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Abstract

Accurate and real-time classification of low-latency Internet traffic is critical for applications
such as video conferencing, online gaming, financial trading, and autonomous systems,
where millisecond-level delays can degrade user experience. Existing methods for low-
latency traffic classification, reliant on raw temporal features or static statistical analyses,
fail to capture dynamic frequency patterns inherent to real-time applications. These limita-
tions hinder accurate resource allocation in heterogeneous networks. This paper proposes a
novel framework integrating wavelet transform (WT) and artificial neural networks (ANNSs)
to address this gap. Unlike prior works, we systematically apply WT to commonly used
temporal features—such as throughput, slope, ratio, and moving averages—transforming
them into frequency-domain representations. This approach reveals hidden multi-scale pat-
terns in low-latency traffic, akin to structured noise in signal processing, which traditional
time-domain analyses often overlook. These wavelet-enhanced features train a multilayer
perceptron (MLP) ANN, enabling dual-domain (time—frequency) analysis. We evaluate our
approach on a dataset comprising FTD, video streaming, and low-latency traffic, including
mixed scenarios with up to four concurrent traffic types. Experiments demonstrate 99.56%
accuracy in distinguishing low-latency traffic (e.g., video conferencing) from FTP and
streaming, outperforming k-NN, CNNs, and LSTMs. Notably, our method eliminates
reliance on deep packet inspection (DPI), offering ISPs a privacy-preserving and scalable
solution for prioritizing time-sensitive traffic. In mixed-traffic scenarios, the model achieves
74.2-92.8% accuracy, offering ISPs a scalable solution for prioritizing time-sensitive traffic
without deep packet inspection. By bridging signal processing and deep learning, this
work advances efficient bandwidth allocation and enables Internet Service Providers to
prioritize time-sensitive flows without deep packet inspection, improving quality of service
in heterogeneous network environments.

Keywords: network traffic classification; artificial neural network; wavelet transform;
feature selection; internet traffic mix; statistical features; QoS; low latency

1. Introduction

The digital age has brought a tremendous demand for high-speed Internet services,
fueling the search for efficient traffic management and optimization strategies. One critical
branch of this effort is the accurate identification and classification of low-latency Internet
traffic. Low-latency networking demands end-to-end delays below 100 ms for real-time
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applications (e.g., video conferencing and online gaming), and below 10 ms for mission-
critical systems like autonomous vehicles or financial trading [1-3]. For instance, video
conferencing suffers from “freezing” and audio—video de-synchronization with delays
>150 ms, degrading user experience. Online gaming requires <50 ms latency to prevent
gameplay disadvantage (e.g., delayed reactions in competitive matches). Financial trading
platforms (e.g., algorithmic trading) incur revenue losses with delays >1 ms due to missed
arbitrage opportunities. Autonomous systems (e.g., vehicle-to-vehicle communication) risk
collisions if control signals exceed 10 ms thresholds. Accurate classification of such traffic
is foundational for QoS-aware resource allocation, where millisecond-level delays directly
impact safety, revenue, and user satisfaction.

Traditional approaches to latency management rely on real-time monitoring [4], statis-
tical analysis [5], and Quality-of-Service (QoS) metrics [6]. Streaming platforms like Netflix
and YouTube, for instance, dynamically adjust video quality by monitoring bandwidth
and allocating resources to minimize buffering [7]. However, these methods often lack
the granularity to distinguish low-latency traffic’s unique characteristics, which resemble
Gaussian noise due to consistent bidirectional micro-packet exchanges. This “noise-like”
pattern, when analyzed through signal processing techniques such as wavelet transforms,
reveals high-frequency components indicative of rapid packet dynamics [8].

Wavelet transforms (WTs) are particularly suited for decomposing traffic signals into
time-frequency domains, enabling the isolation of transient features like throughput fluctu-
ations, slope variations, and moving averages. These temporal metrics, when combined
with bidirectional ratios, provide a multi-scale perspective essential for differentiating
low-latency traffic from bulk data transfers. Building on this, our methodology integrates
artificial neural networks (ANNSs) with wavelet-transformed features to enhance classifi-
cation accuracy. By exposing high-frequency patterns often obscured in raw time-series
data, the model captures both temporal dynamics and spectral signatures inherent to
low-latency flows.

This hybrid approach addresses a critical challenge: distinguishing structured low-
latency “noise” from background network “signal” with precision. Unlike conventional
noise reduction techniques in signal processing [9,10], our framework leverages ANNSs to
adaptively learn traffic patterns, ensuring robust classification even in dynamic network
environments. The result is a system capable of near real-time prioritization, crucial for
applications demanding instantaneous responsiveness.

In the forthcoming sections of this article, we will explore our methodology in a
comprehensive way, dive into the details of data collection, present our experimental
findings, and engage in thoughtful discussions. The goal is to vividly demonstrate the
effectiveness of our approach in classifying and identifying low-latency traffic.

2. Related Work

The rapid growth of high-speed Internet services has driven a surge in demand
for efficient traffic management and optimization strategies as highlighted in the Cisco
report [11]. With increasing reliance on real-time applications such as online gaming,
video conferencing, and financial trading, the ability to accurately classify low-latency
Internet traffic has become a critical research challenge [12-14]. However, existing classifi-
cation methods often struggle with the dynamic and bursty nature of low-latency traffic,
necessitating novel approaches that move beyond traditional techniques.

Early traffic classification methods relied on port-based heuristics, deep packet inspec-
tion (DPI), and statistical analysis [15-18]. While these approaches provided initial insights
into network traffic behavior, they suffer from severe limitations in modern networks. Port-
based methods are increasingly unreliable due to dynamic port allocations and encryption
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techniques that obscure traffic signatures [19]. DPI, while highly accurate, raises significant
privacy concerns and requires high computational overhead, making it impractical for
large-scale deployments [20]. Statistical approaches, though lightweight, often fail when
dealing with encrypted traffic, which now dominates Internet communications [21].

To address these shortcomings, machine learning (ML) and deep learning (DL) models
have gained traction in traffic classification research. ANNS, in particular, have demon-
strated remarkable success in recognizing complex traffic patterns [22,23]. They have
been applied to traffic classification, anomaly detection, and predictive modeling, offering
adaptability to evolving network conditions [24-26]. However, a major challenge with
ANN-based methods is their reliance on time-domain traffic features, which often fail to
capture the high-frequency fluctuations characteristic of low-latency traffic. As a result,
standard ANNS struggle to differentiate between low-latency and non-low-latency traffic
in complex network environments.

To enhance feature extraction and improve classification accuracy, researchers have
turned to signal-processing techniques such as wavelet transform (WT). Wavelet analy-
sis has been widely used in time-series data processing, particularly in network traffic
prediction [27], anomaly detection [28], and QoS monitoring [29]. Unlike traditional statisti-
cal methods, wavelets decompose network traffic into multiple frequency scales, allowing
for a more granular representation of the underlying patterns. This capability is particularly
useful for low-latency traffic, which exhibits noise-like fluctuations that are difficult to
detect in the time domain alone [30].

Beyond wavelet transformations, recent advancements in Internet traffic classification
have focused on trend-based features that enhance model interpretability. Studies have
introduced fine-grained statistical features such as moving averages, throughput patterns,
and slope-based metrics, which have led to significant improvements in classification
accuracy [4,18,31]. Additionally, feature selection techniques—such as multifractal analysis
and PCA-based selection—have been applied to refine classification models, further im-
proving performance and robustness [30,32]. Despite these advances, most studies still rely
solely on time-domain features, which limits their ability to fully exploit the high-frequency
patterns unique to low-latency traffic.

Parallel to ML-based solutions, researchers have also explored alternative traffic classi-
fication approaches to improve scalability and real-time adaptability. Incremental Support
Vector Machines (S§VMs) have been developed to handle dynamic traffic patterns, allowing
for adaptive classification in real-world networks [33]. Other work has explored hardware-
accelerated classification techniques, such as FPGA-based decision trees, which enable
high-speed traffic analysis with minimal computational overhead [34]. Bio-inspired meth-
ods, such as artificial immune system algorithms, have also shown promise in optimizing
classification models [35], while multi-stage classifiers have been proposed for handling
encrypted and obfuscated traffic types [36-38]. While these approaches offer unique ad-
vantages, they still fall short in achieving the high-precision classification of low-latency
traffic, particularly in mixed-traffic scenarios.

In recent years, deep learning-based traffic classification has gained prominence, with
CNN-based models such as Deep Packet [39] and LSTM-based solutions like FlowPic [40]
achieving state-of-the-art results. These models leverage large-scale datasets, including
those introduced by Draper-Gil et al. [41] and Lashkari et al. [42], which contain a mix of
VPN, Tor, and unencrypted traffic. However, these solutions primarily focus on categorizing
general Internet traffic and are not specifically optimized for low-latency classification.
Furthermore, their reliance on end-to-end deep learning architectures often sacrifices
interpretability, making them less suitable for real-time network management applications.
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A detailed analysis of the key approaches in Table 1 reveals distinct strengths and lim-
itations. ANN-based methods [20,23,24] achieve high accuracy (97-99.08%) for encrypted
traffic but rely exclusively on time-domain features, limiting their ability to capture high-
frequency patterns in low-latency applications. The multilayer perceptron in [20] demon-
strates scalability but requires full flow captures. DPI techniques [21] offer computational
efficiency through Aho-Corasick pattern matching but fundamentally require payload
inspection, rendering them ineffective for encrypted traffic and privacy-sensitive environ-
ments. Hybrid ML methods [27] incorporate wavelet kernels (GA-WK-ELM) for improved
feature extraction but depend on evolutionary optimization that introduces significant
computational overhead, hindering real-time deployment. CNN architectures [39,40] attain
state-of-the-art accuracy (up to 99.7%) through spatial feature learning but operate as black-
box models with limited interpretability. FlowPic’s [40] image-based representation enables
efficient classification but discards temporal sequencing crucial for latency-sensitive traffic.

Table 1. Comparison of Internet traffic solutions.

Study Traffic Type Low-Latency Granularity  Algorithms Input Dataset Accuracy
[20] Encrypted Yes Application MLP Raw Traffic Cambridge 99.08
[21] Encrypted No Protocol Aho-Corasic ~ Raw Traffic Digizllvéi‘{nora 98
[22] Encrypted No Application MLP, SAE Raw Traffic Private -

[23] NZIE@I/DN Yes Application ANN Packet Feature ~ Darknet2020 97
R4 N Yes stfvlilgact;lr%% ANN Raw Traffic 1SCX %
[27] NX:—EI/’N Yes Application ML Raw Traffic ISCX 98.6
B9 N Yes S‘tfvpllclzaélrf;é CNN,SAE  Raw Traffic 1SCX %
[40] NXE-%N Yes Application CNN Flow Features ISCX 99.7

As summarized in Table 1, recent studies achieved high accuracy (97-99.7%) in classi-
fying encrypted/ VPN traffic using ANNs, CNNs, and time-domain features (e.g., [20,40]).
Despite promising results in prior studies, existing traffic classification methods generally
fall short in one or more of the following ways:

¢  They rely on full payload data, which is inaccessible in encrypted traffic;

¢  They require complete flow captures, making them unsuitable for real-time use;

¢  They do not specifically target low-latency traffic, which has distinct statistical and
temporal patterns.

Also, datasets like ISCX and Darknet2020 (column “Dataset”) support general ap-
plication layer classification, and they lack benchmarks for dynamic, mixed low-latency
scenarios. Existing methods struggle to differentiate low-latency traffic due to its bursty
nature and overdependence on time-domain features. Although wavelet transforms excel
in anomaly detection and QoS analysis, their integration with deep learning for traffic
classification remains underexplored. Furthermore, ANN-based approaches (column “Al-
gorithms”) lack hybrid mechanisms to unify temporal and spectral representations. This
paper addresses these gaps by proposing a novel hybrid ANN-Wavelet framework that
synergizes time-domain statistical features with wavelet-decomposed frequency compo-
nents, enhancing low-latency classification. The following sections detail our methodology,
experiments, and results validating this approach.
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3. Methodology

In this section, we detail the methodology for the identification of low-latency Internet

traffic. Our approach combines ANN with the application of wavelet transform to create a

powerful system for distinguishing a unique form of ‘'noise’ from the "signal” of network

with precision and consistency. The proposed framework, illustrated in Figure 1, integrates

three core components to enable accurate low-latency traffic classification:

[l

DEVELOP&DEPLOY THE ALGORITHM

Temporal Feature Extraction: This stage extracts time-domain metrics from raw net-
work traffic, including throughput (total data volume per interval), slope (rate of
packet change over time), downlink-to-uplink ratio (asymmetry in traffic direction),
and moving averages (smoothed trends of throughput). These features capture dy-
namic traffic behavior, such as burstiness and periodicity, which are critical for dis-
tinguishing low-latency traffic (e.g., rapid bidirectional packet exchanges in video
conferencing) from bulk transfers (e.g., FTP). Equations (2)—(6) formalize these metrics.
Wavelet Transform (Frequency-Domain Enhancement): The temporal features are
processed using a continuous wavelet transform (CWT) with a Ricker (Mexican hat)
wavelet kernel. The CWT decomposes each feature into multi-scale frequency com-
ponents, isolating high-frequency patterns (e.g., microbursts in low-latency traffic)
and low-frequency trends (e.g., steady streaming flows). This stage transforms raw
time-series data into wavelet coefficients, effectively separating structured “noise”
(low-latency traffic) from the broader network “signal”.

ANN Classifier (Dual-Domain Analysis): An MLP artificial neural network receives
concatenated time-domain and wavelet-transformed features as input. The MLP
comprises an input layer (temporal + wavelet features), two hidden layers with
ReLU activation for nonlinear pattern recognition, and a softmax output layer for
probabilistic classification.
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Figure 1. System architecture.
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3.1. Data Collection

The data collection process was performed on a local Wi-Fi network to allow full con-
trol over the traffic generation and capture environment. This setup enabled the intentional
creation of mixed traffic scenarios, including combinations of FTP, video streaming, and low-
latency applications, which are not available in existing public datasets. Such controlled
data collection was essential to simulate realistic network conditions and evaluate the
proposed classification model’s robustness in dynamic and heterogeneous environments.

3.2. Introducing Continuous Wavelet Transform (CWT) with Ricker Wavelet

As mentioned in the previous sections, low-latency traffic shares some statistical
properties with Gaussian noise, which provides a strong foundation for applying wavelet
transform techniques. In this context, it becomes important to understand the complex
nature of data flows within networks. Figure 2a shows the patterns of low-latency Internet
traffic throughput of video conferencing and (b) Gaussian noise. The similarity observed in
these patterns offers valuable insights, suggesting that low-latency traffic may exhibit noise-
like characteristics. In signal processing, noise is conventionally perceived as unpredictable
fluctuations or disturbances that can obscure crucial signal information [43]. In contrast,
low-latency traffic exhibits a form of organized 'noise’, a controlled and structured flow
of data characterized by the frequent exchanges of small packets [4]. To further support
this observation, Figure 3 presents the Probability Distribution Functions (PDFs) of both
the low-latency traffic (b) and Gaussian noise (a). PDF analysis demonstrates that, when
normalized, both signals share similar statistical properties, such as a classic bell-shaped
curve, maximum density, and tails of the distribution. These similarities reinforce the idea
that low-latency traffic can be modeled using the signal-processing techniques tradition-
ally applied to noise in signal systems, such as wavelet transforms. This parallel draws
attention to the fact that, while the nature of this data exchange might appear as noise to
a casual observer, it is actually a deliberate and integral component within the network
environment [44].

(a) Low-Latency Signal (Video Conferencing)

N

Data (MB)
-

0 10 20 30 40 50
Time (sec)

15 (b) Noise

1.0
0.5
0.0

Amplitude

-0.5
-1.0

-1.5

0 1 2 3 4 5 6
Time

Figure 2. Parallel patterns: (a) low-latency traffic and (b) Gaussian noise.
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(@) PDF of Normalized Noise

mmm Normalized Gaussian Noise

-3 =2 -1 0 1 2 3
Normalized Value

(b) PDF of Normalized Low-Latency Traffic

[ Normalized Traffic Data

Normalized Value

Figure 3. Parallel distributions: (a) Gaussian noise and (b) low-latency traffic.

Obtaining representations in the frequency domain is crucial for several reasons. The
frequency domain provides a different perspective on the data, highlighting patterns and
characteristics that may not be apparent in the time domain. This is particularly valuable
for analyzing non-stationary signals, where the signal properties change over time. Thus,
all the extracted time-related features are processed using the continuous wavelet transform
(CWT). The CWT is a powerful mathematical technique employed to analyze non-stationary
signals in both the time and frequency domains. Unlike other transforms such as the Fourier
Transform, the CWT decomposes a signal into various frequency components over time,
enabling the capture of localized features and time-varying characteristics. This ability
to capture fine-scale variations and changes in a signal makes the CWT particularly well
suited for analyzing dynamic and irregular signals. Low-latency Internet traffic exhibits
time properties similar to these signals, making CWT an effective tool for its classification.
To better capture both short-term and long-term variations in Internet traffic, we apply
wavelet transforms to key temporal features. This transformation provides a frequency-
domain representation, exposing structured patterns in network traffic that traditional
time-domain features fail to reveal. Figure 4 illustrates how core temporal features (e.g.,
throughput, slope, moving averages, and ratio) are mapped into their corresponding
wavelet representations, which serve as enhanced inputs for the ANN model.
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DATA PREPARATION
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Figure 4. Features from time domain to wavelet domain.

The Ricker wavelet, shown in Equation (1), also known as the Mexican hat wavelet
due to its resemblance to the cross-sectional profile of a Mexican hat, is a commonly used
wavelet in time—frequency analysis. Unlike wavelets optimized for smooth or periodic
signals (e.g., Daubechies and Morlet), the Ricker wavelet’s sharp localization in both time
and frequency domains enables the precise identification of transient patterns in low-
latency traffic, akin to structured noise. This aligns with our observation that low-latency
traffic exhibits noise-like statistical properties. Its mathematical definition is as follows:

Ricker(t, 0') = (1 _ 27T2f2t2)8_n2f2t2, (1)

where f is the time variable, f is the central frequency of the wavelet, and ¢ is the width
parameter that determines the scale of the wavelet.

The Ricker wavelet was selected based on its established success in prior works for
transient signal detection (e.g., [8,9]). Its second-derivative Gaussian shape is particularly
effective at isolating high-frequency microbursts in network traffic, which align with the
rapid packet exchanges characteristic of low-latency applications.

The application of a wavelet transform enhances the feature representation by de-
composing time-related features into distinct frequency components. This transformation
allows the model to identify patterns in different frequency bands, enabling it to capture
both short-term and long-term variations in network behavior. This capability is vital
for accurate and robust classification of low-latency Internet traffic, which often exhibits
complex, multi-scale patterns due to the nature of real-time applications.

Furthermore, low-latency traffic such as video conferencing or online gaming gen-
erates frequent, small data throughput bursts that may appear as noise in conventional
time-domain analysis. However, by applying wavelet transform, we can isolate and
emphasize these throughput bursts, which are characteristic of low-latency traffic, thus
distinguishing them from other traffic types such as FTP or video streaming, which have
different temporal dynamics. For instance, the wavelet transform helps to separate high-
frequency components corresponding to the rapid exchanges in low-latency traffic from
the slower, more consistent patterns seen in bulk data transfers. Figures 5 and 6 illustrate
this transformation for throughput and the ratio of sent to received packets, respectively,
highlighting the distinct frequency components that the wavelet transform extracts from
the raw time-domain features.
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Figure 5. Throughput in wavelet domain.
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Figure 6. Ratio in wavelet domain.

Using these enhanced feature representations, our ANN model becomes more adept
at recognizing the unique patterns associated with low-latency traffic. This addresses the
core challenge in traffic classification, where the goal is to accurately identify and prioritize
time-sensitive data flows among a diverse mix of network activities.

3.3. Data Preparation

After collecting the raw data related to sent and received packets, a series of prepro-
cessing steps were applied to extract novel time-domain features. These preprocessing
steps were designed to improve the dataset with meaningful features that could be used
for effective classification. The following time domain features were derived for each
network traffic.

3.3.1. Throughput

This feature represents the total volume of data (in bytes) captured within specific time
intervals during the measurement. The collected data includes the volume of individual
sent and received traffic aggregated over these intervals. The features are denoted by S;
for the total volume of sent traffic and R; for the total volume of received traffic within
the interval. Here, i represents the index of the time interval. Thus, for each traffic, the
feature "Throughput’ captures the volume of the sent and received data, providing valuable
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information about the data traffic patterns over time. In Figure 7, the throughput of
YouTube traffic in the downlink and uplink is demonstrated.

Sent Data Usage Over Time

Data Usage (MB)

100 15.0 175
Tlme (seconds)
Received Data Usage Over Time

—— Received
Mean Received

w
s

Data Usage (MB)

N}
N

0.05 4 — Sent
Mean Sent

0.04

0.034

0.02 4

- V\/\ /\_/\ /\/\A

0.00 u T T R

0.0 2.5

I 1| B ALY A WA

0.0 25 5.0 7.5 10.0
Time (seconds)

Figure 7. Throughput of YouTube traffic.

3.3.2. Moving Averages

This feature calculates the moving average of throughput in time, which can provide
insight into the application’s traffic patterns. The moving averages of throughput in uplink
and downlink are denoted by MAg.,; and M AR,ceived, respectively, and computed using
Equations (2) and (3):

) 1 ¢
MAsent[l] = E Z sent (2)
—k+
. 1 i
MA eceived [l] = E Z Nrecelved 3)
=i—k+1

where k represents the moving average period (window size), i denotes the current time
index, and Naent|j] represents the throughput at that time j.

The moving average of throughput allows the model to consider the dynamic behavior
of network traffic over time. By incorporating this feature, the model can detect variations
in data flow rates and adapt its classification decisions based on temporal patterns, which is
crucial for identifying intermittent low-latency conditions. In Figure 8, the MA of YouTube
traffic is demonstrated.
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Figure 8. Moving average of YouTube traffic.

3.3.3. Ratio

This feature measures the downlink to uplink throughput values over time. The ratio,
denoted by R, is calculated as shown in Equation (4):

R[i] _ Nreceived'[i] (4)
Nsent [1]
where i denotes the current time indeX, Nyeceived [i] represents the downlink throughput,
and Ngent[i] represents the uplink throughput at time i.

The ratio quantifies the asymmetry between the sent and received throughput, reveal-
ing the unidirectional or bidirectional nature of each application. This characteristic helps
the model distinguish between scenarios where byte transfer is required for both uplink
and downlink communication and those where it is essential only for specific directions. In
Figure 9, the received to sent throughput ratio of YouTube traffic is demonstrated.

Received/Sent Throughput Ratio
- Ratio

17.5

15.0

7.5
5.0
) /V\/AfJ \/AM_AK\_»/\—\/\MMVJ\MM
0.0 / - > : - : - -
0 10 20 30 40 50 60 70
Time (seconds)

Figure 9. Downlink /uplink throughput ratio.

3.3.4. Slope

The slope feature represents the rate of change in packet throughput over time and
captures the dynamic behavior of traffic flow. It is mathematically defined as the first
derivative of throughput, reflecting how rapidly the data volume increases or decreases
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between successive time intervals. This rate of change is particularly significant for dis-
tinguishing between traffic types with different temporal characteristics: In low-latency
traffic (e.g., video conferencing), the slope shows more gradual or consistent trends, reflect-
ing larger but steadier data flows. In bulk transfers or streaming (e.g., FTP or YouTube),
the slope often exhibits frequent, sharp fluctuations due to small but rapid bidirectional
packet exchanges.

By including the slope, the model becomes more sensitive to temporal transitions in
traffic behavior, allowing it to detect subtle bursts or dips in data transmission. When com-
bined with wavelet transform, the slope’s frequency-domain representation helps highlight
transient events that are characteristic of real-time traffic, thus improving classification
accuracy. Slope is represented by Sse: for sent packets and S,eipeq for received packets,
defined in Equations (5) and (6):

_ Nsent[i] - Nsent[i - 1}

Ssent[i] - t[i] — t[i — 1] ’ (5)

. Nyoceived ] — Nyeceived|i — 1
Sreceived[l] = recewes;{i} — t[;ecelgzl)(]ed{ ]/ (6)

where Ngen[i] represents the number of sent packets at time 7, and ¢[i] is the corresponding
time stamp.

Positive slope values indicate an increasing trend in byte activity, whereas negative
slope values indicate a decrease. This feature is particularly useful for identifying traffic
types characterized by distinctive patterns over time, such as video streaming. Video
streaming traffic, for example, often shows a consistent and predictable pattern of data
transmission due to buffering and playback mechanisms. A representation of it can be
seen in Figure 10. In addition, this characterization of trends offers crucial discriminatory
information for the classification of various classes of low-latency Internet traffic.

Throughput and Slope (Downlink)

= Throughput
- Slope

Slope

Time
Throughput and Slope (Uplink)

= Throughput
= Slope

Slope

0 10 20 30 40 50 60
Time

Figure 10. Slope of throughput for downlink and uplink traffic.

3.4. Artificial Neural Network

The objective of incorporating an MLP in our framework is to take advantage of its
powerful pattern recognition capabilities [45] to accurately classify low-latency Internet
traffic. In our approach, the MLP serves as the core component of the artificial neural
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(X0

Input Layer

network model, which is essential to analyze the complex temporal dynamics present
in the network traffic data. Using MLP, our aim is to effectively distinguish between
various types of Internet traffic, ensuring high accuracy in identifying low-latency traffic
patterns. The multilayer perceptron belongs to a category of feed-forward artificial neural
networks as depicted in Figure 11. It typically comprises three or more layers. The initial
layer is designated for receiving input data. Subsequent hidden layers, one or more in
number, are responsible for extracting relevant features from the input data. The final layer
produces a classification result. Each hidden layer, such as the i — th layer, is constructed
with multiple neurons primarily utilizing a nonlinear activation function as described in
Equation (7) below:

f(x) = (W9 x4+ p), (7)

where o (-) denotes an activation function, for example, o(x) = tanh(x). A key attribute of
the activation function is its ability to provide a smooth transition as input values change.
W) represents a weight matrix, and b(¥) is a bias vector. It is possible to have multiple
hidden layers, and each layer performs the same function but with distinct weight matrices
and bias vectors. The final layer produces the output based on the results of the last hidden
layer, often denoted as layer j and defined in Equation (8):

o(x) =W - x+50), ®)

Activation Functions

[

8 Neurons
RelLU
\: 4 Neurons Softmax
RelLU Classifier
@‘Xﬁ>{>\ﬁ
\\
[} . </
* >< \><
: : =0
[}
A — —
Output Layer
: Hidden Layer 2

Hidden Layer 1
Figure 11. Overview of the MLP-based ANN classifier.

The deep learning model employed in this study is a feedforward neural network with
three layers demonstrated in Figure 11: an input layer, two hidden layers, and an output
layer. The architecture is mathematically defined as follows. Equation (9) represents the
model’s input vector, composed of all feature types. The operations in Equations (10)-(15)
define the transformations in the first and second hidden layers and the final softmax
output layer.
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¢ Input Layer: The input layer consists of N neurons, where N represents the number
of features in the dataset. These features include throughput T, moving averages MA,
downlink-to-uplink ratio R, slope S and wavelet transformed counterparts of them
WT. The input vector X is represented as

Xinput = [T;, MA;, R;, S;, WTj, )

where X; represents the value of the feature i.

e  First Hidden Layer: The first hidden layer has H; neurons, where H; = 8 in this
implementation. Each neuron applies the Rectified Linear Unit (ReLU) activation
function freru(x) = max(0, x) to its weighted sum of inputs. Mathematically, for each
neuron j in the first hidden layer,

Z Wil X+ b, (10)

AV = frav(zV), (11)
1 ;

where W1 represents the weight of the connection between b is the bias term for
neuron j.

*  Second Hidden Layer: The second hidden layer consists of H, neurons, where Hy = 4
in this configuration. Similar to the first hidden layer, each neuron applies the ReLU
activation function to its weighted sum of inputs. Mathematically, for each neuron k

in the first hidden layer,
z? = Z Dy, (12)

A? = frau(z?), (13)
(1)

where Wl»lj represents the weight of the connection between b ;s the bias term for
neuron j.

*  Output Layer: The output layer comprises C neurons, where C is the different number
of traffic classes in the dataset. It uses the softmax activation function to produce class
probabilities. The softmax function calculates the probability P(Y;) of each class i,

given the input features. Mathematically, for each class i in the output layer,

2 WA 45, (14)

, (15)
(0)

Z]C 1 ¢’
The class with the highest probability is selected as the predicted class. This archi-
tecture enables multi-class classification, making it suitable for low-latency network

traffic identification.

4. Experiment Setup

Due to the simplicity and efficiency of our design, our experiments were performed
on a standard Windows 10 PC with an Intel Core i7 processor running at 3.20 GHz and
16 GB of RAM. This configuration was sufficient for the execution and training of the
artificial neural network model without the need for additional computational resources,
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such as GPU acceleration. Furthermore, we used TensorFlow [46], a versatile and powerful
machine learning framework, which further facilitated the efficient implementation and
training of our model.

4.1. Dataset

The data collection process was performed on a local Wi-Fi network, and the set of
traffic traces comprised FTP, video streaming, low-latency and mix of these. The traces
were collected over a 50 Mbps Internet connection, and the throughput measurements of
the active traffic in both directions were recorded and stored. In total, over 350,000 samples
of throughput values (more than 35 h of applications usage) were collected.

For the experiments, we designed two types of scenario: basic and complex. The basic
scenarios, detailed in Table 2, involved pairwise combinations of traffic types, while the
complex scenarios, described in Table 3, involved three or more types of traffic co-existing
simultaneously. Each scenario was meticulously selected to ensure a comprehensive
evaluation of our model’s performance under various real-world traffic conditions.The
selection of such traffic mixes is similar to the approach used in the Low Latency DOCSIS
study, which also employed a mix of different traffic types to evaluate latency performance
and network behavior under varying conditions [47].

In the basic scenarios where (Table 2), we tested combinations such as the following:

*  FTP + Video Streaming (A + B);

e  FTP + Low-Latency (A + C);

*  Video Streaming + Low-Latency (B + C);

*  Repeated instances of the same traffic type (A + A, B+ B, C + C).

For the complex scenarios (Table 3), we included combinations such as the following:

e Three instances of the same traffic type (3A, 3B, 3C);

e Two instances of one type combined with one instance of another (2A + B, A + 2B,
2A+C,A+2C,2B+C, B +2C);

*  One instance of each traffic type (A + B + C);

*  One instance of each traffic type (A + B + C);

*  Multiple instances of mixed traffic types 2A +B+C,A+2B+C, A+ B +2C).

This comprehensive scenario design enabled a robust analysis of low-latency Internet
traffic, ensuring the reliability and accuracy of our classification methodology.

Table 2. Basic traffic scenarios.

Traffic Scenario Low-Latency
A+B NO
A+C YES
B+C YES
A+A NO
B+B NO
C+C YES

A = File Transfer, B = Video Streaming, C = Low-Latency.
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Table 3. Complex traffic scenarios.

Traffic Scenario Low-Latency
3A NO
3B NO
3C YES

2A+B NO
A+2B NO
2A+C YES
A+2C YES
2B+C YES
B+2C YES
A+B+C YES
2A+B+C YES
A+2B+C YES
A+B+2C YES

A = File Transfer, B = Video Streaming, C = Low-Latency.

4.2. Evaluation Metrics

Similar to [39], we measure the model’s performance using key metrics, including
accuracy, precision, recall, and the F1 score, to assess the effectiveness of traffic classification.
Accuracy, denoted as A, serves as an indicator of the model’s performance, reflecting the
proportion of correctly classified instances out of the total samples, and is computed
following Equation (16). However, it is essential to understand that high accuracy alone
may not provide a complete picture, especially in scenarios with imbalanced datasets. We
evaluate model performance using accuracy, precision, recall, and the F1 score as defined
in Equations (16)—(19).

. Tp+Tn
Tp+Fp+Tn+Fn'

Precision and recall offer deeper insights into the model’s performance on different

A

(16)

classes of traffic. Precision, which measures the ratio of true positive predictions to the total
predicted positives, is particularly crucial in assessing the model’s reliability in identifying
low-latency traffic without false alarms. In contrast, recall, which calculates the ratio of
true positive predictions to all actual positives, highlights the model’s ability to capture all
relevant instances of low-latency traffic. The mathematical representations of these metrics
are as follows:

Tp

P=——, 17
Tot B (17)

Tp
R=—"—, 18
o+ Fu (18)

The F; score, as a harmonic mean of precision and recall, provides a balanced metric
that is especially useful when dealing with imbalanced classes. In the context of our study,
where accurate identification of low-latency traffic is critical, the F1 score serves as a robust
measure of the model’s overall effectiveness and is defined as

_ 2PR
P+ R’

By focusing on these metrics, we can better understand the strengths and weaknesses

F (19)

of our classification model. For instance, while accuracy gives us a broad view, precision
and recall help us delve into specific aspects of model performance that are crucial for
practical applications, such as minimizing false positives in low-latency traffic detection.
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This comprehensive evaluation ensures that our model is not only accurate but also reliable
and efficient in real-world scenarios.

4.3. Hyperparameter Tuning

In pursuit of optimizing the performance and robustness of our ANN model, a sys-
tematic hyperparameter tuning process was conducted. Table 4 summarizes the hyperpa-
rameters and the selected values based on experimental evaluation. Below, we explain the
role and selection rationale for each parameter.

Table 4. Hyperparameter tuning for ANN model.

Hyperparameters Range Selection
Number of hidden layers [1,2,3,4,5] 2
Activation Function [sigmoid, tanh, ReLU] RelLU
Learning Rate [0.1,0.01, 0.001] 0.001
Batch Size [16, 32, 64, 128] 32
Number of Epochs [10,...,50,...,150] 100
Optimizer [Adam] Adam
Dropout Rate [0,0.1,0.2,0.3,0.4,0.5] 0

*  Number of Hidden Layers: Determines the depth of the neural network. We tested
configurations ranging from shallow (1 layer) to deeper networks (up to 5 layers).
A 2-layer model offered a good balance between learning complexity and computa-
tional efficiency.

*  Activation Function: Controls the nonlinear transformations applied at each neuron.
We compared sigmoid, tanh, and ReLU. ReLU was selected for its faster convergence
and ability to mitigate vanishing gradient issues in deep networks.

* Learning Rate: Dictates how quickly the model updates its weights during training.
We tested values of 0.1, 0.01, and 0.001. A learning rate of 0.001 provided stable
convergence without overshooting minima.

*  Batch Size: Specifies the number of training samples used in one iteration of model
updates. We tested 16, 32, 64, and 128. A batch size of 32 provided a good trade-off
between computational cost and convergence speed.

*  Number of Epochs: Refers to the number of times the entire training dataset is passed
through the model. We evaluated ranges from 10 to 150. We selected 100 epochs as
the model showed consistent convergence without signs of overfitting.

¢ Optimizer: Defines the algorithm used to adjust model weights. We chose Adam for
its adaptive learning rate and proven effectiveness in deep learning tasks.

¢  Dropout Rate: A regularization parameter that randomly deactivates a fraction of
neurons during training to prevent overfitting. We tested rates from 0 to 0.5. A
dropout rate of 0 was ultimately selected, as the model did not exhibit overfitting
during training.

Although detailed ablation results are beyond the scope of this paper, these values

align with best practices in deep learning [48,49] and were selected based on grid search
and empirical performance.

5. Experimental Results and Analysis

The experiments were meticulously planned to assess the efficacy of our work by
contrasting it with state-of-the-art classification methods. To ensure that our evaluation is
appropriate for the problem of low-latency Internet traffic classification, we designed our
experiments with the following considerations:
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¢ Diverse Traffic Types: We included a variety of traffic types such as FTP, video stream-
ing, and low-latency traffic. This selection ensures that our model is tested against
different patterns of Internet traffic, reflecting real-world scenarios.

* Balanced Dataset: The dataset used for training and testing the classification algo-
rithm was designed to maintain a balanced representation of each traffic type, with
approximately one hour’s worth of sampling per category. This balance is critical for
avoiding bias in the model’s performance.

*  Comparison with Established Methods: Our approach was compared with state-
of-the-art classification methods, including k-NN, CNN, and LSTM-based models,
as highlighted in various studies [4,39,40,50,51]. This comparison not only vali-
dates the robustness of our model but also situates our results within the context of
existing research.

e Evaluation Metrics: We measured the model’s performance using key metrics such
as accuracy, precision, recall, and the F1 score. These metrics are standard in
the field of traffic classification and provide a comprehensive assessment of the
model’s effectiveness.

*  Confusion Matrix Analysis: The use of confusion matrices allowed us to visualize the
classification performance across different traffic types, providing insights into the
strengths and weaknesses of our model.

*  Mixed Traffic Scenarios: We evaluated our model under both simple and complex
traffic scenarios to understand its performance in real-world conditions where multiple
types of traffic coexist. This evaluation is crucial for demonstrating the practical
applicability of our approach.

Our initial experiments focused on evaluating the classification performance in mixed
traffic scenarios involving different types of Internet traffic, such as File Transfer Protocol
(FTP), video streaming, and low-latency traffic. These scenarios were selected based
on a section of the [47] and our own experiences. These scenarios reflect real-world
conditions where multiple types of traffic coexist, providing a comprehensive test of the
model’s ability to accurately identify the traffic types. We designed a series of basic traffic
scenarios to assess the model’s accuracy. As shown in Table 5, these scenarios consisted of
different combinations of two or more traffic types, with special attention to the presence
of low-latency traffic. The results demonstrated that the model achieved higher accuracy
when low-latency traffic was involved, with the highest accuracy of 96.5% in the scenario
where both instances were low-latency traffic. In scenarios without low-latency traffic, the
accuracy was slightly lower, such as 88.3% in the case of two FTP instances.

Table 5. Basic traffic scenarios with accuracy.

Mixed Traffic Scenarios (Basic)

Traffic Scenario Low-Latency Accuracy (%)~
A+B NO 89.7
A+C YES 92.8
B+C YES 94.2
A+A NO 88.3
B+B NO 90.6
C+C YES 96.5

A = File Transfer, B = Video Streaming, C = Low-Latency.

In addition to the basic traffic scenarios, we designed a set of complex traffic scenarios
to further evaluate the model’s performance in more challenging environments where
three or more types of traffic coexist. These scenarios provide insight into how the model
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performs as the traffic patterns become more intricate and diverse. Table 6 presents the
results of these experiments, showing the classification accuracy both with and without the
application of wavelet transform (WT). The wavelet transform was employed to enhance
feature extraction, particularly in the presence of low-latency traffic, which often exhibits
patterns similar to noise in signal processing. The addition of wavelet transform consistently
improved classification accuracy across all scenarios. For example, in Scenario 3C, where
all traffic types were low-latency, the model achieved an accuracy of 93.2% with wavelet
transform, compared to 88.2% without it. Similarly, in Scenario 6 (2A + C), where the
traffic was composed of two instances of FTP and one instance of low-latency traffic,
accuracy improved from 76.5% to 83.2% with the application of wavelet transform. As
complexity increased, such as in scenarios with four types of traffic (e.g., Scenario 13:
A + B + 2C), the model’s performance remained strong but showed a slight decline, with
an accuracy of 79.2% with wavelet transform. This decline reflects the increasing difficulty
in distinguishing between different traffic types as the mix becomes more complex.

Table 6. Complex traffic scenarios with accuracy.

Mixed Traffic Scenarios (Complex)

No Scenario Low-Latency  Acc (%)~ Acc (%)~ with WT
1 3A NO 82.9 86.8
2 3B NO 83.6 88.2
3 3C YES 88.2 93.2
4 2A+B NO 77.2 82.1
5 A+2B NO 71.1 77.4
6 2A+C YES 76.5 83.2
7 A +2C YES 79.6 83.8
8 2B+C YES 77.0 84.1
9 B+2C YES 80.7 84.4
10 A+B+C YES 729 78.2
11 2A+B+C YES 68.8 74.2
12 A+2B+C YES 69.7 75.3
13 A+B+2C YES 72.5 79.2

A = File Transfer, B = Video Streaming, C = Low-Latency.

Figures 12 and 13 further visualize the model’s performance. The confusion matrix
(Figure 12) displays the accuracy of the model in classifying low-latency traffic across the
complex traffic scenarios. The diagonal dominance shows a strong correlation between
predicted and actual classifications, with the model performing particularly well in distin-
guishing between low-latency and non-low-latency traffic. Scenarios where low-latency
traffic was present (e.g., Scenario 3C) showed high classification accuracy. Furthermore,
Figure 13 illustrates the accuracy improvement brought about by applying the wavelet
transform in each scenario. The plot clearly shows a consistent increase in accuracy when
wavelet transform is applied, particularly in scenarios with low-latency traffic, highlighting
the robustness of our model under complex conditions. Also, Figure 14 provides a visual
representation of the accuracy improvement across various scenarios. The improvement is
evident, particularly in scenarios involving low-latency traffic, where the wavelet transform
significantly enhances classification performance.
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Figure 12. Confusion matrix of complex scenarios.
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Figure 13. Impact of wavelet transform on classification accuracy in complex traffic scenarios.
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Figure 14. Impact of wavelet transform on classification accuracy.
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In the next experiment, our aim was to classify three distinct types of Internet traffic:
FTP, video streaming, and low-latency traffic. The dataset used for training the classifi-
cation algorithm was designed to maintain a balanced representation of each traffic type,
with approximately one hour’s worth of sampling per category. The decision to utilize
14,400 samples for each traffic type was deliberate. This sampling frequency, equivalent to
an average of four samples per second over the course of an hour, allowed for a compre-
hensive representation of the behavior of each traffic category. Table 7 presents the exact
sample sizes for each traffic type, confirming the careful selection of our dataset, ensuring a
balanced representation essential for robust model training and validation.

Table 7. Traffic types and exact sample sizes.

Traffic Type Duration Total Samples
FTP ~1h 14,679
Video Streaming ~1h 14,287
Low-Latency ~1h 14,510

The deliberate selection of FTP, video streaming, and low-latency traffic was made
to encompass a diverse representation of common Internet activities while maintaining
a focused scope for the experiment. The accuracy results for our classification model are
illustrated in Figure 15, further supporting the exceptional performance with rates of 99.2%
for FTP traffic, 99.3% for video streaming, and 99.4% for low-latency types, validating the
effectiveness of our approach in accurately classifying these primary Internet traffic types.
Figure 15 presents the confusion matrix, visualizing the performance evaluation of the
classification of the proposed models among different types of traffic.

Confusion Matrix (%)

0.59 0.32

FTP

80

True Label
Video Streaming
o
13
o

-40

-2
0.33 0

Low-Latency

FTP Video Streaming Low-Latency
Predicted Label

Figure 15. Confusion matrix of the model.

The ROC curve, Figure 16, illustrates the model’s performance in terms of true positive
rates and false positive rates for each traffic type. The Area Under the Curve (AUC) values
show that the model achieved excellent classification performance across all three classes,
with AUC values of 0.99 for FTP, and 0.95 for both video streaming and low-latency traffic.
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Figure 16. ROC curve.

In the following, Figure 17 and Table 8 demonstrate the benefit of incorporating
wavelet transform into the model, we compared its performance against a standard scaling
method (SS) across all traffic types. As can be seen, the application of the wavelet transform
provided a significant improvement, particularly for low-latency traffic classification, where
the accuracy increased by approximately 6% compared to using standard scaling methods
alone. This improvement was also notable for FTP and video streaming, where the accuracy
increased from 93.41% to 99.09% and from 92.76% to 99.30%, respectively. This demon-
strates the wavelet transform’s effectiveness in enhancing feature extraction and improving
overall classification performance, particularly in scenarios involving low-latency traffic.

Table 8. Impact of wavelet transform on classification.

Classification Accuracy

Traffic Type Scaling Method (%)~
SS 93.41

FIP SS + Wavelet 99.09

. . SS 92.76
Video Streaming SS + Wavelet 99.30
SS 92.12

Low-Latency SS + Wavelet 99.56

Accuracy Improvement from SS to SS+Wavelet by Traffic Type

Accuracy Improvement (%)
~N w IS « o ~

-

FTP Video Streaming Low-Latency
Traffic Type

Figure 17. Accuracy improvement of single traffic types.
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The t-SNE visualization in Figure 18 portrays the distribution of predicted classes,
FTP (Class 0), Video Streaming (Class 1), and Low-Latency (Class 2). Each distinct cluster
in the plot corresponds to a class, revealing how the model separates and perceives these
traffic types in a two-dimensional space. Overall, the plot provides a concise representa-
tion of the model’s segregation of these network behaviors into distinct categories with
minimal overlap.

Table 9 presents a comparison of the classification accuracy achieved by various
methods. This table highlights the performance of different methods, including solutions
offered by other researchers, across three distinct traffic types: FIP, Video, and Low Latency.
In our previous paper [4], we demonstrated high accuracy using the k-NN algorithm
across all traffic types, while Wang et al.’s [50] employment of CNN showed strong per-
formance, especially in FTP and video classifications. Moreover, the utilization of Deep
Packet [39] with CNN yielded consistent accuracy rates of 98% across all traffic types.
Chang et al.’s [51] ANN model exhibited significant challenges in accurately classifying
video traffic, registering a notably lower accuracy compared to other methods. The method
proposed in this paper, employing an ANN approach, showcased remarkable accuracy
rates of 99.1% in FTP and 99.6% in Low-Latency traffic classification, positioning it as a com-
petitive solution among the state-of-the-art approaches for traffic classification in network
analysis. Notably, FlowPic’s [40] deployment of LSTM outperformed other methods with
an exceptional 99.9% accuracy in Video traffic classification, underscoring the effectiveness
of recurrent neural networks in handling sequential traffic data.
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Figure 18. Visualization of the predicted classes.

Table 9. Classification performance comparison among six methods. Results are in the format of Avg.

Classification Accuracy (%)~

Paper Algorithm :
FTP Video Low-Latency

Enisoglu et al. [4] k-NN 97.5 97.9 98.2
Wang et al. [50] CNN 94.5 96.5 84.5
Deep Packet [39] CNN 98.0 98.0 98.0
Chang et al. [51] ANN NA 59.0 92.0
FlowPic [40] LSTM 98.8 99.9 99.6
This Paper ANN 99.1 99.3 99.6

6. Discussion and Limitations

The experimental results presented in this study demonstrate the significant potential
of integrating wavelet transforms with artificial neural networks for accurately classifying
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low-latency Internet traffic. The high classification accuracy across both basic and complex
traffic scenarios highlights the robustness of the proposed approach, particularly in identi-
fying real-time traffic amidst heterogeneous traffic environments. Furthermore, the use of
frequency-domain features derived through wavelet transforms proved especially effective
in isolating the subtle, noise-like characteristics of low-latency communication.

Despite these encouraging results, several limitations must be acknowledged. First,
the dataset used for training and evaluation was generated under controlled conditions on
a local Wi-Fi network. While this setup provides a consistent and manageable environment
for analysis, it may not fully reflect the complexities and variability of large-scale, real-
world networks. Thus, generalization of the model to broader deployments requires further
validation using diverse and publicly available datasets. Second, the current implementa-
tion employs a relatively simple MLP architecture. Although effective, more sophisticated
deep learning models—such as CNNs or transformers—could potentially further enhance
classification performance, particularly in highly congested or encrypted network environ-
ments. Third, while wavelet-transformed features significantly improve performance, they
also introduce computational overhead. This could be a limiting factor for deployment in
edge devices or latency-sensitive network components without optimization or hardware
acceleration. Finally, the current model does not dynamically adapt to evolving traffic
patterns or new application behaviors over time. Future research could explore online
learning or adaptive classification mechanisms that evolve with the network environment.
Finally, while comparative analysis with other wavelets (e.g., Haar, Daubechies) could
further validate our choice, this was beyond the scope of this study. Future work will
explore wavelet function adaptability for broader traffic classification scenarios.

7. Conclusions and Future Works

In this study, we have presented a novel approach for the classification and identifica-
tion of low-latency Internet traffic using deep learning techniques and trend-based features.
By incorporating advanced trend features such as slope, moving averages, download-
to-upload ratio, and wavelet transform, we have demonstrated the effectiveness of our
methodology in accurately classifying different types of Internet traffic. Experimental
results have shown that our model achieved high accuracy rates of classifying FTP, video
streaming, and low-latency traffic with 99.09% , 99.3%, and 99.56%, respectively. These re-
sults validate the robustness and efficacy of our approach in accurately classifying primary
Internet traffic types.

Furthermore, our experiments with mixed traffic scenarios, both basic and complex,
have provided valuable insights into the performance of our model in real-world traffic mix
situations. We observed that as the complexity and number of traffic types increased, the
accuracy of identifying the existence of low-latency in the traffic mix decreased. However,
our model still showed promising performance in detecting low-latency traffic within
mixed traffic scenarios.

In general, the integration of wavelet transform and deep learning techniques has
proven to be instrumental in enhancing the accuracy and precision of Internet traffic classifi-
cation, particularly in the context of identifying low-latency traffic. Our findings contribute
to the advancement of traffic analysis methodologies and have practical implications for
optimizing the delivery of time-sensitive applications over the Internet.

In conclusion, our work underscores the significance of accurately identifying and
prioritizing low-latency Internet traffic, and our proposed methodology offers a promising
solution for addressing this critical aspect of network traffic management.

Future research directions could focus on enhancing the scalability and adaptabil-
ity of the proposed framework. Validating the model on large-scale, publicly available
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datasets encompassing diverse network environments—such as 5G, IoT, and edge comput-
ing scenarios—would strengthen its generalizability. Exploring advanced deep learning
architectures, such as attention-based transformers or hybrid CNN-LSTM models, could
further improve classification accuracy in highly dynamic or encrypted traffic scenarios.
Additionally, optimizing wavelet transform computations through hardware acceleration
or lightweight algorithms would reduce computational overhead, enabling deployment
on resource-constrained edge devices. Integrating online learning mechanisms to dy-
namically adapt to evolving traffic patterns and emerging applications would address
real-time network variability. Extending the framework to classify encrypted traffic and
support multi-class scenarios with finer-grained application distinctions (e.g., differentiat-
ing between gaming, VoIP, and financial trading) could broaden its applicability. Finally,
investigating federated learning approaches for privacy-preserving traffic classification in
distributed networks represents another promising avenue. These enhancements would
solidify the framework’s utility in next-generation network management systems.
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