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1 Introduction

The AdS3/CFT2 correspondence with small (4, 4) superconformal symmetry [1] remains a
significant challenge in the study of exact holography. While much is known about BPS
quantities, nonprotected sectors remain poorly understood at generic points in the moduli
space. As in certain higher-dimensional dual pairs [2], there is strong evidence that integrable
holographic methods will also apply to this setting. Light-cone quantisation of the Green-
Schwarz superstring action on AdS3×S3×T4 with R-R flux near the BMN vacuum [3] has been
used to find the exact 2-body worldsheet S matrix together with crossing equations for the
so-called dressing factors [4–6]. Since this 2-body S-matrix satisfies the Yang-Baxter equation,
the large-volume spectrum of worldsheet theory is then encoded into Asymptotic Bethe
Ansatz (ABA) equations [7, 8]. However, unlike higher-dimensional integrable holographic
models, AdS3/CFT2 duals have massless excitations in their spectrum, which makes it harder
to apply large-volume methods, such as the ABA, to explicitly determine the spectrum
because massless and mixed-mass wrapping effects are no longer exponentially suppressed [9].

To overcome these challenges, one needs to develop exact finite-volume methods, such
as the Quantum Spectral Curve (QSC) or the Thermodynamic Bethe Ansatz (TBA). The
QSC was first introduced in [10] in the context of maximally supersymmetric AdS5/CFT4
and has since been used to precisely determine many non-protected observables in theories
such as planar N = 4 super Yang-Mills (SYM) theory or ABJM theory [11]. The QSC is a
set of functional equations for so-called Q-functions, which are additionally constrained by
analyticity properties. Recently, a QSC was conjectured for string theory on AdS3 × S3 × T4

with R-R flux [12, 13]. An important difference of this QSC, unlike its higher-dimensional
cousins, is the presence of non-square-root branch points [14].1 As a concrete application
of this formalism, the first numerical predictions for energies of non-protected Konishi-like
states and their higher-spin generalisations were obtained using this QSC in [15] to high
order in a weak-coupling analytic expansion. Simultaneously, a TBA for AdS3×S3×T4 was
formulated in [16] and recently resulted in some weak coupling predictions, although for
different states compared to the ones studied using QSC [17, 18]. The exact relation between
the proposed QSC and TBA remains an open question.

It is believed that solutions of the QSC should be in one-to-one correspondence with
super-conformal primaries. In [12, 13], a large-volume limit was found, in which a certain
class of solutions of the QSC reduced to the massive sector Bethe equations [4]. However,
the massless sector remained largely unexplored even though the first steps to identify the
corresponding QSC solutions were proposed in [13]. In this paper we will study a new class
of solutions of the AdS3 QSC, to a certain extent inspired by the recent discovery of massless
modes in the AdS5×S5 QSC in the Regge regime [19], which in the large volume limit gives
the full set of Bethe equations, including the massless excitations [8]. In this limit, the QSC
analyticity properties reduce to simple discontinuity constraints on certain scalar factors that
appear in the Q-functions. As in higher-dimensional models, the more familiar S-matrix
dressing phases can be constructed from these QSC building blocks. The QSC discontinuity

1This generalisation of the allowed analytic properties of Q-functions significantly expands the space of
possible QSCs and so deserves further detailed study as part of a programme for a classification of QSCs.
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constraints impose stricter restrictions on the corresponding dressing factors leading to a
unique solution, ruling out any CDD-like factors [20].

These results are important for several reasons. Firstly, they demonstrate that the initial
AdS3 QSC proposals are complete, in the sense that they include all types of particles in the
large volume limit. Secondly, our findings provide asymptotic expressions for the constituents
of the QSC, enabling both perturbative and numerical studies of these states using precise
QSC tools. Finally, our results allow for the determination of all the CDD factors considered
in previous studies and help resolve some discrepancies found in the existing literature.

This paper is organised as follows. In section 2 we review the R-R AdS3 QSC proposal [12,
13], while in section 3 we summarise the ABA equations for this theory [8]. In section 4, we
examine the large-volume limit of QSC for the case involving both massive and massless
modes, discussing the form of the P and Q functions in this limit. Section 5 derives all
massive and massless Bethe equations from QSC. Section 6 explores the crossing relations
and presents explicit expressions for the dressing phases. Finally, section 7 concludes the
paper with a summary of our findings and their implications for further analysis.

Note added. About six months after this manuscript appeared on arXiv, the preprint [21]
was submitted to arXiv. Using a different line of reasoning, that work likewise concluded that
the previously proposed massless-massless dressing phase must be modified. In particular,
it removed the a(γ) factor, see section 6.3, and adjusted the crossing relation in agreement
with our analysis, providing strong independent confirmation of our results.

2 QSC generalities

The structure of the QSC is governed to a large extent by the symmetries of the system. The
global part of the small (4, 4) superconformal symmetry algebra is psu(1, 1|2)L × psu(1, 1|2)R,
with L and R denoting the left and right sectors of the dual CFT2. The four Cartan generators
consist of two su(1, 1)I charges ∆I and two su(2)I charges JI, with I = L, R. These can be
conveniently combined into

∆ = ∆L +∆R , S = ∆L −∆R , J = JL + JR , K = JL − JR , (2.1)

where ∆ is the dimension, S the spin and, by convention, J the angular momentum along
S3 in which the Berenstein-Maldacena-Nastase (BMN) [3] geodesic extends.

Correspondingly, the AdS3 QSC is built from two psu(1, 1|2) Q-systems, each consisting
of 24 functions of the spectral parameter u. We will denote the left Q-system by

Q∅|∅ = Q12|12 = 1, (2.2)
Qa|∅ ≡ Pa, Q∅|k ≡ Qk, (2.3)

Qa|k, Qa|k ≡ ϵabϵklQb|l (2.4)
Q12|k ≡ Qlϵlk, Qa|12 ≡ Pbϵba . (2.5)

– 3 –
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Above, a, b, k, l = 1, 2 and ϵ12 = ϵ12 ≡ 1 is the anti-symmetric Levi-Civita tensor so that
ϵabϵ

bc = −δc
a. The Q-functions satisfy conventional QQ-relations

QAa|IQA|Ii = Q+
Aa|IiQ

−
A|I − Q−

Aa|IiQ
+
A|I ,

Q12|IQ∅|I = Q+
1|IQ−

2|I − Q−
1|IQ+

2|I , (2.6)

QA|12QA|∅ = Q+
A|1Q−

A|2 − Q−
A|1Q+

A|2 ,

where A and I are multi-indices, for example:

Q+
a|i − Q−

a|i = QaPi , −Q2Q1 = Q+
1|1Q−

2|1 − Q−
1|1Q+

2|1 . (2.7)

The identity Q12|12 = detQa|b is a consequence of the QQ-relations. Together with (2.2)
and (2.4) it leads to

Qa|kQb|k = δa
b . (2.8)

The right copy of the Q-system will be distinguished by using dotted indices, for example
as Qȧ|k̇ or Pȧ. All Q-functions are assumed to be analytic in the upper-half u-plane on
the defining sheet.

Asymptotics. We require all Q-functions to have power-like large-u asymptotics on their
defining sheet dictated by the quantum numbers of the state under consideration:

Pa ≃ Aa uMa , Pa ≃ Aȧ u−Ma−1 Qk ≃ Bk uM̂k , Qk ≃ Bk u−M̂k−1 , (2.9)

with

Ma =
{
−J

2 − K

2 − 1,
J

2 + K

2

}
− B̂

2 , M̂k =
{∆
2 + S

2 ,−∆
2 − S

2 − 1
}
+ B̂

2 , (2.10)

Mȧ =
{
−J

2 + K

2 ,
J

2 − K

2 − 1
}
− B̌

2 , M̂k̇ =
{∆
2 − S

2 − 1,−∆
2 + S

2

}
+ B̌

2 . (2.11)

From the full set of QQ-relations (2.6) one can derive the following three particularly useful
types of identities.

• Using Qa|i one can “rotate” between P and Q according to

Q±
a|iQ

i = Pa , Q±
a|iP

a = Qi , Qa|i±Qi = Pa , Qa|i±Pa = Qi . (2.12)

• Using QQ-relations and the fact that Q∅|∅ = Q12|12 = 1 it follows that

QkQk = PaPa = Qk̇Qk̇ = PȧPȧ = 0 . (2.13)

• Lastly, the prefactors A and B in (2.9), as a consequence of the QQ-relations, are
constrained to satisfy

A1A1 = −A2A2 = i

4
(∆− J − K + S)(∆ + J + K + S + 2)

J + K + 1 ,

B1B1 = −B2B2 = i

4
(∆− J − K + S)(∆ + J + K + S + 2)

∆ + S + 1 .

(2.14)

Analogous relations hold for the right Q system. In particular, to find (2.14) for the dotted
system, one sends S → −S − 2 and K → −K − 2, as can be seen from the asymptotics (2.9).
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+2h−2h

γ

+2h−2h

γ̄

Figure 1. Two contours for the analytic continuation. γ goes around the −2h branch point in the
clockwise direction, while γ̄ = γ−1 goes anti-clockwise.

Analyticity and gluing conditions. In [12, 13] it was postulated that Pa and Pa are
functions with one short cut [−2h, 2h]. As a result, the QQ-relations (2.6) imply that Qk

and Qk have a ladder of cuts in the lower half-plane [−2h − in, 2h − in] for n = 0, 1, 2, . . . .
Since, a priori there is no difference between the upper and lower half-plane in the QSC
formalism, we can find an alternative set of Q↑

k, satisfying the same QQ-relations and the
same u → +∞ asymptotics, which instead have cuts in the upper half-plane. The same
is true for the dotted Q-system.

Gluing conditions establish a connection between the two copies of the Q-systems. It
relates the analytic continuation of Qk to Q↑

k̇
, and Qk̇ to Q↑

k. For u ∈ (−2h, 2h) the gluing
condition reads

Qk(u + i0) = Gk
ṅQ↑

ṅ(u − i0) , Qk̇(u + i0) = Gk̇
nQ↑

n(u − i0) , (2.15)

where Gk
ṅ and Gk̇

n are two independent, analytic matrices. One can analytically con-
tinue (2.15) to the vicinity of the cut [−2h, 2h] by introducing a contour γ, shown in figure 1,
going clockwise around the u = −2h branch point, as

Qγ
k = Gk

ṅQ↑
ṅ , Qγ

k̇
= Gk̇

nQ↑
n . (2.16)

When considering only massive excitations, it was argued that the gluing matrices G are
constant and off-diagonal [12, 13]. We will maintain the same assumption in this paper.

Qω-system. One of the ways to write a closed sub-system of equations from the full Q-
system is the Qω-system. It uses the fact that the lower-half-plane and upper-half-plane
Q-functions are related by a periodic function Ωk

l, namely we have

Q↑
k = Ωk

lQ↓
l , Q↑,+

a|k = Ωk
l Q↓,+

a|l ,
(
Ωk

l
)−

= Q↑
a|kQ↓,a|l , (2.17)

which in combination with the gluing condition (2.16) gives rise to the following system
of equations

(Qk)γ = ωk
ṁQṁ , Gk̇

mQ↑,+
a|m = ωk̇

l Q↓,+
a|l , (Qk̇)

γ = ωk̇
mQm , (2.18)

where ωk̇
l = Gk̇

mΩm
l is an i-periodic function of u. It has infinitely many cuts at positions

[−2h + in, 2h + in] for n ∈ N. The discontinuity of ω at the cut [−2h, 2h] can be expressed
in terms of Q-functions as

(ωk̇
l)γ̄ − ωk̇

l = Qk̇(Q
l)γ̄ − (Qk̇)

γQl . (2.19)

– 5 –
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Pµ-system. The Pµ-system is a set of equations similar to the Qω-system, but for P-
functions. To pass from Q to P we can use the QQ-relation (2.12) and define the µ-functions as

µa
ḃ ≡ Q−

a|cω
c
ḋQḃ|ḋ,− , µa

ḃ ≡ Qa|c,−ωc
ḋQ−

ḃ|ḋ , (2.20)

where we have raised and lowered indices using the definitions ωk
l̇ωk

ṁ = δ l̇
ṁ and µa

ḃµa
ċ = δḃ

ċ as

detµa
ḃ = detµȧ

b = 1 . (2.21)

One can rewrite (2.20) in an alternative way using the lower half-plane Q-functions

µa
ḃ = Qa|k,− Gk

l̇ Q↑,−
ḃ|l̇ . (2.22)

The function µ is “mirror” i-periodic, meaning that

µ++ = µγ . (2.23)

The analog of (2.18) reads

(Pa)γ̄ = Pḃ µḃ
a , (Pȧ)γ̄ = Pb µb

ȧ , (Pa)γ̄ = Pḃµḃ
a ,

(
Pȧ
)γ̄

= Pbµb
ȧ . (2.24)

and the discontinuity of µ is given by(
µa

ḃ
)γ

− µa
ḃ = Pa

(
Pḃ
)γ̄

− (Pa)γ Pḃ . (2.25)

Reality. The unitarity of the initial theory and reality of the spectrum manifests itself as
a symmetry of QSC under complex conjugation. Complex conjugation maps UHP-analytic
Q-functions to LHP-analytic ones. P is both UHP-analytic and LHP-analytic and gets
mapped to itself up to phases. We fix gauge so that

Pa = (−1)a+1Pa , Pȧ = (−1)ȧ+1Pȧ , (2.26)

The action on Q is slightly more complicated, we fix gauge so that

Q↑
k(u) = (−1)k+1 Qk(u) , Q↑

k̇
(u) = (−1)k̇+1 Qk̇(u) . (2.27)

As a result, under complex conjugation the µab function behaves as

µ12

(
u + i

2

)
= ±µ12

(
u + i

2

)
, or µ̄12(u) = ±µ12(u + i) . (2.28)

These relations will be useful in what follows.

Gluing with reality. We can combine (2.27) and (2.15) to deduce the following set of
gluing equations

Qγ
k = Nk

l̇ Ql̇ , Qγ

k̇
= Nk̇

l Ql , (2.29)

where Nk
l̇ = Gk

l̇(−1)l̇+1. From the consistency of (2.29) it follows that Nk
l̇N̄l̇

mQm = Qk.
In this paper, we will make the assumption that G, and hence N , are off-diagonal. This

– 6 –
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assumption is motivated by a similar structure appearing in N = 4 SYM and from [15] which
found this to be a consistent choice in the parity symmetric sector. One can also see this
structure quasi-classically in the properties of the eigenvalues of the classical monodromy
matrix and their transformation under the Z4 symmetry. Ultimately, this assumption needs
to be verified by comparing against independent first-principle calculations of the spectrum
which are currently lacking.

Furthermore, we can fix the relation between the two entries of the gluing matrix by
demanding that detω = 1, which after using detΩ = 1, implies

Gk
l̇ =

(
0 −α
1
α 0

)
, Gk̇

l =
(
0 −ᾱ
1
ᾱ 0

)
, Nk

l̇ =
(
0 α
1
α 0

)
, Nk̇

l =
(
0 ᾱ
1
ᾱ 0

)
. (2.30)

Index raising operation. Another symmetry of the Q-system is induced by the auto-
morphism of the symmetry factors psu(1, 1|2). From PaPa = QkQk = 0 it follows that
Pa = rϵabPb and Qk = r′ϵklQl. Furthermore, consistency with the remaining QQ-relations
sets r′ = −1

r . Q-functions with upper and lower indices are then related as follows

Qk = +rϵklQl , Qk = −1
r

ϵklQl , Pa = −1
r

ϵabPb , Pa = +rϵabPb . (2.31)

An identical statement holds for the right system with ṙ instead of r. The functions r, ṙ

have particularly simple analytic properties. Using for example the Pµ-systems one finds
rγ̄ = ṙ , ṙγ̄ = r implying that r is a rational function of the Zhukovsky variable

x(u) ≡ u +
√

u − 2h
√

u + 2h

2h
. (2.32)

Furthermore, (2.9) imposes asymptotics r ≃ B1

B2
u−B̂ , ṙ ≃ B1̇

B2̇
u−B̌ fixing

r(u) = N(x)
M(x) , (2.33)

with N and M polynomials constrained at large u by N(x)
M(x) ≃ B1

B2
u−B̂ and N(1/x)

M(1/x) ≃ B1̇

B2̇
u−B̌.

Λ-symmetry. A symmetry of the QSC, which leaves all the QQ-relations and the gluing
condition invariant, is the following

Qk 7→ x+Λ Qk , Pa 7→ x−Λ Pa , (2.34)

while leaving Qa|i invariant. In order to be consistent with the gluing condition (2.16) we
have to transform the dotted system in the synchronized way

Qk̇ 7→ x−Λ Qk̇ , Pȧ 7→ x+Λ Pȧ . (2.35)

Note that this results in shifting B̂ 7→ B̂ + 2Λ and B̌ 7→ B̌ − 2Λ.

– 7 –
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3 ABA generalities

The Asymptotic Bethe Ansatz (ABA) is a powerful method used to determine the spectrum
of infinite-volume integrable QFTs. It reduces the complex interactions of particles to a set
of algebraic equations, whose solutions, the so-called Bethe roots, parametrise the spectrum
of the theory. In the present case there are seven types of Bethe roots [8]:

Auxilary roots: u1,k , u3,k , u1̇,k , u3̇,k , (3.1)
Massive roots: u2,k , u2̇,k , (3.2)
Massless roots: zk . (3.3)

We denote the number of auxiliary and massive roots by KA (A = 1, 2, 3, 1̇, 2̇, 3̇), and the
number of massless roots by K◦. The massive and massless roots together are also called
momentum-carrying, since, as we see below, they appear explicitly in the formula for the
energy and momentum of states.

The ABA, like the worldsheet S-matrix, can be written most compactly in terms of
Zhukovsky variables xA,k ≡ x(uA,k) where x(u) was defined in (2.32). We will use the
following notation for shifts of u

x±
A,k ≡ x

(
uA,k ± i

2

)
, x

[±n]
A,k ≡ x

(
uA,k ± i

2n

)
, n ∈ N . (3.4)

The energy of a state can be found from the momentum carrying Bethe roots as

γ = 2ih
K2∑
k=1

(
1

x+
2,k

− 1
x−

2,k

)
+ 2ih

K2̇∑
k=1

 1
x+

2̇,k

− 1
x−

2̇,k

+ 2ih
K◦∑
k=1

( 1
zk

− zk

)
. (3.5)

In holographic applications, momentum carrying Bethe roots further satisfy the level-matching
condition (a.k.a. cyclicity condition)

K◦∏
k=1

z2
k

K2∏
k=1

x+
2,k

x−
2,k

K2̇∏
k=1

x+
2̇,k

x−
2̇,k

= 1 . (3.6)

Each type of root has a corresponding set of Bethe equations [8] which we summarise below.
In addition to various rational terms, momentum-carrying Bethe equations include so-called
dressing factors. They arise because the symmetry algebra and unitarity fix the S matrix only
up to four scalar functions. These four dressing factors multiply the following S matrices: σ••,
for two massive excitations of the same chirality; σ̃••, for two massive excitations of opposite
chirality; σ•◦ for a massive and massless excitation; and σ◦◦ for two massless excitations.

To reduce the number of sign-ambiguous square-root factors in the Bethe equations we
will modify the equations from [8] by normalising the S-matrix slightly differently. This is
the same approach taken in [22] and we will follow their conventions, although we will write
down the Bethe equations in the spin chain frame as opposed to the string frame, see [8]
for the relation between the two different frames.2

2Explicitly we rescale the dressing factor between massive and massless particles according to

(σ̂•◦
Here(x, z))2 = −

√
1 − z

x−

z − 1
x+

√
1 − z

x+

z − 1
x−

(σ•◦
BOSST(x, z))2

– 8 –
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Auxiliary equations.

1 =
K2∏
j=1

xI,k − x−
2,j

xI,k − x+
2,j

K2̇∏
j=1

1− 1
xI,kx+

2̇,j

1− 1
xI,kx−

2̇,j

K◦∏
j=1

xI,k − 1/zj

xI,k − zj
, I = 1, 3 , (3.7)

and similarly for the dotted roots

1 =
K2̇∏
j=1

xI,k − x−
2̇,j

xI,k − x+
2̇,j

K2∏
j=1

1− 1
xI,kx+

2,j

1− 1
xI,kx−

2,j

K◦∏
j=1

xI,k − 1/zj

xI,k − zj
, I = 1̇, 3̇ . (3.8)

Left middle equation.

(
x+

2,k

x−
2,k

)L

=
K2∏
j=1
j ̸=k

x+
2,k−x−

2,j

x−
2,k−x+

2,j

1− 1
x+

2,k
x−

2,j

1− 1
x−

2,k
x+

2,j

(σ••)2(x2,k,x2,j)
K2̇∏
j=1

1− 1
x+

2,k
x+

2̇,j

1− 1
x−

2,k
x−

2̇,j

1− 1
x+

2,k
x−

2̇,j

1− 1
x−

2,k
x+

2̇,j

(σ̃••)2(x2,k,x2̇,j)

×
K1∏
j=1

x−
2,k−x1,j

x+
2,k−x1,j

K3∏
j=1

x−
2,k−x3,j

x+
2,k−x3,j

K1̇∏
j=1

1− 1
x−

2,k
x1̇,j

1− 1
x+

2,k
x1̇,j

K3̇∏
j=1

1− 1
x−

2,k
x3̇,j

1− 1
x+

2,k
x3̇,j

×
K◦∏
j=1

1−x+
2,kzj

x−
2,k−zj

(σ•◦)2(x2,k,zj) . (3.9)

Right middle equation.x+
2̇,k

x−
2̇,k

L

=
K2̇∏
j=1
j ̸=k

x−
2̇,k

−x+
2̇,j

x+
2̇,k

−x−
2̇,j

1− 1
x+

2̇,k
x−

2̇,j

1− 1
x−

2̇,k
x+

2̇,j

(σ••(x2̇,k,x2̇,j))
2

K2∏
j=1

1− 1
x−

2̇,k
x−

2,j

1− 1
x+

2̇,k
x+

2,j

1− 1
x+

2̇,k
x−

2,j

1− 1
x−

2̇,k
x+

2,j

(σ̃••(x2̇,k,x2,j))2

×
K1̇∏
j=1

x+
2̇,k

−x1̇,j

x−
2̇,k

−x1̇,j

K3̇∏
j=1

x+
2̇,k

−x3̇,j

x−
2̇,k

−x3̇,j

K1∏
j=1

1− 1
x+

2̇,k
x1,j

1− 1
x−

2̇,k
x1,j

K3∏
j=1

1− 1
x+

2̇,k
x3,j

1− 1
x−

2̇,k
x3,j

×
K◦∏
j=1

x+
2̇,k

x−
2̇,k

z2
j

x−
2̇,k

−zj

1−x+
2̇,k

zj
(σ•◦(x2̇,k,zj))2 . (3.10)

Massless equation.

z2L
k =

K◦∏
j=1
j ̸=k

(
−zk

zj
(σ◦◦)2 (zk, zj)

)
K1∏
j=1

1/zk −x1,j

zk −x1,k

K1̇∏
j=1

zk −x1̇,j

1/zk −x1̇,j

K3∏
j=1

1/zk −x3,j

zk −x3,j

K3̇∏
j=1

zk −x3̇,j

1/zk −x3̇,j

×
K2∏
j=1

zk −x−
2,j

zkx+
2,j −1

(σ◦•)2(zk, x2,j)×
K2̇∏
j=1

x−
2̇,j

z2
kx+

2̇,j

zkx+
2̇,j

−1
zk −x−

2̇,j

(σ◦•)2(zk, x2̇,j) . (3.11)

4 The large volume limit of QSC

In this section, we analyse the infinite-volume limit of the QSC. In this limit, the QSC is
expected to simplify to an algebraic set of equations, similar to those discussed in the previous

where σ•◦
BOSST(x, y) is the dressing phase of [8] and the inverse factor in σ̂◦•

Here to preserve the relation
[σ•◦(x, z)σ◦•(z, x)]2 = 1, following [22].
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section. The asymptotic limit of the QSC was first studied in the case of AdS5/CFT4 in [10],
and we follow similar steps to those outlined there. However, in AdS3/CFT2 an additional
complication arises because the branch cuts are no longer quadratic [14], presenting new
QSC features that were first addressed in [12, 13]. In general, taking an infinite-volume
limit is not entirely straightforward, as this process does not always commute with analytic
continuation due to Stokes-like phenomena. These subtleties must be carefully handled
to obtain consistent results.

4.1 Massless excitations in QSC formalism

Let us outline the main feature of the new class of solutions of QSC proposed in this paper,
which includes the massless degrees of freedom. Massless excitations manifest themselves
as zeroes of µ1

2̇ (and µ1̇
2) lying on the cut, which we denote by zk. These massless roots

are similar to the one that appears in N = 4 SYM theory with non-integer spin S, as was
found recently in [19], though massless excitations in AdS3 backgrounds appear already in
the near-BMN perturbative worldsheet theory. To test this proposal, in the next sub-section,
we consider the ABA limit of the QSC equations.3

Below, we demonstrate how the full structure of the ABA equations emerges from the
QSC formalism, incorporating all the expected features of the massless modes. However, the
asymptotic large-volume regime in theories with massless degrees of freedom is subject to
additional subtleties. To fully resolve those, a numerical analysis for finite-length operators
at finite coupling or analytical treatment in the near-BPS limit is required. We leave such
investigations for future work.

4.2 Derivation of the QSC in the asymptotic limit

As was shown in [19], the ABA-like regime of the QSC appears when a component of the
ω-matrix is large and the magnitude of this component controls the precision of the ABA
limit. According to [19] there could be several ABA regimes, depending on which components
of ω are large, such as the DGLAP or BFKL regimes in N = 4 SYM theory. In [19], it
was shown that massless excitations, similar to what we expect in the current case, arise in
the Regge (BFKL) regime of N = 4 SYM theory for large quantum numbers states. We
will be guided by this finding in the current case.

To obtain the ABA equations from section 3 from the QSC for “local” operators with
only massive excitations, we consider a limit when ω1

2̇ and ω1̇
2 are large [12, 13]. In this

paper we will assume that adding massless excitations is not expected to change this property.
In particular, this implies the following simplification of (2.20)

µa
ḃ ≃ Q−

a|1Qḃ|2̇−ω1
2̇ , µȧ

b ≃ Q−
ȧ|1̇Qb|2−ω1̇

2 . (4.1)

3In our analysis, we do not assume any relation between scattering amplitudes involving massless particles
of different chiralities. As we will see, equality of the dressing factors across chiralities is instead a prediction
of the QSC solution under the analytic assumptions we adopted. Different analytic assumptions could in
principle lead to additional phases, but we have not found such solutions.
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As we know from [12, 13], zeroes of µ1
2̇ and µ2

1̇ play a particularly important role because
they become momentum carrying Bethe roots. For these components (4.1) becomes

µ1
2̇ ≃ Q−

1|1Q−
1̇|1̇ω1

2̇ , µ1̇
2 ≃ Q−

1|1Q−
1̇|1̇ω1̇

2 , (4.2)

where we used (2.8). One should treat this relation with care: let us denote by µABA the
asymptotic limit of µ taken for some generic point on the main sheet. µABA is an analytic
function by itself and it approximates µ well when the distance to the branch cut is ∼ 1.
However, when we approach the branch cut the discrepancy increases and eventually for
u ∼ h the error may become ∼ 100%. That is to say that the ABA limit of µ does not
commute with the analytic continuation to points near the cut. One of the reasons for that
is that usually ω1

2̇ is indeed the dominating component for points u ∼ 1, but near the cut all
components of ω are of the same order and the approximation (4.2) fails. The same holds
true in the much better studied cases of QSCs for N = 4 SYM [10] and ABJM theories [23].

An important assumption, previously made in [12, 13] and adopted here, is that µABA(u),
defined as the limit of µ away from the cut, is an analytic function with quadratic branch cuts.
It is intriguing to speculate that perhaps one can interpret the breakdown of this analytic
property as being due to massless wrapping; we leave such questions for future studies.
Additionally, we assume that µABA is mirror i-periodic, meaning µ̃ABA(u) = µABA(u + i),
where the tilde denotes the analytic continuation, consistent with the properties of the exact
µ (2.23). It was observed in [12, 13] that these assumptions lead to a consistent ABA limit
in the massive sector and successfully reproduce all massive ABA equations, including the
crossing equations for the dressing phases. In this paper, we use the same set of assumptions.
We currently lack a rigorous proof of these assumptions; future numerical studies are needed
to verify their validity. In the following discussion, we omit the ABA superscript for µ and
assume that µ refers to the ABA limit of µ.

Fixing the ratio of µ’s. We now proceed to show that the relation (4.2) supplemented
with the analyticity conditions discussed above allows us to fix µ1

2̇ and µ1̇
2 in terms of its

zeroes. Below we will focus on µ1
2̇, with similar arguments applying to µ1̇

2. µ1
2̇ can have two

different types of zeros: those which are situated on the branch cut [−2h, 2h] and those which
are not. Let us denote zeroes of µ1

2̇ which are situated on the branch cut [−2h, 2h] by θi. As
zeroes can be either above or below the cut it is better to use the x-plane and denote zeroes
by zi for i = 1, . . . , N , so that θi = h(zi + 1/zi). As is shown below, zeroes on other cuts i.e.
at [−2h + in, 2h + in] are related to zi. The remaining zeroes of µ1

2̇(u + i/2) will be denoted
as uk with k = 1, . . . , M .4 To keep track of these zeros we introduce the following notation

Q =
M∏

k=1
(u − uk) , κ =

N∏
i=1

(x − zi) , κ̄ =
N∏

i=1

(
x − 1

zi

)
. (4.3)

From (2.28) we see that Q is a real polynomial and κ̄(x) is the complex conjugate of κ(x).

4This also includes possible zeros which are accidental on the branch cuts, i.e. it includes all zeros which
satisfy µ(uk + i/2 + i0) = µ(uk + i/2 − i0) = 0. We will assume M to be a finite number.
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Following [10, 19], the key starting point of the ABA derivation is the following com-
bination

F 2 ≡ µ1
2̇(u)

µ12̇(u + i)
Q+

Q−
κ̄

κ
, F (∞) = ±1 . (4.4)

Note that, due to (2.28) F 2 can also be written as

F 2 = ±µ1
2̇

µ̄12̇
Q+

Q−
κ̄

κ
, (4.5)

which in turn implies

F̄ 2 = ±1/F 2 . (4.6)

Due to mirror periodicity of µ, see (2.23), we immediately find

F 2 = µ1
2̇

µ̃12̇
Q+

Q−
κ̄

κ
. (4.7)

From this we deduce the following property of F under the analytic continuation:

FF̃ = ±Q+

Q−
1∏
i zi

. (4.8)

Above, we have used the assumption that µ1
2̇ have a square-root cut in the ABA-limit.

Furthermore, from (4.2) we find

F 2 =
Q−

1|1Q−
1̇|1̇

Q+
1|1Q+

1̇|1̇

Q+

Q−
κ̄

κ
, (4.9)

where the ω1
2̇ factors cancel out due to i-periodicity. We conclude that F does not have cuts

in the upper half plane, as that is true for the r.h.s. In addition, (4.6) tells us that there
could not be cuts in the lower half plane. From its definition F does not have poles or zeros
on the branch cut [−2h, 2h]. Furthermore, due to our definition of Q, F cannot have any
poles or zeros above or below the real axis. Thus, we conclude that F is an analytic function
with no zeroes or poles on the main sheet, and the only singularity is the quadratic branch
cut [−2h, 2h]. Finally, (4.8) defines a scalar Riemann-Hilbert problem for F , which, together
with the asymptotic condition F (∞) = 1, fixes F uniquely. Furthermore, for (4.8) to have a
solution, there is an additional condition on the zeroes of u2,i. Indeed, consider

F0 = 1∏
k

√
zk

B(+)
B(−)

, (4.10)

where we use the standard notation

B(±) =
M∏

k=1

√
h

x∓
k

(1
x
− x∓

k

)
, R(±) =

M∏
k=1

√
h

x∓
k

(x − x∓
k ) , x±

k = x

(
uk ± i

2

)
. (4.11)

F0 is analytic on the main sheet except for the branch cut [−2h, 2h], and satisfies (4.8). Thus
the ratio G = F/F0 should satisfy GG̃ = 1 and so is analytic on the whole plane of x. Since
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it is constant as x → ∞, it must be that simply G(x) = ±1 or F = ±F0. At the same time,
F (∞) = 1 implies that there is a non-trivial constraint on zk and xk

M∏
k=1

x+
k

x−
k

N∏
k=1

zk = 1 , (4.12)

which is similar to the level-matching condition (3.6). In conclusion, we find that F = ±F0,
with the sign determined by F (∞) = 1. To avoid the sign ambiguities we introduce a new
notation, which differs by a constant factor from more standard (4.11)

B(±) =
M∏

k=1

(
1− 1

x x∓
k

)
, R(±) =

M∏
i=1

(x − x∓
k ) , B(±)R(±) = h−MQ± . (4.13)

Using this notation and (4.12) we can also write

F =
B(+)
B(−)

. (4.14)

Finding µ. Knowing F , we can easily find µ1
2̇. Indeed, from (4.14) and (4.4) we get a

first-order finite difference equation for µ1
2̇

µ1
2̇(u)

µ12̇(u + i)
= Q−

Q+
κ

κ̄

(
B(+)
B(−)

)2

. (4.15)

To find a solution of this equation, we introduce

f =
∞∏

n=0

B[2n]
(+)

B[2n]
(−)

, f̄ =
∞∏

n=0

B[−2n]
(−)

B[−2n]
(+)

s.t. f

f [2] =
f̄ [−2]

f̄
=

B(+)
B(−)

. (4.16)

We find

µ1
2̇ ∝ PQ−ff̄ [−2]

∞∏
n=0

κ[2n]κ̄[−2n−2] , (4.17)

where the infinite product is convergent up to an infinite u-independent factor, which is
denoted by the ∝ symbol. Here P is a periodic function that needs to be determined. Note
that complex conjugation (2.28) holds provided P̄ = ±P. In order to fix the remaining
periodic factor P, we impose the mirror periodicity of µ e.g. µ̃1

2̇(u) = µ1
2̇(u + i) which,

after a large cancellation of factors, gives5

P̃
P

= (−1)N (−x)N
N∏

i=1

1
zi

∏
k

x−
k

x+
k

= xN . (4.18)

Since all zeros of µ1
2̇ are already accounted for in (4.17), the function P , and as a consequence

also P̃, are analytic functions without zeroes or poles outside the cuts. Let us show that
this implies that N should be even. Writing

N = 2K◦ , (4.19)
5The extra (−1)N factor comes from treating carefully the infinite product by taking a finite but large

upper limit Λ, which creates the factor of κ[2Λ+2]/κ̄[−2Λ−2] giving (−1)N in the limit.
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eq. (4.18) is formally solved by the following infinite product

P ∝ p
∞∏

n=−∞

( 1
x[2n]

)K◦

, (4.20)

where p is a periodic function without cuts. Due to (4.18), p̃/p = 1, i.e. it should be a
meromorphic function. Furthermore, we see that K◦ should be an integer; otherwise P gets
a non-trivial monodromy when going around the cut [−2h, 2h].

In (4.20) extra care should be taken in defining the infinite product. To see this, notice
that defining it with a symmetric cut-off n = ±Λ, upon shifting u → u + i the product
changes by a factor

(
x[−2Λ]

x[2Λ+2]

)K◦
, which in the limit Λ → ∞ gives (−1)K◦ . Hence, depending

on the parity of K◦ the extra factor p is either periodic or anti-periodic. To fix p, we recall
that from our definition of the gluing matrix G it follows that µ1

2̇ must have power-like
asymptotics while the products in (4.17) can exhibit exponential growth, which has thus
to be cancelled by p. We postpone the task of fixing p until later in this section because it
is more convenient to first analyse the other objects in the construction, while keeping the
meromorphic i-periodic/anti-periodic for even/odd K◦ factor p unfixed.

Fixing Q1|1Q1̇|1̇. Having fixed F in (4.14) we can use (4.9) to find Q1|1Q1̇|1̇. We get the
following equation

(Q1|1Q1̇|1̇)−

(Q1|1Q1̇|1̇)+ = Q−

Q+
κ

κ̄

(
B(+)
B(−)

)2

. (4.21)

Since (Q1|1Q1̇|1̇)− is analytic in the UHP and has power-like asymptotics at infinity, the
solution is uniquely fixed up to a constant factor as

Q−
1|1 Q−

1̇|1̇ ∝ Q− f2
∞∏

n=0

κ[2n]

κ̄[2n] . (4.22)

Fixing ω. Knowing Q1|1Q1̇|1̇ in (4.22) and µ1
2̇ in (4.17), we find ω1

2̇ from (4.2):

ω1
2̇ ∝ f̄ [−2]

f
P

∞∏
n=−∞

κ̄[2n] (4.23)

where P is given in (4.20).

Relation between µ1̇
2 and µ1

2̇. All the arguments above can be repeated interchanging
dotted and un-dotted indexes. If we look at the equation (4.22), its l.h.s. does not change
under this replacement, so neither should the r.h.s. However, the r.h.s. of (4.22) is written in
terms of the zeroes of µ1̇

2 meaning that the expression for µ1
2̇ should coincide with (4.17).

Thus essentially these two quantities can only differ by an overall factor, and due to (4.2)
the same applies to ω1

2̇ and ω1̇
2. Thus we conclude the following relation, which will be

important below

µ1
2̇

µ1̇
2 = ω1

2̇
ω1̇2

= ω2
1̇

ω2̇
1 = G2

1̇Ω1̇
1̇

G2̇
1Ω11 = ᾱ

α
≡ ζ (4.24)
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where we have used that Ω1̇
1̇

Ω11 must be a constant from consistency and can therefore be
evaluated at an arbitrary point. Since Ωk

l ≃ δl
k for large x, we conclude that Ω1

1 = Ω1̇
1̇

in the ABA approximation. Finally, we have introduced ζ, a unimodular constant factor,
to be found later.

Splitting Q1|1 and Q1̇|1̇. In order to split the product Q1|1Q1̇|1̇ in (4.22) let us go back
to the middle equation of (2.18), which we evaluate for a = 1, k̇ = 2 and we take the ABA
approximation, which sets the summation index l = 16

−G2̇
1Q̄+

1|1 = ω2̇
1 Q+

1|1 (4.25)

where in addition we accommodate the off-diagonal form of the gluing matrix and use complex
conjugation to get Q̄1|1 = Q↑

1|1. Similarly, for the dotted version we have

−G2
1̇Q̄+

1̇|1̇ = ω2
1̇ Q+

1̇|1̇ . (4.26)

By dividing the two equations, we get
Q̄1|1

Q̄1̇|1̇
=

Q1|1
Q1̇|1̇

≡ M . (4.27)

We see that the r.h.s. is meromorphic for all Im u > −1/2, whereas the l.h.s. is meromorphic
for Im u < 1/2, meaning that M is a meromorphic function (i.e. no cuts) on the whole
complex plane with power-like asymptotic.

Next, multiplying and dividing (4.22) by M− = Q−
1|1/Q−

1̇|1̇ we find

(Q−
1|1)

2 ∝ M−Q− f2
∞∏

n=0

κ[2n]

κ̄[2n] , (Q−
1̇|1̇)

2 ∝ 1
M−Q− f2

∞∏
n=0

κ[2n]

κ̄[2n] . (4.28)

We see that both l.h.s. are analytic functions with cuts, meaning that all poles and zeroes
of M should coincide with subsets of zeros of Q, but also all zeroes of the polynomial MQ
should be double degenerate so we denote

MQ ∝ (Q2)2 ,
1
M

Q ∝ (Q2̇)
2 ⇒ Q = Q2Q2̇ (4.29)

for monic polynomials Q2 and Q2̇. Finally, in order to get Q1|1 we need to be able to get
the square root of the infinite product factor, which is only possible if we assume that the
roots of κ are twice degenerate, so we define

κ ≡ κ2 , f◦ ≡
∞∏

n=0

κ[2n]

κ̄[2n] , κ =
K◦∏
i=1

(x − zi) , κ̄ =
K◦∏
i=1

(x − 1/zi) (4.30)

so that we get

Q−
1|1 ∝ Q−

2 f f◦ , Q−
1̇|1̇ ∝ Q−

2̇ f f◦ . (4.31)

For what follows it is convenient to also split the factors in B and R accordingly with the
splitting of the roots in Q

B(±) = B2,(±)B2̇,(±) , R(±) = R2,(±)R2̇,(±) , (4.32)

so that BA,(±)RA,(±) = h−KAQ±
A for A = 2, 2̇.

6Recall that in the gauge (2.27), (2.26) we have Q̄1,1 = −Q↑
1,1.
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Fixing p. At this point we return to the question of fixing the periodic, meromorphic
function p(u), defined in (4.20), by requiring that µ has polynomial asymptotics as follows
from (2.22). In (4.30) we understood that all roots of κ have a double degeneracy κ = κ2,
using this we can now rewrite (4.17) as

µ1
2̇ ∝ P Q−ff̄ [−2]

∞∏
n=0

(
κ[2n]κ̄[−2n−2]

)2

∝ Q−pff̄ [−2]
K◦∏
k=1

sinh π(u − θk)
∞∏

n=1

 1− zk

x[2n−2]

1− 1
zkx[2n−2]

1− 1
zkx[−2n]

1− zk

x[−2n]

 ,

(4.33)

where θk ≡ h(zk + 1
zk
). In the previously studied case of the BFKL ABBA for AdS5 [19] the

exponential asymptotics from sinh was expected from analytic continuation in spin [24]. Since
the AdS3 QSC presently considered captures local operators, we instead expect polynomial
asymptotics. In order to ensure power-like behaviour of µ, we must have p ∼ e−π|u|K◦ at large
u. Since p is a meromorphic function, it must therefore have K◦ poles in each periodicity
strip, since massless modes appear as zeroes of µ1

2̇. However, as we now know, it may
actually have double zeroes at θk due to (4.33). With the choice of p ∝

∏K◦
k=1

1
sinh π(u−θk) we

kill both issues (the exponential growth and double zeroes) at the same time! This results
in removing the sinh-factor in (4.33).7 As we will see below, this natural choice of p leads
to nice additional simplifications in our expressions.

After fixing p we can now write

µ1
2̇ ∝ Q−ff̄ [−2]f◦f̄

[−2]
◦ , (4.34)

which exhibits a pleasing symmetry between massive and massless modes. It is natural
to think about f◦ as the “massless” limit of f obtained by sending x±

k → (zk)±1. Using
this notation we also find for ω1

2̇

ω1
2̇ ∝ f̄ [−2]f̄

[−2]
◦

ff◦
. (4.35)

Energy formula. In the QSC formalism, the energy γ is encoded in the large u asymptotics,
whereas in the ABA it is written in terms of momentum-carrying Bethe roots. To find the
expression for the energy we can use the large u asymptotics of Q1|1 and Q1̇|1̇. From (4.31)
and (2.9) we find

Q−
1|1Q−

1̇|1̇ ∝ Q− f2f2
◦ ∼ u∆−J = uK2+K2̇+γ . (4.36)

where γ is the contribution coming from f2f2
◦ . The large-u asymptotics of f can be found

by noting that

log f

f [2] = log
B(+)
B(−)

∼ 1
x

M∑
k=1

(
1

x+
k

− 1
x−

k

)
∼ γ•

2iu
, γ• ≡ 2ih

M∑
k=1

(
1

x+
k

− 1
x−

k

)
, (4.37)

7In this way we also create poles on the lower part of the branch cut, which, however, appear on the
next sheet on the natural section of the Riemann surface of µ where it is i-periodic. These poles are thus
likely artefacts of the ABA limit and appear due to non-commutativity of the analytic continuation and large
volume limit, which is expected. These poles also appear in the AdS5 context [19], where the situation is
under complete numerical control.
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from which it follows that f = u
γ•
2 . Analogously, one can show that

f◦ =
∞∏

n=0

κ[2n]

κ̄[2n] ∼ u
γ◦
2 , γ◦ ≡ 2ih

K◦∑
i=1

( 1
zi

− zi

)
. (4.38)

As a result, we get the following relation ∆− J = K2 + K2̇ + γ◦ + γ•. Because this should
be valid for all h, we can separate the bare and anomalous parts

∆h=0 − J = K2 + K2̇ , γ = γ◦ + γ• , (4.39)

comparing to the ABA expression (3.5) we find a perfect match for both energy and mo-
mentum!

4.3 Reconstructing P and Q

Fixing P. To find P and Q, one can use similar arguments to those used in AdS5 [10] and
later adopted to AdS3 in [15]. Like in [12, 13], without loss of generality, let us define8

P1 = A1 x−L1/2R1̃B˜̇1 S , P2 = A2 x−L2/2R3̃B˜̇3 S
′ , (4.40)

P1̇ = A1̇ x−L1̇/2R3̇B3 Ṡ , P2̇ = A2̇ x−L2̇/2R1̇B1 Ṡ ′ , (4.41)

with

Bα =
Kα∏
j=1

(1
x
− yα,j

)
, Rα =

Kα∏
j=1

(x − yα,j) , (4.42)

and α = 1, 3, 1̇, 3̇, and analogously in the case of dual roots α̃ = 1̃, 3̃, ˜̇1, ˜̇3 with all |y| > 1.
By definition, the monic x-polynomial factors R contain all zeroes of the corresponding

P on the main sheet, that is outside the cut. The B factors are polynomials in 1/x, which
have roots for |x| < 1. We define these roots to be related to the roots of Q such that
R˜̇1(x) = B˜̇1(1/x) contains all roots of Q2̇ on the main sheet, R˜̇3 contains the roots of Q1̇ and
similarly relate R1 to Q1 and R3 to Q2. The factors S are then so far only restricted to be
analytic, have no zeroes on the main sheet outside the cut and have unit asymptotics u → ∞.
The extra powers of x and the constant As are there to ensure the correct asymptotics
as postulated in (2.9).

Note that, due to (2.31),the ratio of P1 and P2 is a rational function of x

P1
P2 = A1

A2 x−L1/2+L2/2 R1̃B˜̇1
R3̃B˜̇3

S
S ′ = r(u) , (4.43)

from which we conclude that S
S′ is also a rational function of x. Note that by definition of S

and S ′ it has unit asymptotic at large x and has no zeroes or poles for |x| > 1. Let us now show
that it also has no zeroes or poles for |x| < 1. We use that rγ = ṙ = −Q2̇

Q1̇
, which then gives(S ′

S

)γ

= −A1
A2 x+L1/2−L2/2 B1̃R˜̇1

B3̃R˜̇3

Q1̇
Q2̇

. (4.44)

8Here we use rather inconvenient historic notation for the indices of R and B which contains the auxiliary
roots. The operation of dotting amounts thus to the simultaneous introduction/removal of a dot as well as
introduction/removal of tilde and the replacement 1 ↔ 3.
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Note that all zeroes and poles on the r.h.s. cancel between Rs and Qs by definition of R˜̇1
and R˜̇3 (see the paragraph below (4.42)) and there are no other singular or vanishing factors
on the r.h.s. for |x| > 1. Hence, the ratio S′

S is a rational function of x, which is regular
and has unit asymptotics, which implies that9

S ′ = S , Ṡ ′ = Ṡ , (4.45)

where we applied the same argument to the dotted quantities. With the relation (4.45),
from (4.43) and its dotted version we find

r(u) = A1
A2 x

L2−L1
2

R1̃B˜̇1
R3̃B˜̇3

= A1̇
A2̇

x
L1̇−L2̇

2
R3B3̇
R1B1̇

. (4.46)

Comparing the poles and zeroes for the two sides of the second equality implies

−L1 + L2 = +L1̇ − L2̇ , R1B1̇R1̃B˜̇1 = A2

A1

A1̇
A2̇

R3B3̇R3̃B˜̇3 . (4.47)

Λ-gauge fixing. To reduce the number of parameters in our solution we can take advantage
of the Λ-symmetry (2.34). We fix the allowed powers ΛQ by requiring consistency of
QQ-relations and the Pµ-system after the transformation, which leads to the following
transformation for the Ls

L1 → L1 + Λ , L2 → L2 − Λ , L1̇ → L1̇ − Λ , L2̇ → L2̇ + Λ . (4.48)

We can fix the Λ-gauge L2 = L1, which together with (4.47) implies that

L1 = L2 ≡ L̇ , L1̇ = L2̇ ≡ L . (4.49)

Fixing Q. Similarly, we start from the following general ansatz, which takes into account
zeroes of Q’s, but otherwise is completely general.

Q1 ∝ xL/2+K◦/2 R1B1̇T
B2,(−)
B2̇,(+)

ff◦
Sκ

, Q2 ∝ xL/2+K◦/2 R3B3̇T
′B2,(−)
B2̇,(+)

ff◦
Sκ

, (4.50)

and its dotted version

Q1̇ ∝ xL̇/2+K◦/2 R˜̇3B3̃Ṫ
B2̇,(−)
B2,(+)

ff◦

Ṡκ
, Q2̇ ∝ xL̇/2+K◦/2 R˜̇1B1̃Ṫ

′B2̇,(−)
B2,(+)

ff◦

Ṡκ
. (4.51)

Using Q2

Q1
= −r and (4.43) we find T = T ′ and Ṫ = Ṫ ′ for the dotted version. To further

constrain T we use the first QQ-relation in (2.7) i.e. Q+
1|1 − Q−

1|1 = P1Q1, which gives
from (4.31)

R2,(+)B2̇,(−)κ̄ − R2,(−)B2̇,(+)κ ∝ x
L−L̇+K◦

2 R1B1̇R1̃B˜̇1 T . (4.52)

We see that T is a rational function of x. The dotted version of this relation is

R2̇,(+)B2,(−)κ̄ − R2̇,(−)B2,(+)κ ∝ x
L̇−L+K◦

2 R3̇B3R˜̇3B3̃ Ṫ . (4.53)
9We further assume that r has no zeroes or poles at |x| = 1, which should be the case for generic states,

but may require extra care in some fine-tuned cases.
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Note that the two equations become very similar under x → 1/x. The l.h.s. of (4.53) under
this transformation becomes

B2̇,(+)R2,(−)κ x−K◦∏K2̇
j=1(−1/x−

2̇,j
)
∏K2

j=1(−x+
2,j)

∏K◦
j=1(−zk)

−
B2̇,(−)R2,(+)κ̄ x−K◦∏K2̇

j=1(−1/x+
2̇,j

)
∏K2

j=1(−x−
2,j)

∏K◦
j=1(−1/zk)

(4.54)

the factors in the denominators are in fact equal due to the cyclicity condition (3.6). Up
to a constant factor and x−K◦ it coincides with the l.h.s. of (4.52) and thus combining the
two equations we get

T (x) ∝ Ṫ (1/x) , (4.55)

where we used (4.47).
Let us summarise what we know about T and Ṫ : they are rational functions of x, by

definition they do not have zeroes or poles for |x| > 1, and from (4.55) that is also true for
|x| < 1. From (4.52) we see that no poles are possible at |x| = 1 as well as zeroes could be
absorbed into R-factors. In this case we conclude that T should be a power of x

T = xKT , Ṫ = 1/T . (4.56)

We can choose the above normalization of T and Ṫ , since it is defined only up to a constant
in (4.50).

Fixing S. We will now derive discontinuity relations on S. These relations can be thought
of as “half-crossing,” because we will show that applying them twice one can get the usual
crossing relation that the massive dressing phases appearing in ABAs must satisfy. Thus,
these relations are in principle more constraining.

From the Pµ-system (2.24), using the definition of µ in terms of ω in (2.20), as well as
the assumption that ω1

2̇ is the leading component of ω, we find that in the ABA limit

(P1)γ ≃ Q+
1|1ω1

2̇Q2̇ . (4.57)

Plugging in the explicit expressions for Q-functions from (4.50)–(4.51), we get

xL̇/2SγB1̃R˜̇1 ∝
(
Q+

2 f++f++
◦

)( f̄

f++
f̄◦

f++
◦

)(
x

L̇+K◦
2 −KT R˜̇1B1̃

B2̇,(−)
B2,(+)

ff◦

Ṡκ

)
, (4.58)

which simplifies to

(S)γ Ṡ ∝
B2̇,(−)R2,(+)

κ

(
f̄−−f++f̄−−

◦ f++
◦

xKT −K◦
2

)
. (4.59)

To better parameterise S, we introduce σ• and σ◦, which we take to be real analytic
functions with no zeroes on the main sheet, satisfying σ•, σ◦ → 1 when u → ∞ and

σγ
•σ• ∝ f(u + i)f̄(u − i) , σγ

◦σ◦ ∝ f◦(u + i)f̄◦(u − i) . (4.60)

These objects are natural building blocks of the BES-scattering phase and its “massless”
limit. Since the left-hand side of (4.60) does not have a cut on the real axis, it follows that
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σ• and σ◦ are functions with a square-root cut. We present explicit expressions for σ• and
σ◦ in subsection 4.5 by solving (4.60).

Let us now parameterize S, Ṡ as

S =

√
B2,(+)B2,(−)

x−2K◦κκ̄
σ•σ◦ρ , Ṡ =

√
B2̇,(+)B2̇,(−)

x−2K◦κκ̄
σ•σ◦ρ̇ , (4.61)

where ρ and ρ̇, like S’s, are real functions, tending to 1 at infinity and analytic, with no
zeros on the main sheet outside the cuts. The factors of B, κ and κ̄ are included to simplify
the comparison with dressing phases from the S-matrix literature and they also approach
1 at infinity. Furthermore, from (4.60) we get

(ρ)γ ρ̇ ∝

√√√√R2,(+)
R2,(−)

B2̇,(−)
B2̇,(+)

κ̄
x

K◦
2 +KT

, (ρ̇)γ ρ ∝

√√√√R2̇,(+)
R2̇,(−)

B2,(−)
B2,(+)

κ̄
x

K◦
2 −KT

. (4.62)

Note that above we switched back to R2,(±) and B2,(±) functions (4.11) with the extra
constant factors for convenience as they transform into each other in a simple way under
the analytic continuation. Below we will construct the functions, which satisfy the following
relations, splitting massive and massless parts in (4.62)

(ρ•)γ ρ̇• ∝

√√√√R2,(+)
R2,(−)

B2̇,(−)
B2̇,(+)

, (ρ̇•)γ ρ• ∝

√√√√R2̇,(+)
R2̇,(−)

B2,(−)
B2,(+)

, (4.63)

and

ρ◦ (ρ◦)γ ∝ κ̄∏K◦
k=1

√
x/zk

, (4.64)

and being analytic, non-zero at |x| > 1 and approaching 1 at infinity. In appendix B.2
we show that KT = 0 and that

ρ = ρ•ρ◦ , ρ̇ = ρ̇•ρ◦ . (4.65)

We discuss the solutions to the discontinuity equations (4.63) and (4.64) in subsection 4.5
and give further details in appendix B.

Summary of P and Q. Let us finally summarise the expressions for P and Q we found
in this section:

P1 ∝ x−L̇/2

√
B2,(+)B2,(−)

x−2K0κκ̄
σ•σ◦ρR1̃B˜̇1 , P2 ∝ x−L̇/2

√
B2,(+)B2,(−)

x−2K◦κκ̄
σ•σ◦ρR3̃B˜̇3 , (4.66)

Q1 ∝
xL/2−K◦/2

σ•σ◦ρ
R1B1̇

√
B2,(−)

B2,(+)

ff◦

B2̇,(+)

√
κ̄
κ

Q2 ∝ xL/2−K◦/2

σ•σ◦ρ
R3B3̇

√
B2,(−)

B2,(+)

ff◦

B2̇,(+)

√
κ̄
κ

, (4.67)

and for the dotted system

P1̇ ∝ x−L/2

√
B2̇,(+)B2̇,(−)

x−2K◦κκ̄
σ•σ◦ρ̇ R3̇B3 , P2̇ ∝ x−L/2

√
B2̇,(+)B2̇,(−)

x−2K0κκ̄
σ•σ◦ρ̇ R1̇B1 , (4.68)

Q1̇ ∝
xL̇/2−K◦/2

σ•σ◦ρ̇
R˜̇3B3̃

√
B2̇,(−)

B2̇,(+)

f

B2,(+)

√
κ̄
κ

f◦, Q2̇ ∝
xL̇/2−K◦/2

σ•σ◦ρ̇
R˜̇1B1̃

√
B2̇,(−)

B2̇,(+)

f

B2,(+)

√
κ̄
κ

f◦ . (4.69)
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Quantum numbers. Finally, let us express the charges in terms of the roots of L, γ and
root numbers. From (4.52) and (4.53) the dual root numbers are constrained as

K1̃ + K1 = K3̃ + K3 = K2 − 1 + K◦ + L̇ − L

2 , (4.70)

K˜̇1 + K1̇ = K˜̇3 + K3̇ = K2̇ − 1 + K◦ − L̇ + L

2 . (4.71)

Comparing (2.9) with explicit expressions for the Q-functions we deduce

∆ = γ + L + K2̇ +
1
2 (K1 + K3 − K1̇ − K3̇ − K◦) ,

J = L − K2 +
1
2 (K1 + K3 − K1̇ − K3̇ − K◦) ,

S = −K2̇ +
1
2 (K1 + K3 + K1̇ + K3̇ − K◦) ,

K = −K2 +
1
2 (K1 + K3 + K1̇ + K3̇ − K◦) ,

B̂ = K1 − K3 ,

B̌ = K1̇ − K3̇ .

(4.72)

4.4 Building blocks for dressing factors

In this section, we introduce elementary building blocks for the factors σ and ρ. We will use
these building blocks when discussing solutions of the crossing equations in subsection 4.5.

Introducing ϱ•, ϱ̇•, σ•. We first introduce ϱ•(u, v) and ς•(u, v) which we require to be
real, analytic without zeroes on the main sheet, approach 1 at infinity and finally satisfy

ϱ•(xγ , v)ϱ̇•(x, v) ∝
√

x − y−

x − y+ , ϱ̇•(xγ , v)ϱ•(x, v) ∝
√

1/x − y+

1/x − y−
, (4.73)

with y± = x±(v). Then ρ• and ρ̇• are built as follows

ρ•(x) =
K2∏
j=1

ϱ•(x, u2,j)
K2̇∏
j=1

ϱ̇•(x, u2̇,j) , ρ̇•(x) =
K2̇∏
j=1

ϱ•(x, u2̇,j)
K2∏
j=1

ϱ̇•(x, u2,j) , (4.74)

so that (4.63) is satisfied as a consequence of (4.73). Similarly, to parameterise the BES
phase we define ς•

ς•(xγ , v)ς•(x, v) ∝
∞∏

n=1

1− 1
x[+2n]y−

1− 1
x[+2n]y+

1− 1
x[−2n]y+

1− 1
x[−2n]y−

, (4.75)

writing once again y± = x±(v) and from which σ• is obtained as

σ•(x) =
K2∏
j=1

ς•(x, u2,j)
K2̇∏
j=1

ς•(x, u2̇,j) . (4.76)
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Introducing ϱ◦, ς◦. We turn next to the massless objects and introduce two elementary
building blocks: ς◦ and ϱ◦ which we require to have all good analytic properties on the
main sheet. ς◦ is defined to satisfy

ς◦(xγ , y)ς◦(x, y) ∝
∞∏

n=1

(
x[+2n] − y

) (
x[−2n] − 1/y

)
(
x[−2n] − y

) (
x[+2n] − 1/y

) , (4.77)

such that

σ◦(x) =
K◦∏
j=1

ς◦(x, zj) . (4.78)

Similarly, we define

ϱ◦(xγ , y)ϱ◦(x, y) ∝ x − 1/y√
x/y

, (4.79)

giving ρ◦ via

ρ◦(x) =
K◦∏
j=1

ϱ◦(x, zj) . (4.80)

4.5 Explicit expressions for the dressing factors

In appendix B, we derive the solutions of the discontinuity equations (4.73), (4.75), (4.77)
and (4.79). Our solutions are in general more constrained compared to those derived from
S-matrix considerations, which are known to have multiple solutions and require additional
physics input or simplicity arguments in order to pinpoint the correct solution. In the
remainder of this subsection we simply present the final expressions.

Firstly, the expressions for ς• and ς◦ are related to the BES dressing phase [25, 26]. Let
us introduce the double integral

χ(x, y) = −
∮

dz

2πi

1
x − z

∮
dw

2πi

1
y − w

log
(Γ (1 + iuz − iuw)
Γ (1− iuz + iuw)

)
(4.81)

where we assume the integration contours to be slightly inside the unit circle. In terms
of χ(x, y) we have

log ς•(x, y) = χ(x, y+)− χ(x, y−) , (4.82)

and

log ς◦(x, y) = χ(x, y)− χ(x, 1/y) . (4.83)
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Similar integral representations for ϱ◦ and ϱ• are relegated to appendix B. Here we
instead present the result in terms of polylogs, which can be more convenient since they make
explicit that each term is analytic outside the unit circle. The polylog expressions are

ϱ•∝exp

− iLi2
(1−x)(y−+1)
(x+1)(y−−1)
2π

+
iLi2

(1−x)(y++1)
(x+1)(y+−1)
2π

−
ilog x+1

x− 1
y−

log y−−1
y−+1

2π
+

ilog x+1
x− 1

y+
log y+−1

y++1

2π

+
ilog x−1

x+1

(
log
(
1− 1

(y−)2

)
−log

(
1− 1

(y+)2

)
−2log

(
1− 1

xy−

)
+2log

(
1− 1

xy+

))
4π

 , (4.84)

ϱ̇•∝exp

 iLi2
(

2(y+−x)
(x+1)(y+−1)

)
2π

−
iLi2

(
2(y−−x)

(x+1)(y−−1)

)
2π

−
ilog x−1

x+1

(
log y−+1

y−−1−log y++1
y+−1

)
4π

 . (4.85)

Above, the proportionality coefficient is a real function of y, which is uniquely fixed by
requiring that ϱ•, ϱ̇• → 1 when x → ∞. As this constant will cancel in all the expressions
for the full dressing phase which appear in the ABA, we will not write them out explicitly
here. Similarly, for ϱ◦ we have

ϱ2
◦(x, y) ∝ exp

− iLi2
(
− (x+1)(y−1)

(x−1)(y+1)

)
π

+
iLi2

(
(x+1)(y−1)
(x−1)(y+1)

)
π

−
i log (x−1)(y+1)

(x+1)(y−1) log
x−y
xy−1

π

+ log x − y

x
√

y

]
. (4.86)

The r.h.s. of the above equation can equivalently be written as
y − x

x
√

y
e−

i
2 θrel(γ1,γ2)−i 3π

4 , (4.87)

where θrel(γ1, γ2) ≡ θrel(γ12), with γ12 = γ1 − γ2 defined as an integral in equation (4.7)
of [27], or in terms of dilogs in equation (A.17) of the same paper. The massless rapidities
γi, used in (4.87) are [28]

eγi ≡ tan pi

4 . (4.88)

Recall that [27]

e
i
2 θrel = SZZ =

∞∏
l=1

Γ2(l − γ12
2πi

)
Γ
(
l + γ12

2πi +
1
2

)
Γ
(
l + γ12

2πi −
1
2

)
Γ2(l + γ12

2πi

)
Γ
(
l − γ12

2πi +
1
2

)
Γ
(
l − γ12

2πi −
1
2

) (4.89)

is the same as the famous Zamolodchikov dressing factor that enters the S matrix for the
scattering of a sine-Gordon soliton and anti-soliton [29].

5 Deriving Bethe equations

Above, we found the key Q-functions in the ABA limit parametrised in terms of a finite
number of complex parameters. In this section, we show that these parameters satisfy Bethe
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equations. The BEs are equations for the zeroes of certain Q-functions and for massive zeros
they are consequences of the QQ-relations. In the case of massless zeros, we will obtain the
BEs from the Pµ-system. The Pµ-system goes beyond standard QQ-relations, i.e., there is
in general no such system for other integrable systems, such as rational spin chains. This
shows the particularity of the massless excitations in the integrable holographic setting.

5.1 Massive Bethe equations

When writing BEs in the AdS3 case, it is convenient to explicitly break the symmetry between
dotted and undotted Q-systems. The symmetry can be restored by bringing dual roots
into play. The standard choice, adopted in [12, 13] is to use the zeroes of the following
Q-functions as Bethe roots

Roots: u1,k u2,k u3,k u1̇,k u2̇,k u3̇,k

Q-function: Q1 Q1|1 Q2 P1̇ Q1̇|1̇ P2̇ , (5.1)

then the Bethe equations can be arrived at by considering the following QQ-relations:

Q+
1|1

Q−
1|1

∣∣∣∣∣∣
u∈{zeros of Q1}

= 1 ,

Q++
1|1 Q−

1 Q2−

Q−−
1|1 Q+

1 Q2 +

∣∣∣∣∣∣
u∈{zeros of Q1|1}

= −1 ,

Q+
1|1

Q−
1|1

∣∣∣∣∣∣
u∈{zeros of Q2}

= 1 ,

(5.2)

Q+
1̇|1̇

Q−
1̇|1̇

∣∣∣∣∣∣
u∈{zeros of P1̇}

= 1 ,

Q++
1̇|1̇ P−

1̇ P2̇−

Q−−
1̇|1̇ P+

1̇ P2̇ +

∣∣∣∣∣∣
u∈{zeros of Q1̇|1̇}

= −1 ,

Q+
1̇|1̇

Q−
1̇|1̇

∣∣∣∣∣∣
u∈{zeros of P2̇}

= 1 .

(5.3)

All these equations are simply QQ-relations evaluated at some special points. For example,
the first one is the first relation (2.7) evaluated at u1,k, so that the r.h.s. vanishes, whereas
the second one is the second relation in (2.7) evaluated at u2,k + i/2 and divided by itself,
evaluated at u2,k − i/2. Our task is now to plug in the expressions for the Q-functions we
derived in the previous section and identify the results with the BAE of section 3.

Auxiliary equations. For convenience, let us reproduce here (4.31) from above

Q1|1 ∝ Q2 f+ f+
◦ , Q1̇|1̇ ∝ Q2̇ f+f+

◦ . (5.4)

Inserting these into the exact BAEs (5.2) for the auxiliary roots, we get

1 =
Q+

1|1

Q−
1|1

= Q+
2

Q−
2

f [2]

f

f
[+2]
◦
f◦

= Q+
2

Q−
2

B(−)
B(+)

κ̄
κ

=
R2,(+)
R2,(−)

B2̇,(−)
B2̇,(+)

κ̄
κ

, u = uI,k , I = 1, 3 (5.5)

where in the second equality we used (4.16) and then (4.13). Recall that B(−) = B2,(−)B2̇,(−)
is a product over both types of massive momentum-carrying roots (4.32). Equation (5.5)
is precisely (3.7), written in compact notation.
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Left middle node equation. For the left massive middle node, we have to evaluate the
following combination

−1 =
Q++

1|1 Q−
1 Q2−

Q−−
1|1 Q+

1 Q2 + . (5.6)

Using (4.67) we get

−1 = Q++
2 f [3]f

[3]
◦

Q−−
2 f−f−

◦

(
x−

x+

)L−K◦ (
σ+
• σ+

◦ ρ+

σ−
• σ−

◦ ρ−

)2 B−
2,(−)B

+
2,(+)

B−
2,(+)B

+
2,(−)

B+
2̇,(+)

B−
2̇,(+)

f−f−
◦

f+f+
◦

2
κ̄−

κ−
κ+

κ̄+

×
R−

1 B−
1̇

R+
1 B+

1̇

R−
3 B−

3̇
R+

3 B+
3̇

.

(5.7)

After cancelling, simplifying some factors and using (4.16) and (4.65), we find

−1 =
(

x−
2,k

x+
2,k

)L−K◦ Q++
2

Q−−
2

B+
2̇,(−)B

+
2̇,(+)

B−
2̇,(−)B

−
2̇,(+)

R−
1 B−

1̇
R+

1 B+
1̇

R−
3 B−

3̇
R+

3 B+
3̇

(
σ+
• ρ+

•
σ−
• ρ−•

σ+
◦ ρ+

◦
σ−
◦ ρ−◦

)2

(5.8)

where we see that in order to match with (3.9), we need to require the following relation:

σ+
• ρ+

•
σ−
• ρ−•

∣∣∣∣∣
u=u2,k

=
K2∏
j=1

σ••(u2,k, u2,j)
K2̇∏
j=1

σ̃••(u2,k, u2̇,j) . (5.9)

We will discuss this relation in more detail in the next section, reiterating the discussion
in [12, 13]. In terms of the building blocks from subsection 4.4, (5.9) reduces to the following
elementary relations

σ••(x, y) = ς•(x+, y)ϱ•(x+, y)
ς•(x−, y)ϱ•(x−, y) , σ̃••(x, y) = ς•(x+, y)ϱ̇•(x+, y)

ς•(x−, y)ϱ̇•(x−, y) . (5.10)

Now we match the second line in (5.8) with the last line of (3.9), that is we identify

K◦∏
j=1

1− x+zj

x− − z
(σ•◦(x, zj))2 ?=

(
x+

x−

)K◦ (
σ+
◦ ρ+

◦
σ−
◦ ρ−◦

)2

(5.11)

which can be rewritten, using the building blocks (4.77) and (4.79), as

(σ•◦(x, y))2 =
1− y

x−
1

x+ − y

ς2
◦ (x+, y)ϱ2

◦(x+, y)
ς2
◦ (x−, y)ϱ2

◦(x−, y) . (5.12)

In the next section we will show that the r.h.s. indeed satisfies the same crossing equation
as expected for the l.h.s. of (5.12). In this way, we will have arrived at the same crossing
equation from a very different perspective compared to the S-matrix bootstrap procedure.
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Right middle node equation. For the right middle node (i.e. for the dotted massive roots)
we have to evaluate the following combination

−1 =
Q−−

1̇|1̇ P+
1̇ P2̇ +

Q++
1̇|1̇ P−

1̇ P2̇−
. (5.13)

Using (5.4) and (4.66) this can be expressed as

−

x+
2̇,k

x−
2̇,k

L−2K◦

=
B+

2̇,(+)R
−
2̇,(−)

B−
2̇,(−)R

+
2̇,(+)

B+
2,(+)B

−
2,(+)

B+
2,(−)B

−
2,(−)

R+
3̇ B+

3

R−
3̇ B−

3

R+
1̇ B+

1

R−
1̇ B−

1

(
σ+
• ρ̇+

•
σ−
• ρ̇−•

)2(κ−

κ̄+
σ+
◦ ρ̇+

◦
σ−
◦ ρ̇−◦

)2

.

(5.14)
All but the final term on the r.h.s. above match the first two lines of (3.10), provided the
following holds

σ+
• ρ̇+

•
σ−
• ρ̇−•

∣∣∣∣∣
u=u2̇,k

?=
K2̇∏
j=1

σ••(u2̇,k, u2̇,j)
K2∏
j=1

σ̃••(u2̇,k, u2,j) , (5.15)

which is compatible with (5.9).
Matching the last term on the r.h.s. of (3.9) with the third line of (5.14) gives the

identification
K◦∏
j=1

x+

x− z2
j

x− − zj

1− x+zj
(σ•◦)2(x, zj)

?=
(

x+

x−

)2K◦ (κ−

κ̄+
σ+
◦ ρ+

◦
σ−
◦ ρ−◦

)2

. (5.16)

which after using the algebraic relation

K◦∏
j=1

x+

x− z2
j

x− − zj

1− x+zj
=
(

x+

x−

)K◦ (κ−

κ̄+

)2 K◦∏
j=1

1− x+zj

x− − zj
, (5.17)

reduces to our previous identification of σ•◦ in (5.11).
Thus, modulo the two relations (5.9) and (5.11), we have shown that all the massive

Bethe equations derived from QSC match those from [8]. In the next section, we will
show that constructing the S matrix dressing phases using these two relations and their
discontinuity equations, leads to the correct crossing equations that follow from the S-matrix
bootstrap approach. Before doing that, in the next sub-section we show how the massless
Bethe equation arrises from this limit of the QSC.

5.2 Massless middle node equation

As we have reviewed above, for massive roots, the Bethe equations follow from standard QQ-
relations [12, 13], updating them with massless contributions. On the other hand, the massless
middle node equation is the most interesting, as it goes beyond these standard QQ-relations.
To find it, we start from the Pµ system (2.24). Upon inverting the matrix µ, we obtain

P1 = µ1
ḃPγ̄

ḃ
= µ1

1̇Pγ̄

1̇ + µ1
2̇Pγ̄

2̇ , (5.18)

P1̇ = µ1̇
bPγ̄

b = µ1̇
1Pγ̄

1 + µ1̇
2Pγ̄

2 . (5.19)
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Since massless modes are defined as zeroes of µ1
2̇ (and µ1̇

2), evaluating the above equations
at zk gives

P1 = µ1
1̇Pγ̄

1̇ , P1̇ = µ1̇
1Pγ̄

1 , x = zk . (5.20)

Next we notice the following relations, from (4.1) and (2.4)

µ2̇
2 ≃ Q−

2̇|1̇Q−
1|1ω1̇

2 , µ1
1̇ ≃ −Q−

1|1Q−
2̇|1̇ω1

2̇ . (5.21)

Using (4.24), we obtain

µ1
1̇

µ2̇
2 = −

ω1
2̇

ω1̇
2
= −ζ , (5.22)

where ζ is a combination of the constants appearing in the gluing matrix (4.24). Furthermore,
evaluating (2.21) at x = zi we get 1 = detµȧ

b = µ1̇
1µ2̇

2, and thus we get

µ1
1̇µ1̇

1 = −ζ , (5.23)

or using (5.20) we obtain

−ζ = P1P1̇
Pγ̄

1Pγ̄

1̇

∣∣∣∣∣
x=zi

. (5.24)

Note that it would be very handy to assume that Im zi > 0 i.e. that the energy of the
massless modes is positive, in this case γ̄ maps zi to 1/zi, while staying on the main sheet.
I.e. in this case we can write

−ζ = P1(zk)P1̇(zk)
P1(1/zk)P1̇(1/zk)

. (5.25)

Using the explicit form of P1 and P1̇ (4.66) which we repeat here for convenience

P1 ∝ x− L̇
2

√
B2,(+)B2,(−)

x−2K◦κκ̄
σ•σ◦ρR1̃B˜̇1 , P1̇ ∝ x−L

2

√
B2̇,(+)B2̇,(−)

x−2K◦κκ̄
σ•σ◦ρ̇R3̇B3

we get

−ζzL+L̇−2K◦
k =

(
σ•σ◦

σγ̄
•σγ̄

◦

)2 ρ ρ̇

ργ̄ ρ̇γ̄

√√√√√K2∏
j=1

x+
2,jx−

2,j

K2̇∏
j=1

x+
2̇,j

x−
2̇,j

B2,(+)B2,(−)B2̇,(+)B2̇,(−)
R2,(+)R2,(−)R2̇,(+)R2̇,(−)

×
R1̃B˜̇1R3̇B3

B1̃R˜̇1B3̇R3
, x = zk , (5.26)

which constitutes the massless middle node equation. However, in order to compare it with
the literature i.e. (3.11) we have to rewrite it in terms of the dual roots u1,j and u1̇,k instead
of u1̃,k and u˜̇1,k

. For that we use the QQ-relations (2.7) and its analytically continued version.
When evaluating at x = zk we find

R2,(+)B2̇,(−)κ̄ = cz
L−L̇+K◦

2
k R1̃B˜̇1R1B1̇ ,

−

K2̇∏
j=1

−1
x+

2̇,j

K2∏
j=1

(−x−
2,j)

K◦∏
j=1

1
−zkzj

B2,(−)R2̇,(+)κ̄ = cz
−L−L̇+K◦

2
k B1̃R˜̇1B1R1̇ .

(5.27)
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By dividing the two equations in (5.27) and using momentum conservation we get

−zL̇−L
k

K2̇∏
j=1

(−x−
2̇,j

)
K2∏
j=1

(
− 1

x+
2,j

)
K◦∏
j=1

(
− 1

zj

) R2,(+)B2̇,(−)
B2,(−)R2̇,(+)

B1R1̇
R1B1̇

=
R1̃B˜̇1
B1̃R˜̇1

. (5.28)

And plugging this into the massless middle node equation (5.26) we find

±ζz2L
k =

K◦∏
j=1

−z2
k

zj

( σ•σ◦

σγ̄
•σγ̄

◦

)2 ρρ̇

ργ̄ ρ̇γ̄

B1R1̇B3R3̇
R1B1̇R3B3̇

×
R2,(+)
B2,(−)

K2∏
j=1

1
zkx+

2,j

 K2∏
j=1

(
−zk

√
x+

2,jx−
2,j

)√B2,(+)B2,(−)
R2,(+)R2,(−)

×
B2̇,(−)
R2̇,(+)

K2̇∏
j=1

x−
2̇,j

zk

 K2̇∏
j=1

(
−zk

√
x+

2̇,k
x−

2̇,k

)√√√√B2̇,(+)B2̇,(−)
R2̇,(+)R2̇,(−)

.

(5.29)

Note that the constant ζ can be fixed from the requirement that the product of all massive
and massless equations is compatible with the cyclicity condition (4.12). In appendix C
we show that ζ should satisfy

ζ = ± (−i)K◦ K◦√1 (5.30)

for a suitable root of unity. This is a necessary, not sufficient, condition for the selection
rule (4.12) of the physical states to be fulfilled, so that should be checked for a particular
solution in addition. The presence of a phase ζ could in principle mean that the counting
of states will be different for our Bethe equations compared to the ones in the literature.
This point deserves further study, but since there is no available data to compare to, we
will not pursue it further in this paper. A similar phase ζ also makes an appearance in
the BFKL regime of N = 4 SYM [30].

In (5.29) we have admittedly redistributed square roots without care, resulting in an
overall uncertain sign, which can be absorbed by redefining the unknown constant ζ. We have
furthermore purposefully grouped together terms to reproduce the expressions appearing in the
ABA of section 3, namely recognizing the first terms on the second and third line of (5.29) as

K2∏
j=1

z − x−
2,j

zx+
2,j − 1

=
R2,(+)
B2,(−)

K2∏
j=1

1
zx+

2,j

,

K2̇∏
j=1

x−
2̇,j

z2x+
2̇,k

zx+
2̇,j

− 1
z − x−

2̇,j

=
B2̇,(−)
R2̇,(+)

K2̇∏
j=1

x−
2̇,j

z
, (5.31)

where all R, B have z as an argument. We see that (5.29) and (3.11) match perfectly up to
the constant −ζ, provided the following identification holds for the massless excitations

z+K◦
k

(
σ◦ρ◦

σγ̄
◦ργ̄

◦

)2

=
K◦∏
j=1

(σ◦◦)2(zk, zj) , (5.32)

and for the massive(
K2∏
j=1

(
−zk

√
x+

2,jx−
2,j

)√B2,(+)B2,(−)
R2,(+)R2,(−)

)K2̇∏
j=1

(
−zk

√
x+

k x−
k

)√√√√B2̇,(+)B2̇,(−)
R2̇,(+)R2̇,(−)

(σ•)2ρ•ρ̇•

(σγ̄
• )2ργ̄

• ρ̇γ̄
•


=

K2∏
j=1

(σ◦•)2(zk, x2,j)
K2̇∏
j=1

(σ◦•)2(zk, x2̇,j) . (5.33)
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In terms of the elementary blocks from section 4.4 they become

(σ◦◦)2(x, y) = x
ς2
◦ (x, y)

ς2
◦ (xγ̄ , y)

ϱ2
◦(x, y)

ϱ2
◦(xγ̄ , y) (5.34)

and

(σ◦•)2(x, y) =
√

xy+ − 1
x − y+

√
xy− − 1
x − y−

ς2
• (x, y) ϱ•(x, y) ϱ̇•(x, y)

ς2
• (xγ̄ , y)ϱ•(xγ̄ , y)ϱ̇•(xγ̄ , y) . (5.35)

In the next section we will discuss these relations in more detail. In order to fix the sign
we can require that the phase goes to 1 when the massive argument goes to infinity, as the
roots at infinity represent the descendants and should not change the equations for finite roots.

To conclude, we managed to find Bethe equations up to an identification of the dressing
phases as well as an overall phase ζ. In the next section, we study those relations for the
dressing phases, check which crossing equations they satisfy, their unitarity, and relation
to the existing expressions in the literature.

6 Crossing and dressing phases

In this section, we discuss the crossing equations for the dressing phase candidates we found
in the previous section. We will show that the phases constructed in section 5 satisfy the
crossing relations given in section 3 and compare them with expressions in the literature.

6.1 Crossing relations

We emphasise that in the QSC approach the crossing equations are not a priori given, but
are instead derived from the more constraining discontinuity relations.

Let us start by formally defining crossing for the ABA phases. The definition we adopt
here, following [22], differs for the massive and massless case. For the massive case the
dressing phases have two branch cuts on the main sheet and crossing involves analytically
continuing the dressing phases from below the lower cut then crossing the upper cut and
then returning back like in figure 2. We denote this path by γ̄c.

For the massless case the phases have only one cut and it was argued in [22] that one
should analytically continue from above the cut, following the path γ as defined previously.
Even though that looks at first counter-intuitive, this interpretation appears to be consistent
with our QSC-based findings.

Massive-massive case. For σ•• and σ̃••, defined in (5.10), we find the following crossing
equations, as derived in appendix A

[
σ••(xγ̄c , y)σ̃••(x, y)

]2
= (y−)4 (x− − y+) (y+ − x+) (y+x+ − 1

)2
(y+)4 (x− − y−) (y− − x+) (y−x+ − 1)2 , (6.1)

[
σ̃••(xγ̄c , y)σ••(x, y)

]2
= (y−)4 (x− − y+)2 (y+x− − 1

) (
y+x+ − 1

)
(y+)4 (x− − y−)2 (y−x− − 1) (y−x+ − 1)

. (6.2)

These relations agree with [14, 22]. As explained in appendix A to arrive at the above
expression we used the definition (5.10) and the discontinuity equations (4.75) and (4.73).
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Figure 2. The path γ̄c depicted in the u-plane. Note that it first crosses the branch-cut of x+ and
thereafter the cut of x−.

Massive-massless case. Similarly for σ•◦ from the definition (5.12) and using the discon-
tinuity equations (4.75) and (4.79) we get[

σ•◦(xγ̄c , y)σ•◦(x, y)
]2

= (x− − y)
(
yx+ − 1

)
y4 (yx− − 1) (x+ − y) , (6.3)

in perfect agreement with [8, 22].10

Massless-massive and massless-massless cases. Using the definition of σ◦• in (5.35),
σ◦◦ in (5.34) and performing the analytic continuation along γ this time we get

[σ◦•(xγ , y)σ◦•(x, y)]2 = (x − y−)(1/x − y+)
(x − y+)(1/x − y−) , (6.4)

[σ◦◦(xγ , y)σ◦◦(x, y)]2 = (xy − 1)2

(y − x)2 , (6.5)

which again agrees with [7, 22]. Even though the above equations are identical to those in [22],
the solution to crossing equations is not unique. We now turn to an explicit comparison
of our dressing phases to those found in [22].

6.2 Explicit expressions for the dressing phases

In this section we give explicit expressions for our dressing phases and compare them with
the literature. For that one should plug the solutions for ϱ’s and ς’s into the definitions
of the dressing phases e.g. (5.35) and (5.34). For simplicity, we write σFS for the phases
proposed in [22]. The main challenge is thus to rewrite the result in the notations of [22],
allowing for a direct comparison.

A heavily utilised tool in [22] is a rapidity parameterisation inspired by [28]:

γ±(u) = log
(
∓i

x± − 1
x± + 1

)
= 1

2 log
u ± i

2 − 2g

u ± i
2 + 2g

∓ i
π

2 ,

γ◦(z) = log
(
−i

z − 1
z + 1

)
= 1

2 log
(

z + 1
z − 2

z + 1
z + 2

)
− iπ

2 ,

and we will make use of the following shorthand notation γa
1 = γa(u), γa

2 = γa(v) and finally
γab

12 = γa
1 − γb

2 with a, b = +,−, ◦.
10As noted in [22], there was a typo in [8]: the y−4 term is missing.
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Massive-massive. The massive-massive phases of [22] are given as

(
σ••

FS(u, v)
σ••

BES(u, v)

)2

= −
sinh γ+−

12
2

sinh γ−+
12
2

e−φ••(u,v) ,

(
σ̃••

FS(u, v)
σ••

BES(u, v)

)2

=
cosh γ−+

12
2

cosh γ+−
12
2

e−φ̃••(u,v) , (6.6)

where the φ factors are

φ••(u, v) = φ••
+ (γ−−

12 ) + φ••
+ (γ++

12 ) + φ••
− (γ−+

12 ) + φ••
− (γ+−

12 ) , (6.7)
φ̃••(u, v) = φ••

− (γ−−
12 ) + φ••

− (γ++
12 ) + φ••

+ (γ−+
12 ) + φ••

+ (γ+−
12 ) , (6.8)

and the building blocks are defined as

φ••
− (γ) = + i

π
Li2(+eγ)− i

4π
γ2 + i

π
γ log(1− eγ)− iπ

6 , (6.9)

φ••
+ (γ) = − i

π
Li2(−eγ) + i

4π
γ2 − i

π
γ log(1 + eγ)− iπ

12 . (6.10)

The BES-phase σ••
BES is the standard BES phase and thus in our notation σ••

BES(x, y) = ς•(x+,y)
ς•(x−,y) ,

the superscripts •• serve as a reminder that we are considering massive-massive scattering.
We find that(

ϱ•(x+, y)
ϱ•(x−, y)

)2

= −
sinh γ+−

2

sinh γ−+

2
e−φ••

,

(
ϱ̇•(x+, y)
ϱ̇•(x−, y)

)2

= +
cosh γ−+

2

cosh γ+−

2
e−φ̃••

, (6.11)

and thus our results are in perfect agreement with (6.6).

Massless-massive and massive-massless. Similarly, we have

(
σ•◦

FS
σ•◦

BES

)2

= −i
tanh γ+◦

12
2

tanh γ−◦
12
2

1
Φ(γ+◦

12 )Φ(γ−◦
12 )

,

(
σ◦•

FS
σ◦•

BES

)2

= i
tanh γ◦−

12
2

tanh γ◦+
12
2

1
Φ(γ◦+

12 )Φ(γ◦−
12 )

, (6.12)

with

φ(γ) = i

π
Li2(−e−γ)− i

π
Li2(e−γ) + iγ

π
log(1− e−γ)− iγ

π
log(1 + e−γ) + iπ

4 ,

Φ(γ) = eφ(γ) .
(6.13)

When making the comparison for the massless cases, we have to remember that our expressions
are derived assuming the massless argument is above the cut, i.e. x = eip/2 for p ∈ (0, 2π).
Assuming this is the case, the BES part matches once again perfectly with our expressions,
and so does the remaining part

1− y
x−

1
x+ − y

(
ϱ◦(x+, y)
ϱ◦(x−, y)

)2

= −i
tanh γ+◦

12
2

tanh γ−◦
12
2

1
Φ(γ+◦

12 )Φ(γ−◦
12 )

, (6.14)

√
xy+ − 1
x − y+

√
xy− − 1
x − y−

ϱ•(x, y)ϱ̇•(x, y)
ϱ•(xγ̄ , y)ϱ̇•(xγ̄ , y) = i

tanh γ◦−
12
2

tanh γ◦+
12
2

1
Φ(γ◦+

12 )Φ(γ◦−
12 )

. (6.15)
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Massless-massless. So far we have perfectly reproduced all phases. However, in the massless-
massless case we find a slight disagreement with [22]. For massless-massless scattering we find(

σ◦◦(u, v)
σ◦◦

BES(u, v)

)2

= x
ϱ2
◦(x, y)

ϱ2
◦(xγ̄ , y) = −i

1
Φ(γ◦◦

12)2 = −ie−iθrel(γ1,γ2) , (6.16)

where the relation to the Zamolodchikovs’ dressing factor (4.89) is e
i
2 θrel ≡ SZZ [27]. On

the other hand, [22] found that the dressing factor is(
σ◦◦

FS(u, v)
σ◦◦

BES(u, v)

)2

= 1
a(γ◦◦)(Φ(γ◦◦

12))2 , (6.17)

where a(γ) is a non-trivial function of γ to be discussed below in (6.21). This is the first
and only discrepancy with [22]. In the next sub-section we discuss possible reasons for
the discrepancy.

6.3 The massless-massless phase and its unitarity and crossing

First, to see the problem clearly, consider the massless limit i.e. sending x+ → x and x− → 1/x.
To define the limit more clearly we replace the shift x± = x(u ± i/2) by x(u ± iϵ) and send
ϵ → 0+. We find the phases are related nicely in this limit as follows[

σ◦•(y, x+, x−)
]2

→ − [σ◦◦(y, x)]2 ,
[
σ•◦(x+, x−, y)

]2
→ + [σ◦◦(x, y)]2 . (6.18)

As (σ◦•)2 and (σ•◦)2 are related by unitarity with a unit coefficient we can see clearly that
for our combination of factors σ◦◦ we should have

[σ◦◦(x, y) σ◦◦(y, x)]2 = −1 . (6.19)

At first one could worry that (σ◦◦)2 as written is not unitary. However, we are always at
liberty to rescale the (square of the) dressing phases with a factor of i and simply change
the factor ζ appearing in the massless Bethe equations to compensate for this fact. Thus,
when identifying the dressing phases, we still have the freedom to redefine (σ◦◦)2 by a factor
of ±i, in order to make it unitary. We see that, such a factor in (σ◦◦)2 changes the sign in
the relation (6.19) and so restores unitarity. However, the massless crossing relation (6.5)
then gets an extra minus sign.

A closely related issue was found by [22], who instead proposed including a factor of a(γ)
into the massless dressing phase. This factor was defined to satisfy two properties

a(γ)a(−γ) = 1 , a(γ)a(γ + iπ) = −1 . (6.20)

These properties do not fully fix a(γ), since, for example, for any non-trivial solution, the
inverse 1/a(γ) is also a solution, but a potential candidate was proposed in [22]

a(γ) = −i tanh
(

γ

2 − iπ

4

)
, a(x, y) = − i(x − y) + (−1 + xy)

−i(x − y) + (−1 + xy) . (6.21)

Writing a in terms of x and y suggests that it is unlikely that the QSC could generate such
a factor, since it has a rather unnatural singularity structure, having a pole at x = 1−iy

y−i

(curiously the r.h.s. is mapping the unit circle into a real line).

– 32 –



J
H
E
P
1
0
(
2
0
2
5
)
1
8
8

In appendix D, we investigate the possibility of modifying ϱ◦ → ϱ◦ϱa, in order to include
the a(γ) factor into the massless-massless dressing phase. The main problem we encounter,
in addition to violating some fundamental analyticity assumptions of the QSC ingredients, is
that such a modification unavoidably also changes the massive-massless phase by a factor
violating its crossing relation, since its expression also contains ϱ◦. On the other hand, the
massless-massive dressing phase does not involve ϱ◦ and therefore would remain unmodified.
Hence, changing ϱ◦ would also violate unitarity in the mixed-mass sector. We note that
this conclusion demonstrates explicitly that the QSC result is more constraining than the
S-matrix bootstrap. This is because it imposes stronger analyticity constraints on fewer
building blocks, which are used to construct the S matrix. Let us emphasize again that in
the QSC derivation, crossing equations, in particular in the mixed-mass sector, come out as a
result of the derivation and provide an independent test of the construction.

Since unitarity is fundamental, our results suggest that a sign could be missing in the
massless crossing equation found using the S-matrix bootstrap derivation. Such a possibility
could arise, for example, from the action of su(2)◦ on massless representations which could
lead to a modification of the charge conjugation matrix. Similar considerations were analysed
in [31], where for certain massless sub-sectors different signs in the crossing equation also
appeared. In view of our result, it is worth revisiting this point in the S-matrix derivation.
This in turn may lead to a better understanding of the ABA limit of the AdS3 QSC and
further numerical and analytical tests in different regimes could provide additional clarity on
the issue. We hope to return to this in future work. Finally, as was recently observed [32],
the crossing relation in fact in some cases can be more subtle than naively expected. In that
case, the generalized symmetries were helpful in restoring the correct normalization of the
crossing equation. In our case, that could be the QSC!

7 Conclusions

In this paper, we identified new classes of solutions of the AdS3 QSC [12, 13] which contain
all expected types of excitations, including massless ones. We showed how, in the large-
volume limit, solutions to the QSC are parametrized by a finite set of roots that satisfy
Bethe equations which are structurally equivalent to those in [8]. Our results considerably
extend the original analysis of [12] and [13], where only massive excitations were included
in the large volume limit.

The most complicated parts in the aforementioned Bethe equations are the dressing
phases, which we fixed using QSC analytic constraints. These constraints are generally more
restrictive than those that follow from integrable S-matrix bootstrap methods. They lead
to discontinuity equations on the building blocks of the dressing phases instead of the more
traditional crossing and unitarity relations. We solved these equations and used them to fix all
dressing phases, finding perfect agreement with [22] in all cases except the massless-massless
phase. As such, our results provide further strong evidence for the validity of the AdS3 QSC
proposal as well as demystify the role of massless modes in the QSC formalism.

Our findings open up a new avenue for the study of the AdS3/CFT2 correspondence,
as we now have a detailed knowledge about all perturbative string states at least in the
asymptotic regime. The information of this type is instrumental for moving to the exact
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finite volume studies of the spectrum. To this end, the massive sector was already analysed
by means of the QSC in [15], where the first ever exact result for finite-size operators was
found in this theory in the small-tension (weak coupling) limit to a high order in perturbation
theory, as well as high precision methods were developed for the numerical studies of the
spectrum at finite coupling. Later on an alternative Thermodynamic Bethe Ansatz was
proposed in [16], which was also studied analytically in [33] and numerically in [18], with
a focus on the massless sector. We hope that with our results one may make a direct
comparison between the two approaches.

Massless particles play a novel role in integrable AdS3/CFT2 holography, compared to
higher-dimensional models. In particular, it is known that the half-BPS protected spectrum of
this AdS3/CFT2 dual pair [34] is intimately related to zero-momentum massless excitations [35–
37]. Our results show how such states fit into the QSC analysis. It would be interesting to
explore this approach more fully, for example by introducing a deformation of the original
theory by a small twist. On general grounds, one may expect significant simplification in the
vicinity of the BPS states, allowing for an all-loop analytic treatment. In addition, because
of their simplified kinematics [28], massless excitations have recently been investigated in
the context of form factors and boundary ABAs [38–40]. It would be interesting to connect
these results with the way massless excitations appear in the QSC analysis presented here.
Finally, recent string theory results, such as the AdS3×S3 Virasoro-Shapiro amplitude with
Ramond-Ramond flux [41, 42], offer insights that could complement the QSC analysis and
allow for cross-checks.

We further hope that our results give new clues on how to generalize the QSC proposal to
mixed-flux AdS3 backgrounds which are known to also be integrable [43–45]. Amongst these,
perhaps the most interesting are the near-horizon limits of NS5-branes and fundamental
strings, which at a special point in their moduli space are described by the Maldacena-Ooguri
WZW model [46]. In integrable language [47], this point corresponds to zero coupling (h = 0),
with only the k ∈ Z WZW-level remaining as a non-trivial parameter of the planar theory.
Turning on the axion and other R-R moduli takes one away from the WZW point [47].
This deformation cannot be easily analyzed using worldsheet CFT technology, due to the
well-known issues with R-R vertex operators. Integrable methods do not suffer from these
problems and so the mixed-flux QSC should offer a practical and computationally efficient
solution to the spectral problem for all values of R-R moduli. While the kinematics of the
mixed-flux integrable model is significantly more intricate than that of the R-R theory [48], we
believe it provides enough analytic information on the QQ-system to fix the mixed-flux QSC.
Solving such a mixed-flux QSC, particularly in the small-h limit would allow for important
comparisons to complementary results that have recently appeared in the literature, including
the k = 1 model and its SymN (T4) dual [49–58]. It would also be interesting to compare
mixed-flux QSC calculations with previous results on the spectrum of R-R deformed WZW
models [59] and compare it with more recent work on mixed-flux worldsheet scattering [60]
and the recently proposed mixed-flux dressing phases in [48, 61, 62].

There have been interesting recent findings in integrable deformations of AdS3 back-
grounds [63, 64]. Deformations of QSCs for higher-dimensional duals have been investigated
in [65, 66], and it would be interesting to see how these constructions can be generalised to
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those AdS3 deformations. Further, boundaries and defects have also been explored in the
context of integrability, see for example [39, 40, 67]

Finally, one may hope to generalise the QSC studied here to the AdS3 × S3 × S3 × S1

backgrounds, which are also known to exhibit integrability [68–72]. For these backgrounds,
the QQ-system should be based on the Lie super-algebras d(2, 1;α)2, which depend on a
free parameter α ∈ [0, 1]. It would be very interesting to understand such novel examples
of QSCs explicitly, particularly since the dual CFT2 has been less well understood [73–77],
with very recent progress in [78].
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A Dressing phases and crossing

In this appendix, we expand on some of the computational details summarised in section 6.1,
by showing how crossing equations for S-matrix dressing phases follow from the discontinuity
equations found in section 4.

A.1 Massive-massive crossing

For completeness we repeat the calculation of the massive-massive crossing equation of [14]
from the QSC following [12, 13]. The goal of this section is to deduce the crossing relation
for the r.h.s. of (5.10) starting from the discontinuity equations found in section 4.4.

Crossing involves two analytic continuations. Firstly, we continue through the cut
(−2h− i/2, 2h− i/2) from below, i.e. oriented in the same way as γ̄. We denote this operation
as γ̄+, because it flips x+ → 1/x+. Secondly, the resulting expression is analytically continued
through the cut at (−2h + i/2, 2h + i/2), once again approaching it from below, which
we denote as γ̄−.
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We start by considering the BES part of the phase. Using (4.75), the crossing equation
for the full phase is( ς•(x+, y)

ς•(x−, y)

)γ̄+
γ̄−

=

 1
ς•(x−, y)ς•(x+, y)

∞∏
n=1

1− 1
x[+2n+1]y−

1− 1
x[+2n+1]y+

1− 1
x[−2n+1]y+

1− 1
x[−2n+1]y−

γ̄−

(A.1)

= ς•(x−, y)
ς•(x+, y)

1− x−

y+

1− 1
x+y−

1− 1
x+y+

1− x−

y−

,

giving precisely Janik’s crossing equation [79].
Next, we consider the non-quadratic-cut parts of the dressing phases i.e. those containing

ϱ• and ϱ•̇. Using the discontinuity relation (4.73) for ϱ•, we find(ϱ•(x+, y)
ϱ•(x−, y)

)γ̄+
γ̄−

=
(

1
ϱ•(x−, y)ϱ̇•(x+, y)

√
x+ − y+

x+ − y−

)γ̄−

(A.2)

= ϱ̇•(x−, y)
ϱ̇•(x+, y)

√
x+ − y+

x+ − y−
x− − y−

x− − y+ .

Combining (A.1) and (A.2) we recover the massive crossing equation (6.1) for the full
dressing phase. Similarly, using (4.73) for ϱ̇•, we find( ϱ̇•(x+, y)

ϱ̇•(x−, y)

)γ̄+
γ̄−

= ϱ•(x−, y)
ϱ•(x+, y)

√
1/x+ − y−

1/x+ − y+
1/x− − y+

1/x− − y−
. (A.3)

which, together with (A.1), leads to the second massive crossing equation (6.2).
We note that the crossing equations (6.1) and (6.2) might appear slightly different from the

ones usually presented in the literature. This is merely a cosmetic difference, using the identity

x−y−
(
x+ − y+) (x+y+ − 1

)
x+y+ (x− − y−) (x−y− − 1) = 1 . (A.4)

they can be brought to, for example, the form presented in [22]

A.2 Massive-massless crossing

To derive the crossing equations for the massive-massless phases, we follow a similar procedure
and will use the same contour for analytic continuation as in the massive case reviewed above.

The massive-massless dressing factor found in (5.12) is

(σ•◦(x, y))2 =
1− y

x−
1

x+ − y

ς2
◦ (x+, y)ϱ2

◦(x+, y)
ς2
◦ (x−, y)ϱ2

◦(x−, y) . (A.5)

Analytically continuing as before, the first factor’s contribution to the crossing equation is(1− y
x−

1
x+ − y

)γ̄+
γ̄−

1− y
x−

1
x+ − y

= x+ (x− − y) (yx− − 1)
x− (x+ − y) (yx+ − 1) . (A.6)
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Similarly, the contribution of ς◦ can be found using the discontinuity relation (4.77)( ς◦(x+, y)
ς◦(x−, y)

)γ̄+
γ̄−

=
(

1
ς◦(x−, y)ς◦(x+, y)

∞∏
n=1

(x[+2n+1] − y)
(x[−2n+1] − y)

(x[−2n+1] − 1/y)
(x[+2n+1] − 1/y)

)γ̄−

= ς◦(x−, y)
ς◦(x+, y)

(x− − y)
(
yx+ − 1

)
y2 (x+ − y) (yx− − 1) , (A.7)

while for the ϱ◦ terms, using (4.79), we get(ϱ◦(x+, y)
ϱ◦(x−, y)

)γ̄+
γ̄−

=
(

1
ϱ◦(x−, y)ϱ◦(x+, y)

x+ − y√
x+y

)γ̄−

= ϱ◦(x−, y)
ϱ◦(x+, y)

√
x−

x+
x+ − y

x− − y
. (A.8)

Combining (A.6), (A.7) and (A.8) we find the crossing equation for the full massive-massless
dressing factor [

σ•◦(xγ̄c , y)σ•◦(x, y)
]2

= (x− − y)
(
yx+ − 1

)
y4 (yx− − 1) (x+ − y) . (A.9)

This agrees exactly with [22]; the older paper [8] had a typo in the factors of y on the r.h.s.

A.3 Massless-massive crossing relation

In the QSC approach there is no a priori relation between massive-massless and massless-
massive dressing factors and we have to find the crossing relation for the massless-massive
dressing factor separately. This dressing factor is given in (5.35), which we repeat here

(σ◦•(x, y))2 =
√

xy+ − 1
x − y+

√
xy− − 1
x − y−

ς2
• (x, y) ϱ•(x, y) ϱ̇•(x, y)

ς2
• (xγ̄ , y)ϱ•(xγ̄ , y)ϱ̇•(xγ̄ , y) . (A.10)

For the massless part, according to [22] the crossing contour is simply γ (i.e. going CW around
the −2h branch point). We emphasize that in the QSC there are no possible ambiguities
in defining a preferred crossing direction, all relations controlling the curve are well-defined
discontinuity equations. We need only be careful to use a specific crossing path when
comparing with literature.

It is simple to check that the first term above is homogeneous under crossing. Similarly,
the BES phase does not have a branch cut on the real axis, see the r.h.s. of (4.75), and is
thus also homogeneous under massless crossing(

ς2
• (x, y)

ς2
• (xγ̄ , y)

)γ
ς2
• (x, y)

ς2
• (xγ̄ , y) = 1 . (A.11)

The only non-trivial contribution to crossing comes from the ϱ• terms. Using (4.73) we find(
ϱ•(x, y)
ϱ•(xγ̄ , y)

)γ ϱ̇•(x, y)
ϱ̇•(xγ̄ , y) =

(
ϱ̇•(x, y)
ϱ̇•(xγ̄ , y)

)γ ϱ•(x, y)
ϱ•(xγ̄ , y) =

√
(x − y−)(1/x − y+)
(x − y+)(1/x − y−) . (A.12)

In summary, the full massless-massive crossing equation is

[σ◦•(xγ , y)σ◦•(x, y)]2 = (x − y−)(1/x − y+)
(x − y+)(1/x − y−) , (A.13)

which perfectly agrees with [8, 22].
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A.4 Massless-massless crossing relation

The massless-massless dressing factor is given in (5.34), which we repeat here

(σ◦◦)2(x, y) = x
ς2
◦ (x, y)

ς2
◦ (xγ̄ , y)

ϱ2
◦(x, y)

ϱ2
◦(xγ̄ , y) . (A.14)

The BES dressing factor is again homogeneous under massless crossing, for the same reasons
as in the previous subsection, as is the factor of x. Crossing for the ϱ◦ part follows from (4.79)
and gives (

ϱ◦(x, y)
ϱ◦(xγ̄ , y)

)γ ϱ◦(x, y)
ϱ◦(xγ̄ , y) = xy − 1

y − x
(A.15)

which agrees with [7, 8, 22].

B Integral representation and solution for the dressing factors

Here we discuss in more detail solutions to the discontinuity equations for the scalar factors ς

and ϱ, their properties, uniquness and explicit presentations. This appendix is complementary
to the discussion in section 4.5.

B.1 BES-like phases

We begin with ς• and ς◦, for which in (4.82) and (4.83) we gave explicit integral representations
by solving the discontinuity equations (4.75) and (4.77). It is easy to check that (4.82) solves
equation (4.75). Let us show that this solution is unique. Indeed, assuming there is another
solution we can consider their ratio, denoted ςh, which then has to satisfy the homogeneous
equation ςh(xγ , y)ςh(x, y) ∝ 1. Since our solutions have to have neither zeroes nor poles for
|x| > 1 and which tend to 1 at infinity we conclude that ςh(x, y) is also analytic and has
no zeroes inside the unit circle ςh(xγ , y) ∝ 1/ςh(x, y). Furthermore, by applying γ again
and dividing by the initial homogeneous equation we get ςh(x2γ , y) = ςh(x, y) (without a
possible proportionality coefficient), implying that this function has a quadratic cut and thus
is a rational function in the x variable. Further, since it neither has poles nor zeroes and
asymptotes to 1 at large x, we conclude that we must have ςh(x, y) = 1, which concludes the
uniqueness of the initial solution to the non-homogeneous equation. Note that this means
that the discontinuity equation (4.75), obtained from QSC has a unique solution and thus is
more constraining than the usual crossing equation which suffers from the freedom of adding
CDD factors [20]. A similar argument applies for the uniqueness of ς◦.

We next turn to fixing the non-square-root pieces of the dressing phases, which are the
main novelty of the AdS3 case as compared to AdS5 and AdS4 [4].

B.2 Fixing ρ and ρ̇ in terms of the building blocks

In this part we show that KT = 0 and that (4.65) hold. Denoting ρK = ρ
ρ•ρ◦

and ρ̇K = ρ̇
ρ̇•ρ◦

from (4.62) we get

(ρK)γ ρ̇K ∝ x−KT , (ρ̇K)γρK ∝ x+KT . (B.1)
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The product of the above two equations gives

(ρ̇KρK)γ ρ̇KρK ∝ 1 . (B.2)

Applying γ̄ and dividing by the above equation we have

(ρ̇KρK)γ = (ρ̇KρK)γ̄ . (B.3)

i.e. ρ̇KρK is a rational function of x. Assuming it has no zeroes or poles for |x| ≥ 1 from (B.2)
we see there are also no poles or singularities inside the unit circle. Since both ρ and ρ̇ are
asymptotically 1, we must have ρ̇KρK = 1. This, together with (B.1) then implies that

(ρK)γ

ρK
∝ x−KT . (B.4)

Applying γ̄ and computing the product we get

(ρK)γ

(ρK)γ̄
= c , (B.5)

for some constant c. This again implies that ρK is a rational function of x up to a new
possible factor (x−1

x+1)
i log c

π , which removes the constant c on the r.h.s. In fact, we will attribute
this factor to ρ• so we can assume, without reducing the generality, that c = 1. In this case
ρK is a rational function of K without poles or zeroes with constant asymptotics: in other
words it is a constant. Thus we also see that we must have KT = 0.

B.3 Fixing ϱ•, ϱ̇•

In section 4 the crossing relations for ϱ• and ϱ̇• were found to satisfy (4.73). To solve
these equations it is useful to consider the product and ratio of ϱ and ϱ̇. The product
ϱp ≡ ϱ•ϱ̇• satisfies

ϱp(xγ , y)ϱp(x, y) ∝
√

x − y−

x − y+

√
1/x − y+

1/x − y−
(B.6)

and the solution is given

log ϱp

cp
= − (

∫
−
∫
) 14

(
1

x − z
− 1

1
x − z

)(
log

(
z − y−

z − y+

)
− log

( 1
z − y−

1
z − y+

))
dz

2πi
(B.7)

where cp(y) is again an irrelevant factor, which only depends on y. It can be found by
requiring unit asymptotics for x → ∞. Here we assume that |y| is sufficiently large so there
is no ambiguity in the branch of log

(
z±1−y−

z±1−y+

)
by following the branch which tends to zero at

large |y|. Below we give an explicit expression which takes care of the analytic continuation.
Uniqueness of the solution, follows by an almost identical argument to the one for σ•. For
the ratio ϱr ≡ ϱ•

ϱ̇•
we get the following equation11

ϱr(xγ , y)
ϱr(x, y) ∝

√
x − y−

x − y+

√
1/x − y−

1/x − y+ (B.8)

11Writing log ϱr(x, y) = χr(x, y+) − χr(x, y−), χr(x, y) is often denoted as χ− in the literature [4].
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which is solved by

log ϱr = (
∫
−
∫
) 14

(
1

x − z
+ 1

1
x − z

)(
log

(
z − y−

z − y+

)
+ log

( 1
z − y−

1
z − y+

))
dz

2πi

+ 2α(y) log
(

x − 1
x + 1

) (B.9)

where the last term is added to show that the solution is no longer unique. One can see that the
previous uniqueness argument fails because the discontinuity equation is of a ratio-rather than
product- form. Indeed, the homogeneous equation has the form ϱh(xγ ,y)

ϱh(x,y) = f(y), where the r.h.s.
is an unknown function of y. This is because the discontinuity equation (B.8) is only known
up to such an x-independent multiplier, so we no longer have ϱh(x2γ , y) = ϱh(x, y), meaning
that ϱh cannot be rationalized with Zhukovsky variables. At the same time, ϱh(xγ ,y)

ϱh(x,y) = f(y) is

solved by ϱh(xγ , y) =
(

x−1
x+1

)i log f(y)/π
and this solution is unique. Thus the last term in (B.9)

is due to our ignorance of the proportionality coefficient in (B.8) and has to be fixed from
additional requirements, such as unitarity of the dressing phases or cyclicity condition.

One convenient way to fix the arbitrary function α(y) is to require that ϱr has the same
power-law divergence near x = 1 and x = −1. This detrmines α(v) = − 1

4πi log(
(y−)2−1
(y+)2−1)

uniquely. One gets the same value of α(v) by requiring ϱr(x = y+) = ϱr(x = y−), which
is equivalent to requiring σ••(x, x) = 1. In section B.5 we also show that this value of the
zero mode is needed to ensure the level matching condition.

In principle, it should be possible to trace all proportionality coefficients in the discon-
tinuity equations to this particular value of α, but it is easier to use either σ••(x, x) = 1
or the level matching condition to fix this ambiguity.

In what follows, we assume this is the correct value of α. Finally, we get the following
result (again valid for sufficiently large values of the parameter |y|). Thus

log ϱ•√
cp

= +(
∫
−
∫
) 14

(
1

x − z
log

( 1
z − y−

1
z − y+

)
+ 1

1
x − z

log
(

z − y−

z − y+

))
dz

2πi
(B.10)

− 1
4πi

log (y−)2 − 1
(y+)2 − 1 log x − 1

x + 1 ,

and

log ϱ̇•√
cp

= − (
∫
−
∫
) 14

(
1

x − z
log

(
z − y−

z − y+

)
+ 1

1
x − z

log
( 1

z − y−

1
z − y+

))
dz

2πi
(B.11)

+ 1
4πi

log (y−)2 − 1
(y+)2 − 1 log x − 1

x + 1 .

Finally, by evaluating the above integrals and ensuring the correct analytic continuation in
y from sufficiently large |y|, we get (4.84) and (4.85). The expressions (4.84) and (4.85) are
written in the form which makes it manifest that they have no cuts for |x|, |y+|, |y−| > 1 and
thus provide the correct definition for all relevant values, unlike the integral representation
which is only valid for sufficiently large |y|.
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B.3.1 χ decomposition and cr,s expansion

The discontinuity equations (4.73) imply that the crossing equations (A.2) and (A.3) are
the same as the existing literature (e.g. which is exactly the same as (5.12) in [48], with
∝ replaced by =), it would be useful to rewire it using the notations of [48] using the
χ-functions defined in [48]. We find

ϱ•(x, y) = ei χRL(x,y+)−i χRL(x,y−) , ϱ̇•(x, y) = ei χLL(x,y+)−i χLL(x,y−) , (B.12)

where χLL and χRL are defined in equation (5.16), or equivalently (5.17) and (5.18) of [48],
and include the extra “non-integral” terms, first proposed by Andrea Cavaglià and one of us
(SE) to remove the unwanted log branch-cuts from [14]. In order to compare these integral
expressions to (4.84) and (4.85) we note that for |x|, |y| > 1

χLL(x, y) = − 1
2π

[
Li2

( 2(y − x)
(x + 1)(y − 1)

)
− Li2

( 2
x + 1

)
− Li2

( 2
1− y

)
+1
2 log

(
x − 1
x + 1

)
log

(
y + 1
y − 1

)]
(B.13)

χRL(x, y) = 1
2π

[
−Li2

((1− x)(y + 1)
(x + 1)(y − 1)

)
+ Li2

(1− x

1 + x

)
+ Li2

(1 + y

1− y

)
+ Li2

(1
y

)
− Li2

(
−1

y

)
− log

(
y − 1
y + 1

)
log

(
x + 1
x − 1

y

)

+1
2 log

(
x − 1
x + 1

)(
log

(
1− 1

y2

)
− 2 log

(
1− 1

xy

))]
+ π

24 . (B.14)

The somewhat baroque combinations of logs and dilogs above are needed to ensure that all
cuts are inside the unit x and y circles. Terms that depend only on x cancel out in ϱ• and ϱ̇•,
while those that depend only on y do not play a role in the continuity equations since the
latter are defined up to y-dependent terms. With these points one can verify that (B.12) is
equivalent to (4.84) and (4.85). The large x and y expansion of these phases, encoded in the
so-called cr,s coefficients, is given in (6.9) and (6.10) of [48], upon setting s = 1 there. As we
show in section 6.2, those expressions are also equivalent to the expressions in [22].

B.4 Fixing ϱ◦

Finally, let us solve equation (4.79). Using the Sochocki-Plemelj theorem, one picks up a pole
when crossing the integration contours, and so it is simple to check the following integral
representation is a solution to (4.79).

log ϱ2
◦(x, y)
cϱ(y)

= (
∫
−
∫
)
( 1

x − z
− 1

1/x − z

)(
log

(
1− y

z

)
+ log z

2

)
dz

2πi
+ log

(
y − 1

x√
y

)
+ iπ

2
(B.15)

with the prescription that |x| > 1 and |y| = 1 and the contours are around arches of a circle
of the radius slightly bigger than 1, so that the integration does not encounter any cuts or
singularities along the contour of integration. Here cϱ(y) is an (in general irrelevant) real
constant that can be fixed by the requirement that ϱ◦(x, y) → 1 at x → ∞

cϱ(y) =
e

iLi2(−y)
π

− iLi2(y)
π

− 3iπ
4

√
y

, (B.16)
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which is real for |y| = 1 and Im y ≥ 0. The integrals above can be computed analytically
to get (4.86).

The uniqueness of this solution is more subtle. We see from the r.h.s. of equation (4.79)
that we have to allow for singularities at x = y and x = 1/y. As a result, the homoge-
neous solution can be a rational function of the form ϱ2

◦h(x, y) = ( x−y
x−1/y )

n, which satisfies
ϱ2
◦h(x, y)ϱ2

◦h(xγ , y) = 1; however, it is easy to see that for |y| = 1 this function is not real
and thus would violate the reality of the initial solution.

B.5 Fixing zero-mode from Bethe equations

In this subsection we present an alternative way of fixing α(v) in equation (B.9). The idea is
to take the product of all Bethe equations and use momentum conservation. For simplicity,
we perform this exercise with only u2̇,k, u2,k present, that is we will assume there to be no
massless excitations nor any auxiliary excitations. With this restriction, we have two Bethe
equations: (5.8) and (5.14). They become

−
(

x+
2,k

x−
2,k

)L

= Q++
2

Q−−
2

B+
2̇,(−)B

+
2̇,(+)

B−
2̇,(−)B

−
2̇,(+)

(
σ+
•

σ−
•

ρ̂+
•

ρ̂+
•

)2 ∣∣∣∣
x=x2,k

(B.17)

and

−

x+
2̇,k

x−
2̇,k

L

=
B+

2̇,(+)R
−
2̇,(−)

B−
2̇,(−)R

+
2̇,(+)

B+
2,(+)B

−
2,(+)

B+
2,(−)B

−
2,(−)

(
σ+
•

σ−
•

ˆ̇ρ+
•
ˆ̇ρ−•

)2 ∣∣∣∣
x=x2̇,k

(B.18)

where we have put additional hats over ρ to emphasize that these are not yet the ρs of
the main text. Let us take the product over all root u2,k, u2̇,k and then multiply the two
equations above. We use the identities

K2∏
j=1

Q++
2 (u2,j)

Q−−
2 (u2,j)

= (−1)K2 ,

K2̇∏
j=1

B+
2̇,(+)(u2̇,j)R

−
2̇,(−)(u2̇,j)

B−
2̇,(−)(u2̇,j)R

+
2̇,(+)(u2̇,j)

= (−1)K2̇ ,

K2∏
j=1

B±1
2̇,(±2)(u2,j) =

K2̇∏
j=1

B∓2
2,(∓1)(u2̇,j) ,

(B.19)

and momentum conservation,

K2∏
k=1

x+
2,k

x−
2,k

K2̇∏
k=1

x+
2̇,k

x−
2̇,k

= 1 , (B.20)

to obtain

1 =
K2∏
j=1

(
σ+
•

σ−
•

ρ̂+
•

ρ̂−•

)2 ∣∣∣∣
x=x2,k

K2̇∏
j=1

(
σ+
•

σ−
•

ˆ̇ρ+
•
ˆ̇ρ−•

)2 ∣∣∣∣
x=x2̇,k

. (B.21)

Let us reintroducing the ambiguity that arises from only keeping proportionalities in the
“half”-crossing equations by writing

ρ̂• = ρ• ×
(

x − 1
x + 1

)α̃

, ˆ̇ρ• = ρ̇• ×
(

x + 1
x − 1

)α̃

. (B.22)
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where α̃ is any function of all Bethe roots. We already established unitarity of ρ• and ρ̇•
as well as the BES factor in section 6.2. It then follows that

1 =

K2∏
k=1

x+
2,k − 1

x+
2,k + 1

x−
2,k + 1

x−
2,k − 1

K2̇∏
k=1

x+
2̇,k

+ 1
x+

2̇,k
− 1

x−
2̇,k

− 1
x−

2̇,k
+ 1

2α̃

. (B.23)

For example, at weak coupling the two products are not equal to one for generic states
and furthermore they behave as 1 +O(g); thus we must set α̃ = 0. For suitably fine-tuned
states one cannot exclude the possibility that the expression in the large round brackets is
1; however, one can deform continuously by introducing a twist and then by continuity we
must have α̃ = 0 for all states. This concludes the exercise.

C Constraining ζ

In this appendix we constrain ζ introduced in (4.24). Recall that ζ appears in the massless
Bethe equations (5.29). This allows us to take the product of all Bethe equations for all
roots and use momentum conservation,

K◦∏
k=1

z2
k

K2∏
k=1

x+
2,k

x−
2,k

K2̇∏
k=1

x+
2̇,k

x−
2̇,k

= 1 (C.1)

to constrain ζ. It turns out that the full calculation is equivalent to simply considering the
case with massless excitations without any massive or auxiliary excitations. The purely
massless Bethe equations are

±ζz2L
k =

K◦∏
j=1

(
−zk

zj
(σ◦◦)2 (zk, zj)

)
. (C.2)

Taking their product over all roots zk and using
∏K◦

k=1 z2
k = 1 gives

(±ζ)K◦ =
K◦∏

j,k=1
(σ◦◦)2 (zj , zk) = (−i)K◦(−1)

K◦(K◦−1)
2 . (C.3)

From this we get ζ = ± (−i)K◦ e2πin/K◦ , for some n = 0, 1, . . . , K◦ − 1.

D Exploring the possibility of including an a(γ) factor

In this appendix, we explore the possibility that our ϱ◦ function has to be modified to
accommodate the extra a(γ) factor in the massless-massless dressing phase. If such a factor
were to be included, the modified ϱ◦ would in turn satisfy a different discontinuity relation
to (4.79). Nevertheless, let us consider ϱ◦ → ϱ◦ϱa such that(

ϱa(x, y)
ϱa(xγ̄ , y)

)2
= ±ia(x, y) . (D.1)

First, notice that, since a(1/x, y) = −1/a(x, y), we should have(
ϱa(xγ , y)
ϱa(x, y)

)2
= ∓ i

a(x, y) (D.2)
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which, in turn, implies that (
ϱa(x, y)
ϱa(xγ̄ , y)

)2 (ϱa(xγ , y)
ϱa(x, y)

)2
= 1 (D.3)

so ϱa(x, y)2 has a quadratic cut and thus is a rational function of x and y. Since we require
ϱa(x, y) to have no zeros or poles on the main sheet, we can construct the following solution
of (D.1)

ϱ2
a(x, y) ∝ i(x − y) + xy − 1√

x
(D.4)

which for physical values of y i.e. |y| = 1 and 0 < arg y < π has a zero inside the unit circle
at x = 1+iy

y+i . One can easily prove that the solution is unique up to a constant factor — the
homogeneous solution has to be an analytic function of u with no poles or zeros i.e. a constant.

There are two immediate problems with the ϱ2
a(x, y) factor (D.4) within the ABA limit

of the QSC. Firstly, by definition, ϱ◦ should go to 1 at x → ∞, which does not hold for (D.4).
Secondly, ϱγ

a has a zero outside the unit circle, which contradicts the definition of the factors
of R and B in the ansatz for Pa in (4.66) and (4.68), which should already contain all zeros.

Furthermore, including such a term in ϱ◦ would lead to an even more serious discrepancy
in the massive-massless dressing phase (5.12), which would become

(σ•◦(x, y))2 → (σ•◦(x, y))2
[√

x− (x+y + ix+ − iy − 1
)

√
x+ (x−y + ix− − iy − 1)

]
. (D.5)

In turn, under crossing, this would produce an extra factor −2uxuy−iuy+8
−2uxuy+iuy+8 on the right-hand

side of the crossing equations. Finally, the unitarity relation between σ•◦ with σ◦• would
be destroyed by this additional factor, since σ◦• is expressed in terms of ϱ• in (5.35) and
so remains unchanged by this modification.
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