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ABSTRACT

With the increasing popularity of teleworking after the Covid-19 pandemic and the urgent threat of climate
change, there is growing interest in its potential to reduce greenhouse gas (GHG) emissions from transport. While
some studies have explored the environmental benefits of teleworking, most fail to address the significant un-
certainty associated with it. Few of these studies have applied sophisticated mathematical methods to explore
how we can maximize the environmental benefits of teleworking, and even fewer have considered the distri-
butions of input variables. Our study aims to fill these gaps based on historical data observations.

This study employs simulation, global sensitivity analysis and scenario analysis methods to address the un-
certainty and identify the most important variables affecting teleworkers’ transport emissions. The study ana-
lyzes travel diaries from over 100,000 individuals in the English National Travel Survey (NTS) from 2002 to
2023. Our findings reveal that minimizing trip distance and reducing non-work trips, along with optimizing
business travel, can lead to substantial emission reductions among teleworkers. Additionally, the decline in
private car use contributes to emission reduction. Notably, the emission gap between teleworkers and non-

teleworkers is larger for those living outside London.

1. Introduction

Teleworking is defined as working remotely from home and other
locations with the assistance of information and communication tech-
nology (ICT) (Hook et al., 2020; Sullivan, 2003). It first emerged in the
1980s but gained popularity as developments in ICT and the Internet
made remote work more feasible and attractive. Modern ICT enables
timely and effective information exchange without face-to-face in-
teractions; for instance, high-quality video calls allow people to attend
meetings from home. Additionally, the digital economy has generated
numerous remote jobs across all sectors, as the ICT sector and related
businesses continue to expand. Nowadays, many jobs are based on ICT,
some of which require little or no communication, allowing workers to
work remotely. Approximately 37 % of employees across EU countries
can technically carry out their work from home (Sostero et al., 2020).

Whilst interest in most topics related to teleworking has remained
broadly stable over time, the focus on the impacts of teleworking on
energy demand and carbon emissions has grown. This heightened in-
terest is largely due to the climate crisis, which has prompted

exploration of various mitigation opportunities, including teleworking.
However, despite the increasing number of studies since the Covid-19
pandemic, there remains a significant gap in the teleworking litera-
ture. Most existing studies primarily examine whether teleworking is
associated with less energy use, but they often overlook how it reduces
energy use. There is also tremendous uncertainty involved in the topic of
teleworking and sustainability, given that the impacts of teleworking
can vary between different regions and households and may evolve over
time. This significant uncertainty in teleworking requires not only more
robust and sophisticated methods but also reflections on our research
questions. With the unstoppable rise in the popularity of teleworking, it
becomes more crucial to inform policymakers on how we can reduce its
carbon footprint, rather than simply investigating whether teleworking is
associated with sustainability.

This study aims to observe teleworkers’ travel patterns, simulate
their overall transport emissions, and identify the key factors influ-
encing these emissions. Hence, we focus on the “how” question,
providing practical suggestions on how to maximize the environmental
benefits of teleworking. To fully explore the emission savings from

* Corresponding author. Science Policy Research Unit, University of Sussex, Brighton, United Kingdom.
E-mail addresses: ys404@sussex.ac.uk, yao.shi@city.ac.uk, yao.shi@citystgeorges.ac.uk (Y. Shi), s.r.sorrell@sussex.ac.uk (S. Sorrell), t.j.foxon@sussex.ac.uk

(T. Foxon).

https://doi.org/10.1016/j.tranpol.2025.103865

Received 9 September 2024; Received in revised form 29 September 2025; Accepted 21 October 2025

Available online 25 October 2025

0967-070X/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0002-3226-7944
https://orcid.org/0000-0002-3226-7944
https://orcid.org/0000-0002-3095-5989
https://orcid.org/0000-0002-3095-5989
https://data.mendeley.com/preview/ywkhyb2hw6?a=b4a9e5dc-3140-49fd-a808-9b922587c213
https://data.mendeley.com/preview/ywkhyb2hw6?a=b4a9e5dc-3140-49fd-a808-9b922587c213
mailto:ys404@sussex.ac.uk
mailto:yao.shi@city.ac.uk
mailto:yao.shi@citystgeorges.ac.uk
mailto:s.r.sorrell@sussex.ac.uk
mailto:t.j.foxon@sussex.ac.uk
www.sciencedirect.com/science/journal/0967070X
https://www.elsevier.com/locate/tranpol
https://doi.org/10.1016/j.tranpol.2025.103865
https://doi.org/10.1016/j.tranpol.2025.103865
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tranpol.2025.103865&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Y. Shi et al.

teleworking, this study considers several variables, including trip pur-
pose, trip distance, peak-time travel, modal choice, residential location,
and carbon intensity. Using data on the historical variation in these
variables for English commuters, we simulate the difference between a
teleworker’s transport greenhouse gas (GHG) emissions and those of a
non-teleworker. We then test the global sensitivity of these variables to
the transport emission difference. Global sensitivity analysis provides
insights into the emission difference in total transport GHG emissions.
Specifically, it highlights the factors that play a crucial role in explaining
the disparities between high-frequency teleworkers and non-
teleworkers, as well as between low-frequency teleworkers and non-
teleworkers. These findings are essential for understanding the impact
of teleworking on emissions and identifying strategies to maximize
environmental benefits. Our results suggest that teleworkers have higher
transport GHG emissions than non-teleworkers, but the emission gap is
declining. Additionally, we find that business trip travel and private car
use significantly impact on transport emissions. Interestingly, tele-
workers do not exhibit obvious signs of off-peak travel. Furthermore,
electric vehicle (EV) adoption could potentially increase the emission
gap if all the other factors remain constant.

To this end, we fill in the literature gaps by addressing the large
uncertainty in teleworking in a more systematic way using relatively
advanced mathematical methods, such as simulation and global sensi-
tivity analysis. By observing the full distributions of travel patterns, we
identify population-wide features that represent a much wider variety of
workers. With global sensitivity analysis, we identify the important
factors in non-linear complex models while considering the impacts of
correlations between variables on transport emissions.

Additionally, we have a few other contributions. First, we examine a
list of variables that may explain the emission differences between tel-
eworkers and non-teleworkers, including residential location, peak-time
travel, travel mode, one-way distance, and trip purpose. Second, we
consider teleworkers’ transport emissions, instead of proxies of emis-
sions such as distance traveled. Third, we estimate overall emissions,
including all types of travel purposes, rather than only commute emis-
sions. Fourth, we compare pre-pandemic data with post-pandemic data,
offering policy implications for the recent developments in teleworking
practices. Fifth, with a comparative static scenario analysis, we draw
preliminary conclusions without needing extensive observations on EV
adoption.

The following sections briefly review the literature on teleworking
and emission savings. Section 3 describes our data sources and meth-
odology, while Section 4 presents our results. Section 5 discusses and
concludes our findings, and finally, Section 6 discusses the limitations.

2. Literature review

Using Google Scholar, we searched for papers on teleworking and
GHG emissions by combining the keywords “teleworking” or “work from
home” with “energy” or “emission”. We identified around 70 studies in
this area. However, most of these do not directly estimate GHG emis-
sions; instead, they use proxies such as travel distance, travel time or
energy use. Notably, the sample is dominated by studies from North
America.
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There have been three broad phases of research on teleworking and
energy demand (Fig. 1). In the 1990s, as ICT gained popularity, most
researchers focused on teleworking’s potential to alleviate congestion
and reduce air pollution by reducing travel distance (Kitamura et al.,
1990a, 1990b; Koenig et al., 1996; Nilles, 1991; Olszewski and Mokh-
tarian, 1994; Sampath et al.,, 1991). As climate change became a
concern, especially in the 21st century, researchers began to examine
teleworking’s influence on overall energy demand and carbon emis-
sions, with a primary focus on transport energy use (Caldarola and
Sorrell, 2022; Caldarola and Sorrell, 2024; Cerqueira et al., 2020;
Chakrabarti, 2018, e Silva and Melo, 2018; Fu et al., 2012). Finally, the
Covid-19 pandemic significantly increased teleworking’s popularity and
sparked new interest in its energy impacts, providing valuable data
through a natural experiment (Anik and Habib, 2023; Bieser et al., 2022;
Ceccato et al., 2022; Kiko et al., 2024; Li et al., 2023; Lopez Soler et al.,
2021; Motte-Baumvol et al., 2024; Stefaniec et al., 2024; Wohner, 2022).
Studies from each of these phases have explored whether teleworking is
associated with lower energy demand. However, due to the complexity
of teleworking’s impacts, variations in data, methodology, and scope,
results have been mixed, leading to continued uncertainty. Few studies
have systematically assessed the relative importance of different vari-
ables in determining energy savings from teleworking, including factors
such as peak-time travel, travel distance, and the mode share. This paper
aims to partially address this gap in the literature by investigating the
factors influencing the impact of teleworking on transport energy use,
considering both work-related and non-work-related travel.

Two review papers (Hook et al., 2020; O’Brien and Aliabadi, 2020)
have demonstrated that whether teleworking is associated with energy
or emission savings remains an uncertain, ambiguous and complex issue.
Travel behaviors vary across demographics, built environments and
geographical regions, resulting in varying impacts of teleworking across
different countries, times and populations. For instance, studies in
Sweden, California, and Ireland indicate that teleworkers travel less
than non-teleworkers (Elldér, 2020; Henderson et al., 1996; Koenig
et al., 1996; O’keefe et al., 2016), while Van Lier et al. (2014) found that
teleworkers in Belgium have shorter one-way commute distances.
Additionally, whether teleworkers emit lower GHG emissions depends
on whether the savings from reduced commuting trips and less time
spent in the office outweigh the additional emissions from more
non-work trips and increased time spent at home (Phoung et al., 2024;
Sepanta and O’Brien, 2023; Sepanta et al., 2024; Shi et al., 2023; Wu
et al., 2024). Given the complexities of modelling energy use and
emissions in both offices and homes, most studies focus solely on
transport emissions. We acknowledge that this approach provides only a
partial picture. The following section highlights some of the un-
certainties associated with transport emissions and discusses the results
and methodologies of key studies in this field.

One reason for these more ambiguous results may be the rebound
effects associated with teleworking (Cerqueira et al., 2020; Rietveld,
2011). Rebound effects in this context refer to unanticipated conse-
quences of teleworking that erode the travel and energy savings ach-
ieved through fewer commuting trips. These rebound effects can take
various forms. Here are three examples.

Phase 1 Phase 2 Phase 3
teleworking & teleworking & new data &
transport overall emissions high popularity

ICT  becomes Climate
popular in the

1990s the 21* century

change
becomes a concern in

Covid-19 global pandemic

Fig. 1. Three phases of teleworking and energy demand research.
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e Induced non-work travel: Teleworkers may actually travel more for

non-work purposes than non-teleworkers. For instance, they might

make additional shopping and leisure trips on the days when they

work from home (Caldarola and Sorrell, 2022; Cerqueira et al., 2020;

Henderson et al., 1996; Kim et al., 2015; Koenig et al., 1996; Zhu,

2013; Zhu and Mason, 2014).

Induced relocation: Teleworkers’ commuting trips may be longer

than those of non-teleworkers. This could happen if they move to a

residence farther from their workplace or take up a job that requires

a longer commute (Caldarola and Sorrell, 2022; Cerqueira et al.,

2020; e Silva and Melo, 2018; Helminen and Ristimaki, 2007; Hen-

derson et al., 1996; Mokhtarian et al., 2004; Ravalet and Rérat, 2019;

Zhu, 2013; Zhu and Mason, 2014).

e Induced car use: Teleworkers may make more trips by car. This could
occur if they relocate to an area with low population density and/or
poor public transport facilities. However, there is also evidence
suggesting the opposite — that teleworkers are less likely to use cars
(Chakrabarti, 2018; Lachapelle et al., 2018; Van Lier et al., 2014;
Wang and Ozbilen, 2020).

The uncertainty surrounding whether ICT applications are environ-
mentally friendly creates ambiguity about whether policies should
encourage or discourage their widespread adoption. However, a more
practical approach is to consider how we can enhance the sustainability
of individual applications, such as teleworking and online shopping. To
address this, we require a deeper understanding of the factors influ-
encing energy use and emissions related to teleworking. Hence, this
paper employs a global sensitivity analysis tool called Sobol indices to
explore which factors have the greatest impact on teleworkers’ transport
emissions and domestic emissions.

Only a few studies have employed simulation methods to consider
how variations in key variables impact energy and emission savings
(Kitou and Horvath, 2003; Li et al., 2023; Motte-Baumvol et al., 2024).
Simulation allows variables to vary based on statistical features derived
from historical data, providing an effective way to handle uncertainty
while remaining grounded in empirical observations.

Kitou and Horvath (2003) simulate the difference in energy use and
emissions between teleworkers and non-teleworkers, considering
transport, heating and cooling in homes and offices, lighting, and elec-
tronic equipment. They map statistical features of key variables (such as
one-way commute distance, non-commute travel distance, number of
commute trips, and number of non-commute trips) and draw random
samples from the distributions of these variables to generate corre-
sponding distributions of emission savings. Specifically, they find that
one-day teleworking reduces transport carbon emissions by 17 % and
overall carbon emissions by 2 % on heating days, while five-day tele-
working reduces transport carbon emissions by 89 % and overall carbon
emissions by 17 % on heating days.

Motte-Baumvol et al. (2024) use Bayesian analysis of Markov Chain
Monte Carlo simulation to explore variation in trip frequency, distance,
time, and carbon emissions across different days of the week, with and
without commuting. They identify Friday as a distinct day for tele-
workers, marked by a 20 % reduction in commuting and increased
non-work trips. Additionally, they compare the conditional effects of
five variables (including transport modes, workplace location, gender,
occupation type, and employment status) and find that commuting
mode and rural residency are key variables explaining the carbon
emission difference between teleworkers and non-teleworkers.

Li et al. (2023) apply Monte Carlo simulation to assess carbon
emissions among teleworkers in different industries in Beijing, China.
Drawing distribution patterns from travel mode, travel purpose, and
travel time based on a large-scale travel survey, they estimate the
reduced commuting distance due to teleworking. Their results indicate
that teleworking can lead to an average 7.05 % reduction in carbon
emissions from road transport in Beijing, with information and
communication, as well as professional, scientific, and technical service
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industries showing higher carbon reduction potential.

Given the uncertainty in emission savings from teleworking, it is
essential to assess the drivers of these savings and how they can be
maximized. Sensitivity analysis provides a valuable approach to identify
key variables influencing these outcomes. However, only a few studies
have systematically explored uncertainty using sensitivity analysis
(Guerin, 2021; Marz and Sen, 2022; Tao et al., 2023).

Guerin (2021) conducts local sensitivity analysis on energy savings
from teleworking in Australia, considering both commute-related and
building-related energy use. Specifically, Guerin examines two
transport-related variables: the percentage of employees commuting by
car and the average distance for a return commute trip. His findings
indicate that energy savings through teleworking are achievable if an
employee commutes more than 30 km each workday.

Marz and Sen (2022) establish a monocentric urban model to
investigate how household-level vehicle choice and residential location
jointly influence teleworkers’ GHG emissions. Through simulation
analysis, they test the sensitivity of telecommuting frequency, transport
technology cost, the amount of non-work driving, and commute travel
time. Notably, they find that the value of commute travel time has a
slightly larger, albeit still limited, influence on teleworkers’ GHG
emissions.

Tao et al. (2023) conduct local sensitivity analysis to assess the
impact of EV adoption, office energy use, and residential energy use on
teleworkers’ GHG emissions. However, they have not specifically
explored the influence of transport factors on teleworkers’ emissions.
Their results highlight that reducing building attendance from 50 % to
10 % can double the carbon footprint of an onsite worker, while seat
sharing among workers under full building attendance can reduce GHG
emissions by 28 %.

Although the studies mentioned above all conduct local sensitivity
analyses, they do not fully capture the impact of correlations between
different variables. For instance, an employee may be more likely to
choose to travel by car if they have a long commute distance. This
omission could lead to an underestimation of the impact of commute
distance on GHG emissions. To address this gap, our study proposes a
global sensitivity analysis that considers the influence of correlations
between variables on teleworkers’ transport emissions. Notably, the
application of global sensitivity analysis in the context of teleworking is
novel within the transport field.

Additionally, there are several other literature gaps we have
addressed in this paper.

e Neglect of non-work travel emissions: many studies focus solely on
emissions from commuting but overlook emissions related to non-
work travel.

e Poor proxies for transport emissions: Some studies rely on inade-

quate proxies for transport emissions, such as trip distance, while

neglecting other critical factors like travel modes and the carbon
intensity associated with those modes, as well as off-peak travel.

Electric vehicle (EV) consideration: Very few studies have explored

the impact of EVs on teleworkers’ transport emissions. Tao et al.

(2023) conduct a scenario analysis and find that replacing conven-

tional cars with electric ones could reduce workers’ carbon footprint

by 13 %-19 % in the US. Furthermore, progressively decarbonized

US power grids could enable an additional 38 % reduction by 2050.

This study addresses the above literature gaps in the following ways.
First, we employ a simulation method to understand how key variables
influence teleworkers’ transport emissions. Second, we explore the
question of how teleworking’s environmental benefits can be maximized
through a global sensitivity analysis. Specifically, we utilize the ‘Sobol
indices’ technique, a type of global sensitivity analysis, to assess the
overall impact of each variable on transport emissions, considering its
correlations with other variables. Third, we examine overall transport
GHG emissions, considering not only distance traveled for commuting
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but also emissions from all types of trip purposes. To simulate overall
transport emissions, we consider travel mode, carbon intensity, off-peak
travel, and residential location. Finally, we investigate how the ongoing
shift from conventional to EVs may impact future emission savings from
teleworking. Our focus is on the EV shift for private vehicles, as most
trips in our sample are by car, while rail and bus trips constitute only a
small proportion.
Our research questions are.

(1) Under what conditions do teleworkers have lower transport
greenhouse gas (GHG) emissions than non-teleworkers?

(2) What factors influence these emission savings, and what is their
relative importance?

3. Data and methodology
3.1. Data

Our primary data sources include the English National Travel Survey
(NTS) for the years 2002-2023 (Department for Transport, 2024) and
the 2023 UK Government Greenhouse Gas Conversion Factors for
Company Reporting (CF) (Department for Energy Security and Net Zero,
2023). We utilize the NTS data to compare the weekly travel distance of
teleworkers and non-teleworkers, while the CF data helps us estimate
the GHG emissions associated with travel.

The NTS is an annual survey that captures the travel patterns of a
stratified, two-stage, random probability sample of approximately
13,000 English households. Participants complete detailed travel diaries
over a seven-day period, recording information such as the purpose of
each trip, the mode of transport used, self-assessed trip distance and
duration, and other relevant details. Our analysis focuses on NTS data
from 2002 to 2023, excluding the major shifts in travel patterns caused
by the Covid-19 pandemic. To create our sample, we consider only full-
time employed or self-employed workers. We categorize workers based
on their responses to the question “how often do you work from home?”
(Table 1). High-frequency teleworkers work from home 3-5 days a
week, low-frequency teleworkers work from home 1-2 days a week, and
the remaining individuals are non-teleworkers. Additionally, we exclude
home workers who do not use ICT devices (e.g., farmers) based on their
answer to the question “is it possible to work from home without tele-
phone or Internet?“. After data cleaning, our sample comprises
approximately 109,000 individuals, with around 3 % working from
home 3-5 days a week and approximately 6 % working from home 1-2
days a week.

To understand the demographics of teleworkers, we summarize in-
formation related to gender, residential area, age, income and marital
status by teleworking type (Table 2).

Table 1
Classification of sample by teleworking frequency.
Teleworker type Teleworking frequency Number of Percentage
observations
High-frequency 3 or more times a week 3307 3.0 %
teleworker
Low-frequency Once or twice a week 6248 5.7 %
teleworker
Non-teleworker Less than once a week 1876 1.7 %
more than twice a month
Once or twice a month 4294 3.9%
Less than one a month 2929 2.7 %
more than twice a year
Once or twice a year 2431 22%
Less than once a year or 50,920 46.6 %
never
Does not apply 37,233 34.1 %
No answer 54 0.05 %
Total 109,292 100.0 %
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Table 2
Demographics of teleworkers and non-teleworkers.

Non-teleworkers
(less than 1 day/

Low-frequency
teleworkers (1-2

High-frequency
teleworkers (3-5

week or never) days/week) days/week)
Gender
Male (%) 61.7 % 65.7 % 64.5 %
Area
Urban conurbation 37.8% 37.0 % 36.6 %
Urban city and 44.1 % 38.2% 42.7 %
town
Rural town and 9.4 % 9.9 % 9.9 %
fringe
Rural village, 8.7 % 14.8 % 10.8 %
hamlet and
isolated dwelling
Age (years old)
16-20 3.2% 0.3 % 0.3 %
21-29 17.4 % 9.4 % 8.9 %
30-39 24.2 % 28.1 % 24.5 %
40-49 25.7 % 31.8% 28.3 %
50-59 22.2% 23.3% 26.0 %
60+ 7.3 % 7.0 % 11.9%
Income (£/year)
<25,000 54.1 % 22.4 % 31.4 %
25,000-50,000 34.7 % 43.7 % 38.7 %
>50,000 11.2% 33.9% 30.0 %
Marital status
Married and living 53.9 % 62.9 % 61.8 %
with spouse
Separated 22 % 21 % 2.0 %
Single 35.4 % 26.6 % 27.4 %
Divorced 7.6 % 7.6 % 7.6 %
Widowed 1.0 % 0.8 % 1.2%
Total 99,852 6196 3244

Table 2 reveals that, compared to non-teleworkers, teleworkers are
more likely to be male, older, wealthier, married and living with a
spouse in rural areas. For instance, teleworkers have a 3-4 % higher
chance of being male than non-teleworkers. Teleworkers are 7-11 %
more likely to be over 40 years old, and have a 19-23 % higher chance of
earning over £ 50,000 annually. However, these differences could vary
over time, and we will examine the demographic change by year in
Section 4.1.

Following the work of Caldarola and Sorrell (2022) and Crawford
(2020), trip purposes are classified as commuting, business, and
non-work trips based on trip origination and destination (see Fig. 2).
Specifically, commuting refers to trips between an individual’s usual
place of residence and usual place of work.! Business trips encompass
any travel involving a “course of work” location, such as a client’s
workplace. All other trips fall into the non-work category.

We utilize CF data to estimate GHG emissions from trips. CF provides
information on the well-to-wheel emission intensity of various transport
modes, encompassing emissions from fuel production, processing, dis-
tribution, and use, while excluding those associated with vehicle
manufacture. Specifically, CF disaggregates private cars by fuel type
(diesel, petrol, hybrid, plug-in hybrid, and electric vehicles) and size
category (small, medium, large), as shown in Table 3. GHG emissions are
quantified as the equivalent of carbon emissions that contribute to
climate change effects. These emissions include the seven main GHGs
defined by the Kyoto Protocol (1997). Additionally, CF offers emission
intensity details for other travel modes, as presented in Table 4.

! The NTS may underestimate commute trips from chained trips, because the
NTS includes direct trips to work and excludes chained trips from commute
trips. For example, the NTS classifies dropping a child at school as ‘escort ed-
ucation’ and the subsequent journey to work as ‘personal business’.
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Commuting
<+ B

Non-work
Non-work

Business

Business

Business

Non-work

-<

Fig. 2. Classification of trip purpose
Source: Caldarola and Sorrell (2022), Crawford (2020).

Table 3
Emission intensity of private vehicle transport by size and fuel type.

Emission intensity (kg COze/vehicle km)

diesel petrol hybrid plug-in hybrid EV battery EV
Small car 0.034 0.039 0.027 0.013 0.011
Medium car 0.041 0.049 0.028 0.022 0.012
Large car 0.051 0.076 0.039 0.026 0.013
Light van 0.035 0.051 - - 0.009
Table 4
Emission intensity of other transport modes.
Emission intensity
(kg COze/passenger km)
Walk/cycle 0.000
Motorcycle 0.030
Rail 0.009
Underground 0.007
London bus 0.019
Other local bus 0.029
Coach 0.007

The unit “kg COy/vehicle kilometer” is converted to “kg CO2/pas-
senger kilometer” by occupancy rate which is provided in the dataset.

CO, / vehicle km
occupancy rate

CO, / passenger km = m

3.2. Methodology

To investigate whether teleworking is associated with GHG emission
savings and to understand the relative importance of different factors in
determining those savings, we utilize historical simulation and global
sensitivity analysis (as shown in Fig. 3). Furthermore, we conduct a
scenario analysis to assess the effects of EV adoption on teleworkers’
emissions. The following section will first explain why we chose this
method and then delve into each step.

There are several methods to analyze teleworking and transport

> -

energy demand, including agent-based modelling (ABM) (Wang et al.,
2022), machine learning (ML) (Lopez Soler et al., 2021), regression
(Giovanis, 2018; Zhu and Mason, 2014), structural equation modelling
(SEM) (Caldarola and Sorrell, 2022). However, none of these methods
are suitable for addressing uncertainty or identifying the relative
importance of variables beyond assessing statistical significance. In
contrast, a simulation method observes variable distributions and gen-
erates results in the form of distributions, providing more comprehen-
sive information beyond averages. Sensitivity analysis explicitly ranks
importance and is better suited for handling non-linear models. A sce-
nario analysis method predicts future circumstances without relying on
observations. Additionally, our dataset is not well-suited for ABM or ML.

ABM and ML typically require abundant variables to distinguish
teleworkers from non-teleworkers, such as individual vehicle owner-
ship, family structure, socioeconomic status, and preferences related to
teleworking. These algorithms implicitly assume that the features of
teleworkers have a causal effect on their emissions. Although a few
variables might causally determine teleworkers’ energy use differences
(e.g., car ownership can lead to higher emissions), linking most of the
features of teleworkers directly to transport energy use remains chal-
lenging. What is more, the substantial amount of missing data in the NTS
on vehicle type complicates our ability to analyze and provide mean-
ingful insights (see Appendix 1).

SEM and regression methods are commonly used to identify features
of teleworkers or characteristics associated with high transport energy
use (Caldarola and Sorrell, 2022; Cerqueira et al., 2020; Giovanis, 2018;
Zhu and Mason, 2014). While SEM and regression methods can reveal
characteristics of teleworkers (such as income, age, and gender) and
identify statistically significant factors influencing transport energy use,
they do not account for input variable uncertainty—such as commute
distance. In the following sections, we will explain our methodology step
by step.

For the historical simulation, we first construct a deterministic model
that calculates the weekly transport GHG emissions for teleworkers and
non-teleworkers. Using data from the NTS, we observe the distribution
patterns of each variable in this model. Subsequently, we randomly
draw values from these distributions to use as iterations in a simulation
of the difference in transport emissions between teleworkers and non-
teleworkers. The output takes the form of a probability distribution
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Fig. 3. Simulation and global sensitivity analysis.

representing the difference in emissions between the two groups.

The deterministic model involves two equations and thus two basic
steps. In Step 1 (Equation (2)), we calculate the baseline scenario of one
non-teleworker’s weekly travel GHG emissions (GHGy7w). This sum
includes emissions from business trip (GHGnTw_pusi), commuting trips
(EnTw—-com) and non-commute trips (GHGnrw-non)- In Step 2 (Equation
(3)), we calculate the corresponding emissions for teleworkers (GHGrw).
Finally, we compare teleworker’s emissions with non-teleworker’s
emissions.

GHGyrw = GHGNrw—busi + GHGN1w—com + GHGNTw—nw 2

GHG1w = GHGrw_pusi + GHGrw—com + GHGrw_nw 3

For each type of trip, we estimate weekly emissions by multiplying
the weekly commute distance (L) with the sum of the product of the
share of each mode i by distance (&) and the emission intensity of mode
i (CF,). For example:

Non-teleworker’s commute CO- in a week:

GHGrw-—com = Ltw—com X »_(@1 % CF) )
i

For the sensitivity analysis, we estimate the contribution of each
variable to the total variance of the output, allowing us to rank the
relative importance of each variable in the uncertainty of emission
savings. To conduct global sensitivity analysis, we input all the simu-
lation’s inputs and output results into a function called “SobolEff” within
an R package named “sensitivity” (Iooss et al., 2021). The R program-
ming environment automatically calculates Sobol indices, a type of
global sensitivity analysis. Let us first explain the distinction between
local and global sensitivity analysis, followed by a mathematical
explanation of Sobol indices.

Local sensitivity analysis disregards correlations between variables,
whereas global sensitivity analysis accounts for these correlations. We
choose global sensitivity analysis because we anticipate that these cor-
relations are significant. For instance, if the proportion of distance
traveled by private vehicles positively correlates with one-way commute
distance, the overall influence of one-way commute distance should
consider its association with private vehicle use. In the following sec-
tions, we will delve into the mathematical differences between local and
global sensitivity and then explore Sobol indices as a form of global
sensitivity analysis.

Mathematically, local sensitivity analysis involves changing one
variable at a time from the base-case scenario (Razavi and Gupta, 2015).
Suppose the output value is denoted as y, and we have n input variables
X1, X2, ..., X5. The local sensitivity of x; is given by:

6))

Sizg

, given base case(x;, X, ...
()x,-

%)

Equation (1) measures the relative change of y with respect to x;,
allowing x; to vary within its domain while keeping other variables fixed
at the base case values (x;,x;,...,x;). However, Equation (1) accurately
measures the sensitivity of y to x only if there is no correlation between
x; and other variables. When Xx; is correlated with other variables, the
base case (x},X;, ...,x;) may no longer be valid, resulting in a different
value of y. Consequently, % becomes less accurate. Local sensitivity

analysis does not account for correlations between input variables and
other factors (Tian, 2013; Xu et al., 2004).

Another way to interpret local sensitivity analysis is by decomposing
the total variance. Each input variable x;,x3, ..., X;, ..., X, contributes to
some of the variance and uncertainty in the final output y. The impor-
tance of a variable is determined by how much it explains the total
variance. Local sensitivity analysis involves changing one variable x; at a
time, observing its impact on the variance of the output, denoted as V
(y). Equation (1) can be rewritten as Equation (6) (Saltelli et al., 2010).

5, VEOIx = %))

Vo) ©

where X; is a generic value of x;, which can take any specific value within
its domain. V(E(y|x; = X;)) measures the variance of the expected value
of y given a specific x;. The entire index S; quantifies the share of vari-
ance in y that depends on the input variable x;, ignoring the correlations
between x; and other input variables.

In contrast, the global sensitivity of x; captures the change in y not
only due to the change in x; itself, but also due to changes in other
variables resulting from their correlation with x;. Let us denote the
global sensitivity of x; as sy.

)

sTi:Q

o where values of (x1,Xz, ...

,Xn ) are not fixed

Specifically, this study employs a ‘the total effect Sobol index’ which
accounts for this global sensitivity (Craglia and Cullen, 2020; Saltelli
et al., 2010; Sobol, 2001). This index measures the contribution to the
variance of y from X;, considering x;’s correlation with other input var-
iables. Denoting variables other than x; as x.;, Sobol indices can be
estimated in three steps, see Appendix 1.

Finally, we also compare the above simulation with a comparative
static scenario in which all fossil fuel cars and vans are replaced with
battery EVs. This scenario aligns with the UK government policy that
mandates all new cars and vans to be fully zero-emission at the tailpipe
by 2030 (Department for Transport & Office for Zero Emission Vehicles,
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2020). However, in our scenario, battery EVs are not entirely
emission-free, as we assume the electricity generation mix remains un-
changed from 2019.

4. Results

The results are divided into three parts: a) simulation results (pre-
sented in Section 4.1); b) sensitivity analysis results (presented in Sec-
tion 4.2); c) scenario analysis results (presented in Section 4.3). The
simulation results highlight the main differences in transport emissions
between teleworkers and non-teleworkers. The sensitivity analysis
identifies the most critical factors explaining such differences. Addi-
tionally, the scenario analysis predicts emission changes with EVs in a
static comparative scenario.

4.1. Simulation results

We conduct a historical simulation to estimate overall transport GHG
emissions by analyzing distribution patterns from weekly travel diaries
of over 100,000 individuals in the UK. We calculate the average emis-
sions per week by three teleworking types: a) high-frequency tele-
workers (teleworking 3-5 days per week); b) low-frequency teleworkers
(teleworking 1-2 days per week); c) non-teleworking individuals. We
first summarize the main differences in transport emissions between
teleworkers and non-teleworkers (Figs. 4 and 5). Then, we delve into the
reasons behind these emission differences by comparing their de-
mographics (Figs. 6 and 7), travel modes (Figs. 8 and 9), peak day trips
(Fig. 10), peak hour trips (Fig. 11), travel purposes (Fig. 12), dwelling
environments (Fig. 13). These analyses compare between pre- and post-
pandemic periods. With data availability, some analyses only include
pre-pandemic data, which are shown in Appendix 2, including vehicle
type (Fig.2a), fuel type (Fig. 2b), and occupation (Fig. 2c).

Fig. 4 illustrates the trend of weekly transport emissions by tele-
working type from 2002 to 2023.

As illustrated in Fig. 4, low-frequency teleworkers have the highest
transport emissions, followed by high-frequency teleworkers and non-
teleworkers. All three types of workers have experienced a decline in
transport emissions and gradually converge to a similar level of emis-
sions. Low-frequency teleworkers’ transport emissions exhibit the
sharpest decline, with an 85 % reduction from 2002 to 2019, followed
by high frequency teleworkers. Non-teleworkers have the lowest rate of
decline, with only a 22 % reduction from 2002 to 2019. In terms of
variance over time, high-frequency teleworkers’ transport emissions
exhibit the highest fluctuations over the last two decades. The Covid-19
pandemic led to a significant reduction of transport emissions for all
worker types, causing high-frequency teleworkers’ emissions to drop
below those of non-teleworkers in 2020 and 2021. Transport emissions
began to rise again from 2022 and remained stable in 2023. This sug-
gests that we should analyze travel patterns separately for the periods
before and after the pandemic. In the subsequent paragraphs, we will
compare the differences between these two periods.

Fig. 5 displays the probability distribution patterns of weekly
transport emissions by teleworking type. The horizonal axis represents
the weekly emissions values, while the vertical axis indicates the prob-
ability associated with specific emission values.

Fig. 5 shows that the emission gap between teleworkers and non-
teleworkers has narrowed after the pandemic. All three worker types
exhibit a similar distribution pattern centered around a low value but
with a long tail. Most people have low transport emissions (around 4 kg
CO2e per week), but a small proportion experience extremely high
emissions (possibly exceeding 40 kg CO2e per week). The flatter the
distribution curve, the higher the chance of extremely high emissions.
We can see that the difference between the curves is much larger before
the pandemic than after. Before the pandemic, non-teleworkers have the
highest likelihood of relying solely on sustainable travel modes, fol-
lowed by high-frequency teleworkers (3-5 days/week), while low-
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frequency teleworkers (1-2 days/week) have the lowest probability of
doing so. After the pandemic, the three types of workers exhibit very
similar distribution patterns in overall transport emissions, with non-
teleworkers slightly less likely to emit high emissions. It is possible,
albeit unlikely (2-4 % probability), for any type of worker to have no
emissions for a week. This phenomenon may be attributed to sustainable
travel modes such as walking and cycling.

We explore the factors that may drive the emission change over time.
First, we investigate the demographic changes of high-frequency tele-
workers from 2002 to 2023 in Fig. 6 and those of low-frequency tele-
workers in Fig. 7. On the left x-axis of each figure, we present the shifts
in the proportions of teleworkers who are female, high-income in-
dividuals (with an income of over £50,000 a year), single,” and residing
in urban conurbations. On the right x-axis, we illustrate the changes in
the number of teleworkers among the entire population of workers.

In Figs. 6 and 7, there is a gradual rise in the proportion of tele-
workers among the working population before the pandemic, followed
by a sharp increase after the pandemic. Regarding demographics, we
observe an increasing trend in the proportions of teleworkers who are
single females, earning high incomes, and living in urban conurbations.
This indicates an increase in the demographic diversity of teleworkers,
as they previously tended to be male, married, and living with a spouse.
Between 2002 and 2023, female teleworkers increased by 15-20 %, and
single teleworkers increased by 13-18 %. However, there is no strong
evidence to suggest whether teleworkers are moving to more urban or
rural areas. Additionally, since the income data cannot be adjusted for
inflation due to data limitations, we cannot robustly conclude whether
teleworkers are earning higher incomes. There are more fluctuations in
the demographic features of high-frequency teleworkers in Fig. 6, which
can be attributed to either a relatively smaller sample size or intrinsic
periodic instability. Nevertheless, the demographic shifts are only part
of the reasons for the narrowing emission gap. We will analyze the
differences in travel patterns next.

We explore the differences in travel modes between teleworkers and
non-teleworkers from 2002 to 2023 in Figs. 8 and 9. Fig. 8 compares the
average weekly travel distance of high-frequency teleworkers with that
of non-teleworkers, while Fig. 9 focuses on low-frequency teleworkers.
In both figures, dotted lines represent teleworkers, and solid lines
represent non-teleworkers. The analysis considers the three primary
travel modes, which account 90 % of the total travel distance: “driving a
car or a van”, “being a passenger in a car or van”, and “by rail”. All other
modes fall under the category of “others”, except for air travel due to
data availability.

As shown in Figs. 8 and 9, driving a car or a van (car/van) is the
dominant travel mode for all three types of teleworkers across all the
years. The average distance traveled by driving a car/van is approxi-
mately 1-3 times the distance traveled by all other modes combined.
However, there is a trend of declining distance traveled by car/van. This
is particularly evident among teleworkers, as the average distance
traveled by car/van for both high-frequency and low-frequency tele-
workers has decreased by around 50 %. The pandemic had a negative
impact on travel distances in 2020 and 2021, but they returned to
normal in 2022 and 2023. Distance traveled by other modes remains
consistently low, averaging under 50 km/week. Notably, low-frequency
teleworkers’ railway travel increased from an average of 55 km/week in
2002 to 100 km/week in 2019 but dropped sharply after the pandemic.
This may be explained by the sharp increase in train fares after the
pandemic (BBC News, 2022), but further analysis is needed.

Fig. 10 illustrates and compares the average daily travel distance for
three types of workers by day of the week, between pre- and post-
pandemic periods. The figure categorizes trips into three types: busi-
ness trips, commute trips, and non-work trips. As explained in Fig. 2, a

2 «Single” refers to marital status being single, which means that the indi-
vidual could have an unmarried partner.
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business trip includes a location related to work, a commute trip occurs in fact, there may be an opposite tendency, i.e., teleworking increases
between an individual’s usual workplace and usual accommodation, peak-day travel. Teleworkers have more obvious peak-day travel pat-
and all other trips are considered non-work trips. terns compared to non-teleworkers, especially after the pandemic. After
Fig. 10 shows no evidence that teleworkers travel less on peak days; the pandemic, high-frequency teleworkers travel extensively on Sunday
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Fig. 8. High-frequency teleworkers’ travel mode shift by year
Note: Due to data availability, air travel is not analyzed.

for business purposes, while non-teleworkers do not travel much for
business purposes on any day of the week. This may be attributed to the
rising popularity of long-distance business trips among high-frequency
teleworkers who might work across various places. Peak-day travel
has significantly contributed to the emission gap between teleworkers
and non-teleworkers. On Wednesday and Thursday, teleworkers have
75-100 % higher emissions from business trips than non-teleworkers.
On Saturday, teleworkers more than double the commute-trip

emissions of non-teleworkers.

The peak days for commuting have shifted after the pandemic.
Before the pandemic, non-teleworkers commuted mostly from Monday
to Friday; teleworkers, in comparison, commuted from Monday to
Thursday, which aligns with the findings from (Motte-Baumvol et al.,
2024). After the pandemic, teleworkers commute more on Saturday.
This may be explained by either the measurement error of commute
trips, or the increased flexibility in working days for teleworkers
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Fig. 9. Low-frequency teleworkers’ travel mode shift by year
Note: Due to data availability, air travel is not analyzed.

post-pandemic.

Fig. 10 demonstrates that business trips and commute trips explain
most of the emission gap between non-teleworkers and teleworkers.
Teleworkers have much longer one-way business trips and one-way
commute trips, even though both are declining after the pandemic.
Post-pandemic teleworkers still have 75-140 % longer commute trips
than non-teleworkers. There could be an underestimation of commute
trips due to trip chaining in the NTS. However, since this error occurs
across all types of workers, we can still extract useful information.
Fig. 12 will further investigate emissions by examining more detailed
trip purposes.

Fig. 11 compares the probability of a trip occurring at any hour of the
day for three types of workers, by three trips purposes, before and after
the pandemic. For example, a value of 0.22 indicates that a worker has a
22 % chance of taking a trip at that specific hour of the day.

In Fig. 11, we can identify three main peak hours, which are
consistent pre- and post-pandemic. The morning peak for commute trips
is around 9 a.m., which has the highest probability of travel (20-32 %).
This is followed by the morning peak for business trips, also around 9 a.
m., and the evening peak for commute trips around 6 p.m., both with
probabilities of 15-26 %. Throughout the rest of the day, business trips
and non-work trips have very similar probabilities (8-15 %), while
commute trips have a much lower probability (2-5 %). As both business
trips and commute trips peak around 9 a.m., they result in a combined
probability of 40-50 %. Additionally, non-work trips lack a specific peak
time but slightly increases from 9 a.m. to 8 p.m. After 8 p.m., the overall
probability of any trips (business, commute, and non-work) decreases
gradually, reaching almost 0 % between midnight and 5 a.m.

Although teleworkers are slightly more likely to travel off-peak for
business trips (0-3 %), this does not reduce their chances of traveling at
peak times. In fact, Fig. 11 suggests quite the opposite: teleworkers have
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a higher likelihood of commuting during peak hours, especially after the
pandemic. Post-pandemic teleworkers are approximately 11 % more
likely to commute at peak hours than non-teleworkers.

Fig. 12 compares the average weekly transport emissions by trip
purpose for three types of workers. There are 12 types of trip purposes:
one type of escort trip and 11 types of non-escort trips. Escort trips
involve accompanying someone else (e.g., taking someone to school,
work, or shopping). Non-escort trips are made by individuals for various
purposes, including work (business and commute), essentials (educa-
tion, medical, food shopping, other personal business), exercise (sports
and walking), entertainment (excursions, non-food shopping), and other
non-escort activities. Specifically, business trips include a “course of
work” location, while commute trips occur between an individual’s
usual workplace and home (Fig. 2). To test whether the emission dif-
ferences are statistically significant, we use a Welch two sample t-test,
assuming zero-inflated log-normal distribution as indicated by Fig. 5. A
“+” sign following a trip purpose label indicates that the emissions
differences are statistically significant between very frequent teleworkers
and non-teleworkers. A “*” sign indicates frequent teleworkers are
significantly different from non-teleworkers. The error bars are the
median, 20th percentile and 80th percentile values.’

In Fig. 12, we can see that there is a general decline in emissions post-
pandemic, as well as obvious emission changes in certain trip purposes
among teleworkers. After the pandemic, teleworkers travel much less for
business purposes. Pre-pandemic teleworkers had around 66-87 %

3 Since our data includes extremely low and high values, and does not follow
a normal distribution, this type of error bar provides more information than the
traditional one, such as the 10 % and 90 % confidence intervals assuming
normality.
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Fig. 10. Travel distance by day of the week and trip purpose.

higher emissions than non-teleworkers, while post-pandemic tele-
workers only have approximately 22 % higher emissions. This is prob-
ably explained by the fact that post-pandemic teleworkers are less likely
to drive a car or van (as shown in Figs. 8 and 9).

In terms of commute trips, pre-pandemic low-frequency teleworkers
had approximately 36 % higher GHG emissions from commute trips
compared to non-teleworkers, but post-pandemic teleworkers have less
emissions than non-teleworkers. This shows that after the pandemic, the
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benefits of fewer commuting trips among teleworkers are higher than
the drawbacks of their higher likelihood of driving and longer one-way
commute distances (as depicted in Fig. 10). However, high-frequency
teleworkers travel extremely often for education purposes after the
pandemic. This could probably be a measurement error from the NTS,
such as trip chaining, or a misclassification of “education” trips. The
“education” trips may include work events with educational features
such as conferences and workshops.
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Fig. 12. Transport emissions by trip purpose and teleworking type
Note: the error bars show the median, the 20th percentile and 80 % percentile observations. A “+” sign besides label denotes that very frequent teleworkers’

emissions are significantly different from those of non-teleworker with 99 % confidence, while a “*” sign denotes that frequent teleworkers’ emissions are signif-
icantly different from non-teleworkers’. “escort” means trips people make to accompany someone else. “non-escort” means trips made by someone on their own
behalf. “other non-escort” means non-escort reasons other than the ones listed here, e.g., business, excursion, sports and walk, etc. “other personal business” means

other non-medical personal business.
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Fig. 13. Transport emissions by area and teleworking type

Note: the error bars show the median, the 20th percentile and 80 % percentile observations. A “+” sign besides label denotes that very frequent teleworkers’
emissions are significantly different from those of non-teleworker with 99 % confidence, while a “*” sign denotes that frequent teleworkers’ emissions are signif-
icantly different from non-teleworkers’. The geographical categorization differs before and after the pandemic due to data availability.

Almost all error bars show that the median value is lower than half of
the mean value, which again confirms that a small number of high
emitters increase the average value (as seen in Fig. 5). Nevertheless, the
error bars are shorter after the pandemic, which suggests that there are
fewer high emitters post-pandemic, especially among teleworkers.
Considering statistical significance, most pre-pandemic trip purposes
exhibit statistical significance, while post-pandemic data shows less
statistical significance. This confirms that the emission gap between
teleworkers and non-teleworkers is narrowing. Nonetheless, we expect
biases with these significance tests, given that the pre-pandemic sample
comprises around 90,000 individuals, while the post-pandemic one only
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has around 10,000 individuals.

Fig. 13 compares the average weekly transport emissions by dwelling
area for the three types of workers. The nine areas in the pre-pandemic
figure are sorted by population density from large to small. For instance,
London represents the most densely populated area, while the South-
west of England corresponds to the least populated area. However, with
data availability, there is a slight adjustment in the classification of areas
post-pandemic.

In Fig. 13, the emission gap between teleworkers and non-
teleworkers is particularly pronounced outside London, which may be
explained by poorer public transport facilities that trigger emissions
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from driving. This geographical feature remains the same post-
pandemic, except the Northen Metropolitan area, which has better
public transport facilities. Outside London, low-frequency teleworkers
have up to 95 % higher transport emissions than non-teleworkers, while
high-frequency teleworkers have up to 40 % higher transport emissions.
This difference between high- and low-frequency teleworkers may be
due to the fact that low-frequency teleworkers still commute to work 3—-4
days a week.
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4.2. Global sensitivity analysis

This section analyzes how we can maximize the environmental
benefits of post-pandemic teleworking through global sensitivity anal-
ysis comparing pre- and post-pandemic results. In this analysis, we
model the variation of overall transport emissions with respect to each
input variable. Essentially, it reveals the relative contribution of
different variables to the variance in total emissions. We measure global
sensitivity using Sobol indices (as discussed in Section 3.2), where a

W ronteleworking
I teleworking 3.5 daysiweek
teleworking 1-2 daysiweek

. ° : ; ° 2 2 ° 2
B & B & <8 & & <8 &
& g & & K x@ X0 s x@
& O & & 9 & W& () &
£ & & $ & S S & S
,oo° N J & & > > & >
R\ S L 0 N A A N A
* O 4 @ < ] & < &
& & & & & & & &
& R & & & & s N &
& > £ N & & N = &
=) @ 23 H O & Ny &
& O S & @ ) ™) O NS
&@ 6\6‘ o’e o oé\o @0\ & (\,«\ Q\o«
o Y o > < N & ® N
S < © & o ®
After the pandemic
05~
0ad
03~
§ B ronelevorking
3 I teleworking 35 daysiweek
3 l teleworking 1-2 days/week
02-
0.1-
. =] N X =3 < < 5 1]
& S & & <8 © ¥ &8 ©
& 5 & & 5 @ @ N NG
R S R 8 S Q) Q) S @
& & £ & & S S & S
S N & S & > > & &
& & kS N N AN A & A
& o & & S & & RS &
QA. .\Q"ﬂ' Qé' Q'- .\Q"O' .0 .0 & 2 .0
& & R § & & s & s
& @ e P o S <8 & <R
& O S % & @ o © &
& & & & & & & & o
J : J :
&f o ® o 9 c,o& ,0\)&"\ N &

Fig. 14. Global sensitivity of total transport emissions by teleworking type
Note: the higher the Sobol indices, the more important a variable is.
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higher index indicates a larger impact on total GHG emissions. As we are
analyzing global sensitivity which considers correlations between vari-
ables, these three variables are important factors not only because of
themselves, but also their correlations with other variables.

Fig. 14 investigates the contributions to total emissions from the
carbon intensity, the number of trips and the one-way distance of three
trip purposes for three types of workers, comparing the results before
and after the pandemic.

Fig. 14 reveals that the most critical variable determining transport
emissions is the one-way distance of non-work trips, followed by the
number of non-work trips. In other words, reducing the total distance of
non-work trips is crucial for reducing transport emissions. This not only
directly affects emissions but also influences other variables. For
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Fig. 15. The importance of emissions by trip purpose and teleworking type
Note: the higher the Sobol indices, the more important a variable is.
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example, individuals who travel longer distances for non-work purposes
often reside in rural areas, further from business locations. Conse-
quently, they tend to cover greater distances for work purposes and rely
more on private vehicles, resulting in higher emissions due to these
correlated effects.

Fig. 14 shows that after the pandemic, the importance of business
trips has decreased, while the importance of commute trips has
increased. Instead of one-way distance in business trips, one-way
commute distance has become the third most important variable for
low-frequency teleworkers and non-teleworkers. This can be explained
by the decline in emissions from business trips (as shown in Fig. 12).
However, for high-frequency teleworkers, one-way business trip dis-
tance remains the third most important variable in determining their
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overall transport emissions, probably due to their long-distance business
travel (as indicated by Fig. 10).

To further investigate how emissions from various trip purposes in-
fluence the variation in total transport emissions, Fig. 15 provides the
global sensitivity results by more detailed trip purposes for the three
types of workers pre- and post-pandemic.

Fig. 15 confirms that after the pandemic, the dominating importance
of business trips is overtaken by that of commute trips. Before the
pandemic, teleworkers’ business trips were 3-6 times as important as
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their commute trips. After the pandemic, commute trips have a higher
influence than commute trips for low-frequency teleworkers and non-
teleworkers. Other trip purposes that also contribute significantly to
workers’ emissions are leisure- and exercise-related, including social,
entertainment, sports, walking, and excursions. Trip purposes of low
importance include essential trips such as personal business, shopping,
medical, and education. This suggests that both teleworkers and non-
teleworkers may not be taking family responsibilities for essential
travel but are traveling more for their own leisure or exercise purposes.
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Fig. 16. The importance of emissions by travel mode and teleworking type
Note: the higher the Sobol indices, the more important a variable is.
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To analyze the impact of various travel modes on the transport
emissions, Fig. 16 illustrates the global sensitivity of weekly total
transport emissions by travel mode for the three types of workers pre-
and post-pandemic.

Fig. 16 indicates that the importance rankings of trip purposes
remain very similar after the pandemic. Driving a car or van is the
predominant travel mode influencing teleworkers’ high transport
emissions, being 30 times more significant than any other travel mode.
The second most impactful is traveling as a passenger in a car or van,
followed by motorcycle use. Emissions from private vehicle transport
are more critical than those from public transport in determining tele-
workers’ total transport emissions. Conversely, emissions from cycling
and walking are the least significant. This is logical, as private vehicle
transport, particularly driving, not only possesses a high emission in-
tensity but also accounts for the majority of the travel distance (as shown
in Figs. 8 and 9).

4.3. Scenario analysis

Fig. 17 presents a comparative static scenario analysis of workers’
total transport emissions when all cars and vans are EVs, compared to
the pre-pandemic proportion of EVs among cars and vans. The figure
compares their emissions under the EV scenario with those under the
pre-pandemic scenario for non-teleworkers, high-frequency tele-
workers, and low-frequency teleworkers. Due to data limitations, only
pre-pandemic data is used for analysis.

Fig. 17 demonstrates that when replacing conventional cars and vans
with EVs, the emission difference by percentage becomes larger between
teleworkers and non-teleworkers than that in the current scenario. The
emission gap increases to 38-80 % in the EV scenario, compared to
24-65 % in the pre-pandemic scenario. The expanding emission gap may
be attributed to the fact that teleworkers travel further for business and
non-work purposes compared to non-teleworkers. Although the post-
pandemic data could include different travel patterns with an uptake

kg CO2e/week

non-teleworking*

Fig. 17. Scenario analysis of teleworkers’ emissions with electric vehicles

teleworking 3-5 days/week*
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of EVs, the pre-pandemic conclusion still remains informative as post-
pandemic teleworkers have most of the travel patterns as their pre-
pandemic counterparts, including more non-work travel, longer one-
way commute distance, etc. However, further research is necessary to
evaluate the comprehensive impact of EV adoption on teleworking
patterns. This result is derived from a simple comparative static scenario
analysis that does not account for any interactive effects between EV
adoption and other travel behaviors. It is limited to cars and vans,
excluding other vehicles such as buses and trains.

5. Discussion and conclusion

Literature on the environmental benefits of teleworking often ne-
glects its significant uncertainty and attempts to provide an arbitrary
conclusion that teleworking does or does not reduce emissions. This
paper bridges this major literature gap by employing more advanced
statistical methods to observe the full travel patterns of teleworkers
across a large sample of the population. This sheds light on the main
contributors to emission savings. Our main research question differs
from many previous studies. We aim to answer how we can maximize the
environmental benefits of teleworking, rather than simply determining
whether teleworking is environmentally friendly. Focusing on English
teleworkers, this paper has addressed these limitations with simulation
and global sensitivity analysis. The distribution of each variable was
based on the observed distribution of over 100,000 English workers
during the period from 2002 to 2023. Additionally, we compared the
travel emissions between teleworkers and non-teleworkers pre- and
post-pandemic. We also explored a comparative static scenario where
conventional vehicles were replaced by EVs.

Most studies have paid insufficient attention to the variations in key
variables by estimating an average value of emissions. They have also
employed proxies for environmental impact, such as distance traveled,
rather than more direct measures like GHG emissions. Our simulation
method addresses these problems by observing the full statistical travel

I current scenario

[ [,

teleworking 1-2 days/week*

Note: “*” denotes that the difference between current scenario and EV scenario is significant at 99 % confidence level; no post-pandemic analysis is shown due to data

availability on vehicle type.
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patterns of teleworkers and providing GHG emission estimations in a
distribution form. The simulation results reveal that individuals who
telework 1-2 days a week generate the highest overall transport emis-
sions, followed by those who telework 3-5 days a week. Non-
teleworkers have the lowest overall transport emissions. Several fac-
tors can explain this pattern. Firstly, teleworkers are less inclined to
adopt sustainable travel modes, such as walking and cycling. Secondly, a
small subset of teleworkers produce exceptionally high transport emis-
sions—exceeding 50 kg CO2e per week. Thirdly, teleworkers generally
reside farther from their workplaces than non-teleworkers, resulting in
longer business and commute distances, and they also live further from
amenities, leading to longer non-work travel distances. However, the
emission disparity between teleworkers and non-teleworkers has been
decreasing rapidly from 2002 to 2023. This trend may be attributed to
workers being less likely to drive cars or vans.

Regarding peak-time travel and geographical areas, the simulation
analysis suggests little evidence that teleworkers travel on off-peak days
or at off-peak time. This contradicts the belief that teleworking may
reduce congestion but is not entirely surprising considering that tele-
workers travel more for business purposes. Geographical areas do not
make a huge difference to workers’ transport emissions, except that
those living in London have substantially lower emissions. London is
known for its high-density of living and good public transport facilities,
which indicates that convenient public transport helps maximize the
environmental benefits of teleworking.

Global sensitivity analysis is a useful tool to identify the sources of
uncertainty by ranking the importance of variables. In this paper, it
measures the contribution of travel-related variables to the variance in
transport emissions, considering their correlation with other variables.
The global sensitivity analysis results indicate that the disparity in one-
way distance for non-work trips between teleworkers and non-
teleworkers is the most significant factor in explaining the difference
in their transport emissions. This significance stems not only from the
direct impact of one-way non-work distance on emissions but also from
its correlation with other variables that substantially affect emissions.
For example, individuals residing in more rural areas, away from local
amenities, are likely to live farther from their workplaces and to rely
more heavily on private vehicles. These findings underscore the
importance of a well-designed built environment in realizing the envi-
ronmental benefits of teleworking. An optimal built environment en-
ables people to live closer to their workplaces and amenities, reducing
the need for frequent travel to access their daily needs in business and
social activities.

In terms of trip purposes and travel modes, our global sensitivity
analysis results indicate that business trips are the most significant trip
purpose in explaining the emission differences between teleworkers and
non-teleworkers. The use of private cars and vans is the most influential
travel mode in terms of emissions. Additionally, our comparative static
scenario analysis suggests that the adoption of EVs will substantially
reduce transport emissions, yet it may increase the emission disparity
between teleworkers and non-teleworkers. This is likely because EV
adoption does not reduce teleworkers’ transport emissions to the same
extent as it does for non-teleworkers, given that teleworkers generally
have longer distances for business and non-work travel.

A key implication of our study is the necessity to ensure that the
growing popularity of teleworking does not prompt individuals to move
to low-density areas where public transport is inadequate or sustainable
travel options are impractical, a phenomenon known as ‘telesprawl.’
This paper has not found any growing ‘telesprawl’ trend. However, after
the pandemic teleworkers still have longer one-way distance in business
and commute trips than non-teleworkers. The environmental advan-
tages of teleworking could be fully maximized if a greater number of
teleworkers transition to full-time remote work and conduct business
meetings exclusively via video calls.

A second implication concerns the impact of urban planning on the
environmental effects of teleworking. Effective urban planning allows
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teleworkers to travel shorter distances to access essential facilities, such
as schools and shops. In the UK, home builders are mandated to allocate
funds for local infrastructure development; however, there have been
debates and issues regarding the efficacy of this regulation (Grimwood,
2019). To foster a clean and green environment, it is crucial to ensure
the implementation of such regulations, enabling teleworkers to reside
in well-planned neighborhoods that negate the need for extensive travel
for daily activities.

A third implication highlights the need to curtail private car usage.
Among all travel modes, driving is the primary factor contributing to
teleworkers’ high transport emissions and the recent decline in these
emissions. The availability of robust public transport facilities and sus-
tainable travel options could significantly enhance the environmental
benefits of teleworking. Should teleworkers opt for low-emission travel
modes, their extended business travel distances or increased frequency
of non-work trips would not compromise the potential emissions savings
offered by teleworking.

A fourth implication suggests that teleworkers may travel more due
to social isolation or physical inactivity. Teleworkers often travel for
business, social, and sports-related purposes, which could be because the
teleworking lifestyle necessitates traveling further to engage in social
interactions and physical activities, essential for maintaining mental and
physical well-being. This highlights the need to consider teleworkers’
health in transport policy design. For example, providing more local co-
working spaces could help teleworkers maintain social connections
while reducing their transport emissions.

6. Limitations and avenues for future research

The primary limitation of this study is that it relies on a partial
equilibrium model, which permits certain key variables to fluctuate
while keeping all others constant. Due to data availability, we focus on
the current observed changes in a few key determinants, such as travel
mode, trip purpose, peak-time travel and population density. There is a
possibility that numerous other variables may shift in the long term,
potentially altering the outcomes. These include public transport
availability, transport costs, and technologies beyond EVs. Further
qualitative analysis may be necessary. For example, if public transport
prices decrease significantly, encouraging teleworkers to use it more
frequently, then teleworkers might have lower transport emissions than
non-teleworkers. Furthermore, if drones begin to replace vehicles for
delivering goods to remote locations (Koiwanit, 2018), ‘telesprawl’
might not lead to an increase in emissions from non-work trips for
accessing essentials such as groceries.

The policy implications of this study are subject to feasibility. For
example, the research identifies one-way non-work distance as the most
significant factor affecting teleworkers’ transport emissions. However,
the feasibility of reducing the distance between home and local facilities
depends on numerous factors, such as housing prices, personal prefer-
ences, household composition, and occupation. For instance, in a dual-
occupancy household where one partner teleworks and the other com-
mutes, relocating closer to the commuter’s workplace to minimize en-
ergy consumption is a practical option. Other factors, including the cost
of living and children’s education, may pose challenges for teleworkers
seeking proximity to their workplaces or urban centers.

The research has not considered selection bias. First, there is a pos-
sibility that people who live in remote areas are more likely to choose
teleworking. If this is true, teleworking facilitates employment oppor-
tunities for individuals in their local area, offering job access to those
with mobility issues or disabilities and enabling firms to hire individuals
with in-demand skills or those who are well-suited for specific roles.
These advantages could surpass the potential downside of teleworkers
having higher transport energy consumption than non-teleworkers.
Second, it is possible that after the pandemic, some of the pre-
pandemic non-teleworkers—who may inherently have lower travel
demand—started teleworking. This shift could lower the average
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emissions of the post-pandemic teleworker group and therefore narrow Declaration of generative AI and Al-assisted technologies in the
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Appendix ASupplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tranpol.2025.103865.

Appendix 1. Sobol indices estimation

Appendix 1 shows the three steps to estimate Sobol indices. First, allow all the other inputs x.; to vary for each possible value of x;, and record the
expected values of output y:

EX~( (.YIXi) (1)

Equation (1) measures all the expected values of y given a possible value of x;, when all the other non-x values vary in their own domains con-
ditional on the value of x;.
Second, measure the variance of these expected values for each possible value of x;:

in (EXNl O'\Xl)) (2)

Equation (2) measures the total variance of y by changing x; and considering its correlations with other variables.
Finally, we compare the variance caused by x; with the total variance of y, and obtain a global sensitivity score St;, which is a percentage value
measuring how much x; contributes to the total variance of y:

VX[ (Exwi (y‘xl))
V()

Equation (3) indicates the contribution to the total variance of y by x; considering its correlations with other variables. In Equation (3), the higher
the sensitivity score S;, the more important variable X; is in explaining the total variance of output y considering its impact on other variables x_;.

To further demonstrate how Sobol indices measure global sensitivity, let us have an example of a model with only three input variables x;, xo and
x3. Then one will have the following decomposition of total variance Sy (Sobol, 2001). Sy is the sum of all sensitivity scores, which equals to one.

Sri= 3

St=51 +S2+S3+S12+S13+S23 +S123 =1 @

, where S;5 is the share of variance caused by the correlation between variables x; and x», S1o3 is the share of variance caused by the correlation
between all three variables x;, x; and x3. S12, So3 and Si3 are the so-called second-order sensitivity indices, and Sy33 is the so-called third-order
sensitivity indices.

The local sensitivity for x; is S;.

The global sensitivity for x; is a sum of x;’s first-order, second-order and third-order sensitivity indices. Let the global sensitivity of x; be denoted
as sTl .

St1 =951 + S12 + S13 + S123 5)

St1 includes variances when x; correlates with x; and/or xs, hence differs from local sensitivity.
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Appendix 2. Additional tables and figures

Fig. 2a compares the vehicle sizes among non-teleworkers, high-frequency teleworkers, and low-frequency teleworkers. It reveals that teleworkers
tend to prefer larger vehicles. However, the considerable proportion of missing data—at least 40 % for each category of teleworking—substantially

undermines the reliability of this conclusion.
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Fig. 2a. Comparison of vehicle sizes by teleworking type
Note: DEAD indicates that the question was not asked in this year of the survey; DNA indicates that the question was asked, but the respondent did not answer, or
response could not be coded; NA indicates that the question was not asked, mostly due to question routing.

Fig. 2b examines the fuel types of vehicles owned by three distinct groups of workers: non-teleworkers, high-frequency teleworkers, and low-
frequency teleworkers. It is evident that petrol and diesel vehicles are predominant in the vehicle stock across all worker categories, indicating
that electric vehicles have not yet gained widespread popularity among England’s workforces. Notably, teleworkers show a higher propensity for
diesel vehicle ownership compared to non-teleworkers, with approximately 10 % more teleworkers possessing diesel vehicles. Conversely, non-
teleworkers tend to favor petrol vehicles.
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Fig. 2b. Comparison of vehicle fuel types by teleworking type
Note: NA indicates that the question was not asked, mostly due to question routing.

Fig. 2c illustrates the average weekly transport emissions by occupation type among the three types of workers before the pandemic. The six
occupation types considered are managerial and technical occupations, professional occupations, skilled non-manual occupations, skilled manual
occupations, partly skilled occupations and unskilled occupations.
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Fig. 2c. Transport emissions by occupation type and teleworking type
Note: the dot shows the median value. Due to data availability, other values, including post-pandemic data, are not shown.

Fig. 2c reveals that, in general, higher-skilled workers have greater transport emissions than low-skilled workers. This trend is particularly pro-
nounced among non-teleworkers and high-frequency teleworkers. Specifically, high-skilled workers in these two categories exhibit emissions
approximately two to three times higher than their low-skilled counterparts. Interestingly, even when low-skilled, low-frequency teleworkers’
transport emissions remain significantly elevated. High-skilled low-frequency teleworkers have 50 % more emissions than their low-skilled
counterparts.

Another noteworthy observation from Fig. 2c is that the emission gap between non-teleworkers and low-frequency workers widens as workers
become less skilled. Specifically, all types of workers in professional occupations have very similar transport emissions. In contrast, among unskilled
occupations, low-frequency teleworkers have twice the emissions of non-teleworkers. However, the emission gap does not differ significantly by
occupation between non-teleworkers and high-frequency teleworkers.
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