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Noora Sissala 1 , Haris Babačić 1, Isabelle R. Leo 1,2, Xiaofang Cao1, Jenny Forshed1,3,
Lars E. Eriksson 4,5, Janne Lehtiö 1, Claudia Fredolini 6,7, Mikael Åberg 8,9 &Maria Pernemalm 1

Plasma proteomics technologies are advancing rapidly, offering new opportunities for biomarker
discovery and precision medicine. Direct comparisons of available technologies are needed to
understand how platform selection affects downstream findings. We compared the performance of a
peptide fractionation-based mass spectrometry method (HiRIEF LC-MS/MS) and the Olink Explore
3072 proximity extension assays on 88 plasma samples, analyzing 1129 proteins with both methods.
The platforms exhibited complementary proteome coverage, high precision, and concordance in
estimating sex differences in protein levels. Quantitative agreement between platformswasmoderate
(median correlation 0.59, interquartile range 0.33-0.75), mainly influenced by technical factors. Finally,
we present a publicly available tool for peptide-level analysis of platform agreement and demonstrate
its utility in clarifying cross-platform discrepancies in protein and proteoform measurements. Our
findings provide insights for platform selection and study design, and highlight the value of combining
mass spectrometry and affinity-based approaches for more comprehensive and reliable plasma
proteome profiling.

Proteins are the primary effector molecules of cells and tissues, and their
levels closely reflect the phenotype and physiological state of an individual.
The plasma proteome, comprising a complex mixture of proteins from
virtually all organs in the body, represents a rich source of biological
information and is readily accessible through a simple blood test. These
features have motivated efforts to profile the plasma proteome in diverse
conditions, with applications ranging from elucidating disease mechanisms
to biomarker discovery and precision medicine1,2.

Yet, the complexity of the plasma proteome makes it challenging to
analyze. Protein concentrations in plasma span at least 10 orders of mag-
nitude, and among the thousands of proteins present, the 22most abundant
constitute 99% of the total protein mass3. Disease-related proteins are often
present at low levels, and their detection has historically required either
extensive sample processing for untargeted analysis or targeted analysis of
individual or small sets of proteins. However, recent advancements in both
global mass spectrometry (MS) and highly multiplexed affinity-based
proteomics technologies have alleviated this problem by simultaneously

increasing proteome coverage and sample throughput4,5. Consequently,
larger cohorts can be profiled comprehensively, increasing the potential for
insights into human health and disease and facilitating the discovery of new
biomarkers.

In global MS-based approaches, proteins are measured in an untar-
geted manner by digesting proteins into peptides, separating and ionizing
the peptides, measuring their mass-to-charge ratios with MS, and identi-
fying and quantifying the peptides by matching their mass spectra to the-
oretical mass spectra from sequence databases (peptide-spectrum
matching). Generally, MS-based approaches offer highly specific identifi-
cation and quantification of detected proteins (peptides) but usually require
several steps in sample preparation for in-depth profiling. Some MS
methods include fractionation, i.e., separation of peptides into fractions
based on physicochemical properties, to achieve greater depth, often at the
cost of analysis time6,7. Thus, studies employing in-depth MS-based pro-
teomics have been limited in their sample size compared to those employing
affinity-based methods7–10.
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In contrast, affinity-based approaches use affinity molecules such as
antibodies or aptamers to bind and quantify pre-defined target proteins,
enabling high-throughput profiling of the plasma proteome2. Olink’s
antibody-based proximity extension assays (PEAs) and SomaLogic’s
aptamer-based SomaScan assays have facilitated large-scale studies invol-
ving thousands of individuals11,12. However, unlike MS, these methods do
not provide direct detection of proteins (peptides), and ensuring the spe-
cificity and accuracy of affinity binders is challenging. To help mitigate this
issue, PEAs rely on two antibodies to detect each target protein13.

Given the differing strengths and limitations of plasma proteomic
platforms, understanding how platform selection influences protein quan-
tification, reproducibility, and biological interpretation is critical for guiding
study design. While the performance of Olink’s PEAs and SomaLogic’s
SomaScan assays has been compared extensively14–26, direct comparisons
with MS remain scarce and have generally been limited in profiling
depth25–28. Here, we present a comprehensive comparative evaluation of the
Olink Explore 3072 PEA-based platform and our previously published
method for in-depth MS-based plasma proteomics, which combines high-
resolution isoelectric focusing with liquid chromatography-tandem MS
(HiRIEF LC-MS/MS)7. This workflow involves depletion of high-
abundance proteins, tandem mass tag (TMT) labeling, extensive pre-
fractionation of peptides using HiRIEF, and data-dependent acquisition
(DDA) to achieve high analytical depth and relative quantification. We
evaluate the two methods in terms of proteome coverage, precision, statis-
tical power, and quantitative agreement at both the protein and peptide
level. Finally,wepresent PeptAffinity, a publicly available tool for visualizing
peptide-level agreement between HiRIEF LC-MS/MS and Olink Explore

3072 along the protein sequence and structure. We demonstrate the utility
of PeptAffinity in enabling a more detailed investigation of cross-platform
discrepancies in protein quantification, revealing differential proteoform
measurement.

Results
Study overview
We detected 2578 unique proteins across 120 samples using HiRIEF
LC-MS/MS (114 distinct samples with six samples run in duplicate) and
measured 2923 proteins (2941 distinct Olink assays) in a subset of
88 samples usingOlinkExplore 3072 (Fig. 1). ForOlink, normalizedprotein
expression (NPX) values below the limit of detection (LOD) were retained
in all analyses, unless stated otherwise. Ten proteins with NPX
values below the LOD in all samples were deemed not detected and were
excluded from further analysis. In total, 4362 proteins were detected
andquantified in at least one sample across both technologies, 2578withMS
and 2913 with Olink, with 1129 overlapping between methods (Fig. 2A,
Supplementary Data 1). The number of overlapping proteins varied by
Olink Explore panel, with the greatest overlap observed for the Cardio-
metabolic panel (Fig. 2B).The frequencyofmissingvalues (missing inMSor
<LOD in Olink) differed between platforms. In the MS data, 53% of all
quantified proteins had at least one missing value, compared to 35% of
proteins in theOlink data (Fig. 2C).A total of 1741proteinswere detected in
at least 50% of the 88 samples analyzed with both technologies using MS,
and 2460 using Olink, while 1212 and 1910 were detected in all samples
usingMS andOlink, respectively. In theMS data,missing values were TMT
set-specific (Fig. S1).

Fig. 1 | Overview of the study. Plasma samples: a total of 114 pre-diagnostic plasma
samples were collected from patients under investigation for suspected lung cancer.
Proteomic analysis: all 114 samples were analyzed using mass spectrometry (MS)-
based proteomics (HiRIEF LC-MS/MS). Six samples were run in duplicate in dif-
ferent tandem mass tag (TMT) sets, resulting in a total of 120 samples for the MS
analysis. A subset of 88 samples was also analyzed using the Olink Explore 3072
proximity extension assays (PEAs), along with one duplicate control sample.
Duplicate sampleswere used to estimate analytical precision by calculating technical

coefficients of variation (CVs). Cohort characteristics: age and sex distribution of
the study population (N = 88).Method comparison: Themethodswere compared in
terms of proteome coverage, precision, statistical power and concordance in
detecting differential protein abundance. Quantitative agreement between HiRIEF
LC-MS/MS andOlink Explore 3072measurements was assessed at both the protein
and peptide levels. A publicly available resource, the PeptAffinity R Shiny app, was
developed for exploring peptide-level agreement along the protein sequence and
structure. Created in BioRender (https://BioRender.com/i93h320).

https://doi.org/10.1038/s42004-025-01753-2 Article

Communications Chemistry |           (2025) 8:327 2

https://BioRender.com/i93h320
www.nature.com/commschem


Platform MS Olink

p � 2.48 � 10�32

0.0

0.1

0.2

0.3

0.4

10−2 100 102 104 106

D
en

si
ty

All detected proteins

p � 1.5 � 10�109

0.0

0.1

0.2

0.3

0.4

10−2 100 102 104 106

Concentration in blood (ng/mL)

Detected with one method only

1212

1485

1741

2076

2578

1910

2314
2460

2655

2923

0

20

40

60

80

100

0 (0−25] (25−50] (50−75] (75−100]
Proportion of missing values (%)

P
ro

po
rt

io
n 

of
 p

ro
te

in
s 

(%
)

Platform MS Olink

0.00

0.25

0.50

0.75

1.00

10−3 10−2 10−1 100 101 102 103 104 105 106 107 108

Concentration in blood (ng/mL)

P
ro

po
rt

io
n 

of
 p

la
sm

a 
pr

ot
ei

ns

Platform Both MS Olink Not detected

**** **** *** * ns

10−2

100

102

104

106

108

0 (0−25] (25−50] (50−75] (75−100]
Proportion of missing values (%)

C
on

ce
nt

ra
tio

n 
in

 b
lo

od
 (

ng
/m

L)

Platform MS Olink

38.1%

35.3%

53%

48.2%

10.7%

36.1%

13.9%Oncology II

Oncology

Neurology II

Neurology

Inflammation II

Inflammation

Cardiometabolic II

Cardiometabolic

0 100 200 300
Number of proteins

Overlap by Olink Explore panel

71.5%

B

D E

F G

47% 38%
63%

MS Olink Both

MS
222

Olink
1031

Plasma proteome
1815

35

1227

753

1094

Coverage of the reference
plasma proteome

A

MS
1449

Olink
17841129

Total MS: 2578 Total Olink: 2913

MS + Olink: 4362

Number of detected proteins

C

Fig. 2 |Detected proteins,missing values, andplasmaproteome coverage.AVenn
diagram of proteins detected in at least one sample with HiRIEF LC-MS/MS and/or
Olink Explore 3072, based on unique UniProt IDs. B Number and percentage of
Olink assays in each Olink Explore panel detected with both Olink and MS.
C Detected proteins and missing values in the MS and Olink datasets. The y axis
indicates the percentage of proteins in each dataset with a percentage of missing
values within the intervals defined on the x axis. The dotted line shows the cumu-
lative number of proteins with a proportion ofmissing values less than or equal to the
upper bound of each interval. Percentages were calculated out of 88 samples ana-
lyzed with both methods.D Venn diagram comparing proteins detected by MS and
Olink to proteins in the reference human plasma proteome, compiled from the
Human Plasma Proteome Project (HPPP) database and the Human Protein Atlas
(HPA). The bar plot shows the proportion of proteins in the reference plasma

proteome detected with MS, Olink, or both methods. E Distribution of estimated
concentrations, from the HPA, of all detected proteins (left) and proteins detected
exclusively by MS or Olink (right). Medians and interquartile ranges are indicated
with points and error bars. Differences in protein concentration between platforms
were tested using a two-sidedWilcoxon rank-sum test. FMissing values per protein
by estimated protein concentration. Differences in protein concentration between
platforms were tested using a two-sided Wilcoxon rank-sum test, and p values were
adjusted using the false discovery rate method. ns = not significant, *p < 0.05,
***p < 0.001, ****p < 0.0001. G Plasma proteome coverage by estimated protein
concentration. Each bar shows the proportion of proteins in the reference plasma
proteome, within a specific concentration interval, that were detected with eitherMS
only, Olink only, both methods, or neither method (“Not detected”). The x axis
intervals are right closed.
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Plasma proteome coverage
To assess the plasma proteome coverage of eachmethod, we first curated a
reference set of 4889 plasma proteins by compiling proteins from the
Human Plasma Proteome Project (HPPP, www.peptideatlas.org)29 and the
Human Protein Atlas (HPA, www.proteinatlas.org) (see Methods)30,31.
HiRIEF LC-MS/MS showed a greater overlap with this reference plasma
proteome, while Olink Explore 3072 measured more than a thousand
proteins not reported in the MS-based studies found in the HPPP (Fig. 2D,
Supplementary Data 1). Combined, the platforms covered 63% of the
reference plasma proteome.

Based on blood concentration estimates from the HPA31, both tech-
nologies detected proteins with concentrations spanning 10 orders of
magnitude, down to picograms per milliliter (Fig. 2E). However, low-
abundance proteins frequently had a large proportion of missing values,
especially in theMS data (Fig. 2F). Olink demonstrated a higher coverage of
low-abundance proteins, while MS demonstrated a higher coverage of mid
to high-abundance proteins (Fig. 2G). Therefore, proteins detected exclu-
sively by Olink were mainly low abundance, whereas those detected
exclusively by MS tended to be of higher abundance (Fig. 2E). These
observations remained consistent when considering proteins detected in at
least 50% of samples, although the coverage of low-abundance proteins
decreased for both methods (Fig. S2).

Characterization of detected proteins
BasedonHPAannotations, predicted secretedproteins, enzymes,metabolic
proteins, immunoglobulins, proteins enriched in liver tissue, and potential
drug targets weremore frequent in theMS data, while predictedmembrane
proteins, CD markers, proteins secreted in the male reproductive system,
andproteins enriched in thebrain and testisweremore frequent in theOlink
data (Fig. 3A, Supplementary Data 2). Notably, 95 proteins (3.7%) detected
by MS were not found in the HPA, compared to only 22 proteins (0.76%)
detected by Olink, which could lead to a slight underestimation of anno-
tation frequencies forMS.As expected,MSwas enriched forGeneOntology
(GO) biological processes related to high-abundance plasma proteins—
hemostasis, blood coagulation, complement activation, and metabolism,
while Olink was enriched for processes related to low-abundance signaling
proteins, particularly cytokines (Fig. 3B, Supplementary Data 3). The
methods detected comparable numbers of United States food and drug
administration (FDA)-approved plasma protein biomarkers32—74 (MS)
and 72 (Olink) out of 99, with 55 biomarkers detected by both (Supple-
mentary Data 4). Biomarkers exclusively detected by MS included various
transport andmetabolic proteins,whereasOlink exclusively coveredvarious
hormones.

Precision
To evaluate the precision of repeated measurements with HiRIEF LC-MS/
MS andOlink Explore 3072, we calculated technical coefficients of variation
(CV) for eachprotein across duplicate samples (SupplementaryData 5). For
Olink, intra-assay CVswere derived from a control sample of pooled donor
plasma run induplicate on the sameplate.Data for one controlweremissing
for a subset of assays due to a technical failure, leaving 2197 protein assays
(2185 unique proteins, 75%) for CV calculation. For MS, inter-assay
CVswere calculated using duplicates of patient samples, with each replicate
run in different TMT sets. Due to variable protein identifications between
TMT sets (i.e., missing values), CVs could be calculated for 1952
proteins (76%).

Theplatformsdemonstratedhighprecision (Fig. 4A),with comparably
low technical CVs for both MS (median: 6.8%, mean: 9.4%) and Olink
(median: 6.3%, mean: 9.8%). Most proteins had CVs below 15% in both
datasets (MS: 85%, Olink: 81%), although Olink had more proteins with
very low CVs, below 5% (MS: 33%, Olink: 41%). However, the Olink
CVs might have been underestimated, since these were intra-assay CVs,
while forMS, we calculated inter-assay CVs. Technical CVs were higher for
proteins with more missing values and lower estimated blood concentra-
tions (Fig. S3).

ForMS, we also calculated technical CVs for 27,462 peptidesmapping
to the 2578 detected proteins. As expected, technical CVs were somewhat
higher at the peptide level, with a median of 10.2% (Fig. 4B).

Statistical power
To explore differences in statistical power and their impact on the con-
sistency of biological insights provided by HiRIEF LC-MS/MS and Olink
Explore 3072, we performed differential abundance analyses (DAA)
between males and females and compared the differentially abundant
proteins (DAPs) identified. When considering all overlapping proteins in
the analysis (N = 1129),we identified76DAPs in theMSdata and180DAPs
in the Olink data, with 50 (24%) identified in both (Fig. 4C, Supplementary
Data 6). While the overlap in statistically significant DAPs was modest, the
platforms showed strong concordance in estimated differences between
the groups (Fig. 4D). The lack of overlap in statistical significance could be
partly explained by differences in data completeness—more than half of
the DAPs identified exclusively byOlink hadmissing values in theMS data,
resulting in a smaller sample size and lower statistical power for these
proteins in the MS analysis (Fig. S4A). To ensure equal sample sizes, we
next restricted the analysis to overlappingproteinswithnomissing valuesor
values < LOD (N = 569). In this setting, we identified 82 and 118 DAPs in
the MS and Olink data, respectively, with 53 (36%) identified in both
(Fig. 4E, Supplementary Data 7). Although fewer proteins were analyzed,
the number of DAPs in the MS data increased due to a less stringent
correction for multiple hypothesis testing. Notably, the agreement in esti-
mated differences also improved, with a correlation of R = 0.93 and 95%
directional agreement for proteins significant in at least one of the platforms
(Fig. 4F). These results demonstrate that despite the differences in the
number of DAPs identified, both platforms captured consistent biological
signals.

We further investigated the effect of technical and biological variance
on statistical significance. DAPs identified only by Olink tended to have
higher technicalCVs in theMSdata, but not vice versa (Fig. S4B), suggesting
that technical noise inMSmay have masked some protein-level differences
between the sexes.Moreover, the log2-fold change estimates for DAPs were
generally larger in theOlink data (Fig. S4C), andDAPs unique toOlink had
lower estimated concentrations in the blood than those shared with or
unique to MS (Fig. S4D). These findings suggest that Olink may have
quantified certain low-abundance proteinswithhigher precision, increasing
the power to detect smaller differences. Still, MS uniquely identified many
DAPs, generally higher in abundance, highlighting the methods’
complementarity.

Finally, we examined the reproducibility of the DAPs in previous
studies reporting sex-based differences in plasma protein levels measured
with MS (one dataset)33, Olink (two datasets)34,35, and SomaScan (one
dataset)35. The replication rate for each platform was calculated as the
proportion of DAPs that were also present and statistically significant, with
the same direction for the difference, in each published dataset. Replication
rates varied substantially by study, ranging from 38–86% for MS, and
26–83% for Olink (Fig. S4E). Overall, replication rates were somewhat
higher for MS, indicating that while Olink identified more DAPs, those
identified byMSweremore likely to replicate in independent datasets. This
likely reflects differences in sensitivity and statistical power—MSmay yield
fewer but more confident DAPs, whereas Olink may detect subtle effects
that require higher precision to replicate.

Cross-platform correlation of protein levels
We estimated the quantitative agreement between HiRIEF LC-MS/MS and
OlinkExplore 3072 for eachproteinwithPearsonandSpearmancorrelation
coefficients (Fig. S5). While Pearson correlations were slightly higher on
average, we interpreted the findings based on Spearman correlations due to
their robustness to outliers and more conservative estimates.

For all proteins overlapping between MS and Olink (N = 1129), the
median Spearman correlation between paired measurements was ρ = 0.59,
with nearly two-thirds exhibiting moderate to strong correlations of
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ρ∈ [0.5,1.0] (Fig. 5A, Supplementary Data 8). Several proteins had near-
perfect agreement, with the highest correlations observed for MBL2, PZP,
ANGPT1, MYL3, DPT, and SHMT1 (ρ > 0.95). In contrast, some proteins
showed strong disagreement, with negative correlations, for example,
PAXX, SRPK2, GLIPR1, IL10RB, ISM2, and LSM1 (ρ <−0.40). Proteins
withvery lowcross-platformcorrelations generally hada largeproportionof
missing values or values < LOD (Fig. 5B).

Cross-platform correlations improved slightly after removing
values < LOD and values with quality control (QC) warnings in the Olink

data (N = 1064, Fig. S6). On the subset of overlapping proteins with no
missing values, values < LOD, or QC warnings (N = 463), the median cor-
relation reached ρ = 0.68, with 81% of proteins exhibiting moderate to
strong correlations between platforms (Fig. 5C).

Lastly, we calculated cross-platform Spearman correlations between
different isoforms of the same protein (SupplementaryData 9).Matched by
gene name, we identified 41 genes for which MS and Olink measured
different isoforms, based on UniProt IDs. Of these, 21 had more than one
isoform in theMS data. Formost, the agreementwithOlinkwas best for the

MS Olink
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Fig. 3 | Characterization of detected proteins. A Comparison of the frequency of
protein annotations from select Human Protein Atlas (HPA) categories among
proteins detected with HiRIEF LC-MS/MS and Olink Explore 3072. The 15 most
frequent annotations within each HPA category are shown for both platforms.
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proportion of input proteins (MS or Olink proteins) associated with each GO term.
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A Technical coefficients of variation (CVs) per protein for HiRIEF LC-MS/MS and
Olink Explore 3072. Medians and interquartile ranges (IQR) are indicated with
points and error bars. Differences in CVs between platformswere tested using a two-
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CNumber of differentially abundant proteins (DAPs) betweenmales and females by
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canonical isoform. One notable exception was MASP1, for which the
agreement was better for isoform 2 (ρ = 0.57) compared to the canonical
isoform (ρ = 0.04), suggesting that the Olink assay may primarily target
isoform 2.

Comparison with previous studies
To assess the reproducibility of MS-Olink correlation estimates across
studies,we compared theMS-OlinkSpearmancorrelations fromourdataset
(N = 1129) with those reported in previous studies (see Methods and Sup-
plementary Data 10)25–28. For comparability, we restricted the analysis to
proteins measured in both our study and each external study. The previous
studies reported varying levels of agreement between MS and Olink, with

median correlations ranging from ρ = 0.27 to ρ = 0.56 across overlapping
proteins (Fig. S7, Supplementary Data 11). In comparison, our study con-
sistently showed higher MS-Olink correlations for the corresponding pro-
teins, with medians ranging from ρ = 0.59 to ρ = 0.72.

We then compared the MS-Olink correlations from our study to
published cross-platform correlations involving the SomaScan platform
(Olink-SomaScan and MS-SomaScan), again restricting the analysis to
proteins measured in both our study and each external study14–26. In
most cases, the median MS-Olink correlations from our study were
higher than the corresponding Olink-SomaScan and MS-SomaScan cor-
relations reported in previous studies (Figs. S8 and S9, Supplementary
Data 12–13).
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In a recent large-scale comparison of Olink and SomaScan platforms,
Eldjarn et al.14 categorized proteins into three confidence tiers according to
the reliability of their measurements, with tier 1 representing the highest
confidence, and tier 3 the lowest confidence. The classificationwas based on
cross-platform correlations and the detection of protein quantitative trait
loci (pQTLs) (see Methods). To provide additional orthogonal validation
with MS, we examined our estimates of MS-Olink correlations in the
context of these confidence tiers. Tier 1 proteins had a clearly highermedian
correlation betweenHiRIEFLC-MS/MS andOlink Explore 3072 (ρ = 0.71),
compared to tier 2 (ρ = 0.53) and tier 3 (ρ = 0.50) proteins (Fig. 5D, Sup-
plementary Data 14). This supports the idea that the presence of pQTLs on
both platforms, alongwith a high cross-platform correlation, is indicative of
more accurate protein quantification. The median correlation between
HiRIEF LC-MS/MS and Olink Explore 3072 for all confidence tiers was
higher than the corresponding Olink-SomaScan correlations (Fig. S10).
However, the difference wasmost pronounced for tier 3 proteins, where the
median HiRIEF-Olink correlation was ρ = 0.50, compared to ρ = 0.05 for
Olink-SomaScan. These results suggest that the Olink assays for tier 3
proteins may be more accurate than previously indicated. Overall, our data
provide orthogonal validation for the quantification accuracy of many
Olink, and by extension SomaScan assays, in tier 1, and for a few assays in
tier 3, based on strong cross-platform correlations in both studies (ρ > 0.7,
Supplementary Data 14).

Technical factors affecting cross-platform correlations
To explore how technical factors influenced the quantitative agreement
between HiRIEF LC-MS/MS and Olink Explore 3072 measurements, we
employed univariable linear regression with MS-Olink correlation as the
dependent variable (Supplementary Data 15, Fig. 6A and Figs. S11–S14).
Among all tested variables, the proportion of missing values in MS and the
proportion of values < LOD in Olink explained the largest proportion of
variance in the correlations (Fig. 6A). As expected, higher proportions of
missing values were linked to lower MS-Olink correlations (Fig. 6B, C),
likely reflecting noisier quantification, as proteins withmoremissing values
had lower estimated concentrations, higher technical CVs, and median
values closer to LOD in the Olink data (Fig. S15). Consequently, all these
factors were also associated with weaker cross-platform correlations
(Figs. S11 and S14).

AmongMS-specific factors, the number of peptide-spectrummatches
(PSMs) and unique peptides per protein (Fig. 6D), as well as sequence
coverage, were the strongest predictors of higherMS-Olink correlations. As
expected, these factors had an inverse association with missing values
(Fig. S15). The correlationswere lower for proteinswith onemedianPSMor
peptide, but stillmoderate on average (median ρ = 0.42, Fig. S16), suggesting
that a low number of PSMs or peptides alone is not sufficient to deem a
protein quantification unreliable. In contrast, proteins with high precursor
mass errors had weak correlations with Olink (Fig. S13).

Among Olink-specific factors, a higher number of sample QC warn-
ings per protein was associated with lower correlations (Fig. 6E), although
few samples were affected (Fig. S17). Only 30 proteins had an assay QC
warning, and these showed no difference in cross-platform correlations
compared to the rest (Fig. 6E). The cross-platform correlation varied by
Olink panel, likely driven by missing values (Fig. S14). Similarly, compared
to version I panel proteins, correlationswere somewhat lower for the version
II panel proteins, which also hadmoremissing values on average (Fig. S14).

Protein characteristics affecting cross-platform correlations
Next, we explored potential similarities in protein properties and functional
annotations among proteins with poor correlations betweenMS andOlink.
We found no difference in cross-platform correlations based on protein
mass, length, or the number of isoforms reported in the UniProt database
(Fig. S18), and no enriched GO,MSigDB, KEGG, or Reactome gene sets. In
contrast, enzymes, enzyme inhibitors, predicted secreted proteins, proteins
secreted to the digestive system and the blood, as well as candidate cardi-
ovascular disease genes from the HPA were enriched among proteins with

high cross-platform correlations (Fig. 6F, Supplementary Data 16). Most of
these annotations were also overrepresented in the strong correlation group
(ρ ∈ [0.7,1.0]), while the no correlation group (ρ ∈ [−1, 0.3)) had an
overrepresentation of proteins related to intermediate filaments, mainly
keratins (SupplementaryData 17). Thesefindings could be explained by the
higher abundance of the proteins with strongMS-Olink correlations, while
keratins could reflect sample contamination.

Cross-platform correlations at the peptide level
Lastly, we examined cross-platform correlations between HiRIEF LC-MS/
MSandOlinkExplore 3072at the peptide level to identify protein sequences
or regions with differing agreement between platforms. Correlations were
calculated between Olink protein measurements and corresponding MS
peptide measurements, matched by gene name. To obtain more robust
correlation estimates, we excluded peptides quantified in fewer than
15 samples with MS, resulting in a dataset of 13,856 peptides, mapping to
822 genes and 847 unique UniProt IDs (Supplementary Data 18). To
enhance the accessibility of the results, we developedPeptAffinity, a publicly
available interactive R Shiny app (https://peptaffinity.serve.scilifelab.se/app/
peptaffinity). PeptAffinity allows users to visualize peptides quantified by
MS on the protein sequence, along with their correlation with the corre-
sponding Olink assay. Furthermore, for visualizing the correlations in 3D,
we annotated the peptide correlations on protein structures, as predicted by
AlphaFold36,37. Below, we provide a few representative examples to illustrate
the utility of PeptAffinity in exploring cross-platform correlations: Protein
AMBP (AMBP), CD99 antigen (CD99), Hypoxia upregulated protein 1
(HYOU1), and Mannan-binding lectin serine protease 1 (MASP1). These
proteins exhibited substantial variation in peptide-Olink correlations across
different regions of their respective protein sequences, consistent with dif-
ferential measurement of specific isoforms with MS and Olink.

The AMBP gene encodes a precursor protein that is cleaved into two
distinct functional products:α1-microglobulin and inter-α-trypsin inhibitor
(IαI) light chain.Notably, peptidesmapping to the α1-Microglobulin region
showed stronger correlationswith theAMBPOlink assay (median ρ = 0.53)
than those mapping to the IαI Light Chain region (median ρ = 0.07)
(Fig. 7A, B and Fig. S19), suggesting that theOlink assay primarilymeasures
the α1-microglobulin proteoform.

CD99 is a membrane glycoprotein that consists of a cytoplasmic
(intracellular), transmembrane, and extracellular domain. The protein
exists as twodifferent proteoforms: a long form that contains both intra- and
extracellular domains, and a short form that has a truncated intracellular
region. Peptidesmapping to the intracellular domain had lower correlations
with the CD99Olink assay (median ρ = 0.12) compared to the extracellular
domain (median ρ = 0.64), indicating that measured CD99 plasma protein
levels primarily reflect the short isoform (Figs. 7C and S19).

Similarly, for HYOU1, we observed two regions with differing cross-
platform correlations. One region, shared between isoforms 1 and 2,
demonstrated poor agreement between MS and Olink measurements
(median ρ = 0.21), whereas the other, unique to isoform 1, exhibited
moderate agreement (median ρ = 0.64) (Figs. 7D and S19), indicating that
the Olink assay mainly targets isoform 1.

Finally, we confirmed thatMASP1, which hadmultiple isoforms in the
MS data and the strongest correlation with Olink at the protein level for
isoform 2, exhibited higher cross-platform correlations for peptides map-
ping to regions unique to isoform 2 than peptidesmapping to other regions
(Figs. 7E and S19). These findings further suggest that Olink’s antibodies
may be binding sequences specific to isoform 2 of MASP1.

In summary, these examples illustrate how peptide-level analysis by
MS can provide a more detailed view of protein quantification across
platforms than protein-level analysis alone, clarifying discrepancies and
revealing potential differences in proteoform measurements.

Discussion
In this study, we present a thorough technical comparison of peptide
fractionation-based global MS proteomics (HiRIEF LC-MS/MS) and the
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Pearson's R = 0.06, p = 0.046
Spearman's ρ = 0.34, p < 0.001
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Olink Explore 3072 platform, based on an in-depth analysis of the plasma
proteome involving 4362 proteins in total and 1129 proteins overlapping
betweenmethods—more than inmost previous studies comparingMS and
Olink’s PEAs26–28. We show that these platforms exhibit complementary
proteome coverage, high precision, good concordance and com-
plementarity in estimating sexdifferences inprotein levels, and largely good,
albeit variable, quantitative agreement in protein levels. Consequently, we
provide orthogonal validation for a large proportion of the Olink Explore
3072 assays. Furthermore, we identify technical factors and protein prop-
erties influencing the quantitative agreement and compare estimates of
cross-platform agreement across previous studies. Finally, we demonstrate
how a peptide-level analysis of cross-platform correlations can reveal
insights into differences in proteoform measurement.

Our findings demonstrate the complementarity of global MS and
Olink Explore 3072 in providing a more comprehensive analysis of the
plasmaproteome than eithermethod alone, in linewithprevious reports27,28.
This complementarity was evident in the analysis of sex differences in
plasma protein levels. A greater number of DAPs were identified when
combining both platforms, with DAPs unique to each platform originating
from different concentration ranges. While only a subset of DAPs reached
statistical significance with both methods, there was strong concordance in
the direction andmagnitude of the estimateddifferences. This demonstrates
that since discrepancies in statistical significance can arise from differences
in precision and data completeness, it is of value to examine trends across
platforms regardless of statistical significance. Overall, combining these
technologies offers broad proteome coverage across a wide concentration
range and distinct biological processes, increasing the potential for biolo-
gically and clinically relevant discoveries.

As combining platforms is not always feasible, the choice of method
should be guided by their strengths and limitations, as well as the specific
goals of the study. The differences in proteome coverage suggest that each
platform may offer distinct advantages depending on disease context. For
example, the relatively higher coverage of classical plasma proteins and
metabolic proteins observed for MS may be advantageous for investigating
systemic effects on the plasma proteome. In contrast, Olink offers an
advantage in analyzing low-abundance, tissue-leakage, and signaling pro-
teins. The Olink Explore platform currently offers higher sensitivity and
throughput than MS, enabling large-scale studies with high proteome
coverage, though limited to pre-defined targets. In contrast, the untargeted
nature ofMS provides a significant advantage for discovery-focused studies,
allowing for a general characterization of the plasma proteome across
conditions and the detection of novel proteins and post-translational
modifications (PTMs). This advantagewill likely becomemore pronounced
as sensitivity, proteome coverage, and speed continue to improve. In par-
ticular, improvements in enrichment methods and MS instrumentation
have enabled higher sample throughput while maintaining or increasing
profiling depth38–42. However, recentmulti-platform comparisons of plasma
proteomics technologies have shown that the precision and agreement of
these developing MS workflows with Olink and SomaScan are not neces-
sarily improved25,43. Similarly, advances in the Olink technology have
increased proteome coverage and sample throughput, albeit with a greater
proportion of values < LOD and lower agreement with other proteomic
methods for the Olink Explore HT platform21,25,43.

The cross-platform correlation analysis revealed comparable but
slightly higher correlations betweenMSandOlink than reported inprevious
studies25–28. Several technical factors were associated with weaker cross-
platform agreement, including higher proportions of missing values, lower
estimated protein concentrations, and higher technical CVs; fewer PSMs or
peptides for MS data; and sample QC warnings and median NPX values
closer to the LOD for Olink data. Yet, several proteins with seemingly high-
quality quantification on both platforms had poor agreement between
platforms. This could be explained by a multitude of factors: isoforms,
sample handling or preparation, antibody cross-reactivity, PTMs, epitope
effects, and many more. Previous studies have made significant efforts to

validate antibody specificity and selectivity usingMS44–46, and similarwork is
needed to evaluate the affinity binders used in commercial plasma pro-
teomics platforms. Our data provide orthogonal validation for the accuracy
and specificity of at least one thirdof theOlinkExplore 3072assays, basedon
strong agreement with HiRIEF LC-MS/MSmeasurements. This represents
one important pillar of affinity binder validation47.

In addition to quantitative agreement, others have explored the utility
of incorporating associations with genetic variation—the detection of
pQTLs—to assess the accuracy of affinity-based assays14,15,18. However,
based on our comparisonwith results fromEldjarn et al.14, we show that the
pQTL approach is not without limitations, as proteins with pQTLs on both
SomaScan andOlink platforms did not necessarily have a strong correlation
between each other or with MS. Conversely, for several proteins, the
accuracy of the affinity-based assayswas supported by ourMSdata despite a
lack of pQTLs. This highlights the need to validate pQTLs detected with
affinity-based methods through cross-platform comparisons with MS,
which in turn will require MS analyses with large sample sizes.

Through a peptide-level analysis of cross-platform correlations, we
identified differential detection of proteoforms produced by proteolytic
cleavage or alternative splicing. The presented examples illustrate how
aggregating peptide signals into a single protein can mask meaningful
biological variation, demonstrating the importance of shifting from a gene-
or protein-centric to a proteoform-centric analysis of the proteome. Since
different proteoforms can have different cellular functions, localizations, or
roles in disease,measuring themprecisely can advance biomarker discovery
and drug development48. For example, CD99 is a relevant diagnostic bio-
marker and potential therapeutic target in certain sarcomas and hemato-
logical malignancies49. However, its isoforms have shown distinct and
sometimes opposing effects on tumor progression49. Measuring the iso-
forms as a single entity could obscure these differences, leaving potential
clinically significant discoveries undetected. In this context, MS proteomics
has a unique advantage in distinguishing between proteoforms, while
capturing these signals with affinity proteomics would require further
resolving the specific epitopes and isoforms targeted by the binders.

Some limitations of this study should be considered. First, the CV cal-
culations were based on a small number of duplicate samples, introducing
uncertainty in the estimates, and intra- and inter-assay CVs could not be
calculated for both technologies. Second, the results may not be fully gen-
eralizable to other MS workflows or Olink platforms. Differences in cohort
characteristics, sample type, sample preparation protocols, assay versions,
instrumentation, and data processing could contribute to variability between
studies. Third, we aimed to evaluate the overall agreement between our in-
house plasma proteomics protocol and Olink, but from an MS perspective,
future studies would benefit from exploring how factors such as depletion,
fractionation, multiplexing, MS3 quantification, data acquisition strategy, and
data processing affect quantitative agreement with affinity-based methods.
Lastly, since data completeness affects both the quantitative agreement
between platforms and the statistical significance of biological findings, future
work would benefit from assessing the comparability of MS and Olink results
using imputed data. However, as the outcome of such an analysis would
depend heavily on the chosen imputation method, it would require a thor-
ough evaluation of different imputation strategies. Given the high proportion
of missing values in global MS data and the increasing number of values
below LOD in Olink data, evaluating imputation methods on different types
of plasma proteomics data remains an important future direction.

In conclusion, this study illustrates how technical differences between
peptide fractionation-based MS and Olink Explore 3072 influence the
reproducibility of findings in plasma proteome profiling. Our analysis,
encompassing a large number of overlapping proteins, a thorough investi-
gation into factors affecting platform performance, and quantitative
agreement at both the protein and peptide level, demonstrates the com-
plementary strengths of MS and affinity-based proteomics and provides
insights for platform selection and study design. Ultimately, our results
highlight the added value of combining these platforms for a more
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comprehensive and reliable profiling of the plasma proteome, enabling
broader characterization of different diseases and more robust biomarker
discovery.

Materials and methods
Ethical approval
This study was approved by the regional ethical review board in Stockholm,
Sweden (EPN: ref no 2014/1290–32) and conducted in accordance with the
DeclarationofHelsinki.All participants providedwritten informedconsent.

Study design and sample collection
The present study cohort consists of a retrospectively selected subset of the
PEX-LC cohort, which has been described previously50. Briefly, plasma
samples were collected from patients referred to the Karolinska University
Hospital (KUH) in Stockholm, Sweden, for investigation of suspected lung
cancer between September 2014 and November 2015. The plasma samples
were collected during the participants’ first visit to KUH, before diagnosis
and treatment. Bloodwasdrawn intoEDTAtubes, centrifuged at 2500 × g at
RT for 10min, and the resulting plasma sampleswere biobanked and stored
at −80 °C. The present study cohort includes 114 patients, with an equal
numberof patientsdiagnosedwith either lung cancer orno cancer, i.e., other
benign lung conditions. Samples from all 114 patients were analyzed using
HiRIEF LC-MS/MS, and a subset of 88 plasma samples with Olink Explore
3072. For theMSanalysis, six sampleswere run induplicate (aliquoted at the
start of sample preparation), resulting in a total of 120 samples.

Plasma proteome profiling
MS-based proteome profiling
Plasmadepletion and in-solution digestion. To reduce sample complexity
and increase the number of protein identifications, the 14 most abundant
plasma proteins were depleted from the samples using High Select Top14
Abundant Protein Depletion Mini Spin Columns (Thermo Scientific).
10 μL of plasmawas applied to each column, the columnswere incubated at
room temperature for 20min with gentle end-over-end mixing, and
depleted flowthroughs were obtained through centrifugation. The sample
buffer was exchanged to 50mM HEPES (pH 7.6) using 5 kDa spin con-
centrators (5 K MWCO, 4mL, Agilent Technologies, 5185–5987) by cen-
trifuging three times at 5000 rpm for 30min. Protein concentration was
measured using the Micro BCA Protein Assay Kit (Thermo Scientific,
23235) to estimate the total protein amount per sample.

Next, proteins were digested into peptides using lysC and trypsin
(sequencing grade modified, Pierce) following a previously described in-
solutiondigestionprotocol51. In brief, 40 μgof protein fromeach samplewas
alkylated with 8mM chloroacetamide. 100 μL of lysC buffer (0.5M Urea,
50mM HEPES, pH 7.6 and 1:50 enzyme-to-protein ratio) was added, and
the sampleswere incubatedovernight.The sameprocedurewas repeated for
trypsin; 100 μL of trypsin buffer (50mM HEPES, pH 7.6, 1:50 enzyme-to-
protein ratio) was added, and the mixtures were incubated overnight.
Finally, the samples were dried in a SpeedVac and resuspended in 50 μL
TEAB pH 8.5 to a final concentration of 100mM.

TMT labeling. 40 μg of peptides fromeach samplewas labeledwith isobaric
TMTs (TMTpro 16plex Label Reagent Set, Thermo Scientific) according to
the manufacturer’s protocol. A total of 120 samples (114 distinct plasma
samples and six pairs of technical replicates) were labeled with eight sets of
TMTpro 16plex, with one internal standard per set. The master pool of
internal standards was made by pooling a small amount of protein from
each sample, and themaster poolwas then split into eight internal standards
of 40 μg of protein each. The TMT labeling scheme is shown in Table S1.

The TMT labeling efficiency was determined by LC-MS/MS prior to
pooling of the samples. For this, 1 μL of each sample of a TMT set was
mixed, dried down, and resuspended in 10 μL of mobile phase A.
Approximately 2 μg was injected into the LC-MS/MS system and analyzed
with a 3 h gradient. After confirming a labeling efficiency >95%, samples of
the sameTMTsetwerepooled.The eight resultingTMTpoolswerepurified

through solid phase extraction using SPE strata-X-C columns (Phenom-
enex), and purified samples were dried in a SpeedVac.

High-resolution isoelectric focusing. To further reduce sample complex-
ity, pooled samples were pre-fractionated using HiRIEF, following a pre-
viously described protocol52. Briefly, peptides were separated by their
isoelectric point through immobilized pH gradient isoelectric focusing
(IPG-IEF) ongel stripswith a 3–10 pHgradient.After IEF, each gel stripwas
split into 72 fractions, and proteins from each fraction were eluted and
transferred to a 96-well microtiter plate using a liquid-handling robot (GE
Healthcare prototype). Finally, the fractionated samples were dried in a
SpeedVac and stored at −20 °C until analysis with LC-MS/MS.

Liquid chromatography–MS analysis. Online LC-MS was performed as
previously described52 using a Dionex UltiMate™ 3000 RSLCnano System
coupled to a Q-Exactive-HF mass spectrometer (Thermo Scientific). The
contents of each plate well were dissolved in 20 μL of solvent A and 10 μL
was injected. Samples were trapped on a C18 guard-desalting column
(Acclaim PepMap 100, 75 μm× 2 cm, nanoViper, C18, 5 µm, 100 Å) and
separated on a 50 cm long C18 column (Easy spray PepMap RSLC, C18,
2 μm, 100 Å, 75 μm× 50 cm). The nano capillary solvent A consisted of
94.9% water, 5% DMSO, and 0.1% formic acid, and solvent B consisted of
5% water, 5% DMSO, 89.9% acetonitrile, and 0.1% formic acid. At a con-
stant flow of 0.25 μL/min, the curved gradient went from 6–10% solvent B
up to 40% solvent B in each fraction in a dynamic range of gradient length
(see Table S2), followed by a steep increase to 100% solvent B in 5min.

FTMS (Fourier transform MS) master scans with 60,000 resolution
and mass range 300–1500m/z were followed by data-dependent MS/MS
with a resolution of 30,000 on the top 5 ions using higher energy collision
dissociation at 30% normalized collision energy. Precursors were isolated
with a 2m/zwindow.Automatic gain control targetswere 16 forMS1 and 15

for MS2. Maximum injection times were 100ms for MS1 and 400ms for
MS2. The entire duty cycle lasted ~2.5 s. Dynamic exclusion was used with
30 s duration. Precursorswith unassigned charge state or charge state 1were
excluded. An underfill ratio of 1% was used.

Protein identification and quantification. Orbitrap rawMS/MS files were
converted to mzML format using msConvert from the ProteoWizard tool
suite53. Spectra were searched using the ddamsproteomics Nextflow
(v22.10.5)54 pipeline (https://github.com/lehtiolab/ddamsproteomics,
v2.11), which runs MSGF+ (v2020.03.14)55 and Percolator (v3.04.0)56 for
peptide identification. All searches were performed against a database of all
human proteins from the UniProtKB/Swiss-Prot release of May 2022.
MSGF+ settings included precursor mass tolerance of 10 ppm, fully tryptic
peptides, a maximum peptide length of 50 amino acids and a maximum
charge of 6. Fixed modifications included carbamidomethylation on
cysteine residues and TMTpro 16plex on lysine residues and peptide
N-termini. A variable modification was used for oxidation on methionine
residues. PSMs found at 1% FDR were used to infer protein identities.

TMTpro 16plex reporter ions were quantified using OpenMS project’s
IsobaricAnalyzer (v2.5.0)57. Relative quantification was calculated on the
peptide and protein levels based on PSMs mapping to only one protein group
(UniProt ID) and with 1% FDR. PSMs with missing values in any channel
within a TMT set were excluded. Relative quantification values were calculated
for each TMT channel as the median of PSM ratios (channel/internal stan-
dard). To obtain these PSM ratios, PSM intensities were log2-transformed, and
the transformed PSM intensities of the internal standard were subtracted from
the transformed PSM intensities of the channel. Peptide/protein quantification
values were then normalized by subtracting the median of the channel
from each value. Protein FDRs were calculated using the picked-FDRmethod
using UniProt IDs as protein groups and limited to 1% FDR.

Antibody-based proteome profiling
The sampleswere analyzedusing theOlinkProteomicsPEAExplore 3072at
SciLifeLab Affinity Proteomics unit at Uppsala University and the National
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Genomics Infrastructure Uppsala. The detailed protocol for PEA Explore
has been previously described by Wik and colleagues13.

In summary, Olink’s PEA Explore technology utilizes pairs of anti-
bodies conjugated with single-stranded DNA oligonucleotide reporter
molecules, known as probes, which bind to their respective targets if present
in the sample. When both probes in a pair bind to their target in proximity,
double-stranded DNA amplicons are generated. The Explore 3072 assay
comprises eight distinct 384-plex panels targeting inflammation, oncology,
cardiometabolic, and neurology proteins, covering a total of 2923 human
proteins. Four of these are version I panels (e.g., Inflammation), which were
part of the earlierOlink Explore 1536 platform,while the remaining four are
version II panels (e.g., Inflammation II), added to the Olink Explore 3072
platform.

Following the initial probe-based immune reaction step in the PEA
Exploreworkflow, the ampliconswere extended and amplified in a two-step
process, with individual sample index sequences added during the second
step. After pooling the samples, the libraries were prepared and sequenced
on a NovaSeq 6000 instrument (Illumina, San Diego, CA, USA). The raw
BCL files were converted into count files, which were then translated into
NPXvalues throughaQCandnormalizationprocess incorporating internal
and external controls, as specified by the manufacturer. In this process, QC
is performed for each assay (protein) measured in each sample and for each
assay overall. If the QC for an assay in a specific sample fails, the mea-
surement receives a sample QC warning. If the overall assay QC fails, the
assay receives an assay QC warning (across all samples).

The NPX data are presented on a log2 scale, where an increase of one
NPX unit corresponds to a doubling of the protein content. A high NPX
value indicates a high protein concentration. Each measured protein has a
LODdetermined at run time based on negative controls. Values < LODand
QC warnings were retained in all analyses, unless stated otherwise.

Statistical analysis
Proteome coverage. The reference plasma proteome was compiled
from proteins listed in the HPPP (PeptideAtlas build 2023-04, www.
peptideatlas.org)29, proteins with an estimated blood concentration in the
HPA (v24, www.proteinatlas.org)30,31, and proteins classified as secreted
to blood in the HPA, resulting in a reference set of 4889 unique proteins
based on UniProt IDs. Proteins were matched between MS, Olink, and
HPPP datasets using UniProt IDs. For the HPA data, which lacked
UniProt IDs for some proteins, matches with the MS and Olink datasets
were identified primarily based onUniProt IDs and secondarily based on
gene names. Proteins are referred to throughout the text with their cor-
responding gene names.

Estimated bloodprotein concentrationswere obtained from theHPA31

and converted to ng/mL. The HPA reports concentrations derived from
both immunoassay data from the literature and MS data from the
PeptideAtlas29. MS-based concentrations were used when available. For
proteins lacking MS-based concentrations, immunoassay-based con-
centrations were used, if available.

Comparison of protein annotations. The frequency of specific HPA
annotations was calculated among all proteins detected in at least one
sample byMS or Olink. Overrepresentation in either platformwas tested
using a hypergeometric test, with all proteins detected by MS and/or
Olink used as the background (N = 4362). P values were adjusted for
multiple testing using the FDR method, with a significance threshold of
FDR < 0.05. The “Enriched tissue” category refers to proteins annotated
as “Tissue enriched” in the Tissue section of the HPA30, meaning their
mRNA expression was at least four-fold higher in a specific tissue com-
pared to all other tissues.

ORA of GO Biological Processes between platforms was performed
using the compareCluster function in the clusterProfiler (version 4.14.4)58 R
package. All proteins detected with MS and/or Olink were used as the
background protein list (N = 4362). Fold enrichment for GO terms was
calculated as the ratio of the frequency of the input proteins (GeneRatio) to

the frequency of the background proteins (BgRatio) found in the respective
GO term protein list, based on UniProt IDs. For Olink assays with multiple
UniProt IDs, the first one was used. P values were adjusted for multiple
testing using the FDRmethod, with a significance threshold of FDR < 0.05.

The coverage of FDA-approved plasma protein biomarkers was based
on a list compiled by Anderson32. Proteins were matched between this list
and theMS andOlink datasets based onUniProt IDs. Tenmarkers with no
UniProt ID were excluded from the analysis.

Technical CVs. Technical CVs were calculated using the CV formula for
data on a log2-scale

59:

CV ¼ 100% �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eðln 2ð Þ�SDÞ2 � 1
p

CVs were calculated on up to six duplicate samples for MS, and the final
technicalCVwas calculatedas themeanof the individual duplicateCVs. For
Olink, the technical CVswere calculated on one duplicate sample, theOlink
Sample Control, which is a standard pooled plasma sample. CVs were
capped at 100%.

Differential abundance analysis. DAAs between females (N = 37) and
males (N = 51) were performed using a two-sided Welch’s t test, with
males as the reference group. P values were adjusted for multiple testing
per platform using the FDR method, with a significance threshold of
FDR < 0.05. The directional agreement of the log2-fold change valueswas
calculated as the percentage of proteins showing the same direction of
change (positive or negative) in both platforms.

For the calculation of replication rates for MS and Olink DAPs, DAA
results reporting differences in plasma protein levels between males and
females were obtained from the supplementary materials of three previous
publications33–35. The replication rates were calculated, out of the DAPs
tested in both the present study and each previous study, as the proportion
of DAPs with a statistically significant difference in the same direction in
both studies.

Cross-platform correlation analyses. Correlations between MS and
Olink measurements of matched proteins were calculated using both
Pearson and Spearman correlation coefficients, and all correlations were
presented without filtering for statistical significance. Proteins with fewer
than eight overlapping data points were excluded from the analyses.
Correlationswere calculated on the full dataset of all overlapping proteins
(N = 1129), a cleaned dataset where values < LOD and QC warnings in
the Olink data were set to missing (N = 1064), and a dataset of over-
lapping proteins with no missing values or QC warnings in either plat-
form (N = 463). The cross-platform correlations were divided into
categories of no correlation: ρ∈ [−1, 0.3); weak correlation: ρ∈ [0.3, 0.5);
moderate correlation: ρ∈ [0.5, 0.7); and strong correlation: ρ∈ [0.7, 1.0].

For the peptide-level analysis, MS peptides were matched to Olink
assays based on gene name (i.e., Olink assay name), and correlations were
calculated using Spearman’s rank correlation coefficient. Peptides quanti-
fied in fewer than 15 samples, and genes with fewer than two peptides were
excluded from the analysis. Information on the sequence positions of dif-
ferent isoforms and cleavage products of AMBP, CD99, HYOU1, and
MASP1 was obtained manually from UniProt (release 2025_01, https://
www.uniprot.org/). The fasta sequences of proteins included in the Pep-
tAffinity R Shiny app were downloaded from UniProt (release 2022_05).

Associations between MS-Olink correlations and technical factors
were assessed using univariable linear regressionmodels with theMS-Olink
Spearman correlation as the dependent variable. P values were adjusted
using the FDRmethod, with a significance level of FDR < 0.05. Information
on protein mass, length, and number of isoforms was obtained from Uni-
Prot release 2023_03, and protein concentration data were obtained from
the HPA as described above. All other technical factors analyzed were
obtained or calculated from the MS and Olink data files.
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GSEAs of GO terms, HPA annotations, and MSigDB, KEGG, and
Reactome gene sets were performed using the clusterProfiler R package,
with a ranked list of the Spearman correlations between MS and Olink
measurements of all overlapping proteins as the input (N = 1129). P values
were adjusted formultiple testingusing the FDRmethod,witha significance
threshold of FDR < 0.05.

ORAs of GO terms, HPA annotations, and MSigDB, KEGG, and
Reactome gene sets among proteins in the low correlation (ρ < 0.3) and
strong correlation (ρ ≥ 0.7) categories were performed as described above
for the comparison of GO terms between platforms. All overlapping pro-
teins (N = 1129) were used as the background.

Comparison with previous studies. The previous studies included in
the comparison of cross-platform correlations are summarized in Sup-
plementary Data 10. Cross-platform correlations were obtained from the
supplementary materials of all publications except Petrera et al.27, for
which MS and Olink data files were downloaded, and Spearman corre-
lations were calculated between the DDA-MS and Olink measurements
of all overlapping proteins matched by UniProt IDs. Proteins were
matched between studies primarily by UniProt IDs or by gene name if
UniProt IDs were not provided. For proteins measured by multiple
affinity reagents within one platform, the cross-platform correlation was
calculated as the median correlation of all matched reagent pairs. Several
of the studies comparing Olink and SomaScan provided cross-platform
correlations for both normalized and non-normalized SomaScan data.
For these studies, the correlations calculated from normalized data
were used.

For the comparison of correlations by confidence tiers defined in
Eldjarn et al.14, data were obtained from Supplementary Table 29 of the
original publication. The authors defined the confidence tiers as follows: tier
1, the highest confidence tier, included proteins with an Olink-SomaScan
correlation >0.5 and cis-pQTLs detected on both platforms; tier 2 included
proteins with a correlation of ≤0.5 and a cis-pQTL detected on both plat-
forms; and tier 3 includedproteinswith a cis-pQTL identifiedononly oneor
neither platform.

Software. All statistical analyses and data visualizations were performed
in R (version 4.4.2)60. Information on R packages and versions used is
provided in the code repository on GitHub.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
TheHiRIEF LC-MS/MS data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier
PXD061144. The Olink Explore 3072 data have been deposited in the
PRIDE repository with the dataset identifier PAD000006. Individual-level
personal data are not publicly available as they contain information that
could compromise participants’ privacy. Data used for the PeptAffinity R
shiny app can be found in the code repository on GitHub. All other data
supporting the findings of this study are available within the paper and its
supplementary information files. Figure source data are provided as Sup-
plementary Data 19.

Code availability
The R code used for the analyses is deposited at https://github.com/
noorasissala/MS-Olink-comparison61. The code for the PeptAffinity R
Shiny app is deposited at https://github.com/isabelle-leo/PeptAffinity62. The
ddamsproteomicsNextflow pipeline forDDA-MS data searches is available
at https://github.com/lehtiolab/ddamsproteomics.
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