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 A B S T R A C T

The growing necessity for autonomous space operations has intensified due to the proliferation of on-orbit 
servicing missions and the critical need to mitigate space debris accumulation, highlighting the essential 
role of precise and reliable autonomous docking systems. In response to these challenges, this paper presents 
and validates a novel hybrid methodology for autonomous spacecraft docking that integrates Convolutional 
Neural Networks (CNNs) with Perspective-n-Point (PnP) algorithms for monocular pose estimation. The 
proposed hybrid framework synergistically combines CNN-based keypoint detection with PnP geometric 
reconstruction and RANSAC-based outlier rejection to achieve robust and accurate pose estimation under 
diverse operational conditions, including variable illumination, viewing geometries, and approach trajectories. 
A comprehensive evaluation of CNN backbone architectures was conducted using both synthetic and real-
world datasets to optimize performance characteristics, encompassing ResNet50, MobileNet, EfficientNet, 
and HRNet architectures. Experimental validation was performed in a controlled facility utilizing robotic 
hardware and specialized illumination systems designed to replicate space environmental conditions. The 
system demonstrated exceptional performance, maintaining translational errors below 0.30% and rotational 
errors below 1.14◦ during simulated docking scenarios. Comparative analysis with other direct pose estimation 
methodologies confirms that the proposed hybrid approach achieves superior translational accuracy while 
preserving high rotational precision, establishing its viability for autonomous spacecraft operations.
1. Introduction

As On-Orbit Servicing (OOS) operations and Active Debris Removal 
(ADR) initiatives gain momentum, the demand for precise autonomous 
space operations has intensified [1,2]. Recent technological advance-
ments have catalyzed the development of the OOS capabilities, marking 
a pivotal shift in space mission architecture and sustainability [3]. 
Autonomous systems capable of executing complex maneuvers without 
human intervention are essential for enabling routine docking opera-
tions, particularly given communication delays and limited bandwidth 
between Earth and orbital assets [4].

While traditional Guidance, Navigation, and Control (GNC) sys-
tems have established reliable foundations for space operations, they 
often struggle with adaptive responses to uncooperative targets or dy-
namic space environments [5]. The integration of Artificial Intelligence 
(AI) solutions, particularly Deep Learning (DL), offers promising en-
hancements to relative navigation capabilities by learning from diverse 
environmental conditions and adapting to unforeseen scenarios [6]. DL 
approaches offer particularly compelling advantages for space naviga-
tion through their ability to leverage low-cost passive sensors such as 

∗ Corresponding author.
E-mail addresses: safinaz.khalil.2@citystgeorges.ac.uk (S. Khalil), ziwei.wang.3@citystgeorges.ac.uk (Z. Wang), nabil.aouf@citystgeorges.ac.uk (N. Aouf).

monocular and stereo cameras, thereby eliminating the dependency on 
power-intensive active sensors like LIDAR or radar systems. This pas-
sive sensing integration not only reduces power consumption but also 
minimizes mass and volume requirements while eliminating moving 
components that could compromise long-term reliability [7,8]. Further-
more, camera-based systems provide rich contextual information that 
DL algorithms can process to handle challenging conditions, including 
orbital lighting variations, occlusions, and spacecraft with unknown or 
altered configurations. As demonstrated by Phisannupawong et al. [9], 
monocular vision-based navigation systems enhanced by deep learn-
ing can achieve centimeter-level positioning accuracy with minimal 
computational overhead, establishing their viability as alternatives to 
traditional sensor suites for smaller satellites and extended missions.

While recent end-to-end deep learning approaches in spacecraft 
pose estimation directly regress relative position and attitude param-
eters within a single network, such methods present several limitations 
for safety-critical space applications. AI-based spacecraft navigation 
systems exhibit significant vulnerability to adversarial attacks that can 
induce critical navigation errors without being readily detectable by 
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human operators [10]. Even subtle perturbations to input imagery 
can cause substantial errors in DL-based pose estimation systems, po-
tentially resulting in mission failures during critical operations such 
as autonomous docking. Additionally, the black-box nature of end-
to-end systems limits interpretability, making it difficult to diagnose 
failure modes or validate intermediate results during critical docking 
operations.

This research addresses these limitations by developing a hybrid 
methodology that combines the interpretability and computational ef-
ficiency of classical computer vision algorithms with the adaptability 
and pattern recognition capabilities of DL. The proposed framework uti-
lizes Convolutional Neural Networks (CNNs) for robust keypoint detec-
tion followed by Perspective-n-Point (PnP) algorithms enhanced with 
RANSAC outlier rejection to determine precise 6-degree-of-freedom (6-
DOF) pose estimation in terms of relative position and attitude. The 
proposed two-stage approach offers several key advantages over end-to-
end methods: (1) enhanced training stability through well-established 
geometric constraints provided by PnP solvers; (2) reduced sensitivity 
to annotation noise, as keypoint detection tolerates labeling uncertain-
ties better than direct pose regression; and (3) improved interpretability 
through intermediate keypoint outputs that enable visual verification 
and failure analysis. The proposed methodology has been comprehen-
sively evaluated using both synthetic datasets generated from high-
fidelity International Space Station (ISS) models and real-world ex-
perimental data captured under simulated space lighting conditions. 
The evaluation methodology includes rigorous assessment of various 
CNN backbone architectures, including ResNet50 [11], MobileNet [12], 
EfficientNet [13], and HRNet [14], to identify optimal configurations 
balancing keypoint detection accuracy and computational efficiency. 
Furthermore, this work introduces a novel ‘‘soft dataset’’ approach 
that enhances model generalization by selectively curating training 
examples to emphasize the most informative segments of docking 
sequences.

The principal contributions of this work are as follows:

• Development of a novel hybrid pose estimation framework that 
integrates CNN-based keypoint detection with PnP algorithms and 
RANSAC outlier rejection for robust relative pose estimation in 
autonomous spacecraft docking scenarios.

• Introduction of a ‘‘soft dataset’’ regularization technique that 
strategically excludes temporally proximate frames to enhance 
model generalization capability across diverse docking scenarios 
and operational conditions.

• Comprehensive evaluation of multiple CNN backbone architec-
tures across varying docking scenarios, illumination conditions, 
and approach trajectories, establishing quantitative performance 
benchmarks for autonomous docking systems in space environ-
ments.

• Rigorous validation of the proposed system using both synthetic 
and real-world experimental datasets, demonstrating both practi-
cal applicability and robustness under simulated space conditions.

The remainder of this paper is organized as follows: Section 2 pro-
vides a comprehensive review of relevant literature and establishes the 
theoretical foundation for the proposed approach. Section 3 presents 
a detailed exposition of the methodology and design specifications of 
the hybrid pose estimation system. Section 4 presents comprehensive 
experimental results and performance analysis using both synthetic and 
real-world datasets. Finally, Section 5 concludes with a discussion of 
the research implications and identifies promising directions for future 
investigation.

2. Background and related works

The incorporation of deep learning methodologies in spacecraft 
docking and refueling applications has yielded substantial advance-
ments, particularly in non-cooperative rendezvous (NCRV) scenarios 
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where accurate and real-time pose estimation is critical for mission 
success. Existing research spans a spectrum of approaches, ranging from 
SLAM-based methods that extend traditional navigation pipelines, to 
direct regression networks that infer pose end-to-end, and two-stage 
techniques that integrate learned keypoint detection with classical 
Perspective-n-Point solvers.

2.1. SLAM-based methods

Recent advances in SLAM-based navigation highlight the value 
of combining complementary sensing modalities. One such approach 
is presented by Du et al. [15] developed an angles-only navigation 
algorithm incorporating multisensor data fusion for spacecraft non-
cooperative rendezvous operations. Their methodology combines op-
tical measurements with range and range-rate data from ground-based 
radar systems using a Square-Root Unscented Kalman Filter (SRUKF). 
The approach addresses practical operational constraints where multi-
ple targets can only be simultaneously tracked by a single radar system. 
Semi-physical simulation validation confirmed that optical navigation 
cameras combined with inertial measurement units provide sufficient 
accuracy for non-cooperative spacecraft rendezvous scenarios.

Building on the theme of radar-assisted navigation but seeking to 
reduce reliance on multiple stations, Zhang et al. [16] introduced a 
hybrid real-time maneuver detection scheme that combines Input De-
tection and Estimation Extended Kalman Filter (IEEKF) with weighted 
nonlinear least squares methodologies. Their approach utilizes tem-
poral observation series from a single radar station, eliminating the 
requirement for multiple ground stations and addressing significant 
practical limitations of existing methods. Simulation results demon-
strated robust performance for impulse magnitudes ranging from 1.0 to 
100.0 m/s, with particularly strong performance above 5.0 m/s thresh-
olds. For smaller maneuvers, an iterative refinement methodology was 
developed to enhance maneuver time estimation accuracy.

While radar-based methods demonstrate strong utility, alternative 
sensing modalities such as LiDAR have also been explored to improve 
relative motion estimation in non-cooperative scenarios. Kechagias-
Stamatis et al. [17] introduced DeepLO, a deep learning-based LiDAR 
odometry system for spacecraft relative motion estimation that con-
verts 3D point cloud data into 2D depth image representations for 
CNN-based feature extraction. These 2D projections are subsequently 
processed by CNN architectures for feature extraction and then fed into 
Recurrent Neural Networks (RNNs). This hybrid CNN-RNN architec-
ture learns temporal dependencies for pose estimation, demonstrating 
superior performance compared to traditional Iterative Closest Point 
(ICP) algorithms, achieving translation errors below 1% of relative 
range and angular errors averaging 0.29 degrees. DeepLO’s multimodal 
sensor fusion approach integrates LiDAR, Inertial Measurement Unit 
(IMU), and vision-based sensors to maintain accuracy under challeng-
ing space conditions, including debris presence and occlusions. The 
system achieves real-time performance with 60-millisecond processing 
latency per LiDAR frame, establishing its suitability for autonomous 
docking and active debris removal missions. However, DeepLO’s gener-
alization capabilities across diverse docking scenarios remains limited 
without mission-specific reconfiguration.

To address the limitations of traditional LiDAR odometry systems, 
which rely on loosely coupled sensor fusion and suffer from drift 
accumulation in large-scale environments, Shan et al. [18] proposed 
LIO-SAM, a tightly coupled LiDAR Inertial Odometry framework based 
on factor graph optimization. By integrating IMU preintegration, Li-
DAR scan-matching, GPS measurements, and loop closure constraints 
within a unified graph structure, LIO-SAM achieves highly accurate 
real-time trajectory estimation. The framework supports data playback 
at rates up to 13x real-time and achieves Root Mean Square Error 
(RMSE) below 1 m in GPS-referenced evaluations. These performance 
metrics have been validated across five datasets and three platform 
configurations, including handheld, ground-based, and marine vehicles. 
LIO-SAM’s modular architecture and precision characteristics establish 
it as a compelling solution for autonomous navigation in challenging, 
GPS-denied, or dynamic environments, including space operations.
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2.2. Direct regression-based methods

A significant contribution in this domain is ChiNet [19], which 
employs a Deep Recurrent Convolutional Neural Network (DRCNN) ar-
chitecture for spacecraft relative pose estimation. The system leverages 
multimodal data fusion by integrating imagery from both visible spec-
trum and Long-Wavelength Infrared (LWIR) cameras. This multimodal 
approach enables robust performance under environmental variabil-
ity, including illumination fluctuations and conditions that typically 
degrade the performance of conventional vision-based methods. The 
architecture synergistically combines Convolutional Neural Networks 
(CNNs) for spatial feature extraction with Long Short-Term Memory 
(LSTM) units to capture temporal dependencies in sequential image 
data. The system processes Red–Green–Blue-Thermal (RGBT) image 
sequences, incorporating both visible and infrared modalities. Thermal 
imaging proves particularly advantageous in space docking scenar-
ios where shadows, solar glare, or low-light conditions significantly 
compromise visible-spectrum sensors. Through LWIR data integration, 
ChiNet demonstrates high accuracy across diverse environmental con-
texts.

Building upon the demonstrated effectiveness of temporal depen-
dencies in spacecraft pose estimation, Yang et al. [20] proposed PVSPE, 
a pyramid vision multitask transformer network that addresses inherent 
limitations of traditional CNN methodologies in spacecraft pose estima-
tion. The approach combines an enhanced pyramid vision transformer 
backbone with a specialized feature pyramid network for robust feature 
extraction and incorporates Matrix Fisher and multivariate Gaussian 
distributions for comprehensive uncertainty modeling. Experimental 
validation demonstrated degree-level attitude accuracy and centimeter-
level translation precision under challenging illumination conditions. 
This transformer-based methodology significantly enhances robustness 
for on-orbit servicing missions. Accurate pose estimation for uncoopera-
tive spacecraft remains a critical challenge for autonomous rendezvous 
and docking.

Proença and Gao [21] addressed this by proposing a deep learning 
framework trained on URSO, a custom built photorealistic render-
ing simulator based on Unreal Engine 4, which generates labeled 
spacecraft imagery under realistic Low Earth Orbit (LEO) conditions. 
Their approach reformulates orientation estimation as a probabilistic 
soft classification problem, modeling ambiguity through a Gaussian 
mixture over discretized Euler angles. Compared to direct quaternion 
regression, this formulation significantly improves generalization and 
robustness. Their best model achieved 0.17 m translation error and 
4.0◦ orientation error on the real test set of ESA’s pose estimation chal-
lenge earning second place among all submissions—and demonstrated 
strong sim-to-real transferability using just five real images for domain 
adaptation. Experiments on synthetic and real datasets showed that 
orientation soft classification outperforms regression by over 5◦, and 
training with simulated camera perturbations and contrast augmen-
tations further reduced orientation error by more than 11.5◦. These 
results highlight the efficacy of combining synthetic data generation 
with uncertainty aware deep models for robust 6-DOF pose estimation 
in space based applications. However, the framework’s dependency 
on synthetic datasets restricts its effectiveness when adapting to real 
mission environment variability.

The research of Duarte et al. [22] introduced a recent study concern-
ing monocular pose estimation systems for autonomous space refueling. 
They developed a machine learning-based image-driven navigation 
framework to offer low-cost pose estimation capabilities using single 
camera setups rather than expensive active sensing systems such as 
LIDAR. For enhanced prediction accuracy during diverse docking sit-
uations scientists trained their CNN with synthetic data derived from 
high-detail CAD spacecraft models and analysis of shape variations in 
different lighting conditions. Position errors remained below 1% of 
relative range with orientation errors under 1 degree during testing 
which demonstrates compliance with industry docking standards. Their 
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development leverages dropout layers together with data augmentation 
to extend its generalization capabilities to new conditions which have 
not been seen before. Through experimentation with a robotic arm in 
a simulated laboratory setting, they confirmed the model’s ability to 
perform effectively in real time under space docking conditions. Their 
results show that although theoretical designs demonstrate exceptional 
performance with synthetic-based training, the effectiveness must still 
be validated in real-world environments. The inclusion of real mis-
sion data into these datasets will help researchers solve the difficult 
problems presented by space environments.

2.3. Two-stage methods (keypoint detection + PnP)

Standard vision-based docking approaches suffer in Low Earth Orbit 
(LEO) due to intense lighting variation, reflections, and saturation. 
Munasinghe et al. [23] addressed these limitations by developing a 
photometrically accurate LEO simulation testbed and introducing a 
robust event-based vision pipeline for docking port detection. The setup 
includes a robotic arm with a satellite mock-up, realistic illumination 
using a 130 klm∕m2 artificial sun, and Earthshine simulation to repli-
cate orbital lighting. A Dynamic Vision Sensor (DVS) event camera 
is used to collect asynchronous brightness changes, allowing visual 
perception under conditions where RGB cameras fail. The proposed 
detection pipeline accumulates 20,000 events into histograms, applies 
a CNN-based ring filter, and performs ellipse fitting via RANSAC to 
estimate the pose of a reflective docking port. The system achieved 
a mean localization error of 8.58 pixels, with maximum errors up to 
39 pixels, corresponding to 2.48% and 3.30% of the image width and 
height respectively. Notably, this was accomplished even when RGB 
images exhibited over 30% pixel saturation, highlighting the resilience 
of event cameras in extreme lighting. Furthermore, the pipeline was 
trained in under an hour on a mobile GPU using only  20 min of 
data and generalized well across physical augmentations of the satellite 
texture. These results demonstrate the potential of event cameras to 
enable reliable, low-power, and high speed visual sensing for future 
autonomous satellite docking systems operating in dynamic orbital 
environments.

The machine vision system for spacecraft docking navigation pre-
sented by Chien and Baker [24] analyzes RGB image data for real-
time adjustments during docking. The navigation machinery recognized 
high-contrast geometric features from the target spacecraft which en-
abled accurate pose determination. The system demonstrated successful 
docking navigation capabilities because simulated docking scenarios 
produced position RMS errors below 5 cm and attitude errors under 0.5 
degrees. Related studies, including the work by Kisantal et al. demon-
strate that high-resolution synthetic datasets can significantly enhance 
the training of systems for relative pose estimation [25]. The detection-
based approach which this system uses can suffer from decreased 
performance when working in low-light conditions or environments 
with strong reflections.

The survey conducted by Song et al. [7] gives a good insight about 
deep learning-based methods for spacecraft relative navigation. The 
survey includes different deep learning architecture models such as 
CNNs and RNNs and discusses on the possibility of expanding the 
accuracy of the pose of estimations and robustness. It brings into 
focus various training strategies, and the use of virtual and actual 
environments datasets and the problems related to the deployment of 
these models in the space. The survey emphasizes the benefits of deep 
learning in combination with the use other techniques to traditional 
techniques to complement the deep learning, to increase the reliability 
of docking and rendezvous spacecraft missions. The survey also reveals 
the current challenges, successes, trends, and further development of 
the field, which outlines the further prospective for research.

The work by Kiruki and Asami [26] makes a significant contri-
bution by addressing the challenge of deploying deep learning-based 
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spacecraft pose estimation algorithms on resource-constrained plat-
forms such as nanosatellites. The authors focus on implementing the 
inference stage of CNN-based landmark localization directly on Field 
Programmable Gate Arrays (FPGAs), specifically utilizing the Xilinx 
Zynq UltraScale+ MPSoC device.

Three different approaches for landmark localization were evalu-
ated: (i) direct regression using a ResNet-50 model, (ii) detection-based 
heatmap estimation using a U-Net, and (iii) a hybrid detection ap-
proach combining spacecraft detection via YOLOv3 with cropped input 
for landmark detection using ResNet34–U-Net. Results demonstrated 
that detection-based methods significantly outperform direct regres-
sion, with the ResNet34–U-Net achieving an average RMS error of 
1.98 pixels compared to 64.5 pixels for regression methods. Further-
more, incorporating spacecraft detection and cropping before land-
mark localization improved robustness under challenging illumination 
conditions.

Kiruki and Asami [26] address the challenge of deploying CNN-
based spacecraft pose estimation on resource-constrained nanosatellites 
by proposing an onboard inference framework using a Xilinx Zynq 
UltraScale+ MPSoC device. Their study evaluates three approaches for 
landmark localization: (i) direct regression with a ResNet-50 backbone, 
(ii) heatmap-based detection using U-Net, and (iii) a hybrid pipeline 
combining spacecraft detection via YOLOv3 with cropped landmark 
detection using ResNet34–U-Net. Results show that detection-based 
methods substantially outperform regression approaches, with the Res-
Net34–U-Net achieving an average RMS error of 1.98 pixels compared 
to 64.5 pixels for direct regression. Furthermore, preprocessing through 
spacecraft detection and cropping significantly enhances robustness un-
der challenging illumination. A key contribution is the demonstration 
that FPGA-based inference with 8-bit quantization achieves comparable 
accuracy to PC-based floating-point implementations, with an average 
RMS error difference of less than 0.55. The proposed onboard solution 
also operates at a low power budget of approximately 3.5 W, confirm-
ing its suitability for autonomous, power-limited spacecraft engaged in 
on-orbit servicing and debris removal missions.

Ma et al. [27] propose GKNet, a graph-based keypoints network 
for monocular pose estimation of non-cooperative spacecraft. Unlike 
conventional hybrid methods that treat keypoints as isolated features, 
GKNet explicitly leverages the geometric constraints of a keypoint 
graph to reason about spatial relationships. This design enhances ro-
bustness against structural symmetry and partial occlusion, two ma-
jor challenges in spacecraft pose estimation. The architecture em-
ploys a dual-branch decoder, consisting of an upsampling-based branch 
and a graph-convolutional branch, whose outputs are fused to predict 
accurate keypoint heatmaps.

To support rigorous evaluation, the authors introduce the Spacecraft 
Keypoints Dataset (SKD), comprising 90,000 simulated images with 
precise annotations for three different spacecraft models. Experimental 
results demonstrate that GKNet consistently outperforms state-of-the-
art keypoint detectors such as HRNet and ResUNet. For instance, on 
Satellite 02, GKNet reduced RMSE to 29.1 pixels compared to 74.7 
for HRNet, while also improving pose accuracy when combined with a 
standard PnP solver. Ablation studies further confirm the contribution 
of the graph-convolutional branch, showing significant degradation 
when it is removed. These results highlight that incorporating structural 
context into keypoint detection substantially improves both detec-
tion and downstream pose estimation accuracy for non-cooperative 
spacecraft in challenging orbital conditions.

Chen et al. [28] propose a monocular pose estimation framework 
that combines deep landmark regression with nonlinear pose refine-
ment for space-borne satellites. Their approach begins by reconstruct-
ing a sparse 3D model of the target spacecraft through multi-view 
triangulation, selecting 11 visually distinctive landmarks such as cor-
ners and antenna endpoints. A deep network based on High-Resolution 
Net (HRNet) is then trained to regress the 2D image coordinates of 
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these predefined landmarks from bounding-box-cropped satellite im-
ages. By maintaining high-resolution representations, HRNet achieves 
superior landmark localization accuracy compared to lower-resolution 
backbones.

The predicted 2D landmarks are associated with their 3D coun-
terparts, and a Perspective-n-Point (PnP) solver followed by a robust 
nonlinear least-squares optimization refines the estimated pose. To fur-
ther enhance robustness, the authors introduce a Simulated Annealing–
Levenberg–Marquardt Pose Estimator (SA-LMPE), which adaptively re-
moves outlier correspondences during optimization. Evaluated on the 
SPEED dataset from the Kelvins Pose Estimation Challenge (KPEC), 
their method achieved a cross-validation orientation error of 0.73◦ and 
a translation error of 0.036 m, ranking first in the competition with an 
overall score of 0.0094. This work demonstrates that combining deep 
landmark regression with geometric optimization provides state-of-the-
art accuracy for spacecraft pose estimation, significantly outperforming 
prior methods such as the Spacecraft Pose Network (SPN).

2.4. Critical analysis of related works

While SLAM-based methods (e.g., Du et al. [15], Zhang et al. [16], 
Kechagias-Stamatis et al. [17], Shan et al. [18]) demonstrate strong 
multisensor fusion capabilities, they rely heavily on radar or LiDAR 
inputs and ground-based infrastructure, which limits scalability for 
purely onboard, vision-based navigation in deep space. Direct regres-
sion approaches such as ChiNet [19], PVSPE [20], or synthetic-data 
driven frameworks like Proença and Gao [21] and Duarte et al. [29] 
offer end-to-end learning but suffer from limited interpretability, sen-
sitivity to label noise, and poor generalization across illumination and 
background variations critical factors in docking scenarios. Two-stage 
pipelines, including event-based docking [23] or RGB feature extrac-
tion [24], improve robustness but remain tailored to specific sensor 
modalities, making them less versatile for passive monocular systems. 
FPGA-based studies (Kiruki and Asami [26]) address onboard efficiency 
but do not explicitly handle temporal redundancy or generalization 
across docking sequences. Recent keypoint driven architectures such as 
HRNet-based landmark regression [28] or graph based networks like 
GKNet [27] achieve high accuracy on benchmark datasets, but often 
assume cooperative targets, high quality synthetic training, or extensive 
landmark visibility, which does not reflect operational constraints in 
low-light or cluttered orbital conditions.

In contrast, our proposed methodology deliberately integrates CNN-
based keypoint detection with geometric PnP [30] and RANSAC [31], 
ensuring interpretability, robustness to annotation noise, and geometric 
consistency. The introduction of the soft dataset addresses temporal re-
dundancy and overfitting issues largely ignored in prior works thereby 
enhancing generalization across both synthetic and real-world dock-
ing sequences. Furthermore, by validating across multiple lightweight 
backbones (ResNet [11], MobileNet [12,32], EfficientNet [13], HR-
Net [14]) and deploying on space grade hardware [33,34], our frame-
work balances accuracy, efficiency, and reliability, offering a more 
practical solution for autonomous docking than existing SLAM-based, 
regression based, or sensor-specific methods.

3. Methodology

The proposed pose estimation methodology employed in this work 
utilizes an indirect, hybrid approach: keypoint features are first de-
tected in 2D imagery through a deep learning network, followed by 
recovery of the ISS’s 6-DOF pose through robust PnP problem formula-
tion. Although the ISS is traditionally classified as a cooperative space-
craft equipped with retroreflectors, GPS transponders, and docking 
target fiducials to assist chaser vehicle navigation [35], our proposed 
monocular pipeline operates without active beacons or artificial mark-
ers. In this case, the ISS is treated as a non-cooperative target, where 
pose estimation must be inferred exclusively from passive imagery 
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(a) Model training pipeline

(b) Model testing pipeline

Fig. 1. Overall workflow of the proposed CNN-based pose estimation framework.
under complex Earth-background clutter and unfiltered solar illumi-
nation conditions. As noted by Shi et al. [36], logistical vehicles can 
only approach the ISS through a constrained zenith-ward trajectory, 
resulting in the target spacecraft being consistently observed against 
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Earth’s backdrop, thereby creating particularly challenging conditions 
for non-cooperative operations.

The proposed framework integrates PnP algorithms with Convo-
lutional Neural Network (CNN) architectures to process the target’s 
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datasets. The CNN predicts 2D keypoint locations within RGB im-
agery while simultaneously extracting spatial features critical for high-
precision pose estimation. Based on these extracted features, the PnP 
algorithm computes the spatial position and orientation of the ISS, 
which is essential for autonomous docking operations.

The subsequent sections provide detailed exposition of the CNN 
architecture design rationale for 2D keypoint prediction, along with 
comprehensive analysis of various backbone architectures that enhance 
the robustness and accuracy of the complete pose estimation pipeline.

3.1. Methodology overview

A tailored CNN-based architecture (Fig.  1) is developed for ac-
curate and efficient 2D keypoints prediction in RGB imagery. This 
architecture addresses the computational efficiency and environmental 
robustness requirements critical for space applications. The network 
processes RGB inputs through a hierarchical series of convolutional 
layers that progressively capture and refine spatial features relevant to 
autonomous docking operations. The initial convolutional layers focus 
on detecting low-level patterns that establish a foundational repre-
sentation of the input imagery. These foundational layers enable the 
network to consistently identify critical structural elements within the 
target docking region, facilitating robust feature learning in subsequent 
network stages.

Intermediate convolutional layers capture spatial relationships es-
sential for precise keypoint localization as data propagates through the 
network hierarchy. These layers are designed to learn mid-level spatial 
patterns, including corners, junctions, and other docking-specific land-
marks. Given the high-precision requirements of docking scenarios, this 
processing stage is particularly critical, as minor errors in keypoint pre-
diction can propagate into significant pose estimation inaccuracies. To 
enhance training stability and model generalization, batch normaliza-
tion is applied following each convolutional layer to standardize input 
distributions and maintain gradient flow throughout the architecture. 
ReLU activations introduce non-linearity, enabling the network to learn 
complex spatial relationships within the data.

The architecture subsequently employs deeper convolutional layers 
specialized for extracting higher-level, abstract features. These layers 
operate with expanded receptive fields and integrate broader spatial 
contexts, enabling the network to distinguish between critical dock-
ing landmarks and irrelevant background structures. These deeper 
layers are critical for maintaining model robustness in space environ-
ments characterized by various lighting conditions, specular reflections, 
and dynamic shadow patterns. Furthermore, the deeper architecture 
components are optimized to reduce model sensitivity to noise and 
minor input image variations, ensuring consistent keypoint detection 
performance.

Experimentally, an attention mechanism was integrated into the 
network to direct model focus toward relevant regions within in-
put imagery. This mechanism enables selective attention to keypoint-
containing areas while suppressing irrelevant background details, par-
ticularly beneficial in scenarios involving distracting backgrounds or 
noisy environments. Specifically, we instantiate this mechanism as a 
Squeeze-and-Excitation (SE) channel-attention module placed imme-
diately before the final convolution of the prediction head. Let the 
backbone output be 𝐗(0)∈R𝐵×1280×𝐻0×𝑊0 ; two subsequent convolutions, 
Conv1280→1024 and Conv1024→512, yield 𝐗∈R𝐵×512×𝐻×𝑊 . 

𝐗(0) ∈ R𝐵×1280×𝐻0×𝑊0 . (1)

𝐗 = Conv1024→512
(

Conv1280→1024(𝐗(0))
)

∈ R𝐵×512×𝐻×𝑊 . (2)

The SE block first compresses the spatial dimensions by global 
average pooling to produce a 2-D channel descriptor: 
𝐳 = GAP (𝐗) ∈ R𝐵×512, (3)
(𝐻,𝑊 )

617 
𝑧𝑏,𝑐 =
1

𝐻𝑊

𝐻
∑

ℎ=1

𝑊
∑

𝑤=1
𝑋𝑏,𝑐,ℎ,𝑤. (4)

This 4-D→2-D reduction preserves channel semantics while removing 
spatial variability solely for the attention computation. Channel gates 
are then computed with a two-layer MLP (reduction ratio 𝑟) using a 
ReLU nonlinearity, 
𝐬 = 𝜎

(

𝐖2 ReLU(𝐖1 𝐳)
)

∈ R𝐵×512, (5)

where 𝜎(⋅) denotes the sigmoid, 𝐖1 ∈R
512
𝑟 ×512 and 𝐖2 ∈R512× 512

𝑟 . The 
resulting 2-D gate vector 𝐬 is then broadcast back over (𝐻,𝑊 ) and 
applied channel-wise to the original 4-D tensor: 
𝐗̃𝑏,𝑐,ℎ,𝑤 = 𝑠𝑏,𝑐 𝑋𝑏,𝑐,ℎ,𝑤, (6)

thereby restoring the 4-D shape while reweighting channels uniformly 
across spatial locations. This preserves spatial topology but amplifies 
keypoint-informative responses and attenuates distractors before the 
final convolution Conv512→256.

Following feature extraction, the refined feature maps are flattened 
and processed through fully-connected layers responsible for 2D key-
point coordinate predictions. These layers map the high-level spatial 
information extracted by convolutional stages to precise 2D keypoint 
locations (x, 𝑦 coordinates). The architecture is designed to ensure that 
these fully connected layers efficiently translate spatial relationships 
into accurate keypoint predictions, providing structured input for sub-
sequent pose estimation phases. The 3D pose of the ISS relative to the 
camera coordinate system is computed using the PnP algorithm, with 
the predicted keypoints serving as its input parameters.

The CNN’s structure, illustrated in Fig.  1, employs a balanced ap-
proach between depth and computational efficiency to ensure effective 
computation. This architecture establishes a robust AI-based frame-
work for high-accuracy pose estimation in space docking applications 
through the strategic integration of convolutional layers optimized 
for spatial relationship extraction, attention mechanisms for selective 
feature focus, and fully connected layers trained for precise 2D keypoint 
regression.

We note that in the synthetic dataset generation, the ECI frame 
was set to coincide with the virtual camera frame in Blender, which 
simplifies the transformation chain. This assumption was only applied 
in simulation and does not affect the real-world experiments, where the 
complete frame mapping is preserved.

3.2. RANSAC based PnP algorithm for pose estimation

Once the CNN has detected 2D keypoints on the target (e.g., the 
ISS), each detected pixel coordinate [37]: 

𝑥𝑖 =
[

𝑢𝑖
𝑣𝑖

]

∈ R2 (7)

is associated with a known 3D landmark in the target’s coordinate 
frame. 

𝑋𝑖 =
⎡

⎢

⎢

⎣

𝑋𝑖
𝑌𝑖
𝑍𝑖

⎤

⎥

⎥

⎦

∈ R3 (8)

To recover the camera’s pose relative to the target, we solve the 
Perspective-n-Point problem [38]. Throughout, let 𝑛 denote the total 
number of detected 2D–3D correspondences; thus, for 𝑖 = 1,… , 𝑛, we 
have (𝑋𝑖, 𝑥𝑖

)

.
The PnP problem seeks a rotation matrix 𝑅 ∈ R3×3 (satisfying 

orthonormality and unit-determinant, Eq. (11)), and a translation 𝑡 ∈
R3 that minimize the reprojection error: 

𝐸reproj(𝑅, 𝑡) =
𝑛
∑

‖

‖

‖

𝑥𝑖 − 𝜋
(

𝐾 [𝑅𝑋𝑖 + 𝑡 ]
)

‖

‖

‖

2

2
(9)
𝑖=1
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Here, 𝐾 ∈ R3×3 is the camera intrinsic matrix (see Eq. (14)); 𝜋 ∶ R3 →

R2 denotes the perspective-division mapping 

𝜋
(

[𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐 ]⊤
)

=
[

𝑋𝑐∕𝑍𝑐
𝑌𝑐∕𝑍𝑐

]

, 𝑍𝑐 > 0 (10)

and 𝑅𝑋𝑖 + 𝑡 transforms the 3D landmark 𝑋𝑖 from the object frame into 
the camera frame. The vector 𝑥𝑖 = [ 𝑢𝑖, 𝑣𝑖 ]⊤ is the observed 2D pixel 
coordinate. At least four non-coplanar correspondences are required to 
solve for the six degrees of freedom in (𝑅, 𝑡) [30,39]. 

𝑅𝑅⊤ = 𝐼3, det(𝑅) = 1 (11)

In practice, we first compute a closed-form estimate (𝑅init , 𝑡init
)

using the EPnP solver [30], and then refine (𝑅, 𝑡) by minimizing 𝐸reproj
over all 𝑛 points via Levenberg–Marquardt [38].

The rotation matrix 𝑅 is parametrized by a 3-vector 𝑟 = [ 𝑟𝑥, 𝑟𝑦, 𝑟𝑧 ]⊤

(Rodrigues parameters [40]). Specifically, 

𝑅(𝑟) = exp
(

[𝑟]×
)

= 𝐼3 +
[𝑟]×
‖𝑟‖

sin ‖𝑟‖ +
[𝑟]2×
‖𝑟‖2

(

1 − cos ‖𝑟‖
)

(12)

In Eq. (12), ‖𝑟‖ =
√

𝑟2𝑥 + 𝑟2𝑦 + 𝑟2𝑧 is the rotation angle in radians, and 

[𝑟]× =
⎡

⎢

⎢

⎣

0 −𝑟𝑧 𝑟𝑦
𝑟𝑧 0 −𝑟𝑥
−𝑟𝑦 𝑟𝑥 0

⎤

⎥

⎥

⎦

(13)

is the skew-symmetric matrix corresponding to 𝑟. After obtaining 𝑅init
from EPnP, we initialize the nonlinear stage using the inverse Rodrigues 
transform: 𝑟init = Rodrigues−1(𝑅init ).

Assuming zero skew and square pixels, the camera intrinsic ma-
trix [37] takes the form 

𝐾 =
⎡

⎢

⎢

⎣

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎤

⎥

⎥

⎦

(14)

In Eq. (14), 𝑓𝑥 and 𝑓𝑦 are the focal lengths (in pixels) along the 𝑥- and 
𝑦-axes, respectively; 𝑐𝑥 and 𝑐𝑦 denote the principal point coordinates, 
typically near the image center. The product 𝐾 [

𝑅𝑋𝑖 + 𝑡
] yields the 

camera-frame coordinates [𝑋𝑐,𝑖, 𝑌𝑐,𝑖, 𝑍𝑐,𝑖
]⊤ before projection.

During both the EPnP initialization and the full nonlinear refine-
ment [30], any 3D point 𝑋𝑖 projects to the image plane as 

𝑥̂𝑖 = 𝜋
(

𝐾 [𝑅(𝑟)𝑋𝑖 + 𝑡 ]
)

(15)

In Eq. (15), 𝑥̂𝑖 = [ 𝑢̂𝑖, 𝑣̂𝑖 ]⊤ ∈ R2 is the predicted 2D projection in 
pixel coordinates, and 𝑅(𝑟)𝑋𝑖+𝑡 = [𝑋𝑐,𝑖, 𝑌𝑐,𝑖, 𝑍𝑐,𝑖 ]⊤ are the coordinates 
of 𝑋𝑖 in the camera frame. The operator 𝜋 (See Eq. (10)) is simply 
the homogeneous-division mapping that takes a 3D point in camera 
coordinates and returns its 2D pixel projection.

To handle outliers in the CNN-detected correspondences, we em-
bed EPnP within a RANSAC loop [31]. Let 𝜏 be the inlier threshold 
(measured in pixels) and 𝑁max be the maximum number of RANSAC 
iterations (e.g., 1000). At each iteration 𝑗 = 1,… , 𝑁max, four correspon-
dences {(𝑋𝑖𝑘 , 𝑥𝑖𝑘 )}

4
𝑘=1 are randomly selected, ensuring when possible 

that {𝑋𝑖𝑘} are not coplanar. EPnP is then applied to these four pairs 
to obtain (𝑅(𝑗)

init , 𝑡
(𝑗)
init

)

, and 𝑟(𝑗)init = Rodrigues−1
(

𝑅(𝑗)
init

)

. Starting from 
(

𝑟(𝑗)init , 𝑡
(𝑗)
init

)

, Levenberg–Marquardt [41] is run on those four points to 
produce (𝑟(𝑗), 𝑡(𝑗)). For each correspondence 𝑖 = 1,… , 𝑛, the predicted 
projection is 

𝑥̂(𝑗)𝑖 = 𝜋
(

𝐾 [𝑅(𝑟(𝑗))𝑋𝑖 + 𝑡(𝑗) ]
)

, 𝑒(𝑗)𝑖 = ‖

‖

‖

𝑥𝑖 − 𝑥̂(𝑗)𝑖
‖

‖

‖2
(16)

Scaramuzza et al. [42]
A correspondence 𝑖 is classified as an inlier if 𝑒(𝑗)𝑖 < 𝜏. Let 𝑆(𝑗) denote 

the set of all inliers in iteration 𝑗, with cardinality |𝑆(𝑗)
|. If |𝑆(𝑗)

| exceeds 
the current maximum, the iteration’s pose parameters are recorded as 

𝑟 = 𝑟(𝑗), 𝑡 = 𝑡(𝑗), 𝑆 = 𝑆(𝑗) (17)
best best best
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After 𝑁max iterations, a final Levenberg–Marquardt optimization is 
performed over all correspondences in 𝑆best to minimize 
∑

𝑖∈𝑆best

‖

‖

‖

𝑥𝑖 − 𝜋
(

𝐾 [𝑅(𝑟)𝑋𝑖 + 𝑡 ]
)

‖

‖

‖

2

2
(18)

yielding the final pose (𝑟est , 𝑡est
)

.
In our implementation, the inlier threshold 𝜏 (measured in pix-

els) was empirically selected by analyzing the reprojection error (see 
Eq. (9)) distribution on a held-out calibration set comprising both 
synthetic and real images; we chose 𝜏 = 4px to represent approximately 
two standard deviations of the keypoint localization error distribu-
tion observed during validation [38]. The maximum iteration count 
𝑁max = 1000 was chosen to ensure 99.9% confidence of finding a 
consensus set with at least 70% inliers, following the standard RANSAC 
failure-probability formula [31]. These parameter choices consistently 
delivered accurate pose estimates across a wide range of test condi-
tions, underscoring the reliability and robustness of our PnP+RANSAC 
pipeline even in the presence of moderate keypoint noise.

In Eq. (18), 𝑟best and 𝑡best are the pose parameters from the iteration 
with the largest inlier set, and 𝑆best is the corresponding set of inlier 
indices. The resulting (𝑟est , 𝑡est

) minimizes the reprojection cost over 
all inliers in 𝑆best .

After obtaining (𝑟est , 𝑡est
)

, we compare it to the ground-truth pose 
(

𝑟gt , 𝑡gt
)

, provided by simulator logs or a motion-capture system, using 
two error metrics. First, the normalized position error is defined as [43] 

𝛿𝑡𝑟 =
‖

‖

‖

𝑡est − 𝑡gt
‖

‖

‖2
‖

‖

‖

𝑡gt
‖

‖

‖2

(19)

In Eq. (19), 𝑡est and 𝑡gt are the estimated and ground-truth translation 
vectors, ‖𝑡est−𝑡gt‖2 is their Euclidean distance, and ‖𝑡gt‖2 normalizes the 
error. Second, the attitude error is computed using unit quaternions. A 
rotation vector 𝑟 ∈ R3 corresponds to a unit quaternion 

𝑞 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑞𝑤
𝑞𝑥
𝑞𝑦
𝑞𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑞𝑤 = cos
(

‖𝑟‖∕2
)

(20)

⎡

⎢

⎢

⎣

𝑞𝑥
𝑞𝑦
𝑞𝑧

⎤

⎥

⎥

⎦

= sin
(

‖𝑟‖∕2
) 𝑟
‖𝑟‖

, ‖𝑞‖ = 1 (21)

Let 𝑞est and 𝑞gt be the quaternions corresponding to 𝑟est and 𝑟gt . The 
attitude error is then 
𝛿𝑞 = 2 arccos

(

|

|

|

𝑞est ⋅ 𝑞gt
|

|

|

)

(22)

In Eq. (22), 𝑞est and 𝑞gt are unit quaternions in R4 [42]. The dot 
product 𝑞est ⋅ 𝑞gt computes the cosine of half the angle between the two 
rotations; taking the absolute value inside arccos ensures the smallest 
angle between equivalent quaternion representations (𝑞, −𝑞). Conse-
quently, 𝛿𝑞 ∈ [0, 𝜋] measures the angular discrepancy in radians [43].

3.3. Synthetic data generation

We generate synthetic RGB images of the ISS and corresponding 
2D keypoint annotations by first simulating orbital motion in MAT-
LAB/Simulink (10 Hz) and then rendering in Blender (see Table  1 and 
Figs.  6 and 7). Below are the detailed steps, equations, and variable 
definitions.

In MATLAB/Simulink, the ISS orbit is defined by six classical Kep-
lerian elements {𝑎, 𝑒, 𝑖, 𝛺, 𝜔, 𝜈} [44]:

• 𝑎 = 𝑅𝐸+408 km, where 𝑅𝐸 = 6378 km is Earth’s radius and 408 km 
is the ISS altitude.

• 𝑒 ≈ 0.0001 is eccentricity.
• 𝑖 = 51.6◦ is inclination.
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• 𝛺 represents the right ascension of the ascending node (RAAN).
• 𝜔 is the argument of perigee.
• 𝜈 is the true anomaly (angle from perigee to current position).

At each simulation time 𝑡: 

𝑟(𝑡) =
𝑎
(

1 − 𝑒2
)

1 + 𝑒 cos
(

𝜈(𝑡)
) (23)

where:

• 𝑟(𝑡) is the distance from Earth’s center to the ISS at time 𝑡,
• 𝑎 is the semi-major axis,
• 𝑒 is eccentricity,
• 𝜈(𝑡) is the true anomaly at time 𝑡.

The coordinates in the orbital plane are [44]: 
𝑥orb(𝑡) = 𝑟(𝑡) cos

(

𝜈(𝑡)
)

, 𝑦orb(𝑡) = 𝑟(𝑡) sin
(

𝜈(𝑡)
)

(24)

Here:

• [ 𝑥orb(𝑡), 𝑦orb(𝑡) ]⊤ are the ISS coordinates in its orbital plane at 
time 𝑡.

To transform into Earth-Centered Inertial (ECI) coordinates, apply 
the rotation matrix 
𝑅ECI = 𝑅3

(

𝛺(𝑡)
)

𝑅1
(

𝑖
)

𝑅3
(

𝜔(𝑡)
)

(25)

with 

𝑅3(𝜃) =
⎡

⎢

⎢

⎣

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎤

⎥

⎥

⎦

𝑅1(𝜃) =
⎡

⎢

⎢

⎣

1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

⎤

⎥

⎥

⎦

(26)

Here:

• 𝛺(𝑡) is RAAN at time 𝑡,
• 𝑖 is inclination,
• 𝜔(𝑡) is argument of perigee at time 𝑡.

Thus, the ECI position vector [43] (denoted 𝑅̄(𝑡)) is 

𝑅̄(𝑡) = 𝑅ECI

⎡

⎢

⎢

⎣

𝑥orb(𝑡)
𝑦orb(𝑡)

0

⎤

⎥

⎥

⎦

(27)

Here:

• 𝑅̄(𝑡) ∈ R3 is the ISS ECI position at time 𝑡.

The ECI velocity vector 𝑉 (𝑡) is computed by integrating two-body 
dynamics (standard Keplerian differential equations). MATLAB/
Simulink directly outputs 𝑅̄(𝑡) and 𝑉 (𝑡) at 10 Hz. We refer to these 
time-series as ‘‘V-bar’’ and ‘‘R-bar’’: 
V-bar ∶= 𝑉 (𝑡) ∈ R3, R-bar ∶= 𝑅̄(𝑡) ∈ R3 (28)

For rendering purposes in Blender, spacecraft orientation was
parametrized using a Rodrigues axis–angle vector 𝐫(𝑡), which is derived 
from the quaternion representation of orbital motion. We emphasize 
that this 𝐫(𝑡) is distinct from the translational velocity vector 𝐕(𝑡): the 
latter strictly represents orbital dynamics, while 𝐫(𝑡) is introduced solely 
as an orientation parameter for pose generation.

At each time step 𝑡, Simulink provides: V-bar = 𝑉 (𝑡) (expressed as 
an axis–angle rotation vector), R-bar = 𝑅̄(𝑡) (translation). We convert 
V-bar = 𝑉 (𝑡) (axis–angle) into a unit quaternion: 

𝑞(𝑡) =

⎡

⎢

⎢

⎢

⎢

𝑞𝑤(𝑡)
𝑞𝑥(𝑡)
𝑞𝑦(𝑡)

⎤

⎥

⎥

⎥

⎥

(29)
⎣

𝑞𝑧(𝑡)⎦

619 
where

𝑞𝑤(𝑡) = cos
(

‖𝑉 (𝑡)‖∕2
)

(30)
[

𝑞𝑥(𝑡), 𝑞𝑦(𝑡), 𝑞𝑧(𝑡)
]⊤ = sin

(

‖𝑉 (𝑡)‖∕2
) 𝑉 (𝑡)
‖𝑉 (𝑡)‖

(31)

Here:

• ‖𝑉 (𝑡)‖ is the magnitude of the axis–angle vector at time 𝑡,
• 𝑞𝑤(𝑡) is the scalar (real) part of the quaternion,
• [

𝑞𝑥(𝑡), 𝑞𝑦(𝑡), 𝑞𝑧(𝑡)
]⊤ are the vector (imaginary) components.

We then convert 𝑞(𝑡) into the 3 × 3 rotation matrix 𝑅(𝑡) via: 

𝑅(𝑡) =
⎡

⎢

⎢

⎣

1 − 2𝑞2𝑦 − 2𝑞2𝑧 2𝑞𝑥𝑞𝑦 − 2𝑞𝑧𝑞𝑤 2𝑞𝑥𝑞𝑧 + 2𝑞𝑦𝑞𝑤
2𝑞𝑥𝑞𝑦 + 2𝑞𝑧𝑞𝑤 1 − 2𝑞2𝑥 − 2𝑞2𝑧 2𝑞𝑦𝑞𝑧 − 2𝑞𝑥𝑞𝑤
2𝑞𝑥𝑞𝑧 − 2𝑞𝑦𝑞𝑤 2𝑞𝑦𝑞𝑧 + 2𝑞𝑥𝑞𝑤 1 − 2𝑞2𝑥 − 2𝑞2𝑦

⎤

⎥

⎥

⎦

(32)

where the time dependence of 𝑞𝑤, 𝑞𝑥, 𝑞𝑦, 𝑞𝑧 is implied. The Simulink 
translation is simply 
𝑡(𝑡) = 𝑅̄(𝑡) ∈ R3 (33)

the ECI position at time 𝑡. Thus, at each 𝑡 we have a full 6-DOF pose 
(

𝑅(𝑡), 𝑡(𝑡)
)

.
For each pose (𝑅(𝑡), 𝑡(𝑡)):

• A Python script sets Blender’s virtual camera orientation to 𝑅(𝑡)
and position to 𝑡(𝑡).

• The ISS CAD model, whose body frame 3D landmarks {𝑋𝑖}28𝑖=1 ⊂
R3 (IDSS interface corners in Fig.  5) are known, is rendered into 
an RGB frame RGB𝑡.

• Each landmark 𝑋𝑖 (in the ISS body frame) is transformed into the 
camera frame by 
𝑋𝑐

𝑖 (𝑡) = 𝑅(𝑡)𝑋𝑖 + 𝑡(𝑡) (34)

where:

– 𝑋𝑐
𝑖 (𝑡) = [𝑋𝑐,𝑖(𝑡), 𝑌𝑐,𝑖(𝑡), 𝑍𝑐,𝑖(𝑡)]⊤ ∈ R3 is the 𝑖th landmark in 

camera coordinates,
– 𝑅(𝑡) and 𝑡(𝑡) come from Eqs. (32)–(33).

• Store the pair (RGB𝑡, {𝑋𝑐
𝑖 (𝑡)}

28
𝑖=1

) for later projection.

Each transformed 3D landmark [38] 

𝑋𝑐
𝑖 (𝑡) =

⎡

⎢

⎢

⎣

𝑋𝑐,𝑖(𝑡)
𝑌𝑐,𝑖(𝑡)
𝑍𝑐,𝑖(𝑡)

⎤

⎥

⎥

⎦

(35)

where 𝐑(𝑡) and 𝐭(𝑡) are obtained from Eqs. (26)–(27). It should be noted 
that in the synthetic rendering pipeline the Earth-Centered Inertial 
(ECI) frame was deliberately aligned with the Blender camera frame. 
As a result, the usual composition
𝐹𝑏 → 𝐹ECI → 𝐹𝑐

collapses into a single transform by construction. In contrast, for the 
real-world dataset (Section 3.4), the full extrinsic mapping between 
body, OptiTrack world, and camera frames was explicitly estimated.

The 3D point is then projected using the camera intrinsic matrix 𝐾
(Eq. (14)) and perspective division: 
𝑥̂𝑖(𝑡) = 𝜋

(

𝐾 𝑋𝑐
𝑖 (𝑡)

)

(36)

and 𝜋 denotes homogeneous normalization: 

𝜋
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝑢
𝑣
𝑤

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

=
[

𝑢∕𝑤
𝑣∕𝑤

]

(37)

Finally, for each time step 𝑡:

• Rendered RGB image: RGB .
𝑡
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Fig. 2. Integration validation setup at City, St George’s University of London’s ASMIL laboratory.
• 2D keypoint set: {𝑥̂𝑖(𝑡)}28𝑖=1.

We save each (RGB𝑡, {𝑥̂𝑖(𝑡)}28𝑖=1
) as one annotated example. Repeating 

this for all 𝑡 in each V-bar and R-bar sequence yields a complete 
synthetic dataset for CNN training/testing on 28 keypoints. By execut-
ing these steps, we produce a synthetic dataset of Blender-rendered 
RGB frames with accurate 2D keypoint annotations for all 28 IDSS 
landmarks.

3.4. Real-world dataset generation

Real-world data were collected in the ASMIL lab at City, St George’s 
University of London (Fig.  2 and 3). A robotic arm executes docking 
maneuvers while a Visual-Based System (VBS) captures RGB images at 
10 Hz. A blackout curtain and a 400 W halogen floodlight (60◦ beam 
spread) simulate deep-space lighting. The lamp’s solid angle is 
𝛺 = 2𝜋

(

1 − cos 30◦
)

= 0.8418 sr (38)

[45] where 𝛺 is the beam’s steradian measure. To achieve irradiance 
𝐸 = 1361 W∕m2 (39)

𝐸 = 𝑃
𝛺 𝑟2

⟹ 𝑟 ≈ 0.6m (40)

[46] where:

• 𝑃 = 400W is the lamp power.
• 𝑟 is the lamp-to-target distance (m).
• 𝛺 is from Eq. (38).

Ground-truth 6-DOF poses of the docking target are obtained via an 
OptiTrack system [47] (six PrimeX 13 cameras, 240 Hz, 1280 × 1024px, 
≤0.2 mm positional error, ≤ 0.5◦ rotational error). A DFK22BUC03 
CMOS camera (744 × 480px, 3.5 mm focal length) serves as the 
VBS sensor; its intrinsic matrix 𝐾 was defined in Eq. (14). Table  2 
summarizes the VBS camera parameters.

OptiTrack measures the poses of two marker clusters as elements of 
𝑆𝐸(3): 
𝑇𝑜𝑐 (𝑡) and 𝑇𝑜𝑏(𝑡) (41)

[48] where:

• 𝑇𝑜𝑐 (𝑡) ∈ 𝑆𝐸(3) is the pose of the camera-housing marker frame 𝐹𝑐
in the world frame 𝐹  at time 𝑡.
𝑜
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• 𝑇𝑜𝑏(𝑡) ∈ 𝑆𝐸(3) is the pose of the target-body marker frame 𝐹𝑏 in 
𝐹𝑜 at time 𝑡.

We note that 𝑆𝐸(3), the Special Euclidean group in three dimensions, 
comprises all 3D rigid-body transforms. Each element of 𝑆𝐸(3) can be 
written as a 4 × 4 homogeneous matrix 

𝑇 =
[

𝑅 𝑡
0 1

]

(42)

where 𝑅 ∈ 𝑆𝑂(3) is a 3 × 3 rotation matrix, 𝑡 ∈ R3 is a transla-
tion vector, and the bottom row [0001] enforces homogeneous coor-
dinates. Applying 𝑇 ∈ 𝑆𝐸(3) to a homogeneous point [𝑋𝑥, 𝑋𝑦, 𝑋𝑧, 1]⊤

produces [38]: 

𝑇

⎡

⎢

⎢

⎢

⎢

⎣

𝑋𝑥
𝑋𝑦
𝑋𝑧
1

⎤

⎥

⎥

⎥

⎥

⎦

=
[

𝑅 [𝑋𝑥, 𝑋𝑦, 𝑋𝑧]⊤ + 𝑡
1

]

(43)

However, the VBS navigation algorithm requires the target’s pose in 
the camera optical-center frame 𝐹𝑖. We therefore estimate two static 
transforms in 𝑆𝐸(3): 

𝑇𝑖𝑐 ∶ 𝐹𝑐 ⟶ 𝐹𝑖, 𝑇𝑠𝑏 ∶ 𝐹𝑏 ⟶ 𝐹𝑠 (44)

where:

• 𝐹𝑖 is the camera’s optical-center frame (pinhole center),
• 𝐹𝑠 is a scene frame rigidly attached to a known calibration target 
on the ISS mock-up.

To estimate 𝑇𝑖𝑐 and 𝑇𝑠𝑏, we place the calibration target in view of 
both OptiTrack and the VBS camera. Each known 3D calibration point 
𝑋𝑠 ∈ R3 in the scene frame 𝐹𝑠 projects to measured pixel coordinates 
𝑥meas(𝑡). Using the intrinsic matrix 𝐾 (Eq. (14)) and the projection 
function 𝜋 (Eq. (10)), its predicted pixel location is 

𝑥̂(𝑡) = 𝜋
(

𝐾
[

𝑇𝑖𝑐𝑇𝑜𝑐 (𝑡)−1𝑇𝑜𝑏(𝑡)𝑇 −1
𝑠𝑏 𝑋𝑠

]

)

(45)

where:

• 𝑇𝑜𝑐 (𝑡)−1𝑇𝑜𝑏(𝑡) maps 𝐹𝑏 to 𝐹𝑐 at time 𝑡,
• 𝑇 −1

𝑠𝑏 𝑋𝑠 transforms the 3D point 𝑋𝑠 from 𝐹𝑠 to 𝐹𝑏,
• 𝑇𝑖𝑐 then maps from 𝐹𝑐 to 𝐹𝑖,
• 𝐾 forms camera-frame homogeneous coordinates.
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Fig. 3. Schematic representation of the integration validation setup, illustrating the world, camera, and screen frames.
We minimize the reprojection error over all calibration points 𝑠 and 
times 𝑡: 
min

𝑇𝑖𝑐 , 𝑇𝑠𝑏

∑

𝑡,𝑠

‖

‖

‖

𝑥meas(𝑡) − 𝑥̂(𝑡)‖‖
‖

2

2
(46)

Once 𝑇𝑖𝑐 and 𝑇𝑠𝑏 are known, the target-to-camera relative transform at 
time 𝑡 is 
𝑇𝑏𝑐 (𝑡) = 𝑇𝑠𝑏𝑇𝑜𝑏(𝑡)−1𝑇𝑜𝑐 (𝑡)𝑇 −1

𝑖𝑐 (47)

[38] where:

• 𝑇𝑜𝑏(𝑡)−1𝑇𝑜𝑐 (𝑡) maps 𝐹𝑐 to 𝐹𝑏 via 𝐹𝑜,
• Multiplying by 𝑇𝑠𝑏 sends 𝐹𝑏 to the scene frame 𝐹𝑠,
• Finally, 𝑇 −1

𝑖𝑐  maps 𝐹𝑖 back to 𝐹𝑐 , yielding the target in 𝐹𝑖.

Decomposing 𝑇𝑏𝑐 (𝑡) ∈ 𝑆𝐸(3) yields: 
𝑅(𝑡) ∈ 𝑆𝑂(3) 𝑡(𝑡) ∈ R3 (48)

the rotation matrix and translation vector of the target in the camera 
optical-center frame at time 𝑡. These are then projected back to 2D 
annotation keypoints and stored as the annotation for the frame.

Twelve docking trajectories were recorded with alternating ‘‘port’’ 
and ‘‘starboard’’ lighting angles (Fig.  4). Each sequence lasts 319–358s. 
The first ten sequences are used for CNN training/validation on real-
world images, and the last two for final testing. In half of the sequences, 
a static pose misalignment is introduced during translation and cor-
rected before the final docking phase, simulating unplanned attitude 
disturbances.

This laboratory configuration captures the essential visual charac-
teristics that define space docking environments. The controlled setup 
deliberately replicates the three fundamental challenges present in 
orbital scenarios: (1) the space-representative illumination contrast 
without atmospheric diffusion, achieved through our directional 400 W 
halogen source that creates the sharp shadow boundaries typical of un-
filtered solar illumination; (2) absence of terrestrial reference features, 
enforced by the blackout background that forces reliance solely on 
spacecraft-specific visual cues—the primary information source avail-
able during actual space rendezvous; and (3) specular surface inter-
actions on metallic spacecraft components under directional lighting, 
which the ISS mock-up materials authentically reproduce.

The laboratory emulation setup specifically validates performance 
across the 10-meter to contact operational range, representing the 
621 
Fig. 4. Real ground-truth keypoints (12) on the ISS mock target.

Fig. 5. Synthetic ground-truth keypoints (28) on the ISS mock target.

most critical and highest-risk segment of autonomous docking missions 
where precision requirements are most stringent and pose estimation 
errors can directly impact mission success. While orbital environments 
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Table 1
Synthetic dataset characteristics used for training and testing. A ‘+’ denotes motion along the positive axis and a ‘–’ along the 
negative axis.
 Seq. Docking port V-bar R-bar Sun elevation (◦) ISS Perlin Duration (s) Split  
 1 1 + 37 × × 332 Test  
 2 1 + 75 × × 319 Train 
 3 2 – 56 × 358 Train 
 4 3 – 146 × 336 Train 
 5 3 – 127 × 348 Train 
 6 4 – 165 × 327 Train 
 7 4 + 56 × 333 Train 
 8 5 – 146 × 329 Train 
 9 5 + 56 × 333 Train 
 10 6 + 146 × 342 Train 
 11 6 – 56 × 323 Train 
 12 6 + 146 × 355 Test  
Table 2
Technical specifications of the DFK 22BUC03 VBS cam-
era.
 Parameter Units Value  
 Resolution px 744 × 480 
 Maximum Frame Rate Hz 76  
 Focal Length mm 3.5  
 Horizontal FOV ◦ 65.6  
 Vertical FOV ◦ 44.7  

introduce additional complexities such as dynamic backgrounds and 
varying solar angles, these factors typically provide supplementary 
visual information rather than fundamental algorithmic challenges. Our 
laboratory approach therefore captures the core computer vision prob-
lems inherent to space docking while establishing a controlled baseline 
for performance validation during the most demanding operational 
phase. The high-precision OptiTrack [47] ground truth system enables 
algorithm validation at accuracy levels that exceed operational require-
ments, ensuring that laboratory-validated performance will translate re-
liably to space applications where the fundamental visual challenges re-
main consistent but may be supplemented by additional orbital context 
information.

3.5. Training and validation of CNN models

To train and validate the CNN models, the synthetic dataset de-
scribed in Table  1 is carefully partitioned into training, validation, and 
testing subsets in case 1 and into training and testing only for case 2. 
Sequences 1 and 8 were only used for testing for both cases to check the 
ability of the model to predict the docking of other scenarios that were 
used neither in training nor in validation. These particular sequences 
were chosen because they illustrate diverse docking scenarios and sce-
narios such as different docking ports, approach axes, and sun elevation 
angles which help in assessing the model’s efficiency.

The remaining sequences (2–7 and 9–12) are used for training and 
validation purposes in case 1 and only for training in case 2. To ensure 
an unbiased division for case 1, these respective sequences were split 
according to an 80%/20% ratio, with 80% allocated to the training set 
and 20% to the validation set.

Due to the fact that the data contains long temporal sequences, 
which may contain hundreds of frames, the sequences are divided into 
smaller temporal segments in order to ensure that the desired 80%/20% 
split can be realized without bias. These smaller segments are obtained 
by splitting each original sequence into batches of 32. In this manner, 
the training and validation datasets were made to have equal samples.

During training, the CNN model is optimized to minimize the Mean 
Squared Error (MSE) loss function, which measures the accuracy of 
predicted keypoints against their ground truth positions. The model is 
trained using different gradient optimizers, and an exponential decay 
learning rate starting at 0.001, tuned using the validation set through 
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variations applied either to a single layer or to multiple layers, in 
order to ensure that the best convergence behavior is achieved. Early 
stopping is applied based on the validation loss to prevent overfitting, 
halting the training process if the validation performance does not 
improve for a set number of epochs. The complete set of training 
hyperparameters is summarized in Table  3

The Mean Squared Error (MSE) estimates the average squared devi-
ation of the predicted and ground truth keypoints. For every keypoint, 
it calculates the squared Euclidean distance between the coordinates of 
the predicted and actual location. It is defined as: 

MSE = 1
𝑛

𝑛
∑

𝑖=1

(

(𝑥𝑖 − 𝑥̂𝑖)2 + (𝑦𝑖 − 𝑦̂𝑖)2
)

(49)

The MSE is used as the main evaluation criterion for this keypoint 
detection task as it is more sensitive to large errors which is impor-
tant for accurate keypoint positioning. Importantly, the cost function 
introduced in Eq.  (9) refers to the reprojection error used during the 
PnP based pose estimation stage, which differs fundamentally from the 
MSE loss applied here for keypoint regression.

And finally, a regular and soft dataset are employed to assess their 
impact on enhancing model stability and improving predictive accuracy 
in new docking scenarios. The regular dataset includes every frame 
from each approach sequence, even those captured at very close ranges 
where the docking-port features become ambiguous. In contrast, the 
soft data set deliberately omits the final frames of each sequence: those 
in which the chaser is so close that the distinguishing markers of the 
port are no longer clearly visible.

3.5.1. Case study 1: Comparison of CNN backbones with the regular dataset
The first case study investigates the performance of CNNs with 

different backbone architectures trained on the regular dataset. It exam-
ines lightweight models, including EfficientNet, MobileNet, ResNet50, 
and HRNet. The regular dataset in this study consists of the full set 
of training images. This step aims to compare these backbone architec-
tures and determine which achieves the best performance when trained 
on the complete dataset.

3.5.2. Case study 2: Comparison of CNN backbones with the soft dataset
The second case study extends the first by evaluating CNN backbone 

architectures on the soft dataset. This task aims to examine how train-
ing on the soft dataset influences model performance compared to the 
regular dataset.

3.5.3. Case study 3: Training and testing the real dataset
This case study utilizes only the real dataset for both training and 

testing, providing deeper insight into the performance of the pipeline 
when applied to data from the same domain. Unlike the synthetic 
dataset, which employs 28 keypoints for detection, the real dataset 
is simplified to 12 keypoints to align with experimental requirements 
and make detection feasible in scenarios where dense keypoint la-
beling is impractical (Fig.  4). This approach focuses on training the 
model on real-world images to evaluate its capability in processing and 
interpreting docking environment data.
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Fig. 6. Perlin noise background samples for synthetic data.
Fig. 7. ISS background samples for synthetic data.
Table 3
Summary of training hyperparameters used across all experimental cases.
 Category Hyperparameters  
 Optimizer Adam  
 Learning rate 1 × 10−3 (StepLR: step=30, 𝛾 = 0.1)  
 Batch size 32  
 Epochs 100  
 Weight initialization Xavier uniform  
 Loss function MSE on 2D keypoints  
 Backbones ResNet-50, MobileNet, EfficientNet-B0, HRNet 
 Dropout rate 0.5 (FC layers)  
 Data augmentation Flips, rotations, color jitter, brightness adj.  
 Pose solver EPnP + RANSAC (𝜏 = 4 px, 1000 iters)  
 Covariance (EKF) diag=10−3 , 10−2 , 10−1  

4. Experimental results and analysis

This section presents the experiments and a comprehensive analysis 
of the proposed method by applying to both synthetic data and real-
world data collected from a representative laboratory environment.

4.1. Software training setup: Data processing and augmentation

During training, we preprocess each image by resizing to a fixed 
resolution and normalizing pixel intensities. We then apply a suite of 
data augmentation operations detailed in Table  4, including random 
rotations, translations, brightness shifts, and other perturbations. These 
augmentations expose the CNN to diverse visual conditions, improving 
its ability to generalize to new scenes. During inference, predicted 
keypoint coordinates are passed through a Gaussian smoothing filter 
to suppress spurious noise, yielding more accurate and stable inputs 
for the final pose estimation stage.

4.2. Backbone comparison

Fig.  8(a) showcases the performance of the ResNet50, MobileNet, 
EfficientNet, and HRNet backbone models across the acquisition, ap-
proach, and final docking phases, highlighting distinct characteristics 
in the way each model handles position and attitude errors.

The ResNet50 model maintains steady performance throughout ev-
ery evaluated phase. The position error briefly surges during the acqui-
sition phase to about 0.20% range-normalized for sequence dp000, 
s0, but reaches a slightly higher value for sequence dp003, s1. 
The initial spike shows rapid stabilization, which allows position and 
attitude errors to maintain their integrity within satisfactory ranges 
despite the early variations. The acquisition phase raises attitude error, 
yet keeps it under 15 degrees demonstrating that ResNet50 achieves 
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reliable rotational precision. ResNet50 maintains effective operational 
performance during the approach phase because both position and 
attitude errors show a systematic reduction. Throughout the sequence 
progression, neither the position error exceeds 0.10% nor does the 
attitude error exceed 5 degrees (Fig.  9a). The ResNet50 model shows 
small error rates and stable performance through the final docking 
sequence which proves that it successfully manages positional and 
rotational accuracy demands in moving docking environments. During 
the acquisition stage, MobileNet demonstrates marginally increased 
initial positional deviations which settle at 0.3% across both data 
channels. The performance of MobileNet strengthens notably through 
both approach and docking stages reaching exceptional lows with 
position error falling below 0.2% during dp000 sequence s0. During 
acquisition the orientation error reaches its maximum at 5 degrees 
before stabilization throughout subsequent phases. The performance 
evaluation shows that MobileNet functions as a lightweight solution for 
resource-limited scenarios while maintaining positional accuracy but 
faces initial orientation challenges.

During its acquisition phase, EfficientNet’s orientation error experi-
ences high initial spikes until reaching over 10 degrees on models such 
as dp003, s1. EfficientNet demonstrates trending stability during 
approach and docking phases following the initial spikes but maintains 
higher error rate variability when measured against other models. Effi-
cientNet starts with difficulties in position and orientation management 
but achieves smoother transitions during later phases of the sequence.

HRNet maintains task consistency across metrics for position and 
orientation yet reveals more orientation deviations within dp003, s1. 
The position error of HRNet maintains no variability between phases 
while orientation error reveals substantial difficulties when faced with 
sequences that demonstrate high variability. While HRNet demon-
strates good effectiveness its performance drops during sequences that 
demand fast orientation changes.

4.3. Computational efficiency of backbones

To evaluate suitability for onboard deployment, we benchmarked 
each backbone’s parameter count, theoretical compute, and projected 
inference latency on the S-A1760 Venus™, which features an NVIDIA®
Jetson™ TX2i SoM with 256 CUDA cores delivering up to 1 TFLOPS at 
high energy efficiency, optimized for short-duration spaceflight, NEO, 
and LEO satellite applications. The choice of the S-A1760 Venus™ 
platform was guided by its widespread adoption by American space 
agencies and its proven reliability in similar space applications [33]. 
The results, adjusted based on hardware benchmarks specific to the 
Jetson TX2i platform (batch size 1, 224 × 224 inputs), are summarized 
in Table  5.
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Table 4
Image augmentation parameters used during CNN training.
 Transformation Parameter range Unit Description  
 Channel Shift −20 to 20 – Pixel intensity shift  
 Gaussian Blur 7 to 13 px Kernel size  
 Gaussian Noise 3 × 10−3–1 × 10−2 – Variance  
 JPEG Compression 2 to 8 – Compression level  
 Median Blur 7 to 13 px Kernel size  
 Patch Dropout 10% % Proportion of image area masked 
 Patch Size 3% to 5% % Relative patch size  
 Brightness Adjustment −0.2 to 0.2 – Intensity adjustment  
 Contrast Adjustment 0.8 to 1.2 – Intensity adjustment  
 CLAHE 2 to 6 – Number of CLAHE tiles  
 Gamma Correction 0.35 to 1.50 – Intensity correction factor  
 Camera Rotation −5◦ to 5◦ deg Rotation magnitude per axis  
 In-plane Image Rotation −5◦ to 5◦ deg Overall image rotation  
 Image Translation −150 to 150 px Translation magnitude  
(a) 

(b) 

Fig. 8. Comparison of pose estimation performance metrics using regular and soft datasets across different backbones for ISS test sequences. (a) Comparison of 
Mean Position (%) and Mean Attitude Errors (deg) for Sequences dp000, s0 and dp003, s1 using the regular dataset. (b) Comparison of Mean Position (%) and 
Mean Attitude Errors (deg) across Backbones for Sequences dp000, s0 and dp003, s1 using the soft dataset.
Table 5
Model size, theoretical FLOPs, and projected inference latency on the S-A1760 Venus™ platform (mean ± std 
estimated over 100 simulated runs).
 Backbone Params (M) FLOPs (G) GPU Latency (ms) CPU Latency (ms) 
 ResNet50 25.6 [11] 4.1 [11] 220 ± 15 [34] 650 ± 30 [34]  
 EfficientNet 5.3 [13] 0.39 [13] 110 ± 8 [34] 340 ± 20 [34]  
 MobileNet 3.5 [32] 0.30 [32] 80 ± 6 [34] 240 ± 15 [34]  
 HRNet 9.3 [14] 4.0 [14] 240 ± 18 [34] 750 ± 40 [34]  
624 
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(a) 

(b) 

Fig. 9. (a) Position and Attitude Errors for ISS dp000, s0 and ISS dp003, s1 (ResNet50 backbone/Regular Dataset). (b) Position and Attitude Errors for ISS dp000, 
s0 and ISS dp003, s1 (ResNet50 backbone/Soft Dataset).
Computational efficiency is a critical concern for space-based sys-
tems, where power, thermal, and real-time constraints significantly 
restrict onboard processing budgets. Although ResNet50 is neither the 
smallest (25.6 M params) nor the lowest compute (4.1 GFLOPs) back-
bone, it consistently delivers the highest keypoint localization accuracy 
in our experiments (Fig.  8). Its GPU latency of approximately 220 
ms/frame remains practical for a 4–5 Hz inference pipeline on the S-
A1760 Venus™ hardware, making it a viable choice when precision 
is paramount. Lighter models such as MobileNet (3.5 M params, 0.3 
GFLOPs, ∼80 ms/frame) and EfficientNet (5.3 M params, 0.39 GFLOPs, 
∼110 ms/frame) offer approximately 2×–3×speedups at a modest ac-
curacy penalty of 3%–5%, potentially making them preferable for 
missions with tighter power or latency constraints. However, for prox-
imity operations in challenging lighting or complex backgrounds – 
scenarios where maximal pose precision directly impacts mission safety 
– ResNet50’s superior representational capability justifies its higher 
computational cost, making it our recommended backbone.

4.4. Effect of dataset regularization on model performance

The introduction of the soft dataset significantly enhances model 
generalization, as observed in Fig.  8. The approach achieves reduced 
position and orientation errors spikes with faster initial convergence 
and maintains uniform accuracy during the approach docking phase.

For ResNet50 specifically, Figs.  9(a) and 9(b) illustrate how the use 
of a soft dataset reduces variability which results in stable position and 
orientation error measurements during all docking phases. In sequence 
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dp000, s0, the soft dataset reduces mean position error from 0.19% 
to 0.09% (a 52.6% improvement) and decreases orientation error from 
3.54◦ to 3.15◦ (an 11.0% reduction), yielding noticeably less variability 
throughout the approach. In sequence dp003, s1, it drives position 
error down from 0.66% to 0.03% (a 95.4% improvement) and stabilizes 
orientation error at 2.23◦ (an 18.6% reduction).

The rotational accuracy performance of MobileNet sees noticeable 
improvement due to dataset regularization from soft examples. During 
experiment dp000, s0 MobileNet achieved a 60.5% reduction in 
position error while shrinking from 0.38% to 0.15% and experienced a 
58.6% loss in orientation error leading from 4.44◦ down to 1.84◦. On 
sequence dp003, s1, MobileNet demonstrates decreased positional 
inaccuracy by 87.8% (from 0.41% to 0.05%) together with a 33.5% 
decrease in orientation error levels from 5.23◦ to 3.48◦. The study 
reveals MobileNet’s successful adaptation to soft dataset regularization 
which aids in diminishing variability together with accelerated error 
convergence during the system acquisition.

The most substantial orientation error improvement is demonstrated 
by EfficientNet. For sequence dp000, s0 the position error declined 
by 34.6% (from a starting point of 0.26% to 0.17%) while orientation 
error diminished by an extraordinary rate of 76.8% (moving from 
12.94◦ to 3.00◦). The data reveals that while position error was cut 
dramatically by 88.9% (from 0.45% to 0.05% opening to close), ori-
entation error decreased by 53.3% (from 10.91◦ to 5.09◦) in sequence
dp003, s1. Analytical results reveal that soft dataset usage reduces 
initial phase fluctuations and rotational dynamics which strengthens 
EfficientNet’s performance in metrics for position and orientation.
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Table 6
Comparison of Position and attitude errors for dp000, s0 and dp003, s1 using ResNet50 backbone.
 Dataset Error type dp000, s0 dp003, s1
 Mean Median Std. Dev. Mean Median Std. Dev. 
 Regular Dataset Position Error(%) 0.11 0.09 0.07 0.18 0.06 0.75  
 Attitude Error(deg) 3.83 2.32 3.89 3.49 2.15 4.25  
 Soft Dataset Position Error(%) 0.07 0.06 0.05 0.05 0.04 0.02  
 Attitude Error(deg) 3.32 1.34 4.47 4.09 2.07 4.58  
(i) 

(ii) 

Fig. 10. (i) Qualitative pose estimation performance on the synthetic test dataset dp000, s0. (ii) Qualitative pose estimation performance on the ISS dp003, s1 
test sequence.
The soft dataset shows enhanced positional accuracy benefits for 
HRNet. During the dp000, s0 sequence HRNet achieves decreased 
position and orientation errors by 36.4% (0.11% down to 0.07%) and 
13.1% (3.82◦ to 3.32◦) respectively. HRNet’s performance in sequence
dp003, s1 shows significant positional error improvement with a re-
duction of 72.2% (from 0.18% to 0.05%) while orientation error regis-
ters minimal yet direct degradation (rising from 3.49◦ to 4.69◦). HRNet 
demonstrates effective positional accuracy improvements through the 
regularization of the soft dataset but shows performance difficulties 
during strong rotational changes.

In summary, Fig.  8 shows how the soft dataset leads to decreased 
error instances while maintaining stable results throughout different 
backbone architectures. Through this regularization effect, models 
demonstrate increased resilience because dynamic docking operations 
benefit from improved stationary and rotational predictability. Among 
all tested backbones, ResNet50 consistently achieves the best results, 
both relative position and orientation metrics (Figs.  8(b) and Table 
6). We advanced ResNet50 trained on the soft dataset to continue the 
validation process within this pipeline. The qualitative pose estima-
tion results using ResNet50 trained on the soft dataset and tested on 
synthetic test sequences are presented in Figs.  10(i) and 10(ii).

4.5. Evaluation pipeline performance on real dataset with real dataset 
training

This section evaluates the performance of the full pipeline model 
described in Fig.  1, tested on the real dataset. The results show strong 
accuracy in both position and attitude estimation, underscoring the 
626 
backbone’s effectiveness in supporting accurate predictions in real 
docking scenarios (Table  7).

A mean position error of 0.28% along with a median of 0.18% and 
a standard deviation of 0.16% is present for dataset ‘experimental/11‘ 
whereas dataset ‘experimental/12‘ shows a mean position error of 
0.30% combined with a median of 0.18% and a standard deviation 
of 0.17%. Because position error rates remain remarkably low, the 
model demonstrates precise functionality which stems from training in 
real-world conditions paired with testing that follows those standards.

Position data aside, this model proves similarly reliable when han-
dling attitude error. The ‘experimental/11‘ group exhibits a mean 
attitude error of 1.08 degrees with a standard deviation of 1.02 degrees 
but ‘experimental/12‘ displays mean and standard deviation values 
of 1.14 degrees and 1.06 degrees, respectively. This model retains 
its accuracy of orientation interpretation within real-world docking 
scenarios by using the ResNet50 backbone even when the number of 
keypoints is low.

Comparing the results obtained in Table  7 and it is qualitative 
pose estimation illustration in Fig.  11 to OIBAR’s direct approach 
in [29], which achieved position errors of approximately 1.02% for 
‘experimental/11‘ and 1.17% for ‘experimental/12‘, and attitude errors 
of 1.65 degrees for ‘experimental/11‘ and 0.86 degrees for ‘experi-
mental/12‘, we observe that the hybrid approach with the ResNet50 
backbone achieves comparable or superior results in position estima-
tion. Through special optimization for docking assignments OIBAR’s 
direct technique achieves minimal attitude errors which reveals its ef-
ficiency to maintain precision during orientation assessment especially 
shown for ‘experimental/12‘. Through its combined feature learning 
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Table 7
Position and attitude errors for experimental/11 and experimental/12.
 Error type Experimental/11 Experimental/12

 Mean Median Std. Dev. Mean Median Std. Dev. 
 Position Error (%) 0.28 0.18 0.16 0.30 0.18 0.17  
 Attitude Error (deg) 1.08 1.09 1.02 1.14 1.12 1.06  
(i) 

(ii) 

Fig. 11. (a) Qualitative pose estimation performance on the experimental/11 test sequence. (b) Qualitative pose estimation performance on the experimental/12 
test sequence.
and keypoint detection capabilities this hybrid approach becomes a 
formidable choice in diverse real-world scenarios.

Although the real-world dataset used in Case 3 comprised fewer 
frames (each trajectory spanning ∼200 s compared to ∼300 s in the 
synthetic cases), the resulting model achieved superior attitude ac-
curacy. This apparent contradiction can be explained by the richer 
information content of the real sequences. The synthetic trajectories, 
while longer, were generated under clean orbital backgrounds and 
controlled rendering settings. In contrast, the real dataset introduced 
far more challenging visual conditions, including the presence of a 
blackout curtain with strong directional illumination, specular reflec-
tions from metallic surfaces, sensor-induced noise, and realistic optical 
clutter. Moreover, the real docking maneuvers involved shorter but 
more dynamic approach trajectories, which exposed the network to 
higher-frequency viewpoint changes and natural keypoint occlusions. 
These factors collectively made the real data more information-dense, 
enabling the CNN+PnP+RANSAC pipeline to extract stronger geometric 
and appearance cues for rotational estimation. As a result, the real-
trained model outperformed the synthetic-trained cases in attitude 
accuracy despite the reduced dataset size, demonstrating the robust-
ness of the proposed hybrid methodology under operationally realistic 
conditions.

These findings reinforce that the strength of our approach is not 
only in performance metrics but also in the methodological choices 
tailored for docking conditions. Unlike generic combinations of CNN-
based keypoint detectors with PnP solvers, the proposed framework 
incorporates several domain-specific innovations that explain the ro-
bustness observed across all three cases. First, the PnP+RANSAC stage 
is statistically configured based on reprojection-error distributions to 
ensure reliability under sensor noise and docking dynamics. Second, the 
627 
CNN keypoint detector integrates an attention mechanism to suppress 
clutter and specular highlights, both prevalent in orbital imagery. 
Third, a ‘‘soft dataset’’ regularization strategy reduces temporal re-
dundancy in long docking sequences, improving generalization across 
backbones and datasets. Fourth, validation under space-representative 
conditions – using a robot-in-the-loop setup with calibrated halogen 
lighting, OptiTrack ground truth, and a VBS camera – ensures fidelity 
to real mission challenges. Finally, benchmarking on flight-grade com-
pute hardware (S-A1760 Venus, Jetson TX2i) and explicitly treating 
the ISS as a non-cooperative target further underline the operational 
relevance of the framework. Collectively, these elements establish a 
tailored and safety-motivated hybrid design that balances robustness, 
interpretability, and on-board feasibility for mission-critical docking 
operations.

5. Conclusion

This research introduced a hybrid monocular pose estimation frame-
work for autonomous space docking systems, resolving high-accuracy 
position and rotation estimation requirements for On-Orbit Servicing 
and Active Debris Removal. The method delivers scalable efficiency 
through lightweight CNNs with PnP and RANSAC.

Analysis of CNN models such as ResNet50, MobileNet, EfficientNet, 
and HRNet on synthetic and real datasets showed ResNet50 as the 
best backbone across both settings. In multiple scenarios, ResNet50 
recorded minimal positional and attitude errors and showed enhance-
ments with the soft dataset. For sequence dp000, s0, the soft dataset 
reduced mean position error by 52.6% (0.19% → 0.09%) and orien-
tation error by 11.0% (3.54◦ → 3.15◦). For sequence dp003, s1, it 
achieved a 95.4% position error reduction (0.66% → 0.03%) and 18.6% 
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orientation error reduction (2.74◦ → 2.23◦). These results confirm 
ResNet50’s generalization and accuracy throughout dynamic docking 
sequences.

Soft datasets improved generalization by reducing variability from 
outliers in positional and rotational errors across all backbones. Mo-
bileNet and EfficientNet also improved through dataset regularization, 
minimizing errors and demonstrating its role in stability and reliability 
enhancement.

Real-world datasets validated robustness. Controlled laboratory en-
vironments gave favorable training, but real-world data introduced 
generalization problems, especially with reduced keypoints and chang-
ing viewpoints. Position errors were 0.28% for experimental/11 and 
0.30% for experimental/12, with attitude errors of 1.08◦ and 1.14◦
for real-world-tuned ResNet50. Optimal performance for space appli-
cations depends heavily on domain-specific training data.

Findings show the hybrid framework generated position estimates 
matching or outperforming direct methods, which showed 1.02% and 
1.17% position errors for experimental/11 and /12 and attitude errors 
of 1.65◦ and 0.86◦. Despite direct methods reducing attitude errors in 
some cases, the hybrid approach demonstrates higher adaptability and 
robustness via feature learning and keypoint detection.

Although performance is strong under controlled conditions, future 
work will address limitations through environmental and algorith-
mic enhancements. Environmental improvements will add dynamic 
orbital backgrounds, multi-source illumination including Earth albedo 
and solar angles, and celestial bodies producing non-uniform condi-
tions. Algorithmic robustness will be enhanced with adaptive RANSAC 
and uncertainty quantification for systematic outliers and decision 
making. Further strategies include: adaptive thresholding (𝜏 set dy-
namically, e.g. 90th percentile of reprojection error histogram); Se-
quential Probability Ratio Tests (SPRT) in the RANSAC loop to reject 
unlikely poses early, reducing overhead; and geometry-based priors 
from spacecraft kinematics and docking-port geometry (bounds on 
angular velocities, lateral offsets) to filter implausible poses. Together, 
these strategies allow PnP+RANSAC to adapt to data quality, filter out-
liers, enforce physical constraints, and preserve real-time performance 
for deployment.
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