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1 Introduction

Deep Learning (DL) has gained tremendous momentum on the verge of the latest develop-
ments in data analysis. Whilst boosted decision trees (BDT) have been used in the context
of High-Energy Physics for over 30 years, wide usage of Deep Neural Networks (DNNs)
only surged very recently. Since then, especially in applications to LHC physics where a
large amount of data with the need for its fast and automated analysis is gathered, there
has been a profound improvement in the understanding of Neural Networks (NNs). The
analysis of the internal structure of jets, highly complex collimated sprays of radiation [1],
is a popular arena where reconstruction techniques evolved from sophisticated multi-variate
approaches, e.g. HEPTopTagger [2–4], over theory-guided matrix-element methods [5–8]
to data-driven NN techniques [9–12]. In particular top tagging has been the prime example
to benchmark the performance of various NN classifiers [13–21]. Similar tagging algorithms
have been used for Higgs [22, 23] and W-boson [24, 25] tagging and quark-gluon discrimi-
nation [26–30].1 Thus, it became apparent that there is a wide range of use-cases for NNs
in collider phenomenology, where particle tagging is just one of many applications.

A standard supervised learning algorithm produces a fitting function that aims to find
an optimal contour of the decision boundary between competing hypotheses.2 The given
algorithm takes a labelled feature-tensor and attempts to find the global minimum of a given
objective function, the so-called loss function, resulting in the prediction of the algorithm.
This is achieved by convoluting the input feature vector with non-linear functions, so-
called activation functions, and updating the weights of the initial hypothesis through the
backpropagation algorithm. Whilst such an approach offers increased flexibility, in general,

1For a review of these methodologies and more see refs. [14, 31], and other examples [32–44].
2Here the word “fitting” is used to simplify the text. However, Deep Learning is not merely a fitting

algorithm; it looks for a higher dimensional irreducible representation that the feature-space lives in.
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it can suffer from three major predicaments [45]. First, the problem of statistics denotes
the lack of training examples within a particular domain, which can cause the learning
algorithm to get stuck in various minima with comparable accuracies in each training.
The second problem is computational. As mentioned before, a learning algorithm often
employs a stochastic search algorithm, e.g. gradient descent. Assuming the provision of
sufficient data, the feature-space can be highly complex, creating a very non-trivial loss-
hypersurface for which the algorithm is tasked to find the global minimum [46, 47]. Finally,
the third problem is representational. As the nature of a “fitting” algorithm, it is not always
possible to find a linear or non-linear representation of the actual function. Hence, it might
be necessary to expand the representation space or employ various possible hypotheses to
find a closer approximation of the actual function. Although the representation problem
is directly linked to the previously mentioned issues, even with sufficient statistics and
advanced algorithms, an optimization algorithm may not proceed after finding a hypothesis
that can adequately explain the data [48].

The three most popular architectures for classification tasks in particle physics are
currently Deep Neural Networks (DNN), Convolutional Neural Networks (CNN) and Re-
current Neural Networks (RNN). Each of these networks is designed to exploit different
features and correlations of the input data. For instance, CNNs are special-purpose net-
works that are widely used for image recognition [14, 18]. This method sweeps through the
image by dividing it into subvolumes. Each subvolume has been transferred to the next
layer by passing through an activation function, allowing the network to filter the image’s
distinguishable features. RNNs are a different kind of specialised networks that keep track
of the ordering of the feature vector and thus maintains a sense of “memory” by connecting
each node in a graph via an ephemeral sequence. Long-short term memory (LSTM) net-
works have been employed to classify QCD events with high accuracy [17, 25, 49]. While
each of these techniques can be powerful by itself, it is not clear whether they exploit the full
amount of information contained in the feature vectors to perform an optimal classification
between competing hypotheses. Thus, combining multiple networks into an Ensemble Neu-
ral Network (ENN) might allow to improve on their individual classification performances.

Ensemble learning is a paradigm which employs multiple neural networks to solve a
problem. The main idea behind ensembling is to increase the generalisation of the data
by harvesting many hypotheses trying to solve the same problem. Each of the networks
mentioned above is specialised to learn a particular feature of the given data to achieve the
same or similar generalisation. An ensemble of these networks can access all the information
presented in each component network and optimise it according to more generic information
through data [50–55].

While some techniques to combine classifiers have been used in the context of collider
phenomenology before,3 to our knowledge for the first time, we will present a parallel com-
bining method to go beyond simple prediction combinations. As shown in previous stud-

3Ref. [56] shows that combining predictions of BDTs with specific rules can improve the discrimination
of BSM models from the SM. Ref. [57] shows that injecting randomness to a hypothesis and combining its
results can boost the accuracy of the classification. Refs. [58, 59] uses stack combining method for Higgs
tagging at LHC and ref. [60] combines the predictions of multiple different learners.
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ies [45, 46, 51, 61], combining predictions of various networks can significantly improve the
overall performance for classification or regression. However, if networks are only combined
at the prediction level, they are each separately trained for a specific property of the data.
Parallel combined ensembles allow the network to train on a combined higher dimensional
latent-space to optimize the entire network accordingly. Hence, having access to all compo-
nent networks allows improvement upon the representation of the problem. We will show
that such an approach allows flexibility to improve background rejection beyond simple
prediction combinations. Furthermore, we will show that it will drastically improve the net-
work’s error correlations beyond the component and prediction-based-combined networks.

With continuously improving performance indicators for NNs, e.g. measured through
receiver operating characteristic (ROC) curves, it becomes increasingly important to obtain
an understanding of how this is achieved and how reliable the performance is evaluated [62–
67]. Bayesian neural networks allow to estimate intrinsic uncertainties of NN by treating
their weights as distributions instead of a single trainable variable [68, 69]. Hence the
network output is a distribution rather than a fix value. To estimate the uncertainties of a
network, multiple measurements of the same test data are combined to calculate the mean
prediction alongside its standard deviation. We will employ Bayesian techniques to show
that parallel combining methods, i.e. as implemented in ENNs, can reduce the standard
deviation of the predictions and epistemic uncertainties without requiring more data.

In section 2 we provide a discussion of Ensemble Neural Networks and review their
applications and benefits in improving the classification performance. In section 3.1 we
describe the procedure we employed to preprocess the input data before the training and
in section 3.2 we present our results. Finally, in section 4 we compare uncertainties be-
tween component networks and their ensemble, and we offer a summary and conclusions
in section 5.

2 Ensemble Neural Networks

Ensemble Neural Networks (ENNs) are protocols that aim to increase the generalizability of
a hypothesis by combining multiple component networks. It has been shown that ENNs can
provide the necessary resolutions or approximations that all three potential pitfalls for NNs
mentioned in section 1 require [50–54]. Depending on the problem at hand, ensembling
methods can be pooled under three paradigms [55]: (i) parallel combining, (ii) stacked
combining and (iii) combining weak classifiers.

Combining classifiers spanning feature-spaces that contains different physical domains,
can provide an expanded representation of the hypothesis space, see figure 1. Such meth-
ods are studied under so-called “parallel combining” method. Another technique, called
“stacked combining”, employs different classifiers to be trained on the same feature-tensor.
Such techniques can provide simple solutions to the computational problem where mul-
tiple non-correlated hypotheses can approximate the underlying function more efficiently.
The final and most widely studied method is “combining weak classifiers” where, as the
name suggests, weak but successful classifiers’ predictions are assembled to create a NN
that reaches accuracies beyond its constituents [45]. Here successful means that the hy-
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pothesis has greater accuracy than random selection. Although existing methods under
the paradigms (ii) and (iii) can successfully optimize over statistical and computational
shortcomings of the NNs [70–77], they can not expand the representation of the hypothesis
without acquiring an extended domain of the data. Hence one needs a dedicated approach
to address the representation problem to learn over different types of correlations within
distinct symmetries of the data.

While ENNs are known to improve on the statistics and computational problems [55],
see section 1, its benefits for the representation problem, which is in most collider phe-
nomenological applications often is prevalent, is underrated. We propose the use of ENNs
for the event reconstruction at high-energy collider experiments under the paradigm of par-
allel combining. We will further show that this approach improves on the representation
problem.

For this purpose, we will use two high-level classifiers, a CNN and a RNN which are
often used for image recognition and text recognition respectively. Both of these models
are generalising a specific property of a jet, i.e. the spatial position of the substructure of
a jet and the sequential order of a cluster history respectively. Naively, one could take the
mean prediction of both classifiers, which will lead to a generalisation of the problem in
the higher-dimensional hypothesis space. Although this can improve the performance, both
component networks are optimised for their own feature space. In this study, we show that
instead of combining the component networks’ predictions, optimising the network over
the combined latent-feature space can lead to a more substantial and stable performance
improvement for the problem at hand.

Thus, we propose to initialise multiple high-level classifiers separately. For the example
of section 3, these are chosen to be CNN and RNN classifiers. Each the CNN and RNN
provide a vector in the latent-feature space corresponding to the flattened image for the
CNN and the higher dimensional representation sequence for the RNN. Concatenating these
vectors will lead to a larger latent-space, including information from both image-type and
sequence-type data. Training with this higher dimensional feature space with extra handles
for the NN architecture, such as more layers or nodes to generalise this latent-feature space,
can lead to two significant improvements. Firstly, each component network’s weights will
be optimised with respect to the combined hypothesis space hence will have access to more
features of the base theory. Secondly, the ability to access a larger latent-feature space will
make it possible to increase the complexity of the model for a larger hypothesis-space.

Figure 1 shows a schematic representation of this approach where one source of input
is divided into multiple branches to be analysed within different architectures. Depending
on the nature of the problem, one can employ multiple network architectures such as fully
connected networks (blue), CNNs (purple), RNNs (green) or even more complex structures
which, for the sake of simplicity, are not shown explicitly. The merging stage represents
the concatenation process where instead of the prediction of each model, one can combine
the latent-space of each network after its individual ith layer and continue training on this
new feature space. Hence, the network’s output will be the prediction optimised over each
distinct feature of the problem.

– 4 –
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Figure 1. A schematic representation of ensemble neural networks where blue box represents a NN
with dense layers, purple represents convolutional neural network and green represents a recurrent
NN with inputs xi and output values hi for an operator A. Solid line at the bottom guides towards
latent-space concatenation which leads to ensemble prediction. Dashed lines represent the same for
mean prediction of each network.

Whilst the network architectures discussed often unveil a strong performance improve-
ment over conventional cut-based reconstruction strategies; one wonders if combining any
NN will increase accuracy. To answer this question one needs to investigate the bias-
variance-covariance decomposition. The prediction of an ensemble estimator, constructed
by averaging the prediction of each component estimators, assuming that they are inde-
pendent from each other, can be cast as

fens(x) = 1
N

N∑
i

fi(x) , (2.1)

where N is the number of component estimators, fi(x) is the prediction of the ith estimator
and x is the feature-tensor. For such an object, the generalization error is given by [61, 78]

Err(fens) = Err
{ 1
N

Var(x) +
(

1− 1
N

)
Cov(x) + Bias(x)2

}
, (2.2)

where the three terms correspond to variance, covariance and the squared bias of the
feature-tensor respectively. Although such construction assumes a very simplistic case, it
shows that the generalization error of the average prediction of multiple hypotheses is also
affected by the covariance. This shows that if the component hypotheses are negatively
correlated with each other the average prediction will decrease the generalization error
further. However, as the average bias will remain the same, the generalization error can
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only be reduced to the bias term. Thus an ENN can improve the generalization error if
and only if the given component estimators’ errors are not completely correlated [50, 79].

3 Top tagging through ensemble learning

Using CNNs, the pixelated energy deposits in the calorimeters of multi-purpose high-energy
experiments have been repeatedly shown to provide a strong discriminatory power between
the radiation profile of top quarks versus QCD jets. In the η − φ plane, each pixel cor-
responds to one or more particles, and so-called colour or luminosity of a pixel can be
measured by a combined intrinsic property of these particles such as energy or transverse
momentum. This will allow the CNN to learn translationally invariant features of the top
and jet system. RNNs instead maintain a sense of timing and memory in a given sequence
used as input features. Due to the nature of the clustering algorithm, each jet has an
embedded tree structure, where subjets are recombined with respect to a particular rule.
Thus, CNNs and RNNs exploit different features of top and QCD jets to discriminate them
from each other. We use the complementarity of both methods to combine them in an ENN
that has an improved performance over both approaches individually. An implementation
of the code we use for preprocessing and network training is provided at this link.4

3.1 Dataset & preprocessing

As a case study, we will investigate the top tagging capabilities of NNs by employing a
CNN and a RNN. To achieve this, we used the dataset provided in [60, 80], which con-
sists of 14TeV top signal and mixed quark-gluon background jets generated and showered
by Pythia 8 [81]. The detector simulation for showered events is obtained through the
Delphes 3 package [82] using the default ATLAS detector card. The fat jets are recon-
structed using anti-kT algorithm [83] as defiend in FastJet [84], using radius variable
R = 0.8. The fat-jet transverse momentum has been limited to [550, 650]GeV range in
order to be able to benchmark the NN architectures precisely depending on the nature of
jet substructure within a specific pT -range. The resulting fat jets are further limited to
be within |ηj | < 2. Finally, the fat jets in the top signal sample have been matched with
truth level tops requiring ∆R(j, ttruth) < 0.8. This dataset consists of 1.2 million training,
400,000 validation and test events respectively. This dataset has been divided into two sub-
sets within our framework, one for CNN type training and one for RNN type training. For
both of the datasets provided PFlow-objects are clustered into a fat-jet as described above.

The CNN dataset has been prepared with leading anti-kT fat jet constituents which
are ordered by their corresponding transverse momentum. Each jet in the event has been
centred with respect to total pT weighted centroid where the jet vector has been centred at
(η, φ) = (0, 0). Furthermore, the coordinate system has been rotated such that the principal
axis is at the direction of positive pseudo-rapidity for all constituents. These modified
constituents are fitted into pixels on η−φ plane, divided into 37×37 pixels between (η, φ) =
([−1.5, 1.5], [−1.5, 1.5]) where the pixel value has been set as total pT within that pixel. To

4https://gitlab.com/jackaraz/EnsembleNN.
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Figure 2. Left panel shows averaged top signal image on modified η − φ plane and the left panel
shows the same for dijet sample. Colour represents the combined transverse momentum of the
constituents within a pixel. Each image includes 10,000 events.

Clustered jet

Parent subjets

Leading branch

Second leading branch

Third leading branch

Discarded branches

d1,2

d3,4 d5,6

Figure 3. A schematic representation of the cluster history where blue represents leading branch
with respect to the relative magnitude of transverse momentum, green is the second leading branch
and purple is the third leading branch. Black lines shows the discarded branches. Finally dark
red represents the initial clustered jet. The size of the circles represents the relative magnitude of
transverse momentum.

get the leading constituent into the first quadrant, the vertical half of the image with higher
total pT flipped to the right, and similarly, the horizontal half of the image with higher
pT flipped to the top. Figure 2 shows the averaged top signal (left) and dijet background
(right) images for 10, 000 events projected on modified η − φ-plane. Colour represents the
magnitude of the transverse momentum in the corresponding pixel. Note, this image has
been zoomed-in to highlight the relevant portion of the image. Since the network requires
the input data within [0, 1] range, each image has been normalized by 1TeV before training.

The RNN dataset has been constructed using leading anti-kT fat-jet where the
constituents of the this jet are re-clustered with the same radius parameter using the
Cambridge/Aachen (C/A) clustering algorithm [85]. In order to construct the training
sequence, three leading branches have been extracted from the clustering history where

– 7 –
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Figure 4. Top panel shows combined kT -distances in RNN sequence for 4000 events. Red represents
the dijet events and blue represents top signal events. Dominated colours shows which event has
high occurance in a particular sequence. Bottom two panel shows the number of subjets in each
branch where left panel shows it for top signal and right panel shows for dijet background.

their respective transverse momentum defined the branches. Initial two leading branches
are constructed by the first two subjets in the clustering history where the subjet with
larger pT has been chosen to be the leading branch. The third leading branch has been
chosen within the parent subjets of the first leading subjet. The parent with the lowest
pT is considered as the third leading branch. Figure 3 shows a schematic representation
of this selection where blue stands for the leading branch following the subjets with rela-
tively higher momentum than the consecutive parent subjet. Green is the second leading
branch and purple is the third leading branch following the same pattern as the leading
branch. Black lines represent the discarded branches which have less pT compared to the
corresponding parent subjet. Finally, red represents the C/A-jet. The sequence has been
constructed using kT -distances in the clustering history, defined as

di,j = min
(
p2

T,i, p
2
T,j

) ∆R2

R
.

Here i, j is the number of the parent subjets, ∆R is the relative angular distance between
two subjets and R is the clustering radius given as 0.8. For each parent subjet in a branch,
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the di,j value is stored with its chronological order. d1,2 and d3,4, see figure 3, are included
as part of the leading branch sequence. In order to compose the RNN sequence, we first
used the mass of the anti-kT-jet and then the mass of C/A-jet constructed using Mass
Drop Tagger [86] (µ = 0.8, ycut = 0.09). Then we added the first 18, 10, 10 kT -distances
of the leading, second leading and third-leading branches, respectively. Branches with fewer
subjets then padded with zeros. Upper panel of figure 4 shows the kT sequence for 2000
top signal and 2000 dijet background events. Each event has been represented via high
transparency; hence the vibrant colours show the high occurrences of the particular events
where blue and red stands for top and dijet samples. The bottom two panels of figure 4
show the number of subjets in each branch where the left and right panels show for top
and dijet samples, respectively.5 Before passing the input feature vectors to the network
for training, the dataset has been standardized using RobustScaler within Scikit-Learn
package [87] using 100,000 mixed events from the training sample.

3.2 Network architecture & training

In order to study the effects of ensembling multiple architectures, here we will first introduce
two “comparable” but independent architectures for the CNN and RNN-type of datasets
presented in section 3.1. Our NN architecture relies on Keras library [88] embedded in
TensorFlow version 2.2 [89].

The CNN dataset has been trained by a network receiving 37×37-pixel input via a 2D
convolutional layer with eight features and four stride pixels alongside with zero paddings.
This layer’s output is normalized within a batch normalization layer and passed on to a
max-pooling layer with a pool size of 2 × 2, leaving a reduced 18 × 18 image with eight
features. Finally, these images have been flattened and passed to a fully connected dense
layer with sixteen nodes with a dropout probability of 25%. A rectified linear unit (ReLu)
activation function has been used for each layer. A dense output layer has then followed
the network with a single node and sigmoid activation for classification.

Furthermore, the RNN dataset has been trained in a slightly more complex architecture
starting with an LSTM layer, including 64 nodes. The activation and recurrent activation
function for the LSTM layer have been chosen as hyperbolic tangent and sigmoid functions.
It has been followed by three fully connected dense layer with 64, 64 and 32 nodes respec-
tively and each dense layer followed by a dropout layer with 25% probability. As before,
the ReLu activation function has been used for each dense layer. The network output has
been generated from a final dense layer with a single node and sigmoid activation function.

Both networks are aimed to minimize a binary cross-entropy loss function via Adam
optimizer [90] with a learning rate of 10−4. Networks are trained for 500 epochs, and the
learning rate has been reduced half for every 20 epochs if there is no improvement on the
validation dataset’s loss value. If the network didn’t improve the validation loss for 250
epochs, the training terminated automatically.

5It is important to note that we also test our sequence by constructing it out of jets clustered by kT
and anti-kT algorithms; however, the discriminative power has been observed to be less than the sequence
clustered by C/A algorithm.
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Figure 5. Receiver operating characteristic curve has been shown where CNN, RNN, the mean
prediction of both and ENN architectures represented by green, blue, orange and red curves. The
epistemic uncertainty has been represented by the transparent area around each curve for one
standard deviation. Black curve represents the random choice. The inner plot zooms into the slice
of εS ∈ [0.4, 0.7].

Since the goal of this study is to question if a more extensive representation can
generalize the given problem much better than its component hypotheses, we employed
two types of ensembling methods. As a reference case, we studied the mean of both CNN
and RNN predictions. As mentioned in section 1, such ensembles have shown to go beyond
the accuracies of their component networks. For the main case, we will study an extended
architecture where CNN and RNN architectures are concatenated before their output layer;
hence resulting in a latent-space of 48 features. To find an optimal generalization of this
latent-feature space, they are further connected to a fully connected dense layer with 96
nodes, employing ReLu activation function and L2 kernel regularization with a penalty
strength of 0.05. This dense layer has been padded with 25% dropout layers before and
after. Then connected to an output layer as before, activated via a sigmoid function.

In order to estimate the inherent uncertainty on each model, the test data has been
divided into randomly selected 50,000 non-overlapping partitions. Figure 5 shows the
ROC curve for each model. RNN and CNN are represented with blue and green curves
alongside the inherent uncertainty for one standard deviation. The orange curve shows
the mean prediction of these two models, which already indicates a higher generalization
power than each component network. Finally, the red curve shows the minimalistic ENN
configuration. Although the concatenated latent-feature space’s training is minimal, it still
reveals improvement beyond the mean prediction. The inner plot of figure 5 zooms into
the slice of tagging efficiency within [0.4, 0.7] to emphasize this improvement. Figure 5
also shows the area under the curve (AUC) value for each curve where the improvement
in mean prediction and ENN is also visible.
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Figure 6. Comparison between stack and parallel combined networks have been shown. The
receiver operating characteristic curve for CNN (green) and RNN (blue) shows the stack combined
results for ten randomly initialized networks. The solid line shows the ROC curve for the predictions’
mean, and the dashed line shows the same for the median of the predictions. The solid red line
shows the ROC curve for the parallel combined ensemble network. The black curve represents a
random choice.

As mentioned before, for the ENN to show a significant performance improvement
over all pooled networks, it is important for the component networks to show mutually a
comparable performance. As seen from figure 5, both the ENN and the mean prediction
is dominated by the CNN above a tagging efficiency of 0.8 and dominated by the RNN
below a tagging efficiency of 0.15. This shows that the performance of the network is solely
dependent on the correlation between the component networks. In the region εS ∈ [0.8, 1]
both RNN and CNN captures the 3-prong substructure presented in figure 2 and 4 where
in the region εS ∈ [0, 0.3] a dipole type substructure is captured. Hence, both networks
are highly correlated, which reflects in ENN’s prediction as well. As seen from the interval
[0.4, 0.7] of the ROC curve, the ENN-improvement is maximized when the component
accuracies are similar.

In ref. [60], it has been reported that, depending on the architecture, it is possible
to improve the prediction quality up to 15% by using the stack combination method. To
assess the parallel combining method’s performance with respect to the stack combining
method, we retrained RNN and CNN architectures ten times by reinitializing the networks’
weights for each training. Then the mean(median)-of-ensemble calculated by combing the
predictions of each training. Figure 6 shows the comparison between the parallel combined
ensemble method (solid red curve) and stacked combined RNN (blue) and CNN (green)
architectures. The mean and median combination has been shown with solid and dashed
curves. Although we observe a slight improvement in the performance of the stack combined
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Figure 7. Squared error correlation mapped on 50,000 randomly selected test images for RNN
(upper left), CNN (upper right), mean (lower left) and ENN (lower right).

networks with respect to their component network, this improvement does not match with
the ENN architecture that this study proposes. We also do not observe a significant
difference between using the mean or median for the stack combined methods.

As discussed in section 2, combining hypotheses with non-correlated errors may im-
prove an ensemble’s prediction. In order to test this, figure 7 shows the correlations of
the squared error, (y − ŷ)2 mapped on the test images where y is the truth label and ŷ

is the prediction of the corresponding network. Figure 7 shows RNN (upper left panel),
CNN (upper right panel), mean prediction (lower left panel) and ENN (lower right panel).
Each correlation has been estimated by using randomly selected 50,000 test images. One
can immediately see the shrinking area of the blue negative correlation distribution. Al-
though the correlations between the RNN and the CNN mapping look similar, the mean
prediction improves the two hypotheses’ non-overlapping portions. The ENN goes beyond
the mean prediction’s achievement by drastically shrinking the blue region and removing
the fluctuations in the red (positively correlated) region, hence increasing the correlations
between squared error and the image pixels. As expected, similarly correlated regions
changed neither for mean prediction nor for ENNs. Thus, combining all available neural
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networks would not improve the accuracy if their error is highly correlated. Instead, one
can benefit from this methodology by employing networks with comparable accuracies and
different error correlation to improve the latent-feature space accuracy.

4 Bayesian Deep Learning

For all phenomenological applications it is important to assess the intrinsic uncertainties of
a NN model. Two major uncertainties can be modelled within the context of DL [62, 69].
The irreducible noise in the observations called aleatoric uncertainties and the uncertainties
intrinsic to the proposed hypothesis called epistemic uncertainties. Given sufficient data,
epistemic uncertainties can be explained and reduced. The decomposition of the variance
of a binary hypothesis is given as [91, 92],

V ar(y) = 〈ŷ2〉 − 〈ŷ〉2︸ ︷︷ ︸
epistemic

+ 〈 ŷ (1− ŷ) 〉︸ ︷︷ ︸
aleatoric

, (4.1)

where ŷ represents the network’s predictive distribution, the first term represents the epis-
temic uncertainties while the second term is the aleatoric uncertainty. In addition to the
uncertainties, the entropy of the network’s prediction, also, gives strong indications about
the underlying uncertainties of the system where higher entropy points to higher uncer-
tainty. The entropy of binary classification is given as [93],

S = − (ŷ log2 (ŷ) + (1− ŷ) log2 (1− ŷ))) , (4.2)

where the first term stands for the classification of the class 1 (top signal) and the second
term for the classification of class 0 (dijet background).

In order to analyse the uncertainties underlying our neural network, we used the Ten-
sorFlow Probability package version 0.10.0 [94]. We limited ourselves to prediction
uncertainties by only changing each network’s output layer to Dense Flipout layer [95] with
sigmoid activation.6 The kernel divergence function has been chosen to be mean Kullbeck-
Leiber divergence. We employed the same network architectures presented in section 3.2.
As before, all networks are trained for 500 epochs with Adam optimizer. The initial learning
rate has been given as 10−4 and reduced to its half in every 20 epochs if validation loss has
not been improved. The final prediction has been reported using randomly chosen 100,000
test samples where each network output has been sampled 100 times.

Although the notion of “mean prediction” is ambiguous in the Bayesian context, in
order to have a baseline, we defined the mean prediction of CNN and RNN networks as
the mean of each 100 samples. This serves as the linear combination ensemble baseline
which has not been trained on any latent-feature space beyond its component networks. To
reveal our ensembling technique’s full effect, we used an ensemble learner with one dense
layer including 96 nodes, as before, and another ensemble learner with an additional dense
layer with 96 nodes.7

6It is important to note here that, to get the complete model uncertainties from each layer, one can
modify the entire network with Bayesian layers. This will double the number of trainable parameters in
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Figure 8. Mean entropy distribution with respect to the standard deviation of the entropy for
RNN (blue), CNN (green) and ENN (red) where ensemble having two dense layers (left panel).
Mean entropy distribution with respect to percentage of binned events (right panel).

RNN CNN Mean ENN (1 layer) ENN (2 layers)

µ̂S < 0.5 71.92% 75.22% 72.61% 78.05% 79.55%

Table 1. Percentage of events for each network structure, i.e. RNN, CNN, ENN and Mean, with
mean entropy below 0.5.

The left panel of figure 8 shows the mean entropy, µ̂S , distribution with respect to
the standard deviation in entropy, σ̂S , where RNN, CNN and two-layer ENN has been
represented with blue, green and red points. In order to simplify the plot, the mean
prediction and the one-layer ENN model is not shown. One can immediately conclude that
the ensemble learner has a considerable limitation on the standard deviation of the entropy
where CNN reaches beyond 0.025, RNN to 0.015 but ENN limits the standard deviation
below 0.0075. The right panel of figure 8 shows the percentage of events per mean entropy.
As before, the RNN and CNN architectures are represented by blue and green solid curves.
The separation between two curves increases between the entropy values 0.2 − 0.8 where
RNN has been observed to have more events with mid-range entropy values than CNN,
but the last bin reveals that CNN has more events with maximum entropy. The dashed
orange curve represents the mean of the two predictions where only slight improvement has
been observed beyond the RNN. Furthermore, for the two ensemble learners, represented
by dashed red and purple curves, one can immediately see the reduction in the number of
events for the mid-range entropy values. One can also see that when sufficient complexity
is provided, an ensemble learner further improves the hypothesis’s entropy, i.e. reduces its

each layer. Thus in order to simplify our problem, we are only concentrating on prediction uncertainties.
7It is important to note that we did not observe a significant improvement over ROC AUC by adding an

extra dense layer. Thus further optimization beyond adding an extra layer required to improve the accuracy
of an ensemble learner. Since this is beyond our scope, we limit ourselves to simplistic architecture.
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Figure 9. Left panel shows the normalised number of events per standard deviation in prediction.
Right panel shows the same for epistemic uncertainty. In each histogram RNN, CNN, mean, one-
layer ENN and two-layer ENN has been represented with blue, green, orange, red and purple curves.

values for both µ̂S and σ̂S . This is also summarized in table 1, where more than 78% of the
events for both ensemble learners reach a mean entropy µ̂S of less than 0.5, while RNN,
CNN, and mean prediction remain below 75.3%.

We also analyzed the standard deviation in the hypothesis prediction, which is crucial
to maintain small in order to achieve consistent predictions. The left panel of figure 9 shows
the fraction of events per standard deviation in prediction where the same colour scheme
applied as before. Given a sufficiently complexity problem, the ENN is observed to reduce
σ̂bayes significantly, compared to each component network and the mean combination of
those networks respectively. While the mean prediction reaching up to σ̂bayes ∼ 0.01, the
ENN limits the standard deviation below 0.004, which is similar to the standard deviation
mean entropy. On the right panel of the figure 9, we show the epistemic uncertainty as given
in the first term of eq. (4.1) using the same colour labelling. Again, we find a significant
reduction of the uncertainties with ensemble learners. These results show that learning over
various symmetries leads to a more accurate representation of the given problem without
requiring more data.

An optimization problem requires a sufficient amount of training examples in order to
be able to generalize the given hypothesis successfully. As shown in ref. [62], lack of variety
in training examples will cause uncertainty and the standard deviation of the prediction
to increase. Figure 10 shows the change in the standard deviation in the prediction of
CNN (green), RNN (blue) and two-layer ENN (red) architectures. As before, each network
output has been sampled 100 times for 100,000 test samples. The solid, dashed, and dotted
lines show each network’s prediction trained with 610,000, 300,000 and 200,000 randomly
chosen training samples. It has been observed that while σ̂bayes gets significantly larger
in RNN and CNN architectures, ENN is less susceptible to the lack of training examples.
This shows that the ability to access different symmetries within a given data provides
the necessary tools for ENN architecture to generalize the hypothesis better with fewer
training examples.
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Figure 10. The histogram shows the effect of using different training sample sizes on the standard
deviation of the prediction. Red, green and blue curves show ENN with two layers, CNN and
RNN architectures and solid, dashed and dotted curves shows the training sample sizes of 610,000,
300,000 and 200,000, respectively.

Thus we observed that employing different domains of data that are specialised for
specific properties, and optimising a neural network with combined properties of these
component learners drastically reduces the system’s uncertainties. Such an ensemble net-
work has been shown to learn the system’s correlations much more accurately compared
to its individual component networks.

5 Conclusion

We presented Ensemble Neural Networks for the reconstruction and classification of collider
events and applied them to the discrimination of boosted hadronically decaying top quarks
from QCD jets. An ENN can improve the accuracy of the network beyond the individual
contributions of its component networks by reducing the variance of the prediction given
that the errors of component networks are not highly correlated. In this study, we showed
that such techniques can be used in the event reconstruction of collider events in order
to overcome the representation problem of neural networks and to improve the prediction
accuracy and uncertainties.

Special-purpose networks, such as CNNs or RNNs have been repeatedly shown to be
highly accurate for the classification of LHC events. These networks are specialised to
learn and optimise their models with respect to the correlations of the given data. In
the case of the classification of fat jets, these correlations can be represented through
calorimeter images where a network learns the spatial distribution of a jet’s constituents.
On the other hand, clustering algorithms produce a sequential tree structures which can
be employed to learn distinct kinematic features of top decays and QCD backgrounds.
An ensemble learner is a paradigm that allows the combination of these properties in
one algorithm. Instead of optimising the network separately with respect to the distinct
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symmetries of images or cluster sequences, it allows optimisation through combined latent-
feature space. We showed that combining convolutional and recurrent neural networks and
training the network further over their latent-feature space leads to higher accuracy for the
classification task. Further, we found that such technique explicitly reduces the variations
in error correlations of the component networks hence improving the domains where the
component networks are not highly correlated.

Although ENN comes with a great advantage, it is crucial to emphasize the trade-off
of building such an architecture. ENN is only valid if its component networks can capture
different correlations in the data. As shown in section 3.2, ENN can not improve the
regions where the errors of the components are highly correlated. Hence, in such cases, it
would be equally beneficial to focus on improving the performance of individual state-of-
the-art NN architectures. It is also important to note that this does not render the stack
combining method invalid. For complex loss hypersurfaces, it is quite challenging for a
learning algorithm to find the global minimum. If there is no other architecture available
that can exploit different features of the given data, then the stack combining method will
achieve a much closer approximation by sampling different regions of the hypothesis-space.

A detailed understanding of the inner workings of Deep Learning techniques is often
missing. To develop confidence in their applicability in measurements and searches for new
physics, it is of vital importance to understand and, if possible, reduce the uncertainties of
the networks. Bayesian techniques are designed to quantify such uncertainties. We found
that ENNs can drastically reduce the uncertainty in the prediction of the network, without
increasing the amount of training data. We also showed that such methods reduce the
entropy of the system as well as the epistemic uncertainties and it reduces the network’s
susceptible to small-sized training samples. ENNs can thus provide much more accurate
predictions than their component networks. The methodology employed in this study can
be applied to a broad scope of application in HEP phenomenology. Instead of expanding
the data domain, learning through combined underlying correlations of the problem has
been shown to be very effective.

While ensemble learners can reduce the variance of the hypothesis, we did not observe
any improvement in the data’s bias or aleatoric uncertainties. Although reducing the
network’s epistemic uncertainties and variance is a crucial step, aleatoric uncertainties are
observed to be larger than the epistemic uncertainties. It has been shown that Genetic-
Algorithm-based Selective Ensembles can reduce the biases as well as the variance of the
system [50], it is an obvious next step to employ such techniques to reduce biases as well
as the variance of the network.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

– 17 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
4
(
2
0
2
1
)
2
9
6

References

[1] S. Marzani, G. Soyez and M. Spannowsky, Looking inside jets: an introduction to jet
substructure and boosted-object phenomenology, Lect. Notes Phys. 958 (2019) 1
[arXiv:1901.10342] [INSPIRE].

[2] T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett. 104
(2010) 111801 [arXiv:0910.5472] [INSPIRE].

[3] T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop reconstruction with tagged tops,
JHEP 10 (2010) 078 [arXiv:1006.2833] [INSPIRE].

[4] T. Plehn, M. Spannowsky and M. Takeuchi, How to improve top tagging, Phys. Rev. D 85
(2012) 034029 [arXiv:1111.5034] [INSPIRE].

[5] D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev.
D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].

[6] D.E. Soper and M. Spannowsky, Finding physics signals with shower deconstruction, Phys.
Rev. D 84 (2011) 074002 [arXiv:1102.3480] [INSPIRE].

[7] D.E. Soper and M. Spannowsky, Finding physics signals with event deconstruction, Phys.
Rev. D 89 (2014) 094005 [arXiv:1402.1189] [INSPIRE].

[8] S. Prestel and M. Spannowsky, HYTREES: combining matrix elements and parton shower
for hypothesis testing, Eur. Phys. J. C 79 (2019) 546 [arXiv:1901.11035] [INSPIRE].

[9] J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, Constraining effective field theories with
machine learning, Phys. Rev. Lett. 121 (2018) 111801 [arXiv:1805.00013] [INSPIRE].

[10] J. Brehmer, F. Kling, I. Espejo and K. Cranmer, MadMiner: machine learning-based
inference for particle physics, Comput. Softw. Big Sci. 4 (2020) 3 [arXiv:1907.10621]
[INSPIRE].

[11] G. Louppe, M. Kagan and K. Cranmer, Learning to pivot with adversarial networks,
arXiv:1611.01046 [INSPIRE].

[12] C.K. Khosa and V. Sanz, Anomaly awareness, arXiv:2007.14462 [INSPIRE].
[13] L.G. Almeida, M. Backović, M. Cliche, S.J. Lee and M. Perelstein, Playing tag with ANN:

boosted top identification with pattern recognition, JHEP 07 (2015) 086 [arXiv:1501.05968]
[INSPIRE].

[14] G. Kasieczka, T. Plehn, M. Russell and T. Schell, Deep-learning top taggers or the end of
QCD?, JHEP 05 (2017) 006 [arXiv:1701.08784] [INSPIRE].

[15] A. Butter, G. Kasieczka, T. Plehn and M. Russell, Deep-learned top tagging with a Lorentz
layer, SciPost Phys. 5 (2018) 028 [arXiv:1707.08966] [INSPIRE].

[16] J. Pearkes, W. Fedorko, A. Lister and C. Gay, Jet constituents for deep neural network based
top quark tagging, arXiv:1704.02124 [INSPIRE].

[17] S. Egan, W. Fedorko, A. Lister, J. Pearkes and C. Gay, Long Short-Term Memory (LSTM)
networks with jet constituents for boosted top tagging at the LHC, arXiv:1711.09059
[INSPIRE].

[18] S. Macaluso and D. Shih, Pulling out all the tops with computer vision and deep learning,
JHEP 10 (2018) 121 [arXiv:1803.00107] [INSPIRE].

[19] S. Choi, S.J. Lee and M. Perelstein, Infrared safety of a neural-net top tagging algorithm,
JHEP 02 (2019) 132 [arXiv:1806.01263] [INSPIRE].

– 18 –

https://doi.org/10.1007/978-3-030-15709-8
https://arxiv.org/abs/1901.10342
https://inspirehep.net/search?p=find+doi%20%2210.1007%2F978-3-030-15709-8%22
https://doi.org/10.1103/PhysRevLett.104.111801
https://doi.org/10.1103/PhysRevLett.104.111801
https://arxiv.org/abs/0910.5472
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0910.5472
https://doi.org/10.1007/JHEP10(2010)078
https://arxiv.org/abs/1006.2833
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.2833
https://doi.org/10.1103/PhysRevD.85.034029
https://doi.org/10.1103/PhysRevD.85.034029
https://arxiv.org/abs/1111.5034
https://inspirehep.net/search?p=find+doi%20%2210.1103%2FPhysRevD.85.034029%22
https://doi.org/10.1103/PhysRevD.87.054012
https://doi.org/10.1103/PhysRevD.87.054012
https://arxiv.org/abs/1211.3140
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.3140
https://doi.org/10.1103/PhysRevD.84.074002
https://doi.org/10.1103/PhysRevD.84.074002
https://arxiv.org/abs/1102.3480
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1102.3480
https://doi.org/10.1103/PhysRevD.89.094005
https://doi.org/10.1103/PhysRevD.89.094005
https://arxiv.org/abs/1402.1189
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.1189
https://doi.org/10.1140/epjc/s10052-019-7030-y
https://arxiv.org/abs/1901.11035
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.11035
https://doi.org/10.1103/PhysRevLett.121.111801
https://arxiv.org/abs/1805.00013
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.00013
https://doi.org/10.1007/s41781-020-0035-2
https://arxiv.org/abs/1907.10621
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.10621
https://arxiv.org/abs/1611.01046
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.01046
https://arxiv.org/abs/2007.14462
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.14462
https://doi.org/10.1007/JHEP07(2015)086
https://arxiv.org/abs/1501.05968
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.05968
https://doi.org/10.1007/JHEP05(2017)006
https://arxiv.org/abs/1701.08784
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.08784
https://doi.org/10.21468/SciPostPhys.5.3.028
https://arxiv.org/abs/1707.08966
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.08966
https://arxiv.org/abs/1704.02124
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.02124
https://arxiv.org/abs/1711.09059
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.09059
https://doi.org/10.1007/JHEP10(2018)121
https://arxiv.org/abs/1803.00107
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.00107
https://doi.org/10.1007/JHEP02(2019)132
https://arxiv.org/abs/1806.01263
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.01263


J
H
E
P
0
4
(
2
0
2
1
)
2
9
6

[20] L. Moore, K. Nordström, S. Varma and M. Fairbairn, Reports of my demise are greatly
exaggerated: N -subjettiness taggers take on jet images, SciPost Phys. 7 (2019) 036
[arXiv:1807.04769] [INSPIRE].

[21] A. Blance, M. Spannowsky and P. Waite, Adversarially-trained autoencoders for robust
unsupervised new physics searches, JHEP 10 (2019) 047 [arXiv:1905.10384] [INSPIRE].

[22] S.H. Lim and M.M. Nojiri, Spectral analysis of jet substructure with neural networks: boosted
Higgs case, JHEP 10 (2018) 181 [arXiv:1807.03312] [INSPIRE].

[23] J. Lin, M. Freytsis, I. Moult and B. Nachman, Boosting H → bb̄ with machine learning,
JHEP 10 (2018) 101 [arXiv:1807.10768] [INSPIRE].

[24] P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, Jet substructure classification in
high-energy physics with deep neural networks, Phys. Rev. D 93 (2016) 094034
[arXiv:1603.09349] [INSPIRE].

[25] G. Louppe, K. Cho, C. Becot and K. Cranmer, QCD-aware recursive neural networks for jet
physics, JHEP 01 (2019) 057 [arXiv:1702.00748] [INSPIRE].

[26] J. Gallicchio and M.D. Schwartz, Quark and gluon jet substructure, JHEP 04 (2013) 090
[arXiv:1211.7038] [INSPIRE].

[27] P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated
quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].

[28] T. Cheng, Recursive neural networks in quark/gluon tagging, Comput. Softw. Big Sci. 2
(2018) 3 [arXiv:1711.02633] [INSPIRE].

[29] P.T. Komiske, E.M. Metodiev and J. Thaler, Energy flow networks: deep sets for particle
jets, JHEP 01 (2019) 121 [arXiv:1810.05165] [INSPIRE].

[30] S. Bright-Thonney and B. Nachman, Investigating the topology dependence of quark and
gluon jets, JHEP 03 (2019) 098 [arXiv:1810.05653] [INSPIRE].

[31] A.J. Larkoski, I. Moult and B. Nachman, Jet substructure at the Large Hadron Collider: a
review of recent advances in theory and machine learning, Phys. Rept. 841 (2020) 1
[arXiv:1709.04464] [INSPIRE].

[32] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images — deep
learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].

[33] O. Kitouni, B. Nachman, C. Weisser and M. Williams, Enhancing searches for resonances
with machine learning and moment decomposition, JHEP 04 (2021) 070 [arXiv:2010.09745]
[INSPIRE].

[34] X. Ju and B. Nachman, Supervised jet clustering with graph neural networks for Lorentz
boosted bosons, Phys. Rev. D 102 (2020) 075014 [arXiv:2008.06064] [INSPIRE].

[35] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman and T. Plehn, GANplifying event
samples, arXiv:2008.06545 [INSPIRE].

[36] S. Farrell et al., Next generation generative neural networks for HEP, EPJ Web Conf. 214
(2019) 09005 [INSPIRE].

[37] J. Lin, W. Bhimji and B. Nachman, Machine learning templates for QCD factorization in
the search for physics beyond the Standard Model, JHEP 05 (2019) 181 [arXiv:1903.02556]
[INSPIRE].

[38] K. Datta, A. Larkoski and B. Nachman, Automating the construction of jet observables with
machine learning, Phys. Rev. D 100 (2019) 095016 [arXiv:1902.07180] [INSPIRE].

– 19 –

https://doi.org/10.21468/SciPostPhys.7.3.036
https://arxiv.org/abs/1807.04769
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.04769
https://doi.org/10.1007/JHEP10(2019)047
https://arxiv.org/abs/1905.10384
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.10384
https://doi.org/10.1007/JHEP10(2018)181
https://arxiv.org/abs/1807.03312
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.03312
https://doi.org/10.1007/JHEP10(2018)101
https://arxiv.org/abs/1807.10768
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.10768
https://doi.org/10.1103/PhysRevD.93.094034
https://arxiv.org/abs/1603.09349
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.09349
https://doi.org/10.1007/JHEP01(2019)057
https://arxiv.org/abs/1702.00748
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.00748
https://doi.org/10.1007/JHEP04(2013)090
https://arxiv.org/abs/1211.7038
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.7038
https://doi.org/10.1007/JHEP01(2017)110
https://arxiv.org/abs/1612.01551
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.01551
https://doi.org/10.1007/s41781-018-0007-y
https://doi.org/10.1007/s41781-018-0007-y
https://arxiv.org/abs/1711.02633
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.02633
https://doi.org/10.1007/JHEP01(2019)121
https://arxiv.org/abs/1810.05165
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.05165
https://doi.org/10.1007/JHEP03(2019)098
https://arxiv.org/abs/1810.05653
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.05653
https://doi.org/10.1016/j.physrep.2019.11.001
https://arxiv.org/abs/1709.04464
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.04464
https://doi.org/10.1007/JHEP07(2016)069
https://arxiv.org/abs/1511.05190
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.05190
https://doi.org/10.1007/JHEP04(2021)070
https://arxiv.org/abs/2010.09745
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.09745
https://doi.org/10.1103/PhysRevD.102.075014
https://arxiv.org/abs/2008.06064
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.06064
https://arxiv.org/abs/2008.06545
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.06545
https://doi.org/10.1051/epjconf/201921409005
https://doi.org/10.1051/epjconf/201921409005
https://inspirehep.net/search?p=find+J%20%22EPJ%20Web%20Conf.%2C214%2C09005%22
https://doi.org/10.1007/JHEP05(2019)181
https://arxiv.org/abs/1903.02556
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.02556
https://doi.org/10.1103/PhysRevD.100.095016
https://arxiv.org/abs/1902.07180
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.07180


J
H
E
P
0
4
(
2
0
2
1
)
2
9
6

[39] R.T. D’Agnolo, G. Grosso, M. Pierini, A. Wulzer and M. Zanetti, Learning multivariate new
physics, Eur. Phys. J. C 81 (2021) 89 [arXiv:1912.12155] [INSPIRE].

[40] R.T. D’Agnolo and A. Wulzer, Learning new physics from a machine, Phys. Rev. D 99
(2019) 015014 [arXiv:1806.02350] [INSPIRE].

[41] B. Nachman and J. Thaler, E pluribus unum ex machina: learning from many collider events
at once, arXiv:2101.07263 [INSPIRE].

[42] T. Faucett, J. Thaler and D. Whiteson, Mapping machine-learned physics into a
human-readable space, Phys. Rev. D 103 (2021) 036020 [arXiv:2010.11998] [INSPIRE].

[43] C.K. Khosa, L. Mars, J. Richards and V. Sanz, Convolutional neural networks for direct
detection of dark matter, J. Phys. G 47 (2020) 095201 [arXiv:1911.09210] [INSPIRE].

[44] C.K. Khosa, V. Sanz and M. Soughton, Using machine learning to disentangle LHC
signatures of dark matter candidates, arXiv:1910.06058 [INSPIRE].

[45] T.G. Dietterich, Ensemble methods in machine learning, in Multiple classifier systems,
Springer, Berlin, Heidelberg, Germany (2000), pg. 1.

[46] L. Hansen and P. Salamon, Neural network ensembles, IEEE Trans. Pattern Anal. Machine
Intell. 12 (1990) 993.

[47] A.L. Blum and R.L. Rivest, Training a 3-node neural network is NP-complete, Neural
Networks 5 (1992) 117.

[48] K. Hornik, M. Stinchcombe and H. White, Universal approximation of an unknown mapping
and its derivatives using multilayer feedforward networks, Neural Networks 3 (1990) 551.

[49] C. Englert, M. Fairbairn, M. Spannowsky, P. Stylianou and S. Varma, Sensing Higgs boson
cascade decays through memory, Phys. Rev. D 102 (2020) 095027 [arXiv:2008.08611]
[INSPIRE].

[50] Z.-H. Zhou, J. Wu and W. Tang, Ensembling neural networks: many could be better than all,
Artificial Intel. 137 (2002) 239.

[51] A. Krogh and J. Vedelsby, Neural network ensembles, cross validation and active learning, in
Proceedings of the 7th international conference on neural information processing systems,
NIPS ′94, MIT Press, Cambridge, MA, U.S.A. (1994), pg. 231.

[52] M.P. Perrone and L.N. Cooper, When networks disagree: ensemble methods for hybrid neural
networks, in How we learn; how we remember: toward an understanding of brain and neural
systems, World Scientific, Singapore (1995), pg. 342.

[53] J. Xie, B. Xu and Z. Chuang, Horizontal and vertical ensemble with deep representation for
classification, arXiv:1306.2759.

[54] L. Rokach, Ensemble-based classifiers, Artificial Intel. Rev. 33 (2009) 1.
[55] R.P.W. Duin and D.M.J. Tax, Experiments with classifier combining rules, in Multiple

classifier systems, Springer, Berlin, Heidelberg, Germany (2000), pg. 16.
[56] J. Conrad and F. Tegenfeldt, Applying rule ensembles to the search for super-symmetry at

the Large Hadron Collider, JHEP 07 (2006) 040 [hep-ph/0605106] [INSPIRE].
[57] P. Baldi, P. Sadowski and D. Whiteson, Enhanced Higgs boson to τ+τ− search with deep

learning, Phys. Rev. Lett. 114 (2015) 111801 [arXiv:1410.3469] [INSPIRE].
[58] A. Alves, Stacking machine learning classifiers to identify Higgs bosons at the LHC, 2017

JINST 12 T05005 [arXiv:1612.07725] [INSPIRE].

– 20 –

https://doi.org/10.1140/epjc/s10052-021-08853-y
https://arxiv.org/abs/1912.12155
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.12155
https://doi.org/10.1103/PhysRevD.99.015014
https://doi.org/10.1103/PhysRevD.99.015014
https://arxiv.org/abs/1806.02350
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.02350
https://arxiv.org/abs/2101.07263
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.07263
https://doi.org/10.1103/PhysRevD.103.036020
https://arxiv.org/abs/2010.11998
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.11998
https://doi.org/10.1088/1361-6471/ab8e94
https://arxiv.org/abs/1911.09210
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.09210
https://arxiv.org/abs/1910.06058
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.06058
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1109/34.58871
https://doi.org/10.1109/34.58871
https://doi.org/10.1016/s0893-6080(05)80010-3
https://doi.org/10.1016/s0893-6080(05)80010-3
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1103/PhysRevD.102.095027
https://arxiv.org/abs/2008.08611
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.08611
https://doi.org/10.1016/s0004-3702(02)00190-x
https://doi.org/10.1142/9789812795885_0025
https://arxiv.org/abs/1306.2759
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1007/3-540-45014-9_2
https://doi.org/10.1088/1126-6708/2006/07/040
https://arxiv.org/abs/hep-ph/0605106
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0605106
https://doi.org/10.1103/PhysRevLett.114.111801
https://arxiv.org/abs/1410.3469
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.3469
https://doi.org/10.1088/1748-0221/12/05/T05005
https://doi.org/10.1088/1748-0221/12/05/T05005
https://arxiv.org/abs/1612.07725
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.07725


J
H
E
P
0
4
(
2
0
2
1
)
2
9
6

[59] A. Alves and F.F. Freitas, Towards recognizing the light facet of the Higgs boson, Mach.
Learn. Sci. Tech. 1 (2020) 045025 [arXiv:1912.12532] [INSPIRE].

[60] A. Butter et al., The machine learning landscape of top taggers, SciPost Phys. 7 (2019) 014
[arXiv:1902.09914] [INSPIRE].

[61] N. Ueda and R. Nakano, Generalization error of ensemble estimators, in Proceedings of
International Conference on Neural Networks (ICNN′96), volume 1, IEEE, (1996), pg. 90.

[62] S. Bollweg, M. Haußmann, G. Kasieczka, M. Luchmann, T. Plehn and J. Thompson,
Deep-learning jets with uncertainties and more, SciPost Phys. 8 (2020) 006
[arXiv:1904.10004] [INSPIRE].

[63] S. Marshall et al., Using Bayesian optimization to find asteroids’ pole directions,
AAS/Division for Planetary Sciences Meeting Abstracts 50 (2018) 505.01D.

[64] J. Mukhoti, P. Stenetorp and Y. Gal, On the importance of strong baselines in Bayesian deep
learning, arXiv:1811.09385.

[65] B. Nachman, A guide for deploying deep learning in LHC searches: how to achieve optimality
and account for uncertainty, SciPost Phys. 8 (2020) 090 [arXiv:1909.03081] [INSPIRE].

[66] B. Nachman and J. Thaler, Neural resampler for Monte Carlo reweighting with preserved
uncertainties, Phys. Rev. D 102 (2020) 076004 [arXiv:2007.11586] [INSPIRE].

[67] C. Englert, P. Galler, P. Harris and M. Spannowsky, Machine learning uncertainties with
adversarial neural networks, Eur. Phys. J. C 79 (2019) 4 [arXiv:1807.08763] [INSPIRE].

[68] Y. Gal and Z. Ghahramani, Dropout as a bayesian approximation: representing model
uncertainty in deep learning, arXiv:1506.02142.

[69] A. Kendall and Y. Gal, What uncertainties do we need in bayesian deep learning for
computer vision?, arXiv:1703.04977.

[70] J.F. Kolen and J.B. Pollack, Back propagation is sensitive to initial conditions, in
Proceedings of the 3rd International Conference on Neural Information Processing Systems,
NIPS′90, Morgan Kaufmann Publishers Inc., San Francisco, CA, U.S.A. (1990), pg. 860.

[71] K. Cherkauer, Human expert-level performance on a scientific image analysis task by a
system using combined artificial neural networks, in Working notes of the AAAI workshop on
integrating multiple learned models, (1996), pg. 15.

[72] K. Tumer and J. Ghosh, Error correlation and error reduction in ensemble classifiers,
Connection Sci. 8 (1996) 385.

[73] L. Breiman, Bagging predictors, Machine Learn. 24 (1996) 123.
[74] M. Gams, New measurements highlight the importance of redundant knowledge, in

Proceedings of the fourth european working session on learning, (1989), pg. 71.
[75] B. Parmanto, P. Munro and H. Doyle, Improving committee diagnosis with resampling

techniques, in Advances in neural information processing systems, volume 8, D. Touretzky,
M.C. Mozer and M. Hasselmo eds., MIT Press, U.S.A. (1996), pg. 882.

[76] Y. Freund and R.E. Schapire, A decision-theoretic generalization of on-line learning and an
application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.

[77] Y. Freund and R.E. Schapire, Experiments with a new boosting algorithm, in Proceedings of
the thirteenth international conference on machine learning, Morgan Kaufmann, San
Francisco, CA, U.S.A. (1996), pg. 148.

– 21 –

https://doi.org/10.1088/2632-2153/aba8e6
https://doi.org/10.1088/2632-2153/aba8e6
https://arxiv.org/abs/1912.12532
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.12532
https://doi.org/10.21468/SciPostPhys.7.1.014
https://arxiv.org/abs/1902.09914
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.09914
https://doi.org/10.1109/ICNN.1996.548872
https://doi.org/10.21468/SciPostPhys.8.1.006
https://arxiv.org/abs/1904.10004
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.10004
https://arxiv.org/abs/1811.09385
https://doi.org/10.21468/SciPostPhys.8.6.090
https://arxiv.org/abs/1909.03081
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.03081
https://doi.org/10.1103/PhysRevD.102.076004
https://arxiv.org/abs/2007.11586
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.11586
https://doi.org/10.1140/epjc/s10052-018-6511-8
https://arxiv.org/abs/1807.08763
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.08763
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1703.04977
https://doi.org/10.1080/095400996116839
https://doi.org/10.1007/bf00058655
https://doi.org/10.1006/jcss.1997.1504


J
H
E
P
0
4
(
2
0
2
1
)
2
9
6

[78] G. Brown, J.L. Wyatt and P. Tiño, Managing diversity in regression ensembles, J. Mach.
Learn. Res. 6 (2005) 1621.

[79] P. Domingos, A unifeid bias-variance decomposition and its applications, in Proceedings of
the seventeenth international conference on machine learning, ICML ′00, Morgan Kaufmann,
San Francisco, CA, U.S.A. (2000), pg. 231.

[80] G. Kasieczka, T. Plehn, J. Thompson and M. Russel, Top quark tagging reference dataset,
Zenodo, March 2019.

[81] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015)
159 [arXiv:1410.3012] [INSPIRE].

[82] DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a
generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

[83] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008)
063 [arXiv:0802.1189] [INSPIRE].

[84] M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896
[arXiv:1111.6097] [INSPIRE].

[85] S. Bentvelsen and I. Meyer, The Cambridge jet algorithm: features and applications, Eur.
Phys. J. C 4 (1998) 623 [hep-ph/9803322] [INSPIRE].

[86] J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs
search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470]
[INSPIRE].

[87] F. Pedregosa et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12
(2011) 2825.

[88] F. Chollet et al., Keras, https://keras.io, (2015).
[89] M. Abadi et al., TensorFlow: large-scale machine learning on heterogeneous distributed

systems, arXiv:1603.04467 [INSPIRE].
[90] D.P. Kingma and J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980

[INSPIRE].
[91] Y. Kwon, J.-H. Won, B.J. Kim and M.C. Paik, Uncertainty quantification using Bayesian

neural networks in classification: application to biomedical image segmentation, Comput.
Statist. Data Anal. 142 (2020) 106816.

[92] N. Tagasovska and D. Lopez-Paz, Single-model uncertainties for deep learning,
arXiv:1811.00908.

[93] D.J.C. MacKay, Information theory, inference & learning algorithms, Cambridge University
Press, Cambridge, U.K. (2002).

[94] M. Abadi et al., Tensorflow: a system for large-scale machine learning, arXiv:1605.08695.
[95] Y. Wen, P. Vicol, J. Ba, D. Tran and R.B. Grosse, Flipout: efficient pseudo-independent

weight perturbations on mini-batches, arXiv:1803.04386.

– 22 –

https://www.jmlr.org/papers/volume6/brown05a/brown05a.pdf
https://www.jmlr.org/papers/volume6/brown05a/brown05a.pdf
https://doi.org/10.5281/zenodo.2603256
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.3012
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.6346
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.1189
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.6097
https://doi.org/10.1007/s100520050232
https://doi.org/10.1007/s100520050232
https://arxiv.org/abs/hep-ph/9803322
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9803322
https://doi.org/10.1103/PhysRevLett.100.242001
https://arxiv.org/abs/0802.2470
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.2470
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://keras.io
https://arxiv.org/abs/1603.04467
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.04467
https://arxiv.org/abs/1412.6980
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.6980
https://doi.org/10.1016/j.csda.2019.106816
https://doi.org/10.1016/j.csda.2019.106816
https://arxiv.org/abs/1811.00908
https://arxiv.org/abs/1605.08695
https://arxiv.org/abs/1803.04386

	Introduction
	Ensemble Neural Networks
	Top tagging through ensemble learning
	Dataset & preprocessing
	Network architecture & training

	Bayesian Deep Learning
	Conclusion

