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ARTICLE INFO ABSTRACT

Keywords: The growing necessity for autonomous space operations has intensified due to the proliferation of on-orbit
Deep learning servicing missions and the critical need to mitigate space debris accumulation, highlighting the essential
Hybrid pose estimation role of precise and reliable autonomous docking systems. In response to these challenges, this paper presents

Computer vision

Autonomous docking

Space robotics

Guidance, navigation and control

and validates a novel hybrid methodology for autonomous spacecraft docking that integrates Convolutional
Neural Networks (CNNs) with Perspective-n-Point (PnP) algorithms for monocular pose estimation. The
proposed hybrid framework synergistically combines CNN-based keypoint detection with PnP geometric
reconstruction and RANSAC-based outlier rejection to achieve robust and accurate pose estimation under
diverse operational conditions, including variable illumination, viewing geometries, and approach trajectories.
A comprehensive evaluation of CNN backbone architectures was conducted using both synthetic and real-
world datasets to optimize performance characteristics, encompassing ResNet50, MobileNet, EfficientNet,
and HRNet architectures. Experimental validation was performed in a controlled facility utilizing robotic
hardware and specialized illumination systems designed to replicate space environmental conditions. The
system demonstrated exceptional performance, maintaining translational errors below 0.30% and rotational
errors below 1.14° during simulated docking scenarios. Comparative analysis with other direct pose estimation
methodologies confirms that the proposed hybrid approach achieves superior translational accuracy while
preserving high rotational precision, establishing its viability for autonomous spacecraft operations.

1. Introduction monocular and stereo cameras, thereby eliminating the dependency on
power-intensive active sensors like LIDAR or radar systems. This pas-

As On-Orbit Servicing (OOS) operations and Active Debris Removal sive sensing integration not only reduces power consumption but also
(ADR) initiatives gain momentum, the demand for precise autonomous minimizes mass and volume requirements while eliminating moving
space operations has intensified [1,2]. Recent technological advance- components that could compromise long-term reliability [7,8]. Further-
ments have catalyzed the development of the OOS capabilities, marking more, camera-based systems provide rich contextual information that
a pivotal shift in space mission architecture and sustainability [3]. DL algorithms can process to handle challenging conditions, including

Autonomous systems capable of executing complex maneuvers without
human intervention are essential for enabling routine docking opera-
tions, particularly given communication delays and limited bandwidth
between Earth and orbital assets [4].

While traditional Guidance, Navigation, and Control (GNC) sys-
tems have established reliable foundations for space operations, they
often struggle with adaptive responses to uncooperative targets or dy-
namic space environments [5]. The integration of Artificial Intelligence
(AD) solutions, particularly Deep Learning (DL), offers promising en-
hancements to relative navigation capabilities by learning from diverse
environmental conditions and adapting to unforeseen scenarios [6]. DL
approaches offer particularly compelling advantages for space naviga-
tion through their ability to leverage low-cost passive sensors such as

orbital lighting variations, occlusions, and spacecraft with unknown or
altered configurations. As demonstrated by Phisannupawong et al. [9],
monocular vision-based navigation systems enhanced by deep learn-
ing can achieve centimeter-level positioning accuracy with minimal
computational overhead, establishing their viability as alternatives to
traditional sensor suites for smaller satellites and extended missions.
While recent end-to-end deep learning approaches in spacecraft
pose estimation directly regress relative position and attitude param-
eters within a single network, such methods present several limitations
for safety-critical space applications. Al-based spacecraft navigation
systems exhibit significant vulnerability to adversarial attacks that can
induce critical navigation errors without being readily detectable by
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human operators [10]. Even subtle perturbations to input imagery
can cause substantial errors in DL-based pose estimation systems, po-
tentially resulting in mission failures during critical operations such
as autonomous docking. Additionally, the black-box nature of end-
to-end systems limits interpretability, making it difficult to diagnose
failure modes or validate intermediate results during critical docking
operations.

This research addresses these limitations by developing a hybrid
methodology that combines the interpretability and computational ef-
ficiency of classical computer vision algorithms with the adaptability
and pattern recognition capabilities of DL. The proposed framework uti-
lizes Convolutional Neural Networks (CNNs) for robust keypoint detec-
tion followed by Perspective-n-Point (PnP) algorithms enhanced with
RANSAC outlier rejection to determine precise 6-degree-of-freedom (6-
DOF) pose estimation in terms of relative position and attitude. The
proposed two-stage approach offers several key advantages over end-to-
end methods: (1) enhanced training stability through well-established
geometric constraints provided by PnP solvers; (2) reduced sensitivity
to annotation noise, as keypoint detection tolerates labeling uncertain-
ties better than direct pose regression; and (3) improved interpretability
through intermediate keypoint outputs that enable visual verification
and failure analysis. The proposed methodology has been comprehen-
sively evaluated using both synthetic datasets generated from high-
fidelity International Space Station (ISS) models and real-world ex-
perimental data captured under simulated space lighting conditions.
The evaluation methodology includes rigorous assessment of various
CNN backbone architectures, including ResNet50 [11], MobileNet [12],
EfficientNet [13], and HRNet [14], to identify optimal configurations
balancing keypoint detection accuracy and computational efficiency.
Furthermore, this work introduces a novel “soft dataset” approach
that enhances model generalization by selectively curating training
examples to emphasize the most informative segments of docking
sequences.

The principal contributions of this work are as follows:

» Development of a novel hybrid pose estimation framework that
integrates CNN-based keypoint detection with PnP algorithms and
RANSAC outlier rejection for robust relative pose estimation in
autonomous spacecraft docking scenarios.

Introduction of a “soft dataset” regularization technique that
strategically excludes temporally proximate frames to enhance
model generalization capability across diverse docking scenarios
and operational conditions.

Comprehensive evaluation of multiple CNN backbone architec-
tures across varying docking scenarios, illumination conditions,
and approach trajectories, establishing quantitative performance
benchmarks for autonomous docking systems in space environ-
ments.

Rigorous validation of the proposed system using both synthetic
and real-world experimental datasets, demonstrating both practi-
cal applicability and robustness under simulated space conditions.

The remainder of this paper is organized as follows: Section 2 pro-
vides a comprehensive review of relevant literature and establishes the
theoretical foundation for the proposed approach. Section 3 presents
a detailed exposition of the methodology and design specifications of
the hybrid pose estimation system. Section 4 presents comprehensive
experimental results and performance analysis using both synthetic and
real-world datasets. Finally, Section 5 concludes with a discussion of
the research implications and identifies promising directions for future
investigation.

2. Background and related works
The incorporation of deep learning methodologies in spacecraft

docking and refueling applications has yielded substantial advance-
ments, particularly in non-cooperative rendezvous (NCRV) scenarios
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where accurate and real-time pose estimation is critical for mission
success. Existing research spans a spectrum of approaches, ranging from
SLAM-based methods that extend traditional navigation pipelines, to
direct regression networks that infer pose end-to-end, and two-stage
techniques that integrate learned keypoint detection with classical
Perspective-n-Point solvers.

2.1. SLAM-based methods

Recent advances in SLAM-based navigation highlight the value
of combining complementary sensing modalities. One such approach
is presented by Du et al. [15] developed an angles-only navigation
algorithm incorporating multisensor data fusion for spacecraft non-
cooperative rendezvous operations. Their methodology combines op-
tical measurements with range and range-rate data from ground-based
radar systems using a Square-Root Unscented Kalman Filter (SRUKF).
The approach addresses practical operational constraints where multi-
ple targets can only be simultaneously tracked by a single radar system.
Semi-physical simulation validation confirmed that optical navigation
cameras combined with inertial measurement units provide sufficient
accuracy for non-cooperative spacecraft rendezvous scenarios.

Building on the theme of radar-assisted navigation but seeking to
reduce reliance on multiple stations, Zhang et al. [16] introduced a
hybrid real-time maneuver detection scheme that combines Input De-
tection and Estimation Extended Kalman Filter (IEEKF) with weighted
nonlinear least squares methodologies. Their approach utilizes tem-
poral observation series from a single radar station, eliminating the
requirement for multiple ground stations and addressing significant
practical limitations of existing methods. Simulation results demon-
strated robust performance for impulse magnitudes ranging from 1.0 to
100.0 m/s, with particularly strong performance above 5.0 m/s thresh-
olds. For smaller maneuvers, an iterative refinement methodology was
developed to enhance maneuver time estimation accuracy.

While radar-based methods demonstrate strong utility, alternative
sensing modalities such as LiDAR have also been explored to improve
relative motion estimation in non-cooperative scenarios. Kechagias-
Stamatis et al. [17] introduced DeepLO, a deep learning-based LiDAR
odometry system for spacecraft relative motion estimation that con-
verts 3D point cloud data into 2D depth image representations for
CNN-based feature extraction. These 2D projections are subsequently
processed by CNN architectures for feature extraction and then fed into
Recurrent Neural Networks (RNNs). This hybrid CNN-RNN architec-
ture learns temporal dependencies for pose estimation, demonstrating
superior performance compared to traditional Iterative Closest Point
(ICP) algorithms, achieving translation errors below 1% of relative
range and angular errors averaging 0.29 degrees. DeepLO’s multimodal
sensor fusion approach integrates LiDAR, Inertial Measurement Unit
(IMU), and vision-based sensors to maintain accuracy under challeng-
ing space conditions, including debris presence and occlusions. The
system achieves real-time performance with 60-millisecond processing
latency per LiDAR frame, establishing its suitability for autonomous
docking and active debris removal missions. However, DeepLQ’s gener-
alization capabilities across diverse docking scenarios remains limited
without mission-specific reconfiguration.

To address the limitations of traditional LiDAR odometry systems,
which rely on loosely coupled sensor fusion and suffer from drift
accumulation in large-scale environments, Shan et al. [18] proposed
LIO-SAM, a tightly coupled LiDAR Inertial Odometry framework based
on factor graph optimization. By integrating IMU preintegration, Li-
DAR scan-matching, GPS measurements, and loop closure constraints
within a unified graph structure, LIO-SAM achieves highly accurate
real-time trajectory estimation. The framework supports data playback
at rates up to 13x real-time and achieves Root Mean Square Error
(RMSE) below 1 m in GPS-referenced evaluations. These performance
metrics have been validated across five datasets and three platform
configurations, including handheld, ground-based, and marine vehicles.
LIO-SAM’s modular architecture and precision characteristics establish
it as a compelling solution for autonomous navigation in challenging,
GPS-denied, or dynamic environments, including space operations.
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2.2. Direct regression-based methods

A significant contribution in this domain is ChiNet [19], which
employs a Deep Recurrent Convolutional Neural Network (DRCNN) ar-
chitecture for spacecraft relative pose estimation. The system leverages
multimodal data fusion by integrating imagery from both visible spec-
trum and Long-Wavelength Infrared (LWIR) cameras. This multimodal
approach enables robust performance under environmental variabil-
ity, including illumination fluctuations and conditions that typically
degrade the performance of conventional vision-based methods. The
architecture synergistically combines Convolutional Neural Networks
(CNNs) for spatial feature extraction with Long Short-Term Memory
(LSTM) units to capture temporal dependencies in sequential image
data. The system processes Red—Green-Blue-Thermal (RGBT) image
sequences, incorporating both visible and infrared modalities. Thermal
imaging proves particularly advantageous in space docking scenar-
ios where shadows, solar glare, or low-light conditions significantly
compromise visible-spectrum sensors. Through LWIR data integration,
ChiNet demonstrates high accuracy across diverse environmental con-
texts.

Building upon the demonstrated effectiveness of temporal depen-
dencies in spacecraft pose estimation, Yang et al. [20] proposed PVSPE,
a pyramid vision multitask transformer network that addresses inherent
limitations of traditional CNN methodologies in spacecraft pose estima-
tion. The approach combines an enhanced pyramid vision transformer
backbone with a specialized feature pyramid network for robust feature
extraction and incorporates Matrix Fisher and multivariate Gaussian
distributions for comprehensive uncertainty modeling. Experimental
validation demonstrated degree-level attitude accuracy and centimeter-
level translation precision under challenging illumination conditions.
This transformer-based methodology significantly enhances robustness
for on-orbit servicing missions. Accurate pose estimation for uncoopera-
tive spacecraft remains a critical challenge for autonomous rendezvous
and docking.

Proenca and Gao [21] addressed this by proposing a deep learning
framework trained on URSO, a custom built photorealistic render-
ing simulator based on Unreal Engine 4, which generates labeled
spacecraft imagery under realistic Low Earth Orbit (LEO) conditions.
Their approach reformulates orientation estimation as a probabilistic
soft classification problem, modeling ambiguity through a Gaussian
mixture over discretized Euler angles. Compared to direct quaternion
regression, this formulation significantly improves generalization and
robustness. Their best model achieved 0.17 m translation error and
4.0° orientation error on the real test set of ESA’s pose estimation chal-
lenge earning second place among all submissions—and demonstrated
strong sim-to-real transferability using just five real images for domain
adaptation. Experiments on synthetic and real datasets showed that
orientation soft classification outperforms regression by over 5°, and
training with simulated camera perturbations and contrast augmen-
tations further reduced orientation error by more than 11.5°. These
results highlight the efficacy of combining synthetic data generation
with uncertainty aware deep models for robust 6-DOF pose estimation
in space based applications. However, the framework’s dependency
on synthetic datasets restricts its effectiveness when adapting to real
mission environment variability.

The research of Duarte et al. [22] introduced a recent study concern-
ing monocular pose estimation systems for autonomous space refueling.
They developed a machine learning-based image-driven navigation
framework to offer low-cost pose estimation capabilities using single
camera setups rather than expensive active sensing systems such as
LIDAR. For enhanced prediction accuracy during diverse docking sit-
uations scientists trained their CNN with synthetic data derived from
high-detail CAD spacecraft models and analysis of shape variations in
different lighting conditions. Position errors remained below 1% of
relative range with orientation errors under 1 degree during testing
which demonstrates compliance with industry docking standards. Their
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development leverages dropout layers together with data augmentation
to extend its generalization capabilities to new conditions which have
not been seen before. Through experimentation with a robotic arm in
a simulated laboratory setting, they confirmed the model’s ability to
perform effectively in real time under space docking conditions. Their
results show that although theoretical designs demonstrate exceptional
performance with synthetic-based training, the effectiveness must still
be validated in real-world environments. The inclusion of real mis-
sion data into these datasets will help researchers solve the difficult
problems presented by space environments.

2.3. Two-stage methods (keypoint detection + PnP)

Standard vision-based docking approaches suffer in Low Earth Orbit
(LEO) due to intense lighting variation, reflections, and saturation.
Munasinghe et al. [23] addressed these limitations by developing a
photometrically accurate LEO simulation testbed and introducing a
robust event-based vision pipeline for docking port detection. The setup
includes a robotic arm with a satellite mock-up, realistic illumination
using a 130 klm/ m? artificial sun, and Earthshine simulation to repli-
cate orbital lighting. A Dynamic Vision Sensor (DVS) event camera
is used to collect asynchronous brightness changes, allowing visual
perception under conditions where RGB cameras fail. The proposed
detection pipeline accumulates 20,000 events into histograms, applies
a CNN-based ring filter, and performs ellipse fitting via RANSAC to
estimate the pose of a reflective docking port. The system achieved
a mean localization error of 8.58 pixels, with maximum errors up to
39 pixels, corresponding to 2.48% and 3.30% of the image width and
height respectively. Notably, this was accomplished even when RGB
images exhibited over 30% pixel saturation, highlighting the resilience
of event cameras in extreme lighting. Furthermore, the pipeline was
trained in under an hour on a mobile GPU using only 20 min of
data and generalized well across physical augmentations of the satellite
texture. These results demonstrate the potential of event cameras to
enable reliable, low-power, and high speed visual sensing for future
autonomous satellite docking systems operating in dynamic orbital
environments.

The machine vision system for spacecraft docking navigation pre-
sented by Chien and Baker [24] analyzes RGB image data for real-
time adjustments during docking. The navigation machinery recognized
high-contrast geometric features from the target spacecraft which en-
abled accurate pose determination. The system demonstrated successful
docking navigation capabilities because simulated docking scenarios
produced position RMS errors below 5 cm and attitude errors under 0.5
degrees. Related studies, including the work by Kisantal et al. demon-
strate that high-resolution synthetic datasets can significantly enhance
the training of systems for relative pose estimation [25]. The detection-
based approach which this system uses can suffer from decreased
performance when working in low-light conditions or environments
with strong reflections.

The survey conducted by Song et al. [7] gives a good insight about
deep learning-based methods for spacecraft relative navigation. The
survey includes different deep learning architecture models such as
CNNs and RNNs and discusses on the possibility of expanding the
accuracy of the pose of estimations and robustness. It brings into
focus various training strategies, and the use of virtual and actual
environments datasets and the problems related to the deployment of
these models in the space. The survey emphasizes the benefits of deep
learning in combination with the use other techniques to traditional
techniques to complement the deep learning, to increase the reliability
of docking and rendezvous spacecraft missions. The survey also reveals
the current challenges, successes, trends, and further development of
the field, which outlines the further prospective for research.

The work by Kiruki and Asami [26] makes a significant contri-
bution by addressing the challenge of deploying deep learning-based
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spacecraft pose estimation algorithms on resource-constrained plat-
forms such as nanosatellites. The authors focus on implementing the
inference stage of CNN-based landmark localization directly on Field
Programmable Gate Arrays (FPGAs), specifically utilizing the Xilinx
Zynq UltraScale+ MPSoC device.

Three different approaches for landmark localization were evalu-
ated: (i) direct regression using a ResNet-50 model, (ii) detection-based
heatmap estimation using a U-Net, and (iii) a hybrid detection ap-
proach combining spacecraft detection via YOLOv3 with cropped input
for landmark detection using ResNet34-U-Net. Results demonstrated
that detection-based methods significantly outperform direct regres-
sion, with the ResNet34-U-Net achieving an average RMS error of
1.98 pixels compared to 64.5 pixels for regression methods. Further-
more, incorporating spacecraft detection and cropping before land-
mark localization improved robustness under challenging illumination
conditions.

Kiruki and Asami [26] address the challenge of deploying CNN-
based spacecraft pose estimation on resource-constrained nanosatellites
by proposing an onboard inference framework using a Xilinx Zynq
UltraScale+ MPSoC device. Their study evaluates three approaches for
landmark localization: (i) direct regression with a ResNet-50 backbone,
(ii) heatmap-based detection using U-Net, and (iii) a hybrid pipeline
combining spacecraft detection via YOLOv3 with cropped landmark
detection using ResNet34-U-Net. Results show that detection-based
methods substantially outperform regression approaches, with the Res-
Net34-U-Net achieving an average RMS error of 1.98 pixels compared
to 64.5 pixels for direct regression. Furthermore, preprocessing through
spacecraft detection and cropping significantly enhances robustness un-
der challenging illumination. A key contribution is the demonstration
that FPGA-based inference with 8-bit quantization achieves comparable
accuracy to PC-based floating-point implementations, with an average
RMS error difference of less than 0.55. The proposed onboard solution
also operates at a low power budget of approximately 3.5 W, confirm-
ing its suitability for autonomous, power-limited spacecraft engaged in
on-orbit servicing and debris removal missions.

Ma et al. [27] propose GKNet, a graph-based keypoints network
for monocular pose estimation of non-cooperative spacecraft. Unlike
conventional hybrid methods that treat keypoints as isolated features,
GKNet explicitly leverages the geometric constraints of a keypoint
graph to reason about spatial relationships. This design enhances ro-
bustness against structural symmetry and partial occlusion, two ma-
jor challenges in spacecraft pose estimation. The architecture em-
ploys a dual-branch decoder, consisting of an upsampling-based branch
and a graph-convolutional branch, whose outputs are fused to predict
accurate keypoint heatmaps.

To support rigorous evaluation, the authors introduce the Spacecraft
Keypoints Dataset (SKD), comprising 90,000 simulated images with
precise annotations for three different spacecraft models. Experimental
results demonstrate that GKNet consistently outperforms state-of-the-
art keypoint detectors such as HRNet and ResUNet. For instance, on
Satellite 02, GKNet reduced RMSE to 29.1 pixels compared to 74.7
for HRNet, while also improving pose accuracy when combined with a
standard PnP solver. Ablation studies further confirm the contribution
of the graph-convolutional branch, showing significant degradation
when it is removed. These results highlight that incorporating structural
context into keypoint detection substantially improves both detec-
tion and downstream pose estimation accuracy for non-cooperative
spacecraft in challenging orbital conditions.

Chen et al. [28] propose a monocular pose estimation framework
that combines deep landmark regression with nonlinear pose refine-
ment for space-borne satellites. Their approach begins by reconstruct-
ing a sparse 3D model of the target spacecraft through multi-view
triangulation, selecting 11 visually distinctive landmarks such as cor-
ners and antenna endpoints. A deep network based on High-Resolution
Net (HRNet) is then trained to regress the 2D image coordinates of
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these predefined landmarks from bounding-box-cropped satellite im-
ages. By maintaining high-resolution representations, HRNet achieves
superior landmark localization accuracy compared to lower-resolution
backbones.

The predicted 2D landmarks are associated with their 3D coun-
terparts, and a Perspective-n-Point (PnP) solver followed by a robust
nonlinear least-squares optimization refines the estimated pose. To fur-
ther enhance robustness, the authors introduce a Simulated Annealing—
Levenberg—Marquardt Pose Estimator (SA-LMPE), which adaptively re-
moves outlier correspondences during optimization. Evaluated on the
SPEED dataset from the Kelvins Pose Estimation Challenge (KPEC),
their method achieved a cross-validation orientation error of 0.73° and
a translation error of 0.036 m, ranking first in the competition with an
overall score of 0.0094. This work demonstrates that combining deep
landmark regression with geometric optimization provides state-of-the-
art accuracy for spacecraft pose estimation, significantly outperforming
prior methods such as the Spacecraft Pose Network (SPN).

2.4. Critical analysis of related works

While SLAM-based methods (e.g., Du et al. [15], Zhang et al. [16],
Kechagias-Stamatis et al. [17], Shan et al. [18]) demonstrate strong
multisensor fusion capabilities, they rely heavily on radar or LiDAR
inputs and ground-based infrastructure, which limits scalability for
purely onboard, vision-based navigation in deep space. Direct regres-
sion approaches such as ChiNet [19], PVSPE [20], or synthetic-data
driven frameworks like Proenca and Gao [21] and Duarte et al. [29]
offer end-to-end learning but suffer from limited interpretability, sen-
sitivity to label noise, and poor generalization across illumination and
background variations critical factors in docking scenarios. Two-stage
pipelines, including event-based docking [23] or RGB feature extrac-
tion [24], improve robustness but remain tailored to specific sensor
modalities, making them less versatile for passive monocular systems.
FPGA-based studies (Kiruki and Asami [26]) address onboard efficiency
but do not explicitly handle temporal redundancy or generalization
across docking sequences. Recent keypoint driven architectures such as
HRNet-based landmark regression [28] or graph based networks like
GKNet [27] achieve high accuracy on benchmark datasets, but often
assume cooperative targets, high quality synthetic training, or extensive
landmark visibility, which does not reflect operational constraints in
low-light or cluttered orbital conditions.

In contrast, our proposed methodology deliberately integrates CNN-
based keypoint detection with geometric PnP [30] and RANSAC [31],
ensuring interpretability, robustness to annotation noise, and geometric
consistency. The introduction of the soft dataset addresses temporal re-
dundancy and overfitting issues largely ignored in prior works thereby
enhancing generalization across both synthetic and real-world dock-
ing sequences. Furthermore, by validating across multiple lightweight
backbones (ResNet [11], MobileNet [12,32], EfficientNet [13], HR-
Net [14]) and deploying on space grade hardware [33,34], our frame-
work balances accuracy, efficiency, and reliability, offering a more
practical solution for autonomous docking than existing SLAM-based,
regression based, or sensor-specific methods.

3. Methodology

The proposed pose estimation methodology employed in this work
utilizes an indirect, hybrid approach: keypoint features are first de-
tected in 2D imagery through a deep learning network, followed by
recovery of the ISS’s 6-DOF pose through robust PnP problem formula-
tion. Although the ISS is traditionally classified as a cooperative space-
craft equipped with retroreflectors, GPS transponders, and docking
target fiducials to assist chaser vehicle navigation [35], our proposed
monocular pipeline operates without active beacons or artificial mark-
ers. In this case, the ISS is treated as a non-cooperative target, where
pose estimation must be inferred exclusively from passive imagery
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Fig. 1. Overall workflow of the proposed CNN-based pose estimation framework.

under complex Earth-background clutter and unfiltered solar illumi-
nation conditions. As noted by Shi et al. [36], logistical vehicles can
only approach the ISS through a constrained zenith-ward trajectory,
resulting in the target spacecraft being consistently observed against
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Earth’s backdrop, thereby creating particularly challenging conditions
for non-cooperative operations.

The proposed framework integrates PnP algorithms with Convo-
lutional Neural Network (CNN) architectures to process the target’s
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datasets. The CNN predicts 2D keypoint locations within RGB im-
agery while simultaneously extracting spatial features critical for high-
precision pose estimation. Based on these extracted features, the PnP
algorithm computes the spatial position and orientation of the ISS,
which is essential for autonomous docking operations.

The subsequent sections provide detailed exposition of the CNN
architecture design rationale for 2D keypoint prediction, along with
comprehensive analysis of various backbone architectures that enhance
the robustness and accuracy of the complete pose estimation pipeline.

3.1. Methodology overview

A tailored CNN-based architecture (Fig. 1) is developed for ac-
curate and efficient 2D keypoints prediction in RGB imagery. This
architecture addresses the computational efficiency and environmental
robustness requirements critical for space applications. The network
processes RGB inputs through a hierarchical series of convolutional
layers that progressively capture and refine spatial features relevant to
autonomous docking operations. The initial convolutional layers focus
on detecting low-level patterns that establish a foundational repre-
sentation of the input imagery. These foundational layers enable the
network to consistently identify critical structural elements within the
target docking region, facilitating robust feature learning in subsequent
network stages.

Intermediate convolutional layers capture spatial relationships es-
sential for precise keypoint localization as data propagates through the
network hierarchy. These layers are designed to learn mid-level spatial
patterns, including corners, junctions, and other docking-specific land-
marks. Given the high-precision requirements of docking scenarios, this
processing stage is particularly critical, as minor errors in keypoint pre-
diction can propagate into significant pose estimation inaccuracies. To
enhance training stability and model generalization, batch normaliza-
tion is applied following each convolutional layer to standardize input
distributions and maintain gradient flow throughout the architecture.
ReLU activations introduce non-linearity, enabling the network to learn
complex spatial relationships within the data.

The architecture subsequently employs deeper convolutional layers
specialized for extracting higher-level, abstract features. These layers
operate with expanded receptive fields and integrate broader spatial
contexts, enabling the network to distinguish between critical dock-
ing landmarks and irrelevant background structures. These deeper
layers are critical for maintaining model robustness in space environ-
ments characterized by various lighting conditions, specular reflections,
and dynamic shadow patterns. Furthermore, the deeper architecture
components are optimized to reduce model sensitivity to noise and
minor input image variations, ensuring consistent keypoint detection
performance.

Experimentally, an attention mechanism was integrated into the
network to direct model focus toward relevant regions within in-
put imagery. This mechanism enables selective attention to keypoint-
containing areas while suppressing irrelevant background details, par-
ticularly beneficial in scenarios involving distracting backgrounds or
noisy environments. Specifically, we instantiate this mechanism as a
Squeeze-and-Excitation (SE) channel-attention module placed imme-
diately before the final convolution of the prediction head. Let the
backbone output be X© e RBx1280xHoxWo: two subsequent convolutions,
Conv ;501024 and Convygpy_ 515, yield X e RESIZXHXW

X(©O) g REX1280xHxWy

(€Y

) c RBxSleHxW

(2)

0
X= CO“V10244512(C0“V128041024(X( )

The SE block first compresses the spatial dimensions by global
average pooling to produce a 2-D channel descriptor:

z = GAP; y(X) € RPS12, (3)
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| W

Zpe = W 2 z Xb,c,h,w' (4)
h=1w=1

This 4-D—2-D reduction preserves channel semantics while removing

spatial variability solely for the attention computation. Channel gates

are then computed with a two-layer MLP (reduction ratio r) using a

ReLU nonlinearity,

s = o(W, ReLU(W, 2)) € RF*¥12, 5)

: : A2ys512 s512x 322
where o(-) denotes the sigmoid, W, e R+ '~ and W, eR . The
resulting 2-D gate vector s is then broadcast back over (H,W) and
applied channel-wise to the original 4-D tensor:

(6)

Xb,c,h,w = She Xb.c,h,w»

thereby restoring the 4-D shape while reweighting channels uniformly
across spatial locations. This preserves spatial topology but amplifies
keypoint-informative responses and attenuates distractors before the
final convolution Convs;,_,sc.

Following feature extraction, the refined feature maps are flattened
and processed through fully-connected layers responsible for 2D key-
point coordinate predictions. These layers map the high-level spatial
information extracted by convolutional stages to precise 2D keypoint
locations (¥, y coordinates). The architecture is designed to ensure that
these fully connected layers efficiently translate spatial relationships
into accurate keypoint predictions, providing structured input for sub-
sequent pose estimation phases. The 3D pose of the ISS relative to the
camera coordinate system is computed using the PnP algorithm, with
the predicted keypoints serving as its input parameters.

The CNN’s structure, illustrated in Fig. 1, employs a balanced ap-
proach between depth and computational efficiency to ensure effective
computation. This architecture establishes a robust Al-based frame-
work for high-accuracy pose estimation in space docking applications
through the strategic integration of convolutional layers optimized
for spatial relationship extraction, attention mechanisms for selective
feature focus, and fully connected layers trained for precise 2D keypoint
regression.

We note that in the synthetic dataset generation, the ECI frame
was set to coincide with the virtual camera frame in Blender, which
simplifies the transformation chain. This assumption was only applied
in simulation and does not affect the real-world experiments, where the
complete frame mapping is preserved.

3.2. RANSAC based PnP algorithm for pose estimation

Once the CNN has detected 2D keypoints on the target (e.g., the
ISS), each detected pixel coordinate [37]:

@)

x; =

K e R?
LU
is associated with a known 3D landmark in the target’s coordinate

frame.

X,
Y, [e R}
_Z.

i

X =

i

(8

To recover the camera’s pose relative to the target, we solve the
Perspective-n-Point problem [38]. Throughout, let n denote the total
number of detected 2D-3D correspondences; thus, for i = 1,...,n, we
have (X, x;).

The PnP problem seeks a rotation matrix R € R¥>3 (satisfying
orthonormality and unit-determinant, Eq. (11)), and a translation 7 €
R3 that minimize the reprojection error:

Ereproj(R. 1) = i ” x ~x(KIRX, +t])‘|i ©
i=1



S. Khalil et al.

Here, K € R33 is the camera intrinsic matrix (see Eq. (14)); = : R? —
R? denotes the perspective-division mapping

X,/ Z,
(X, Y, Z]") = [Y/Z ] Z,>0 10

and R X; + transforms the 3D landmark X; from the object frame into
the camera frame. The vector x; = [u;,v;]" is the observed 2D pixel
coordinate. At least four non-coplanar correspondences are required to
solve for the six degrees of freedom in (R,7) [30,39].

RR" =1;, det(R)=1 (11)

In practice, we first compute a closed-form estimate (Rjy, fiyi)
using the EPnP solver [30], and then refine (R,?) by minimizing E,;
over all n points via Levenberg-Marquardt [38].

The rotation matrix R is parametrized by a 3-vector r = [r,,r,, r 17
(Rodrigues parameters [40]). Specifically,
[r] [z
R(r) = exp([rly) = I + (1= cos|irll) a2

[l 7|12
In Eq. (12), |Irll = 4/r2 +r2 +r2 is the rotation angle in radians, and

0 -r, ry
[y =] r; 0 —ry (13)
—-r, Iy 0

is the skew-symmetric matrix corresponding to r. After obtaining R
from EPnP, we initialize the nonlinear stage using the inverse Rodrigues
transform: ry,;, = Rodrigues™ (R;,;,).

Assuming zero skew and square pixels, the camera intrinsic ma-
trix [37] takes the form

fx 0 ¢
K=|0 f, ¢ (14)
0o 0 1

In Eq. (14), f, and f, are the focal lengths (in pixels) along the x- and
y-axes, respectively; ¢, and ¢, denote the principal point coordinates,
typically near the image center. The product K [R X, + t] yields the
camera-frame coordinates [X,,, Y, ;. Z, ] before projection.

During both the EPnP initialization and the full nonlinear refine-
ment [30], any 3D point X; projects to the image plane as

%, =n(K[R(r)X; +1]) (15)

In Eq. (15), %, = [4;,0;1T € R? is the predicted 2D projection in
pixel coordinates, and R(r) X;+t = [ X,;, Y., Z.; " are the coordinates
of X; in the camera frame. The operator = (See Eq. (10)) is simply
the homogeneous-division mapping that takes a 3D point in camera
coordinates and returns its 2D pixel projection.

To handle outliers in the CNN-detected correspondences, we em-
bed EPnP within a RANSAC loop [31]. Let = be the inlier threshold
(measured in pixels) and N,,, be the maximum number of RANSAC
iterations (e.g., 1000). At each iteration j = 1,..., N, four correspon-
dences {(X;, x }izl are randomly selected, ensurlng when possible
that {X; } are not coplanar. EPnP is then applied to these four pairs
to obtain (Rf"lzl tm) and r(/) ROdrigues_l(Ri(éi)l)' Starting from
(r fﬁl ’fﬁ:) Levenberg—Marquardt [41] is run on those four points to
produce (rY), 1)), For each correspondence i = 1,...,n, the predicted

projection is
Scaramuzza et al. [42]

A correspondence i is classified as an inlier if el(.’ ) < 7. Let SY) denote
the set of all inliers in iteration j, with cardinality |SY|. If | SV)| exceeds
the current maximum, the iteration’s pose parameters are recorded as

29 = 2(K[REV) X, +19]) x -2

(16)

Thest = t(j)’ Sbest = S(j) 17)

—
Tpest = 175
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After N, iterations, a final Levenberg-Marquardt optimization is
performed over all correspondences in S to minimize

Y |xi-=(k RO X, +”)N§ (18)

1€Shest

yielding the final pose (re. foq)-

In our implementation, the inlier threshold r (measured in pix-
els) was empirically selected by analyzing the reprojection error (see
Eq. (9)) distribution on a held-out calibration set comprising both
synthetic and real images; we chose = = 4 px to represent approximately
two standard deviations of the keypoint localization error distribu-
tion observed during validation [38]. The maximum iteration count
N = 1000 was chosen to ensure 99.9% confidence of finding a
consensus set with at least 70% inliers, following the standard RANSAC
failure-probability formula [31]. These parameter choices consistently
delivered accurate pose estimates across a wide range of test condi-
tions, underscoring the reliability and robustness of our PnP+RANSAC
pipeline even in the presence of moderate keypoint noise.

In Eq. (18), ri.y and t., are the pose parameters from the iteration
with the largest inlier set, and S,. is the corresponding set of inlier
indices. The resulting (r, f.;) minimizes the reprojection cost over
all inliers in Sy..

After obtaining (r.y, f.y ), We compare it to the ground-truth pose
(r Tts g‘) provided by simulator logs or a motion-capture system, using
two error metrics. First, the normalized position error is defined as [43]

Test — tgtnz

ot, =

19

fat Hz

In Eq. (19), .y and 1, are the estimated and ground-truth translation
VeCtors, [|feg —tyll> is their Euclidean distance, and lltgell> normalizes the
error. Second, the attitude error is computed using unit quaternions. A
rotation vector r € R? corresponds to a unit quaternion

o
ax
a=|a,|. 4, =cos(llFll/2) (20)
q;
a |
a, | =sin(lIrll/2) T llgll =1 (2D
q: |
Let gy and gy, be the quaternions corresponding to ry and ry. The
attitude error is then
5,=2 arccos( Gogt qng (22)

In Eq. (22), ¢,y and qy are unit quaternions in R* [42]. The dot
product gy - g, computes the cosine of half the angle between the two
rotations; taking the absolute value inside arccos ensures the smallest
angle between equivalent quaternion representations (g, —q). Conse-
quently, §, € [0, #] measures the angular discrepancy in radians [43].

3.3. Synthetic data generation

We generate synthetic RGB images of the ISS and corresponding
2D keypoint annotations by first simulating orbital motion in MAT-
LAB/Simulink (10 Hz) and then rendering in Blender (see Table 1 and
Figs. 6 and 7). Below are the detailed steps, equations, and variable
definitions.

In MATLAB/Simulink, the ISS orbit is defined by six classical Kep-
lerian elements {a,e,i, Q2,w,v} [44]:

* a = R;+408km, where Ry = 6378 km is Earth’s radius and 408 km
is the ISS altitude.

* e~ 0.0001 is eccentricity.

» i =51.6° is inclination.
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» Q represents the right ascension of the ascending node (RAAN).
* o is the argument of perigee.
+ v is the true anomaly (angle from perigee to current position).

At each simulation time ¢:
a (1 - ez)

)= ———— (23)
1+ ecos(v(1)
where:
« r(t) is the distance from Earth’s center to the ISS at time ¢,
* a is the semi-major axis,
* e is eccentricity,
+ v(?) is the true anomaly at time 7.
The coordinates in the orbital plane are [44]:
Xorp (1) = r(t) cos(v(1)), Yorb(®) = r(1) sin(v(1)) 24

Here:

o [Xorn(®)s Yorp(® 1T are the ISS coordinates in its orbital plane at
time 1.

To transform into Earth-Centered Inertial (ECI) coordinates, apply
the rotation matrix

Reer = Ry (R0 R, (i) R (w0(1)) (25)
with
cosf —sinf O
R;(6) = sinf cos 0
0 0 1
(26)
1 0 0
Ri(0)=]|0 cos® —sinf
0 sinf cos @
Here:
* Q(t) is RAAN at time 7,
« i is inclination,
+ w(1) is argument of perigee at time 7.
Thus, the ECI position vector [43] (denoted R(?)) is
_ xnrb(t)
R(®) = Rgcr | Yorn () 27)
0

Here:
+ R(r) € R? is the ISS ECI position at time .

The ECI velocity vector V(¢) is computed by integrating two-body
dynamics (standard Keplerian differential equations). MATLAB/
Simulink directly outputs R(t) and V(r) at 10 Hz. We refer to these
time-series as “V-bar” and “R-bar”:

V-bar := V(1) € R?, R-bar := R() € R? (28)

For rendering purposes in Blender, spacecraft orientation was
parametrized using a Rodrigues axis—angle vector r(r), which is derived
from the quaternion representation of orbital motion. We emphasize
that this r(7) is distinct from the translational velocity vector V(¢): the
latter strictly represents orbital dynamics, while r(¢) is introduced solely
as an orientation parameter for pose generation.

At each time step ¢, Simulink provides: V-bar = V(1) (expressed as
an axis-angle rotation vector), R-bar = R(¢) (translation). We convert
V-bar = V(r) (axis-angle) into a unit quaternion:

G ()
4 (1)
q,(t)
q.()

q) = (29)
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where

4,(1) = cos(IV(1)l/2) (30)
V()

e (31
ol

[ax0), 4,0, a.0] " = sin(I7(0)11/2)
Here:

* ||V (0] is the magnitude of the axis-angle vector at time ¢,
* g,,(?) is the scalar (real) part of the quaternion,
. [qx(t), q,(0), qz(t)] are the vector (imaginary) components.

We then convert ¢(¢) into the 3 x 3 rotation matrix R(7) via:
2 2
1- 2qy —2q;

R(1) =(2q.q, + 244,
2‘1xqz - quqw

24,9, — 29,4,
1-2¢%>-242
2q,q; +2q,4q,,

2q.q; + zquw
29,9, — 29,4,
1-2¢7 -2q]

(32)

where the time dependence of g,,,4,,4,,q, is implied. The Simulink
translation is simply

(1) = R(r) € R? (33)

the ECI position at time 7. Thus, at each r we have a full 6-DOF pose
(R@), 1(1)).
For each pose (R(), 1(t)):

» A Python script sets Blender’s virtual camera orientation to R(r)
and position to #(z).

The ISS CAD model, whose body frame 3D landmarks {X, ,-}’_ZE , C
R? (IDSS interface corners in Fig. 5) are known, is rendered into
an RGB frame RGB,.

Each landmark X; (in the ISS body frame) is transformed into the
camera frame by

XE(0) = R X, +1() (34)

where:
- Xt = [X ;0. Y ;(0), Z,,(0]T € R? is the ith landmark in

camera coordinates,
— R(¢) and #(t) come from Egs. (32)-(33).

+ Store the pair (RGB,, {Xf(t)}l_zil) for later projection.

Each transformed 3D landmark [38]
X C’,-(t)
X =Y,
Zc,i(t)

(35)

where R(7) and t(7) are obtained from Egs. (26)—(27). It should be noted
that in the synthetic rendering pipeline the Earth-Centered Inertial
(ECI) frame was deliberately aligned with the Blender camera frame.
As a result, the usual composition

Fy —» Fgep = F,

collapses into a single transform by construction. In contrast, for the
real-world dataset (Section 3.4), the full extrinsic mapping between
body, OptiTrack world, and camera frames was explicitly estimated.

The 3D point is then projected using the camera intrinsic matrix K
(Eq. (14)) and perspective division:

%0 =n(K X)) (36)

and = denotes homogeneous normalization:

Al ol [“/ “’] @n
v/w

Finally, for each time step #:

» Rendered RGB image: RGB,.
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Fig. 2. Integration validation setup at City, St George’s University of London’s ASMIL laboratory.

- 2D keypoint set: {£;(1)}2.

We save each (RGB,, {fc,-(t)}izjl) as one annotated example. Repeating
this for all 7 in each V-bar and R-bar sequence yields a complete
synthetic dataset for CNN training/testing on 28 keypoints. By execut-
ing these steps, we produce a synthetic dataset of Blender-rendered
RGB frames with accurate 2D keypoint annotations for all 28 IDSS
landmarks.

3.4. Real-world dataset generation

Real-world data were collected in the ASMIL lab at City, St George’s
University of London (Fig. 2 and 3). A robotic arm executes docking
maneuvers while a Visual-Based System (VBS) captures RGB images at
10 Hz. A blackout curtain and a 400 W halogen floodlight (60° beam

spread) simulate deep-space lighting. The lamp’s solid angle is
Q=2r(1—-cos30°) =0.8418 s (38)

[45] where £ is the beam’s steradian measure. To achieve irradiance

E =1361 W/m? (39)

E=LX — rx06m (40)
Qr? ’

[46] where:

* P =400W is the lamp power.
+ r is the lamp-to-target distance (m).
» Q is from Eq. (38).

Ground-truth 6-DOF poses of the docking target are obtained via an
OptiTrack system [47] (six PrimeX 13 cameras, 240 Hz, 1280 x 1024px,
<0.2 mm positional error, < 0.5° rotational error). A DFK22BUC03
CMOS camera (744 x 480px, 3.5 mm focal length) serves as the
VBS sensor; its intrinsic matrix K was defined in Eq. (14). Table 2
summarizes the VBS camera parameters.

OptiTrack measures the poses of two marker clusters as elements of
SE@3):

T,.(t) and T,,(t) (4D

[48] where:

» T,.(t) € SE(3) is the pose of the camera-housing marker frame F,
in the world frame F, at time ¢.
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» T,,(t) € SE(3) is the pose of the target-body marker frame F, in
F, at time 1.

We note that SE(3), the Special Euclidean group in three dimensions,
comprises all 3D rigid-body transforms. Each element of S E(3) can be
written as a 4 X 4 homogeneous matrix

(42)

where R € SO@3) is a 3 x 3 rotation matrix, + € R? is a transla-
tion vector, and the bottom row [0001] enforces homogeneous coor-
dinates. Applying T € SE(3) to a homogeneous point [X,, X,, X, 177
produces [38]:

X.X

_[RIX X, X T 41

T = A (43)

Xy
XZ
1
However, the VBS navigation algorithm requires the target’s pose in
the camera optical-center frame F,. We therefore estimate two static

transforms in SE(3):

T[c:Fc_)Fi’ st:Fb_)Fs (44)

where:

* F, is the camera’s optical-center frame (pinhole center),
+ F, is a scene frame rigidly attached to a known calibration target
on the ISS mock-up.

To estimate T;, and Tj,, we place the calibration target in view of
both OptiTrack and the VBS camera. Each known 3D calibration point
X, € R3 in the scene frame F, projects to measured pixel coordinates
Xmeas()- Using the intrinsic matrix K (Eq. (14)) and the projection

function r (Eq. (10)), its predicted pixel location is

50 = 7( K [TToe0 ' T, X, ) (45)

where:

* T,.()7'T,,(t) maps F, to F, at time t,

. TS;'X ; transforms the 3D point X from F to F,
* T,. then maps from F, to F,

» K forms camera-frame homogeneous coordinates.
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Fig. 3. Schematic representation of the integration validation setup, illustrating the world, camera, and screen frames.

We minimize the reprojection error over all calibration points s and
times :

min Y, “ Xpeas (1) — fc(t)”i (46)

Tie: Top 4
Once T, and T, are known, the target-to-camera relative transform at
time ¢ is

Tye(t) = Ty Ty () T, (T, “47)

[38] where:

* T,,()”'T,.(t) maps F. to F, via F,,
» Multiplying by T, sends F, to the scene frame F,,
+ Finally, Tizl maps F; back to F,, yielding the target in F,.

Decomposing 7),.(t) € SE(Q3) yields:

R() € SOB) (1) e R? (48)

the rotation matrix and translation vector of the target in the camera
optical-center frame at time r. These are then projected back to 2D
annotation keypoints and stored as the annotation for the frame.

Twelve docking trajectories were recorded with alternating “port”
and “starboard” lighting angles (Fig. 4). Each sequence lasts 319-358s.
The first ten sequences are used for CNN training/validation on real-
world images, and the last two for final testing. In half of the sequences,
a static pose misalignment is introduced during translation and cor-
rected before the final docking phase, simulating unplanned attitude
disturbances.

This laboratory configuration captures the essential visual charac-
teristics that define space docking environments. The controlled setup
deliberately replicates the three fundamental challenges present in
orbital scenarios: (1) the space-representative illumination contrast
without atmospheric diffusion, achieved through our directional 400 W
halogen source that creates the sharp shadow boundaries typical of un-
filtered solar illumination; (2) absence of terrestrial reference features,
enforced by the blackout background that forces reliance solely on
spacecraft-specific visual cues—the primary information source avail-
able during actual space rendezvous; and (3) specular surface inter-
actions on metallic spacecraft components under directional lighting,
which the ISS mock-up materials authentically reproduce.

The laboratory emulation setup specifically validates performance
across the 10-meter to contact operational range, representing the
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Fig. 5. Synthetic ground-truth keypoints (28) on the ISS mock target.

most critical and highest-risk segment of autonomous docking missions
where precision requirements are most stringent and pose estimation
errors can directly impact mission success. While orbital environments
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Table 1
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Synthetic dataset characteristics used for training and testing. A ‘4+’ denotes motion along the positive axis and a ‘-’ along the

negative axis.

Seq. Docking port V-bar R-bar Sun elevation (°) 1SS Perlin Duration (s) Split
1 1 + 37 X X 332 Test
2 1 + 75 x x 319 Train
3 2 - 56 X 358 Train
4 3 - 146 x 336 Train
5 3 - 127 X 348 Train
6 4 - 165 X 327 Train
7 4 + 56 X 333 Train
8 5 - 146 X 329 Train
9 5 + 56 x 333 Train
10 6 + 146 X 342 Train
11 6 - 56 X 323 Train
12 6 + 146 x 355 Test
Table 2 variations applied either to a single layer or to multiple layers, in
Technical specifications of the DFK 22BUC03 VBS cam- order to ensure that the best convergence behavior is achieved. Early
era. stopping is applied based on the validation loss to prevent overfitting,
Parameter Units Value halting the training process if the validation performance does not
Resolution px 744 x 480 improve for a set number of epochs. The complete set of training
Maximum Frame Rate Hz 76 hyperparameters is summarized in Table 3
Focal Length mm 3.5 The Mean Squared Error (MSE) estimates the average squared devi-
Horizontal FOV ’ 65.6 ation of the predicted and ground truth keypoints. For every keypoint,
Vertical FOV ° 44.7

introduce additional complexities such as dynamic backgrounds and
varying solar angles, these factors typically provide supplementary
visual information rather than fundamental algorithmic challenges. Our
laboratory approach therefore captures the core computer vision prob-
lems inherent to space docking while establishing a controlled baseline
for performance validation during the most demanding operational
phase. The high-precision OptiTrack [47] ground truth system enables
algorithm validation at accuracy levels that exceed operational require-
ments, ensuring that laboratory-validated performance will translate re-
liably to space applications where the fundamental visual challenges re-
main consistent but may be supplemented by additional orbital context
information.

3.5. Training and validation of CNN models

To train and validate the CNN models, the synthetic dataset de-
scribed in Table 1 is carefully partitioned into training, validation, and
testing subsets in case 1 and into training and testing only for case 2.
Sequences 1 and 8 were only used for testing for both cases to check the
ability of the model to predict the docking of other scenarios that were
used neither in training nor in validation. These particular sequences
were chosen because they illustrate diverse docking scenarios and sce-
narios such as different docking ports, approach axes, and sun elevation
angles which help in assessing the model’s efficiency.

The remaining sequences (2-7 and 9-12) are used for training and
validation purposes in case 1 and only for training in case 2. To ensure
an unbiased division for case 1, these respective sequences were split
according to an 80%/20% ratio, with 80% allocated to the training set
and 20% to the validation set.

Due to the fact that the data contains long temporal sequences,
which may contain hundreds of frames, the sequences are divided into
smaller temporal segments in order to ensure that the desired 80%,/20%
split can be realized without bias. These smaller segments are obtained
by splitting each original sequence into batches of 32. In this manner,
the training and validation datasets were made to have equal samples.

During training, the CNN model is optimized to minimize the Mean
Squared Error (MSE) loss function, which measures the accuracy of
predicted keypoints against their ground truth positions. The model is
trained using different gradient optimizers, and an exponential decay
learning rate starting at 0.001, tuned using the validation set through
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it calculates the squared Euclidean distance between the coordinates of
the predicted and actual location. It is defined as:

LS (e — 27 4 (= 3172
MSE_nZ((x, 22+ = 9%)

The M’§]1f. is used as the main evaluation criterion for this keypoint
detection task as it is more sensitive to large errors which is impor-
tant for accurate keypoint positioning. Importantly, the cost function
introduced in Eq. (9) refers to the reprojection error used during the
PnP based pose estimation stage, which differs fundamentally from the
MSE loss applied here for keypoint regression.

And finally, a regular and soft dataset are employed to assess their
impact on enhancing model stability and improving predictive accuracy
in new docking scenarios. The regular dataset includes every frame
from each approach sequence, even those captured at very close ranges
where the docking-port features become ambiguous. In contrast, the
soft data set deliberately omits the final frames of each sequence: those
in which the chaser is so close that the distinguishing markers of the
port are no longer clearly visible.

(49)

3.5.1. Case study 1: Comparison of CNN backbones with the regular dataset

The first case study investigates the performance of CNNs with
different backbone architectures trained on the regular dataset. It exam-
ines lightweight models, including EfficientNet, MobileNet, ResNet50,
and HRNet. The regular dataset in this study consists of the full set
of training images. This step aims to compare these backbone architec-
tures and determine which achieves the best performance when trained
on the complete dataset.

3.5.2. Case study 2: Comparison of CNN backbones with the soft dataset

The second case study extends the first by evaluating CNN backbone
architectures on the soft dataset. This task aims to examine how train-
ing on the soft dataset influences model performance compared to the
regular dataset.

3.5.3. Case study 3: Training and testing the real dataset

This case study utilizes only the real dataset for both training and
testing, providing deeper insight into the performance of the pipeline
when applied to data from the same domain. Unlike the synthetic
dataset, which employs 28 keypoints for detection, the real dataset
is simplified to 12 keypoints to align with experimental requirements
and make detection feasible in scenarios where dense keypoint la-
beling is impractical (Fig. 4). This approach focuses on training the
model on real-world images to evaluate its capability in processing and
interpreting docking environment data.
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Fig. 7. ISS background samples for synthetic data.

Table 3
Summary of training hyperparameters used across all experimental cases.
Category Hyperparameters
Optimizer Adam
Learning rate 1x 1073 (StepLR: step=30, y = 0.1)
Batch size 32
Epochs 100

Xavier uniform

MSE on 2D keypoints

ResNet-50, MobileNet, EfficientNet-BO, HRNet
0.5 (FC layers)

Flips, rotations, color jitter, brightness adj.
EPnP + RANSAC (r =4 px, 1000 iters)
diag=10-3,102,10"!

Weight initialization
Loss function
Backbones

Dropout rate

Data augmentation
Pose solver
Covariance (EKF)

4. Experimental results and analysis

This section presents the experiments and a comprehensive analysis
of the proposed method by applying to both synthetic data and real-
world data collected from a representative laboratory environment.

4.1. Software training setup: Data processing and augmentation

During training, we preprocess each image by resizing to a fixed
resolution and normalizing pixel intensities. We then apply a suite of
data augmentation operations detailed in Table 4, including random
rotations, translations, brightness shifts, and other perturbations. These
augmentations expose the CNN to diverse visual conditions, improving
its ability to generalize to new scenes. During inference, predicted
keypoint coordinates are passed through a Gaussian smoothing filter
to suppress spurious noise, yielding more accurate and stable inputs
for the final pose estimation stage.

4.2. Backbone comparison

Fig. 8(a) showcases the performance of the ResNet50, MobileNet,
EfficientNet, and HRNet backbone models across the acquisition, ap-
proach, and final docking phases, highlighting distinct characteristics
in the way each model handles position and attitude errors.

The ResNet50 model maintains steady performance throughout ev-
ery evaluated phase. The position error briefly surges during the acqui-
sition phase to about 0.20% range-normalized for sequence dp00O0,
s0, but reaches a slightly higher value for sequence dp003, si.
The initial spike shows rapid stabilization, which allows position and
attitude errors to maintain their integrity within satisfactory ranges
despite the early variations. The acquisition phase raises attitude error,
yet keeps it under 15 degrees demonstrating that ResNet50 achieves
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reliable rotational precision. ResNet50 maintains effective operational
performance during the approach phase because both position and
attitude errors show a systematic reduction. Throughout the sequence
progression, neither the position error exceeds 0.10% nor does the
attitude error exceed 5 degrees (Fig. 9a). The ResNet50 model shows
small error rates and stable performance through the final docking
sequence which proves that it successfully manages positional and
rotational accuracy demands in moving docking environments. During
the acquisition stage, MobileNet demonstrates marginally increased
initial positional deviations which settle at 0.3% across both data
channels. The performance of MobileNet strengthens notably through
both approach and docking stages reaching exceptional lows with
position error falling below 0.2% during dp000 sequence sO. During
acquisition the orientation error reaches its maximum at 5 degrees
before stabilization throughout subsequent phases. The performance
evaluation shows that MobileNet functions as a lightweight solution for
resource-limited scenarios while maintaining positional accuracy but
faces initial orientation challenges.

During its acquisition phase, EfficientNet’s orientation error experi-
ences high initial spikes until reaching over 10 degrees on models such
as dp003, sl. EfficientNet demonstrates trending stability during
approach and docking phases following the initial spikes but maintains
higher error rate variability when measured against other models. Effi-
cientNet starts with difficulties in position and orientation management
but achieves smoother transitions during later phases of the sequence.

HRNet maintains task consistency across metrics for position and
orientation yet reveals more orientation deviations within dp003, s1.
The position error of HRNet maintains no variability between phases
while orientation error reveals substantial difficulties when faced with
sequences that demonstrate high variability. While HRNet demon-
strates good effectiveness its performance drops during sequences that
demand fast orientation changes.

4.3. Computational efficiency of backbones

To evaluate suitability for onboard deployment, we benchmarked
each backbone’s parameter count, theoretical compute, and projected
inference latency on the S-A1760 Venus™, which features an NVIDIA®
Jetson™ TX2i SoM with 256 CUDA cores delivering up to 1 TFLOPS at
high energy efficiency, optimized for short-duration spaceflight, NEO,
and LEO satellite applications. The choice of the S-A1760 Venus™
platform was guided by its widespread adoption by American space
agencies and its proven reliability in similar space applications [33].
The results, adjusted based on hardware benchmarks specific to the
Jetson TX2i platform (batch size 1, 224 x 224 inputs), are summarized
in Table 5.
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Table 4
Image augmentation parameters used during CNN training.
Transformation Parameter range Unit Description
Channel Shift —20 to 20 - Pixel intensity shift
Gaussian Blur 7 to 13 px Kernel size
Gaussian Noise 3x1073-1x 1072 - Variance
JPEG Compression 2to8 - Compression level
Median Blur 7 to 13 px Kernel size
Patch Dropout 10% % Proportion of image area masked
Patch Size 3% to 5% % Relative patch size
Brightness Adjustment -0.2 to 0.2 - Intensity adjustment
Contrast Adjustment 0.8 to 1.2 - Intensity adjustment
CLAHE 2106 - Number of CLAHE tiles
Gamma Correction 0.35 to 1.50 - Intensity correction factor
Camera Rotation —5° to 5° deg Rotation magnitude per axis
In-plane Image Rotation —5° to 5° deg Overall image rotation
Image Translation —150 to 150 px Translation magnitude
Sequence dp000, sO Sequence dp003, s1
16 16
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Fig. 8. Comparison of pose estimation performance metrics using regular and soft datasets across different backbones for ISS test sequences. (a) Comparison of
Mean Position (%) and Mean Attitude Errors (deg) for Sequences dp000, sO and dp003, s1 using the regular dataset. (b) Comparison of Mean Position (%) and
Mean Attitude Errors (deg) across Backbones for Sequences dp000, sO and dp003, s1 using the soft dataset.

Table 5
Model size, theoretical FLOPs, and projected inference latency on the S-A1760 Venus™ platform (mean + std
estimated over 100 simulated runs).

Backbone Params (M) FLOPs (G) GPU Latency (ms) CPU Latency (ms)
ResNet50 25.6 [11] 4.1 [11] 220 + 15 [34] 650 + 30 [34]
EfficientNet 5.3 [13] 0.39 [13] 110 + 8 [34] 340 + 20 [34]
MobileNet 3.5 [32] 0.30 [32] 80 + 6 [34] 240 + 15 [34]
HRNet 9.3 [14] 4.0 [14] 240 + 18 [34] 750 + 40 [34]
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Fig. 9. () Position and Attitude Errors for ISS dp000, sO and ISS dp003, s1 (ResNet50 backbone/Regular Dataset). (b) Position and Attitude Errors for ISS dp000,

s0 and ISS dp003, s1 (ResNet50 backbone/Soft Dataset).

Computational efficiency is a critical concern for space-based sys-
tems, where power, thermal, and real-time constraints significantly
restrict onboard processing budgets. Although ResNet50 is neither the
smallest (25.6 M params) nor the lowest compute (4.1 GFLOPs) back-
bone, it consistently delivers the highest keypoint localization accuracy
in our experiments (Fig. 8). Its GPU latency of approximately 220
ms/frame remains practical for a 4-5 Hz inference pipeline on the S-
A1760 Venus™ hardware, making it a viable choice when precision
is paramount. Lighter models such as MobileNet (3.5 M params, 0.3
GFLOPs, ~80 ms/frame) and EfficientNet (5.3 M params, 0.39 GFLOPs,
~110 ms/frame) offer approximately 2x-3xspeedups at a modest ac-
curacy penalty of 3%-5%, potentially making them preferable for
missions with tighter power or latency constraints. However, for prox-
imity operations in challenging lighting or complex backgrounds —
scenarios where maximal pose precision directly impacts mission safety
— ResNet50’s superior representational capability justifies its higher
computational cost, making it our recommended backbone.

4.4. Effect of dataset regularization on model performance

The introduction of the soft dataset significantly enhances model
generalization, as observed in Fig. 8. The approach achieves reduced
position and orientation errors spikes with faster initial convergence
and maintains uniform accuracy during the approach docking phase.

For ResNet50 specifically, Figs. 9(a) and 9(b) illustrate how the use
of a soft dataset reduces variability which results in stable position and
orientation error measurements during all docking phases. In sequence
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dp000, s0, the soft dataset reduces mean position error from 0.19%
to 0.09% (a 52.6% improvement) and decreases orientation error from
3.54° to 3.15° (an 11.0% reduction), yielding noticeably less variability
throughout the approach. In sequence dp003, sl, it drives position
error down from 0.66% to 0.03% (a 95.4% improvement) and stabilizes
orientation error at 2.23° (an 18.6% reduction).

The rotational accuracy performance of MobileNet sees noticeable
improvement due to dataset regularization from soft examples. During
experiment dp000O, sO MobileNet achieved a 60.5% reduction in
position error while shrinking from 0.38% to 0.15% and experienced a
58.6% loss in orientation error leading from 4.44° down to 1.84°. On
sequence dp003, s1, MobileNet demonstrates decreased positional
inaccuracy by 87.8% (from 0.41% to 0.05%) together with a 33.5%
decrease in orientation error levels from 5.23° to 3.48°. The study
reveals MobileNet’s successful adaptation to soft dataset regularization
which aids in diminishing variability together with accelerated error
convergence during the system acquisition.

The most substantial orientation error improvement is demonstrated
by EfficientNet. For sequence dp0OOO, sO the position error declined
by 34.6% (from a starting point of 0.26% to 0.17%) while orientation
error diminished by an extraordinary rate of 76.8% (moving from
12.94° to 3.00°). The data reveals that while position error was cut
dramatically by 88.9% (from 0.45% to 0.05% opening to close), ori-
entation error decreased by 53.3% (from 10.91° to 5.09°) in sequence
dp003, s1. Analytical results reveal that soft dataset usage reduces
initial phase fluctuations and rotational dynamics which strengthens
EfficientNet’s performance in metrics for position and orientation.
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Table 6
Comparison of Position and attitude errors for dp000, sO and dp003, s1 using ResNet50 backbone.
Dataset Error type dp000, sO dp003, s1
Mean Median Std. Dev. Mean Median Std. Dev.
Regular Dataset Position Error(%) 0.11 0.09 0.07 0.18 0.06 0.75
s Attitude Error(deg) 3.83 2.32 3.89 3.49 2.15 4.25
Soft Dataset Position Error(%) 0.07 0.06 0.05 0.05 0.04 0.02
Attitude Error(deg) 3.32 1.34 4.47 4.09 2.07 4.58

(b) T =160s
(iD)

(c) T=305s

(c) T =305s

Fig. 10. (i) Qualitative pose estimation performance on the synthetic test dataset dp000, s0. (ii) Qualitative pose estimation performance on the ISS dp003, s1

test sequence.

The soft dataset shows enhanced positional accuracy benefits for
HRNet. During the dp000, sO sequence HRNet achieves decreased
position and orientation errors by 36.4% (0.11% down to 0.07%) and
13.1% (3.82° to 3.32°) respectively. HRNet’s performance in sequence
dp003, s1 shows significant positional error improvement with a re-
duction of 72.2% (from 0.18% to 0.05%) while orientation error regis-
ters minimal yet direct degradation (rising from 3.49° to 4.69°). HRNet
demonstrates effective positional accuracy improvements through the
regularization of the soft dataset but shows performance difficulties
during strong rotational changes.

In summary, Fig. 8 shows how the soft dataset leads to decreased
error instances while maintaining stable results throughout different
backbone architectures. Through this regularization effect, models
demonstrate increased resilience because dynamic docking operations
benefit from improved stationary and rotational predictability. Among
all tested backbones, ResNet50 consistently achieves the best results,
both relative position and orientation metrics (Figs. 8(b) and Table
6). We advanced ResNet50 trained on the soft dataset to continue the
validation process within this pipeline. The qualitative pose estima-
tion results using ResNet50 trained on the soft dataset and tested on
synthetic test sequences are presented in Figs. 10(i) and 10(ii).

4.5. Evaluation pipeline performance on real dataset with real dataset
training

This section evaluates the performance of the full pipeline model
described in Fig. 1, tested on the real dataset. The results show strong
accuracy in both position and attitude estimation, underscoring the
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backbone’s effectiveness in supporting accurate predictions in real
docking scenarios (Table 7).

A mean position error of 0.28% along with a median of 0.18% and
a standard deviation of 0.16% is present for dataset ‘experimental/11°
whereas dataset ‘experimental/12‘ shows a mean position error of
0.30% combined with a median of 0.18% and a standard deviation
of 0.17%. Because position error rates remain remarkably low, the
model demonstrates precise functionality which stems from training in
real-world conditions paired with testing that follows those standards.

Position data aside, this model proves similarly reliable when han-
dling attitude error. The ‘experimental/11‘ group exhibits a mean
attitude error of 1.08 degrees with a standard deviation of 1.02 degrees
but ‘experimental/12¢ displays mean and standard deviation values
of 1.14 degrees and 1.06 degrees, respectively. This model retains
its accuracy of orientation interpretation within real-world docking
scenarios by using the ResNet50 backbone even when the number of
keypoints is low.

Comparing the results obtained in Table 7 and it is qualitative
pose estimation illustration in Fig. 11 to OIBAR’s direct approach
in [29], which achieved position errors of approximately 1.02% for
‘experimental/11‘ and 1.17% for ‘experimental/12, and attitude errors
of 1.65 degrees for ‘experimental/11‘ and 0.86 degrees for ‘experi-
mental/12¢, we observe that the hybrid approach with the ResNet50
backbone achieves comparable or superior results in position estima-
tion. Through special optimization for docking assignments OIBAR’s
direct technique achieves minimal attitude errors which reveals its ef-
ficiency to maintain precision during orientation assessment especially
shown for ‘experimental/12‘. Through its combined feature learning



S. Khalil et al.

Acta Astronautica 238 (2026) 612-629

Table 7
Position and attitude errors for experimental/11 and experimental/12.
Error type Experimental/11 Experimental/12
Mean Median Std. Dev. Mean Median Std. Dev.
Position Error (%) 0.28 0.18 0.16 0.30 0.18 0.17
Attitude Error (deg) 1.08 1.09 1.02 1.14 1.12 1.06

(a) T=20s (b)

(b) T =100s

7=100s
(i)

(c) T=200s

(c) T=170s

Fig. 11. (a) Qualitative pose estimation performance on the experimental/11 test sequence. (b) Qualitative pose estimation performance on the experimental/12

test sequence.

and keypoint detection capabilities this hybrid approach becomes a
formidable choice in diverse real-world scenarios.

Although the real-world dataset used in Case 3 comprised fewer
frames (each trajectory spanning ~200 s compared to ~300 s in the
synthetic cases), the resulting model achieved superior attitude ac-
curacy. This apparent contradiction can be explained by the richer
information content of the real sequences. The synthetic trajectories,
while longer, were generated under clean orbital backgrounds and
controlled rendering settings. In contrast, the real dataset introduced
far more challenging visual conditions, including the presence of a
blackout curtain with strong directional illumination, specular reflec-
tions from metallic surfaces, sensor-induced noise, and realistic optical
clutter. Moreover, the real docking maneuvers involved shorter but
more dynamic approach trajectories, which exposed the network to
higher-frequency viewpoint changes and natural keypoint occlusions.
These factors collectively made the real data more information-dense,
enabling the CNN+PnP+RANSAC pipeline to extract stronger geometric
and appearance cues for rotational estimation. As a result, the real-
trained model outperformed the synthetic-trained cases in attitude
accuracy despite the reduced dataset size, demonstrating the robust-
ness of the proposed hybrid methodology under operationally realistic
conditions.

These findings reinforce that the strength of our approach is not
only in performance metrics but also in the methodological choices
tailored for docking conditions. Unlike generic combinations of CNN-
based keypoint detectors with PnP solvers, the proposed framework
incorporates several domain-specific innovations that explain the ro-
bustness observed across all three cases. First, the PnP+RANSAC stage
is statistically configured based on reprojection-error distributions to
ensure reliability under sensor noise and docking dynamics. Second, the
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CNN keypoint detector integrates an attention mechanism to suppress
clutter and specular highlights, both prevalent in orbital imagery.
Third, a “soft dataset” regularization strategy reduces temporal re-
dundancy in long docking sequences, improving generalization across
backbones and datasets. Fourth, validation under space-representative
conditions — using a robot-in-the-loop setup with calibrated halogen
lighting, OptiTrack ground truth, and a VBS camera — ensures fidelity
to real mission challenges. Finally, benchmarking on flight-grade com-
pute hardware (S-A1760 Venus, Jetson TX2i) and explicitly treating
the ISS as a non-cooperative target further underline the operational
relevance of the framework. Collectively, these elements establish a
tailored and safety-motivated hybrid design that balances robustness,
interpretability, and on-board feasibility for mission-critical docking
operations.

5. Conclusion

This research introduced a hybrid monocular pose estimation frame-
work for autonomous space docking systems, resolving high-accuracy
position and rotation estimation requirements for On-Orbit Servicing
and Active Debris Removal. The method delivers scalable efficiency
through lightweight CNNs with PnP and RANSAC.

Analysis of CNN models such as ResNet50, MobileNet, EfficientNet,
and HRNet on synthetic and real datasets showed ResNet50 as the
best backbone across both settings. In multiple scenarios, ResNet50
recorded minimal positional and attitude errors and showed enhance-
ments with the soft dataset. For sequence dp000, sO, the soft dataset
reduced mean position error by 52.6% (0.19% — 0.09%) and orien-
tation error by 11.0% (3.54° — 3.15°). For sequence dp003, si, it
achieved a 95.4% position error reduction (0.66% — 0.03%) and 18.6%
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orientation error reduction (2.74° — 2.23°). These results confirm
ResNet50’s generalization and accuracy throughout dynamic docking
sequences.

Soft datasets improved generalization by reducing variability from
outliers in positional and rotational errors across all backbones. Mo-
bileNet and EfficientNet also improved through dataset regularization,
minimizing errors and demonstrating its role in stability and reliability
enhancement.

Real-world datasets validated robustness. Controlled laboratory en-
vironments gave favorable training, but real-world data introduced
generalization problems, especially with reduced keypoints and chang-
ing viewpoints. Position errors were 0.28% for experimental/11 and
0.30% for experimental/12, with attitude errors of 1.08° and 1.14°
for real-world-tuned ResNet50. Optimal performance for space appli-
cations depends heavily on domain-specific training data.

Findings show the hybrid framework generated position estimates
matching or outperforming direct methods, which showed 1.02% and
1.17% position errors for experimental/11 and /12 and attitude errors
of 1.65° and 0.86°. Despite direct methods reducing attitude errors in
some cases, the hybrid approach demonstrates higher adaptability and
robustness via feature learning and keypoint detection.

Although performance is strong under controlled conditions, future
work will address limitations through environmental and algorith-
mic enhancements. Environmental improvements will add dynamic
orbital backgrounds, multi-source illumination including Earth albedo
and solar angles, and celestial bodies producing non-uniform condi-
tions. Algorithmic robustness will be enhanced with adaptive RANSAC
and uncertainty quantification for systematic outliers and decision
making. Further strategies include: adaptive thresholding (r set dy-
namically, e.g. 90th percentile of reprojection error histogram); Se-
quential Probability Ratio Tests (SPRT) in the RANSAC loop to reject
unlikely poses early, reducing overhead; and geometry-based priors
from spacecraft kinematics and docking-port geometry (bounds on
angular velocities, lateral offsets) to filter implausible poses. Together,
these strategies allow PnP+RANSAC to adapt to data quality, filter out-
liers, enforce physical constraints, and preserve real-time performance
for deployment.
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