is 0.978, MAE is 0.123, MSE is 0.021, and RMSE is 0.150. The evaluation of quantitative indicators verifies

that the collaborative optimization model is feasible and advanced in predicting the strength of self-compacting
concrete. This study also provides a reference for the research on durability, rheological properties, and other material

Keywords Machine learning, Relevance vector machine, Principal component analysis, Particle swarm optimization,

1 Introduction

In recent years, with the rapid development of the
construction industry, concrete structures such as
bridges, pile foundations, and high-rise buildings are
constantly being used, and various projects have higher
and higher requirements for the actual service life
which is durability of concrete structures (Douglas,
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2019; Hooton & Bickley, 2014; Susilorini et al., 2022).
However, the durability of concrete and construction
quality are inseparable, especially the quality of concrete
vibrating, which plays a key role in eliminating the
phenomenon of honeycomb pitting of concrete, ensuring
the quality of concrete components, and improving
its strength and durability (Banfill et al, 2011; Koch
et al.,, 2019; Zhang et al,, 2021, 2024). At present, most
of the concrete is manually pounded, as the concrete is
not visible inside, the concrete pounding dense effect
and quality control mainly depends on the experience
of the construction personnel to judge, which leads to
the uncertainty of the pounding quality and affects the
durability of concrete (Tian et al., 2019). Self-compacting
concrete (SCC) proposed by Japanese scholar Okamura
in 1986 solves this problem well (Okamura & Ouchi,
1998). SCC does not need manual vibration, which
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avoids the original defects in concrete and can reduce
the impact of construction quality on the durability
of concrete structures. SCC relies on its own weight
to pass through dense structural elements, fill the
formwork, wrap reinforcement, and maintain stability
and homogeneity, i.e., achieve full compaction and obtain
optimal performance. By applying SCC in engineering,
the construction period can be greatly shortened, labor
costs, energy costs and equipment costs can be reduced,
thereby improving economic efficiency.

Since the advent of SCC, it has been widely used in
various engineering fields, such as construction and
water conservancy. For example, it was used in railroads,
high-rise buildings, dams, etc. (Zadeh et al., 2014; Zeng
et al., 2021). The physical and mechanical properties of
SCC, like ordinary pounded concrete, are the first to
attract people’s widespread attention. To obtain the best
mix ratio for SCC strength, researchers have predicted
SCC strength through rheological models, numerical
methods, and experimental tests (Ding et al., 2018;
Domone, 2007; Li et al.,, 2021) However, since SCC is
composed of a mixture of multiple components, including
high-cementitious materials and superplasticizers, each
element has an impact on the mechanical properties of
SCC. There is a strong coupling between the components,
and the compressive strength and the components show
a highly nonlinear mapping relationship (Siddique et al.,
2011). Therefore, the above methods are still insufficient
in describing the relationship between these mixed
components and the compressive strength value of SCC.
Determining its compressive strength has become an
engineering problem that needs to be solved urgently
(Rajakarunakaran et al., 2022).

With the development of artificial intelligence, many
machine learning methods have been applied in civil
engineering-related fields. Machine learning methods
such as artificial neural networks, random forests, and
support vector machines have been widely used in civil
engineering (Akande et al., 2014; Asteris et al., 2024;
Huang et al,, 2019; Jahed et al., 2021; Mai et al., 2021;
Skentou et al,, 2023) Many scholars have established
prediction models for the compressive strength of SCC
based on machine learning. Dutta et al. (2017) predicted
the compressive strength of SCC using three models:
extreme learning machine (ELM) and multiple adaptive
regression splines (MARS). However, these neural
network models have their own imperfections, such as
overfitting, poor ability to represent nonlinearity, and
weak hermeneutics. Asteris P G (Asteris & Kolovos,
2019; Asteris et al.,, 2016) further used artificial neural
networks to predict the strength of SCC, verifying the
reliability of machine learning methods in predicting the
strength of SCC. Tran V Q (Tran et al,, 2022) predicted
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the compressive strength of SCC using the extreme
gradient boosting (XGBoost) algorithm, and the accuracy
was improved, but XGBoost still has the disadvantages of
too many parameters, difficult to adjust the parameters,
and long training time. Traditional models such as linear
regression, decision tree, and support vector machine
(SVM) have limitations in predicting the strength of
SCC. They are not good enough in dealing with complex
nonlinear patterns and may have overfitting problems in
feature selection. Therefore, it is urgent to establish an
efficient and reasonable model to accurately predict the
compressive strength of SCC.

The relevance vector machine (RVM) is a highly
sparse machine learning method proposed by Tipping
(2001) based on the support vector machine which
is based on Bayesian statistical theory and makes the
model sparser by reducing the correlation vectors of the
model. Moreover, the RVM algorithm provides posterior
probability and the selection of kernel function is not
restricted by Mercer conditions, which can continue
to improve the model prediction ability on the basis of
support vector machine. Kernel functions are functions
used to map input data into a high-dimensional feature
space. Able to handle more complex nonlinear problems.
However, when the input sample influences (i.e., the
number of sample dimensions) are large and there are
coupling relationships and information redundancy
among them, the learning efficiency of the RVM
model will be reduced and the computational cost
will be increased. At the same time, the generalization
performance of RVM is sensitive to parameter settings.
In general, the method of manual parameter adjustment
is used to search for parameters, which is costly and is
greatly affected by human factors. Using dimensionality
reduction and optimization methods, the problem of
RVM in SCC prediction can be well-solved. Principal
component analysis (PCA) is one of the most commonly
used methods for data analysis (Mréwczynska et al.,
2020). It can reduce the dimension of data, use fewer
data dimensions, and retain more information about
the original data, thereby improving the calculation
speed of the model. The particle swarm algorithm has
good optimization capabilities. Using the particle swarm
algorithm (PSO) to find the optimal hyperparameters of
the RVM model can improve the learning efficiency and
generalization ability of the RVM model (Wu & Li, 2022).

This study organically combines principal component
analysis, particle swarm optimization (PSO), and RVM to
establish a PCA-PSO-RVM collaborative optimization
model, develops an efficient and accurate SCC strength
prediction model, and conducts a detailed analysis
of the specific experimental data of 99 samples in the
published literature (Saha et al., 2017). To verify the
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superiority of the model, it is compared with 6 traditional
regression models, including linear regression, multilayer
perceptron regression (MLP), ridge regression, greedy
algorithm (XGBoost) regression, random forest
regression, and support vector machine regression (SVR).
The collaborative optimization model not only improves
the prediction accuracy and model generalization
ability, but also promotes the intelligence of the SCC
construction process, provides theoretical support
and technical reference for the accurate prediction
of concrete strength in engineering practice, and has
important theoretical significance and engineering
application value.

2 Fundamental

2.1 Principle of PCA

Principal component analysis (PCA) is one of the com-
monly used dimensionality reduction methods in data
analysis (Yu et al., 2024), which uses orthogonal transfor-
mation to linearly transform multiple indicators with cer-
tain correlation in the original data and recombine them
into a series of linearly uncorrelated variables. The infor-
mation of the original variables is retained as completely
as possible through fewer indicators to achieve the pur-
pose of simplifying the data (Lee, 2021), the specific pro-
cess is shown in Fig. 1.

mput X
p-dimensional Covariance matrix
xu [ x2 | .. | x1p i | .
X1 [x2 | ... | x2 = = .
Xnl | Xn2 Xnp (n*p) * * *
PC1
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2.2 Principle of PSO
The PSO algorithm is an evolutionary algorithm devel-
oped by J. Kennedy and R. C. Eberhar through their
research on the foraging behavior of bird flocks (Ken-
nedy & Eberhart, 1995; Shami et al., 2022; Zoremsanga
& Hussain, 2024). The algorithm is performed in an
iterative recursive form, which has the advantages of
high accuracy, fast convergence and less adjustment
parameters required. It can be used to solve a large
number of nonlinear, non-differentiable and multi-peak
complex optimization problems (Gui et al., 2022). In
PSO, each potential solution to an optimization prob-
lem is a particle in the search space. All particles have
a fitness value determined by the optimization func-
tion, and each particle has a velocity that determines
the direction and distance of their “flying”, and then the
particles follow the current optimal particle to search
in the solution space, through the cooperation and
competition in individuals to complete the search for
optimal solutions in complex spaces, The PSO search
process is shown in Fig. 2.

In finding the optimal value, the particle updates its
velocity and position according to Egs. (1) and (2) (Xing
etal., 2022):

Vid = wVig + a1r1pia — %ia) + car2(pga — %ia) (1)

Xid = %id + Vid (2)

. Unit eigenvector
Characteristic root g
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Fig. 2 Flow chart of PSO
where ¢; and ¢; are learning factors, r1 and ry are uniform &, — —— DRepresents the noise that follows the

random numbers in the range of [0,1].

2.3 Principle of RVM

Relevance vector machine (RVM) transforms low-
dimensional spatial nonlinear problems into high-
dimensional spatial linear problems based on kernel
function mapping. It has the following advantages:
(1) few hyperparameters and high sparsity; (2) only
the kernel parameters need to be set, which can save
training time; and (3) the kernel function does not need
to meet the Mercer condition, which greatly reduces
the amount of calculation of the kernel function, the
calculation process will be more efficient (Su et al.,
2021; Wang et al., 2018).

First, given a training sample data set
{xn, tyln =1,..,2,N}, x, is the input value, t, is the
output target value. Assuming that ¢, is independently
distributed, the ¢, function model is established as

N
ty = Z wnK (%, %) +wo + &n (3)
n=1
where w, — —— Weight vector for mathematical
model,w = [wg, w1, ... ,a),,]T;
K (x,x,) — —— Kernel function of the model;
wo — —— Indicates deviation;

Gaussian distribution (0,02), this noise satisfies
En~ N (0, 02);

o2 — —— Represents variance;

Assuming that ¢, is distributed independently of each
other, the likelihood function of the data set of training

samples can be expressed as

p(tlw,0?) = 2ro?) N/ exp{—i2 I £ — ¢ol*}
20 @

where ¢t = (t1, ta, ..., tn)7T; ol
® = [p(x1), 9(x2), ..., 01T

9 Gn) = [L,K , 21), K (n, %2), o K Gy )]

If the maximum likelihood approach is used directly to
solve the problem, overfitting may occur in the process
of using the RVM model. To avoid this phenomenon,
the Bayesian perspective method is applied in the RVM
model, and the size of each weight parameter wy, is set to
zero mean, which constitutes a basic distribution about @
that satisfies the Gaussian prior probability:

o = [wy, w1,..

N
p@le) = T N(@nl0,a,") (5)
n=
where o — —— represents the hyperparameter vector
a = (ag,a1,...,0N)
Among them, there is a corresponding relationship
between the hyperparameter vector o and the weight
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vector wj, and it will also directly determine the prior
distribution of the weight vector w;. For each weight,
the parameters in the above formula are independently
distributed, which can greatly alleviate the complexity
of the function distribution and realize the sparse
characteristic of the RVM.

If the prior probability distribution of the RVM
parameters is P(w,a,0?|t), the posterior probability
distribution of the training samples is as follows:

P(t|w, o, 02)P(w, 0, 02)

P(w,a,02|t) = 0 (6)

Using Bayesian theory, the posterior distribution of the
weight vector x can be expressed as follows:

P(t|w,c)P
Plalea o) = POl P0le)

= @) N2 el (0 — )5 (0 )
)

From the above, the probability distribution obeys
a multivariate Gaussian model, ¥ = (6 2¢T¢ +A)~!
is variance, n= 0_22¢)Tt is mean value,
A =diag(ap,@1,...,an) is diagonal matrix. Since
P(a,02|t) cannot be calculated directly. Therefore, it
is approximated by the Dirac Delta function, which is
expressed as

P(a,0|t) ~ 8(amp, opp) (8)

After integrating w in Eq. (7), the marginal distribution
determined by the two parameters o and o2 can be
obtained:

P(t|a,02)=/P(t|w,a)P(w|a)dw 9)
Then through maximum likelihood estimation and

iterative calculation, the optimal solutions of parameters
b and c are obtained:

1—ayZyy
oy = ——"— 10
n 2 (10)
I 11t — ppll*
(02):; = N a1
N — Z (1 — anXum)
n=0

where Xii is the element corresponding to the ith
diagonal in the covariance matrix %.

With the training sample data already given, the initial
values of the parameters « and o2 are first assumed, and
then the hyperparameters « and o2 are iterated through
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Egs. (10) and (11). In the iterative process, most « tends
to infinity, and the corresponding @ tends to zero by
applying the formula u = o ~2%¢T. Thereby reducing
the number of model basis functions, allowing the model
to achieve a sparse effect, and the related parameters
can converge faster to complete the training of the RVM
model. The specific process is shown in Fig. 3.

In the process of using the RVM model algorithm, the
selection of the kernel function will have an important
impact on the training and prediction effects of the
model. Compared with other kernel functions, the
Gaussian kernel function has good processing ability for
high-dimensional, low-dimensional, linear and nonlinear
problems. Therefore, the Gaussian radial basis kernel
function is selected as the kernel function of the RVM
model in this research (Smola & Scholkopf, 2004). The
Gaussian radial basis kernel function K(x,x;) can be
expressed as

K (%, %;) = exp[—|lx — x;]|/(20)] (12)

where o2 is the kernel function width.

2.4 Principle of PCA-PSO-RVM
Based on the above principles, the principle of PCA-
PSO-RVM is shown in Fig. 4.

1. Normalization of the original data.

2. Using PCA to reduce the dimension of the
influence features, a new data set was obtained after
dimensionality reduction.

3. Initializing the PSO algorithm, using PSO to optimize
the key parameters of the RVM model.

4. Train and predict the optimized model.

5. Compare the predicted value obtained by the
optimal model with the actual value to analyze and
verify the accuracy of the model. At the same time,
the traditional machine learning model is used for
comparative evaluation.

3 Data Processing and Model Building
3.1 Data Preprocessing and PCA Dimensionality Reduction
to Determine Data Samples

Since the SCC itself has a lower water—cement ratio,
higher sand rate, mixed with high-efficiency water
reducing agents and high-cementitious materials,
etc., in the composition of raw materials, ratio design
methods are very different from ordinary concrete
and general high-performance concrete, the original
ordinary concrete work performance evaluation
methods and principles are no longer applicable
(Adhikary et al, 2022; Sabet et al, 2013). If all
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Fig. 3 Flow chart of RVM model training
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Fig. 4 Principle of PCA-PSO-RVM

influencing factors are used as input, the workload of
the model will be increased, and the generalization
and learning efficiency of the model will be reduced;
however, if too few influencing factors are selected,
the prediction accuracy of the model will be reduced.
The relationship between each factor and the strength
of SCC is now investigated using principal component
analysis, analyze the main factors, and obtain new
variables through dimensionality reduction. Then use
the PSO optimization algorithm to optimize the key
parameters of RVM, and use RVM to build a prediction
model. Select 99 sets of data in the literature (Saha et
al., 2017).

To reduce the impact of large magnitude differences
between variables on correlation analysis, the 99 groups
of data in Table 1 were standardized. The eigenvalues of
the data were scaled between 0 and 1 to eliminate the
magnitude differences between the eigenvalues, ensure
the stability and effectiveness of the model training,
and then perform a correlation analysis on eight indi-
cators to obtain the correlation coefficient among the
variables. Fig. 5 shows the heat map of the correlation
coefficient between variables. Before conducting prin-
cipal component analysis on the factors affecting the
strength of SCC, Kaiser—Meyer—Olkin (KMO) test and
Bartlett spherical test can be used to judge whether fac-
tor analysis is applicable among variables. If KMO >0.5,
sig<0.5, it means that the factors affecting the strength
of SCC can be analyzed by principal components. First,
the KMO test was performed on the data, and the
result was 0.5, indicating that there was a correlation
between the variables, which met the requirements of

factor analysis. The data were then subjected to Bart-
lett’s sphericity test, and a significance p value of 0.000
was obtained, which is less than the significance level
of 0.05 and presents significance at the level. The above
test results show that the original sample data are suit-
able for factor analysis and the principal component
analysis method can be used to reduce the dimension.

As can be seen from Fig. 5, the correlation coefficient
values between the eight factors affecting the strength
of SCC are all between —1 and 1. There is a correlation
between the factors and a high degree of correlation
between some of the indicators. To further explore the
specific influence values of each factor, the score diagram
of the influencing factors was obtained according to the
PCA principle (Fig. 6).

The contribution rate and cumulative contribution
rate of each factor were calculated for the 99 groups of 8
indicators after standardization (Table 2), and the visual
graph is shown in Fig. 7. The contribution rate of the first
principal component is 40%, the contribution rate of the
second principal component is 20%, the contribution rate
of the third principal component is 14%, and the con-
tribution rate of the fourth principal component is 11%.
The cumulative contribution rate of the first four princi-
pal components reaches 85%, and the contribution rates
of the remaining factors can be ignored. In this way, the
original 8 individual indicators are converted into 4 new
mutually independent comprehensive indicators, and
these 4 new comprehensive indicators represent 85% of
the information of the original 8 individual indicators.

To further analyze the correlation between the princi-
pal components and the original indicators, a heat map of
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Table 1 Self-compacting concrete strength data set
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SINo Cement Ganister Coarse Fine Poly Water (L) Superplasticizer Viscosity- Compressive
(kg) sand (kg) aggregate(kg) aggregate(kg) propylene (L) modifying strength
fiber (%) admixture (L) (MPa)
1 276 961 808 150 0 204 8.5 042 3164
2 276 961 808 155 0.25 204 9.2 042 31.87
3 276 961 808 160 0.5 204 9.9 043 31.14
4 276 961 808 165 0.75 204 10.5 044 32.28
5 276 961 808 170 1 204 11.2 045 3287
6 276 961 808 175 1.2 204 1.9 045 322
7 412 913 781 138 0 193 13.75 048 529
8 412 913 781 145 0.25 193 14.5 048 5343
9 412 913 781 152 0.5 193 14.7 048 54.05
10 412 913 781 159 0.75 193 15.25 048 54.26
11 412 913 781 166 1 193 16 048 5352
12 412 913 781 173 1.2 193 17.2 048 31.64
13 276 961 808 150 0 204 8.5 042 317
14 276 961 808 155 0.35 204 9.2 042 31.77
15 276 961 808 160 0.7 204 9.9 043 31.82
16 276 961 808 165 1.05 204 10.5 044 32.26
17 276 961 808 170 14 204 1.2 045 31.71
18 276 961 808 175 1.75 204 1.9 045 529
19 412 913 781 138 0 193 13.75 046 52.28
20 412 913 781 145 0.35 193 14.5 048 5254
21 412 913 781 152 0.7 193 14.7 048 5298
22 412 913 781 159 1.05 193 15.25 046 53.87
23 412 913 781 166 14 193 16 048 5294
24 412 913 781 173 1.75 193 17.2 048 29.87
25 276 969 774 150 0 204 8.5 042 30.58
26 276 969 774 170 14 204 11.2 045 31.69
27 276 969 774 170 1 204 1.2 045 28.24
28 276 978 735 150 0 204 8.5 042 29.16
29 276 978 735 170 14 204 11.2 045 30.12
30 276 978 735 170 1 204 11.2 045 49.68
31 412 934 744 138 0 193 13.75 046 50.64
32 412 934 744 166 14 193 16 048 51.82
33 412 934 744 166 1 193 16 048 47.06
34 412 944 707 138 0 193 13.75 046 4852
35 412 944 707 166 14 193 16 048 49.26
36 412 944 707 166 1 193 16 048 67.58
37 430 1050 715 100 0 185 5 06 65.19
38 430 1050 700 100 0 185 5 0.6 64.18
39 430 1100 690 100 0 185 5 0.6 68.53
40 430 1050 715 110 1 185 6 0.7 66.25
41 430 1050 700 110 1 185 6.7 0.7 65.38
42 430 1100 690 115 1 185 7 0.75 68.12
43 430 1050 715 110 14 185 6.5 0.7 65.61
44 430 1050 700 110 14 185 7 0.7 64.75
45 430 1100 690 120 14 185 75 0.75 37
46 340 920 815 75 0 190 7 0.5 349
47 340 920 800 75 0 190 7 0.5 325
48 340 950 795 75 0 190 7 0.5 325
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Table 1 (continued)

SINo Cement Ganister Coarse Fine Poly Water (L) Superplasticizer Viscosity- Compressive
(kg) sand (kg) aggregate(kg) aggregate(kg) propylene (L) modifying strength
fiber (%) admixture (L) (MPa)
49 340 920 815 85 1 190 8 0.5 37.25
50 340 950 800 85 1 190 8 0.5 3531
51 340 950 795 90 1 190 8 0.5 3278
52 340 920 815 90 14 190 8 0.5 36.85
53 340 920 800 100 14 190 85 0.5 35.19
54 340 950 795 100 14 190 85 0.5 3246
55 360 920 815 100 0 180 8 0.5 42
56 360 935 790 100 0 180 8 0.5 40.7
57 360 945 815 110 0 180 8 05 385
58 360 920 790 110 1 180 85 0.6 4246
59 360 935 790 120 1 180 85 0.6 41.25
60 360 945 815 120 1 180 85 06 38.95
61 360 920 790 120 14 180 9 0.6 42.12
62 360 935 790 180 14 180 9 0.6 4098
63 360 945 790 180 14 180 9 0.6 38.54
64 440 920 815 180 0 210 7 0.7 55
65 440 940 780 180 0 210 7 0.7 5372
66 440 955 780 185 0 210 7 0.7 514
67 440 920 815 190 1 210 7.5 0.7 5545
68 440 940 780 190 1 210 7.5 0.7 54.03
69 440 955 780 190 1 210 8 0.7 51.89
70 440 920 815 190 14 210 8 0.7 55.26
71 440 940 780 70 14 210 85 0.7 53.72
72 440 955 780 70 14 210 85 0.7 51.69
73 500 840 870 70 0 198 83 0.75 68
74 500 855 830 80 0 198 8.3 0.75 67
75 500 870 830 80 0 198 83 0.75 65.3
76 500 840 870 85 1 198 9 0.75 68.5
77 500 855 830 85 1 198 9 0.75 67.67
78 500 870 830 85 1 198 9 0.75 65.1
79 500 840 870 85 14 198 9 0.75 67.29
80 500 855 840 85 14 198 9 0.75 65
81 500 870 840 85 14 198 9 0.75 64.86
82 440 840 870 85 0 187 9 0.8 59
83 440 860 840 90 0 187 9 0.8 57.7
84 440 875 840 90 0 187 9 0.8 554
85 440 840 870 95 1 187 10 0.8 59.7
86 440 860 840 95 1 187 10 0.8 5851
87 440 875 840 95 1 187 10 0.8 55.96
88 440 840 870 95 14 187 10 08 5941
89 440 860 840 95 14 187 10 0.8 58.26
90 440 875 840 95 14 187 10 0.8 55.67
91 460 840 870 70 0 183 9.2 0.9 63
92 460 865 850 70 0 183 9.2 09 60.9
93 460 880 850 70 0 183 9.2 09 589
94 460 840 870 80 1 183 9.7 0.9 63.6
95 460 865 850 80 1 183 9.7 09 6145

) 460 880 850 80 1 183 9.7 0.9 64.48
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Table 1 (continued)
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SINo Cement Ganister Coarse Fine Poly Water (L) Superplasticizer Viscosity- Compressive
(kg) sand (kg) aggregate(kg) aggregate(kg) propylene (L) modifying strength
fiber (%) admixture (L) (MPa)
97 460 840 870 80 14 183 9.7 09 63.27
98 460 865 850 80 14 183 9.7 09 61.29
99 460 880 850 80 14 183 9.7 09 64.13

VMA
Superplast...
Water

Poly propy...
Fine Aggre... { \

Coarse Agg.

-0.856 1.000

Silica flo...

Cement

Fig. 5 Heat map of correlation coefficient

the factor loading matrix of the principal components is
drawn (Fig. 8), from which the importance of the hidden
variables in each principal component can be analyzed.
The depth of the color in Fig. 8 represents the impor-
tance of the original influencing factors in the principal
components, and the lighter the color, the higher the
importance.

Through the analysis of Table 2 and Fig. 8, the
importance of hidden wvariables in each principal
component can be obtained.

For example, the first principal component (PC1) has
an eigenvalue of 3.23, accounting for 40% of the total
variance, indicating that cement, coarse aggregate, and
viscosity-modifying admixture are the key factors influ-
encing concrete strength. Cement (loading coefficient
0.738), as the primary binding material, directly deter-
mines strength through its hydration reactions. Coarse
aggregate (0.688) serves as the skeletal framework, with

1.000

1.000

its strength and interfacial bonding significantly affecting
load-bearing capacity. The viscosity-modifying admix-
ture (0.874) substantially enhances compactness and
strength by optimizing workability and microstructure
(e.g., reducing porosity and improving the interfacial
transition zone). The synergistic effects of these three
components make them the main drivers of strength var-
iation, reflecting the fundamental influence of material
composition and processing technology on mechanical
performance.

The second principal component (PC2) exhibits an
eigenvalue of 1.60, accounting for 20% of the total vari-
ance, indicating its secondary importance relative to
PC1. The corresponding eigenvector analysis reveals
that the superplasticizer (loading coefficient 0.726) is
the dominant influencing factor. This observation can be
attributed to the superplasticizer’s remarkable ability to
enhance cement particle dispersion through combined
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Fig. 6 Principal component analysis results

electrostatic repulsion and steric hindrance effects. At
equivalent workability requirements, this mechanism
enables significant water-to-cement ratio reduction,

Table 2 Table of cumulative contribution of each component

Principal Feature root Contribution Cumulative
components contribution
1 323 0.40 040

2 1.60 0.20 0.60

3 1.16 0.14 0.74

4 0.89 0.11 0.85

5 0.77 0.10 0.95

6 0.28 0.04 0.98

7 0.10 0.01 0.99

8 0.04 0.01 1.00
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———— -

oly propyleneFiber

Superplasticizer

Cement
.
-

Coarse Aggregaté

thereby substantially improving concrete compactness
and long-term strength development. The 20% contribu-
tion rate demonstrates that while the strength-enhancing
effect of superplasticizers is considerable, it remains sec-
ondary to the cementitious system (PC1, 40%). This find-
ing aligns with the fundamental principle in concrete
materials science that “cementitious materials dominate
while water reducers optimize” the overall performance.
The third principal component (PC3) demonstrates
an eigenvalue of 1.16, contributing 14% of the total
variance. The eigenvector analysis identifies polypro-
pylene fibers as the predominant influencing factor,
with a correlation coefficient of 0.736. These fibers
primarily function through a three-dimensional net-
work structure that effectively inhibits microcrack
propagation. Their bridging effect can enhance flex-
ural strength by 15-25%, yet their overall contribution
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PC2 PC3

to compressive strength is constrained by three criti-
cal factors: first, the fiber reinforcement mechanism is
dependent on matrix properties, representing a sec-
ondary strengthening effect. Second, the optimal dos-
age range is remarkably narrow (0.6—1.2kg/m?), with
excessive amounts potentially inducing adverse effects.
Finally, fibers predominantly modify mortar-phase
performance while exhibiting limited influence on the
interfacial transition zone of coarse aggregates. These
inherent characteristics result in a contribution rate

PC4

PC5 PC6 PC7 PC8 Commonality

that is inherently lower than both the cementitious sys-
tem (PC1, 40%) and the superplasticizer system (PC2,
20%), consistent with established principles in fiber-
reinforced concrete technology.

The fourth principal component (PC4) exhibits
an eigenvalue of 0.89, accounting for 11% of the total
variance. The corresponding eigenvector analysis
identifies water content (correlation coefficient: 0.592)
as the predominant influencing factor. The relatively
lower ranking of water’s impact on concrete strength
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(fourth position) can be systematically explained
through three key aspects: first, modern concrete
mix design methodologies predominantly employ
high-range water reducers (the primary indicator
in PC2) for precise water—cement ratio control,
which substantially diminishes the independent
influence of water content. Second, water’s functional
mechanism has been partially incorporated within the
cementitious system (the dominant indicator in PC1)
through hydration processes. Third, water’s influence
on strength development demonstrates pronounced
nonlinear characteristics, with its effects becoming
significantly noticeable only when the water—cement
ratio deviates from the optimal range. These analytical

l

Data pre-processing
PCA l

Dimensionality reduction by
principal component analysis

l

0% Determine the number of input
features and divide the data into
atraining set and a test set

o |

Training models

PCA-PSO-RVM
SVM
Random Forest Regressor
Linear Regression
XgboostMLP
Xgboost
Random Forest Regessor

Model Evaluanon

End
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findings demonstrate excellent consistency with the
fundamental principles of water—cement ratio theory in
concrete materials science.

3.2 Building a Prediction Model

In this study, four principal components after dimension
reduction by principal component analysis are selected
as input values, and the actual strength of SCC is used
as output values. Among them, 70 groups were randomly
selected as training group data, and the remaining 29
groups were used as test group data. The PSO algorithm
is used to find the optimal parameters of the RVM model,
and the collaborative optimization model is used to pre-
dict the predicted value, which is compared with the

Initialization
parameters of PSO

Calculate the optimal initial
solution
l PSO

Update particle
position, velocity
and optimal value

l

Whether the iteration
stop condition is met

l Yes

Output RVM optimal
parameters

L V——

Fig. 9 Self-compacting concrete strength prediction model based on PCA-PSO-RVM
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actual value to evaluate the accuracy of the model. The
strength prediction model of SCC based on PCA-PSO-
RVM is shown in Fig. 9.

The specific steps of modeling the SCC strength
prediction model based on PCA-PSO-RVM are as
follows:

1. The data are standardized first, and then the principal
component analysis method is used to reduce the
dimensionality of the 8 influencing factors to 4, which
can retain 85% of the information of the original data.

2. The PSO algorithm is used to optimize the
parameters of the RVM model, and after finding
the hyperparameters that meet the accuracy
requirements, the hyperparameters of the RVM
model are initialized.

3. The PCA-PSO-RVM prediction model is
established, and the standardized data are divided
into training set and test set, which are used for
model training and model prediction effect detection
respectively.

4. Model evaluation, through the evaluation and
analysis of multiple indicators of the sample
measured value and the corresponding predicted
value, and compared with other traditional regression
models, to verify the accuracy of the established
RVM prediction model.
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3.3 Parameter Selection

The Gaussian kernel width has a great influence on the
accuracy of the model. If the value is too small, it will
easily lead to overfitting of the model, and the devia-
tion of the test set will be large. If the value is large, it
will easily lead to underfitting of the model, and the
accuracy of the model will be low. In this study, the
PSO algorithm is utilized to optimize the Gaussian
kernel width to determine the optimal kernel width
and ensure the reliability of the model. The number of
particles is set (usually 20), the maximum number of
iterations Tmax is set to 100-200, the inertia weight w
is usually initialized to 0.9, the learning factor is set to
2.0, and the number of particles is set to 20. After opti-
mization by the PSO algorithm, the optimal Gaussian
kernel width for the RVM (Relevance Vector Machine)
is found to be 0.653. By observing the iteration curve,
the process is stopped when the curve becomes stable.
As shown in Fig. 10, the curve tends to stabilize at the
52nd iteration, indicating that the particle swarm may
have approached the optimal solution region. How-
ever, stopping too early (such as directly choosing 52
iterations) may lead to incomplete convergence of the
algorithm. By extending the iterations to 100 times,
premature convergence can be avoided. If the num-
ber of iterations exceeds 100, it will increase the com-
putational time, and the performance improvement
may be minimal. Therefore, in this paper, the number

0.0235

0.0230;

0.0225}

0.0220-

0.0215

Fitness

0.0210-

0.0205

0.0200¢

0.0195 - A - -
0 10 20 30 40

50 60 70 80 90 100

Iteration number

Fig. 10 Iteration curve graph
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of iterations is chosen to be 100, at which the model
results are optimal.

4 Prediction Result Analysis and Comparison

with Other Models
4.1 Analysis of Examples
In this study, the proposed PCA-PSO-RVM model is
employed to analyze and predict engineering case stud-
ies. The model is trained and optimized using the training
data set, and its predictive performance is subsequently
evaluated using the test data set. The prediction results
are shown in Fig. 11. The specific values are shown in
Appendix A. As can be seen from Fig. 11, the PCA-RVM
model can accurately calculate the strength of SCC in the
test data set, to obtain the degree of fitting between the
predicted results and the measured results, a linear fit is
performed between the predicted and measured values,

15 : . ; : . o
* O% - True value
i | q 0,}? Q I ‘Q Predicte'c} value
] ". ?]1 ']‘[.. | ¢ /1
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1 \ | §
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Fig. 11 Comparison of test set prediction results
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as shown in Fig. 12. As can be seen in Fig. 11, the PCA-
PSO-RVM regression model can fit the actual situation
accurately, and the difference between the model pre-
dicted and actual values is small.

4.2 Evaluation Model

To verify the validity and superiority of the PCA-
PSO-RVM model in the strength prediction of SCC,
the linear regression (LR), the multilayer perceptron
regression (MLP), the ridge regression (RR), the XGBoost
regression, random forest regressor (RF), and support
vector machine regression (SVR) to compare the
prediction results.

To quantify the quality of the computational model and
evaluate the performance of the model more reasonably,
this study uses the coefficient of determination (R,
mean absolute error (MAE), mean square error (MSE),
and root mean square error (RMSE) as four indicators
to evaluate the model. The ayg index is further used to
conduct reliability analysis and control of the model
performance. Among them, MAE measures the average
difference between the predicted value and the actual
value, reflecting the actual situation of the forecast
error; MSE reflects a measure of the degree of difference
between the estimator and the estimated value; RMSE
reflects the accuracy of the forecast; R* reflects the
goodness of fit of the model. The larger the value, the
closer the predicted value is to the actual value. ayg is
the percentage of samples whose deviation between the
predicted value and the actual value is within +20%. The
closer the value is to 1, the better the model performance.
The calculation formulas of each indicator are shown

T T T T T T *
1} @ True value D
—— Predict value

0.5 i

g O .
=
=

0.5 .

-1 .

-1 5 1 1 L il 1 1 L ]

-1.5 -1 0.5 0 0.5 1 1.5

Prediction

Fig. 12 Test set regression fit graph
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in formula. (18-22) (Apostolopoulou et al, 2020;
Armaghani and Asteris, 2021):

n A 9
> i — i)
R =1-5—— (13)
> i —yi)?
=1
1 A
MAE = — > i — il (14)
i=1
1< A
MSE = p Z i — y)* (15)
i=1
(16)
m
s = ﬁ 17)

where y; is the actual value; y; is the predicted value; ¥,
is the average of the actual values; m1yg is the number of
samples for which the ratio of “actual value” to “predicted
value” is between 0.80 and 1.20; M is the total number of
samples in the data set.

The prediction evaluation indicators of each model
can be obtained as shown in Table 3. To represent the
prediction results of each model more clearly, the plots
of the models under each evaluation index are drawn
(Figs. 13, 14).

It can be seen from Table 3, Figs. 13 and 14 that the
coefficient of determination R? of the PCA-PSO-RVM
model is the closest to 1, which is 0.978, followed by
SVR, which is 0.930; the MAE of the PCA-PSO-RVM
model is closest to 0, followed by SVR. The MSE and
RMSE of each model are the same as the distribu-
tion results of MAE, i.e., PCA-PSO-RVM is optimal
among all models. Statistical studies on coefficient of

Table 3 Table of prediction accuracy of each model

Model RMSE MSE MAE R?

PCA-LR 0626 0.391 0.544 0418
PCA-MLP 0.349 0122 0.263 0.833
PCA-RR 0.626 0392 0.544 0408
PCA-XGboost 0.368 0.135 0.300 0.802
PCA-RF 0.350 0122 0.284 0.833
PCA-SVR 0.227 0.052 0.179 0.930
PCA-PSO-RVM 0.150 0.021 0.123 0.978
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RF XGBoost
Fig. 13 R’ evaluation indicators for each model

determination R%, MAE, MSE, and RMSE show that the
PCA-PSO-RVM model has the best robustness and is
more accurate than other models in all aspects.

4.3 Performance Evaluation

Linear regression was used as the baseline model for the
prediction of SCC strength. The linear regression model
has a high error index. Although it can discover the linear
trend between the strength of SCC and the influencing
characteristics, it performs poorly in complex nonlinear
relationships. In contrast, other models have a significant
performance improvement. They show significant
advantages in representing nonlinear relationships.
However, these models often show a tendency to overfit
when dealing with a small amount of training data
or high-dimensional data, and there is still room for
improvement.

The best model developed and proposed in this study
performs well. However, to verify whether the model
has overfitting problems, this study evaluates the model
based on statistical indicators and physical meanings.
First, by comparing the errors between the predicted
values and the actual values in the test set, the difference
between the two is small, indicating that the model has
good generalization ability. In addition, the model is
analyzed using quantitative evaluation indicators, and
the results show that the model performs consistently in
various statistical indicators, and there is no significant
sign of increased verification error.

To further reduce the risk of overfitting, the ayg index
is introduced into the model to analyze and control
the model from the physical meaning. The specific
prediction table is shown in Appendix A. From the data
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in the table, it can be seen that ayo of the collaborative 1.
optimization model is 1, indicating that the prediction

effect of the model is good and the reliability is strong.

These measures effectively prevent overfitting problems,
improve the model’s predictive ability on unknown data,

and ensure the robustness and reliability of the proposed
model.

4.4 Limitations and Future Research

The collaborative optimization model proposed in
this study performs well in SCC strength prediction.
However, it is difficult to interpret due to high quality
and data dependence. It is difficult to intuitively
understand which features have an important impact on
the prediction, which limits its application in practical
engineering. In the future, the generalization ability
and training efficiency of the model can be improved 2.
using data enhancement technology. Develop a more
interpretable and visualization-friendly model to enhance
the acceptability of the model in practical engineering.

5 Conclusion

In this study, based on the PCA-PSO-RVM model to
predict the strength of SCC, the main conclusions are as
follows:

This study addresses the issues of multi-parameter
coupling effects and insufficient prediction accuracy
of traditional empirical models in the compressive
strength prediction of SCC by proposing a hybrid
machine learning prediction model based on
PCA, PSO, and RVM. The model employs PCA for
feature extraction and dimensionality reduction of
raw material parameters, effectively resolving the
redundancy problem of high-dimensional data.
It also utilizes the PSO algorithm to optimize the
hyperparameters of the RVM model, significantly
enhancing prediction performance. The results
demonstrate that this approach offers a novel
technical solution for the compressive strength
prediction of SCC, with important theoretical and
practical engineering implications.

Compared with traditional models, such as linear
regression, MLDP, ridge regression, XGBoost, random
forest regressor, and SVR, the proposed PCA-PSO-
RVM model shows superiority in all evaluation
indices. Specifically, the PCA-PSO-RVM model
achieves 33.92%, 59.61%, and 31.28% reductions in
RMSE, MSE, and MAE, respectively, while its R?
improves by 5.16%, compared to the suboptimal
SVR model. This result fully confirms the significant
advantages of the PCA-PSO-RVM model in terms
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of prediction accuracy, error dispersion, and model
generalization ability.

3. The SCC strength prediction model based on
PCA-PSO-RVM effectively solves the problem
of insufficient prediction accuracy of traditional
methods under the influence of multi-factor
coupling, which is of great value to improve the
quality, safety, economic benefits, and environmental
protection of engineering. Future research can
integrate multi-source data, enhance the model
interpretability, expand the scope of engineering
applications, and quantify the prediction uncertainty
to improve the generalization ability, prediction
accuracy, and engineering practicability of the
model, and to provide a more powerful tool for the
performance evaluation and optimal design of SCC.

Appendix A

No. Actual value Predictive P/A Deviation

value within
+20%

71 1.362489553 13625 1.0000 Yes

72 0326421665 03264 1.0001 Yes

73 —0.668728489 -0.6687 1.0000 Yes

74 0911622454 09116 1.0000 Yes

75 1.208855045  1.2089 1.0000 Yes

76 0314841175 03148 1.0001 Yes

77 —0.647883606 —0.6479 1.0000 Yes

78 —1.428408668 —1.4284 1.0000 Yes

79 0.899269931  0.8993 1.0000 Yes

80 0.158118536  0.1581 1.0001 Yes

81 0.257710755  0.2577 1.0000 Yes

82 -0.860192599 -0.8602 1.0000 Yes

83 145590551 14559 1.0000 Yes
84 1282198152 1.2822 1.0000 Yes

85 1.052132406  1.0521 1.0000 Yes
86 0444542669 04445 1.0001 Yes
87 —1.323412221 -13234 1.0000 Yes
88 —-1.379770608 —1.3798 1.0000 Yes
89 —1.385174837 —1.3852 1.0000 Yes
90 —1.346573202 —1.3466 1.0000 Yes

91 0622110191 0.6221 1.0000 Yes

92 0251534493 0.2515 1.0001 Yes

93 0413661361 04137 0.9999 Yes
94 —0.554467649 —-0.5545 0.9999 Yes
95 0.203668466  0.2037 0.9998 Yes
96 1458221608 14582 1.0000 Yes
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No. Actual value Predictive P/A Deviation

value within

+20%

97 —1.326500352 —1.3265 1.0000 Yes

98 0433734211 04337 1.0001 Yes

99 —1.34039694 —1.3404 1.0000 Yes

Abbreviations

PCA Principal component analysis

PSO Particle swarm optimization

RVM Relevance vector machine

SCC Self-compacting concrete

ELM Extreme learning machine

ANFIS Adaptive fuzzy neural inference system

MARS Multiple adaptive regression splines

XGBoost  Extreme gradient boosting

SVM/SVR  Support vector machine/support vector machine regression

MLP Multilayer perceptron regression
KMO Kaiser-Meyer-Olkin
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